xref: /openbmc/linux/net/wireless/reg.c (revision eb3fcf00)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 
22 /**
23  * DOC: Wireless regulatory infrastructure
24  *
25  * The usual implementation is for a driver to read a device EEPROM to
26  * determine which regulatory domain it should be operating under, then
27  * looking up the allowable channels in a driver-local table and finally
28  * registering those channels in the wiphy structure.
29  *
30  * Another set of compliance enforcement is for drivers to use their
31  * own compliance limits which can be stored on the EEPROM. The host
32  * driver or firmware may ensure these are used.
33  *
34  * In addition to all this we provide an extra layer of regulatory
35  * conformance. For drivers which do not have any regulatory
36  * information CRDA provides the complete regulatory solution.
37  * For others it provides a community effort on further restrictions
38  * to enhance compliance.
39  *
40  * Note: When number of rules --> infinity we will not be able to
41  * index on alpha2 any more, instead we'll probably have to
42  * rely on some SHA1 checksum of the regdomain for example.
43  *
44  */
45 
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62 
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...)			\
65 	printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69 
70 /*
71  * Grace period we give before making sure all current interfaces reside on
72  * channels allowed by the current regulatory domain.
73  */
74 #define REG_ENFORCE_GRACE_MS 60000
75 
76 /**
77  * enum reg_request_treatment - regulatory request treatment
78  *
79  * @REG_REQ_OK: continue processing the regulatory request
80  * @REG_REQ_IGNORE: ignore the regulatory request
81  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82  *	be intersected with the current one.
83  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84  *	regulatory settings, and no further processing is required.
85  */
86 enum reg_request_treatment {
87 	REG_REQ_OK,
88 	REG_REQ_IGNORE,
89 	REG_REQ_INTERSECT,
90 	REG_REQ_ALREADY_SET,
91 };
92 
93 static struct regulatory_request core_request_world = {
94 	.initiator = NL80211_REGDOM_SET_BY_CORE,
95 	.alpha2[0] = '0',
96 	.alpha2[1] = '0',
97 	.intersect = false,
98 	.processed = true,
99 	.country_ie_env = ENVIRON_ANY,
100 };
101 
102 /*
103  * Receipt of information from last regulatory request,
104  * protected by RTNL (and can be accessed with RCU protection)
105  */
106 static struct regulatory_request __rcu *last_request =
107 	(void __force __rcu *)&core_request_world;
108 
109 /* To trigger userspace events */
110 static struct platform_device *reg_pdev;
111 
112 /*
113  * Central wireless core regulatory domains, we only need two,
114  * the current one and a world regulatory domain in case we have no
115  * information to give us an alpha2.
116  * (protected by RTNL, can be read under RCU)
117  */
118 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
119 
120 /*
121  * Number of devices that registered to the core
122  * that support cellular base station regulatory hints
123  * (protected by RTNL)
124  */
125 static int reg_num_devs_support_basehint;
126 
127 /*
128  * State variable indicating if the platform on which the devices
129  * are attached is operating in an indoor environment. The state variable
130  * is relevant for all registered devices.
131  */
132 static bool reg_is_indoor;
133 static spinlock_t reg_indoor_lock;
134 
135 /* Used to track the userspace process controlling the indoor setting */
136 static u32 reg_is_indoor_portid;
137 
138 /* Max number of consecutive attempts to communicate with CRDA  */
139 #define REG_MAX_CRDA_TIMEOUTS 10
140 
141 static u32 reg_crda_timeouts;
142 
143 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
144 {
145 	return rtnl_dereference(cfg80211_regdomain);
146 }
147 
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150 	return rtnl_dereference(wiphy->regd);
151 }
152 
153 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
154 {
155 	switch (dfs_region) {
156 	case NL80211_DFS_UNSET:
157 		return "unset";
158 	case NL80211_DFS_FCC:
159 		return "FCC";
160 	case NL80211_DFS_ETSI:
161 		return "ETSI";
162 	case NL80211_DFS_JP:
163 		return "JP";
164 	}
165 	return "Unknown";
166 }
167 
168 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
169 {
170 	const struct ieee80211_regdomain *regd = NULL;
171 	const struct ieee80211_regdomain *wiphy_regd = NULL;
172 
173 	regd = get_cfg80211_regdom();
174 	if (!wiphy)
175 		goto out;
176 
177 	wiphy_regd = get_wiphy_regdom(wiphy);
178 	if (!wiphy_regd)
179 		goto out;
180 
181 	if (wiphy_regd->dfs_region == regd->dfs_region)
182 		goto out;
183 
184 	REG_DBG_PRINT("%s: device specific dfs_region "
185 		      "(%s) disagrees with cfg80211's "
186 		      "central dfs_region (%s)\n",
187 		      dev_name(&wiphy->dev),
188 		      reg_dfs_region_str(wiphy_regd->dfs_region),
189 		      reg_dfs_region_str(regd->dfs_region));
190 
191 out:
192 	return regd->dfs_region;
193 }
194 
195 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
196 {
197 	if (!r)
198 		return;
199 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
200 }
201 
202 static struct regulatory_request *get_last_request(void)
203 {
204 	return rcu_dereference_rtnl(last_request);
205 }
206 
207 /* Used to queue up regulatory hints */
208 static LIST_HEAD(reg_requests_list);
209 static spinlock_t reg_requests_lock;
210 
211 /* Used to queue up beacon hints for review */
212 static LIST_HEAD(reg_pending_beacons);
213 static spinlock_t reg_pending_beacons_lock;
214 
215 /* Used to keep track of processed beacon hints */
216 static LIST_HEAD(reg_beacon_list);
217 
218 struct reg_beacon {
219 	struct list_head list;
220 	struct ieee80211_channel chan;
221 };
222 
223 static void reg_check_chans_work(struct work_struct *work);
224 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
225 
226 static void reg_todo(struct work_struct *work);
227 static DECLARE_WORK(reg_work, reg_todo);
228 
229 static void reg_timeout_work(struct work_struct *work);
230 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
231 
232 /* We keep a static world regulatory domain in case of the absence of CRDA */
233 static const struct ieee80211_regdomain world_regdom = {
234 	.n_reg_rules = 8,
235 	.alpha2 =  "00",
236 	.reg_rules = {
237 		/* IEEE 802.11b/g, channels 1..11 */
238 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
239 		/* IEEE 802.11b/g, channels 12..13. */
240 		REG_RULE(2467-10, 2472+10, 40, 6, 20,
241 			NL80211_RRF_NO_IR),
242 		/* IEEE 802.11 channel 14 - Only JP enables
243 		 * this and for 802.11b only */
244 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
245 			NL80211_RRF_NO_IR |
246 			NL80211_RRF_NO_OFDM),
247 		/* IEEE 802.11a, channel 36..48 */
248 		REG_RULE(5180-10, 5240+10, 160, 6, 20,
249                         NL80211_RRF_NO_IR),
250 
251 		/* IEEE 802.11a, channel 52..64 - DFS required */
252 		REG_RULE(5260-10, 5320+10, 160, 6, 20,
253 			NL80211_RRF_NO_IR |
254 			NL80211_RRF_DFS),
255 
256 		/* IEEE 802.11a, channel 100..144 - DFS required */
257 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
258 			NL80211_RRF_NO_IR |
259 			NL80211_RRF_DFS),
260 
261 		/* IEEE 802.11a, channel 149..165 */
262 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
263 			NL80211_RRF_NO_IR),
264 
265 		/* IEEE 802.11ad (60gHz), channels 1..3 */
266 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
267 	}
268 };
269 
270 /* protected by RTNL */
271 static const struct ieee80211_regdomain *cfg80211_world_regdom =
272 	&world_regdom;
273 
274 static char *ieee80211_regdom = "00";
275 static char user_alpha2[2];
276 
277 module_param(ieee80211_regdom, charp, 0444);
278 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
279 
280 static void reg_free_request(struct regulatory_request *request)
281 {
282 	if (request != get_last_request())
283 		kfree(request);
284 }
285 
286 static void reg_free_last_request(void)
287 {
288 	struct regulatory_request *lr = get_last_request();
289 
290 	if (lr != &core_request_world && lr)
291 		kfree_rcu(lr, rcu_head);
292 }
293 
294 static void reg_update_last_request(struct regulatory_request *request)
295 {
296 	struct regulatory_request *lr;
297 
298 	lr = get_last_request();
299 	if (lr == request)
300 		return;
301 
302 	reg_free_last_request();
303 	rcu_assign_pointer(last_request, request);
304 }
305 
306 static void reset_regdomains(bool full_reset,
307 			     const struct ieee80211_regdomain *new_regdom)
308 {
309 	const struct ieee80211_regdomain *r;
310 
311 	ASSERT_RTNL();
312 
313 	r = get_cfg80211_regdom();
314 
315 	/* avoid freeing static information or freeing something twice */
316 	if (r == cfg80211_world_regdom)
317 		r = NULL;
318 	if (cfg80211_world_regdom == &world_regdom)
319 		cfg80211_world_regdom = NULL;
320 	if (r == &world_regdom)
321 		r = NULL;
322 
323 	rcu_free_regdom(r);
324 	rcu_free_regdom(cfg80211_world_regdom);
325 
326 	cfg80211_world_regdom = &world_regdom;
327 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
328 
329 	if (!full_reset)
330 		return;
331 
332 	reg_update_last_request(&core_request_world);
333 }
334 
335 /*
336  * Dynamic world regulatory domain requested by the wireless
337  * core upon initialization
338  */
339 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
340 {
341 	struct regulatory_request *lr;
342 
343 	lr = get_last_request();
344 
345 	WARN_ON(!lr);
346 
347 	reset_regdomains(false, rd);
348 
349 	cfg80211_world_regdom = rd;
350 }
351 
352 bool is_world_regdom(const char *alpha2)
353 {
354 	if (!alpha2)
355 		return false;
356 	return alpha2[0] == '0' && alpha2[1] == '0';
357 }
358 
359 static bool is_alpha2_set(const char *alpha2)
360 {
361 	if (!alpha2)
362 		return false;
363 	return alpha2[0] && alpha2[1];
364 }
365 
366 static bool is_unknown_alpha2(const char *alpha2)
367 {
368 	if (!alpha2)
369 		return false;
370 	/*
371 	 * Special case where regulatory domain was built by driver
372 	 * but a specific alpha2 cannot be determined
373 	 */
374 	return alpha2[0] == '9' && alpha2[1] == '9';
375 }
376 
377 static bool is_intersected_alpha2(const char *alpha2)
378 {
379 	if (!alpha2)
380 		return false;
381 	/*
382 	 * Special case where regulatory domain is the
383 	 * result of an intersection between two regulatory domain
384 	 * structures
385 	 */
386 	return alpha2[0] == '9' && alpha2[1] == '8';
387 }
388 
389 static bool is_an_alpha2(const char *alpha2)
390 {
391 	if (!alpha2)
392 		return false;
393 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
394 }
395 
396 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
397 {
398 	if (!alpha2_x || !alpha2_y)
399 		return false;
400 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
401 }
402 
403 static bool regdom_changes(const char *alpha2)
404 {
405 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
406 
407 	if (!r)
408 		return true;
409 	return !alpha2_equal(r->alpha2, alpha2);
410 }
411 
412 /*
413  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
414  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
415  * has ever been issued.
416  */
417 static bool is_user_regdom_saved(void)
418 {
419 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
420 		return false;
421 
422 	/* This would indicate a mistake on the design */
423 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
424 		 "Unexpected user alpha2: %c%c\n",
425 		 user_alpha2[0], user_alpha2[1]))
426 		return false;
427 
428 	return true;
429 }
430 
431 static const struct ieee80211_regdomain *
432 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
433 {
434 	struct ieee80211_regdomain *regd;
435 	int size_of_regd;
436 	unsigned int i;
437 
438 	size_of_regd =
439 		sizeof(struct ieee80211_regdomain) +
440 		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
441 
442 	regd = kzalloc(size_of_regd, GFP_KERNEL);
443 	if (!regd)
444 		return ERR_PTR(-ENOMEM);
445 
446 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
447 
448 	for (i = 0; i < src_regd->n_reg_rules; i++)
449 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
450 		       sizeof(struct ieee80211_reg_rule));
451 
452 	return regd;
453 }
454 
455 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
456 struct reg_regdb_search_request {
457 	char alpha2[2];
458 	struct list_head list;
459 };
460 
461 static LIST_HEAD(reg_regdb_search_list);
462 static DEFINE_MUTEX(reg_regdb_search_mutex);
463 
464 static void reg_regdb_search(struct work_struct *work)
465 {
466 	struct reg_regdb_search_request *request;
467 	const struct ieee80211_regdomain *curdom, *regdom = NULL;
468 	int i;
469 
470 	rtnl_lock();
471 
472 	mutex_lock(&reg_regdb_search_mutex);
473 	while (!list_empty(&reg_regdb_search_list)) {
474 		request = list_first_entry(&reg_regdb_search_list,
475 					   struct reg_regdb_search_request,
476 					   list);
477 		list_del(&request->list);
478 
479 		for (i = 0; i < reg_regdb_size; i++) {
480 			curdom = reg_regdb[i];
481 
482 			if (alpha2_equal(request->alpha2, curdom->alpha2)) {
483 				regdom = reg_copy_regd(curdom);
484 				break;
485 			}
486 		}
487 
488 		kfree(request);
489 	}
490 	mutex_unlock(&reg_regdb_search_mutex);
491 
492 	if (!IS_ERR_OR_NULL(regdom))
493 		set_regdom(regdom, REGD_SOURCE_INTERNAL_DB);
494 
495 	rtnl_unlock();
496 }
497 
498 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
499 
500 static void reg_regdb_query(const char *alpha2)
501 {
502 	struct reg_regdb_search_request *request;
503 
504 	if (!alpha2)
505 		return;
506 
507 	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
508 	if (!request)
509 		return;
510 
511 	memcpy(request->alpha2, alpha2, 2);
512 
513 	mutex_lock(&reg_regdb_search_mutex);
514 	list_add_tail(&request->list, &reg_regdb_search_list);
515 	mutex_unlock(&reg_regdb_search_mutex);
516 
517 	schedule_work(&reg_regdb_work);
518 }
519 
520 /* Feel free to add any other sanity checks here */
521 static void reg_regdb_size_check(void)
522 {
523 	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
524 	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
525 }
526 #else
527 static inline void reg_regdb_size_check(void) {}
528 static inline void reg_regdb_query(const char *alpha2) {}
529 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
530 
531 /*
532  * This lets us keep regulatory code which is updated on a regulatory
533  * basis in userspace.
534  */
535 static int call_crda(const char *alpha2)
536 {
537 	char country[12];
538 	char *env[] = { country, NULL };
539 
540 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
541 		 alpha2[0], alpha2[1]);
542 
543 	/* query internal regulatory database (if it exists) */
544 	reg_regdb_query(alpha2);
545 
546 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
547 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
548 		return -EINVAL;
549 	}
550 
551 	if (!is_world_regdom((char *) alpha2))
552 		pr_debug("Calling CRDA for country: %c%c\n",
553 			alpha2[0], alpha2[1]);
554 	else
555 		pr_debug("Calling CRDA to update world regulatory domain\n");
556 
557 	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
558 }
559 
560 static enum reg_request_treatment
561 reg_call_crda(struct regulatory_request *request)
562 {
563 	if (call_crda(request->alpha2))
564 		return REG_REQ_IGNORE;
565 
566 	queue_delayed_work(system_power_efficient_wq,
567 			   &reg_timeout, msecs_to_jiffies(3142));
568 	return REG_REQ_OK;
569 }
570 
571 bool reg_is_valid_request(const char *alpha2)
572 {
573 	struct regulatory_request *lr = get_last_request();
574 
575 	if (!lr || lr->processed)
576 		return false;
577 
578 	return alpha2_equal(lr->alpha2, alpha2);
579 }
580 
581 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
582 {
583 	struct regulatory_request *lr = get_last_request();
584 
585 	/*
586 	 * Follow the driver's regulatory domain, if present, unless a country
587 	 * IE has been processed or a user wants to help complaince further
588 	 */
589 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
590 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
591 	    wiphy->regd)
592 		return get_wiphy_regdom(wiphy);
593 
594 	return get_cfg80211_regdom();
595 }
596 
597 static unsigned int
598 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
599 				 const struct ieee80211_reg_rule *rule)
600 {
601 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
602 	const struct ieee80211_freq_range *freq_range_tmp;
603 	const struct ieee80211_reg_rule *tmp;
604 	u32 start_freq, end_freq, idx, no;
605 
606 	for (idx = 0; idx < rd->n_reg_rules; idx++)
607 		if (rule == &rd->reg_rules[idx])
608 			break;
609 
610 	if (idx == rd->n_reg_rules)
611 		return 0;
612 
613 	/* get start_freq */
614 	no = idx;
615 
616 	while (no) {
617 		tmp = &rd->reg_rules[--no];
618 		freq_range_tmp = &tmp->freq_range;
619 
620 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
621 			break;
622 
623 		freq_range = freq_range_tmp;
624 	}
625 
626 	start_freq = freq_range->start_freq_khz;
627 
628 	/* get end_freq */
629 	freq_range = &rule->freq_range;
630 	no = idx;
631 
632 	while (no < rd->n_reg_rules - 1) {
633 		tmp = &rd->reg_rules[++no];
634 		freq_range_tmp = &tmp->freq_range;
635 
636 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
637 			break;
638 
639 		freq_range = freq_range_tmp;
640 	}
641 
642 	end_freq = freq_range->end_freq_khz;
643 
644 	return end_freq - start_freq;
645 }
646 
647 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
648 				   const struct ieee80211_reg_rule *rule)
649 {
650 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
651 
652 	if (rule->flags & NL80211_RRF_NO_160MHZ)
653 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
654 	if (rule->flags & NL80211_RRF_NO_80MHZ)
655 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
656 
657 	/*
658 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
659 	 * are not allowed.
660 	 */
661 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
662 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
663 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
664 
665 	return bw;
666 }
667 
668 /* Sanity check on a regulatory rule */
669 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
670 {
671 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
672 	u32 freq_diff;
673 
674 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
675 		return false;
676 
677 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
678 		return false;
679 
680 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
681 
682 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
683 	    freq_range->max_bandwidth_khz > freq_diff)
684 		return false;
685 
686 	return true;
687 }
688 
689 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
690 {
691 	const struct ieee80211_reg_rule *reg_rule = NULL;
692 	unsigned int i;
693 
694 	if (!rd->n_reg_rules)
695 		return false;
696 
697 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
698 		return false;
699 
700 	for (i = 0; i < rd->n_reg_rules; i++) {
701 		reg_rule = &rd->reg_rules[i];
702 		if (!is_valid_reg_rule(reg_rule))
703 			return false;
704 	}
705 
706 	return true;
707 }
708 
709 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
710 			    u32 center_freq_khz, u32 bw_khz)
711 {
712 	u32 start_freq_khz, end_freq_khz;
713 
714 	start_freq_khz = center_freq_khz - (bw_khz/2);
715 	end_freq_khz = center_freq_khz + (bw_khz/2);
716 
717 	if (start_freq_khz >= freq_range->start_freq_khz &&
718 	    end_freq_khz <= freq_range->end_freq_khz)
719 		return true;
720 
721 	return false;
722 }
723 
724 /**
725  * freq_in_rule_band - tells us if a frequency is in a frequency band
726  * @freq_range: frequency rule we want to query
727  * @freq_khz: frequency we are inquiring about
728  *
729  * This lets us know if a specific frequency rule is or is not relevant to
730  * a specific frequency's band. Bands are device specific and artificial
731  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
732  * however it is safe for now to assume that a frequency rule should not be
733  * part of a frequency's band if the start freq or end freq are off by more
734  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
735  * 60 GHz band.
736  * This resolution can be lowered and should be considered as we add
737  * regulatory rule support for other "bands".
738  **/
739 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
740 			      u32 freq_khz)
741 {
742 #define ONE_GHZ_IN_KHZ	1000000
743 	/*
744 	 * From 802.11ad: directional multi-gigabit (DMG):
745 	 * Pertaining to operation in a frequency band containing a channel
746 	 * with the Channel starting frequency above 45 GHz.
747 	 */
748 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
749 			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
750 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
751 		return true;
752 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
753 		return true;
754 	return false;
755 #undef ONE_GHZ_IN_KHZ
756 }
757 
758 /*
759  * Later on we can perhaps use the more restrictive DFS
760  * region but we don't have information for that yet so
761  * for now simply disallow conflicts.
762  */
763 static enum nl80211_dfs_regions
764 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
765 			 const enum nl80211_dfs_regions dfs_region2)
766 {
767 	if (dfs_region1 != dfs_region2)
768 		return NL80211_DFS_UNSET;
769 	return dfs_region1;
770 }
771 
772 /*
773  * Helper for regdom_intersect(), this does the real
774  * mathematical intersection fun
775  */
776 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
777 			       const struct ieee80211_regdomain *rd2,
778 			       const struct ieee80211_reg_rule *rule1,
779 			       const struct ieee80211_reg_rule *rule2,
780 			       struct ieee80211_reg_rule *intersected_rule)
781 {
782 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
783 	struct ieee80211_freq_range *freq_range;
784 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
785 	struct ieee80211_power_rule *power_rule;
786 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
787 
788 	freq_range1 = &rule1->freq_range;
789 	freq_range2 = &rule2->freq_range;
790 	freq_range = &intersected_rule->freq_range;
791 
792 	power_rule1 = &rule1->power_rule;
793 	power_rule2 = &rule2->power_rule;
794 	power_rule = &intersected_rule->power_rule;
795 
796 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
797 					 freq_range2->start_freq_khz);
798 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
799 				       freq_range2->end_freq_khz);
800 
801 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
802 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
803 
804 	if (rule1->flags & NL80211_RRF_AUTO_BW)
805 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
806 	if (rule2->flags & NL80211_RRF_AUTO_BW)
807 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
808 
809 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
810 
811 	intersected_rule->flags = rule1->flags | rule2->flags;
812 
813 	/*
814 	 * In case NL80211_RRF_AUTO_BW requested for both rules
815 	 * set AUTO_BW in intersected rule also. Next we will
816 	 * calculate BW correctly in handle_channel function.
817 	 * In other case remove AUTO_BW flag while we calculate
818 	 * maximum bandwidth correctly and auto calculation is
819 	 * not required.
820 	 */
821 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
822 	    (rule2->flags & NL80211_RRF_AUTO_BW))
823 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
824 	else
825 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
826 
827 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
828 	if (freq_range->max_bandwidth_khz > freq_diff)
829 		freq_range->max_bandwidth_khz = freq_diff;
830 
831 	power_rule->max_eirp = min(power_rule1->max_eirp,
832 		power_rule2->max_eirp);
833 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
834 		power_rule2->max_antenna_gain);
835 
836 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
837 					   rule2->dfs_cac_ms);
838 
839 	if (!is_valid_reg_rule(intersected_rule))
840 		return -EINVAL;
841 
842 	return 0;
843 }
844 
845 /* check whether old rule contains new rule */
846 static bool rule_contains(struct ieee80211_reg_rule *r1,
847 			  struct ieee80211_reg_rule *r2)
848 {
849 	/* for simplicity, currently consider only same flags */
850 	if (r1->flags != r2->flags)
851 		return false;
852 
853 	/* verify r1 is more restrictive */
854 	if ((r1->power_rule.max_antenna_gain >
855 	     r2->power_rule.max_antenna_gain) ||
856 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
857 		return false;
858 
859 	/* make sure r2's range is contained within r1 */
860 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
861 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
862 		return false;
863 
864 	/* and finally verify that r1.max_bw >= r2.max_bw */
865 	if (r1->freq_range.max_bandwidth_khz <
866 	    r2->freq_range.max_bandwidth_khz)
867 		return false;
868 
869 	return true;
870 }
871 
872 /* add or extend current rules. do nothing if rule is already contained */
873 static void add_rule(struct ieee80211_reg_rule *rule,
874 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
875 {
876 	struct ieee80211_reg_rule *tmp_rule;
877 	int i;
878 
879 	for (i = 0; i < *n_rules; i++) {
880 		tmp_rule = &reg_rules[i];
881 		/* rule is already contained - do nothing */
882 		if (rule_contains(tmp_rule, rule))
883 			return;
884 
885 		/* extend rule if possible */
886 		if (rule_contains(rule, tmp_rule)) {
887 			memcpy(tmp_rule, rule, sizeof(*rule));
888 			return;
889 		}
890 	}
891 
892 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
893 	(*n_rules)++;
894 }
895 
896 /**
897  * regdom_intersect - do the intersection between two regulatory domains
898  * @rd1: first regulatory domain
899  * @rd2: second regulatory domain
900  *
901  * Use this function to get the intersection between two regulatory domains.
902  * Once completed we will mark the alpha2 for the rd as intersected, "98",
903  * as no one single alpha2 can represent this regulatory domain.
904  *
905  * Returns a pointer to the regulatory domain structure which will hold the
906  * resulting intersection of rules between rd1 and rd2. We will
907  * kzalloc() this structure for you.
908  */
909 static struct ieee80211_regdomain *
910 regdom_intersect(const struct ieee80211_regdomain *rd1,
911 		 const struct ieee80211_regdomain *rd2)
912 {
913 	int r, size_of_regd;
914 	unsigned int x, y;
915 	unsigned int num_rules = 0;
916 	const struct ieee80211_reg_rule *rule1, *rule2;
917 	struct ieee80211_reg_rule intersected_rule;
918 	struct ieee80211_regdomain *rd;
919 
920 	if (!rd1 || !rd2)
921 		return NULL;
922 
923 	/*
924 	 * First we get a count of the rules we'll need, then we actually
925 	 * build them. This is to so we can malloc() and free() a
926 	 * regdomain once. The reason we use reg_rules_intersect() here
927 	 * is it will return -EINVAL if the rule computed makes no sense.
928 	 * All rules that do check out OK are valid.
929 	 */
930 
931 	for (x = 0; x < rd1->n_reg_rules; x++) {
932 		rule1 = &rd1->reg_rules[x];
933 		for (y = 0; y < rd2->n_reg_rules; y++) {
934 			rule2 = &rd2->reg_rules[y];
935 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
936 						 &intersected_rule))
937 				num_rules++;
938 		}
939 	}
940 
941 	if (!num_rules)
942 		return NULL;
943 
944 	size_of_regd = sizeof(struct ieee80211_regdomain) +
945 		       num_rules * sizeof(struct ieee80211_reg_rule);
946 
947 	rd = kzalloc(size_of_regd, GFP_KERNEL);
948 	if (!rd)
949 		return NULL;
950 
951 	for (x = 0; x < rd1->n_reg_rules; x++) {
952 		rule1 = &rd1->reg_rules[x];
953 		for (y = 0; y < rd2->n_reg_rules; y++) {
954 			rule2 = &rd2->reg_rules[y];
955 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
956 						&intersected_rule);
957 			/*
958 			 * No need to memset here the intersected rule here as
959 			 * we're not using the stack anymore
960 			 */
961 			if (r)
962 				continue;
963 
964 			add_rule(&intersected_rule, rd->reg_rules,
965 				 &rd->n_reg_rules);
966 		}
967 	}
968 
969 	rd->alpha2[0] = '9';
970 	rd->alpha2[1] = '8';
971 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
972 						  rd2->dfs_region);
973 
974 	return rd;
975 }
976 
977 /*
978  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
979  * want to just have the channel structure use these
980  */
981 static u32 map_regdom_flags(u32 rd_flags)
982 {
983 	u32 channel_flags = 0;
984 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
985 		channel_flags |= IEEE80211_CHAN_NO_IR;
986 	if (rd_flags & NL80211_RRF_DFS)
987 		channel_flags |= IEEE80211_CHAN_RADAR;
988 	if (rd_flags & NL80211_RRF_NO_OFDM)
989 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
990 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
991 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
992 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
993 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
994 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
995 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
996 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
997 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
998 	if (rd_flags & NL80211_RRF_NO_80MHZ)
999 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1000 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1001 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1002 	return channel_flags;
1003 }
1004 
1005 static const struct ieee80211_reg_rule *
1006 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
1007 		   const struct ieee80211_regdomain *regd, u32 bw)
1008 {
1009 	int i;
1010 	bool band_rule_found = false;
1011 	bool bw_fits = false;
1012 
1013 	if (!regd)
1014 		return ERR_PTR(-EINVAL);
1015 
1016 	for (i = 0; i < regd->n_reg_rules; i++) {
1017 		const struct ieee80211_reg_rule *rr;
1018 		const struct ieee80211_freq_range *fr = NULL;
1019 
1020 		rr = &regd->reg_rules[i];
1021 		fr = &rr->freq_range;
1022 
1023 		/*
1024 		 * We only need to know if one frequency rule was
1025 		 * was in center_freq's band, that's enough, so lets
1026 		 * not overwrite it once found
1027 		 */
1028 		if (!band_rule_found)
1029 			band_rule_found = freq_in_rule_band(fr, center_freq);
1030 
1031 		bw_fits = reg_does_bw_fit(fr, center_freq, bw);
1032 
1033 		if (band_rule_found && bw_fits)
1034 			return rr;
1035 	}
1036 
1037 	if (!band_rule_found)
1038 		return ERR_PTR(-ERANGE);
1039 
1040 	return ERR_PTR(-EINVAL);
1041 }
1042 
1043 const struct ieee80211_reg_rule *__freq_reg_info(struct wiphy *wiphy,
1044 						 u32 center_freq, u32 min_bw)
1045 {
1046 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1047 	const struct ieee80211_reg_rule *reg_rule = NULL;
1048 	u32 bw;
1049 
1050 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1051 		reg_rule = freq_reg_info_regd(wiphy, center_freq, regd, bw);
1052 		if (!IS_ERR(reg_rule))
1053 			return reg_rule;
1054 	}
1055 
1056 	return reg_rule;
1057 }
1058 
1059 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1060 					       u32 center_freq)
1061 {
1062 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1063 }
1064 EXPORT_SYMBOL(freq_reg_info);
1065 
1066 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1067 {
1068 	switch (initiator) {
1069 	case NL80211_REGDOM_SET_BY_CORE:
1070 		return "core";
1071 	case NL80211_REGDOM_SET_BY_USER:
1072 		return "user";
1073 	case NL80211_REGDOM_SET_BY_DRIVER:
1074 		return "driver";
1075 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1076 		return "country IE";
1077 	default:
1078 		WARN_ON(1);
1079 		return "bug";
1080 	}
1081 }
1082 EXPORT_SYMBOL(reg_initiator_name);
1083 
1084 #ifdef CONFIG_CFG80211_REG_DEBUG
1085 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1086 				    struct ieee80211_channel *chan,
1087 				    const struct ieee80211_reg_rule *reg_rule)
1088 {
1089 	const struct ieee80211_power_rule *power_rule;
1090 	const struct ieee80211_freq_range *freq_range;
1091 	char max_antenna_gain[32], bw[32];
1092 
1093 	power_rule = &reg_rule->power_rule;
1094 	freq_range = &reg_rule->freq_range;
1095 
1096 	if (!power_rule->max_antenna_gain)
1097 		snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1098 	else
1099 		snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1100 			 power_rule->max_antenna_gain);
1101 
1102 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1103 		snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1104 			 freq_range->max_bandwidth_khz,
1105 			 reg_get_max_bandwidth(regd, reg_rule));
1106 	else
1107 		snprintf(bw, sizeof(bw), "%d KHz",
1108 			 freq_range->max_bandwidth_khz);
1109 
1110 	REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1111 		      chan->center_freq);
1112 
1113 	REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1114 		      freq_range->start_freq_khz, freq_range->end_freq_khz,
1115 		      bw, max_antenna_gain,
1116 		      power_rule->max_eirp);
1117 }
1118 #else
1119 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1120 				    struct ieee80211_channel *chan,
1121 				    const struct ieee80211_reg_rule *reg_rule)
1122 {
1123 	return;
1124 }
1125 #endif
1126 
1127 /*
1128  * Note that right now we assume the desired channel bandwidth
1129  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1130  * per channel, the primary and the extension channel).
1131  */
1132 static void handle_channel(struct wiphy *wiphy,
1133 			   enum nl80211_reg_initiator initiator,
1134 			   struct ieee80211_channel *chan)
1135 {
1136 	u32 flags, bw_flags = 0;
1137 	const struct ieee80211_reg_rule *reg_rule = NULL;
1138 	const struct ieee80211_power_rule *power_rule = NULL;
1139 	const struct ieee80211_freq_range *freq_range = NULL;
1140 	struct wiphy *request_wiphy = NULL;
1141 	struct regulatory_request *lr = get_last_request();
1142 	const struct ieee80211_regdomain *regd;
1143 	u32 max_bandwidth_khz;
1144 
1145 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1146 
1147 	flags = chan->orig_flags;
1148 
1149 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1150 	if (IS_ERR(reg_rule)) {
1151 		/*
1152 		 * We will disable all channels that do not match our
1153 		 * received regulatory rule unless the hint is coming
1154 		 * from a Country IE and the Country IE had no information
1155 		 * about a band. The IEEE 802.11 spec allows for an AP
1156 		 * to send only a subset of the regulatory rules allowed,
1157 		 * so an AP in the US that only supports 2.4 GHz may only send
1158 		 * a country IE with information for the 2.4 GHz band
1159 		 * while 5 GHz is still supported.
1160 		 */
1161 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1162 		    PTR_ERR(reg_rule) == -ERANGE)
1163 			return;
1164 
1165 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1166 		    request_wiphy && request_wiphy == wiphy &&
1167 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1168 			REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1169 				      chan->center_freq);
1170 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1171 			chan->flags = chan->orig_flags;
1172 		} else {
1173 			REG_DBG_PRINT("Disabling freq %d MHz\n",
1174 				      chan->center_freq);
1175 			chan->flags |= IEEE80211_CHAN_DISABLED;
1176 		}
1177 		return;
1178 	}
1179 
1180 	regd = reg_get_regdomain(wiphy);
1181 	chan_reg_rule_print_dbg(regd, chan, reg_rule);
1182 
1183 	power_rule = &reg_rule->power_rule;
1184 	freq_range = &reg_rule->freq_range;
1185 
1186 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1187 	/* Check if auto calculation requested */
1188 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1189 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1190 
1191 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1192 	if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1193 			     MHZ_TO_KHZ(10)))
1194 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1195 	if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1196 			     MHZ_TO_KHZ(20)))
1197 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1198 
1199 	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1200 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1201 	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1202 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1203 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1204 		bw_flags |= IEEE80211_CHAN_NO_HT40;
1205 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1206 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1207 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1208 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1209 
1210 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1211 	    request_wiphy && request_wiphy == wiphy &&
1212 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1213 		/*
1214 		 * This guarantees the driver's requested regulatory domain
1215 		 * will always be used as a base for further regulatory
1216 		 * settings
1217 		 */
1218 		chan->flags = chan->orig_flags =
1219 			map_regdom_flags(reg_rule->flags) | bw_flags;
1220 		chan->max_antenna_gain = chan->orig_mag =
1221 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1222 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1223 			(int) MBM_TO_DBM(power_rule->max_eirp);
1224 
1225 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1226 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1227 			if (reg_rule->dfs_cac_ms)
1228 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1229 		}
1230 
1231 		return;
1232 	}
1233 
1234 	chan->dfs_state = NL80211_DFS_USABLE;
1235 	chan->dfs_state_entered = jiffies;
1236 
1237 	chan->beacon_found = false;
1238 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1239 	chan->max_antenna_gain =
1240 		min_t(int, chan->orig_mag,
1241 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1242 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1243 
1244 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1245 		if (reg_rule->dfs_cac_ms)
1246 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1247 		else
1248 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1249 	}
1250 
1251 	if (chan->orig_mpwr) {
1252 		/*
1253 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1254 		 * will always follow the passed country IE power settings.
1255 		 */
1256 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1257 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1258 			chan->max_power = chan->max_reg_power;
1259 		else
1260 			chan->max_power = min(chan->orig_mpwr,
1261 					      chan->max_reg_power);
1262 	} else
1263 		chan->max_power = chan->max_reg_power;
1264 }
1265 
1266 static void handle_band(struct wiphy *wiphy,
1267 			enum nl80211_reg_initiator initiator,
1268 			struct ieee80211_supported_band *sband)
1269 {
1270 	unsigned int i;
1271 
1272 	if (!sband)
1273 		return;
1274 
1275 	for (i = 0; i < sband->n_channels; i++)
1276 		handle_channel(wiphy, initiator, &sband->channels[i]);
1277 }
1278 
1279 static bool reg_request_cell_base(struct regulatory_request *request)
1280 {
1281 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1282 		return false;
1283 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1284 }
1285 
1286 bool reg_last_request_cell_base(void)
1287 {
1288 	return reg_request_cell_base(get_last_request());
1289 }
1290 
1291 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1292 /* Core specific check */
1293 static enum reg_request_treatment
1294 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1295 {
1296 	struct regulatory_request *lr = get_last_request();
1297 
1298 	if (!reg_num_devs_support_basehint)
1299 		return REG_REQ_IGNORE;
1300 
1301 	if (reg_request_cell_base(lr) &&
1302 	    !regdom_changes(pending_request->alpha2))
1303 		return REG_REQ_ALREADY_SET;
1304 
1305 	return REG_REQ_OK;
1306 }
1307 
1308 /* Device specific check */
1309 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1310 {
1311 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1312 }
1313 #else
1314 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1315 {
1316 	return REG_REQ_IGNORE;
1317 }
1318 
1319 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1320 {
1321 	return true;
1322 }
1323 #endif
1324 
1325 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1326 {
1327 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1328 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1329 		return true;
1330 	return false;
1331 }
1332 
1333 static bool ignore_reg_update(struct wiphy *wiphy,
1334 			      enum nl80211_reg_initiator initiator)
1335 {
1336 	struct regulatory_request *lr = get_last_request();
1337 
1338 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1339 		return true;
1340 
1341 	if (!lr) {
1342 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1343 			      "since last_request is not set\n",
1344 			      reg_initiator_name(initiator));
1345 		return true;
1346 	}
1347 
1348 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1349 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1350 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1351 			      "since the driver uses its own custom "
1352 			      "regulatory domain\n",
1353 			      reg_initiator_name(initiator));
1354 		return true;
1355 	}
1356 
1357 	/*
1358 	 * wiphy->regd will be set once the device has its own
1359 	 * desired regulatory domain set
1360 	 */
1361 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1362 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1363 	    !is_world_regdom(lr->alpha2)) {
1364 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1365 			      "since the driver requires its own regulatory "
1366 			      "domain to be set first\n",
1367 			      reg_initiator_name(initiator));
1368 		return true;
1369 	}
1370 
1371 	if (reg_request_cell_base(lr))
1372 		return reg_dev_ignore_cell_hint(wiphy);
1373 
1374 	return false;
1375 }
1376 
1377 static bool reg_is_world_roaming(struct wiphy *wiphy)
1378 {
1379 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1380 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1381 	struct regulatory_request *lr = get_last_request();
1382 
1383 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1384 		return true;
1385 
1386 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1387 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1388 		return true;
1389 
1390 	return false;
1391 }
1392 
1393 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1394 			      struct reg_beacon *reg_beacon)
1395 {
1396 	struct ieee80211_supported_band *sband;
1397 	struct ieee80211_channel *chan;
1398 	bool channel_changed = false;
1399 	struct ieee80211_channel chan_before;
1400 
1401 	sband = wiphy->bands[reg_beacon->chan.band];
1402 	chan = &sband->channels[chan_idx];
1403 
1404 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1405 		return;
1406 
1407 	if (chan->beacon_found)
1408 		return;
1409 
1410 	chan->beacon_found = true;
1411 
1412 	if (!reg_is_world_roaming(wiphy))
1413 		return;
1414 
1415 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1416 		return;
1417 
1418 	chan_before.center_freq = chan->center_freq;
1419 	chan_before.flags = chan->flags;
1420 
1421 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1422 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1423 		channel_changed = true;
1424 	}
1425 
1426 	if (channel_changed)
1427 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1428 }
1429 
1430 /*
1431  * Called when a scan on a wiphy finds a beacon on
1432  * new channel
1433  */
1434 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1435 				    struct reg_beacon *reg_beacon)
1436 {
1437 	unsigned int i;
1438 	struct ieee80211_supported_band *sband;
1439 
1440 	if (!wiphy->bands[reg_beacon->chan.band])
1441 		return;
1442 
1443 	sband = wiphy->bands[reg_beacon->chan.band];
1444 
1445 	for (i = 0; i < sband->n_channels; i++)
1446 		handle_reg_beacon(wiphy, i, reg_beacon);
1447 }
1448 
1449 /*
1450  * Called upon reg changes or a new wiphy is added
1451  */
1452 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1453 {
1454 	unsigned int i;
1455 	struct ieee80211_supported_band *sband;
1456 	struct reg_beacon *reg_beacon;
1457 
1458 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1459 		if (!wiphy->bands[reg_beacon->chan.band])
1460 			continue;
1461 		sband = wiphy->bands[reg_beacon->chan.band];
1462 		for (i = 0; i < sband->n_channels; i++)
1463 			handle_reg_beacon(wiphy, i, reg_beacon);
1464 	}
1465 }
1466 
1467 /* Reap the advantages of previously found beacons */
1468 static void reg_process_beacons(struct wiphy *wiphy)
1469 {
1470 	/*
1471 	 * Means we are just firing up cfg80211, so no beacons would
1472 	 * have been processed yet.
1473 	 */
1474 	if (!last_request)
1475 		return;
1476 	wiphy_update_beacon_reg(wiphy);
1477 }
1478 
1479 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1480 {
1481 	if (!chan)
1482 		return false;
1483 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1484 		return false;
1485 	/* This would happen when regulatory rules disallow HT40 completely */
1486 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1487 		return false;
1488 	return true;
1489 }
1490 
1491 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1492 					 struct ieee80211_channel *channel)
1493 {
1494 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1495 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1496 	unsigned int i;
1497 
1498 	if (!is_ht40_allowed(channel)) {
1499 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1500 		return;
1501 	}
1502 
1503 	/*
1504 	 * We need to ensure the extension channels exist to
1505 	 * be able to use HT40- or HT40+, this finds them (or not)
1506 	 */
1507 	for (i = 0; i < sband->n_channels; i++) {
1508 		struct ieee80211_channel *c = &sband->channels[i];
1509 
1510 		if (c->center_freq == (channel->center_freq - 20))
1511 			channel_before = c;
1512 		if (c->center_freq == (channel->center_freq + 20))
1513 			channel_after = c;
1514 	}
1515 
1516 	/*
1517 	 * Please note that this assumes target bandwidth is 20 MHz,
1518 	 * if that ever changes we also need to change the below logic
1519 	 * to include that as well.
1520 	 */
1521 	if (!is_ht40_allowed(channel_before))
1522 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1523 	else
1524 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1525 
1526 	if (!is_ht40_allowed(channel_after))
1527 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1528 	else
1529 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1530 }
1531 
1532 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1533 				      struct ieee80211_supported_band *sband)
1534 {
1535 	unsigned int i;
1536 
1537 	if (!sband)
1538 		return;
1539 
1540 	for (i = 0; i < sband->n_channels; i++)
1541 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1542 }
1543 
1544 static void reg_process_ht_flags(struct wiphy *wiphy)
1545 {
1546 	enum ieee80211_band band;
1547 
1548 	if (!wiphy)
1549 		return;
1550 
1551 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1552 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1553 }
1554 
1555 static void reg_call_notifier(struct wiphy *wiphy,
1556 			      struct regulatory_request *request)
1557 {
1558 	if (wiphy->reg_notifier)
1559 		wiphy->reg_notifier(wiphy, request);
1560 }
1561 
1562 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1563 {
1564 	struct cfg80211_chan_def chandef;
1565 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1566 	enum nl80211_iftype iftype;
1567 
1568 	wdev_lock(wdev);
1569 	iftype = wdev->iftype;
1570 
1571 	/* make sure the interface is active */
1572 	if (!wdev->netdev || !netif_running(wdev->netdev))
1573 		goto wdev_inactive_unlock;
1574 
1575 	switch (iftype) {
1576 	case NL80211_IFTYPE_AP:
1577 	case NL80211_IFTYPE_P2P_GO:
1578 		if (!wdev->beacon_interval)
1579 			goto wdev_inactive_unlock;
1580 		chandef = wdev->chandef;
1581 		break;
1582 	case NL80211_IFTYPE_ADHOC:
1583 		if (!wdev->ssid_len)
1584 			goto wdev_inactive_unlock;
1585 		chandef = wdev->chandef;
1586 		break;
1587 	case NL80211_IFTYPE_STATION:
1588 	case NL80211_IFTYPE_P2P_CLIENT:
1589 		if (!wdev->current_bss ||
1590 		    !wdev->current_bss->pub.channel)
1591 			goto wdev_inactive_unlock;
1592 
1593 		if (!rdev->ops->get_channel ||
1594 		    rdev_get_channel(rdev, wdev, &chandef))
1595 			cfg80211_chandef_create(&chandef,
1596 						wdev->current_bss->pub.channel,
1597 						NL80211_CHAN_NO_HT);
1598 		break;
1599 	case NL80211_IFTYPE_MONITOR:
1600 	case NL80211_IFTYPE_AP_VLAN:
1601 	case NL80211_IFTYPE_P2P_DEVICE:
1602 		/* no enforcement required */
1603 		break;
1604 	default:
1605 		/* others not implemented for now */
1606 		WARN_ON(1);
1607 		break;
1608 	}
1609 
1610 	wdev_unlock(wdev);
1611 
1612 	switch (iftype) {
1613 	case NL80211_IFTYPE_AP:
1614 	case NL80211_IFTYPE_P2P_GO:
1615 	case NL80211_IFTYPE_ADHOC:
1616 		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1617 	case NL80211_IFTYPE_STATION:
1618 	case NL80211_IFTYPE_P2P_CLIENT:
1619 		return cfg80211_chandef_usable(wiphy, &chandef,
1620 					       IEEE80211_CHAN_DISABLED);
1621 	default:
1622 		break;
1623 	}
1624 
1625 	return true;
1626 
1627 wdev_inactive_unlock:
1628 	wdev_unlock(wdev);
1629 	return true;
1630 }
1631 
1632 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1633 {
1634 	struct wireless_dev *wdev;
1635 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1636 
1637 	ASSERT_RTNL();
1638 
1639 	list_for_each_entry(wdev, &rdev->wdev_list, list)
1640 		if (!reg_wdev_chan_valid(wiphy, wdev))
1641 			cfg80211_leave(rdev, wdev);
1642 }
1643 
1644 static void reg_check_chans_work(struct work_struct *work)
1645 {
1646 	struct cfg80211_registered_device *rdev;
1647 
1648 	REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1649 	rtnl_lock();
1650 
1651 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1652 		if (!(rdev->wiphy.regulatory_flags &
1653 		      REGULATORY_IGNORE_STALE_KICKOFF))
1654 			reg_leave_invalid_chans(&rdev->wiphy);
1655 
1656 	rtnl_unlock();
1657 }
1658 
1659 static void reg_check_channels(void)
1660 {
1661 	/*
1662 	 * Give usermode a chance to do something nicer (move to another
1663 	 * channel, orderly disconnection), before forcing a disconnection.
1664 	 */
1665 	mod_delayed_work(system_power_efficient_wq,
1666 			 &reg_check_chans,
1667 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1668 }
1669 
1670 static void wiphy_update_regulatory(struct wiphy *wiphy,
1671 				    enum nl80211_reg_initiator initiator)
1672 {
1673 	enum ieee80211_band band;
1674 	struct regulatory_request *lr = get_last_request();
1675 
1676 	if (ignore_reg_update(wiphy, initiator)) {
1677 		/*
1678 		 * Regulatory updates set by CORE are ignored for custom
1679 		 * regulatory cards. Let us notify the changes to the driver,
1680 		 * as some drivers used this to restore its orig_* reg domain.
1681 		 */
1682 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1683 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1684 			reg_call_notifier(wiphy, lr);
1685 		return;
1686 	}
1687 
1688 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1689 
1690 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1691 		handle_band(wiphy, initiator, wiphy->bands[band]);
1692 
1693 	reg_process_beacons(wiphy);
1694 	reg_process_ht_flags(wiphy);
1695 	reg_call_notifier(wiphy, lr);
1696 }
1697 
1698 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1699 {
1700 	struct cfg80211_registered_device *rdev;
1701 	struct wiphy *wiphy;
1702 
1703 	ASSERT_RTNL();
1704 
1705 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1706 		wiphy = &rdev->wiphy;
1707 		wiphy_update_regulatory(wiphy, initiator);
1708 	}
1709 
1710 	reg_check_channels();
1711 }
1712 
1713 static void handle_channel_custom(struct wiphy *wiphy,
1714 				  struct ieee80211_channel *chan,
1715 				  const struct ieee80211_regdomain *regd)
1716 {
1717 	u32 bw_flags = 0;
1718 	const struct ieee80211_reg_rule *reg_rule = NULL;
1719 	const struct ieee80211_power_rule *power_rule = NULL;
1720 	const struct ieee80211_freq_range *freq_range = NULL;
1721 	u32 max_bandwidth_khz;
1722 	u32 bw;
1723 
1724 	for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1725 		reg_rule = freq_reg_info_regd(wiphy,
1726 					      MHZ_TO_KHZ(chan->center_freq),
1727 					      regd, bw);
1728 		if (!IS_ERR(reg_rule))
1729 			break;
1730 	}
1731 
1732 	if (IS_ERR(reg_rule)) {
1733 		REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1734 			      chan->center_freq);
1735 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1736 			chan->flags |= IEEE80211_CHAN_DISABLED;
1737 		} else {
1738 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1739 			chan->flags = chan->orig_flags;
1740 		}
1741 		return;
1742 	}
1743 
1744 	chan_reg_rule_print_dbg(regd, chan, reg_rule);
1745 
1746 	power_rule = &reg_rule->power_rule;
1747 	freq_range = &reg_rule->freq_range;
1748 
1749 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1750 	/* Check if auto calculation requested */
1751 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1752 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1753 
1754 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1755 	if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1756 			     MHZ_TO_KHZ(10)))
1757 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1758 	if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1759 			     MHZ_TO_KHZ(20)))
1760 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1761 
1762 	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1763 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1764 	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1765 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1766 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1767 		bw_flags |= IEEE80211_CHAN_NO_HT40;
1768 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1769 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1770 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1771 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1772 
1773 	chan->dfs_state_entered = jiffies;
1774 	chan->dfs_state = NL80211_DFS_USABLE;
1775 
1776 	chan->beacon_found = false;
1777 
1778 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1779 		chan->flags = chan->orig_flags | bw_flags |
1780 			      map_regdom_flags(reg_rule->flags);
1781 	else
1782 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1783 
1784 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1785 	chan->max_reg_power = chan->max_power =
1786 		(int) MBM_TO_DBM(power_rule->max_eirp);
1787 
1788 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1789 		if (reg_rule->dfs_cac_ms)
1790 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1791 		else
1792 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1793 	}
1794 
1795 	chan->max_power = chan->max_reg_power;
1796 }
1797 
1798 static void handle_band_custom(struct wiphy *wiphy,
1799 			       struct ieee80211_supported_band *sband,
1800 			       const struct ieee80211_regdomain *regd)
1801 {
1802 	unsigned int i;
1803 
1804 	if (!sband)
1805 		return;
1806 
1807 	for (i = 0; i < sband->n_channels; i++)
1808 		handle_channel_custom(wiphy, &sband->channels[i], regd);
1809 }
1810 
1811 /* Used by drivers prior to wiphy registration */
1812 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1813 				   const struct ieee80211_regdomain *regd)
1814 {
1815 	enum ieee80211_band band;
1816 	unsigned int bands_set = 0;
1817 
1818 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1819 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
1820 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1821 
1822 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1823 		if (!wiphy->bands[band])
1824 			continue;
1825 		handle_band_custom(wiphy, wiphy->bands[band], regd);
1826 		bands_set++;
1827 	}
1828 
1829 	/*
1830 	 * no point in calling this if it won't have any effect
1831 	 * on your device's supported bands.
1832 	 */
1833 	WARN_ON(!bands_set);
1834 }
1835 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1836 
1837 static void reg_set_request_processed(void)
1838 {
1839 	bool need_more_processing = false;
1840 	struct regulatory_request *lr = get_last_request();
1841 
1842 	lr->processed = true;
1843 
1844 	spin_lock(&reg_requests_lock);
1845 	if (!list_empty(&reg_requests_list))
1846 		need_more_processing = true;
1847 	spin_unlock(&reg_requests_lock);
1848 
1849 	cancel_delayed_work(&reg_timeout);
1850 
1851 	if (need_more_processing)
1852 		schedule_work(&reg_work);
1853 }
1854 
1855 /**
1856  * reg_process_hint_core - process core regulatory requests
1857  * @pending_request: a pending core regulatory request
1858  *
1859  * The wireless subsystem can use this function to process
1860  * a regulatory request issued by the regulatory core.
1861  *
1862  * Returns one of the different reg request treatment values.
1863  */
1864 static enum reg_request_treatment
1865 reg_process_hint_core(struct regulatory_request *core_request)
1866 {
1867 
1868 	core_request->intersect = false;
1869 	core_request->processed = false;
1870 
1871 	reg_update_last_request(core_request);
1872 
1873 	return reg_call_crda(core_request);
1874 }
1875 
1876 static enum reg_request_treatment
1877 __reg_process_hint_user(struct regulatory_request *user_request)
1878 {
1879 	struct regulatory_request *lr = get_last_request();
1880 
1881 	if (reg_request_cell_base(user_request))
1882 		return reg_ignore_cell_hint(user_request);
1883 
1884 	if (reg_request_cell_base(lr))
1885 		return REG_REQ_IGNORE;
1886 
1887 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1888 		return REG_REQ_INTERSECT;
1889 	/*
1890 	 * If the user knows better the user should set the regdom
1891 	 * to their country before the IE is picked up
1892 	 */
1893 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1894 	    lr->intersect)
1895 		return REG_REQ_IGNORE;
1896 	/*
1897 	 * Process user requests only after previous user/driver/core
1898 	 * requests have been processed
1899 	 */
1900 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1901 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1902 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1903 	    regdom_changes(lr->alpha2))
1904 		return REG_REQ_IGNORE;
1905 
1906 	if (!regdom_changes(user_request->alpha2))
1907 		return REG_REQ_ALREADY_SET;
1908 
1909 	return REG_REQ_OK;
1910 }
1911 
1912 /**
1913  * reg_process_hint_user - process user regulatory requests
1914  * @user_request: a pending user regulatory request
1915  *
1916  * The wireless subsystem can use this function to process
1917  * a regulatory request initiated by userspace.
1918  *
1919  * Returns one of the different reg request treatment values.
1920  */
1921 static enum reg_request_treatment
1922 reg_process_hint_user(struct regulatory_request *user_request)
1923 {
1924 	enum reg_request_treatment treatment;
1925 
1926 	treatment = __reg_process_hint_user(user_request);
1927 	if (treatment == REG_REQ_IGNORE ||
1928 	    treatment == REG_REQ_ALREADY_SET) {
1929 		reg_free_request(user_request);
1930 		return treatment;
1931 	}
1932 
1933 	user_request->intersect = treatment == REG_REQ_INTERSECT;
1934 	user_request->processed = false;
1935 
1936 	reg_update_last_request(user_request);
1937 
1938 	user_alpha2[0] = user_request->alpha2[0];
1939 	user_alpha2[1] = user_request->alpha2[1];
1940 
1941 	return reg_call_crda(user_request);
1942 }
1943 
1944 static enum reg_request_treatment
1945 __reg_process_hint_driver(struct regulatory_request *driver_request)
1946 {
1947 	struct regulatory_request *lr = get_last_request();
1948 
1949 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1950 		if (regdom_changes(driver_request->alpha2))
1951 			return REG_REQ_OK;
1952 		return REG_REQ_ALREADY_SET;
1953 	}
1954 
1955 	/*
1956 	 * This would happen if you unplug and plug your card
1957 	 * back in or if you add a new device for which the previously
1958 	 * loaded card also agrees on the regulatory domain.
1959 	 */
1960 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1961 	    !regdom_changes(driver_request->alpha2))
1962 		return REG_REQ_ALREADY_SET;
1963 
1964 	return REG_REQ_INTERSECT;
1965 }
1966 
1967 /**
1968  * reg_process_hint_driver - process driver regulatory requests
1969  * @driver_request: a pending driver regulatory request
1970  *
1971  * The wireless subsystem can use this function to process
1972  * a regulatory request issued by an 802.11 driver.
1973  *
1974  * Returns one of the different reg request treatment values.
1975  */
1976 static enum reg_request_treatment
1977 reg_process_hint_driver(struct wiphy *wiphy,
1978 			struct regulatory_request *driver_request)
1979 {
1980 	const struct ieee80211_regdomain *regd, *tmp;
1981 	enum reg_request_treatment treatment;
1982 
1983 	treatment = __reg_process_hint_driver(driver_request);
1984 
1985 	switch (treatment) {
1986 	case REG_REQ_OK:
1987 		break;
1988 	case REG_REQ_IGNORE:
1989 		reg_free_request(driver_request);
1990 		return treatment;
1991 	case REG_REQ_INTERSECT:
1992 		/* fall through */
1993 	case REG_REQ_ALREADY_SET:
1994 		regd = reg_copy_regd(get_cfg80211_regdom());
1995 		if (IS_ERR(regd)) {
1996 			reg_free_request(driver_request);
1997 			return REG_REQ_IGNORE;
1998 		}
1999 
2000 		tmp = get_wiphy_regdom(wiphy);
2001 		rcu_assign_pointer(wiphy->regd, regd);
2002 		rcu_free_regdom(tmp);
2003 	}
2004 
2005 
2006 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2007 	driver_request->processed = false;
2008 
2009 	reg_update_last_request(driver_request);
2010 
2011 	/*
2012 	 * Since CRDA will not be called in this case as we already
2013 	 * have applied the requested regulatory domain before we just
2014 	 * inform userspace we have processed the request
2015 	 */
2016 	if (treatment == REG_REQ_ALREADY_SET) {
2017 		nl80211_send_reg_change_event(driver_request);
2018 		reg_set_request_processed();
2019 		return treatment;
2020 	}
2021 
2022 	return reg_call_crda(driver_request);
2023 }
2024 
2025 static enum reg_request_treatment
2026 __reg_process_hint_country_ie(struct wiphy *wiphy,
2027 			      struct regulatory_request *country_ie_request)
2028 {
2029 	struct wiphy *last_wiphy = NULL;
2030 	struct regulatory_request *lr = get_last_request();
2031 
2032 	if (reg_request_cell_base(lr)) {
2033 		/* Trust a Cell base station over the AP's country IE */
2034 		if (regdom_changes(country_ie_request->alpha2))
2035 			return REG_REQ_IGNORE;
2036 		return REG_REQ_ALREADY_SET;
2037 	} else {
2038 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2039 			return REG_REQ_IGNORE;
2040 	}
2041 
2042 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2043 		return -EINVAL;
2044 
2045 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2046 		return REG_REQ_OK;
2047 
2048 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2049 
2050 	if (last_wiphy != wiphy) {
2051 		/*
2052 		 * Two cards with two APs claiming different
2053 		 * Country IE alpha2s. We could
2054 		 * intersect them, but that seems unlikely
2055 		 * to be correct. Reject second one for now.
2056 		 */
2057 		if (regdom_changes(country_ie_request->alpha2))
2058 			return REG_REQ_IGNORE;
2059 		return REG_REQ_ALREADY_SET;
2060 	}
2061 
2062 	if (regdom_changes(country_ie_request->alpha2))
2063 		return REG_REQ_OK;
2064 	return REG_REQ_ALREADY_SET;
2065 }
2066 
2067 /**
2068  * reg_process_hint_country_ie - process regulatory requests from country IEs
2069  * @country_ie_request: a regulatory request from a country IE
2070  *
2071  * The wireless subsystem can use this function to process
2072  * a regulatory request issued by a country Information Element.
2073  *
2074  * Returns one of the different reg request treatment values.
2075  */
2076 static enum reg_request_treatment
2077 reg_process_hint_country_ie(struct wiphy *wiphy,
2078 			    struct regulatory_request *country_ie_request)
2079 {
2080 	enum reg_request_treatment treatment;
2081 
2082 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2083 
2084 	switch (treatment) {
2085 	case REG_REQ_OK:
2086 		break;
2087 	case REG_REQ_IGNORE:
2088 		/* fall through */
2089 	case REG_REQ_ALREADY_SET:
2090 		reg_free_request(country_ie_request);
2091 		return treatment;
2092 	case REG_REQ_INTERSECT:
2093 		reg_free_request(country_ie_request);
2094 		/*
2095 		 * This doesn't happen yet, not sure we
2096 		 * ever want to support it for this case.
2097 		 */
2098 		WARN_ONCE(1, "Unexpected intersection for country IEs");
2099 		return REG_REQ_IGNORE;
2100 	}
2101 
2102 	country_ie_request->intersect = false;
2103 	country_ie_request->processed = false;
2104 
2105 	reg_update_last_request(country_ie_request);
2106 
2107 	return reg_call_crda(country_ie_request);
2108 }
2109 
2110 /* This processes *all* regulatory hints */
2111 static void reg_process_hint(struct regulatory_request *reg_request)
2112 {
2113 	struct wiphy *wiphy = NULL;
2114 	enum reg_request_treatment treatment;
2115 
2116 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2117 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2118 
2119 	switch (reg_request->initiator) {
2120 	case NL80211_REGDOM_SET_BY_CORE:
2121 		reg_process_hint_core(reg_request);
2122 		return;
2123 	case NL80211_REGDOM_SET_BY_USER:
2124 		reg_process_hint_user(reg_request);
2125 		return;
2126 	case NL80211_REGDOM_SET_BY_DRIVER:
2127 		if (!wiphy)
2128 			goto out_free;
2129 		treatment = reg_process_hint_driver(wiphy, reg_request);
2130 		break;
2131 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2132 		if (!wiphy)
2133 			goto out_free;
2134 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2135 		break;
2136 	default:
2137 		WARN(1, "invalid initiator %d\n", reg_request->initiator);
2138 		goto out_free;
2139 	}
2140 
2141 	/* This is required so that the orig_* parameters are saved.
2142 	 * NOTE: treatment must be set for any case that reaches here!
2143 	 */
2144 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2145 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2146 		wiphy_update_regulatory(wiphy, reg_request->initiator);
2147 		reg_check_channels();
2148 	}
2149 
2150 	return;
2151 
2152 out_free:
2153 	reg_free_request(reg_request);
2154 }
2155 
2156 static bool reg_only_self_managed_wiphys(void)
2157 {
2158 	struct cfg80211_registered_device *rdev;
2159 	struct wiphy *wiphy;
2160 	bool self_managed_found = false;
2161 
2162 	ASSERT_RTNL();
2163 
2164 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2165 		wiphy = &rdev->wiphy;
2166 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2167 			self_managed_found = true;
2168 		else
2169 			return false;
2170 	}
2171 
2172 	/* make sure at least one self-managed wiphy exists */
2173 	return self_managed_found;
2174 }
2175 
2176 /*
2177  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2178  * Regulatory hints come on a first come first serve basis and we
2179  * must process each one atomically.
2180  */
2181 static void reg_process_pending_hints(void)
2182 {
2183 	struct regulatory_request *reg_request, *lr;
2184 
2185 	lr = get_last_request();
2186 
2187 	/* When last_request->processed becomes true this will be rescheduled */
2188 	if (lr && !lr->processed) {
2189 		reg_process_hint(lr);
2190 		return;
2191 	}
2192 
2193 	spin_lock(&reg_requests_lock);
2194 
2195 	if (list_empty(&reg_requests_list)) {
2196 		spin_unlock(&reg_requests_lock);
2197 		return;
2198 	}
2199 
2200 	reg_request = list_first_entry(&reg_requests_list,
2201 				       struct regulatory_request,
2202 				       list);
2203 	list_del_init(&reg_request->list);
2204 
2205 	spin_unlock(&reg_requests_lock);
2206 
2207 	if (reg_only_self_managed_wiphys()) {
2208 		reg_free_request(reg_request);
2209 		return;
2210 	}
2211 
2212 	reg_process_hint(reg_request);
2213 
2214 	lr = get_last_request();
2215 
2216 	spin_lock(&reg_requests_lock);
2217 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
2218 		schedule_work(&reg_work);
2219 	spin_unlock(&reg_requests_lock);
2220 }
2221 
2222 /* Processes beacon hints -- this has nothing to do with country IEs */
2223 static void reg_process_pending_beacon_hints(void)
2224 {
2225 	struct cfg80211_registered_device *rdev;
2226 	struct reg_beacon *pending_beacon, *tmp;
2227 
2228 	/* This goes through the _pending_ beacon list */
2229 	spin_lock_bh(&reg_pending_beacons_lock);
2230 
2231 	list_for_each_entry_safe(pending_beacon, tmp,
2232 				 &reg_pending_beacons, list) {
2233 		list_del_init(&pending_beacon->list);
2234 
2235 		/* Applies the beacon hint to current wiphys */
2236 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2237 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2238 
2239 		/* Remembers the beacon hint for new wiphys or reg changes */
2240 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2241 	}
2242 
2243 	spin_unlock_bh(&reg_pending_beacons_lock);
2244 }
2245 
2246 static void reg_process_self_managed_hints(void)
2247 {
2248 	struct cfg80211_registered_device *rdev;
2249 	struct wiphy *wiphy;
2250 	const struct ieee80211_regdomain *tmp;
2251 	const struct ieee80211_regdomain *regd;
2252 	enum ieee80211_band band;
2253 	struct regulatory_request request = {};
2254 
2255 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2256 		wiphy = &rdev->wiphy;
2257 
2258 		spin_lock(&reg_requests_lock);
2259 		regd = rdev->requested_regd;
2260 		rdev->requested_regd = NULL;
2261 		spin_unlock(&reg_requests_lock);
2262 
2263 		if (regd == NULL)
2264 			continue;
2265 
2266 		tmp = get_wiphy_regdom(wiphy);
2267 		rcu_assign_pointer(wiphy->regd, regd);
2268 		rcu_free_regdom(tmp);
2269 
2270 		for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2271 			handle_band_custom(wiphy, wiphy->bands[band], regd);
2272 
2273 		reg_process_ht_flags(wiphy);
2274 
2275 		request.wiphy_idx = get_wiphy_idx(wiphy);
2276 		request.alpha2[0] = regd->alpha2[0];
2277 		request.alpha2[1] = regd->alpha2[1];
2278 		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2279 
2280 		nl80211_send_wiphy_reg_change_event(&request);
2281 	}
2282 
2283 	reg_check_channels();
2284 }
2285 
2286 static void reg_todo(struct work_struct *work)
2287 {
2288 	rtnl_lock();
2289 	reg_process_pending_hints();
2290 	reg_process_pending_beacon_hints();
2291 	reg_process_self_managed_hints();
2292 	rtnl_unlock();
2293 }
2294 
2295 static void queue_regulatory_request(struct regulatory_request *request)
2296 {
2297 	request->alpha2[0] = toupper(request->alpha2[0]);
2298 	request->alpha2[1] = toupper(request->alpha2[1]);
2299 
2300 	spin_lock(&reg_requests_lock);
2301 	list_add_tail(&request->list, &reg_requests_list);
2302 	spin_unlock(&reg_requests_lock);
2303 
2304 	schedule_work(&reg_work);
2305 }
2306 
2307 /*
2308  * Core regulatory hint -- happens during cfg80211_init()
2309  * and when we restore regulatory settings.
2310  */
2311 static int regulatory_hint_core(const char *alpha2)
2312 {
2313 	struct regulatory_request *request;
2314 
2315 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2316 	if (!request)
2317 		return -ENOMEM;
2318 
2319 	request->alpha2[0] = alpha2[0];
2320 	request->alpha2[1] = alpha2[1];
2321 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2322 
2323 	queue_regulatory_request(request);
2324 
2325 	return 0;
2326 }
2327 
2328 /* User hints */
2329 int regulatory_hint_user(const char *alpha2,
2330 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2331 {
2332 	struct regulatory_request *request;
2333 
2334 	if (WARN_ON(!alpha2))
2335 		return -EINVAL;
2336 
2337 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2338 	if (!request)
2339 		return -ENOMEM;
2340 
2341 	request->wiphy_idx = WIPHY_IDX_INVALID;
2342 	request->alpha2[0] = alpha2[0];
2343 	request->alpha2[1] = alpha2[1];
2344 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2345 	request->user_reg_hint_type = user_reg_hint_type;
2346 
2347 	/* Allow calling CRDA again */
2348 	reg_crda_timeouts = 0;
2349 
2350 	queue_regulatory_request(request);
2351 
2352 	return 0;
2353 }
2354 
2355 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2356 {
2357 	spin_lock(&reg_indoor_lock);
2358 
2359 	/* It is possible that more than one user space process is trying to
2360 	 * configure the indoor setting. To handle such cases, clear the indoor
2361 	 * setting in case that some process does not think that the device
2362 	 * is operating in an indoor environment. In addition, if a user space
2363 	 * process indicates that it is controlling the indoor setting, save its
2364 	 * portid, i.e., make it the owner.
2365 	 */
2366 	reg_is_indoor = is_indoor;
2367 	if (reg_is_indoor) {
2368 		if (!reg_is_indoor_portid)
2369 			reg_is_indoor_portid = portid;
2370 	} else {
2371 		reg_is_indoor_portid = 0;
2372 	}
2373 
2374 	spin_unlock(&reg_indoor_lock);
2375 
2376 	if (!is_indoor)
2377 		reg_check_channels();
2378 
2379 	return 0;
2380 }
2381 
2382 void regulatory_netlink_notify(u32 portid)
2383 {
2384 	spin_lock(&reg_indoor_lock);
2385 
2386 	if (reg_is_indoor_portid != portid) {
2387 		spin_unlock(&reg_indoor_lock);
2388 		return;
2389 	}
2390 
2391 	reg_is_indoor = false;
2392 	reg_is_indoor_portid = 0;
2393 
2394 	spin_unlock(&reg_indoor_lock);
2395 
2396 	reg_check_channels();
2397 }
2398 
2399 /* Driver hints */
2400 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2401 {
2402 	struct regulatory_request *request;
2403 
2404 	if (WARN_ON(!alpha2 || !wiphy))
2405 		return -EINVAL;
2406 
2407 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2408 
2409 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2410 	if (!request)
2411 		return -ENOMEM;
2412 
2413 	request->wiphy_idx = get_wiphy_idx(wiphy);
2414 
2415 	request->alpha2[0] = alpha2[0];
2416 	request->alpha2[1] = alpha2[1];
2417 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2418 
2419 	/* Allow calling CRDA again */
2420 	reg_crda_timeouts = 0;
2421 
2422 	queue_regulatory_request(request);
2423 
2424 	return 0;
2425 }
2426 EXPORT_SYMBOL(regulatory_hint);
2427 
2428 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2429 				const u8 *country_ie, u8 country_ie_len)
2430 {
2431 	char alpha2[2];
2432 	enum environment_cap env = ENVIRON_ANY;
2433 	struct regulatory_request *request = NULL, *lr;
2434 
2435 	/* IE len must be evenly divisible by 2 */
2436 	if (country_ie_len & 0x01)
2437 		return;
2438 
2439 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2440 		return;
2441 
2442 	request = kzalloc(sizeof(*request), GFP_KERNEL);
2443 	if (!request)
2444 		return;
2445 
2446 	alpha2[0] = country_ie[0];
2447 	alpha2[1] = country_ie[1];
2448 
2449 	if (country_ie[2] == 'I')
2450 		env = ENVIRON_INDOOR;
2451 	else if (country_ie[2] == 'O')
2452 		env = ENVIRON_OUTDOOR;
2453 
2454 	rcu_read_lock();
2455 	lr = get_last_request();
2456 
2457 	if (unlikely(!lr))
2458 		goto out;
2459 
2460 	/*
2461 	 * We will run this only upon a successful connection on cfg80211.
2462 	 * We leave conflict resolution to the workqueue, where can hold
2463 	 * the RTNL.
2464 	 */
2465 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2466 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
2467 		goto out;
2468 
2469 	request->wiphy_idx = get_wiphy_idx(wiphy);
2470 	request->alpha2[0] = alpha2[0];
2471 	request->alpha2[1] = alpha2[1];
2472 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2473 	request->country_ie_env = env;
2474 
2475 	/* Allow calling CRDA again */
2476 	reg_crda_timeouts = 0;
2477 
2478 	queue_regulatory_request(request);
2479 	request = NULL;
2480 out:
2481 	kfree(request);
2482 	rcu_read_unlock();
2483 }
2484 
2485 static void restore_alpha2(char *alpha2, bool reset_user)
2486 {
2487 	/* indicates there is no alpha2 to consider for restoration */
2488 	alpha2[0] = '9';
2489 	alpha2[1] = '7';
2490 
2491 	/* The user setting has precedence over the module parameter */
2492 	if (is_user_regdom_saved()) {
2493 		/* Unless we're asked to ignore it and reset it */
2494 		if (reset_user) {
2495 			REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2496 			user_alpha2[0] = '9';
2497 			user_alpha2[1] = '7';
2498 
2499 			/*
2500 			 * If we're ignoring user settings, we still need to
2501 			 * check the module parameter to ensure we put things
2502 			 * back as they were for a full restore.
2503 			 */
2504 			if (!is_world_regdom(ieee80211_regdom)) {
2505 				REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2506 					      ieee80211_regdom[0], ieee80211_regdom[1]);
2507 				alpha2[0] = ieee80211_regdom[0];
2508 				alpha2[1] = ieee80211_regdom[1];
2509 			}
2510 		} else {
2511 			REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2512 				      user_alpha2[0], user_alpha2[1]);
2513 			alpha2[0] = user_alpha2[0];
2514 			alpha2[1] = user_alpha2[1];
2515 		}
2516 	} else if (!is_world_regdom(ieee80211_regdom)) {
2517 		REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2518 			      ieee80211_regdom[0], ieee80211_regdom[1]);
2519 		alpha2[0] = ieee80211_regdom[0];
2520 		alpha2[1] = ieee80211_regdom[1];
2521 	} else
2522 		REG_DBG_PRINT("Restoring regulatory settings\n");
2523 }
2524 
2525 static void restore_custom_reg_settings(struct wiphy *wiphy)
2526 {
2527 	struct ieee80211_supported_band *sband;
2528 	enum ieee80211_band band;
2529 	struct ieee80211_channel *chan;
2530 	int i;
2531 
2532 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2533 		sband = wiphy->bands[band];
2534 		if (!sband)
2535 			continue;
2536 		for (i = 0; i < sband->n_channels; i++) {
2537 			chan = &sband->channels[i];
2538 			chan->flags = chan->orig_flags;
2539 			chan->max_antenna_gain = chan->orig_mag;
2540 			chan->max_power = chan->orig_mpwr;
2541 			chan->beacon_found = false;
2542 		}
2543 	}
2544 }
2545 
2546 /*
2547  * Restoring regulatory settings involves ingoring any
2548  * possibly stale country IE information and user regulatory
2549  * settings if so desired, this includes any beacon hints
2550  * learned as we could have traveled outside to another country
2551  * after disconnection. To restore regulatory settings we do
2552  * exactly what we did at bootup:
2553  *
2554  *   - send a core regulatory hint
2555  *   - send a user regulatory hint if applicable
2556  *
2557  * Device drivers that send a regulatory hint for a specific country
2558  * keep their own regulatory domain on wiphy->regd so that does does
2559  * not need to be remembered.
2560  */
2561 static void restore_regulatory_settings(bool reset_user)
2562 {
2563 	char alpha2[2];
2564 	char world_alpha2[2];
2565 	struct reg_beacon *reg_beacon, *btmp;
2566 	LIST_HEAD(tmp_reg_req_list);
2567 	struct cfg80211_registered_device *rdev;
2568 
2569 	ASSERT_RTNL();
2570 
2571 	/*
2572 	 * Clear the indoor setting in case that it is not controlled by user
2573 	 * space, as otherwise there is no guarantee that the device is still
2574 	 * operating in an indoor environment.
2575 	 */
2576 	spin_lock(&reg_indoor_lock);
2577 	if (reg_is_indoor && !reg_is_indoor_portid) {
2578 		reg_is_indoor = false;
2579 		reg_check_channels();
2580 	}
2581 	spin_unlock(&reg_indoor_lock);
2582 
2583 	reset_regdomains(true, &world_regdom);
2584 	restore_alpha2(alpha2, reset_user);
2585 
2586 	/*
2587 	 * If there's any pending requests we simply
2588 	 * stash them to a temporary pending queue and
2589 	 * add then after we've restored regulatory
2590 	 * settings.
2591 	 */
2592 	spin_lock(&reg_requests_lock);
2593 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2594 	spin_unlock(&reg_requests_lock);
2595 
2596 	/* Clear beacon hints */
2597 	spin_lock_bh(&reg_pending_beacons_lock);
2598 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2599 		list_del(&reg_beacon->list);
2600 		kfree(reg_beacon);
2601 	}
2602 	spin_unlock_bh(&reg_pending_beacons_lock);
2603 
2604 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2605 		list_del(&reg_beacon->list);
2606 		kfree(reg_beacon);
2607 	}
2608 
2609 	/* First restore to the basic regulatory settings */
2610 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2611 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2612 
2613 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2614 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2615 			continue;
2616 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2617 			restore_custom_reg_settings(&rdev->wiphy);
2618 	}
2619 
2620 	regulatory_hint_core(world_alpha2);
2621 
2622 	/*
2623 	 * This restores the ieee80211_regdom module parameter
2624 	 * preference or the last user requested regulatory
2625 	 * settings, user regulatory settings takes precedence.
2626 	 */
2627 	if (is_an_alpha2(alpha2))
2628 		regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2629 
2630 	spin_lock(&reg_requests_lock);
2631 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2632 	spin_unlock(&reg_requests_lock);
2633 
2634 	REG_DBG_PRINT("Kicking the queue\n");
2635 
2636 	schedule_work(&reg_work);
2637 }
2638 
2639 void regulatory_hint_disconnect(void)
2640 {
2641 	REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2642 	restore_regulatory_settings(false);
2643 }
2644 
2645 static bool freq_is_chan_12_13_14(u16 freq)
2646 {
2647 	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2648 	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2649 	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2650 		return true;
2651 	return false;
2652 }
2653 
2654 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2655 {
2656 	struct reg_beacon *pending_beacon;
2657 
2658 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2659 		if (beacon_chan->center_freq ==
2660 		    pending_beacon->chan.center_freq)
2661 			return true;
2662 	return false;
2663 }
2664 
2665 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2666 				 struct ieee80211_channel *beacon_chan,
2667 				 gfp_t gfp)
2668 {
2669 	struct reg_beacon *reg_beacon;
2670 	bool processing;
2671 
2672 	if (beacon_chan->beacon_found ||
2673 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2674 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2675 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2676 		return 0;
2677 
2678 	spin_lock_bh(&reg_pending_beacons_lock);
2679 	processing = pending_reg_beacon(beacon_chan);
2680 	spin_unlock_bh(&reg_pending_beacons_lock);
2681 
2682 	if (processing)
2683 		return 0;
2684 
2685 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2686 	if (!reg_beacon)
2687 		return -ENOMEM;
2688 
2689 	REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2690 		      beacon_chan->center_freq,
2691 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
2692 		      wiphy_name(wiphy));
2693 
2694 	memcpy(&reg_beacon->chan, beacon_chan,
2695 	       sizeof(struct ieee80211_channel));
2696 
2697 	/*
2698 	 * Since we can be called from BH or and non-BH context
2699 	 * we must use spin_lock_bh()
2700 	 */
2701 	spin_lock_bh(&reg_pending_beacons_lock);
2702 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2703 	spin_unlock_bh(&reg_pending_beacons_lock);
2704 
2705 	schedule_work(&reg_work);
2706 
2707 	return 0;
2708 }
2709 
2710 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2711 {
2712 	unsigned int i;
2713 	const struct ieee80211_reg_rule *reg_rule = NULL;
2714 	const struct ieee80211_freq_range *freq_range = NULL;
2715 	const struct ieee80211_power_rule *power_rule = NULL;
2716 	char bw[32], cac_time[32];
2717 
2718 	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2719 
2720 	for (i = 0; i < rd->n_reg_rules; i++) {
2721 		reg_rule = &rd->reg_rules[i];
2722 		freq_range = &reg_rule->freq_range;
2723 		power_rule = &reg_rule->power_rule;
2724 
2725 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2726 			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2727 				 freq_range->max_bandwidth_khz,
2728 				 reg_get_max_bandwidth(rd, reg_rule));
2729 		else
2730 			snprintf(bw, sizeof(bw), "%d KHz",
2731 				 freq_range->max_bandwidth_khz);
2732 
2733 		if (reg_rule->flags & NL80211_RRF_DFS)
2734 			scnprintf(cac_time, sizeof(cac_time), "%u s",
2735 				  reg_rule->dfs_cac_ms/1000);
2736 		else
2737 			scnprintf(cac_time, sizeof(cac_time), "N/A");
2738 
2739 
2740 		/*
2741 		 * There may not be documentation for max antenna gain
2742 		 * in certain regions
2743 		 */
2744 		if (power_rule->max_antenna_gain)
2745 			pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2746 				freq_range->start_freq_khz,
2747 				freq_range->end_freq_khz,
2748 				bw,
2749 				power_rule->max_antenna_gain,
2750 				power_rule->max_eirp,
2751 				cac_time);
2752 		else
2753 			pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2754 				freq_range->start_freq_khz,
2755 				freq_range->end_freq_khz,
2756 				bw,
2757 				power_rule->max_eirp,
2758 				cac_time);
2759 	}
2760 }
2761 
2762 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2763 {
2764 	switch (dfs_region) {
2765 	case NL80211_DFS_UNSET:
2766 	case NL80211_DFS_FCC:
2767 	case NL80211_DFS_ETSI:
2768 	case NL80211_DFS_JP:
2769 		return true;
2770 	default:
2771 		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2772 			      dfs_region);
2773 		return false;
2774 	}
2775 }
2776 
2777 static void print_regdomain(const struct ieee80211_regdomain *rd)
2778 {
2779 	struct regulatory_request *lr = get_last_request();
2780 
2781 	if (is_intersected_alpha2(rd->alpha2)) {
2782 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2783 			struct cfg80211_registered_device *rdev;
2784 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2785 			if (rdev) {
2786 				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2787 					rdev->country_ie_alpha2[0],
2788 					rdev->country_ie_alpha2[1]);
2789 			} else
2790 				pr_info("Current regulatory domain intersected:\n");
2791 		} else
2792 			pr_info("Current regulatory domain intersected:\n");
2793 	} else if (is_world_regdom(rd->alpha2)) {
2794 		pr_info("World regulatory domain updated:\n");
2795 	} else {
2796 		if (is_unknown_alpha2(rd->alpha2))
2797 			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2798 		else {
2799 			if (reg_request_cell_base(lr))
2800 				pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2801 					rd->alpha2[0], rd->alpha2[1]);
2802 			else
2803 				pr_info("Regulatory domain changed to country: %c%c\n",
2804 					rd->alpha2[0], rd->alpha2[1]);
2805 		}
2806 	}
2807 
2808 	pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2809 	print_rd_rules(rd);
2810 }
2811 
2812 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2813 {
2814 	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2815 	print_rd_rules(rd);
2816 }
2817 
2818 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2819 {
2820 	if (!is_world_regdom(rd->alpha2))
2821 		return -EINVAL;
2822 	update_world_regdomain(rd);
2823 	return 0;
2824 }
2825 
2826 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2827 			   struct regulatory_request *user_request)
2828 {
2829 	const struct ieee80211_regdomain *intersected_rd = NULL;
2830 
2831 	if (!regdom_changes(rd->alpha2))
2832 		return -EALREADY;
2833 
2834 	if (!is_valid_rd(rd)) {
2835 		pr_err("Invalid regulatory domain detected:\n");
2836 		print_regdomain_info(rd);
2837 		return -EINVAL;
2838 	}
2839 
2840 	if (!user_request->intersect) {
2841 		reset_regdomains(false, rd);
2842 		return 0;
2843 	}
2844 
2845 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2846 	if (!intersected_rd)
2847 		return -EINVAL;
2848 
2849 	kfree(rd);
2850 	rd = NULL;
2851 	reset_regdomains(false, intersected_rd);
2852 
2853 	return 0;
2854 }
2855 
2856 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2857 			     struct regulatory_request *driver_request)
2858 {
2859 	const struct ieee80211_regdomain *regd;
2860 	const struct ieee80211_regdomain *intersected_rd = NULL;
2861 	const struct ieee80211_regdomain *tmp;
2862 	struct wiphy *request_wiphy;
2863 
2864 	if (is_world_regdom(rd->alpha2))
2865 		return -EINVAL;
2866 
2867 	if (!regdom_changes(rd->alpha2))
2868 		return -EALREADY;
2869 
2870 	if (!is_valid_rd(rd)) {
2871 		pr_err("Invalid regulatory domain detected:\n");
2872 		print_regdomain_info(rd);
2873 		return -EINVAL;
2874 	}
2875 
2876 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2877 	if (!request_wiphy) {
2878 		queue_delayed_work(system_power_efficient_wq,
2879 				   &reg_timeout, 0);
2880 		return -ENODEV;
2881 	}
2882 
2883 	if (!driver_request->intersect) {
2884 		if (request_wiphy->regd)
2885 			return -EALREADY;
2886 
2887 		regd = reg_copy_regd(rd);
2888 		if (IS_ERR(regd))
2889 			return PTR_ERR(regd);
2890 
2891 		rcu_assign_pointer(request_wiphy->regd, regd);
2892 		reset_regdomains(false, rd);
2893 		return 0;
2894 	}
2895 
2896 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2897 	if (!intersected_rd)
2898 		return -EINVAL;
2899 
2900 	/*
2901 	 * We can trash what CRDA provided now.
2902 	 * However if a driver requested this specific regulatory
2903 	 * domain we keep it for its private use
2904 	 */
2905 	tmp = get_wiphy_regdom(request_wiphy);
2906 	rcu_assign_pointer(request_wiphy->regd, rd);
2907 	rcu_free_regdom(tmp);
2908 
2909 	rd = NULL;
2910 
2911 	reset_regdomains(false, intersected_rd);
2912 
2913 	return 0;
2914 }
2915 
2916 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2917 				 struct regulatory_request *country_ie_request)
2918 {
2919 	struct wiphy *request_wiphy;
2920 
2921 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2922 	    !is_unknown_alpha2(rd->alpha2))
2923 		return -EINVAL;
2924 
2925 	/*
2926 	 * Lets only bother proceeding on the same alpha2 if the current
2927 	 * rd is non static (it means CRDA was present and was used last)
2928 	 * and the pending request came in from a country IE
2929 	 */
2930 
2931 	if (!is_valid_rd(rd)) {
2932 		pr_err("Invalid regulatory domain detected:\n");
2933 		print_regdomain_info(rd);
2934 		return -EINVAL;
2935 	}
2936 
2937 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2938 	if (!request_wiphy) {
2939 		queue_delayed_work(system_power_efficient_wq,
2940 				   &reg_timeout, 0);
2941 		return -ENODEV;
2942 	}
2943 
2944 	if (country_ie_request->intersect)
2945 		return -EINVAL;
2946 
2947 	reset_regdomains(false, rd);
2948 	return 0;
2949 }
2950 
2951 /*
2952  * Use this call to set the current regulatory domain. Conflicts with
2953  * multiple drivers can be ironed out later. Caller must've already
2954  * kmalloc'd the rd structure.
2955  */
2956 int set_regdom(const struct ieee80211_regdomain *rd,
2957 	       enum ieee80211_regd_source regd_src)
2958 {
2959 	struct regulatory_request *lr;
2960 	bool user_reset = false;
2961 	int r;
2962 
2963 	if (!reg_is_valid_request(rd->alpha2)) {
2964 		kfree(rd);
2965 		return -EINVAL;
2966 	}
2967 
2968 	if (regd_src == REGD_SOURCE_CRDA)
2969 		reg_crda_timeouts = 0;
2970 
2971 	lr = get_last_request();
2972 
2973 	/* Note that this doesn't update the wiphys, this is done below */
2974 	switch (lr->initiator) {
2975 	case NL80211_REGDOM_SET_BY_CORE:
2976 		r = reg_set_rd_core(rd);
2977 		break;
2978 	case NL80211_REGDOM_SET_BY_USER:
2979 		r = reg_set_rd_user(rd, lr);
2980 		user_reset = true;
2981 		break;
2982 	case NL80211_REGDOM_SET_BY_DRIVER:
2983 		r = reg_set_rd_driver(rd, lr);
2984 		break;
2985 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2986 		r = reg_set_rd_country_ie(rd, lr);
2987 		break;
2988 	default:
2989 		WARN(1, "invalid initiator %d\n", lr->initiator);
2990 		return -EINVAL;
2991 	}
2992 
2993 	if (r) {
2994 		switch (r) {
2995 		case -EALREADY:
2996 			reg_set_request_processed();
2997 			break;
2998 		default:
2999 			/* Back to world regulatory in case of errors */
3000 			restore_regulatory_settings(user_reset);
3001 		}
3002 
3003 		kfree(rd);
3004 		return r;
3005 	}
3006 
3007 	/* This would make this whole thing pointless */
3008 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3009 		return -EINVAL;
3010 
3011 	/* update all wiphys now with the new established regulatory domain */
3012 	update_all_wiphy_regulatory(lr->initiator);
3013 
3014 	print_regdomain(get_cfg80211_regdom());
3015 
3016 	nl80211_send_reg_change_event(lr);
3017 
3018 	reg_set_request_processed();
3019 
3020 	return 0;
3021 }
3022 
3023 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3024 				       struct ieee80211_regdomain *rd)
3025 {
3026 	const struct ieee80211_regdomain *regd;
3027 	const struct ieee80211_regdomain *prev_regd;
3028 	struct cfg80211_registered_device *rdev;
3029 
3030 	if (WARN_ON(!wiphy || !rd))
3031 		return -EINVAL;
3032 
3033 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3034 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3035 		return -EPERM;
3036 
3037 	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3038 		print_regdomain_info(rd);
3039 		return -EINVAL;
3040 	}
3041 
3042 	regd = reg_copy_regd(rd);
3043 	if (IS_ERR(regd))
3044 		return PTR_ERR(regd);
3045 
3046 	rdev = wiphy_to_rdev(wiphy);
3047 
3048 	spin_lock(&reg_requests_lock);
3049 	prev_regd = rdev->requested_regd;
3050 	rdev->requested_regd = regd;
3051 	spin_unlock(&reg_requests_lock);
3052 
3053 	kfree(prev_regd);
3054 	return 0;
3055 }
3056 
3057 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3058 			      struct ieee80211_regdomain *rd)
3059 {
3060 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3061 
3062 	if (ret)
3063 		return ret;
3064 
3065 	schedule_work(&reg_work);
3066 	return 0;
3067 }
3068 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3069 
3070 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3071 					struct ieee80211_regdomain *rd)
3072 {
3073 	int ret;
3074 
3075 	ASSERT_RTNL();
3076 
3077 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3078 	if (ret)
3079 		return ret;
3080 
3081 	/* process the request immediately */
3082 	reg_process_self_managed_hints();
3083 	return 0;
3084 }
3085 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3086 
3087 void wiphy_regulatory_register(struct wiphy *wiphy)
3088 {
3089 	struct regulatory_request *lr;
3090 
3091 	/* self-managed devices ignore external hints */
3092 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3093 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3094 					   REGULATORY_COUNTRY_IE_IGNORE;
3095 
3096 	if (!reg_dev_ignore_cell_hint(wiphy))
3097 		reg_num_devs_support_basehint++;
3098 
3099 	lr = get_last_request();
3100 	wiphy_update_regulatory(wiphy, lr->initiator);
3101 }
3102 
3103 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3104 {
3105 	struct wiphy *request_wiphy = NULL;
3106 	struct regulatory_request *lr;
3107 
3108 	lr = get_last_request();
3109 
3110 	if (!reg_dev_ignore_cell_hint(wiphy))
3111 		reg_num_devs_support_basehint--;
3112 
3113 	rcu_free_regdom(get_wiphy_regdom(wiphy));
3114 	RCU_INIT_POINTER(wiphy->regd, NULL);
3115 
3116 	if (lr)
3117 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3118 
3119 	if (!request_wiphy || request_wiphy != wiphy)
3120 		return;
3121 
3122 	lr->wiphy_idx = WIPHY_IDX_INVALID;
3123 	lr->country_ie_env = ENVIRON_ANY;
3124 }
3125 
3126 static void reg_timeout_work(struct work_struct *work)
3127 {
3128 	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
3129 	rtnl_lock();
3130 	reg_crda_timeouts++;
3131 	restore_regulatory_settings(true);
3132 	rtnl_unlock();
3133 }
3134 
3135 /*
3136  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3137  * UNII band definitions
3138  */
3139 int cfg80211_get_unii(int freq)
3140 {
3141 	/* UNII-1 */
3142 	if (freq >= 5150 && freq <= 5250)
3143 		return 0;
3144 
3145 	/* UNII-2A */
3146 	if (freq > 5250 && freq <= 5350)
3147 		return 1;
3148 
3149 	/* UNII-2B */
3150 	if (freq > 5350 && freq <= 5470)
3151 		return 2;
3152 
3153 	/* UNII-2C */
3154 	if (freq > 5470 && freq <= 5725)
3155 		return 3;
3156 
3157 	/* UNII-3 */
3158 	if (freq > 5725 && freq <= 5825)
3159 		return 4;
3160 
3161 	return -EINVAL;
3162 }
3163 
3164 bool regulatory_indoor_allowed(void)
3165 {
3166 	return reg_is_indoor;
3167 }
3168 
3169 int __init regulatory_init(void)
3170 {
3171 	int err = 0;
3172 
3173 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3174 	if (IS_ERR(reg_pdev))
3175 		return PTR_ERR(reg_pdev);
3176 
3177 	spin_lock_init(&reg_requests_lock);
3178 	spin_lock_init(&reg_pending_beacons_lock);
3179 	spin_lock_init(&reg_indoor_lock);
3180 
3181 	reg_regdb_size_check();
3182 
3183 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3184 
3185 	user_alpha2[0] = '9';
3186 	user_alpha2[1] = '7';
3187 
3188 	/* We always try to get an update for the static regdomain */
3189 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3190 	if (err) {
3191 		if (err == -ENOMEM)
3192 			return err;
3193 		/*
3194 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
3195 		 * memory which is handled and propagated appropriately above
3196 		 * but it can also fail during a netlink_broadcast() or during
3197 		 * early boot for call_usermodehelper(). For now treat these
3198 		 * errors as non-fatal.
3199 		 */
3200 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3201 	}
3202 
3203 	/*
3204 	 * Finally, if the user set the module parameter treat it
3205 	 * as a user hint.
3206 	 */
3207 	if (!is_world_regdom(ieee80211_regdom))
3208 		regulatory_hint_user(ieee80211_regdom,
3209 				     NL80211_USER_REG_HINT_USER);
3210 
3211 	return 0;
3212 }
3213 
3214 void regulatory_exit(void)
3215 {
3216 	struct regulatory_request *reg_request, *tmp;
3217 	struct reg_beacon *reg_beacon, *btmp;
3218 
3219 	cancel_work_sync(&reg_work);
3220 	cancel_delayed_work_sync(&reg_timeout);
3221 	cancel_delayed_work_sync(&reg_check_chans);
3222 
3223 	/* Lock to suppress warnings */
3224 	rtnl_lock();
3225 	reset_regdomains(true, NULL);
3226 	rtnl_unlock();
3227 
3228 	dev_set_uevent_suppress(&reg_pdev->dev, true);
3229 
3230 	platform_device_unregister(reg_pdev);
3231 
3232 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3233 		list_del(&reg_beacon->list);
3234 		kfree(reg_beacon);
3235 	}
3236 
3237 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3238 		list_del(&reg_beacon->list);
3239 		kfree(reg_beacon);
3240 	}
3241 
3242 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3243 		list_del(&reg_request->list);
3244 		kfree(reg_request);
3245 	}
3246 }
3247