1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 21 /** 22 * DOC: Wireless regulatory infrastructure 23 * 24 * The usual implementation is for a driver to read a device EEPROM to 25 * determine which regulatory domain it should be operating under, then 26 * looking up the allowable channels in a driver-local table and finally 27 * registering those channels in the wiphy structure. 28 * 29 * Another set of compliance enforcement is for drivers to use their 30 * own compliance limits which can be stored on the EEPROM. The host 31 * driver or firmware may ensure these are used. 32 * 33 * In addition to all this we provide an extra layer of regulatory 34 * conformance. For drivers which do not have any regulatory 35 * information CRDA provides the complete regulatory solution. 36 * For others it provides a community effort on further restrictions 37 * to enhance compliance. 38 * 39 * Note: When number of rules --> infinity we will not be able to 40 * index on alpha2 any more, instead we'll probably have to 41 * rely on some SHA1 checksum of the regdomain for example. 42 * 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/kernel.h> 48 #include <linux/export.h> 49 #include <linux/slab.h> 50 #include <linux/list.h> 51 #include <linux/ctype.h> 52 #include <linux/nl80211.h> 53 #include <linux/platform_device.h> 54 #include <linux/moduleparam.h> 55 #include <net/cfg80211.h> 56 #include "core.h" 57 #include "reg.h" 58 #include "regdb.h" 59 #include "nl80211.h" 60 61 #ifdef CONFIG_CFG80211_REG_DEBUG 62 #define REG_DBG_PRINT(format, args...) \ 63 printk(KERN_DEBUG pr_fmt(format), ##args) 64 #else 65 #define REG_DBG_PRINT(args...) 66 #endif 67 68 enum reg_request_treatment { 69 REG_REQ_OK, 70 REG_REQ_IGNORE, 71 REG_REQ_INTERSECT, 72 REG_REQ_ALREADY_SET, 73 }; 74 75 static struct regulatory_request core_request_world = { 76 .initiator = NL80211_REGDOM_SET_BY_CORE, 77 .alpha2[0] = '0', 78 .alpha2[1] = '0', 79 .intersect = false, 80 .processed = true, 81 .country_ie_env = ENVIRON_ANY, 82 }; 83 84 /* Receipt of information from last regulatory request */ 85 static struct regulatory_request __rcu *last_request = 86 (void __rcu *)&core_request_world; 87 88 /* To trigger userspace events */ 89 static struct platform_device *reg_pdev; 90 91 static struct device_type reg_device_type = { 92 .uevent = reg_device_uevent, 93 }; 94 95 /* 96 * Central wireless core regulatory domains, we only need two, 97 * the current one and a world regulatory domain in case we have no 98 * information to give us an alpha2. 99 */ 100 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 101 102 /* 103 * Protects static reg.c components: 104 * - cfg80211_regdomain (if not used with RCU) 105 * - cfg80211_world_regdom 106 * - last_request (if not used with RCU) 107 * - reg_num_devs_support_basehint 108 */ 109 static DEFINE_MUTEX(reg_mutex); 110 111 /* 112 * Number of devices that registered to the core 113 * that support cellular base station regulatory hints 114 */ 115 static int reg_num_devs_support_basehint; 116 117 static inline void assert_reg_lock(void) 118 { 119 lockdep_assert_held(®_mutex); 120 } 121 122 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 123 { 124 return rcu_dereference_protected(cfg80211_regdomain, 125 lockdep_is_held(®_mutex)); 126 } 127 128 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 129 { 130 return rcu_dereference_protected(wiphy->regd, 131 lockdep_is_held(®_mutex)); 132 } 133 134 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 135 { 136 if (!r) 137 return; 138 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 139 } 140 141 static struct regulatory_request *get_last_request(void) 142 { 143 return rcu_dereference_check(last_request, 144 lockdep_is_held(®_mutex)); 145 } 146 147 /* Used to queue up regulatory hints */ 148 static LIST_HEAD(reg_requests_list); 149 static spinlock_t reg_requests_lock; 150 151 /* Used to queue up beacon hints for review */ 152 static LIST_HEAD(reg_pending_beacons); 153 static spinlock_t reg_pending_beacons_lock; 154 155 /* Used to keep track of processed beacon hints */ 156 static LIST_HEAD(reg_beacon_list); 157 158 struct reg_beacon { 159 struct list_head list; 160 struct ieee80211_channel chan; 161 }; 162 163 static void reg_todo(struct work_struct *work); 164 static DECLARE_WORK(reg_work, reg_todo); 165 166 static void reg_timeout_work(struct work_struct *work); 167 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work); 168 169 /* We keep a static world regulatory domain in case of the absence of CRDA */ 170 static const struct ieee80211_regdomain world_regdom = { 171 .n_reg_rules = 6, 172 .alpha2 = "00", 173 .reg_rules = { 174 /* IEEE 802.11b/g, channels 1..11 */ 175 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 176 /* IEEE 802.11b/g, channels 12..13. */ 177 REG_RULE(2467-10, 2472+10, 40, 6, 20, 178 NL80211_RRF_PASSIVE_SCAN | 179 NL80211_RRF_NO_IBSS), 180 /* IEEE 802.11 channel 14 - Only JP enables 181 * this and for 802.11b only */ 182 REG_RULE(2484-10, 2484+10, 20, 6, 20, 183 NL80211_RRF_PASSIVE_SCAN | 184 NL80211_RRF_NO_IBSS | 185 NL80211_RRF_NO_OFDM), 186 /* IEEE 802.11a, channel 36..48 */ 187 REG_RULE(5180-10, 5240+10, 80, 6, 20, 188 NL80211_RRF_PASSIVE_SCAN | 189 NL80211_RRF_NO_IBSS), 190 191 /* NB: 5260 MHz - 5700 MHz requires DFS */ 192 193 /* IEEE 802.11a, channel 149..165 */ 194 REG_RULE(5745-10, 5825+10, 80, 6, 20, 195 NL80211_RRF_PASSIVE_SCAN | 196 NL80211_RRF_NO_IBSS), 197 198 /* IEEE 802.11ad (60gHz), channels 1..3 */ 199 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 200 } 201 }; 202 203 static const struct ieee80211_regdomain *cfg80211_world_regdom = 204 &world_regdom; 205 206 static char *ieee80211_regdom = "00"; 207 static char user_alpha2[2]; 208 209 module_param(ieee80211_regdom, charp, 0444); 210 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 211 212 static void reset_regdomains(bool full_reset, 213 const struct ieee80211_regdomain *new_regdom) 214 { 215 const struct ieee80211_regdomain *r; 216 struct regulatory_request *lr; 217 218 assert_reg_lock(); 219 220 r = get_cfg80211_regdom(); 221 222 /* avoid freeing static information or freeing something twice */ 223 if (r == cfg80211_world_regdom) 224 r = NULL; 225 if (cfg80211_world_regdom == &world_regdom) 226 cfg80211_world_regdom = NULL; 227 if (r == &world_regdom) 228 r = NULL; 229 230 rcu_free_regdom(r); 231 rcu_free_regdom(cfg80211_world_regdom); 232 233 cfg80211_world_regdom = &world_regdom; 234 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 235 236 if (!full_reset) 237 return; 238 239 lr = get_last_request(); 240 if (lr != &core_request_world && lr) 241 kfree_rcu(lr, rcu_head); 242 rcu_assign_pointer(last_request, &core_request_world); 243 } 244 245 /* 246 * Dynamic world regulatory domain requested by the wireless 247 * core upon initialization 248 */ 249 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 250 { 251 struct regulatory_request *lr; 252 253 lr = get_last_request(); 254 255 WARN_ON(!lr); 256 257 reset_regdomains(false, rd); 258 259 cfg80211_world_regdom = rd; 260 } 261 262 bool is_world_regdom(const char *alpha2) 263 { 264 if (!alpha2) 265 return false; 266 return alpha2[0] == '0' && alpha2[1] == '0'; 267 } 268 269 static bool is_alpha2_set(const char *alpha2) 270 { 271 if (!alpha2) 272 return false; 273 return alpha2[0] && alpha2[1]; 274 } 275 276 static bool is_unknown_alpha2(const char *alpha2) 277 { 278 if (!alpha2) 279 return false; 280 /* 281 * Special case where regulatory domain was built by driver 282 * but a specific alpha2 cannot be determined 283 */ 284 return alpha2[0] == '9' && alpha2[1] == '9'; 285 } 286 287 static bool is_intersected_alpha2(const char *alpha2) 288 { 289 if (!alpha2) 290 return false; 291 /* 292 * Special case where regulatory domain is the 293 * result of an intersection between two regulatory domain 294 * structures 295 */ 296 return alpha2[0] == '9' && alpha2[1] == '8'; 297 } 298 299 static bool is_an_alpha2(const char *alpha2) 300 { 301 if (!alpha2) 302 return false; 303 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 304 } 305 306 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 307 { 308 if (!alpha2_x || !alpha2_y) 309 return false; 310 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 311 } 312 313 static bool regdom_changes(const char *alpha2) 314 { 315 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 316 317 if (!r) 318 return true; 319 return !alpha2_equal(r->alpha2, alpha2); 320 } 321 322 /* 323 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 324 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 325 * has ever been issued. 326 */ 327 static bool is_user_regdom_saved(void) 328 { 329 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 330 return false; 331 332 /* This would indicate a mistake on the design */ 333 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 334 "Unexpected user alpha2: %c%c\n", 335 user_alpha2[0], user_alpha2[1])) 336 return false; 337 338 return true; 339 } 340 341 static const struct ieee80211_regdomain * 342 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 343 { 344 struct ieee80211_regdomain *regd; 345 int size_of_regd; 346 unsigned int i; 347 348 size_of_regd = 349 sizeof(struct ieee80211_regdomain) + 350 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); 351 352 regd = kzalloc(size_of_regd, GFP_KERNEL); 353 if (!regd) 354 return ERR_PTR(-ENOMEM); 355 356 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 357 358 for (i = 0; i < src_regd->n_reg_rules; i++) 359 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 360 sizeof(struct ieee80211_reg_rule)); 361 362 return regd; 363 } 364 365 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 366 struct reg_regdb_search_request { 367 char alpha2[2]; 368 struct list_head list; 369 }; 370 371 static LIST_HEAD(reg_regdb_search_list); 372 static DEFINE_MUTEX(reg_regdb_search_mutex); 373 374 static void reg_regdb_search(struct work_struct *work) 375 { 376 struct reg_regdb_search_request *request; 377 const struct ieee80211_regdomain *curdom, *regdom = NULL; 378 int i; 379 380 mutex_lock(&cfg80211_mutex); 381 382 mutex_lock(®_regdb_search_mutex); 383 while (!list_empty(®_regdb_search_list)) { 384 request = list_first_entry(®_regdb_search_list, 385 struct reg_regdb_search_request, 386 list); 387 list_del(&request->list); 388 389 for (i = 0; i < reg_regdb_size; i++) { 390 curdom = reg_regdb[i]; 391 392 if (alpha2_equal(request->alpha2, curdom->alpha2)) { 393 regdom = reg_copy_regd(curdom); 394 break; 395 } 396 } 397 398 kfree(request); 399 } 400 mutex_unlock(®_regdb_search_mutex); 401 402 if (!IS_ERR_OR_NULL(regdom)) 403 set_regdom(regdom); 404 405 mutex_unlock(&cfg80211_mutex); 406 } 407 408 static DECLARE_WORK(reg_regdb_work, reg_regdb_search); 409 410 static void reg_regdb_query(const char *alpha2) 411 { 412 struct reg_regdb_search_request *request; 413 414 if (!alpha2) 415 return; 416 417 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL); 418 if (!request) 419 return; 420 421 memcpy(request->alpha2, alpha2, 2); 422 423 mutex_lock(®_regdb_search_mutex); 424 list_add_tail(&request->list, ®_regdb_search_list); 425 mutex_unlock(®_regdb_search_mutex); 426 427 schedule_work(®_regdb_work); 428 } 429 430 /* Feel free to add any other sanity checks here */ 431 static void reg_regdb_size_check(void) 432 { 433 /* We should ideally BUILD_BUG_ON() but then random builds would fail */ 434 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it..."); 435 } 436 #else 437 static inline void reg_regdb_size_check(void) {} 438 static inline void reg_regdb_query(const char *alpha2) {} 439 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 440 441 /* 442 * This lets us keep regulatory code which is updated on a regulatory 443 * basis in userspace. Country information is filled in by 444 * reg_device_uevent 445 */ 446 static int call_crda(const char *alpha2) 447 { 448 if (!is_world_regdom((char *) alpha2)) 449 pr_info("Calling CRDA for country: %c%c\n", 450 alpha2[0], alpha2[1]); 451 else 452 pr_info("Calling CRDA to update world regulatory domain\n"); 453 454 /* query internal regulatory database (if it exists) */ 455 reg_regdb_query(alpha2); 456 457 return kobject_uevent(®_pdev->dev.kobj, KOBJ_CHANGE); 458 } 459 460 static bool reg_is_valid_request(const char *alpha2) 461 { 462 struct regulatory_request *lr = get_last_request(); 463 464 if (!lr || lr->processed) 465 return false; 466 467 return alpha2_equal(lr->alpha2, alpha2); 468 } 469 470 /* Sanity check on a regulatory rule */ 471 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 472 { 473 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 474 u32 freq_diff; 475 476 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 477 return false; 478 479 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 480 return false; 481 482 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 483 484 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 485 freq_range->max_bandwidth_khz > freq_diff) 486 return false; 487 488 return true; 489 } 490 491 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 492 { 493 const struct ieee80211_reg_rule *reg_rule = NULL; 494 unsigned int i; 495 496 if (!rd->n_reg_rules) 497 return false; 498 499 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 500 return false; 501 502 for (i = 0; i < rd->n_reg_rules; i++) { 503 reg_rule = &rd->reg_rules[i]; 504 if (!is_valid_reg_rule(reg_rule)) 505 return false; 506 } 507 508 return true; 509 } 510 511 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 512 u32 center_freq_khz, u32 bw_khz) 513 { 514 u32 start_freq_khz, end_freq_khz; 515 516 start_freq_khz = center_freq_khz - (bw_khz/2); 517 end_freq_khz = center_freq_khz + (bw_khz/2); 518 519 if (start_freq_khz >= freq_range->start_freq_khz && 520 end_freq_khz <= freq_range->end_freq_khz) 521 return true; 522 523 return false; 524 } 525 526 /** 527 * freq_in_rule_band - tells us if a frequency is in a frequency band 528 * @freq_range: frequency rule we want to query 529 * @freq_khz: frequency we are inquiring about 530 * 531 * This lets us know if a specific frequency rule is or is not relevant to 532 * a specific frequency's band. Bands are device specific and artificial 533 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 534 * however it is safe for now to assume that a frequency rule should not be 535 * part of a frequency's band if the start freq or end freq are off by more 536 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the 537 * 60 GHz band. 538 * This resolution can be lowered and should be considered as we add 539 * regulatory rule support for other "bands". 540 **/ 541 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 542 u32 freq_khz) 543 { 544 #define ONE_GHZ_IN_KHZ 1000000 545 /* 546 * From 802.11ad: directional multi-gigabit (DMG): 547 * Pertaining to operation in a frequency band containing a channel 548 * with the Channel starting frequency above 45 GHz. 549 */ 550 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 551 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 552 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 553 return true; 554 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 555 return true; 556 return false; 557 #undef ONE_GHZ_IN_KHZ 558 } 559 560 /* 561 * Helper for regdom_intersect(), this does the real 562 * mathematical intersection fun 563 */ 564 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1, 565 const struct ieee80211_reg_rule *rule2, 566 struct ieee80211_reg_rule *intersected_rule) 567 { 568 const struct ieee80211_freq_range *freq_range1, *freq_range2; 569 struct ieee80211_freq_range *freq_range; 570 const struct ieee80211_power_rule *power_rule1, *power_rule2; 571 struct ieee80211_power_rule *power_rule; 572 u32 freq_diff; 573 574 freq_range1 = &rule1->freq_range; 575 freq_range2 = &rule2->freq_range; 576 freq_range = &intersected_rule->freq_range; 577 578 power_rule1 = &rule1->power_rule; 579 power_rule2 = &rule2->power_rule; 580 power_rule = &intersected_rule->power_rule; 581 582 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 583 freq_range2->start_freq_khz); 584 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 585 freq_range2->end_freq_khz); 586 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz, 587 freq_range2->max_bandwidth_khz); 588 589 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 590 if (freq_range->max_bandwidth_khz > freq_diff) 591 freq_range->max_bandwidth_khz = freq_diff; 592 593 power_rule->max_eirp = min(power_rule1->max_eirp, 594 power_rule2->max_eirp); 595 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 596 power_rule2->max_antenna_gain); 597 598 intersected_rule->flags = rule1->flags | rule2->flags; 599 600 if (!is_valid_reg_rule(intersected_rule)) 601 return -EINVAL; 602 603 return 0; 604 } 605 606 /** 607 * regdom_intersect - do the intersection between two regulatory domains 608 * @rd1: first regulatory domain 609 * @rd2: second regulatory domain 610 * 611 * Use this function to get the intersection between two regulatory domains. 612 * Once completed we will mark the alpha2 for the rd as intersected, "98", 613 * as no one single alpha2 can represent this regulatory domain. 614 * 615 * Returns a pointer to the regulatory domain structure which will hold the 616 * resulting intersection of rules between rd1 and rd2. We will 617 * kzalloc() this structure for you. 618 */ 619 static struct ieee80211_regdomain * 620 regdom_intersect(const struct ieee80211_regdomain *rd1, 621 const struct ieee80211_regdomain *rd2) 622 { 623 int r, size_of_regd; 624 unsigned int x, y; 625 unsigned int num_rules = 0, rule_idx = 0; 626 const struct ieee80211_reg_rule *rule1, *rule2; 627 struct ieee80211_reg_rule *intersected_rule; 628 struct ieee80211_regdomain *rd; 629 /* This is just a dummy holder to help us count */ 630 struct ieee80211_reg_rule dummy_rule; 631 632 if (!rd1 || !rd2) 633 return NULL; 634 635 /* 636 * First we get a count of the rules we'll need, then we actually 637 * build them. This is to so we can malloc() and free() a 638 * regdomain once. The reason we use reg_rules_intersect() here 639 * is it will return -EINVAL if the rule computed makes no sense. 640 * All rules that do check out OK are valid. 641 */ 642 643 for (x = 0; x < rd1->n_reg_rules; x++) { 644 rule1 = &rd1->reg_rules[x]; 645 for (y = 0; y < rd2->n_reg_rules; y++) { 646 rule2 = &rd2->reg_rules[y]; 647 if (!reg_rules_intersect(rule1, rule2, &dummy_rule)) 648 num_rules++; 649 } 650 } 651 652 if (!num_rules) 653 return NULL; 654 655 size_of_regd = sizeof(struct ieee80211_regdomain) + 656 num_rules * sizeof(struct ieee80211_reg_rule); 657 658 rd = kzalloc(size_of_regd, GFP_KERNEL); 659 if (!rd) 660 return NULL; 661 662 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) { 663 rule1 = &rd1->reg_rules[x]; 664 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) { 665 rule2 = &rd2->reg_rules[y]; 666 /* 667 * This time around instead of using the stack lets 668 * write to the target rule directly saving ourselves 669 * a memcpy() 670 */ 671 intersected_rule = &rd->reg_rules[rule_idx]; 672 r = reg_rules_intersect(rule1, rule2, intersected_rule); 673 /* 674 * No need to memset here the intersected rule here as 675 * we're not using the stack anymore 676 */ 677 if (r) 678 continue; 679 rule_idx++; 680 } 681 } 682 683 if (rule_idx != num_rules) { 684 kfree(rd); 685 return NULL; 686 } 687 688 rd->n_reg_rules = num_rules; 689 rd->alpha2[0] = '9'; 690 rd->alpha2[1] = '8'; 691 692 return rd; 693 } 694 695 /* 696 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 697 * want to just have the channel structure use these 698 */ 699 static u32 map_regdom_flags(u32 rd_flags) 700 { 701 u32 channel_flags = 0; 702 if (rd_flags & NL80211_RRF_PASSIVE_SCAN) 703 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN; 704 if (rd_flags & NL80211_RRF_NO_IBSS) 705 channel_flags |= IEEE80211_CHAN_NO_IBSS; 706 if (rd_flags & NL80211_RRF_DFS) 707 channel_flags |= IEEE80211_CHAN_RADAR; 708 if (rd_flags & NL80211_RRF_NO_OFDM) 709 channel_flags |= IEEE80211_CHAN_NO_OFDM; 710 return channel_flags; 711 } 712 713 static const struct ieee80211_reg_rule * 714 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq, 715 const struct ieee80211_regdomain *regd) 716 { 717 int i; 718 bool band_rule_found = false; 719 bool bw_fits = false; 720 721 if (!regd) 722 return ERR_PTR(-EINVAL); 723 724 for (i = 0; i < regd->n_reg_rules; i++) { 725 const struct ieee80211_reg_rule *rr; 726 const struct ieee80211_freq_range *fr = NULL; 727 728 rr = ®d->reg_rules[i]; 729 fr = &rr->freq_range; 730 731 /* 732 * We only need to know if one frequency rule was 733 * was in center_freq's band, that's enough, so lets 734 * not overwrite it once found 735 */ 736 if (!band_rule_found) 737 band_rule_found = freq_in_rule_band(fr, center_freq); 738 739 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20)); 740 741 if (band_rule_found && bw_fits) 742 return rr; 743 } 744 745 if (!band_rule_found) 746 return ERR_PTR(-ERANGE); 747 748 return ERR_PTR(-EINVAL); 749 } 750 751 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 752 u32 center_freq) 753 { 754 const struct ieee80211_regdomain *regd; 755 struct regulatory_request *lr = get_last_request(); 756 757 /* 758 * Follow the driver's regulatory domain, if present, unless a country 759 * IE has been processed or a user wants to help complaince further 760 */ 761 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 762 lr->initiator != NL80211_REGDOM_SET_BY_USER && 763 wiphy->regd) 764 regd = get_wiphy_regdom(wiphy); 765 else 766 regd = get_cfg80211_regdom(); 767 768 return freq_reg_info_regd(wiphy, center_freq, regd); 769 } 770 EXPORT_SYMBOL(freq_reg_info); 771 772 #ifdef CONFIG_CFG80211_REG_DEBUG 773 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 774 { 775 switch (initiator) { 776 case NL80211_REGDOM_SET_BY_CORE: 777 return "Set by core"; 778 case NL80211_REGDOM_SET_BY_USER: 779 return "Set by user"; 780 case NL80211_REGDOM_SET_BY_DRIVER: 781 return "Set by driver"; 782 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 783 return "Set by country IE"; 784 default: 785 WARN_ON(1); 786 return "Set by bug"; 787 } 788 } 789 790 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 791 const struct ieee80211_reg_rule *reg_rule) 792 { 793 const struct ieee80211_power_rule *power_rule; 794 const struct ieee80211_freq_range *freq_range; 795 char max_antenna_gain[32]; 796 797 power_rule = ®_rule->power_rule; 798 freq_range = ®_rule->freq_range; 799 800 if (!power_rule->max_antenna_gain) 801 snprintf(max_antenna_gain, 32, "N/A"); 802 else 803 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain); 804 805 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n", 806 chan->center_freq); 807 808 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n", 809 freq_range->start_freq_khz, freq_range->end_freq_khz, 810 freq_range->max_bandwidth_khz, max_antenna_gain, 811 power_rule->max_eirp); 812 } 813 #else 814 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 815 const struct ieee80211_reg_rule *reg_rule) 816 { 817 return; 818 } 819 #endif 820 821 /* 822 * Note that right now we assume the desired channel bandwidth 823 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 824 * per channel, the primary and the extension channel). 825 */ 826 static void handle_channel(struct wiphy *wiphy, 827 enum nl80211_reg_initiator initiator, 828 struct ieee80211_channel *chan) 829 { 830 u32 flags, bw_flags = 0; 831 const struct ieee80211_reg_rule *reg_rule = NULL; 832 const struct ieee80211_power_rule *power_rule = NULL; 833 const struct ieee80211_freq_range *freq_range = NULL; 834 struct wiphy *request_wiphy = NULL; 835 struct regulatory_request *lr = get_last_request(); 836 837 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 838 839 flags = chan->orig_flags; 840 841 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 842 if (IS_ERR(reg_rule)) { 843 /* 844 * We will disable all channels that do not match our 845 * received regulatory rule unless the hint is coming 846 * from a Country IE and the Country IE had no information 847 * about a band. The IEEE 802.11 spec allows for an AP 848 * to send only a subset of the regulatory rules allowed, 849 * so an AP in the US that only supports 2.4 GHz may only send 850 * a country IE with information for the 2.4 GHz band 851 * while 5 GHz is still supported. 852 */ 853 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 854 PTR_ERR(reg_rule) == -ERANGE) 855 return; 856 857 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq); 858 chan->flags |= IEEE80211_CHAN_DISABLED; 859 return; 860 } 861 862 chan_reg_rule_print_dbg(chan, reg_rule); 863 864 power_rule = ®_rule->power_rule; 865 freq_range = ®_rule->freq_range; 866 867 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 868 bw_flags = IEEE80211_CHAN_NO_HT40; 869 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80)) 870 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 871 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160)) 872 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 873 874 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 875 request_wiphy && request_wiphy == wiphy && 876 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { 877 /* 878 * This guarantees the driver's requested regulatory domain 879 * will always be used as a base for further regulatory 880 * settings 881 */ 882 chan->flags = chan->orig_flags = 883 map_regdom_flags(reg_rule->flags) | bw_flags; 884 chan->max_antenna_gain = chan->orig_mag = 885 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 886 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 887 (int) MBM_TO_DBM(power_rule->max_eirp); 888 return; 889 } 890 891 chan->dfs_state = NL80211_DFS_USABLE; 892 chan->dfs_state_entered = jiffies; 893 894 chan->beacon_found = false; 895 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 896 chan->max_antenna_gain = 897 min_t(int, chan->orig_mag, 898 MBI_TO_DBI(power_rule->max_antenna_gain)); 899 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 900 if (chan->orig_mpwr) { 901 /* 902 * Devices that have their own custom regulatory domain 903 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the 904 * passed country IE power settings. 905 */ 906 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 907 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY && 908 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) 909 chan->max_power = chan->max_reg_power; 910 else 911 chan->max_power = min(chan->orig_mpwr, 912 chan->max_reg_power); 913 } else 914 chan->max_power = chan->max_reg_power; 915 } 916 917 static void handle_band(struct wiphy *wiphy, 918 enum nl80211_reg_initiator initiator, 919 struct ieee80211_supported_band *sband) 920 { 921 unsigned int i; 922 923 if (!sband) 924 return; 925 926 for (i = 0; i < sband->n_channels; i++) 927 handle_channel(wiphy, initiator, &sband->channels[i]); 928 } 929 930 static bool reg_request_cell_base(struct regulatory_request *request) 931 { 932 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 933 return false; 934 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 935 } 936 937 bool reg_last_request_cell_base(void) 938 { 939 bool val; 940 941 mutex_lock(®_mutex); 942 val = reg_request_cell_base(get_last_request()); 943 mutex_unlock(®_mutex); 944 945 return val; 946 } 947 948 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS 949 /* Core specific check */ 950 static enum reg_request_treatment 951 reg_ignore_cell_hint(struct regulatory_request *pending_request) 952 { 953 struct regulatory_request *lr = get_last_request(); 954 955 if (!reg_num_devs_support_basehint) 956 return REG_REQ_IGNORE; 957 958 if (reg_request_cell_base(lr) && 959 !regdom_changes(pending_request->alpha2)) 960 return REG_REQ_ALREADY_SET; 961 962 return REG_REQ_OK; 963 } 964 965 /* Device specific check */ 966 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 967 { 968 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 969 } 970 #else 971 static int reg_ignore_cell_hint(struct regulatory_request *pending_request) 972 { 973 return REG_REQ_IGNORE; 974 } 975 976 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 977 { 978 return true; 979 } 980 #endif 981 982 983 static bool ignore_reg_update(struct wiphy *wiphy, 984 enum nl80211_reg_initiator initiator) 985 { 986 struct regulatory_request *lr = get_last_request(); 987 988 if (!lr) { 989 REG_DBG_PRINT("Ignoring regulatory request %s since last_request is not set\n", 990 reg_initiator_name(initiator)); 991 return true; 992 } 993 994 if (initiator == NL80211_REGDOM_SET_BY_CORE && 995 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) { 996 REG_DBG_PRINT("Ignoring regulatory request %s since the driver uses its own custom regulatory domain\n", 997 reg_initiator_name(initiator)); 998 return true; 999 } 1000 1001 /* 1002 * wiphy->regd will be set once the device has its own 1003 * desired regulatory domain set 1004 */ 1005 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd && 1006 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1007 !is_world_regdom(lr->alpha2)) { 1008 REG_DBG_PRINT("Ignoring regulatory request %s since the driver requires its own regulatory domain to be set first\n", 1009 reg_initiator_name(initiator)); 1010 return true; 1011 } 1012 1013 if (reg_request_cell_base(lr)) 1014 return reg_dev_ignore_cell_hint(wiphy); 1015 1016 return false; 1017 } 1018 1019 static bool reg_is_world_roaming(struct wiphy *wiphy) 1020 { 1021 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1022 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1023 struct regulatory_request *lr = get_last_request(); 1024 1025 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1026 return true; 1027 1028 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1029 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) 1030 return true; 1031 1032 return false; 1033 } 1034 1035 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1036 struct reg_beacon *reg_beacon) 1037 { 1038 struct ieee80211_supported_band *sband; 1039 struct ieee80211_channel *chan; 1040 bool channel_changed = false; 1041 struct ieee80211_channel chan_before; 1042 1043 sband = wiphy->bands[reg_beacon->chan.band]; 1044 chan = &sband->channels[chan_idx]; 1045 1046 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1047 return; 1048 1049 if (chan->beacon_found) 1050 return; 1051 1052 chan->beacon_found = true; 1053 1054 if (!reg_is_world_roaming(wiphy)) 1055 return; 1056 1057 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS) 1058 return; 1059 1060 chan_before.center_freq = chan->center_freq; 1061 chan_before.flags = chan->flags; 1062 1063 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) { 1064 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN; 1065 channel_changed = true; 1066 } 1067 1068 if (chan->flags & IEEE80211_CHAN_NO_IBSS) { 1069 chan->flags &= ~IEEE80211_CHAN_NO_IBSS; 1070 channel_changed = true; 1071 } 1072 1073 if (channel_changed) 1074 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1075 } 1076 1077 /* 1078 * Called when a scan on a wiphy finds a beacon on 1079 * new channel 1080 */ 1081 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1082 struct reg_beacon *reg_beacon) 1083 { 1084 unsigned int i; 1085 struct ieee80211_supported_band *sband; 1086 1087 if (!wiphy->bands[reg_beacon->chan.band]) 1088 return; 1089 1090 sband = wiphy->bands[reg_beacon->chan.band]; 1091 1092 for (i = 0; i < sband->n_channels; i++) 1093 handle_reg_beacon(wiphy, i, reg_beacon); 1094 } 1095 1096 /* 1097 * Called upon reg changes or a new wiphy is added 1098 */ 1099 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1100 { 1101 unsigned int i; 1102 struct ieee80211_supported_band *sband; 1103 struct reg_beacon *reg_beacon; 1104 1105 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1106 if (!wiphy->bands[reg_beacon->chan.band]) 1107 continue; 1108 sband = wiphy->bands[reg_beacon->chan.band]; 1109 for (i = 0; i < sband->n_channels; i++) 1110 handle_reg_beacon(wiphy, i, reg_beacon); 1111 } 1112 } 1113 1114 /* Reap the advantages of previously found beacons */ 1115 static void reg_process_beacons(struct wiphy *wiphy) 1116 { 1117 /* 1118 * Means we are just firing up cfg80211, so no beacons would 1119 * have been processed yet. 1120 */ 1121 if (!last_request) 1122 return; 1123 wiphy_update_beacon_reg(wiphy); 1124 } 1125 1126 static bool is_ht40_allowed(struct ieee80211_channel *chan) 1127 { 1128 if (!chan) 1129 return false; 1130 if (chan->flags & IEEE80211_CHAN_DISABLED) 1131 return false; 1132 /* This would happen when regulatory rules disallow HT40 completely */ 1133 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 1134 return false; 1135 return true; 1136 } 1137 1138 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1139 struct ieee80211_channel *channel) 1140 { 1141 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 1142 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1143 unsigned int i; 1144 1145 if (!is_ht40_allowed(channel)) { 1146 channel->flags |= IEEE80211_CHAN_NO_HT40; 1147 return; 1148 } 1149 1150 /* 1151 * We need to ensure the extension channels exist to 1152 * be able to use HT40- or HT40+, this finds them (or not) 1153 */ 1154 for (i = 0; i < sband->n_channels; i++) { 1155 struct ieee80211_channel *c = &sband->channels[i]; 1156 1157 if (c->center_freq == (channel->center_freq - 20)) 1158 channel_before = c; 1159 if (c->center_freq == (channel->center_freq + 20)) 1160 channel_after = c; 1161 } 1162 1163 /* 1164 * Please note that this assumes target bandwidth is 20 MHz, 1165 * if that ever changes we also need to change the below logic 1166 * to include that as well. 1167 */ 1168 if (!is_ht40_allowed(channel_before)) 1169 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1170 else 1171 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1172 1173 if (!is_ht40_allowed(channel_after)) 1174 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1175 else 1176 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1177 } 1178 1179 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1180 struct ieee80211_supported_band *sband) 1181 { 1182 unsigned int i; 1183 1184 if (!sband) 1185 return; 1186 1187 for (i = 0; i < sband->n_channels; i++) 1188 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 1189 } 1190 1191 static void reg_process_ht_flags(struct wiphy *wiphy) 1192 { 1193 enum ieee80211_band band; 1194 1195 if (!wiphy) 1196 return; 1197 1198 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1199 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 1200 } 1201 1202 static void wiphy_update_regulatory(struct wiphy *wiphy, 1203 enum nl80211_reg_initiator initiator) 1204 { 1205 enum ieee80211_band band; 1206 struct regulatory_request *lr = get_last_request(); 1207 1208 if (ignore_reg_update(wiphy, initiator)) 1209 return; 1210 1211 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 1212 1213 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1214 handle_band(wiphy, initiator, wiphy->bands[band]); 1215 1216 reg_process_beacons(wiphy); 1217 reg_process_ht_flags(wiphy); 1218 1219 if (wiphy->reg_notifier) 1220 wiphy->reg_notifier(wiphy, lr); 1221 } 1222 1223 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 1224 { 1225 struct cfg80211_registered_device *rdev; 1226 struct wiphy *wiphy; 1227 1228 assert_cfg80211_lock(); 1229 1230 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1231 wiphy = &rdev->wiphy; 1232 wiphy_update_regulatory(wiphy, initiator); 1233 /* 1234 * Regulatory updates set by CORE are ignored for custom 1235 * regulatory cards. Let us notify the changes to the driver, 1236 * as some drivers used this to restore its orig_* reg domain. 1237 */ 1238 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1239 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY && 1240 wiphy->reg_notifier) 1241 wiphy->reg_notifier(wiphy, get_last_request()); 1242 } 1243 } 1244 1245 static void handle_channel_custom(struct wiphy *wiphy, 1246 struct ieee80211_channel *chan, 1247 const struct ieee80211_regdomain *regd) 1248 { 1249 u32 bw_flags = 0; 1250 const struct ieee80211_reg_rule *reg_rule = NULL; 1251 const struct ieee80211_power_rule *power_rule = NULL; 1252 const struct ieee80211_freq_range *freq_range = NULL; 1253 1254 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq), 1255 regd); 1256 1257 if (IS_ERR(reg_rule)) { 1258 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n", 1259 chan->center_freq); 1260 chan->flags = IEEE80211_CHAN_DISABLED; 1261 return; 1262 } 1263 1264 chan_reg_rule_print_dbg(chan, reg_rule); 1265 1266 power_rule = ®_rule->power_rule; 1267 freq_range = ®_rule->freq_range; 1268 1269 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 1270 bw_flags = IEEE80211_CHAN_NO_HT40; 1271 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80)) 1272 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1273 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160)) 1274 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1275 1276 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1277 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1278 chan->max_reg_power = chan->max_power = 1279 (int) MBM_TO_DBM(power_rule->max_eirp); 1280 } 1281 1282 static void handle_band_custom(struct wiphy *wiphy, 1283 struct ieee80211_supported_band *sband, 1284 const struct ieee80211_regdomain *regd) 1285 { 1286 unsigned int i; 1287 1288 if (!sband) 1289 return; 1290 1291 for (i = 0; i < sband->n_channels; i++) 1292 handle_channel_custom(wiphy, &sband->channels[i], regd); 1293 } 1294 1295 /* Used by drivers prior to wiphy registration */ 1296 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1297 const struct ieee80211_regdomain *regd) 1298 { 1299 enum ieee80211_band band; 1300 unsigned int bands_set = 0; 1301 1302 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1303 if (!wiphy->bands[band]) 1304 continue; 1305 handle_band_custom(wiphy, wiphy->bands[band], regd); 1306 bands_set++; 1307 } 1308 1309 /* 1310 * no point in calling this if it won't have any effect 1311 * on your device's supported bands. 1312 */ 1313 WARN_ON(!bands_set); 1314 } 1315 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1316 1317 /* This has the logic which determines when a new request 1318 * should be ignored. */ 1319 static enum reg_request_treatment 1320 get_reg_request_treatment(struct wiphy *wiphy, 1321 struct regulatory_request *pending_request) 1322 { 1323 struct wiphy *last_wiphy = NULL; 1324 struct regulatory_request *lr = get_last_request(); 1325 1326 /* All initial requests are respected */ 1327 if (!lr) 1328 return REG_REQ_OK; 1329 1330 switch (pending_request->initiator) { 1331 case NL80211_REGDOM_SET_BY_CORE: 1332 return REG_REQ_OK; 1333 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1334 if (reg_request_cell_base(lr)) { 1335 /* Trust a Cell base station over the AP's country IE */ 1336 if (regdom_changes(pending_request->alpha2)) 1337 return REG_REQ_IGNORE; 1338 return REG_REQ_ALREADY_SET; 1339 } 1340 1341 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1342 1343 if (unlikely(!is_an_alpha2(pending_request->alpha2))) 1344 return -EINVAL; 1345 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1346 if (last_wiphy != wiphy) { 1347 /* 1348 * Two cards with two APs claiming different 1349 * Country IE alpha2s. We could 1350 * intersect them, but that seems unlikely 1351 * to be correct. Reject second one for now. 1352 */ 1353 if (regdom_changes(pending_request->alpha2)) 1354 return REG_REQ_IGNORE; 1355 return REG_REQ_ALREADY_SET; 1356 } 1357 /* 1358 * Two consecutive Country IE hints on the same wiphy. 1359 * This should be picked up early by the driver/stack 1360 */ 1361 if (WARN_ON(regdom_changes(pending_request->alpha2))) 1362 return REG_REQ_OK; 1363 return REG_REQ_ALREADY_SET; 1364 } 1365 return 0; 1366 case NL80211_REGDOM_SET_BY_DRIVER: 1367 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 1368 if (regdom_changes(pending_request->alpha2)) 1369 return REG_REQ_OK; 1370 return REG_REQ_ALREADY_SET; 1371 } 1372 1373 /* 1374 * This would happen if you unplug and plug your card 1375 * back in or if you add a new device for which the previously 1376 * loaded card also agrees on the regulatory domain. 1377 */ 1378 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1379 !regdom_changes(pending_request->alpha2)) 1380 return REG_REQ_ALREADY_SET; 1381 1382 return REG_REQ_INTERSECT; 1383 case NL80211_REGDOM_SET_BY_USER: 1384 if (reg_request_cell_base(pending_request)) 1385 return reg_ignore_cell_hint(pending_request); 1386 1387 if (reg_request_cell_base(lr)) 1388 return REG_REQ_IGNORE; 1389 1390 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1391 return REG_REQ_INTERSECT; 1392 /* 1393 * If the user knows better the user should set the regdom 1394 * to their country before the IE is picked up 1395 */ 1396 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 1397 lr->intersect) 1398 return REG_REQ_IGNORE; 1399 /* 1400 * Process user requests only after previous user/driver/core 1401 * requests have been processed 1402 */ 1403 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 1404 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1405 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 1406 regdom_changes(lr->alpha2)) 1407 return REG_REQ_IGNORE; 1408 1409 if (!regdom_changes(pending_request->alpha2)) 1410 return REG_REQ_ALREADY_SET; 1411 1412 return REG_REQ_OK; 1413 } 1414 1415 return REG_REQ_IGNORE; 1416 } 1417 1418 static void reg_set_request_processed(void) 1419 { 1420 bool need_more_processing = false; 1421 struct regulatory_request *lr = get_last_request(); 1422 1423 lr->processed = true; 1424 1425 spin_lock(®_requests_lock); 1426 if (!list_empty(®_requests_list)) 1427 need_more_processing = true; 1428 spin_unlock(®_requests_lock); 1429 1430 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 1431 cancel_delayed_work(®_timeout); 1432 1433 if (need_more_processing) 1434 schedule_work(®_work); 1435 } 1436 1437 /** 1438 * __regulatory_hint - hint to the wireless core a regulatory domain 1439 * @wiphy: if the hint comes from country information from an AP, this 1440 * is required to be set to the wiphy that received the information 1441 * @pending_request: the regulatory request currently being processed 1442 * 1443 * The Wireless subsystem can use this function to hint to the wireless core 1444 * what it believes should be the current regulatory domain. 1445 * 1446 * Returns one of the different reg request treatment values. 1447 * 1448 * Caller must hold ®_mutex 1449 */ 1450 static enum reg_request_treatment 1451 __regulatory_hint(struct wiphy *wiphy, 1452 struct regulatory_request *pending_request) 1453 { 1454 const struct ieee80211_regdomain *regd; 1455 bool intersect = false; 1456 enum reg_request_treatment treatment; 1457 struct regulatory_request *lr; 1458 1459 treatment = get_reg_request_treatment(wiphy, pending_request); 1460 1461 switch (treatment) { 1462 case REG_REQ_INTERSECT: 1463 if (pending_request->initiator == 1464 NL80211_REGDOM_SET_BY_DRIVER) { 1465 regd = reg_copy_regd(get_cfg80211_regdom()); 1466 if (IS_ERR(regd)) { 1467 kfree(pending_request); 1468 return PTR_ERR(regd); 1469 } 1470 rcu_assign_pointer(wiphy->regd, regd); 1471 } 1472 intersect = true; 1473 break; 1474 case REG_REQ_OK: 1475 break; 1476 default: 1477 /* 1478 * If the regulatory domain being requested by the 1479 * driver has already been set just copy it to the 1480 * wiphy 1481 */ 1482 if (treatment == REG_REQ_ALREADY_SET && 1483 pending_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) { 1484 regd = reg_copy_regd(get_cfg80211_regdom()); 1485 if (IS_ERR(regd)) { 1486 kfree(pending_request); 1487 return REG_REQ_IGNORE; 1488 } 1489 treatment = REG_REQ_ALREADY_SET; 1490 rcu_assign_pointer(wiphy->regd, regd); 1491 goto new_request; 1492 } 1493 kfree(pending_request); 1494 return treatment; 1495 } 1496 1497 new_request: 1498 lr = get_last_request(); 1499 if (lr != &core_request_world && lr) 1500 kfree_rcu(lr, rcu_head); 1501 1502 pending_request->intersect = intersect; 1503 pending_request->processed = false; 1504 rcu_assign_pointer(last_request, pending_request); 1505 lr = pending_request; 1506 1507 pending_request = NULL; 1508 1509 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) { 1510 user_alpha2[0] = lr->alpha2[0]; 1511 user_alpha2[1] = lr->alpha2[1]; 1512 } 1513 1514 /* When r == REG_REQ_INTERSECT we do need to call CRDA */ 1515 if (treatment != REG_REQ_OK && treatment != REG_REQ_INTERSECT) { 1516 /* 1517 * Since CRDA will not be called in this case as we already 1518 * have applied the requested regulatory domain before we just 1519 * inform userspace we have processed the request 1520 */ 1521 if (treatment == REG_REQ_ALREADY_SET) { 1522 nl80211_send_reg_change_event(lr); 1523 reg_set_request_processed(); 1524 } 1525 return treatment; 1526 } 1527 1528 if (call_crda(lr->alpha2)) 1529 return REG_REQ_IGNORE; 1530 return REG_REQ_OK; 1531 } 1532 1533 /* This processes *all* regulatory hints */ 1534 static void reg_process_hint(struct regulatory_request *reg_request, 1535 enum nl80211_reg_initiator reg_initiator) 1536 { 1537 struct wiphy *wiphy = NULL; 1538 1539 if (WARN_ON(!reg_request->alpha2)) 1540 return; 1541 1542 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 1543 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 1544 1545 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) { 1546 kfree(reg_request); 1547 return; 1548 } 1549 1550 switch (__regulatory_hint(wiphy, reg_request)) { 1551 case REG_REQ_ALREADY_SET: 1552 /* This is required so that the orig_* parameters are saved */ 1553 if (wiphy && wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) 1554 wiphy_update_regulatory(wiphy, reg_initiator); 1555 break; 1556 default: 1557 if (reg_initiator == NL80211_REGDOM_SET_BY_USER) 1558 schedule_delayed_work(®_timeout, 1559 msecs_to_jiffies(3142)); 1560 break; 1561 } 1562 } 1563 1564 /* 1565 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 1566 * Regulatory hints come on a first come first serve basis and we 1567 * must process each one atomically. 1568 */ 1569 static void reg_process_pending_hints(void) 1570 { 1571 struct regulatory_request *reg_request, *lr; 1572 1573 mutex_lock(&cfg80211_mutex); 1574 mutex_lock(®_mutex); 1575 lr = get_last_request(); 1576 1577 /* When last_request->processed becomes true this will be rescheduled */ 1578 if (lr && !lr->processed) { 1579 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n"); 1580 goto out; 1581 } 1582 1583 spin_lock(®_requests_lock); 1584 1585 if (list_empty(®_requests_list)) { 1586 spin_unlock(®_requests_lock); 1587 goto out; 1588 } 1589 1590 reg_request = list_first_entry(®_requests_list, 1591 struct regulatory_request, 1592 list); 1593 list_del_init(®_request->list); 1594 1595 spin_unlock(®_requests_lock); 1596 1597 reg_process_hint(reg_request, reg_request->initiator); 1598 1599 out: 1600 mutex_unlock(®_mutex); 1601 mutex_unlock(&cfg80211_mutex); 1602 } 1603 1604 /* Processes beacon hints -- this has nothing to do with country IEs */ 1605 static void reg_process_pending_beacon_hints(void) 1606 { 1607 struct cfg80211_registered_device *rdev; 1608 struct reg_beacon *pending_beacon, *tmp; 1609 1610 mutex_lock(&cfg80211_mutex); 1611 mutex_lock(®_mutex); 1612 1613 /* This goes through the _pending_ beacon list */ 1614 spin_lock_bh(®_pending_beacons_lock); 1615 1616 list_for_each_entry_safe(pending_beacon, tmp, 1617 ®_pending_beacons, list) { 1618 list_del_init(&pending_beacon->list); 1619 1620 /* Applies the beacon hint to current wiphys */ 1621 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1622 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 1623 1624 /* Remembers the beacon hint for new wiphys or reg changes */ 1625 list_add_tail(&pending_beacon->list, ®_beacon_list); 1626 } 1627 1628 spin_unlock_bh(®_pending_beacons_lock); 1629 mutex_unlock(®_mutex); 1630 mutex_unlock(&cfg80211_mutex); 1631 } 1632 1633 static void reg_todo(struct work_struct *work) 1634 { 1635 reg_process_pending_hints(); 1636 reg_process_pending_beacon_hints(); 1637 } 1638 1639 static void queue_regulatory_request(struct regulatory_request *request) 1640 { 1641 request->alpha2[0] = toupper(request->alpha2[0]); 1642 request->alpha2[1] = toupper(request->alpha2[1]); 1643 1644 spin_lock(®_requests_lock); 1645 list_add_tail(&request->list, ®_requests_list); 1646 spin_unlock(®_requests_lock); 1647 1648 schedule_work(®_work); 1649 } 1650 1651 /* 1652 * Core regulatory hint -- happens during cfg80211_init() 1653 * and when we restore regulatory settings. 1654 */ 1655 static int regulatory_hint_core(const char *alpha2) 1656 { 1657 struct regulatory_request *request; 1658 1659 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1660 if (!request) 1661 return -ENOMEM; 1662 1663 request->alpha2[0] = alpha2[0]; 1664 request->alpha2[1] = alpha2[1]; 1665 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1666 1667 queue_regulatory_request(request); 1668 1669 return 0; 1670 } 1671 1672 /* User hints */ 1673 int regulatory_hint_user(const char *alpha2, 1674 enum nl80211_user_reg_hint_type user_reg_hint_type) 1675 { 1676 struct regulatory_request *request; 1677 1678 if (WARN_ON(!alpha2)) 1679 return -EINVAL; 1680 1681 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1682 if (!request) 1683 return -ENOMEM; 1684 1685 request->wiphy_idx = WIPHY_IDX_INVALID; 1686 request->alpha2[0] = alpha2[0]; 1687 request->alpha2[1] = alpha2[1]; 1688 request->initiator = NL80211_REGDOM_SET_BY_USER; 1689 request->user_reg_hint_type = user_reg_hint_type; 1690 1691 queue_regulatory_request(request); 1692 1693 return 0; 1694 } 1695 1696 /* Driver hints */ 1697 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 1698 { 1699 struct regulatory_request *request; 1700 1701 if (WARN_ON(!alpha2 || !wiphy)) 1702 return -EINVAL; 1703 1704 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1705 if (!request) 1706 return -ENOMEM; 1707 1708 request->wiphy_idx = get_wiphy_idx(wiphy); 1709 1710 request->alpha2[0] = alpha2[0]; 1711 request->alpha2[1] = alpha2[1]; 1712 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 1713 1714 queue_regulatory_request(request); 1715 1716 return 0; 1717 } 1718 EXPORT_SYMBOL(regulatory_hint); 1719 1720 /* 1721 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and 1722 * therefore cannot iterate over the rdev list here. 1723 */ 1724 void regulatory_hint_11d(struct wiphy *wiphy, enum ieee80211_band band, 1725 const u8 *country_ie, u8 country_ie_len) 1726 { 1727 char alpha2[2]; 1728 enum environment_cap env = ENVIRON_ANY; 1729 struct regulatory_request *request, *lr; 1730 1731 mutex_lock(®_mutex); 1732 lr = get_last_request(); 1733 1734 if (unlikely(!lr)) 1735 goto out; 1736 1737 /* IE len must be evenly divisible by 2 */ 1738 if (country_ie_len & 0x01) 1739 goto out; 1740 1741 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 1742 goto out; 1743 1744 alpha2[0] = country_ie[0]; 1745 alpha2[1] = country_ie[1]; 1746 1747 if (country_ie[2] == 'I') 1748 env = ENVIRON_INDOOR; 1749 else if (country_ie[2] == 'O') 1750 env = ENVIRON_OUTDOOR; 1751 1752 /* 1753 * We will run this only upon a successful connection on cfg80211. 1754 * We leave conflict resolution to the workqueue, where can hold 1755 * cfg80211_mutex. 1756 */ 1757 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1758 lr->wiphy_idx != WIPHY_IDX_INVALID) 1759 goto out; 1760 1761 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1762 if (!request) 1763 goto out; 1764 1765 request->wiphy_idx = get_wiphy_idx(wiphy); 1766 request->alpha2[0] = alpha2[0]; 1767 request->alpha2[1] = alpha2[1]; 1768 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 1769 request->country_ie_env = env; 1770 1771 queue_regulatory_request(request); 1772 out: 1773 mutex_unlock(®_mutex); 1774 } 1775 1776 static void restore_alpha2(char *alpha2, bool reset_user) 1777 { 1778 /* indicates there is no alpha2 to consider for restoration */ 1779 alpha2[0] = '9'; 1780 alpha2[1] = '7'; 1781 1782 /* The user setting has precedence over the module parameter */ 1783 if (is_user_regdom_saved()) { 1784 /* Unless we're asked to ignore it and reset it */ 1785 if (reset_user) { 1786 REG_DBG_PRINT("Restoring regulatory settings including user preference\n"); 1787 user_alpha2[0] = '9'; 1788 user_alpha2[1] = '7'; 1789 1790 /* 1791 * If we're ignoring user settings, we still need to 1792 * check the module parameter to ensure we put things 1793 * back as they were for a full restore. 1794 */ 1795 if (!is_world_regdom(ieee80211_regdom)) { 1796 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 1797 ieee80211_regdom[0], ieee80211_regdom[1]); 1798 alpha2[0] = ieee80211_regdom[0]; 1799 alpha2[1] = ieee80211_regdom[1]; 1800 } 1801 } else { 1802 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n", 1803 user_alpha2[0], user_alpha2[1]); 1804 alpha2[0] = user_alpha2[0]; 1805 alpha2[1] = user_alpha2[1]; 1806 } 1807 } else if (!is_world_regdom(ieee80211_regdom)) { 1808 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 1809 ieee80211_regdom[0], ieee80211_regdom[1]); 1810 alpha2[0] = ieee80211_regdom[0]; 1811 alpha2[1] = ieee80211_regdom[1]; 1812 } else 1813 REG_DBG_PRINT("Restoring regulatory settings\n"); 1814 } 1815 1816 static void restore_custom_reg_settings(struct wiphy *wiphy) 1817 { 1818 struct ieee80211_supported_band *sband; 1819 enum ieee80211_band band; 1820 struct ieee80211_channel *chan; 1821 int i; 1822 1823 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1824 sband = wiphy->bands[band]; 1825 if (!sband) 1826 continue; 1827 for (i = 0; i < sband->n_channels; i++) { 1828 chan = &sband->channels[i]; 1829 chan->flags = chan->orig_flags; 1830 chan->max_antenna_gain = chan->orig_mag; 1831 chan->max_power = chan->orig_mpwr; 1832 chan->beacon_found = false; 1833 } 1834 } 1835 } 1836 1837 /* 1838 * Restoring regulatory settings involves ingoring any 1839 * possibly stale country IE information and user regulatory 1840 * settings if so desired, this includes any beacon hints 1841 * learned as we could have traveled outside to another country 1842 * after disconnection. To restore regulatory settings we do 1843 * exactly what we did at bootup: 1844 * 1845 * - send a core regulatory hint 1846 * - send a user regulatory hint if applicable 1847 * 1848 * Device drivers that send a regulatory hint for a specific country 1849 * keep their own regulatory domain on wiphy->regd so that does does 1850 * not need to be remembered. 1851 */ 1852 static void restore_regulatory_settings(bool reset_user) 1853 { 1854 char alpha2[2]; 1855 char world_alpha2[2]; 1856 struct reg_beacon *reg_beacon, *btmp; 1857 struct regulatory_request *reg_request, *tmp; 1858 LIST_HEAD(tmp_reg_req_list); 1859 struct cfg80211_registered_device *rdev; 1860 1861 mutex_lock(&cfg80211_mutex); 1862 mutex_lock(®_mutex); 1863 1864 reset_regdomains(true, &world_regdom); 1865 restore_alpha2(alpha2, reset_user); 1866 1867 /* 1868 * If there's any pending requests we simply 1869 * stash them to a temporary pending queue and 1870 * add then after we've restored regulatory 1871 * settings. 1872 */ 1873 spin_lock(®_requests_lock); 1874 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 1875 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER) 1876 continue; 1877 list_move_tail(®_request->list, &tmp_reg_req_list); 1878 } 1879 spin_unlock(®_requests_lock); 1880 1881 /* Clear beacon hints */ 1882 spin_lock_bh(®_pending_beacons_lock); 1883 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 1884 list_del(®_beacon->list); 1885 kfree(reg_beacon); 1886 } 1887 spin_unlock_bh(®_pending_beacons_lock); 1888 1889 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 1890 list_del(®_beacon->list); 1891 kfree(reg_beacon); 1892 } 1893 1894 /* First restore to the basic regulatory settings */ 1895 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 1896 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 1897 1898 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1899 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY) 1900 restore_custom_reg_settings(&rdev->wiphy); 1901 } 1902 1903 regulatory_hint_core(world_alpha2); 1904 1905 /* 1906 * This restores the ieee80211_regdom module parameter 1907 * preference or the last user requested regulatory 1908 * settings, user regulatory settings takes precedence. 1909 */ 1910 if (is_an_alpha2(alpha2)) 1911 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER); 1912 1913 spin_lock(®_requests_lock); 1914 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 1915 spin_unlock(®_requests_lock); 1916 1917 mutex_unlock(®_mutex); 1918 mutex_unlock(&cfg80211_mutex); 1919 1920 REG_DBG_PRINT("Kicking the queue\n"); 1921 1922 schedule_work(®_work); 1923 } 1924 1925 void regulatory_hint_disconnect(void) 1926 { 1927 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n"); 1928 restore_regulatory_settings(false); 1929 } 1930 1931 static bool freq_is_chan_12_13_14(u16 freq) 1932 { 1933 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || 1934 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || 1935 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) 1936 return true; 1937 return false; 1938 } 1939 1940 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 1941 { 1942 struct reg_beacon *pending_beacon; 1943 1944 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 1945 if (beacon_chan->center_freq == 1946 pending_beacon->chan.center_freq) 1947 return true; 1948 return false; 1949 } 1950 1951 int regulatory_hint_found_beacon(struct wiphy *wiphy, 1952 struct ieee80211_channel *beacon_chan, 1953 gfp_t gfp) 1954 { 1955 struct reg_beacon *reg_beacon; 1956 bool processing; 1957 1958 if (beacon_chan->beacon_found || 1959 beacon_chan->flags & IEEE80211_CHAN_RADAR || 1960 (beacon_chan->band == IEEE80211_BAND_2GHZ && 1961 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 1962 return 0; 1963 1964 spin_lock_bh(®_pending_beacons_lock); 1965 processing = pending_reg_beacon(beacon_chan); 1966 spin_unlock_bh(®_pending_beacons_lock); 1967 1968 if (processing) 1969 return 0; 1970 1971 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 1972 if (!reg_beacon) 1973 return -ENOMEM; 1974 1975 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 1976 beacon_chan->center_freq, 1977 ieee80211_frequency_to_channel(beacon_chan->center_freq), 1978 wiphy_name(wiphy)); 1979 1980 memcpy(®_beacon->chan, beacon_chan, 1981 sizeof(struct ieee80211_channel)); 1982 1983 /* 1984 * Since we can be called from BH or and non-BH context 1985 * we must use spin_lock_bh() 1986 */ 1987 spin_lock_bh(®_pending_beacons_lock); 1988 list_add_tail(®_beacon->list, ®_pending_beacons); 1989 spin_unlock_bh(®_pending_beacons_lock); 1990 1991 schedule_work(®_work); 1992 1993 return 0; 1994 } 1995 1996 static void print_rd_rules(const struct ieee80211_regdomain *rd) 1997 { 1998 unsigned int i; 1999 const struct ieee80211_reg_rule *reg_rule = NULL; 2000 const struct ieee80211_freq_range *freq_range = NULL; 2001 const struct ieee80211_power_rule *power_rule = NULL; 2002 2003 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n"); 2004 2005 for (i = 0; i < rd->n_reg_rules; i++) { 2006 reg_rule = &rd->reg_rules[i]; 2007 freq_range = ®_rule->freq_range; 2008 power_rule = ®_rule->power_rule; 2009 2010 /* 2011 * There may not be documentation for max antenna gain 2012 * in certain regions 2013 */ 2014 if (power_rule->max_antenna_gain) 2015 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n", 2016 freq_range->start_freq_khz, 2017 freq_range->end_freq_khz, 2018 freq_range->max_bandwidth_khz, 2019 power_rule->max_antenna_gain, 2020 power_rule->max_eirp); 2021 else 2022 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n", 2023 freq_range->start_freq_khz, 2024 freq_range->end_freq_khz, 2025 freq_range->max_bandwidth_khz, 2026 power_rule->max_eirp); 2027 } 2028 } 2029 2030 bool reg_supported_dfs_region(u8 dfs_region) 2031 { 2032 switch (dfs_region) { 2033 case NL80211_DFS_UNSET: 2034 case NL80211_DFS_FCC: 2035 case NL80211_DFS_ETSI: 2036 case NL80211_DFS_JP: 2037 return true; 2038 default: 2039 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n", 2040 dfs_region); 2041 return false; 2042 } 2043 } 2044 2045 static void print_dfs_region(u8 dfs_region) 2046 { 2047 if (!dfs_region) 2048 return; 2049 2050 switch (dfs_region) { 2051 case NL80211_DFS_FCC: 2052 pr_info(" DFS Master region FCC"); 2053 break; 2054 case NL80211_DFS_ETSI: 2055 pr_info(" DFS Master region ETSI"); 2056 break; 2057 case NL80211_DFS_JP: 2058 pr_info(" DFS Master region JP"); 2059 break; 2060 default: 2061 pr_info(" DFS Master region Unknown"); 2062 break; 2063 } 2064 } 2065 2066 static void print_regdomain(const struct ieee80211_regdomain *rd) 2067 { 2068 struct regulatory_request *lr = get_last_request(); 2069 2070 if (is_intersected_alpha2(rd->alpha2)) { 2071 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2072 struct cfg80211_registered_device *rdev; 2073 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 2074 if (rdev) { 2075 pr_info("Current regulatory domain updated by AP to: %c%c\n", 2076 rdev->country_ie_alpha2[0], 2077 rdev->country_ie_alpha2[1]); 2078 } else 2079 pr_info("Current regulatory domain intersected:\n"); 2080 } else 2081 pr_info("Current regulatory domain intersected:\n"); 2082 } else if (is_world_regdom(rd->alpha2)) { 2083 pr_info("World regulatory domain updated:\n"); 2084 } else { 2085 if (is_unknown_alpha2(rd->alpha2)) 2086 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); 2087 else { 2088 if (reg_request_cell_base(lr)) 2089 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n", 2090 rd->alpha2[0], rd->alpha2[1]); 2091 else 2092 pr_info("Regulatory domain changed to country: %c%c\n", 2093 rd->alpha2[0], rd->alpha2[1]); 2094 } 2095 } 2096 2097 print_dfs_region(rd->dfs_region); 2098 print_rd_rules(rd); 2099 } 2100 2101 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 2102 { 2103 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 2104 print_rd_rules(rd); 2105 } 2106 2107 /* Takes ownership of rd only if it doesn't fail */ 2108 static int __set_regdom(const struct ieee80211_regdomain *rd) 2109 { 2110 const struct ieee80211_regdomain *regd; 2111 const struct ieee80211_regdomain *intersected_rd = NULL; 2112 struct wiphy *request_wiphy; 2113 struct regulatory_request *lr = get_last_request(); 2114 2115 /* Some basic sanity checks first */ 2116 2117 if (!reg_is_valid_request(rd->alpha2)) 2118 return -EINVAL; 2119 2120 if (is_world_regdom(rd->alpha2)) { 2121 update_world_regdomain(rd); 2122 return 0; 2123 } 2124 2125 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 2126 !is_unknown_alpha2(rd->alpha2)) 2127 return -EINVAL; 2128 2129 /* 2130 * Lets only bother proceeding on the same alpha2 if the current 2131 * rd is non static (it means CRDA was present and was used last) 2132 * and the pending request came in from a country IE 2133 */ 2134 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2135 /* 2136 * If someone else asked us to change the rd lets only bother 2137 * checking if the alpha2 changes if CRDA was already called 2138 */ 2139 if (!regdom_changes(rd->alpha2)) 2140 return -EALREADY; 2141 } 2142 2143 /* 2144 * Now lets set the regulatory domain, update all driver channels 2145 * and finally inform them of what we have done, in case they want 2146 * to review or adjust their own settings based on their own 2147 * internal EEPROM data 2148 */ 2149 2150 if (!is_valid_rd(rd)) { 2151 pr_err("Invalid regulatory domain detected:\n"); 2152 print_regdomain_info(rd); 2153 return -EINVAL; 2154 } 2155 2156 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2157 if (!request_wiphy && 2158 (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2159 lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) { 2160 schedule_delayed_work(®_timeout, 0); 2161 return -ENODEV; 2162 } 2163 2164 if (!lr->intersect) { 2165 if (lr->initiator != NL80211_REGDOM_SET_BY_DRIVER) { 2166 reset_regdomains(false, rd); 2167 return 0; 2168 } 2169 2170 /* 2171 * For a driver hint, lets copy the regulatory domain the 2172 * driver wanted to the wiphy to deal with conflicts 2173 */ 2174 2175 /* 2176 * Userspace could have sent two replies with only 2177 * one kernel request. 2178 */ 2179 if (request_wiphy->regd) 2180 return -EALREADY; 2181 2182 regd = reg_copy_regd(rd); 2183 if (IS_ERR(regd)) 2184 return PTR_ERR(regd); 2185 2186 rcu_assign_pointer(request_wiphy->regd, regd); 2187 reset_regdomains(false, rd); 2188 return 0; 2189 } 2190 2191 /* Intersection requires a bit more work */ 2192 2193 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2194 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2195 if (!intersected_rd) 2196 return -EINVAL; 2197 2198 /* 2199 * We can trash what CRDA provided now. 2200 * However if a driver requested this specific regulatory 2201 * domain we keep it for its private use 2202 */ 2203 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER) { 2204 const struct ieee80211_regdomain *tmp; 2205 2206 tmp = get_wiphy_regdom(request_wiphy); 2207 rcu_assign_pointer(request_wiphy->regd, rd); 2208 rcu_free_regdom(tmp); 2209 } else { 2210 kfree(rd); 2211 } 2212 2213 rd = NULL; 2214 2215 reset_regdomains(false, intersected_rd); 2216 2217 return 0; 2218 } 2219 2220 return -EINVAL; 2221 } 2222 2223 2224 /* 2225 * Use this call to set the current regulatory domain. Conflicts with 2226 * multiple drivers can be ironed out later. Caller must've already 2227 * kmalloc'd the rd structure. 2228 */ 2229 int set_regdom(const struct ieee80211_regdomain *rd) 2230 { 2231 struct regulatory_request *lr; 2232 int r; 2233 2234 mutex_lock(®_mutex); 2235 lr = get_last_request(); 2236 2237 /* Note that this doesn't update the wiphys, this is done below */ 2238 r = __set_regdom(rd); 2239 if (r) { 2240 if (r == -EALREADY) 2241 reg_set_request_processed(); 2242 2243 kfree(rd); 2244 goto out; 2245 } 2246 2247 /* This would make this whole thing pointless */ 2248 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) { 2249 r = -EINVAL; 2250 goto out; 2251 } 2252 2253 /* update all wiphys now with the new established regulatory domain */ 2254 update_all_wiphy_regulatory(lr->initiator); 2255 2256 print_regdomain(get_cfg80211_regdom()); 2257 2258 nl80211_send_reg_change_event(lr); 2259 2260 reg_set_request_processed(); 2261 2262 out: 2263 mutex_unlock(®_mutex); 2264 2265 return r; 2266 } 2267 2268 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) 2269 { 2270 struct regulatory_request *lr; 2271 u8 alpha2[2]; 2272 bool add = false; 2273 2274 rcu_read_lock(); 2275 lr = get_last_request(); 2276 if (lr && !lr->processed) { 2277 memcpy(alpha2, lr->alpha2, 2); 2278 add = true; 2279 } 2280 rcu_read_unlock(); 2281 2282 if (add) 2283 return add_uevent_var(env, "COUNTRY=%c%c", 2284 alpha2[0], alpha2[1]); 2285 return 0; 2286 } 2287 2288 void wiphy_regulatory_register(struct wiphy *wiphy) 2289 { 2290 mutex_lock(®_mutex); 2291 2292 if (!reg_dev_ignore_cell_hint(wiphy)) 2293 reg_num_devs_support_basehint++; 2294 2295 wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE); 2296 2297 mutex_unlock(®_mutex); 2298 } 2299 2300 /* Caller must hold cfg80211_mutex */ 2301 void wiphy_regulatory_deregister(struct wiphy *wiphy) 2302 { 2303 struct wiphy *request_wiphy = NULL; 2304 struct regulatory_request *lr; 2305 2306 mutex_lock(®_mutex); 2307 lr = get_last_request(); 2308 2309 if (!reg_dev_ignore_cell_hint(wiphy)) 2310 reg_num_devs_support_basehint--; 2311 2312 rcu_free_regdom(get_wiphy_regdom(wiphy)); 2313 rcu_assign_pointer(wiphy->regd, NULL); 2314 2315 if (lr) 2316 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2317 2318 if (!request_wiphy || request_wiphy != wiphy) 2319 goto out; 2320 2321 lr->wiphy_idx = WIPHY_IDX_INVALID; 2322 lr->country_ie_env = ENVIRON_ANY; 2323 out: 2324 mutex_unlock(®_mutex); 2325 } 2326 2327 static void reg_timeout_work(struct work_struct *work) 2328 { 2329 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 2330 restore_regulatory_settings(true); 2331 } 2332 2333 int __init regulatory_init(void) 2334 { 2335 int err = 0; 2336 2337 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 2338 if (IS_ERR(reg_pdev)) 2339 return PTR_ERR(reg_pdev); 2340 2341 reg_pdev->dev.type = ®_device_type; 2342 2343 spin_lock_init(®_requests_lock); 2344 spin_lock_init(®_pending_beacons_lock); 2345 2346 reg_regdb_size_check(); 2347 2348 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 2349 2350 user_alpha2[0] = '9'; 2351 user_alpha2[1] = '7'; 2352 2353 /* We always try to get an update for the static regdomain */ 2354 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 2355 if (err) { 2356 if (err == -ENOMEM) 2357 return err; 2358 /* 2359 * N.B. kobject_uevent_env() can fail mainly for when we're out 2360 * memory which is handled and propagated appropriately above 2361 * but it can also fail during a netlink_broadcast() or during 2362 * early boot for call_usermodehelper(). For now treat these 2363 * errors as non-fatal. 2364 */ 2365 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 2366 } 2367 2368 /* 2369 * Finally, if the user set the module parameter treat it 2370 * as a user hint. 2371 */ 2372 if (!is_world_regdom(ieee80211_regdom)) 2373 regulatory_hint_user(ieee80211_regdom, 2374 NL80211_USER_REG_HINT_USER); 2375 2376 return 0; 2377 } 2378 2379 void regulatory_exit(void) 2380 { 2381 struct regulatory_request *reg_request, *tmp; 2382 struct reg_beacon *reg_beacon, *btmp; 2383 2384 cancel_work_sync(®_work); 2385 cancel_delayed_work_sync(®_timeout); 2386 2387 /* Lock to suppress warnings */ 2388 mutex_lock(®_mutex); 2389 reset_regdomains(true, NULL); 2390 mutex_unlock(®_mutex); 2391 2392 dev_set_uevent_suppress(®_pdev->dev, true); 2393 2394 platform_device_unregister(reg_pdev); 2395 2396 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 2397 list_del(®_beacon->list); 2398 kfree(reg_beacon); 2399 } 2400 2401 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 2402 list_del(®_beacon->list); 2403 kfree(reg_beacon); 2404 } 2405 2406 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 2407 list_del(®_request->list); 2408 kfree(reg_request); 2409 } 2410 } 2411