1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * 8 * Permission to use, copy, modify, and/or distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 22 /** 23 * DOC: Wireless regulatory infrastructure 24 * 25 * The usual implementation is for a driver to read a device EEPROM to 26 * determine which regulatory domain it should be operating under, then 27 * looking up the allowable channels in a driver-local table and finally 28 * registering those channels in the wiphy structure. 29 * 30 * Another set of compliance enforcement is for drivers to use their 31 * own compliance limits which can be stored on the EEPROM. The host 32 * driver or firmware may ensure these are used. 33 * 34 * In addition to all this we provide an extra layer of regulatory 35 * conformance. For drivers which do not have any regulatory 36 * information CRDA provides the complete regulatory solution. 37 * For others it provides a community effort on further restrictions 38 * to enhance compliance. 39 * 40 * Note: When number of rules --> infinity we will not be able to 41 * index on alpha2 any more, instead we'll probably have to 42 * rely on some SHA1 checksum of the regdomain for example. 43 * 44 */ 45 46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 47 48 #include <linux/kernel.h> 49 #include <linux/export.h> 50 #include <linux/slab.h> 51 #include <linux/list.h> 52 #include <linux/ctype.h> 53 #include <linux/nl80211.h> 54 #include <linux/platform_device.h> 55 #include <linux/moduleparam.h> 56 #include <net/cfg80211.h> 57 #include "core.h" 58 #include "reg.h" 59 #include "rdev-ops.h" 60 #include "regdb.h" 61 #include "nl80211.h" 62 63 #ifdef CONFIG_CFG80211_REG_DEBUG 64 #define REG_DBG_PRINT(format, args...) \ 65 printk(KERN_DEBUG pr_fmt(format), ##args) 66 #else 67 #define REG_DBG_PRINT(args...) 68 #endif 69 70 /* 71 * Grace period we give before making sure all current interfaces reside on 72 * channels allowed by the current regulatory domain. 73 */ 74 #define REG_ENFORCE_GRACE_MS 60000 75 76 /** 77 * enum reg_request_treatment - regulatory request treatment 78 * 79 * @REG_REQ_OK: continue processing the regulatory request 80 * @REG_REQ_IGNORE: ignore the regulatory request 81 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 82 * be intersected with the current one. 83 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 84 * regulatory settings, and no further processing is required. 85 */ 86 enum reg_request_treatment { 87 REG_REQ_OK, 88 REG_REQ_IGNORE, 89 REG_REQ_INTERSECT, 90 REG_REQ_ALREADY_SET, 91 }; 92 93 static struct regulatory_request core_request_world = { 94 .initiator = NL80211_REGDOM_SET_BY_CORE, 95 .alpha2[0] = '0', 96 .alpha2[1] = '0', 97 .intersect = false, 98 .processed = true, 99 .country_ie_env = ENVIRON_ANY, 100 }; 101 102 /* 103 * Receipt of information from last regulatory request, 104 * protected by RTNL (and can be accessed with RCU protection) 105 */ 106 static struct regulatory_request __rcu *last_request = 107 (void __force __rcu *)&core_request_world; 108 109 /* To trigger userspace events */ 110 static struct platform_device *reg_pdev; 111 112 /* 113 * Central wireless core regulatory domains, we only need two, 114 * the current one and a world regulatory domain in case we have no 115 * information to give us an alpha2. 116 * (protected by RTNL, can be read under RCU) 117 */ 118 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 119 120 /* 121 * Number of devices that registered to the core 122 * that support cellular base station regulatory hints 123 * (protected by RTNL) 124 */ 125 static int reg_num_devs_support_basehint; 126 127 /* 128 * State variable indicating if the platform on which the devices 129 * are attached is operating in an indoor environment. The state variable 130 * is relevant for all registered devices. 131 */ 132 static bool reg_is_indoor; 133 static spinlock_t reg_indoor_lock; 134 135 /* Used to track the userspace process controlling the indoor setting */ 136 static u32 reg_is_indoor_portid; 137 138 /* Max number of consecutive attempts to communicate with CRDA */ 139 #define REG_MAX_CRDA_TIMEOUTS 10 140 141 static u32 reg_crda_timeouts; 142 143 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 144 { 145 return rtnl_dereference(cfg80211_regdomain); 146 } 147 148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 149 { 150 return rtnl_dereference(wiphy->regd); 151 } 152 153 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 154 { 155 switch (dfs_region) { 156 case NL80211_DFS_UNSET: 157 return "unset"; 158 case NL80211_DFS_FCC: 159 return "FCC"; 160 case NL80211_DFS_ETSI: 161 return "ETSI"; 162 case NL80211_DFS_JP: 163 return "JP"; 164 } 165 return "Unknown"; 166 } 167 168 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 169 { 170 const struct ieee80211_regdomain *regd = NULL; 171 const struct ieee80211_regdomain *wiphy_regd = NULL; 172 173 regd = get_cfg80211_regdom(); 174 if (!wiphy) 175 goto out; 176 177 wiphy_regd = get_wiphy_regdom(wiphy); 178 if (!wiphy_regd) 179 goto out; 180 181 if (wiphy_regd->dfs_region == regd->dfs_region) 182 goto out; 183 184 REG_DBG_PRINT("%s: device specific dfs_region " 185 "(%s) disagrees with cfg80211's " 186 "central dfs_region (%s)\n", 187 dev_name(&wiphy->dev), 188 reg_dfs_region_str(wiphy_regd->dfs_region), 189 reg_dfs_region_str(regd->dfs_region)); 190 191 out: 192 return regd->dfs_region; 193 } 194 195 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 196 { 197 if (!r) 198 return; 199 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 200 } 201 202 static struct regulatory_request *get_last_request(void) 203 { 204 return rcu_dereference_rtnl(last_request); 205 } 206 207 /* Used to queue up regulatory hints */ 208 static LIST_HEAD(reg_requests_list); 209 static spinlock_t reg_requests_lock; 210 211 /* Used to queue up beacon hints for review */ 212 static LIST_HEAD(reg_pending_beacons); 213 static spinlock_t reg_pending_beacons_lock; 214 215 /* Used to keep track of processed beacon hints */ 216 static LIST_HEAD(reg_beacon_list); 217 218 struct reg_beacon { 219 struct list_head list; 220 struct ieee80211_channel chan; 221 }; 222 223 static void reg_check_chans_work(struct work_struct *work); 224 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 225 226 static void reg_todo(struct work_struct *work); 227 static DECLARE_WORK(reg_work, reg_todo); 228 229 static void reg_timeout_work(struct work_struct *work); 230 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work); 231 232 /* We keep a static world regulatory domain in case of the absence of CRDA */ 233 static const struct ieee80211_regdomain world_regdom = { 234 .n_reg_rules = 8, 235 .alpha2 = "00", 236 .reg_rules = { 237 /* IEEE 802.11b/g, channels 1..11 */ 238 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 239 /* IEEE 802.11b/g, channels 12..13. */ 240 REG_RULE(2467-10, 2472+10, 40, 6, 20, 241 NL80211_RRF_NO_IR), 242 /* IEEE 802.11 channel 14 - Only JP enables 243 * this and for 802.11b only */ 244 REG_RULE(2484-10, 2484+10, 20, 6, 20, 245 NL80211_RRF_NO_IR | 246 NL80211_RRF_NO_OFDM), 247 /* IEEE 802.11a, channel 36..48 */ 248 REG_RULE(5180-10, 5240+10, 160, 6, 20, 249 NL80211_RRF_NO_IR), 250 251 /* IEEE 802.11a, channel 52..64 - DFS required */ 252 REG_RULE(5260-10, 5320+10, 160, 6, 20, 253 NL80211_RRF_NO_IR | 254 NL80211_RRF_DFS), 255 256 /* IEEE 802.11a, channel 100..144 - DFS required */ 257 REG_RULE(5500-10, 5720+10, 160, 6, 20, 258 NL80211_RRF_NO_IR | 259 NL80211_RRF_DFS), 260 261 /* IEEE 802.11a, channel 149..165 */ 262 REG_RULE(5745-10, 5825+10, 80, 6, 20, 263 NL80211_RRF_NO_IR), 264 265 /* IEEE 802.11ad (60gHz), channels 1..3 */ 266 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 267 } 268 }; 269 270 /* protected by RTNL */ 271 static const struct ieee80211_regdomain *cfg80211_world_regdom = 272 &world_regdom; 273 274 static char *ieee80211_regdom = "00"; 275 static char user_alpha2[2]; 276 277 module_param(ieee80211_regdom, charp, 0444); 278 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 279 280 static void reg_free_request(struct regulatory_request *request) 281 { 282 if (request != get_last_request()) 283 kfree(request); 284 } 285 286 static void reg_free_last_request(void) 287 { 288 struct regulatory_request *lr = get_last_request(); 289 290 if (lr != &core_request_world && lr) 291 kfree_rcu(lr, rcu_head); 292 } 293 294 static void reg_update_last_request(struct regulatory_request *request) 295 { 296 struct regulatory_request *lr; 297 298 lr = get_last_request(); 299 if (lr == request) 300 return; 301 302 reg_free_last_request(); 303 rcu_assign_pointer(last_request, request); 304 } 305 306 static void reset_regdomains(bool full_reset, 307 const struct ieee80211_regdomain *new_regdom) 308 { 309 const struct ieee80211_regdomain *r; 310 311 ASSERT_RTNL(); 312 313 r = get_cfg80211_regdom(); 314 315 /* avoid freeing static information or freeing something twice */ 316 if (r == cfg80211_world_regdom) 317 r = NULL; 318 if (cfg80211_world_regdom == &world_regdom) 319 cfg80211_world_regdom = NULL; 320 if (r == &world_regdom) 321 r = NULL; 322 323 rcu_free_regdom(r); 324 rcu_free_regdom(cfg80211_world_regdom); 325 326 cfg80211_world_regdom = &world_regdom; 327 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 328 329 if (!full_reset) 330 return; 331 332 reg_update_last_request(&core_request_world); 333 } 334 335 /* 336 * Dynamic world regulatory domain requested by the wireless 337 * core upon initialization 338 */ 339 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 340 { 341 struct regulatory_request *lr; 342 343 lr = get_last_request(); 344 345 WARN_ON(!lr); 346 347 reset_regdomains(false, rd); 348 349 cfg80211_world_regdom = rd; 350 } 351 352 bool is_world_regdom(const char *alpha2) 353 { 354 if (!alpha2) 355 return false; 356 return alpha2[0] == '0' && alpha2[1] == '0'; 357 } 358 359 static bool is_alpha2_set(const char *alpha2) 360 { 361 if (!alpha2) 362 return false; 363 return alpha2[0] && alpha2[1]; 364 } 365 366 static bool is_unknown_alpha2(const char *alpha2) 367 { 368 if (!alpha2) 369 return false; 370 /* 371 * Special case where regulatory domain was built by driver 372 * but a specific alpha2 cannot be determined 373 */ 374 return alpha2[0] == '9' && alpha2[1] == '9'; 375 } 376 377 static bool is_intersected_alpha2(const char *alpha2) 378 { 379 if (!alpha2) 380 return false; 381 /* 382 * Special case where regulatory domain is the 383 * result of an intersection between two regulatory domain 384 * structures 385 */ 386 return alpha2[0] == '9' && alpha2[1] == '8'; 387 } 388 389 static bool is_an_alpha2(const char *alpha2) 390 { 391 if (!alpha2) 392 return false; 393 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 394 } 395 396 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 397 { 398 if (!alpha2_x || !alpha2_y) 399 return false; 400 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 401 } 402 403 static bool regdom_changes(const char *alpha2) 404 { 405 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 406 407 if (!r) 408 return true; 409 return !alpha2_equal(r->alpha2, alpha2); 410 } 411 412 /* 413 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 414 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 415 * has ever been issued. 416 */ 417 static bool is_user_regdom_saved(void) 418 { 419 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 420 return false; 421 422 /* This would indicate a mistake on the design */ 423 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 424 "Unexpected user alpha2: %c%c\n", 425 user_alpha2[0], user_alpha2[1])) 426 return false; 427 428 return true; 429 } 430 431 static const struct ieee80211_regdomain * 432 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 433 { 434 struct ieee80211_regdomain *regd; 435 int size_of_regd; 436 unsigned int i; 437 438 size_of_regd = 439 sizeof(struct ieee80211_regdomain) + 440 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); 441 442 regd = kzalloc(size_of_regd, GFP_KERNEL); 443 if (!regd) 444 return ERR_PTR(-ENOMEM); 445 446 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 447 448 for (i = 0; i < src_regd->n_reg_rules; i++) 449 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 450 sizeof(struct ieee80211_reg_rule)); 451 452 return regd; 453 } 454 455 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 456 struct reg_regdb_search_request { 457 char alpha2[2]; 458 struct list_head list; 459 }; 460 461 static LIST_HEAD(reg_regdb_search_list); 462 static DEFINE_MUTEX(reg_regdb_search_mutex); 463 464 static void reg_regdb_search(struct work_struct *work) 465 { 466 struct reg_regdb_search_request *request; 467 const struct ieee80211_regdomain *curdom, *regdom = NULL; 468 int i; 469 470 rtnl_lock(); 471 472 mutex_lock(®_regdb_search_mutex); 473 while (!list_empty(®_regdb_search_list)) { 474 request = list_first_entry(®_regdb_search_list, 475 struct reg_regdb_search_request, 476 list); 477 list_del(&request->list); 478 479 for (i = 0; i < reg_regdb_size; i++) { 480 curdom = reg_regdb[i]; 481 482 if (alpha2_equal(request->alpha2, curdom->alpha2)) { 483 regdom = reg_copy_regd(curdom); 484 break; 485 } 486 } 487 488 kfree(request); 489 } 490 mutex_unlock(®_regdb_search_mutex); 491 492 if (!IS_ERR_OR_NULL(regdom)) 493 set_regdom(regdom, REGD_SOURCE_INTERNAL_DB); 494 495 rtnl_unlock(); 496 } 497 498 static DECLARE_WORK(reg_regdb_work, reg_regdb_search); 499 500 static void reg_regdb_query(const char *alpha2) 501 { 502 struct reg_regdb_search_request *request; 503 504 if (!alpha2) 505 return; 506 507 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL); 508 if (!request) 509 return; 510 511 memcpy(request->alpha2, alpha2, 2); 512 513 mutex_lock(®_regdb_search_mutex); 514 list_add_tail(&request->list, ®_regdb_search_list); 515 mutex_unlock(®_regdb_search_mutex); 516 517 schedule_work(®_regdb_work); 518 } 519 520 /* Feel free to add any other sanity checks here */ 521 static void reg_regdb_size_check(void) 522 { 523 /* We should ideally BUILD_BUG_ON() but then random builds would fail */ 524 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it..."); 525 } 526 #else 527 static inline void reg_regdb_size_check(void) {} 528 static inline void reg_regdb_query(const char *alpha2) {} 529 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 530 531 /* 532 * This lets us keep regulatory code which is updated on a regulatory 533 * basis in userspace. 534 */ 535 static int call_crda(const char *alpha2) 536 { 537 char country[12]; 538 char *env[] = { country, NULL }; 539 540 snprintf(country, sizeof(country), "COUNTRY=%c%c", 541 alpha2[0], alpha2[1]); 542 543 /* query internal regulatory database (if it exists) */ 544 reg_regdb_query(alpha2); 545 546 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 547 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 548 return -EINVAL; 549 } 550 551 if (!is_world_regdom((char *) alpha2)) 552 pr_debug("Calling CRDA for country: %c%c\n", 553 alpha2[0], alpha2[1]); 554 else 555 pr_debug("Calling CRDA to update world regulatory domain\n"); 556 557 return kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 558 } 559 560 static enum reg_request_treatment 561 reg_call_crda(struct regulatory_request *request) 562 { 563 if (call_crda(request->alpha2)) 564 return REG_REQ_IGNORE; 565 566 queue_delayed_work(system_power_efficient_wq, 567 ®_timeout, msecs_to_jiffies(3142)); 568 return REG_REQ_OK; 569 } 570 571 bool reg_is_valid_request(const char *alpha2) 572 { 573 struct regulatory_request *lr = get_last_request(); 574 575 if (!lr || lr->processed) 576 return false; 577 578 return alpha2_equal(lr->alpha2, alpha2); 579 } 580 581 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 582 { 583 struct regulatory_request *lr = get_last_request(); 584 585 /* 586 * Follow the driver's regulatory domain, if present, unless a country 587 * IE has been processed or a user wants to help complaince further 588 */ 589 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 590 lr->initiator != NL80211_REGDOM_SET_BY_USER && 591 wiphy->regd) 592 return get_wiphy_regdom(wiphy); 593 594 return get_cfg80211_regdom(); 595 } 596 597 static unsigned int 598 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 599 const struct ieee80211_reg_rule *rule) 600 { 601 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 602 const struct ieee80211_freq_range *freq_range_tmp; 603 const struct ieee80211_reg_rule *tmp; 604 u32 start_freq, end_freq, idx, no; 605 606 for (idx = 0; idx < rd->n_reg_rules; idx++) 607 if (rule == &rd->reg_rules[idx]) 608 break; 609 610 if (idx == rd->n_reg_rules) 611 return 0; 612 613 /* get start_freq */ 614 no = idx; 615 616 while (no) { 617 tmp = &rd->reg_rules[--no]; 618 freq_range_tmp = &tmp->freq_range; 619 620 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 621 break; 622 623 freq_range = freq_range_tmp; 624 } 625 626 start_freq = freq_range->start_freq_khz; 627 628 /* get end_freq */ 629 freq_range = &rule->freq_range; 630 no = idx; 631 632 while (no < rd->n_reg_rules - 1) { 633 tmp = &rd->reg_rules[++no]; 634 freq_range_tmp = &tmp->freq_range; 635 636 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 637 break; 638 639 freq_range = freq_range_tmp; 640 } 641 642 end_freq = freq_range->end_freq_khz; 643 644 return end_freq - start_freq; 645 } 646 647 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 648 const struct ieee80211_reg_rule *rule) 649 { 650 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 651 652 if (rule->flags & NL80211_RRF_NO_160MHZ) 653 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 654 if (rule->flags & NL80211_RRF_NO_80MHZ) 655 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 656 657 /* 658 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 659 * are not allowed. 660 */ 661 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 662 rule->flags & NL80211_RRF_NO_HT40PLUS) 663 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 664 665 return bw; 666 } 667 668 /* Sanity check on a regulatory rule */ 669 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 670 { 671 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 672 u32 freq_diff; 673 674 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 675 return false; 676 677 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 678 return false; 679 680 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 681 682 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 683 freq_range->max_bandwidth_khz > freq_diff) 684 return false; 685 686 return true; 687 } 688 689 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 690 { 691 const struct ieee80211_reg_rule *reg_rule = NULL; 692 unsigned int i; 693 694 if (!rd->n_reg_rules) 695 return false; 696 697 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 698 return false; 699 700 for (i = 0; i < rd->n_reg_rules; i++) { 701 reg_rule = &rd->reg_rules[i]; 702 if (!is_valid_reg_rule(reg_rule)) 703 return false; 704 } 705 706 return true; 707 } 708 709 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 710 u32 center_freq_khz, u32 bw_khz) 711 { 712 u32 start_freq_khz, end_freq_khz; 713 714 start_freq_khz = center_freq_khz - (bw_khz/2); 715 end_freq_khz = center_freq_khz + (bw_khz/2); 716 717 if (start_freq_khz >= freq_range->start_freq_khz && 718 end_freq_khz <= freq_range->end_freq_khz) 719 return true; 720 721 return false; 722 } 723 724 /** 725 * freq_in_rule_band - tells us if a frequency is in a frequency band 726 * @freq_range: frequency rule we want to query 727 * @freq_khz: frequency we are inquiring about 728 * 729 * This lets us know if a specific frequency rule is or is not relevant to 730 * a specific frequency's band. Bands are device specific and artificial 731 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 732 * however it is safe for now to assume that a frequency rule should not be 733 * part of a frequency's band if the start freq or end freq are off by more 734 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the 735 * 60 GHz band. 736 * This resolution can be lowered and should be considered as we add 737 * regulatory rule support for other "bands". 738 **/ 739 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 740 u32 freq_khz) 741 { 742 #define ONE_GHZ_IN_KHZ 1000000 743 /* 744 * From 802.11ad: directional multi-gigabit (DMG): 745 * Pertaining to operation in a frequency band containing a channel 746 * with the Channel starting frequency above 45 GHz. 747 */ 748 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 749 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 750 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 751 return true; 752 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 753 return true; 754 return false; 755 #undef ONE_GHZ_IN_KHZ 756 } 757 758 /* 759 * Later on we can perhaps use the more restrictive DFS 760 * region but we don't have information for that yet so 761 * for now simply disallow conflicts. 762 */ 763 static enum nl80211_dfs_regions 764 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 765 const enum nl80211_dfs_regions dfs_region2) 766 { 767 if (dfs_region1 != dfs_region2) 768 return NL80211_DFS_UNSET; 769 return dfs_region1; 770 } 771 772 /* 773 * Helper for regdom_intersect(), this does the real 774 * mathematical intersection fun 775 */ 776 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 777 const struct ieee80211_regdomain *rd2, 778 const struct ieee80211_reg_rule *rule1, 779 const struct ieee80211_reg_rule *rule2, 780 struct ieee80211_reg_rule *intersected_rule) 781 { 782 const struct ieee80211_freq_range *freq_range1, *freq_range2; 783 struct ieee80211_freq_range *freq_range; 784 const struct ieee80211_power_rule *power_rule1, *power_rule2; 785 struct ieee80211_power_rule *power_rule; 786 u32 freq_diff, max_bandwidth1, max_bandwidth2; 787 788 freq_range1 = &rule1->freq_range; 789 freq_range2 = &rule2->freq_range; 790 freq_range = &intersected_rule->freq_range; 791 792 power_rule1 = &rule1->power_rule; 793 power_rule2 = &rule2->power_rule; 794 power_rule = &intersected_rule->power_rule; 795 796 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 797 freq_range2->start_freq_khz); 798 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 799 freq_range2->end_freq_khz); 800 801 max_bandwidth1 = freq_range1->max_bandwidth_khz; 802 max_bandwidth2 = freq_range2->max_bandwidth_khz; 803 804 if (rule1->flags & NL80211_RRF_AUTO_BW) 805 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 806 if (rule2->flags & NL80211_RRF_AUTO_BW) 807 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 808 809 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 810 811 intersected_rule->flags = rule1->flags | rule2->flags; 812 813 /* 814 * In case NL80211_RRF_AUTO_BW requested for both rules 815 * set AUTO_BW in intersected rule also. Next we will 816 * calculate BW correctly in handle_channel function. 817 * In other case remove AUTO_BW flag while we calculate 818 * maximum bandwidth correctly and auto calculation is 819 * not required. 820 */ 821 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 822 (rule2->flags & NL80211_RRF_AUTO_BW)) 823 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 824 else 825 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 826 827 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 828 if (freq_range->max_bandwidth_khz > freq_diff) 829 freq_range->max_bandwidth_khz = freq_diff; 830 831 power_rule->max_eirp = min(power_rule1->max_eirp, 832 power_rule2->max_eirp); 833 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 834 power_rule2->max_antenna_gain); 835 836 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 837 rule2->dfs_cac_ms); 838 839 if (!is_valid_reg_rule(intersected_rule)) 840 return -EINVAL; 841 842 return 0; 843 } 844 845 /* check whether old rule contains new rule */ 846 static bool rule_contains(struct ieee80211_reg_rule *r1, 847 struct ieee80211_reg_rule *r2) 848 { 849 /* for simplicity, currently consider only same flags */ 850 if (r1->flags != r2->flags) 851 return false; 852 853 /* verify r1 is more restrictive */ 854 if ((r1->power_rule.max_antenna_gain > 855 r2->power_rule.max_antenna_gain) || 856 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 857 return false; 858 859 /* make sure r2's range is contained within r1 */ 860 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 861 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 862 return false; 863 864 /* and finally verify that r1.max_bw >= r2.max_bw */ 865 if (r1->freq_range.max_bandwidth_khz < 866 r2->freq_range.max_bandwidth_khz) 867 return false; 868 869 return true; 870 } 871 872 /* add or extend current rules. do nothing if rule is already contained */ 873 static void add_rule(struct ieee80211_reg_rule *rule, 874 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 875 { 876 struct ieee80211_reg_rule *tmp_rule; 877 int i; 878 879 for (i = 0; i < *n_rules; i++) { 880 tmp_rule = ®_rules[i]; 881 /* rule is already contained - do nothing */ 882 if (rule_contains(tmp_rule, rule)) 883 return; 884 885 /* extend rule if possible */ 886 if (rule_contains(rule, tmp_rule)) { 887 memcpy(tmp_rule, rule, sizeof(*rule)); 888 return; 889 } 890 } 891 892 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 893 (*n_rules)++; 894 } 895 896 /** 897 * regdom_intersect - do the intersection between two regulatory domains 898 * @rd1: first regulatory domain 899 * @rd2: second regulatory domain 900 * 901 * Use this function to get the intersection between two regulatory domains. 902 * Once completed we will mark the alpha2 for the rd as intersected, "98", 903 * as no one single alpha2 can represent this regulatory domain. 904 * 905 * Returns a pointer to the regulatory domain structure which will hold the 906 * resulting intersection of rules between rd1 and rd2. We will 907 * kzalloc() this structure for you. 908 */ 909 static struct ieee80211_regdomain * 910 regdom_intersect(const struct ieee80211_regdomain *rd1, 911 const struct ieee80211_regdomain *rd2) 912 { 913 int r, size_of_regd; 914 unsigned int x, y; 915 unsigned int num_rules = 0; 916 const struct ieee80211_reg_rule *rule1, *rule2; 917 struct ieee80211_reg_rule intersected_rule; 918 struct ieee80211_regdomain *rd; 919 920 if (!rd1 || !rd2) 921 return NULL; 922 923 /* 924 * First we get a count of the rules we'll need, then we actually 925 * build them. This is to so we can malloc() and free() a 926 * regdomain once. The reason we use reg_rules_intersect() here 927 * is it will return -EINVAL if the rule computed makes no sense. 928 * All rules that do check out OK are valid. 929 */ 930 931 for (x = 0; x < rd1->n_reg_rules; x++) { 932 rule1 = &rd1->reg_rules[x]; 933 for (y = 0; y < rd2->n_reg_rules; y++) { 934 rule2 = &rd2->reg_rules[y]; 935 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 936 &intersected_rule)) 937 num_rules++; 938 } 939 } 940 941 if (!num_rules) 942 return NULL; 943 944 size_of_regd = sizeof(struct ieee80211_regdomain) + 945 num_rules * sizeof(struct ieee80211_reg_rule); 946 947 rd = kzalloc(size_of_regd, GFP_KERNEL); 948 if (!rd) 949 return NULL; 950 951 for (x = 0; x < rd1->n_reg_rules; x++) { 952 rule1 = &rd1->reg_rules[x]; 953 for (y = 0; y < rd2->n_reg_rules; y++) { 954 rule2 = &rd2->reg_rules[y]; 955 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 956 &intersected_rule); 957 /* 958 * No need to memset here the intersected rule here as 959 * we're not using the stack anymore 960 */ 961 if (r) 962 continue; 963 964 add_rule(&intersected_rule, rd->reg_rules, 965 &rd->n_reg_rules); 966 } 967 } 968 969 rd->alpha2[0] = '9'; 970 rd->alpha2[1] = '8'; 971 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 972 rd2->dfs_region); 973 974 return rd; 975 } 976 977 /* 978 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 979 * want to just have the channel structure use these 980 */ 981 static u32 map_regdom_flags(u32 rd_flags) 982 { 983 u32 channel_flags = 0; 984 if (rd_flags & NL80211_RRF_NO_IR_ALL) 985 channel_flags |= IEEE80211_CHAN_NO_IR; 986 if (rd_flags & NL80211_RRF_DFS) 987 channel_flags |= IEEE80211_CHAN_RADAR; 988 if (rd_flags & NL80211_RRF_NO_OFDM) 989 channel_flags |= IEEE80211_CHAN_NO_OFDM; 990 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 991 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 992 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 993 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 994 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 995 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 996 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 997 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 998 if (rd_flags & NL80211_RRF_NO_80MHZ) 999 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1000 if (rd_flags & NL80211_RRF_NO_160MHZ) 1001 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1002 return channel_flags; 1003 } 1004 1005 static const struct ieee80211_reg_rule * 1006 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq, 1007 const struct ieee80211_regdomain *regd, u32 bw) 1008 { 1009 int i; 1010 bool band_rule_found = false; 1011 bool bw_fits = false; 1012 1013 if (!regd) 1014 return ERR_PTR(-EINVAL); 1015 1016 for (i = 0; i < regd->n_reg_rules; i++) { 1017 const struct ieee80211_reg_rule *rr; 1018 const struct ieee80211_freq_range *fr = NULL; 1019 1020 rr = ®d->reg_rules[i]; 1021 fr = &rr->freq_range; 1022 1023 /* 1024 * We only need to know if one frequency rule was 1025 * was in center_freq's band, that's enough, so lets 1026 * not overwrite it once found 1027 */ 1028 if (!band_rule_found) 1029 band_rule_found = freq_in_rule_band(fr, center_freq); 1030 1031 bw_fits = reg_does_bw_fit(fr, center_freq, bw); 1032 1033 if (band_rule_found && bw_fits) 1034 return rr; 1035 } 1036 1037 if (!band_rule_found) 1038 return ERR_PTR(-ERANGE); 1039 1040 return ERR_PTR(-EINVAL); 1041 } 1042 1043 const struct ieee80211_reg_rule *__freq_reg_info(struct wiphy *wiphy, 1044 u32 center_freq, u32 min_bw) 1045 { 1046 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1047 const struct ieee80211_reg_rule *reg_rule = NULL; 1048 u32 bw; 1049 1050 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 1051 reg_rule = freq_reg_info_regd(wiphy, center_freq, regd, bw); 1052 if (!IS_ERR(reg_rule)) 1053 return reg_rule; 1054 } 1055 1056 return reg_rule; 1057 } 1058 1059 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1060 u32 center_freq) 1061 { 1062 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20)); 1063 } 1064 EXPORT_SYMBOL(freq_reg_info); 1065 1066 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1067 { 1068 switch (initiator) { 1069 case NL80211_REGDOM_SET_BY_CORE: 1070 return "core"; 1071 case NL80211_REGDOM_SET_BY_USER: 1072 return "user"; 1073 case NL80211_REGDOM_SET_BY_DRIVER: 1074 return "driver"; 1075 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1076 return "country IE"; 1077 default: 1078 WARN_ON(1); 1079 return "bug"; 1080 } 1081 } 1082 EXPORT_SYMBOL(reg_initiator_name); 1083 1084 #ifdef CONFIG_CFG80211_REG_DEBUG 1085 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd, 1086 struct ieee80211_channel *chan, 1087 const struct ieee80211_reg_rule *reg_rule) 1088 { 1089 const struct ieee80211_power_rule *power_rule; 1090 const struct ieee80211_freq_range *freq_range; 1091 char max_antenna_gain[32], bw[32]; 1092 1093 power_rule = ®_rule->power_rule; 1094 freq_range = ®_rule->freq_range; 1095 1096 if (!power_rule->max_antenna_gain) 1097 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A"); 1098 else 1099 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d", 1100 power_rule->max_antenna_gain); 1101 1102 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1103 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 1104 freq_range->max_bandwidth_khz, 1105 reg_get_max_bandwidth(regd, reg_rule)); 1106 else 1107 snprintf(bw, sizeof(bw), "%d KHz", 1108 freq_range->max_bandwidth_khz); 1109 1110 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n", 1111 chan->center_freq); 1112 1113 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n", 1114 freq_range->start_freq_khz, freq_range->end_freq_khz, 1115 bw, max_antenna_gain, 1116 power_rule->max_eirp); 1117 } 1118 #else 1119 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd, 1120 struct ieee80211_channel *chan, 1121 const struct ieee80211_reg_rule *reg_rule) 1122 { 1123 return; 1124 } 1125 #endif 1126 1127 /* 1128 * Note that right now we assume the desired channel bandwidth 1129 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1130 * per channel, the primary and the extension channel). 1131 */ 1132 static void handle_channel(struct wiphy *wiphy, 1133 enum nl80211_reg_initiator initiator, 1134 struct ieee80211_channel *chan) 1135 { 1136 u32 flags, bw_flags = 0; 1137 const struct ieee80211_reg_rule *reg_rule = NULL; 1138 const struct ieee80211_power_rule *power_rule = NULL; 1139 const struct ieee80211_freq_range *freq_range = NULL; 1140 struct wiphy *request_wiphy = NULL; 1141 struct regulatory_request *lr = get_last_request(); 1142 const struct ieee80211_regdomain *regd; 1143 u32 max_bandwidth_khz; 1144 1145 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1146 1147 flags = chan->orig_flags; 1148 1149 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 1150 if (IS_ERR(reg_rule)) { 1151 /* 1152 * We will disable all channels that do not match our 1153 * received regulatory rule unless the hint is coming 1154 * from a Country IE and the Country IE had no information 1155 * about a band. The IEEE 802.11 spec allows for an AP 1156 * to send only a subset of the regulatory rules allowed, 1157 * so an AP in the US that only supports 2.4 GHz may only send 1158 * a country IE with information for the 2.4 GHz band 1159 * while 5 GHz is still supported. 1160 */ 1161 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1162 PTR_ERR(reg_rule) == -ERANGE) 1163 return; 1164 1165 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1166 request_wiphy && request_wiphy == wiphy && 1167 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1168 REG_DBG_PRINT("Disabling freq %d MHz for good\n", 1169 chan->center_freq); 1170 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1171 chan->flags = chan->orig_flags; 1172 } else { 1173 REG_DBG_PRINT("Disabling freq %d MHz\n", 1174 chan->center_freq); 1175 chan->flags |= IEEE80211_CHAN_DISABLED; 1176 } 1177 return; 1178 } 1179 1180 regd = reg_get_regdomain(wiphy); 1181 chan_reg_rule_print_dbg(regd, chan, reg_rule); 1182 1183 power_rule = ®_rule->power_rule; 1184 freq_range = ®_rule->freq_range; 1185 1186 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1187 /* Check if auto calculation requested */ 1188 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1189 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1190 1191 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1192 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq), 1193 MHZ_TO_KHZ(10))) 1194 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1195 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq), 1196 MHZ_TO_KHZ(20))) 1197 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1198 1199 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1200 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1201 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1202 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1203 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1204 bw_flags |= IEEE80211_CHAN_NO_HT40; 1205 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1206 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1207 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1208 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1209 1210 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1211 request_wiphy && request_wiphy == wiphy && 1212 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1213 /* 1214 * This guarantees the driver's requested regulatory domain 1215 * will always be used as a base for further regulatory 1216 * settings 1217 */ 1218 chan->flags = chan->orig_flags = 1219 map_regdom_flags(reg_rule->flags) | bw_flags; 1220 chan->max_antenna_gain = chan->orig_mag = 1221 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1222 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1223 (int) MBM_TO_DBM(power_rule->max_eirp); 1224 1225 if (chan->flags & IEEE80211_CHAN_RADAR) { 1226 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1227 if (reg_rule->dfs_cac_ms) 1228 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1229 } 1230 1231 return; 1232 } 1233 1234 chan->dfs_state = NL80211_DFS_USABLE; 1235 chan->dfs_state_entered = jiffies; 1236 1237 chan->beacon_found = false; 1238 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1239 chan->max_antenna_gain = 1240 min_t(int, chan->orig_mag, 1241 MBI_TO_DBI(power_rule->max_antenna_gain)); 1242 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1243 1244 if (chan->flags & IEEE80211_CHAN_RADAR) { 1245 if (reg_rule->dfs_cac_ms) 1246 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1247 else 1248 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1249 } 1250 1251 if (chan->orig_mpwr) { 1252 /* 1253 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1254 * will always follow the passed country IE power settings. 1255 */ 1256 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1257 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1258 chan->max_power = chan->max_reg_power; 1259 else 1260 chan->max_power = min(chan->orig_mpwr, 1261 chan->max_reg_power); 1262 } else 1263 chan->max_power = chan->max_reg_power; 1264 } 1265 1266 static void handle_band(struct wiphy *wiphy, 1267 enum nl80211_reg_initiator initiator, 1268 struct ieee80211_supported_band *sband) 1269 { 1270 unsigned int i; 1271 1272 if (!sband) 1273 return; 1274 1275 for (i = 0; i < sband->n_channels; i++) 1276 handle_channel(wiphy, initiator, &sband->channels[i]); 1277 } 1278 1279 static bool reg_request_cell_base(struct regulatory_request *request) 1280 { 1281 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1282 return false; 1283 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 1284 } 1285 1286 bool reg_last_request_cell_base(void) 1287 { 1288 return reg_request_cell_base(get_last_request()); 1289 } 1290 1291 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 1292 /* Core specific check */ 1293 static enum reg_request_treatment 1294 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1295 { 1296 struct regulatory_request *lr = get_last_request(); 1297 1298 if (!reg_num_devs_support_basehint) 1299 return REG_REQ_IGNORE; 1300 1301 if (reg_request_cell_base(lr) && 1302 !regdom_changes(pending_request->alpha2)) 1303 return REG_REQ_ALREADY_SET; 1304 1305 return REG_REQ_OK; 1306 } 1307 1308 /* Device specific check */ 1309 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1310 { 1311 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 1312 } 1313 #else 1314 static int reg_ignore_cell_hint(struct regulatory_request *pending_request) 1315 { 1316 return REG_REQ_IGNORE; 1317 } 1318 1319 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1320 { 1321 return true; 1322 } 1323 #endif 1324 1325 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 1326 { 1327 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 1328 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 1329 return true; 1330 return false; 1331 } 1332 1333 static bool ignore_reg_update(struct wiphy *wiphy, 1334 enum nl80211_reg_initiator initiator) 1335 { 1336 struct regulatory_request *lr = get_last_request(); 1337 1338 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 1339 return true; 1340 1341 if (!lr) { 1342 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1343 "since last_request is not set\n", 1344 reg_initiator_name(initiator)); 1345 return true; 1346 } 1347 1348 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1349 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 1350 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1351 "since the driver uses its own custom " 1352 "regulatory domain\n", 1353 reg_initiator_name(initiator)); 1354 return true; 1355 } 1356 1357 /* 1358 * wiphy->regd will be set once the device has its own 1359 * desired regulatory domain set 1360 */ 1361 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1362 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1363 !is_world_regdom(lr->alpha2)) { 1364 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1365 "since the driver requires its own regulatory " 1366 "domain to be set first\n", 1367 reg_initiator_name(initiator)); 1368 return true; 1369 } 1370 1371 if (reg_request_cell_base(lr)) 1372 return reg_dev_ignore_cell_hint(wiphy); 1373 1374 return false; 1375 } 1376 1377 static bool reg_is_world_roaming(struct wiphy *wiphy) 1378 { 1379 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1380 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1381 struct regulatory_request *lr = get_last_request(); 1382 1383 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1384 return true; 1385 1386 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1387 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1388 return true; 1389 1390 return false; 1391 } 1392 1393 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1394 struct reg_beacon *reg_beacon) 1395 { 1396 struct ieee80211_supported_band *sband; 1397 struct ieee80211_channel *chan; 1398 bool channel_changed = false; 1399 struct ieee80211_channel chan_before; 1400 1401 sband = wiphy->bands[reg_beacon->chan.band]; 1402 chan = &sband->channels[chan_idx]; 1403 1404 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1405 return; 1406 1407 if (chan->beacon_found) 1408 return; 1409 1410 chan->beacon_found = true; 1411 1412 if (!reg_is_world_roaming(wiphy)) 1413 return; 1414 1415 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 1416 return; 1417 1418 chan_before.center_freq = chan->center_freq; 1419 chan_before.flags = chan->flags; 1420 1421 if (chan->flags & IEEE80211_CHAN_NO_IR) { 1422 chan->flags &= ~IEEE80211_CHAN_NO_IR; 1423 channel_changed = true; 1424 } 1425 1426 if (channel_changed) 1427 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1428 } 1429 1430 /* 1431 * Called when a scan on a wiphy finds a beacon on 1432 * new channel 1433 */ 1434 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1435 struct reg_beacon *reg_beacon) 1436 { 1437 unsigned int i; 1438 struct ieee80211_supported_band *sband; 1439 1440 if (!wiphy->bands[reg_beacon->chan.band]) 1441 return; 1442 1443 sband = wiphy->bands[reg_beacon->chan.band]; 1444 1445 for (i = 0; i < sband->n_channels; i++) 1446 handle_reg_beacon(wiphy, i, reg_beacon); 1447 } 1448 1449 /* 1450 * Called upon reg changes or a new wiphy is added 1451 */ 1452 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1453 { 1454 unsigned int i; 1455 struct ieee80211_supported_band *sband; 1456 struct reg_beacon *reg_beacon; 1457 1458 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1459 if (!wiphy->bands[reg_beacon->chan.band]) 1460 continue; 1461 sband = wiphy->bands[reg_beacon->chan.band]; 1462 for (i = 0; i < sband->n_channels; i++) 1463 handle_reg_beacon(wiphy, i, reg_beacon); 1464 } 1465 } 1466 1467 /* Reap the advantages of previously found beacons */ 1468 static void reg_process_beacons(struct wiphy *wiphy) 1469 { 1470 /* 1471 * Means we are just firing up cfg80211, so no beacons would 1472 * have been processed yet. 1473 */ 1474 if (!last_request) 1475 return; 1476 wiphy_update_beacon_reg(wiphy); 1477 } 1478 1479 static bool is_ht40_allowed(struct ieee80211_channel *chan) 1480 { 1481 if (!chan) 1482 return false; 1483 if (chan->flags & IEEE80211_CHAN_DISABLED) 1484 return false; 1485 /* This would happen when regulatory rules disallow HT40 completely */ 1486 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 1487 return false; 1488 return true; 1489 } 1490 1491 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1492 struct ieee80211_channel *channel) 1493 { 1494 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 1495 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1496 unsigned int i; 1497 1498 if (!is_ht40_allowed(channel)) { 1499 channel->flags |= IEEE80211_CHAN_NO_HT40; 1500 return; 1501 } 1502 1503 /* 1504 * We need to ensure the extension channels exist to 1505 * be able to use HT40- or HT40+, this finds them (or not) 1506 */ 1507 for (i = 0; i < sband->n_channels; i++) { 1508 struct ieee80211_channel *c = &sband->channels[i]; 1509 1510 if (c->center_freq == (channel->center_freq - 20)) 1511 channel_before = c; 1512 if (c->center_freq == (channel->center_freq + 20)) 1513 channel_after = c; 1514 } 1515 1516 /* 1517 * Please note that this assumes target bandwidth is 20 MHz, 1518 * if that ever changes we also need to change the below logic 1519 * to include that as well. 1520 */ 1521 if (!is_ht40_allowed(channel_before)) 1522 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1523 else 1524 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1525 1526 if (!is_ht40_allowed(channel_after)) 1527 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1528 else 1529 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1530 } 1531 1532 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1533 struct ieee80211_supported_band *sband) 1534 { 1535 unsigned int i; 1536 1537 if (!sband) 1538 return; 1539 1540 for (i = 0; i < sband->n_channels; i++) 1541 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 1542 } 1543 1544 static void reg_process_ht_flags(struct wiphy *wiphy) 1545 { 1546 enum ieee80211_band band; 1547 1548 if (!wiphy) 1549 return; 1550 1551 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1552 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 1553 } 1554 1555 static void reg_call_notifier(struct wiphy *wiphy, 1556 struct regulatory_request *request) 1557 { 1558 if (wiphy->reg_notifier) 1559 wiphy->reg_notifier(wiphy, request); 1560 } 1561 1562 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 1563 { 1564 struct cfg80211_chan_def chandef; 1565 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1566 enum nl80211_iftype iftype; 1567 1568 wdev_lock(wdev); 1569 iftype = wdev->iftype; 1570 1571 /* make sure the interface is active */ 1572 if (!wdev->netdev || !netif_running(wdev->netdev)) 1573 goto wdev_inactive_unlock; 1574 1575 switch (iftype) { 1576 case NL80211_IFTYPE_AP: 1577 case NL80211_IFTYPE_P2P_GO: 1578 if (!wdev->beacon_interval) 1579 goto wdev_inactive_unlock; 1580 chandef = wdev->chandef; 1581 break; 1582 case NL80211_IFTYPE_ADHOC: 1583 if (!wdev->ssid_len) 1584 goto wdev_inactive_unlock; 1585 chandef = wdev->chandef; 1586 break; 1587 case NL80211_IFTYPE_STATION: 1588 case NL80211_IFTYPE_P2P_CLIENT: 1589 if (!wdev->current_bss || 1590 !wdev->current_bss->pub.channel) 1591 goto wdev_inactive_unlock; 1592 1593 if (!rdev->ops->get_channel || 1594 rdev_get_channel(rdev, wdev, &chandef)) 1595 cfg80211_chandef_create(&chandef, 1596 wdev->current_bss->pub.channel, 1597 NL80211_CHAN_NO_HT); 1598 break; 1599 case NL80211_IFTYPE_MONITOR: 1600 case NL80211_IFTYPE_AP_VLAN: 1601 case NL80211_IFTYPE_P2P_DEVICE: 1602 /* no enforcement required */ 1603 break; 1604 default: 1605 /* others not implemented for now */ 1606 WARN_ON(1); 1607 break; 1608 } 1609 1610 wdev_unlock(wdev); 1611 1612 switch (iftype) { 1613 case NL80211_IFTYPE_AP: 1614 case NL80211_IFTYPE_P2P_GO: 1615 case NL80211_IFTYPE_ADHOC: 1616 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 1617 case NL80211_IFTYPE_STATION: 1618 case NL80211_IFTYPE_P2P_CLIENT: 1619 return cfg80211_chandef_usable(wiphy, &chandef, 1620 IEEE80211_CHAN_DISABLED); 1621 default: 1622 break; 1623 } 1624 1625 return true; 1626 1627 wdev_inactive_unlock: 1628 wdev_unlock(wdev); 1629 return true; 1630 } 1631 1632 static void reg_leave_invalid_chans(struct wiphy *wiphy) 1633 { 1634 struct wireless_dev *wdev; 1635 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1636 1637 ASSERT_RTNL(); 1638 1639 list_for_each_entry(wdev, &rdev->wdev_list, list) 1640 if (!reg_wdev_chan_valid(wiphy, wdev)) 1641 cfg80211_leave(rdev, wdev); 1642 } 1643 1644 static void reg_check_chans_work(struct work_struct *work) 1645 { 1646 struct cfg80211_registered_device *rdev; 1647 1648 REG_DBG_PRINT("Verifying active interfaces after reg change\n"); 1649 rtnl_lock(); 1650 1651 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1652 if (!(rdev->wiphy.regulatory_flags & 1653 REGULATORY_IGNORE_STALE_KICKOFF)) 1654 reg_leave_invalid_chans(&rdev->wiphy); 1655 1656 rtnl_unlock(); 1657 } 1658 1659 static void reg_check_channels(void) 1660 { 1661 /* 1662 * Give usermode a chance to do something nicer (move to another 1663 * channel, orderly disconnection), before forcing a disconnection. 1664 */ 1665 mod_delayed_work(system_power_efficient_wq, 1666 ®_check_chans, 1667 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 1668 } 1669 1670 static void wiphy_update_regulatory(struct wiphy *wiphy, 1671 enum nl80211_reg_initiator initiator) 1672 { 1673 enum ieee80211_band band; 1674 struct regulatory_request *lr = get_last_request(); 1675 1676 if (ignore_reg_update(wiphy, initiator)) { 1677 /* 1678 * Regulatory updates set by CORE are ignored for custom 1679 * regulatory cards. Let us notify the changes to the driver, 1680 * as some drivers used this to restore its orig_* reg domain. 1681 */ 1682 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1683 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1684 reg_call_notifier(wiphy, lr); 1685 return; 1686 } 1687 1688 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 1689 1690 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1691 handle_band(wiphy, initiator, wiphy->bands[band]); 1692 1693 reg_process_beacons(wiphy); 1694 reg_process_ht_flags(wiphy); 1695 reg_call_notifier(wiphy, lr); 1696 } 1697 1698 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 1699 { 1700 struct cfg80211_registered_device *rdev; 1701 struct wiphy *wiphy; 1702 1703 ASSERT_RTNL(); 1704 1705 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1706 wiphy = &rdev->wiphy; 1707 wiphy_update_regulatory(wiphy, initiator); 1708 } 1709 1710 reg_check_channels(); 1711 } 1712 1713 static void handle_channel_custom(struct wiphy *wiphy, 1714 struct ieee80211_channel *chan, 1715 const struct ieee80211_regdomain *regd) 1716 { 1717 u32 bw_flags = 0; 1718 const struct ieee80211_reg_rule *reg_rule = NULL; 1719 const struct ieee80211_power_rule *power_rule = NULL; 1720 const struct ieee80211_freq_range *freq_range = NULL; 1721 u32 max_bandwidth_khz; 1722 u32 bw; 1723 1724 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) { 1725 reg_rule = freq_reg_info_regd(wiphy, 1726 MHZ_TO_KHZ(chan->center_freq), 1727 regd, bw); 1728 if (!IS_ERR(reg_rule)) 1729 break; 1730 } 1731 1732 if (IS_ERR(reg_rule)) { 1733 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n", 1734 chan->center_freq); 1735 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 1736 chan->flags |= IEEE80211_CHAN_DISABLED; 1737 } else { 1738 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1739 chan->flags = chan->orig_flags; 1740 } 1741 return; 1742 } 1743 1744 chan_reg_rule_print_dbg(regd, chan, reg_rule); 1745 1746 power_rule = ®_rule->power_rule; 1747 freq_range = ®_rule->freq_range; 1748 1749 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1750 /* Check if auto calculation requested */ 1751 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1752 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1753 1754 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1755 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq), 1756 MHZ_TO_KHZ(10))) 1757 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1758 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq), 1759 MHZ_TO_KHZ(20))) 1760 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1761 1762 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1763 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1764 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1765 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1766 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1767 bw_flags |= IEEE80211_CHAN_NO_HT40; 1768 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1769 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1770 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1771 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1772 1773 chan->dfs_state_entered = jiffies; 1774 chan->dfs_state = NL80211_DFS_USABLE; 1775 1776 chan->beacon_found = false; 1777 1778 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 1779 chan->flags = chan->orig_flags | bw_flags | 1780 map_regdom_flags(reg_rule->flags); 1781 else 1782 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1783 1784 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1785 chan->max_reg_power = chan->max_power = 1786 (int) MBM_TO_DBM(power_rule->max_eirp); 1787 1788 if (chan->flags & IEEE80211_CHAN_RADAR) { 1789 if (reg_rule->dfs_cac_ms) 1790 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1791 else 1792 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1793 } 1794 1795 chan->max_power = chan->max_reg_power; 1796 } 1797 1798 static void handle_band_custom(struct wiphy *wiphy, 1799 struct ieee80211_supported_band *sband, 1800 const struct ieee80211_regdomain *regd) 1801 { 1802 unsigned int i; 1803 1804 if (!sband) 1805 return; 1806 1807 for (i = 0; i < sband->n_channels; i++) 1808 handle_channel_custom(wiphy, &sband->channels[i], regd); 1809 } 1810 1811 /* Used by drivers prior to wiphy registration */ 1812 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1813 const struct ieee80211_regdomain *regd) 1814 { 1815 enum ieee80211_band band; 1816 unsigned int bands_set = 0; 1817 1818 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 1819 "wiphy should have REGULATORY_CUSTOM_REG\n"); 1820 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 1821 1822 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1823 if (!wiphy->bands[band]) 1824 continue; 1825 handle_band_custom(wiphy, wiphy->bands[band], regd); 1826 bands_set++; 1827 } 1828 1829 /* 1830 * no point in calling this if it won't have any effect 1831 * on your device's supported bands. 1832 */ 1833 WARN_ON(!bands_set); 1834 } 1835 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1836 1837 static void reg_set_request_processed(void) 1838 { 1839 bool need_more_processing = false; 1840 struct regulatory_request *lr = get_last_request(); 1841 1842 lr->processed = true; 1843 1844 spin_lock(®_requests_lock); 1845 if (!list_empty(®_requests_list)) 1846 need_more_processing = true; 1847 spin_unlock(®_requests_lock); 1848 1849 cancel_delayed_work(®_timeout); 1850 1851 if (need_more_processing) 1852 schedule_work(®_work); 1853 } 1854 1855 /** 1856 * reg_process_hint_core - process core regulatory requests 1857 * @pending_request: a pending core regulatory request 1858 * 1859 * The wireless subsystem can use this function to process 1860 * a regulatory request issued by the regulatory core. 1861 * 1862 * Returns one of the different reg request treatment values. 1863 */ 1864 static enum reg_request_treatment 1865 reg_process_hint_core(struct regulatory_request *core_request) 1866 { 1867 1868 core_request->intersect = false; 1869 core_request->processed = false; 1870 1871 reg_update_last_request(core_request); 1872 1873 return reg_call_crda(core_request); 1874 } 1875 1876 static enum reg_request_treatment 1877 __reg_process_hint_user(struct regulatory_request *user_request) 1878 { 1879 struct regulatory_request *lr = get_last_request(); 1880 1881 if (reg_request_cell_base(user_request)) 1882 return reg_ignore_cell_hint(user_request); 1883 1884 if (reg_request_cell_base(lr)) 1885 return REG_REQ_IGNORE; 1886 1887 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1888 return REG_REQ_INTERSECT; 1889 /* 1890 * If the user knows better the user should set the regdom 1891 * to their country before the IE is picked up 1892 */ 1893 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 1894 lr->intersect) 1895 return REG_REQ_IGNORE; 1896 /* 1897 * Process user requests only after previous user/driver/core 1898 * requests have been processed 1899 */ 1900 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 1901 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1902 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 1903 regdom_changes(lr->alpha2)) 1904 return REG_REQ_IGNORE; 1905 1906 if (!regdom_changes(user_request->alpha2)) 1907 return REG_REQ_ALREADY_SET; 1908 1909 return REG_REQ_OK; 1910 } 1911 1912 /** 1913 * reg_process_hint_user - process user regulatory requests 1914 * @user_request: a pending user regulatory request 1915 * 1916 * The wireless subsystem can use this function to process 1917 * a regulatory request initiated by userspace. 1918 * 1919 * Returns one of the different reg request treatment values. 1920 */ 1921 static enum reg_request_treatment 1922 reg_process_hint_user(struct regulatory_request *user_request) 1923 { 1924 enum reg_request_treatment treatment; 1925 1926 treatment = __reg_process_hint_user(user_request); 1927 if (treatment == REG_REQ_IGNORE || 1928 treatment == REG_REQ_ALREADY_SET) { 1929 reg_free_request(user_request); 1930 return treatment; 1931 } 1932 1933 user_request->intersect = treatment == REG_REQ_INTERSECT; 1934 user_request->processed = false; 1935 1936 reg_update_last_request(user_request); 1937 1938 user_alpha2[0] = user_request->alpha2[0]; 1939 user_alpha2[1] = user_request->alpha2[1]; 1940 1941 return reg_call_crda(user_request); 1942 } 1943 1944 static enum reg_request_treatment 1945 __reg_process_hint_driver(struct regulatory_request *driver_request) 1946 { 1947 struct regulatory_request *lr = get_last_request(); 1948 1949 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 1950 if (regdom_changes(driver_request->alpha2)) 1951 return REG_REQ_OK; 1952 return REG_REQ_ALREADY_SET; 1953 } 1954 1955 /* 1956 * This would happen if you unplug and plug your card 1957 * back in or if you add a new device for which the previously 1958 * loaded card also agrees on the regulatory domain. 1959 */ 1960 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1961 !regdom_changes(driver_request->alpha2)) 1962 return REG_REQ_ALREADY_SET; 1963 1964 return REG_REQ_INTERSECT; 1965 } 1966 1967 /** 1968 * reg_process_hint_driver - process driver regulatory requests 1969 * @driver_request: a pending driver regulatory request 1970 * 1971 * The wireless subsystem can use this function to process 1972 * a regulatory request issued by an 802.11 driver. 1973 * 1974 * Returns one of the different reg request treatment values. 1975 */ 1976 static enum reg_request_treatment 1977 reg_process_hint_driver(struct wiphy *wiphy, 1978 struct regulatory_request *driver_request) 1979 { 1980 const struct ieee80211_regdomain *regd, *tmp; 1981 enum reg_request_treatment treatment; 1982 1983 treatment = __reg_process_hint_driver(driver_request); 1984 1985 switch (treatment) { 1986 case REG_REQ_OK: 1987 break; 1988 case REG_REQ_IGNORE: 1989 reg_free_request(driver_request); 1990 return treatment; 1991 case REG_REQ_INTERSECT: 1992 /* fall through */ 1993 case REG_REQ_ALREADY_SET: 1994 regd = reg_copy_regd(get_cfg80211_regdom()); 1995 if (IS_ERR(regd)) { 1996 reg_free_request(driver_request); 1997 return REG_REQ_IGNORE; 1998 } 1999 2000 tmp = get_wiphy_regdom(wiphy); 2001 rcu_assign_pointer(wiphy->regd, regd); 2002 rcu_free_regdom(tmp); 2003 } 2004 2005 2006 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2007 driver_request->processed = false; 2008 2009 reg_update_last_request(driver_request); 2010 2011 /* 2012 * Since CRDA will not be called in this case as we already 2013 * have applied the requested regulatory domain before we just 2014 * inform userspace we have processed the request 2015 */ 2016 if (treatment == REG_REQ_ALREADY_SET) { 2017 nl80211_send_reg_change_event(driver_request); 2018 reg_set_request_processed(); 2019 return treatment; 2020 } 2021 2022 return reg_call_crda(driver_request); 2023 } 2024 2025 static enum reg_request_treatment 2026 __reg_process_hint_country_ie(struct wiphy *wiphy, 2027 struct regulatory_request *country_ie_request) 2028 { 2029 struct wiphy *last_wiphy = NULL; 2030 struct regulatory_request *lr = get_last_request(); 2031 2032 if (reg_request_cell_base(lr)) { 2033 /* Trust a Cell base station over the AP's country IE */ 2034 if (regdom_changes(country_ie_request->alpha2)) 2035 return REG_REQ_IGNORE; 2036 return REG_REQ_ALREADY_SET; 2037 } else { 2038 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2039 return REG_REQ_IGNORE; 2040 } 2041 2042 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2043 return -EINVAL; 2044 2045 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2046 return REG_REQ_OK; 2047 2048 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2049 2050 if (last_wiphy != wiphy) { 2051 /* 2052 * Two cards with two APs claiming different 2053 * Country IE alpha2s. We could 2054 * intersect them, but that seems unlikely 2055 * to be correct. Reject second one for now. 2056 */ 2057 if (regdom_changes(country_ie_request->alpha2)) 2058 return REG_REQ_IGNORE; 2059 return REG_REQ_ALREADY_SET; 2060 } 2061 2062 if (regdom_changes(country_ie_request->alpha2)) 2063 return REG_REQ_OK; 2064 return REG_REQ_ALREADY_SET; 2065 } 2066 2067 /** 2068 * reg_process_hint_country_ie - process regulatory requests from country IEs 2069 * @country_ie_request: a regulatory request from a country IE 2070 * 2071 * The wireless subsystem can use this function to process 2072 * a regulatory request issued by a country Information Element. 2073 * 2074 * Returns one of the different reg request treatment values. 2075 */ 2076 static enum reg_request_treatment 2077 reg_process_hint_country_ie(struct wiphy *wiphy, 2078 struct regulatory_request *country_ie_request) 2079 { 2080 enum reg_request_treatment treatment; 2081 2082 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2083 2084 switch (treatment) { 2085 case REG_REQ_OK: 2086 break; 2087 case REG_REQ_IGNORE: 2088 /* fall through */ 2089 case REG_REQ_ALREADY_SET: 2090 reg_free_request(country_ie_request); 2091 return treatment; 2092 case REG_REQ_INTERSECT: 2093 reg_free_request(country_ie_request); 2094 /* 2095 * This doesn't happen yet, not sure we 2096 * ever want to support it for this case. 2097 */ 2098 WARN_ONCE(1, "Unexpected intersection for country IEs"); 2099 return REG_REQ_IGNORE; 2100 } 2101 2102 country_ie_request->intersect = false; 2103 country_ie_request->processed = false; 2104 2105 reg_update_last_request(country_ie_request); 2106 2107 return reg_call_crda(country_ie_request); 2108 } 2109 2110 /* This processes *all* regulatory hints */ 2111 static void reg_process_hint(struct regulatory_request *reg_request) 2112 { 2113 struct wiphy *wiphy = NULL; 2114 enum reg_request_treatment treatment; 2115 2116 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2117 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2118 2119 switch (reg_request->initiator) { 2120 case NL80211_REGDOM_SET_BY_CORE: 2121 reg_process_hint_core(reg_request); 2122 return; 2123 case NL80211_REGDOM_SET_BY_USER: 2124 reg_process_hint_user(reg_request); 2125 return; 2126 case NL80211_REGDOM_SET_BY_DRIVER: 2127 if (!wiphy) 2128 goto out_free; 2129 treatment = reg_process_hint_driver(wiphy, reg_request); 2130 break; 2131 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2132 if (!wiphy) 2133 goto out_free; 2134 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2135 break; 2136 default: 2137 WARN(1, "invalid initiator %d\n", reg_request->initiator); 2138 goto out_free; 2139 } 2140 2141 /* This is required so that the orig_* parameters are saved. 2142 * NOTE: treatment must be set for any case that reaches here! 2143 */ 2144 if (treatment == REG_REQ_ALREADY_SET && wiphy && 2145 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2146 wiphy_update_regulatory(wiphy, reg_request->initiator); 2147 reg_check_channels(); 2148 } 2149 2150 return; 2151 2152 out_free: 2153 reg_free_request(reg_request); 2154 } 2155 2156 static bool reg_only_self_managed_wiphys(void) 2157 { 2158 struct cfg80211_registered_device *rdev; 2159 struct wiphy *wiphy; 2160 bool self_managed_found = false; 2161 2162 ASSERT_RTNL(); 2163 2164 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2165 wiphy = &rdev->wiphy; 2166 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2167 self_managed_found = true; 2168 else 2169 return false; 2170 } 2171 2172 /* make sure at least one self-managed wiphy exists */ 2173 return self_managed_found; 2174 } 2175 2176 /* 2177 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 2178 * Regulatory hints come on a first come first serve basis and we 2179 * must process each one atomically. 2180 */ 2181 static void reg_process_pending_hints(void) 2182 { 2183 struct regulatory_request *reg_request, *lr; 2184 2185 lr = get_last_request(); 2186 2187 /* When last_request->processed becomes true this will be rescheduled */ 2188 if (lr && !lr->processed) { 2189 reg_process_hint(lr); 2190 return; 2191 } 2192 2193 spin_lock(®_requests_lock); 2194 2195 if (list_empty(®_requests_list)) { 2196 spin_unlock(®_requests_lock); 2197 return; 2198 } 2199 2200 reg_request = list_first_entry(®_requests_list, 2201 struct regulatory_request, 2202 list); 2203 list_del_init(®_request->list); 2204 2205 spin_unlock(®_requests_lock); 2206 2207 if (reg_only_self_managed_wiphys()) { 2208 reg_free_request(reg_request); 2209 return; 2210 } 2211 2212 reg_process_hint(reg_request); 2213 2214 lr = get_last_request(); 2215 2216 spin_lock(®_requests_lock); 2217 if (!list_empty(®_requests_list) && lr && lr->processed) 2218 schedule_work(®_work); 2219 spin_unlock(®_requests_lock); 2220 } 2221 2222 /* Processes beacon hints -- this has nothing to do with country IEs */ 2223 static void reg_process_pending_beacon_hints(void) 2224 { 2225 struct cfg80211_registered_device *rdev; 2226 struct reg_beacon *pending_beacon, *tmp; 2227 2228 /* This goes through the _pending_ beacon list */ 2229 spin_lock_bh(®_pending_beacons_lock); 2230 2231 list_for_each_entry_safe(pending_beacon, tmp, 2232 ®_pending_beacons, list) { 2233 list_del_init(&pending_beacon->list); 2234 2235 /* Applies the beacon hint to current wiphys */ 2236 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2237 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 2238 2239 /* Remembers the beacon hint for new wiphys or reg changes */ 2240 list_add_tail(&pending_beacon->list, ®_beacon_list); 2241 } 2242 2243 spin_unlock_bh(®_pending_beacons_lock); 2244 } 2245 2246 static void reg_process_self_managed_hints(void) 2247 { 2248 struct cfg80211_registered_device *rdev; 2249 struct wiphy *wiphy; 2250 const struct ieee80211_regdomain *tmp; 2251 const struct ieee80211_regdomain *regd; 2252 enum ieee80211_band band; 2253 struct regulatory_request request = {}; 2254 2255 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2256 wiphy = &rdev->wiphy; 2257 2258 spin_lock(®_requests_lock); 2259 regd = rdev->requested_regd; 2260 rdev->requested_regd = NULL; 2261 spin_unlock(®_requests_lock); 2262 2263 if (regd == NULL) 2264 continue; 2265 2266 tmp = get_wiphy_regdom(wiphy); 2267 rcu_assign_pointer(wiphy->regd, regd); 2268 rcu_free_regdom(tmp); 2269 2270 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 2271 handle_band_custom(wiphy, wiphy->bands[band], regd); 2272 2273 reg_process_ht_flags(wiphy); 2274 2275 request.wiphy_idx = get_wiphy_idx(wiphy); 2276 request.alpha2[0] = regd->alpha2[0]; 2277 request.alpha2[1] = regd->alpha2[1]; 2278 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 2279 2280 nl80211_send_wiphy_reg_change_event(&request); 2281 } 2282 2283 reg_check_channels(); 2284 } 2285 2286 static void reg_todo(struct work_struct *work) 2287 { 2288 rtnl_lock(); 2289 reg_process_pending_hints(); 2290 reg_process_pending_beacon_hints(); 2291 reg_process_self_managed_hints(); 2292 rtnl_unlock(); 2293 } 2294 2295 static void queue_regulatory_request(struct regulatory_request *request) 2296 { 2297 request->alpha2[0] = toupper(request->alpha2[0]); 2298 request->alpha2[1] = toupper(request->alpha2[1]); 2299 2300 spin_lock(®_requests_lock); 2301 list_add_tail(&request->list, ®_requests_list); 2302 spin_unlock(®_requests_lock); 2303 2304 schedule_work(®_work); 2305 } 2306 2307 /* 2308 * Core regulatory hint -- happens during cfg80211_init() 2309 * and when we restore regulatory settings. 2310 */ 2311 static int regulatory_hint_core(const char *alpha2) 2312 { 2313 struct regulatory_request *request; 2314 2315 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2316 if (!request) 2317 return -ENOMEM; 2318 2319 request->alpha2[0] = alpha2[0]; 2320 request->alpha2[1] = alpha2[1]; 2321 request->initiator = NL80211_REGDOM_SET_BY_CORE; 2322 2323 queue_regulatory_request(request); 2324 2325 return 0; 2326 } 2327 2328 /* User hints */ 2329 int regulatory_hint_user(const char *alpha2, 2330 enum nl80211_user_reg_hint_type user_reg_hint_type) 2331 { 2332 struct regulatory_request *request; 2333 2334 if (WARN_ON(!alpha2)) 2335 return -EINVAL; 2336 2337 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2338 if (!request) 2339 return -ENOMEM; 2340 2341 request->wiphy_idx = WIPHY_IDX_INVALID; 2342 request->alpha2[0] = alpha2[0]; 2343 request->alpha2[1] = alpha2[1]; 2344 request->initiator = NL80211_REGDOM_SET_BY_USER; 2345 request->user_reg_hint_type = user_reg_hint_type; 2346 2347 /* Allow calling CRDA again */ 2348 reg_crda_timeouts = 0; 2349 2350 queue_regulatory_request(request); 2351 2352 return 0; 2353 } 2354 2355 int regulatory_hint_indoor(bool is_indoor, u32 portid) 2356 { 2357 spin_lock(®_indoor_lock); 2358 2359 /* It is possible that more than one user space process is trying to 2360 * configure the indoor setting. To handle such cases, clear the indoor 2361 * setting in case that some process does not think that the device 2362 * is operating in an indoor environment. In addition, if a user space 2363 * process indicates that it is controlling the indoor setting, save its 2364 * portid, i.e., make it the owner. 2365 */ 2366 reg_is_indoor = is_indoor; 2367 if (reg_is_indoor) { 2368 if (!reg_is_indoor_portid) 2369 reg_is_indoor_portid = portid; 2370 } else { 2371 reg_is_indoor_portid = 0; 2372 } 2373 2374 spin_unlock(®_indoor_lock); 2375 2376 if (!is_indoor) 2377 reg_check_channels(); 2378 2379 return 0; 2380 } 2381 2382 void regulatory_netlink_notify(u32 portid) 2383 { 2384 spin_lock(®_indoor_lock); 2385 2386 if (reg_is_indoor_portid != portid) { 2387 spin_unlock(®_indoor_lock); 2388 return; 2389 } 2390 2391 reg_is_indoor = false; 2392 reg_is_indoor_portid = 0; 2393 2394 spin_unlock(®_indoor_lock); 2395 2396 reg_check_channels(); 2397 } 2398 2399 /* Driver hints */ 2400 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 2401 { 2402 struct regulatory_request *request; 2403 2404 if (WARN_ON(!alpha2 || !wiphy)) 2405 return -EINVAL; 2406 2407 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 2408 2409 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2410 if (!request) 2411 return -ENOMEM; 2412 2413 request->wiphy_idx = get_wiphy_idx(wiphy); 2414 2415 request->alpha2[0] = alpha2[0]; 2416 request->alpha2[1] = alpha2[1]; 2417 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 2418 2419 /* Allow calling CRDA again */ 2420 reg_crda_timeouts = 0; 2421 2422 queue_regulatory_request(request); 2423 2424 return 0; 2425 } 2426 EXPORT_SYMBOL(regulatory_hint); 2427 2428 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band, 2429 const u8 *country_ie, u8 country_ie_len) 2430 { 2431 char alpha2[2]; 2432 enum environment_cap env = ENVIRON_ANY; 2433 struct regulatory_request *request = NULL, *lr; 2434 2435 /* IE len must be evenly divisible by 2 */ 2436 if (country_ie_len & 0x01) 2437 return; 2438 2439 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 2440 return; 2441 2442 request = kzalloc(sizeof(*request), GFP_KERNEL); 2443 if (!request) 2444 return; 2445 2446 alpha2[0] = country_ie[0]; 2447 alpha2[1] = country_ie[1]; 2448 2449 if (country_ie[2] == 'I') 2450 env = ENVIRON_INDOOR; 2451 else if (country_ie[2] == 'O') 2452 env = ENVIRON_OUTDOOR; 2453 2454 rcu_read_lock(); 2455 lr = get_last_request(); 2456 2457 if (unlikely(!lr)) 2458 goto out; 2459 2460 /* 2461 * We will run this only upon a successful connection on cfg80211. 2462 * We leave conflict resolution to the workqueue, where can hold 2463 * the RTNL. 2464 */ 2465 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2466 lr->wiphy_idx != WIPHY_IDX_INVALID) 2467 goto out; 2468 2469 request->wiphy_idx = get_wiphy_idx(wiphy); 2470 request->alpha2[0] = alpha2[0]; 2471 request->alpha2[1] = alpha2[1]; 2472 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 2473 request->country_ie_env = env; 2474 2475 /* Allow calling CRDA again */ 2476 reg_crda_timeouts = 0; 2477 2478 queue_regulatory_request(request); 2479 request = NULL; 2480 out: 2481 kfree(request); 2482 rcu_read_unlock(); 2483 } 2484 2485 static void restore_alpha2(char *alpha2, bool reset_user) 2486 { 2487 /* indicates there is no alpha2 to consider for restoration */ 2488 alpha2[0] = '9'; 2489 alpha2[1] = '7'; 2490 2491 /* The user setting has precedence over the module parameter */ 2492 if (is_user_regdom_saved()) { 2493 /* Unless we're asked to ignore it and reset it */ 2494 if (reset_user) { 2495 REG_DBG_PRINT("Restoring regulatory settings including user preference\n"); 2496 user_alpha2[0] = '9'; 2497 user_alpha2[1] = '7'; 2498 2499 /* 2500 * If we're ignoring user settings, we still need to 2501 * check the module parameter to ensure we put things 2502 * back as they were for a full restore. 2503 */ 2504 if (!is_world_regdom(ieee80211_regdom)) { 2505 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 2506 ieee80211_regdom[0], ieee80211_regdom[1]); 2507 alpha2[0] = ieee80211_regdom[0]; 2508 alpha2[1] = ieee80211_regdom[1]; 2509 } 2510 } else { 2511 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n", 2512 user_alpha2[0], user_alpha2[1]); 2513 alpha2[0] = user_alpha2[0]; 2514 alpha2[1] = user_alpha2[1]; 2515 } 2516 } else if (!is_world_regdom(ieee80211_regdom)) { 2517 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 2518 ieee80211_regdom[0], ieee80211_regdom[1]); 2519 alpha2[0] = ieee80211_regdom[0]; 2520 alpha2[1] = ieee80211_regdom[1]; 2521 } else 2522 REG_DBG_PRINT("Restoring regulatory settings\n"); 2523 } 2524 2525 static void restore_custom_reg_settings(struct wiphy *wiphy) 2526 { 2527 struct ieee80211_supported_band *sband; 2528 enum ieee80211_band band; 2529 struct ieee80211_channel *chan; 2530 int i; 2531 2532 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 2533 sband = wiphy->bands[band]; 2534 if (!sband) 2535 continue; 2536 for (i = 0; i < sband->n_channels; i++) { 2537 chan = &sband->channels[i]; 2538 chan->flags = chan->orig_flags; 2539 chan->max_antenna_gain = chan->orig_mag; 2540 chan->max_power = chan->orig_mpwr; 2541 chan->beacon_found = false; 2542 } 2543 } 2544 } 2545 2546 /* 2547 * Restoring regulatory settings involves ingoring any 2548 * possibly stale country IE information and user regulatory 2549 * settings if so desired, this includes any beacon hints 2550 * learned as we could have traveled outside to another country 2551 * after disconnection. To restore regulatory settings we do 2552 * exactly what we did at bootup: 2553 * 2554 * - send a core regulatory hint 2555 * - send a user regulatory hint if applicable 2556 * 2557 * Device drivers that send a regulatory hint for a specific country 2558 * keep their own regulatory domain on wiphy->regd so that does does 2559 * not need to be remembered. 2560 */ 2561 static void restore_regulatory_settings(bool reset_user) 2562 { 2563 char alpha2[2]; 2564 char world_alpha2[2]; 2565 struct reg_beacon *reg_beacon, *btmp; 2566 LIST_HEAD(tmp_reg_req_list); 2567 struct cfg80211_registered_device *rdev; 2568 2569 ASSERT_RTNL(); 2570 2571 /* 2572 * Clear the indoor setting in case that it is not controlled by user 2573 * space, as otherwise there is no guarantee that the device is still 2574 * operating in an indoor environment. 2575 */ 2576 spin_lock(®_indoor_lock); 2577 if (reg_is_indoor && !reg_is_indoor_portid) { 2578 reg_is_indoor = false; 2579 reg_check_channels(); 2580 } 2581 spin_unlock(®_indoor_lock); 2582 2583 reset_regdomains(true, &world_regdom); 2584 restore_alpha2(alpha2, reset_user); 2585 2586 /* 2587 * If there's any pending requests we simply 2588 * stash them to a temporary pending queue and 2589 * add then after we've restored regulatory 2590 * settings. 2591 */ 2592 spin_lock(®_requests_lock); 2593 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 2594 spin_unlock(®_requests_lock); 2595 2596 /* Clear beacon hints */ 2597 spin_lock_bh(®_pending_beacons_lock); 2598 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 2599 list_del(®_beacon->list); 2600 kfree(reg_beacon); 2601 } 2602 spin_unlock_bh(®_pending_beacons_lock); 2603 2604 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 2605 list_del(®_beacon->list); 2606 kfree(reg_beacon); 2607 } 2608 2609 /* First restore to the basic regulatory settings */ 2610 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 2611 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 2612 2613 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2614 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2615 continue; 2616 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 2617 restore_custom_reg_settings(&rdev->wiphy); 2618 } 2619 2620 regulatory_hint_core(world_alpha2); 2621 2622 /* 2623 * This restores the ieee80211_regdom module parameter 2624 * preference or the last user requested regulatory 2625 * settings, user regulatory settings takes precedence. 2626 */ 2627 if (is_an_alpha2(alpha2)) 2628 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 2629 2630 spin_lock(®_requests_lock); 2631 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 2632 spin_unlock(®_requests_lock); 2633 2634 REG_DBG_PRINT("Kicking the queue\n"); 2635 2636 schedule_work(®_work); 2637 } 2638 2639 void regulatory_hint_disconnect(void) 2640 { 2641 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n"); 2642 restore_regulatory_settings(false); 2643 } 2644 2645 static bool freq_is_chan_12_13_14(u16 freq) 2646 { 2647 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || 2648 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || 2649 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) 2650 return true; 2651 return false; 2652 } 2653 2654 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 2655 { 2656 struct reg_beacon *pending_beacon; 2657 2658 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 2659 if (beacon_chan->center_freq == 2660 pending_beacon->chan.center_freq) 2661 return true; 2662 return false; 2663 } 2664 2665 int regulatory_hint_found_beacon(struct wiphy *wiphy, 2666 struct ieee80211_channel *beacon_chan, 2667 gfp_t gfp) 2668 { 2669 struct reg_beacon *reg_beacon; 2670 bool processing; 2671 2672 if (beacon_chan->beacon_found || 2673 beacon_chan->flags & IEEE80211_CHAN_RADAR || 2674 (beacon_chan->band == IEEE80211_BAND_2GHZ && 2675 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 2676 return 0; 2677 2678 spin_lock_bh(®_pending_beacons_lock); 2679 processing = pending_reg_beacon(beacon_chan); 2680 spin_unlock_bh(®_pending_beacons_lock); 2681 2682 if (processing) 2683 return 0; 2684 2685 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 2686 if (!reg_beacon) 2687 return -ENOMEM; 2688 2689 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 2690 beacon_chan->center_freq, 2691 ieee80211_frequency_to_channel(beacon_chan->center_freq), 2692 wiphy_name(wiphy)); 2693 2694 memcpy(®_beacon->chan, beacon_chan, 2695 sizeof(struct ieee80211_channel)); 2696 2697 /* 2698 * Since we can be called from BH or and non-BH context 2699 * we must use spin_lock_bh() 2700 */ 2701 spin_lock_bh(®_pending_beacons_lock); 2702 list_add_tail(®_beacon->list, ®_pending_beacons); 2703 spin_unlock_bh(®_pending_beacons_lock); 2704 2705 schedule_work(®_work); 2706 2707 return 0; 2708 } 2709 2710 static void print_rd_rules(const struct ieee80211_regdomain *rd) 2711 { 2712 unsigned int i; 2713 const struct ieee80211_reg_rule *reg_rule = NULL; 2714 const struct ieee80211_freq_range *freq_range = NULL; 2715 const struct ieee80211_power_rule *power_rule = NULL; 2716 char bw[32], cac_time[32]; 2717 2718 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 2719 2720 for (i = 0; i < rd->n_reg_rules; i++) { 2721 reg_rule = &rd->reg_rules[i]; 2722 freq_range = ®_rule->freq_range; 2723 power_rule = ®_rule->power_rule; 2724 2725 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 2726 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 2727 freq_range->max_bandwidth_khz, 2728 reg_get_max_bandwidth(rd, reg_rule)); 2729 else 2730 snprintf(bw, sizeof(bw), "%d KHz", 2731 freq_range->max_bandwidth_khz); 2732 2733 if (reg_rule->flags & NL80211_RRF_DFS) 2734 scnprintf(cac_time, sizeof(cac_time), "%u s", 2735 reg_rule->dfs_cac_ms/1000); 2736 else 2737 scnprintf(cac_time, sizeof(cac_time), "N/A"); 2738 2739 2740 /* 2741 * There may not be documentation for max antenna gain 2742 * in certain regions 2743 */ 2744 if (power_rule->max_antenna_gain) 2745 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 2746 freq_range->start_freq_khz, 2747 freq_range->end_freq_khz, 2748 bw, 2749 power_rule->max_antenna_gain, 2750 power_rule->max_eirp, 2751 cac_time); 2752 else 2753 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 2754 freq_range->start_freq_khz, 2755 freq_range->end_freq_khz, 2756 bw, 2757 power_rule->max_eirp, 2758 cac_time); 2759 } 2760 } 2761 2762 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 2763 { 2764 switch (dfs_region) { 2765 case NL80211_DFS_UNSET: 2766 case NL80211_DFS_FCC: 2767 case NL80211_DFS_ETSI: 2768 case NL80211_DFS_JP: 2769 return true; 2770 default: 2771 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n", 2772 dfs_region); 2773 return false; 2774 } 2775 } 2776 2777 static void print_regdomain(const struct ieee80211_regdomain *rd) 2778 { 2779 struct regulatory_request *lr = get_last_request(); 2780 2781 if (is_intersected_alpha2(rd->alpha2)) { 2782 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2783 struct cfg80211_registered_device *rdev; 2784 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 2785 if (rdev) { 2786 pr_info("Current regulatory domain updated by AP to: %c%c\n", 2787 rdev->country_ie_alpha2[0], 2788 rdev->country_ie_alpha2[1]); 2789 } else 2790 pr_info("Current regulatory domain intersected:\n"); 2791 } else 2792 pr_info("Current regulatory domain intersected:\n"); 2793 } else if (is_world_regdom(rd->alpha2)) { 2794 pr_info("World regulatory domain updated:\n"); 2795 } else { 2796 if (is_unknown_alpha2(rd->alpha2)) 2797 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); 2798 else { 2799 if (reg_request_cell_base(lr)) 2800 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n", 2801 rd->alpha2[0], rd->alpha2[1]); 2802 else 2803 pr_info("Regulatory domain changed to country: %c%c\n", 2804 rd->alpha2[0], rd->alpha2[1]); 2805 } 2806 } 2807 2808 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 2809 print_rd_rules(rd); 2810 } 2811 2812 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 2813 { 2814 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 2815 print_rd_rules(rd); 2816 } 2817 2818 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 2819 { 2820 if (!is_world_regdom(rd->alpha2)) 2821 return -EINVAL; 2822 update_world_regdomain(rd); 2823 return 0; 2824 } 2825 2826 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 2827 struct regulatory_request *user_request) 2828 { 2829 const struct ieee80211_regdomain *intersected_rd = NULL; 2830 2831 if (!regdom_changes(rd->alpha2)) 2832 return -EALREADY; 2833 2834 if (!is_valid_rd(rd)) { 2835 pr_err("Invalid regulatory domain detected:\n"); 2836 print_regdomain_info(rd); 2837 return -EINVAL; 2838 } 2839 2840 if (!user_request->intersect) { 2841 reset_regdomains(false, rd); 2842 return 0; 2843 } 2844 2845 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2846 if (!intersected_rd) 2847 return -EINVAL; 2848 2849 kfree(rd); 2850 rd = NULL; 2851 reset_regdomains(false, intersected_rd); 2852 2853 return 0; 2854 } 2855 2856 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 2857 struct regulatory_request *driver_request) 2858 { 2859 const struct ieee80211_regdomain *regd; 2860 const struct ieee80211_regdomain *intersected_rd = NULL; 2861 const struct ieee80211_regdomain *tmp; 2862 struct wiphy *request_wiphy; 2863 2864 if (is_world_regdom(rd->alpha2)) 2865 return -EINVAL; 2866 2867 if (!regdom_changes(rd->alpha2)) 2868 return -EALREADY; 2869 2870 if (!is_valid_rd(rd)) { 2871 pr_err("Invalid regulatory domain detected:\n"); 2872 print_regdomain_info(rd); 2873 return -EINVAL; 2874 } 2875 2876 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 2877 if (!request_wiphy) { 2878 queue_delayed_work(system_power_efficient_wq, 2879 ®_timeout, 0); 2880 return -ENODEV; 2881 } 2882 2883 if (!driver_request->intersect) { 2884 if (request_wiphy->regd) 2885 return -EALREADY; 2886 2887 regd = reg_copy_regd(rd); 2888 if (IS_ERR(regd)) 2889 return PTR_ERR(regd); 2890 2891 rcu_assign_pointer(request_wiphy->regd, regd); 2892 reset_regdomains(false, rd); 2893 return 0; 2894 } 2895 2896 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2897 if (!intersected_rd) 2898 return -EINVAL; 2899 2900 /* 2901 * We can trash what CRDA provided now. 2902 * However if a driver requested this specific regulatory 2903 * domain we keep it for its private use 2904 */ 2905 tmp = get_wiphy_regdom(request_wiphy); 2906 rcu_assign_pointer(request_wiphy->regd, rd); 2907 rcu_free_regdom(tmp); 2908 2909 rd = NULL; 2910 2911 reset_regdomains(false, intersected_rd); 2912 2913 return 0; 2914 } 2915 2916 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 2917 struct regulatory_request *country_ie_request) 2918 { 2919 struct wiphy *request_wiphy; 2920 2921 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 2922 !is_unknown_alpha2(rd->alpha2)) 2923 return -EINVAL; 2924 2925 /* 2926 * Lets only bother proceeding on the same alpha2 if the current 2927 * rd is non static (it means CRDA was present and was used last) 2928 * and the pending request came in from a country IE 2929 */ 2930 2931 if (!is_valid_rd(rd)) { 2932 pr_err("Invalid regulatory domain detected:\n"); 2933 print_regdomain_info(rd); 2934 return -EINVAL; 2935 } 2936 2937 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 2938 if (!request_wiphy) { 2939 queue_delayed_work(system_power_efficient_wq, 2940 ®_timeout, 0); 2941 return -ENODEV; 2942 } 2943 2944 if (country_ie_request->intersect) 2945 return -EINVAL; 2946 2947 reset_regdomains(false, rd); 2948 return 0; 2949 } 2950 2951 /* 2952 * Use this call to set the current regulatory domain. Conflicts with 2953 * multiple drivers can be ironed out later. Caller must've already 2954 * kmalloc'd the rd structure. 2955 */ 2956 int set_regdom(const struct ieee80211_regdomain *rd, 2957 enum ieee80211_regd_source regd_src) 2958 { 2959 struct regulatory_request *lr; 2960 bool user_reset = false; 2961 int r; 2962 2963 if (!reg_is_valid_request(rd->alpha2)) { 2964 kfree(rd); 2965 return -EINVAL; 2966 } 2967 2968 if (regd_src == REGD_SOURCE_CRDA) 2969 reg_crda_timeouts = 0; 2970 2971 lr = get_last_request(); 2972 2973 /* Note that this doesn't update the wiphys, this is done below */ 2974 switch (lr->initiator) { 2975 case NL80211_REGDOM_SET_BY_CORE: 2976 r = reg_set_rd_core(rd); 2977 break; 2978 case NL80211_REGDOM_SET_BY_USER: 2979 r = reg_set_rd_user(rd, lr); 2980 user_reset = true; 2981 break; 2982 case NL80211_REGDOM_SET_BY_DRIVER: 2983 r = reg_set_rd_driver(rd, lr); 2984 break; 2985 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2986 r = reg_set_rd_country_ie(rd, lr); 2987 break; 2988 default: 2989 WARN(1, "invalid initiator %d\n", lr->initiator); 2990 return -EINVAL; 2991 } 2992 2993 if (r) { 2994 switch (r) { 2995 case -EALREADY: 2996 reg_set_request_processed(); 2997 break; 2998 default: 2999 /* Back to world regulatory in case of errors */ 3000 restore_regulatory_settings(user_reset); 3001 } 3002 3003 kfree(rd); 3004 return r; 3005 } 3006 3007 /* This would make this whole thing pointless */ 3008 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3009 return -EINVAL; 3010 3011 /* update all wiphys now with the new established regulatory domain */ 3012 update_all_wiphy_regulatory(lr->initiator); 3013 3014 print_regdomain(get_cfg80211_regdom()); 3015 3016 nl80211_send_reg_change_event(lr); 3017 3018 reg_set_request_processed(); 3019 3020 return 0; 3021 } 3022 3023 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 3024 struct ieee80211_regdomain *rd) 3025 { 3026 const struct ieee80211_regdomain *regd; 3027 const struct ieee80211_regdomain *prev_regd; 3028 struct cfg80211_registered_device *rdev; 3029 3030 if (WARN_ON(!wiphy || !rd)) 3031 return -EINVAL; 3032 3033 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 3034 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 3035 return -EPERM; 3036 3037 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { 3038 print_regdomain_info(rd); 3039 return -EINVAL; 3040 } 3041 3042 regd = reg_copy_regd(rd); 3043 if (IS_ERR(regd)) 3044 return PTR_ERR(regd); 3045 3046 rdev = wiphy_to_rdev(wiphy); 3047 3048 spin_lock(®_requests_lock); 3049 prev_regd = rdev->requested_regd; 3050 rdev->requested_regd = regd; 3051 spin_unlock(®_requests_lock); 3052 3053 kfree(prev_regd); 3054 return 0; 3055 } 3056 3057 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 3058 struct ieee80211_regdomain *rd) 3059 { 3060 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 3061 3062 if (ret) 3063 return ret; 3064 3065 schedule_work(®_work); 3066 return 0; 3067 } 3068 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 3069 3070 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, 3071 struct ieee80211_regdomain *rd) 3072 { 3073 int ret; 3074 3075 ASSERT_RTNL(); 3076 3077 ret = __regulatory_set_wiphy_regd(wiphy, rd); 3078 if (ret) 3079 return ret; 3080 3081 /* process the request immediately */ 3082 reg_process_self_managed_hints(); 3083 return 0; 3084 } 3085 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); 3086 3087 void wiphy_regulatory_register(struct wiphy *wiphy) 3088 { 3089 struct regulatory_request *lr; 3090 3091 /* self-managed devices ignore external hints */ 3092 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3093 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 3094 REGULATORY_COUNTRY_IE_IGNORE; 3095 3096 if (!reg_dev_ignore_cell_hint(wiphy)) 3097 reg_num_devs_support_basehint++; 3098 3099 lr = get_last_request(); 3100 wiphy_update_regulatory(wiphy, lr->initiator); 3101 } 3102 3103 void wiphy_regulatory_deregister(struct wiphy *wiphy) 3104 { 3105 struct wiphy *request_wiphy = NULL; 3106 struct regulatory_request *lr; 3107 3108 lr = get_last_request(); 3109 3110 if (!reg_dev_ignore_cell_hint(wiphy)) 3111 reg_num_devs_support_basehint--; 3112 3113 rcu_free_regdom(get_wiphy_regdom(wiphy)); 3114 RCU_INIT_POINTER(wiphy->regd, NULL); 3115 3116 if (lr) 3117 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 3118 3119 if (!request_wiphy || request_wiphy != wiphy) 3120 return; 3121 3122 lr->wiphy_idx = WIPHY_IDX_INVALID; 3123 lr->country_ie_env = ENVIRON_ANY; 3124 } 3125 3126 static void reg_timeout_work(struct work_struct *work) 3127 { 3128 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 3129 rtnl_lock(); 3130 reg_crda_timeouts++; 3131 restore_regulatory_settings(true); 3132 rtnl_unlock(); 3133 } 3134 3135 /* 3136 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for 3137 * UNII band definitions 3138 */ 3139 int cfg80211_get_unii(int freq) 3140 { 3141 /* UNII-1 */ 3142 if (freq >= 5150 && freq <= 5250) 3143 return 0; 3144 3145 /* UNII-2A */ 3146 if (freq > 5250 && freq <= 5350) 3147 return 1; 3148 3149 /* UNII-2B */ 3150 if (freq > 5350 && freq <= 5470) 3151 return 2; 3152 3153 /* UNII-2C */ 3154 if (freq > 5470 && freq <= 5725) 3155 return 3; 3156 3157 /* UNII-3 */ 3158 if (freq > 5725 && freq <= 5825) 3159 return 4; 3160 3161 return -EINVAL; 3162 } 3163 3164 bool regulatory_indoor_allowed(void) 3165 { 3166 return reg_is_indoor; 3167 } 3168 3169 int __init regulatory_init(void) 3170 { 3171 int err = 0; 3172 3173 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 3174 if (IS_ERR(reg_pdev)) 3175 return PTR_ERR(reg_pdev); 3176 3177 spin_lock_init(®_requests_lock); 3178 spin_lock_init(®_pending_beacons_lock); 3179 spin_lock_init(®_indoor_lock); 3180 3181 reg_regdb_size_check(); 3182 3183 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 3184 3185 user_alpha2[0] = '9'; 3186 user_alpha2[1] = '7'; 3187 3188 /* We always try to get an update for the static regdomain */ 3189 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 3190 if (err) { 3191 if (err == -ENOMEM) 3192 return err; 3193 /* 3194 * N.B. kobject_uevent_env() can fail mainly for when we're out 3195 * memory which is handled and propagated appropriately above 3196 * but it can also fail during a netlink_broadcast() or during 3197 * early boot for call_usermodehelper(). For now treat these 3198 * errors as non-fatal. 3199 */ 3200 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 3201 } 3202 3203 /* 3204 * Finally, if the user set the module parameter treat it 3205 * as a user hint. 3206 */ 3207 if (!is_world_regdom(ieee80211_regdom)) 3208 regulatory_hint_user(ieee80211_regdom, 3209 NL80211_USER_REG_HINT_USER); 3210 3211 return 0; 3212 } 3213 3214 void regulatory_exit(void) 3215 { 3216 struct regulatory_request *reg_request, *tmp; 3217 struct reg_beacon *reg_beacon, *btmp; 3218 3219 cancel_work_sync(®_work); 3220 cancel_delayed_work_sync(®_timeout); 3221 cancel_delayed_work_sync(®_check_chans); 3222 3223 /* Lock to suppress warnings */ 3224 rtnl_lock(); 3225 reset_regdomains(true, NULL); 3226 rtnl_unlock(); 3227 3228 dev_set_uevent_suppress(®_pdev->dev, true); 3229 3230 platform_device_unregister(reg_pdev); 3231 3232 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3233 list_del(®_beacon->list); 3234 kfree(reg_beacon); 3235 } 3236 3237 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3238 list_del(®_beacon->list); 3239 kfree(reg_beacon); 3240 } 3241 3242 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 3243 list_del(®_request->list); 3244 kfree(reg_request); 3245 } 3246 } 3247