1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static spinlock_t reg_indoor_lock; 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user); 135 136 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 137 { 138 return rcu_dereference_rtnl(cfg80211_regdomain); 139 } 140 141 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 142 { 143 return rcu_dereference_rtnl(wiphy->regd); 144 } 145 146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 147 { 148 switch (dfs_region) { 149 case NL80211_DFS_UNSET: 150 return "unset"; 151 case NL80211_DFS_FCC: 152 return "FCC"; 153 case NL80211_DFS_ETSI: 154 return "ETSI"; 155 case NL80211_DFS_JP: 156 return "JP"; 157 } 158 return "Unknown"; 159 } 160 161 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 162 { 163 const struct ieee80211_regdomain *regd = NULL; 164 const struct ieee80211_regdomain *wiphy_regd = NULL; 165 166 regd = get_cfg80211_regdom(); 167 if (!wiphy) 168 goto out; 169 170 wiphy_regd = get_wiphy_regdom(wiphy); 171 if (!wiphy_regd) 172 goto out; 173 174 if (wiphy_regd->dfs_region == regd->dfs_region) 175 goto out; 176 177 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 178 dev_name(&wiphy->dev), 179 reg_dfs_region_str(wiphy_regd->dfs_region), 180 reg_dfs_region_str(regd->dfs_region)); 181 182 out: 183 return regd->dfs_region; 184 } 185 186 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 187 { 188 if (!r) 189 return; 190 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 191 } 192 193 static struct regulatory_request *get_last_request(void) 194 { 195 return rcu_dereference_rtnl(last_request); 196 } 197 198 /* Used to queue up regulatory hints */ 199 static LIST_HEAD(reg_requests_list); 200 static spinlock_t reg_requests_lock; 201 202 /* Used to queue up beacon hints for review */ 203 static LIST_HEAD(reg_pending_beacons); 204 static spinlock_t reg_pending_beacons_lock; 205 206 /* Used to keep track of processed beacon hints */ 207 static LIST_HEAD(reg_beacon_list); 208 209 struct reg_beacon { 210 struct list_head list; 211 struct ieee80211_channel chan; 212 }; 213 214 static void reg_check_chans_work(struct work_struct *work); 215 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 216 217 static void reg_todo(struct work_struct *work); 218 static DECLARE_WORK(reg_work, reg_todo); 219 220 /* We keep a static world regulatory domain in case of the absence of CRDA */ 221 static const struct ieee80211_regdomain world_regdom = { 222 .n_reg_rules = 8, 223 .alpha2 = "00", 224 .reg_rules = { 225 /* IEEE 802.11b/g, channels 1..11 */ 226 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 227 /* IEEE 802.11b/g, channels 12..13. */ 228 REG_RULE(2467-10, 2472+10, 20, 6, 20, 229 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 230 /* IEEE 802.11 channel 14 - Only JP enables 231 * this and for 802.11b only */ 232 REG_RULE(2484-10, 2484+10, 20, 6, 20, 233 NL80211_RRF_NO_IR | 234 NL80211_RRF_NO_OFDM), 235 /* IEEE 802.11a, channel 36..48 */ 236 REG_RULE(5180-10, 5240+10, 80, 6, 20, 237 NL80211_RRF_NO_IR | 238 NL80211_RRF_AUTO_BW), 239 240 /* IEEE 802.11a, channel 52..64 - DFS required */ 241 REG_RULE(5260-10, 5320+10, 80, 6, 20, 242 NL80211_RRF_NO_IR | 243 NL80211_RRF_AUTO_BW | 244 NL80211_RRF_DFS), 245 246 /* IEEE 802.11a, channel 100..144 - DFS required */ 247 REG_RULE(5500-10, 5720+10, 160, 6, 20, 248 NL80211_RRF_NO_IR | 249 NL80211_RRF_DFS), 250 251 /* IEEE 802.11a, channel 149..165 */ 252 REG_RULE(5745-10, 5825+10, 80, 6, 20, 253 NL80211_RRF_NO_IR), 254 255 /* IEEE 802.11ad (60GHz), channels 1..3 */ 256 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 257 } 258 }; 259 260 /* protected by RTNL */ 261 static const struct ieee80211_regdomain *cfg80211_world_regdom = 262 &world_regdom; 263 264 static char *ieee80211_regdom = "00"; 265 static char user_alpha2[2]; 266 267 module_param(ieee80211_regdom, charp, 0444); 268 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 269 270 static void reg_free_request(struct regulatory_request *request) 271 { 272 if (request == &core_request_world) 273 return; 274 275 if (request != get_last_request()) 276 kfree(request); 277 } 278 279 static void reg_free_last_request(void) 280 { 281 struct regulatory_request *lr = get_last_request(); 282 283 if (lr != &core_request_world && lr) 284 kfree_rcu(lr, rcu_head); 285 } 286 287 static void reg_update_last_request(struct regulatory_request *request) 288 { 289 struct regulatory_request *lr; 290 291 lr = get_last_request(); 292 if (lr == request) 293 return; 294 295 reg_free_last_request(); 296 rcu_assign_pointer(last_request, request); 297 } 298 299 static void reset_regdomains(bool full_reset, 300 const struct ieee80211_regdomain *new_regdom) 301 { 302 const struct ieee80211_regdomain *r; 303 304 ASSERT_RTNL(); 305 306 r = get_cfg80211_regdom(); 307 308 /* avoid freeing static information or freeing something twice */ 309 if (r == cfg80211_world_regdom) 310 r = NULL; 311 if (cfg80211_world_regdom == &world_regdom) 312 cfg80211_world_regdom = NULL; 313 if (r == &world_regdom) 314 r = NULL; 315 316 rcu_free_regdom(r); 317 rcu_free_regdom(cfg80211_world_regdom); 318 319 cfg80211_world_regdom = &world_regdom; 320 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 321 322 if (!full_reset) 323 return; 324 325 reg_update_last_request(&core_request_world); 326 } 327 328 /* 329 * Dynamic world regulatory domain requested by the wireless 330 * core upon initialization 331 */ 332 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 333 { 334 struct regulatory_request *lr; 335 336 lr = get_last_request(); 337 338 WARN_ON(!lr); 339 340 reset_regdomains(false, rd); 341 342 cfg80211_world_regdom = rd; 343 } 344 345 bool is_world_regdom(const char *alpha2) 346 { 347 if (!alpha2) 348 return false; 349 return alpha2[0] == '0' && alpha2[1] == '0'; 350 } 351 352 static bool is_alpha2_set(const char *alpha2) 353 { 354 if (!alpha2) 355 return false; 356 return alpha2[0] && alpha2[1]; 357 } 358 359 static bool is_unknown_alpha2(const char *alpha2) 360 { 361 if (!alpha2) 362 return false; 363 /* 364 * Special case where regulatory domain was built by driver 365 * but a specific alpha2 cannot be determined 366 */ 367 return alpha2[0] == '9' && alpha2[1] == '9'; 368 } 369 370 static bool is_intersected_alpha2(const char *alpha2) 371 { 372 if (!alpha2) 373 return false; 374 /* 375 * Special case where regulatory domain is the 376 * result of an intersection between two regulatory domain 377 * structures 378 */ 379 return alpha2[0] == '9' && alpha2[1] == '8'; 380 } 381 382 static bool is_an_alpha2(const char *alpha2) 383 { 384 if (!alpha2) 385 return false; 386 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 387 } 388 389 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 390 { 391 if (!alpha2_x || !alpha2_y) 392 return false; 393 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 394 } 395 396 static bool regdom_changes(const char *alpha2) 397 { 398 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 399 400 if (!r) 401 return true; 402 return !alpha2_equal(r->alpha2, alpha2); 403 } 404 405 /* 406 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 407 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 408 * has ever been issued. 409 */ 410 static bool is_user_regdom_saved(void) 411 { 412 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 413 return false; 414 415 /* This would indicate a mistake on the design */ 416 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 417 "Unexpected user alpha2: %c%c\n", 418 user_alpha2[0], user_alpha2[1])) 419 return false; 420 421 return true; 422 } 423 424 static const struct ieee80211_regdomain * 425 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 426 { 427 struct ieee80211_regdomain *regd; 428 int size_of_regd, size_of_wmms; 429 unsigned int i; 430 struct ieee80211_wmm_rule *d_wmm, *s_wmm; 431 432 size_of_regd = 433 sizeof(struct ieee80211_regdomain) + 434 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); 435 size_of_wmms = src_regd->n_wmm_rules * 436 sizeof(struct ieee80211_wmm_rule); 437 438 regd = kzalloc(size_of_regd + size_of_wmms, GFP_KERNEL); 439 if (!regd) 440 return ERR_PTR(-ENOMEM); 441 442 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 443 444 d_wmm = (struct ieee80211_wmm_rule *)((u8 *)regd + size_of_regd); 445 s_wmm = (struct ieee80211_wmm_rule *)((u8 *)src_regd + size_of_regd); 446 memcpy(d_wmm, s_wmm, size_of_wmms); 447 448 for (i = 0; i < src_regd->n_reg_rules; i++) { 449 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 450 sizeof(struct ieee80211_reg_rule)); 451 if (!src_regd->reg_rules[i].wmm_rule) 452 continue; 453 454 regd->reg_rules[i].wmm_rule = d_wmm + 455 (src_regd->reg_rules[i].wmm_rule - s_wmm) / 456 sizeof(struct ieee80211_wmm_rule); 457 } 458 return regd; 459 } 460 461 struct reg_regdb_apply_request { 462 struct list_head list; 463 const struct ieee80211_regdomain *regdom; 464 }; 465 466 static LIST_HEAD(reg_regdb_apply_list); 467 static DEFINE_MUTEX(reg_regdb_apply_mutex); 468 469 static void reg_regdb_apply(struct work_struct *work) 470 { 471 struct reg_regdb_apply_request *request; 472 473 rtnl_lock(); 474 475 mutex_lock(®_regdb_apply_mutex); 476 while (!list_empty(®_regdb_apply_list)) { 477 request = list_first_entry(®_regdb_apply_list, 478 struct reg_regdb_apply_request, 479 list); 480 list_del(&request->list); 481 482 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 483 kfree(request); 484 } 485 mutex_unlock(®_regdb_apply_mutex); 486 487 rtnl_unlock(); 488 } 489 490 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 491 492 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 493 { 494 struct reg_regdb_apply_request *request; 495 496 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 497 if (!request) { 498 kfree(regdom); 499 return -ENOMEM; 500 } 501 502 request->regdom = regdom; 503 504 mutex_lock(®_regdb_apply_mutex); 505 list_add_tail(&request->list, ®_regdb_apply_list); 506 mutex_unlock(®_regdb_apply_mutex); 507 508 schedule_work(®_regdb_work); 509 return 0; 510 } 511 512 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 513 /* Max number of consecutive attempts to communicate with CRDA */ 514 #define REG_MAX_CRDA_TIMEOUTS 10 515 516 static u32 reg_crda_timeouts; 517 518 static void crda_timeout_work(struct work_struct *work); 519 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 520 521 static void crda_timeout_work(struct work_struct *work) 522 { 523 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 524 rtnl_lock(); 525 reg_crda_timeouts++; 526 restore_regulatory_settings(true); 527 rtnl_unlock(); 528 } 529 530 static void cancel_crda_timeout(void) 531 { 532 cancel_delayed_work(&crda_timeout); 533 } 534 535 static void cancel_crda_timeout_sync(void) 536 { 537 cancel_delayed_work_sync(&crda_timeout); 538 } 539 540 static void reset_crda_timeouts(void) 541 { 542 reg_crda_timeouts = 0; 543 } 544 545 /* 546 * This lets us keep regulatory code which is updated on a regulatory 547 * basis in userspace. 548 */ 549 static int call_crda(const char *alpha2) 550 { 551 char country[12]; 552 char *env[] = { country, NULL }; 553 int ret; 554 555 snprintf(country, sizeof(country), "COUNTRY=%c%c", 556 alpha2[0], alpha2[1]); 557 558 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 559 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 560 return -EINVAL; 561 } 562 563 if (!is_world_regdom((char *) alpha2)) 564 pr_debug("Calling CRDA for country: %c%c\n", 565 alpha2[0], alpha2[1]); 566 else 567 pr_debug("Calling CRDA to update world regulatory domain\n"); 568 569 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 570 if (ret) 571 return ret; 572 573 queue_delayed_work(system_power_efficient_wq, 574 &crda_timeout, msecs_to_jiffies(3142)); 575 return 0; 576 } 577 #else 578 static inline void cancel_crda_timeout(void) {} 579 static inline void cancel_crda_timeout_sync(void) {} 580 static inline void reset_crda_timeouts(void) {} 581 static inline int call_crda(const char *alpha2) 582 { 583 return -ENODATA; 584 } 585 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 586 587 /* code to directly load a firmware database through request_firmware */ 588 static const struct fwdb_header *regdb; 589 590 struct fwdb_country { 591 u8 alpha2[2]; 592 __be16 coll_ptr; 593 /* this struct cannot be extended */ 594 } __packed __aligned(4); 595 596 struct fwdb_collection { 597 u8 len; 598 u8 n_rules; 599 u8 dfs_region; 600 /* no optional data yet */ 601 /* aligned to 2, then followed by __be16 array of rule pointers */ 602 } __packed __aligned(4); 603 604 enum fwdb_flags { 605 FWDB_FLAG_NO_OFDM = BIT(0), 606 FWDB_FLAG_NO_OUTDOOR = BIT(1), 607 FWDB_FLAG_DFS = BIT(2), 608 FWDB_FLAG_NO_IR = BIT(3), 609 FWDB_FLAG_AUTO_BW = BIT(4), 610 }; 611 612 struct fwdb_wmm_ac { 613 u8 ecw; 614 u8 aifsn; 615 __be16 cot; 616 } __packed; 617 618 struct fwdb_wmm_rule { 619 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 620 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 621 } __packed; 622 623 struct fwdb_rule { 624 u8 len; 625 u8 flags; 626 __be16 max_eirp; 627 __be32 start, end, max_bw; 628 /* start of optional data */ 629 __be16 cac_timeout; 630 __be16 wmm_ptr; 631 } __packed __aligned(4); 632 633 #define FWDB_MAGIC 0x52474442 634 #define FWDB_VERSION 20 635 636 struct fwdb_header { 637 __be32 magic; 638 __be32 version; 639 struct fwdb_country country[]; 640 } __packed __aligned(4); 641 642 static int ecw2cw(int ecw) 643 { 644 return (1 << ecw) - 1; 645 } 646 647 static bool valid_wmm(struct fwdb_wmm_rule *rule) 648 { 649 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 650 int i; 651 652 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 653 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 654 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 655 u8 aifsn = ac[i].aifsn; 656 657 if (cw_min >= cw_max) 658 return false; 659 660 if (aifsn < 1) 661 return false; 662 } 663 664 return true; 665 } 666 667 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 668 { 669 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 670 671 if ((u8 *)rule + sizeof(rule->len) > data + size) 672 return false; 673 674 /* mandatory fields */ 675 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 676 return false; 677 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 678 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 679 struct fwdb_wmm_rule *wmm; 680 681 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 682 return false; 683 684 wmm = (void *)(data + wmm_ptr); 685 686 if (!valid_wmm(wmm)) 687 return false; 688 } 689 return true; 690 } 691 692 static bool valid_country(const u8 *data, unsigned int size, 693 const struct fwdb_country *country) 694 { 695 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 696 struct fwdb_collection *coll = (void *)(data + ptr); 697 __be16 *rules_ptr; 698 unsigned int i; 699 700 /* make sure we can read len/n_rules */ 701 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 702 return false; 703 704 /* make sure base struct and all rules fit */ 705 if ((u8 *)coll + ALIGN(coll->len, 2) + 706 (coll->n_rules * 2) > data + size) 707 return false; 708 709 /* mandatory fields must exist */ 710 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 711 return false; 712 713 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 714 715 for (i = 0; i < coll->n_rules; i++) { 716 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 717 718 if (!valid_rule(data, size, rule_ptr)) 719 return false; 720 } 721 722 return true; 723 } 724 725 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 726 static struct key *builtin_regdb_keys; 727 728 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen) 729 { 730 const u8 *end = p + buflen; 731 size_t plen; 732 key_ref_t key; 733 734 while (p < end) { 735 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more 736 * than 256 bytes in size. 737 */ 738 if (end - p < 4) 739 goto dodgy_cert; 740 if (p[0] != 0x30 && 741 p[1] != 0x82) 742 goto dodgy_cert; 743 plen = (p[2] << 8) | p[3]; 744 plen += 4; 745 if (plen > end - p) 746 goto dodgy_cert; 747 748 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1), 749 "asymmetric", NULL, p, plen, 750 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 751 KEY_USR_VIEW | KEY_USR_READ), 752 KEY_ALLOC_NOT_IN_QUOTA | 753 KEY_ALLOC_BUILT_IN | 754 KEY_ALLOC_BYPASS_RESTRICTION); 755 if (IS_ERR(key)) { 756 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n", 757 PTR_ERR(key)); 758 } else { 759 pr_notice("Loaded X.509 cert '%s'\n", 760 key_ref_to_ptr(key)->description); 761 key_ref_put(key); 762 } 763 p += plen; 764 } 765 766 return; 767 768 dodgy_cert: 769 pr_err("Problem parsing in-kernel X.509 certificate list\n"); 770 } 771 772 static int __init load_builtin_regdb_keys(void) 773 { 774 builtin_regdb_keys = 775 keyring_alloc(".builtin_regdb_keys", 776 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 777 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 778 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 779 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 780 if (IS_ERR(builtin_regdb_keys)) 781 return PTR_ERR(builtin_regdb_keys); 782 783 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 784 785 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 786 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len); 787 #endif 788 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 789 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 790 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len); 791 #endif 792 793 return 0; 794 } 795 796 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 797 { 798 const struct firmware *sig; 799 bool result; 800 801 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 802 return false; 803 804 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 805 builtin_regdb_keys, 806 VERIFYING_UNSPECIFIED_SIGNATURE, 807 NULL, NULL) == 0; 808 809 release_firmware(sig); 810 811 return result; 812 } 813 814 static void free_regdb_keyring(void) 815 { 816 key_put(builtin_regdb_keys); 817 } 818 #else 819 static int load_builtin_regdb_keys(void) 820 { 821 return 0; 822 } 823 824 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 825 { 826 return true; 827 } 828 829 static void free_regdb_keyring(void) 830 { 831 } 832 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 833 834 static bool valid_regdb(const u8 *data, unsigned int size) 835 { 836 const struct fwdb_header *hdr = (void *)data; 837 const struct fwdb_country *country; 838 839 if (size < sizeof(*hdr)) 840 return false; 841 842 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 843 return false; 844 845 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 846 return false; 847 848 if (!regdb_has_valid_signature(data, size)) 849 return false; 850 851 country = &hdr->country[0]; 852 while ((u8 *)(country + 1) <= data + size) { 853 if (!country->coll_ptr) 854 break; 855 if (!valid_country(data, size, country)) 856 return false; 857 country++; 858 } 859 860 return true; 861 } 862 863 static void set_wmm_rule(struct ieee80211_wmm_rule *rule, 864 struct fwdb_wmm_rule *wmm) 865 { 866 unsigned int i; 867 868 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 869 rule->client[i].cw_min = 870 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 871 rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 872 rule->client[i].aifsn = wmm->client[i].aifsn; 873 rule->client[i].cot = 1000 * be16_to_cpu(wmm->client[i].cot); 874 rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 875 rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 876 rule->ap[i].aifsn = wmm->ap[i].aifsn; 877 rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 878 } 879 } 880 881 static int __regdb_query_wmm(const struct fwdb_header *db, 882 const struct fwdb_country *country, int freq, 883 u32 *dbptr, struct ieee80211_wmm_rule *rule) 884 { 885 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 886 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 887 int i; 888 889 for (i = 0; i < coll->n_rules; i++) { 890 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 891 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 892 struct fwdb_rule *rrule = (void *)((u8 *)db + rule_ptr); 893 struct fwdb_wmm_rule *wmm; 894 unsigned int wmm_ptr; 895 896 if (rrule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 897 continue; 898 899 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rrule->start)) && 900 freq <= KHZ_TO_MHZ(be32_to_cpu(rrule->end))) { 901 wmm_ptr = be16_to_cpu(rrule->wmm_ptr) << 2; 902 wmm = (void *)((u8 *)db + wmm_ptr); 903 set_wmm_rule(rule, wmm); 904 if (dbptr) 905 *dbptr = wmm_ptr; 906 return 0; 907 } 908 } 909 910 return -ENODATA; 911 } 912 913 int reg_query_regdb_wmm(char *alpha2, int freq, u32 *dbptr, 914 struct ieee80211_wmm_rule *rule) 915 { 916 const struct fwdb_header *hdr = regdb; 917 const struct fwdb_country *country; 918 919 if (!regdb) 920 return -ENODATA; 921 922 if (IS_ERR(regdb)) 923 return PTR_ERR(regdb); 924 925 country = &hdr->country[0]; 926 while (country->coll_ptr) { 927 if (alpha2_equal(alpha2, country->alpha2)) 928 return __regdb_query_wmm(regdb, country, freq, dbptr, 929 rule); 930 931 country++; 932 } 933 934 return -ENODATA; 935 } 936 EXPORT_SYMBOL(reg_query_regdb_wmm); 937 938 struct wmm_ptrs { 939 struct ieee80211_wmm_rule *rule; 940 u32 ptr; 941 }; 942 943 static struct ieee80211_wmm_rule *find_wmm_ptr(struct wmm_ptrs *wmm_ptrs, 944 u32 wmm_ptr, int n_wmms) 945 { 946 int i; 947 948 for (i = 0; i < n_wmms; i++) { 949 if (wmm_ptrs[i].ptr == wmm_ptr) 950 return wmm_ptrs[i].rule; 951 } 952 return NULL; 953 } 954 955 static int regdb_query_country(const struct fwdb_header *db, 956 const struct fwdb_country *country) 957 { 958 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 959 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 960 struct ieee80211_regdomain *regdom; 961 struct ieee80211_regdomain *tmp_rd; 962 unsigned int size_of_regd, i, n_wmms = 0; 963 struct wmm_ptrs *wmm_ptrs; 964 965 size_of_regd = sizeof(struct ieee80211_regdomain) + 966 coll->n_rules * sizeof(struct ieee80211_reg_rule); 967 968 regdom = kzalloc(size_of_regd, GFP_KERNEL); 969 if (!regdom) 970 return -ENOMEM; 971 972 wmm_ptrs = kcalloc(coll->n_rules, sizeof(*wmm_ptrs), GFP_KERNEL); 973 if (!wmm_ptrs) { 974 kfree(regdom); 975 return -ENOMEM; 976 } 977 978 regdom->n_reg_rules = coll->n_rules; 979 regdom->alpha2[0] = country->alpha2[0]; 980 regdom->alpha2[1] = country->alpha2[1]; 981 regdom->dfs_region = coll->dfs_region; 982 983 for (i = 0; i < regdom->n_reg_rules; i++) { 984 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 985 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 986 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 987 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 988 989 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 990 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 991 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 992 993 rrule->power_rule.max_antenna_gain = 0; 994 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 995 996 rrule->flags = 0; 997 if (rule->flags & FWDB_FLAG_NO_OFDM) 998 rrule->flags |= NL80211_RRF_NO_OFDM; 999 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 1000 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 1001 if (rule->flags & FWDB_FLAG_DFS) 1002 rrule->flags |= NL80211_RRF_DFS; 1003 if (rule->flags & FWDB_FLAG_NO_IR) 1004 rrule->flags |= NL80211_RRF_NO_IR; 1005 if (rule->flags & FWDB_FLAG_AUTO_BW) 1006 rrule->flags |= NL80211_RRF_AUTO_BW; 1007 1008 rrule->dfs_cac_ms = 0; 1009 1010 /* handle optional data */ 1011 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 1012 rrule->dfs_cac_ms = 1013 1000 * be16_to_cpu(rule->cac_timeout); 1014 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 1015 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 1016 struct ieee80211_wmm_rule *wmm_pos = 1017 find_wmm_ptr(wmm_ptrs, wmm_ptr, n_wmms); 1018 struct fwdb_wmm_rule *wmm; 1019 struct ieee80211_wmm_rule *wmm_rule; 1020 1021 if (wmm_pos) { 1022 rrule->wmm_rule = wmm_pos; 1023 continue; 1024 } 1025 wmm = (void *)((u8 *)db + wmm_ptr); 1026 tmp_rd = krealloc(regdom, size_of_regd + (n_wmms + 1) * 1027 sizeof(struct ieee80211_wmm_rule), 1028 GFP_KERNEL); 1029 1030 if (!tmp_rd) { 1031 kfree(regdom); 1032 kfree(wmm_ptrs); 1033 return -ENOMEM; 1034 } 1035 regdom = tmp_rd; 1036 1037 wmm_rule = (struct ieee80211_wmm_rule *) 1038 ((u8 *)regdom + size_of_regd + n_wmms * 1039 sizeof(struct ieee80211_wmm_rule)); 1040 1041 set_wmm_rule(wmm_rule, wmm); 1042 wmm_ptrs[n_wmms].ptr = wmm_ptr; 1043 wmm_ptrs[n_wmms++].rule = wmm_rule; 1044 } 1045 } 1046 kfree(wmm_ptrs); 1047 1048 return reg_schedule_apply(regdom); 1049 } 1050 1051 static int query_regdb(const char *alpha2) 1052 { 1053 const struct fwdb_header *hdr = regdb; 1054 const struct fwdb_country *country; 1055 1056 ASSERT_RTNL(); 1057 1058 if (IS_ERR(regdb)) 1059 return PTR_ERR(regdb); 1060 1061 country = &hdr->country[0]; 1062 while (country->coll_ptr) { 1063 if (alpha2_equal(alpha2, country->alpha2)) 1064 return regdb_query_country(regdb, country); 1065 country++; 1066 } 1067 1068 return -ENODATA; 1069 } 1070 1071 static void regdb_fw_cb(const struct firmware *fw, void *context) 1072 { 1073 int set_error = 0; 1074 bool restore = true; 1075 void *db; 1076 1077 if (!fw) { 1078 pr_info("failed to load regulatory.db\n"); 1079 set_error = -ENODATA; 1080 } else if (!valid_regdb(fw->data, fw->size)) { 1081 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1082 set_error = -EINVAL; 1083 } 1084 1085 rtnl_lock(); 1086 if (WARN_ON(regdb && !IS_ERR(regdb))) { 1087 /* just restore and free new db */ 1088 } else if (set_error) { 1089 regdb = ERR_PTR(set_error); 1090 } else if (fw) { 1091 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1092 if (db) { 1093 regdb = db; 1094 restore = context && query_regdb(context); 1095 } else { 1096 restore = true; 1097 } 1098 } 1099 1100 if (restore) 1101 restore_regulatory_settings(true); 1102 1103 rtnl_unlock(); 1104 1105 kfree(context); 1106 1107 release_firmware(fw); 1108 } 1109 1110 static int query_regdb_file(const char *alpha2) 1111 { 1112 ASSERT_RTNL(); 1113 1114 if (regdb) 1115 return query_regdb(alpha2); 1116 1117 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1118 if (!alpha2) 1119 return -ENOMEM; 1120 1121 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1122 ®_pdev->dev, GFP_KERNEL, 1123 (void *)alpha2, regdb_fw_cb); 1124 } 1125 1126 int reg_reload_regdb(void) 1127 { 1128 const struct firmware *fw; 1129 void *db; 1130 int err; 1131 1132 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1133 if (err) 1134 return err; 1135 1136 if (!valid_regdb(fw->data, fw->size)) { 1137 err = -ENODATA; 1138 goto out; 1139 } 1140 1141 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1142 if (!db) { 1143 err = -ENOMEM; 1144 goto out; 1145 } 1146 1147 rtnl_lock(); 1148 if (!IS_ERR_OR_NULL(regdb)) 1149 kfree(regdb); 1150 regdb = db; 1151 rtnl_unlock(); 1152 1153 out: 1154 release_firmware(fw); 1155 return err; 1156 } 1157 1158 static bool reg_query_database(struct regulatory_request *request) 1159 { 1160 if (query_regdb_file(request->alpha2) == 0) 1161 return true; 1162 1163 if (call_crda(request->alpha2) == 0) 1164 return true; 1165 1166 return false; 1167 } 1168 1169 bool reg_is_valid_request(const char *alpha2) 1170 { 1171 struct regulatory_request *lr = get_last_request(); 1172 1173 if (!lr || lr->processed) 1174 return false; 1175 1176 return alpha2_equal(lr->alpha2, alpha2); 1177 } 1178 1179 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1180 { 1181 struct regulatory_request *lr = get_last_request(); 1182 1183 /* 1184 * Follow the driver's regulatory domain, if present, unless a country 1185 * IE has been processed or a user wants to help complaince further 1186 */ 1187 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1188 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1189 wiphy->regd) 1190 return get_wiphy_regdom(wiphy); 1191 1192 return get_cfg80211_regdom(); 1193 } 1194 1195 static unsigned int 1196 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1197 const struct ieee80211_reg_rule *rule) 1198 { 1199 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1200 const struct ieee80211_freq_range *freq_range_tmp; 1201 const struct ieee80211_reg_rule *tmp; 1202 u32 start_freq, end_freq, idx, no; 1203 1204 for (idx = 0; idx < rd->n_reg_rules; idx++) 1205 if (rule == &rd->reg_rules[idx]) 1206 break; 1207 1208 if (idx == rd->n_reg_rules) 1209 return 0; 1210 1211 /* get start_freq */ 1212 no = idx; 1213 1214 while (no) { 1215 tmp = &rd->reg_rules[--no]; 1216 freq_range_tmp = &tmp->freq_range; 1217 1218 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1219 break; 1220 1221 freq_range = freq_range_tmp; 1222 } 1223 1224 start_freq = freq_range->start_freq_khz; 1225 1226 /* get end_freq */ 1227 freq_range = &rule->freq_range; 1228 no = idx; 1229 1230 while (no < rd->n_reg_rules - 1) { 1231 tmp = &rd->reg_rules[++no]; 1232 freq_range_tmp = &tmp->freq_range; 1233 1234 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1235 break; 1236 1237 freq_range = freq_range_tmp; 1238 } 1239 1240 end_freq = freq_range->end_freq_khz; 1241 1242 return end_freq - start_freq; 1243 } 1244 1245 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1246 const struct ieee80211_reg_rule *rule) 1247 { 1248 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1249 1250 if (rule->flags & NL80211_RRF_NO_160MHZ) 1251 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1252 if (rule->flags & NL80211_RRF_NO_80MHZ) 1253 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1254 1255 /* 1256 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1257 * are not allowed. 1258 */ 1259 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1260 rule->flags & NL80211_RRF_NO_HT40PLUS) 1261 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1262 1263 return bw; 1264 } 1265 1266 /* Sanity check on a regulatory rule */ 1267 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1268 { 1269 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1270 u32 freq_diff; 1271 1272 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1273 return false; 1274 1275 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1276 return false; 1277 1278 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1279 1280 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1281 freq_range->max_bandwidth_khz > freq_diff) 1282 return false; 1283 1284 return true; 1285 } 1286 1287 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1288 { 1289 const struct ieee80211_reg_rule *reg_rule = NULL; 1290 unsigned int i; 1291 1292 if (!rd->n_reg_rules) 1293 return false; 1294 1295 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1296 return false; 1297 1298 for (i = 0; i < rd->n_reg_rules; i++) { 1299 reg_rule = &rd->reg_rules[i]; 1300 if (!is_valid_reg_rule(reg_rule)) 1301 return false; 1302 } 1303 1304 return true; 1305 } 1306 1307 /** 1308 * freq_in_rule_band - tells us if a frequency is in a frequency band 1309 * @freq_range: frequency rule we want to query 1310 * @freq_khz: frequency we are inquiring about 1311 * 1312 * This lets us know if a specific frequency rule is or is not relevant to 1313 * a specific frequency's band. Bands are device specific and artificial 1314 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1315 * however it is safe for now to assume that a frequency rule should not be 1316 * part of a frequency's band if the start freq or end freq are off by more 1317 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the 1318 * 60 GHz band. 1319 * This resolution can be lowered and should be considered as we add 1320 * regulatory rule support for other "bands". 1321 **/ 1322 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1323 u32 freq_khz) 1324 { 1325 #define ONE_GHZ_IN_KHZ 1000000 1326 /* 1327 * From 802.11ad: directional multi-gigabit (DMG): 1328 * Pertaining to operation in a frequency band containing a channel 1329 * with the Channel starting frequency above 45 GHz. 1330 */ 1331 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1332 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1333 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1334 return true; 1335 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1336 return true; 1337 return false; 1338 #undef ONE_GHZ_IN_KHZ 1339 } 1340 1341 /* 1342 * Later on we can perhaps use the more restrictive DFS 1343 * region but we don't have information for that yet so 1344 * for now simply disallow conflicts. 1345 */ 1346 static enum nl80211_dfs_regions 1347 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1348 const enum nl80211_dfs_regions dfs_region2) 1349 { 1350 if (dfs_region1 != dfs_region2) 1351 return NL80211_DFS_UNSET; 1352 return dfs_region1; 1353 } 1354 1355 /* 1356 * Helper for regdom_intersect(), this does the real 1357 * mathematical intersection fun 1358 */ 1359 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1360 const struct ieee80211_regdomain *rd2, 1361 const struct ieee80211_reg_rule *rule1, 1362 const struct ieee80211_reg_rule *rule2, 1363 struct ieee80211_reg_rule *intersected_rule) 1364 { 1365 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1366 struct ieee80211_freq_range *freq_range; 1367 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1368 struct ieee80211_power_rule *power_rule; 1369 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1370 1371 freq_range1 = &rule1->freq_range; 1372 freq_range2 = &rule2->freq_range; 1373 freq_range = &intersected_rule->freq_range; 1374 1375 power_rule1 = &rule1->power_rule; 1376 power_rule2 = &rule2->power_rule; 1377 power_rule = &intersected_rule->power_rule; 1378 1379 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1380 freq_range2->start_freq_khz); 1381 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1382 freq_range2->end_freq_khz); 1383 1384 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1385 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1386 1387 if (rule1->flags & NL80211_RRF_AUTO_BW) 1388 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1389 if (rule2->flags & NL80211_RRF_AUTO_BW) 1390 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1391 1392 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1393 1394 intersected_rule->flags = rule1->flags | rule2->flags; 1395 1396 /* 1397 * In case NL80211_RRF_AUTO_BW requested for both rules 1398 * set AUTO_BW in intersected rule also. Next we will 1399 * calculate BW correctly in handle_channel function. 1400 * In other case remove AUTO_BW flag while we calculate 1401 * maximum bandwidth correctly and auto calculation is 1402 * not required. 1403 */ 1404 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1405 (rule2->flags & NL80211_RRF_AUTO_BW)) 1406 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1407 else 1408 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1409 1410 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1411 if (freq_range->max_bandwidth_khz > freq_diff) 1412 freq_range->max_bandwidth_khz = freq_diff; 1413 1414 power_rule->max_eirp = min(power_rule1->max_eirp, 1415 power_rule2->max_eirp); 1416 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1417 power_rule2->max_antenna_gain); 1418 1419 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1420 rule2->dfs_cac_ms); 1421 1422 if (!is_valid_reg_rule(intersected_rule)) 1423 return -EINVAL; 1424 1425 return 0; 1426 } 1427 1428 /* check whether old rule contains new rule */ 1429 static bool rule_contains(struct ieee80211_reg_rule *r1, 1430 struct ieee80211_reg_rule *r2) 1431 { 1432 /* for simplicity, currently consider only same flags */ 1433 if (r1->flags != r2->flags) 1434 return false; 1435 1436 /* verify r1 is more restrictive */ 1437 if ((r1->power_rule.max_antenna_gain > 1438 r2->power_rule.max_antenna_gain) || 1439 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1440 return false; 1441 1442 /* make sure r2's range is contained within r1 */ 1443 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1444 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1445 return false; 1446 1447 /* and finally verify that r1.max_bw >= r2.max_bw */ 1448 if (r1->freq_range.max_bandwidth_khz < 1449 r2->freq_range.max_bandwidth_khz) 1450 return false; 1451 1452 return true; 1453 } 1454 1455 /* add or extend current rules. do nothing if rule is already contained */ 1456 static void add_rule(struct ieee80211_reg_rule *rule, 1457 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1458 { 1459 struct ieee80211_reg_rule *tmp_rule; 1460 int i; 1461 1462 for (i = 0; i < *n_rules; i++) { 1463 tmp_rule = ®_rules[i]; 1464 /* rule is already contained - do nothing */ 1465 if (rule_contains(tmp_rule, rule)) 1466 return; 1467 1468 /* extend rule if possible */ 1469 if (rule_contains(rule, tmp_rule)) { 1470 memcpy(tmp_rule, rule, sizeof(*rule)); 1471 return; 1472 } 1473 } 1474 1475 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1476 (*n_rules)++; 1477 } 1478 1479 /** 1480 * regdom_intersect - do the intersection between two regulatory domains 1481 * @rd1: first regulatory domain 1482 * @rd2: second regulatory domain 1483 * 1484 * Use this function to get the intersection between two regulatory domains. 1485 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1486 * as no one single alpha2 can represent this regulatory domain. 1487 * 1488 * Returns a pointer to the regulatory domain structure which will hold the 1489 * resulting intersection of rules between rd1 and rd2. We will 1490 * kzalloc() this structure for you. 1491 */ 1492 static struct ieee80211_regdomain * 1493 regdom_intersect(const struct ieee80211_regdomain *rd1, 1494 const struct ieee80211_regdomain *rd2) 1495 { 1496 int r, size_of_regd; 1497 unsigned int x, y; 1498 unsigned int num_rules = 0; 1499 const struct ieee80211_reg_rule *rule1, *rule2; 1500 struct ieee80211_reg_rule intersected_rule; 1501 struct ieee80211_regdomain *rd; 1502 1503 if (!rd1 || !rd2) 1504 return NULL; 1505 1506 /* 1507 * First we get a count of the rules we'll need, then we actually 1508 * build them. This is to so we can malloc() and free() a 1509 * regdomain once. The reason we use reg_rules_intersect() here 1510 * is it will return -EINVAL if the rule computed makes no sense. 1511 * All rules that do check out OK are valid. 1512 */ 1513 1514 for (x = 0; x < rd1->n_reg_rules; x++) { 1515 rule1 = &rd1->reg_rules[x]; 1516 for (y = 0; y < rd2->n_reg_rules; y++) { 1517 rule2 = &rd2->reg_rules[y]; 1518 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1519 &intersected_rule)) 1520 num_rules++; 1521 } 1522 } 1523 1524 if (!num_rules) 1525 return NULL; 1526 1527 size_of_regd = sizeof(struct ieee80211_regdomain) + 1528 num_rules * sizeof(struct ieee80211_reg_rule); 1529 1530 rd = kzalloc(size_of_regd, GFP_KERNEL); 1531 if (!rd) 1532 return NULL; 1533 1534 for (x = 0; x < rd1->n_reg_rules; x++) { 1535 rule1 = &rd1->reg_rules[x]; 1536 for (y = 0; y < rd2->n_reg_rules; y++) { 1537 rule2 = &rd2->reg_rules[y]; 1538 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1539 &intersected_rule); 1540 /* 1541 * No need to memset here the intersected rule here as 1542 * we're not using the stack anymore 1543 */ 1544 if (r) 1545 continue; 1546 1547 add_rule(&intersected_rule, rd->reg_rules, 1548 &rd->n_reg_rules); 1549 } 1550 } 1551 1552 rd->alpha2[0] = '9'; 1553 rd->alpha2[1] = '8'; 1554 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1555 rd2->dfs_region); 1556 1557 return rd; 1558 } 1559 1560 /* 1561 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1562 * want to just have the channel structure use these 1563 */ 1564 static u32 map_regdom_flags(u32 rd_flags) 1565 { 1566 u32 channel_flags = 0; 1567 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1568 channel_flags |= IEEE80211_CHAN_NO_IR; 1569 if (rd_flags & NL80211_RRF_DFS) 1570 channel_flags |= IEEE80211_CHAN_RADAR; 1571 if (rd_flags & NL80211_RRF_NO_OFDM) 1572 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1573 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1574 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1575 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1576 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1577 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1578 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1579 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1580 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1581 if (rd_flags & NL80211_RRF_NO_80MHZ) 1582 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1583 if (rd_flags & NL80211_RRF_NO_160MHZ) 1584 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1585 return channel_flags; 1586 } 1587 1588 static const struct ieee80211_reg_rule * 1589 freq_reg_info_regd(u32 center_freq, 1590 const struct ieee80211_regdomain *regd, u32 bw) 1591 { 1592 int i; 1593 bool band_rule_found = false; 1594 bool bw_fits = false; 1595 1596 if (!regd) 1597 return ERR_PTR(-EINVAL); 1598 1599 for (i = 0; i < regd->n_reg_rules; i++) { 1600 const struct ieee80211_reg_rule *rr; 1601 const struct ieee80211_freq_range *fr = NULL; 1602 1603 rr = ®d->reg_rules[i]; 1604 fr = &rr->freq_range; 1605 1606 /* 1607 * We only need to know if one frequency rule was 1608 * was in center_freq's band, that's enough, so lets 1609 * not overwrite it once found 1610 */ 1611 if (!band_rule_found) 1612 band_rule_found = freq_in_rule_band(fr, center_freq); 1613 1614 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1615 1616 if (band_rule_found && bw_fits) 1617 return rr; 1618 } 1619 1620 if (!band_rule_found) 1621 return ERR_PTR(-ERANGE); 1622 1623 return ERR_PTR(-EINVAL); 1624 } 1625 1626 static const struct ieee80211_reg_rule * 1627 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1628 { 1629 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1630 const struct ieee80211_reg_rule *reg_rule = NULL; 1631 u32 bw; 1632 1633 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 1634 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1635 if (!IS_ERR(reg_rule)) 1636 return reg_rule; 1637 } 1638 1639 return reg_rule; 1640 } 1641 1642 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1643 u32 center_freq) 1644 { 1645 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20)); 1646 } 1647 EXPORT_SYMBOL(freq_reg_info); 1648 1649 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1650 { 1651 switch (initiator) { 1652 case NL80211_REGDOM_SET_BY_CORE: 1653 return "core"; 1654 case NL80211_REGDOM_SET_BY_USER: 1655 return "user"; 1656 case NL80211_REGDOM_SET_BY_DRIVER: 1657 return "driver"; 1658 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1659 return "country element"; 1660 default: 1661 WARN_ON(1); 1662 return "bug"; 1663 } 1664 } 1665 EXPORT_SYMBOL(reg_initiator_name); 1666 1667 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1668 const struct ieee80211_reg_rule *reg_rule, 1669 const struct ieee80211_channel *chan) 1670 { 1671 const struct ieee80211_freq_range *freq_range = NULL; 1672 u32 max_bandwidth_khz, bw_flags = 0; 1673 1674 freq_range = ®_rule->freq_range; 1675 1676 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1677 /* Check if auto calculation requested */ 1678 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1679 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1680 1681 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1682 if (!cfg80211_does_bw_fit_range(freq_range, 1683 MHZ_TO_KHZ(chan->center_freq), 1684 MHZ_TO_KHZ(10))) 1685 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1686 if (!cfg80211_does_bw_fit_range(freq_range, 1687 MHZ_TO_KHZ(chan->center_freq), 1688 MHZ_TO_KHZ(20))) 1689 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1690 1691 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1692 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1693 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1694 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1695 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1696 bw_flags |= IEEE80211_CHAN_NO_HT40; 1697 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1698 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1699 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1700 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1701 return bw_flags; 1702 } 1703 1704 /* 1705 * Note that right now we assume the desired channel bandwidth 1706 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1707 * per channel, the primary and the extension channel). 1708 */ 1709 static void handle_channel(struct wiphy *wiphy, 1710 enum nl80211_reg_initiator initiator, 1711 struct ieee80211_channel *chan) 1712 { 1713 u32 flags, bw_flags = 0; 1714 const struct ieee80211_reg_rule *reg_rule = NULL; 1715 const struct ieee80211_power_rule *power_rule = NULL; 1716 struct wiphy *request_wiphy = NULL; 1717 struct regulatory_request *lr = get_last_request(); 1718 const struct ieee80211_regdomain *regd; 1719 1720 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1721 1722 flags = chan->orig_flags; 1723 1724 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 1725 if (IS_ERR(reg_rule)) { 1726 /* 1727 * We will disable all channels that do not match our 1728 * received regulatory rule unless the hint is coming 1729 * from a Country IE and the Country IE had no information 1730 * about a band. The IEEE 802.11 spec allows for an AP 1731 * to send only a subset of the regulatory rules allowed, 1732 * so an AP in the US that only supports 2.4 GHz may only send 1733 * a country IE with information for the 2.4 GHz band 1734 * while 5 GHz is still supported. 1735 */ 1736 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1737 PTR_ERR(reg_rule) == -ERANGE) 1738 return; 1739 1740 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1741 request_wiphy && request_wiphy == wiphy && 1742 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1743 pr_debug("Disabling freq %d MHz for good\n", 1744 chan->center_freq); 1745 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1746 chan->flags = chan->orig_flags; 1747 } else { 1748 pr_debug("Disabling freq %d MHz\n", 1749 chan->center_freq); 1750 chan->flags |= IEEE80211_CHAN_DISABLED; 1751 } 1752 return; 1753 } 1754 1755 regd = reg_get_regdomain(wiphy); 1756 1757 power_rule = ®_rule->power_rule; 1758 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1759 1760 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1761 request_wiphy && request_wiphy == wiphy && 1762 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1763 /* 1764 * This guarantees the driver's requested regulatory domain 1765 * will always be used as a base for further regulatory 1766 * settings 1767 */ 1768 chan->flags = chan->orig_flags = 1769 map_regdom_flags(reg_rule->flags) | bw_flags; 1770 chan->max_antenna_gain = chan->orig_mag = 1771 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1772 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1773 (int) MBM_TO_DBM(power_rule->max_eirp); 1774 1775 if (chan->flags & IEEE80211_CHAN_RADAR) { 1776 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1777 if (reg_rule->dfs_cac_ms) 1778 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1779 } 1780 1781 return; 1782 } 1783 1784 chan->dfs_state = NL80211_DFS_USABLE; 1785 chan->dfs_state_entered = jiffies; 1786 1787 chan->beacon_found = false; 1788 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1789 chan->max_antenna_gain = 1790 min_t(int, chan->orig_mag, 1791 MBI_TO_DBI(power_rule->max_antenna_gain)); 1792 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1793 1794 if (chan->flags & IEEE80211_CHAN_RADAR) { 1795 if (reg_rule->dfs_cac_ms) 1796 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1797 else 1798 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1799 } 1800 1801 if (chan->orig_mpwr) { 1802 /* 1803 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1804 * will always follow the passed country IE power settings. 1805 */ 1806 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1807 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1808 chan->max_power = chan->max_reg_power; 1809 else 1810 chan->max_power = min(chan->orig_mpwr, 1811 chan->max_reg_power); 1812 } else 1813 chan->max_power = chan->max_reg_power; 1814 } 1815 1816 static void handle_band(struct wiphy *wiphy, 1817 enum nl80211_reg_initiator initiator, 1818 struct ieee80211_supported_band *sband) 1819 { 1820 unsigned int i; 1821 1822 if (!sband) 1823 return; 1824 1825 for (i = 0; i < sband->n_channels; i++) 1826 handle_channel(wiphy, initiator, &sband->channels[i]); 1827 } 1828 1829 static bool reg_request_cell_base(struct regulatory_request *request) 1830 { 1831 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1832 return false; 1833 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 1834 } 1835 1836 bool reg_last_request_cell_base(void) 1837 { 1838 return reg_request_cell_base(get_last_request()); 1839 } 1840 1841 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 1842 /* Core specific check */ 1843 static enum reg_request_treatment 1844 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1845 { 1846 struct regulatory_request *lr = get_last_request(); 1847 1848 if (!reg_num_devs_support_basehint) 1849 return REG_REQ_IGNORE; 1850 1851 if (reg_request_cell_base(lr) && 1852 !regdom_changes(pending_request->alpha2)) 1853 return REG_REQ_ALREADY_SET; 1854 1855 return REG_REQ_OK; 1856 } 1857 1858 /* Device specific check */ 1859 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1860 { 1861 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 1862 } 1863 #else 1864 static enum reg_request_treatment 1865 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1866 { 1867 return REG_REQ_IGNORE; 1868 } 1869 1870 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1871 { 1872 return true; 1873 } 1874 #endif 1875 1876 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 1877 { 1878 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 1879 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 1880 return true; 1881 return false; 1882 } 1883 1884 static bool ignore_reg_update(struct wiphy *wiphy, 1885 enum nl80211_reg_initiator initiator) 1886 { 1887 struct regulatory_request *lr = get_last_request(); 1888 1889 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 1890 return true; 1891 1892 if (!lr) { 1893 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 1894 reg_initiator_name(initiator)); 1895 return true; 1896 } 1897 1898 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1899 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 1900 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 1901 reg_initiator_name(initiator)); 1902 return true; 1903 } 1904 1905 /* 1906 * wiphy->regd will be set once the device has its own 1907 * desired regulatory domain set 1908 */ 1909 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1910 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1911 !is_world_regdom(lr->alpha2)) { 1912 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 1913 reg_initiator_name(initiator)); 1914 return true; 1915 } 1916 1917 if (reg_request_cell_base(lr)) 1918 return reg_dev_ignore_cell_hint(wiphy); 1919 1920 return false; 1921 } 1922 1923 static bool reg_is_world_roaming(struct wiphy *wiphy) 1924 { 1925 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1926 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1927 struct regulatory_request *lr = get_last_request(); 1928 1929 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1930 return true; 1931 1932 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1933 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1934 return true; 1935 1936 return false; 1937 } 1938 1939 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1940 struct reg_beacon *reg_beacon) 1941 { 1942 struct ieee80211_supported_band *sband; 1943 struct ieee80211_channel *chan; 1944 bool channel_changed = false; 1945 struct ieee80211_channel chan_before; 1946 1947 sband = wiphy->bands[reg_beacon->chan.band]; 1948 chan = &sband->channels[chan_idx]; 1949 1950 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1951 return; 1952 1953 if (chan->beacon_found) 1954 return; 1955 1956 chan->beacon_found = true; 1957 1958 if (!reg_is_world_roaming(wiphy)) 1959 return; 1960 1961 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 1962 return; 1963 1964 chan_before = *chan; 1965 1966 if (chan->flags & IEEE80211_CHAN_NO_IR) { 1967 chan->flags &= ~IEEE80211_CHAN_NO_IR; 1968 channel_changed = true; 1969 } 1970 1971 if (channel_changed) 1972 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1973 } 1974 1975 /* 1976 * Called when a scan on a wiphy finds a beacon on 1977 * new channel 1978 */ 1979 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1980 struct reg_beacon *reg_beacon) 1981 { 1982 unsigned int i; 1983 struct ieee80211_supported_band *sband; 1984 1985 if (!wiphy->bands[reg_beacon->chan.band]) 1986 return; 1987 1988 sband = wiphy->bands[reg_beacon->chan.band]; 1989 1990 for (i = 0; i < sband->n_channels; i++) 1991 handle_reg_beacon(wiphy, i, reg_beacon); 1992 } 1993 1994 /* 1995 * Called upon reg changes or a new wiphy is added 1996 */ 1997 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1998 { 1999 unsigned int i; 2000 struct ieee80211_supported_band *sband; 2001 struct reg_beacon *reg_beacon; 2002 2003 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 2004 if (!wiphy->bands[reg_beacon->chan.band]) 2005 continue; 2006 sband = wiphy->bands[reg_beacon->chan.band]; 2007 for (i = 0; i < sband->n_channels; i++) 2008 handle_reg_beacon(wiphy, i, reg_beacon); 2009 } 2010 } 2011 2012 /* Reap the advantages of previously found beacons */ 2013 static void reg_process_beacons(struct wiphy *wiphy) 2014 { 2015 /* 2016 * Means we are just firing up cfg80211, so no beacons would 2017 * have been processed yet. 2018 */ 2019 if (!last_request) 2020 return; 2021 wiphy_update_beacon_reg(wiphy); 2022 } 2023 2024 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2025 { 2026 if (!chan) 2027 return false; 2028 if (chan->flags & IEEE80211_CHAN_DISABLED) 2029 return false; 2030 /* This would happen when regulatory rules disallow HT40 completely */ 2031 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2032 return false; 2033 return true; 2034 } 2035 2036 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2037 struct ieee80211_channel *channel) 2038 { 2039 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2040 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2041 const struct ieee80211_regdomain *regd; 2042 unsigned int i; 2043 u32 flags; 2044 2045 if (!is_ht40_allowed(channel)) { 2046 channel->flags |= IEEE80211_CHAN_NO_HT40; 2047 return; 2048 } 2049 2050 /* 2051 * We need to ensure the extension channels exist to 2052 * be able to use HT40- or HT40+, this finds them (or not) 2053 */ 2054 for (i = 0; i < sband->n_channels; i++) { 2055 struct ieee80211_channel *c = &sband->channels[i]; 2056 2057 if (c->center_freq == (channel->center_freq - 20)) 2058 channel_before = c; 2059 if (c->center_freq == (channel->center_freq + 20)) 2060 channel_after = c; 2061 } 2062 2063 flags = 0; 2064 regd = get_wiphy_regdom(wiphy); 2065 if (regd) { 2066 const struct ieee80211_reg_rule *reg_rule = 2067 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2068 regd, MHZ_TO_KHZ(20)); 2069 2070 if (!IS_ERR(reg_rule)) 2071 flags = reg_rule->flags; 2072 } 2073 2074 /* 2075 * Please note that this assumes target bandwidth is 20 MHz, 2076 * if that ever changes we also need to change the below logic 2077 * to include that as well. 2078 */ 2079 if (!is_ht40_allowed(channel_before) || 2080 flags & NL80211_RRF_NO_HT40MINUS) 2081 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2082 else 2083 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2084 2085 if (!is_ht40_allowed(channel_after) || 2086 flags & NL80211_RRF_NO_HT40PLUS) 2087 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2088 else 2089 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2090 } 2091 2092 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2093 struct ieee80211_supported_band *sband) 2094 { 2095 unsigned int i; 2096 2097 if (!sband) 2098 return; 2099 2100 for (i = 0; i < sband->n_channels; i++) 2101 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2102 } 2103 2104 static void reg_process_ht_flags(struct wiphy *wiphy) 2105 { 2106 enum nl80211_band band; 2107 2108 if (!wiphy) 2109 return; 2110 2111 for (band = 0; band < NUM_NL80211_BANDS; band++) 2112 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2113 } 2114 2115 static void reg_call_notifier(struct wiphy *wiphy, 2116 struct regulatory_request *request) 2117 { 2118 if (wiphy->reg_notifier) 2119 wiphy->reg_notifier(wiphy, request); 2120 } 2121 2122 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2123 { 2124 struct cfg80211_chan_def chandef; 2125 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2126 enum nl80211_iftype iftype; 2127 2128 wdev_lock(wdev); 2129 iftype = wdev->iftype; 2130 2131 /* make sure the interface is active */ 2132 if (!wdev->netdev || !netif_running(wdev->netdev)) 2133 goto wdev_inactive_unlock; 2134 2135 switch (iftype) { 2136 case NL80211_IFTYPE_AP: 2137 case NL80211_IFTYPE_P2P_GO: 2138 if (!wdev->beacon_interval) 2139 goto wdev_inactive_unlock; 2140 chandef = wdev->chandef; 2141 break; 2142 case NL80211_IFTYPE_ADHOC: 2143 if (!wdev->ssid_len) 2144 goto wdev_inactive_unlock; 2145 chandef = wdev->chandef; 2146 break; 2147 case NL80211_IFTYPE_STATION: 2148 case NL80211_IFTYPE_P2P_CLIENT: 2149 if (!wdev->current_bss || 2150 !wdev->current_bss->pub.channel) 2151 goto wdev_inactive_unlock; 2152 2153 if (!rdev->ops->get_channel || 2154 rdev_get_channel(rdev, wdev, &chandef)) 2155 cfg80211_chandef_create(&chandef, 2156 wdev->current_bss->pub.channel, 2157 NL80211_CHAN_NO_HT); 2158 break; 2159 case NL80211_IFTYPE_MONITOR: 2160 case NL80211_IFTYPE_AP_VLAN: 2161 case NL80211_IFTYPE_P2P_DEVICE: 2162 /* no enforcement required */ 2163 break; 2164 default: 2165 /* others not implemented for now */ 2166 WARN_ON(1); 2167 break; 2168 } 2169 2170 wdev_unlock(wdev); 2171 2172 switch (iftype) { 2173 case NL80211_IFTYPE_AP: 2174 case NL80211_IFTYPE_P2P_GO: 2175 case NL80211_IFTYPE_ADHOC: 2176 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 2177 case NL80211_IFTYPE_STATION: 2178 case NL80211_IFTYPE_P2P_CLIENT: 2179 return cfg80211_chandef_usable(wiphy, &chandef, 2180 IEEE80211_CHAN_DISABLED); 2181 default: 2182 break; 2183 } 2184 2185 return true; 2186 2187 wdev_inactive_unlock: 2188 wdev_unlock(wdev); 2189 return true; 2190 } 2191 2192 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2193 { 2194 struct wireless_dev *wdev; 2195 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2196 2197 ASSERT_RTNL(); 2198 2199 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2200 if (!reg_wdev_chan_valid(wiphy, wdev)) 2201 cfg80211_leave(rdev, wdev); 2202 } 2203 2204 static void reg_check_chans_work(struct work_struct *work) 2205 { 2206 struct cfg80211_registered_device *rdev; 2207 2208 pr_debug("Verifying active interfaces after reg change\n"); 2209 rtnl_lock(); 2210 2211 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2212 if (!(rdev->wiphy.regulatory_flags & 2213 REGULATORY_IGNORE_STALE_KICKOFF)) 2214 reg_leave_invalid_chans(&rdev->wiphy); 2215 2216 rtnl_unlock(); 2217 } 2218 2219 static void reg_check_channels(void) 2220 { 2221 /* 2222 * Give usermode a chance to do something nicer (move to another 2223 * channel, orderly disconnection), before forcing a disconnection. 2224 */ 2225 mod_delayed_work(system_power_efficient_wq, 2226 ®_check_chans, 2227 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2228 } 2229 2230 static void wiphy_update_regulatory(struct wiphy *wiphy, 2231 enum nl80211_reg_initiator initiator) 2232 { 2233 enum nl80211_band band; 2234 struct regulatory_request *lr = get_last_request(); 2235 2236 if (ignore_reg_update(wiphy, initiator)) { 2237 /* 2238 * Regulatory updates set by CORE are ignored for custom 2239 * regulatory cards. Let us notify the changes to the driver, 2240 * as some drivers used this to restore its orig_* reg domain. 2241 */ 2242 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2243 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2244 reg_call_notifier(wiphy, lr); 2245 return; 2246 } 2247 2248 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2249 2250 for (band = 0; band < NUM_NL80211_BANDS; band++) 2251 handle_band(wiphy, initiator, wiphy->bands[band]); 2252 2253 reg_process_beacons(wiphy); 2254 reg_process_ht_flags(wiphy); 2255 reg_call_notifier(wiphy, lr); 2256 } 2257 2258 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2259 { 2260 struct cfg80211_registered_device *rdev; 2261 struct wiphy *wiphy; 2262 2263 ASSERT_RTNL(); 2264 2265 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2266 wiphy = &rdev->wiphy; 2267 wiphy_update_regulatory(wiphy, initiator); 2268 } 2269 2270 reg_check_channels(); 2271 } 2272 2273 static void handle_channel_custom(struct wiphy *wiphy, 2274 struct ieee80211_channel *chan, 2275 const struct ieee80211_regdomain *regd) 2276 { 2277 u32 bw_flags = 0; 2278 const struct ieee80211_reg_rule *reg_rule = NULL; 2279 const struct ieee80211_power_rule *power_rule = NULL; 2280 u32 bw; 2281 2282 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) { 2283 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq), 2284 regd, bw); 2285 if (!IS_ERR(reg_rule)) 2286 break; 2287 } 2288 2289 if (IS_ERR(reg_rule)) { 2290 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n", 2291 chan->center_freq); 2292 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2293 chan->flags |= IEEE80211_CHAN_DISABLED; 2294 } else { 2295 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2296 chan->flags = chan->orig_flags; 2297 } 2298 return; 2299 } 2300 2301 power_rule = ®_rule->power_rule; 2302 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2303 2304 chan->dfs_state_entered = jiffies; 2305 chan->dfs_state = NL80211_DFS_USABLE; 2306 2307 chan->beacon_found = false; 2308 2309 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2310 chan->flags = chan->orig_flags | bw_flags | 2311 map_regdom_flags(reg_rule->flags); 2312 else 2313 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2314 2315 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2316 chan->max_reg_power = chan->max_power = 2317 (int) MBM_TO_DBM(power_rule->max_eirp); 2318 2319 if (chan->flags & IEEE80211_CHAN_RADAR) { 2320 if (reg_rule->dfs_cac_ms) 2321 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2322 else 2323 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2324 } 2325 2326 chan->max_power = chan->max_reg_power; 2327 } 2328 2329 static void handle_band_custom(struct wiphy *wiphy, 2330 struct ieee80211_supported_band *sband, 2331 const struct ieee80211_regdomain *regd) 2332 { 2333 unsigned int i; 2334 2335 if (!sband) 2336 return; 2337 2338 for (i = 0; i < sband->n_channels; i++) 2339 handle_channel_custom(wiphy, &sband->channels[i], regd); 2340 } 2341 2342 /* Used by drivers prior to wiphy registration */ 2343 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2344 const struct ieee80211_regdomain *regd) 2345 { 2346 enum nl80211_band band; 2347 unsigned int bands_set = 0; 2348 2349 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2350 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2351 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2352 2353 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2354 if (!wiphy->bands[band]) 2355 continue; 2356 handle_band_custom(wiphy, wiphy->bands[band], regd); 2357 bands_set++; 2358 } 2359 2360 /* 2361 * no point in calling this if it won't have any effect 2362 * on your device's supported bands. 2363 */ 2364 WARN_ON(!bands_set); 2365 } 2366 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2367 2368 static void reg_set_request_processed(void) 2369 { 2370 bool need_more_processing = false; 2371 struct regulatory_request *lr = get_last_request(); 2372 2373 lr->processed = true; 2374 2375 spin_lock(®_requests_lock); 2376 if (!list_empty(®_requests_list)) 2377 need_more_processing = true; 2378 spin_unlock(®_requests_lock); 2379 2380 cancel_crda_timeout(); 2381 2382 if (need_more_processing) 2383 schedule_work(®_work); 2384 } 2385 2386 /** 2387 * reg_process_hint_core - process core regulatory requests 2388 * @pending_request: a pending core regulatory request 2389 * 2390 * The wireless subsystem can use this function to process 2391 * a regulatory request issued by the regulatory core. 2392 */ 2393 static enum reg_request_treatment 2394 reg_process_hint_core(struct regulatory_request *core_request) 2395 { 2396 if (reg_query_database(core_request)) { 2397 core_request->intersect = false; 2398 core_request->processed = false; 2399 reg_update_last_request(core_request); 2400 return REG_REQ_OK; 2401 } 2402 2403 return REG_REQ_IGNORE; 2404 } 2405 2406 static enum reg_request_treatment 2407 __reg_process_hint_user(struct regulatory_request *user_request) 2408 { 2409 struct regulatory_request *lr = get_last_request(); 2410 2411 if (reg_request_cell_base(user_request)) 2412 return reg_ignore_cell_hint(user_request); 2413 2414 if (reg_request_cell_base(lr)) 2415 return REG_REQ_IGNORE; 2416 2417 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2418 return REG_REQ_INTERSECT; 2419 /* 2420 * If the user knows better the user should set the regdom 2421 * to their country before the IE is picked up 2422 */ 2423 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2424 lr->intersect) 2425 return REG_REQ_IGNORE; 2426 /* 2427 * Process user requests only after previous user/driver/core 2428 * requests have been processed 2429 */ 2430 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2431 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2432 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2433 regdom_changes(lr->alpha2)) 2434 return REG_REQ_IGNORE; 2435 2436 if (!regdom_changes(user_request->alpha2)) 2437 return REG_REQ_ALREADY_SET; 2438 2439 return REG_REQ_OK; 2440 } 2441 2442 /** 2443 * reg_process_hint_user - process user regulatory requests 2444 * @user_request: a pending user regulatory request 2445 * 2446 * The wireless subsystem can use this function to process 2447 * a regulatory request initiated by userspace. 2448 */ 2449 static enum reg_request_treatment 2450 reg_process_hint_user(struct regulatory_request *user_request) 2451 { 2452 enum reg_request_treatment treatment; 2453 2454 treatment = __reg_process_hint_user(user_request); 2455 if (treatment == REG_REQ_IGNORE || 2456 treatment == REG_REQ_ALREADY_SET) 2457 return REG_REQ_IGNORE; 2458 2459 user_request->intersect = treatment == REG_REQ_INTERSECT; 2460 user_request->processed = false; 2461 2462 if (reg_query_database(user_request)) { 2463 reg_update_last_request(user_request); 2464 user_alpha2[0] = user_request->alpha2[0]; 2465 user_alpha2[1] = user_request->alpha2[1]; 2466 return REG_REQ_OK; 2467 } 2468 2469 return REG_REQ_IGNORE; 2470 } 2471 2472 static enum reg_request_treatment 2473 __reg_process_hint_driver(struct regulatory_request *driver_request) 2474 { 2475 struct regulatory_request *lr = get_last_request(); 2476 2477 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2478 if (regdom_changes(driver_request->alpha2)) 2479 return REG_REQ_OK; 2480 return REG_REQ_ALREADY_SET; 2481 } 2482 2483 /* 2484 * This would happen if you unplug and plug your card 2485 * back in or if you add a new device for which the previously 2486 * loaded card also agrees on the regulatory domain. 2487 */ 2488 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2489 !regdom_changes(driver_request->alpha2)) 2490 return REG_REQ_ALREADY_SET; 2491 2492 return REG_REQ_INTERSECT; 2493 } 2494 2495 /** 2496 * reg_process_hint_driver - process driver regulatory requests 2497 * @driver_request: a pending driver regulatory request 2498 * 2499 * The wireless subsystem can use this function to process 2500 * a regulatory request issued by an 802.11 driver. 2501 * 2502 * Returns one of the different reg request treatment values. 2503 */ 2504 static enum reg_request_treatment 2505 reg_process_hint_driver(struct wiphy *wiphy, 2506 struct regulatory_request *driver_request) 2507 { 2508 const struct ieee80211_regdomain *regd, *tmp; 2509 enum reg_request_treatment treatment; 2510 2511 treatment = __reg_process_hint_driver(driver_request); 2512 2513 switch (treatment) { 2514 case REG_REQ_OK: 2515 break; 2516 case REG_REQ_IGNORE: 2517 return REG_REQ_IGNORE; 2518 case REG_REQ_INTERSECT: 2519 case REG_REQ_ALREADY_SET: 2520 regd = reg_copy_regd(get_cfg80211_regdom()); 2521 if (IS_ERR(regd)) 2522 return REG_REQ_IGNORE; 2523 2524 tmp = get_wiphy_regdom(wiphy); 2525 rcu_assign_pointer(wiphy->regd, regd); 2526 rcu_free_regdom(tmp); 2527 } 2528 2529 2530 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2531 driver_request->processed = false; 2532 2533 /* 2534 * Since CRDA will not be called in this case as we already 2535 * have applied the requested regulatory domain before we just 2536 * inform userspace we have processed the request 2537 */ 2538 if (treatment == REG_REQ_ALREADY_SET) { 2539 nl80211_send_reg_change_event(driver_request); 2540 reg_update_last_request(driver_request); 2541 reg_set_request_processed(); 2542 return REG_REQ_ALREADY_SET; 2543 } 2544 2545 if (reg_query_database(driver_request)) { 2546 reg_update_last_request(driver_request); 2547 return REG_REQ_OK; 2548 } 2549 2550 return REG_REQ_IGNORE; 2551 } 2552 2553 static enum reg_request_treatment 2554 __reg_process_hint_country_ie(struct wiphy *wiphy, 2555 struct regulatory_request *country_ie_request) 2556 { 2557 struct wiphy *last_wiphy = NULL; 2558 struct regulatory_request *lr = get_last_request(); 2559 2560 if (reg_request_cell_base(lr)) { 2561 /* Trust a Cell base station over the AP's country IE */ 2562 if (regdom_changes(country_ie_request->alpha2)) 2563 return REG_REQ_IGNORE; 2564 return REG_REQ_ALREADY_SET; 2565 } else { 2566 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2567 return REG_REQ_IGNORE; 2568 } 2569 2570 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2571 return -EINVAL; 2572 2573 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2574 return REG_REQ_OK; 2575 2576 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2577 2578 if (last_wiphy != wiphy) { 2579 /* 2580 * Two cards with two APs claiming different 2581 * Country IE alpha2s. We could 2582 * intersect them, but that seems unlikely 2583 * to be correct. Reject second one for now. 2584 */ 2585 if (regdom_changes(country_ie_request->alpha2)) 2586 return REG_REQ_IGNORE; 2587 return REG_REQ_ALREADY_SET; 2588 } 2589 2590 if (regdom_changes(country_ie_request->alpha2)) 2591 return REG_REQ_OK; 2592 return REG_REQ_ALREADY_SET; 2593 } 2594 2595 /** 2596 * reg_process_hint_country_ie - process regulatory requests from country IEs 2597 * @country_ie_request: a regulatory request from a country IE 2598 * 2599 * The wireless subsystem can use this function to process 2600 * a regulatory request issued by a country Information Element. 2601 * 2602 * Returns one of the different reg request treatment values. 2603 */ 2604 static enum reg_request_treatment 2605 reg_process_hint_country_ie(struct wiphy *wiphy, 2606 struct regulatory_request *country_ie_request) 2607 { 2608 enum reg_request_treatment treatment; 2609 2610 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2611 2612 switch (treatment) { 2613 case REG_REQ_OK: 2614 break; 2615 case REG_REQ_IGNORE: 2616 return REG_REQ_IGNORE; 2617 case REG_REQ_ALREADY_SET: 2618 reg_free_request(country_ie_request); 2619 return REG_REQ_ALREADY_SET; 2620 case REG_REQ_INTERSECT: 2621 /* 2622 * This doesn't happen yet, not sure we 2623 * ever want to support it for this case. 2624 */ 2625 WARN_ONCE(1, "Unexpected intersection for country elements"); 2626 return REG_REQ_IGNORE; 2627 } 2628 2629 country_ie_request->intersect = false; 2630 country_ie_request->processed = false; 2631 2632 if (reg_query_database(country_ie_request)) { 2633 reg_update_last_request(country_ie_request); 2634 return REG_REQ_OK; 2635 } 2636 2637 return REG_REQ_IGNORE; 2638 } 2639 2640 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2641 { 2642 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2643 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2644 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2645 bool dfs_domain_same; 2646 2647 rcu_read_lock(); 2648 2649 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2650 wiphy1_regd = rcu_dereference(wiphy1->regd); 2651 if (!wiphy1_regd) 2652 wiphy1_regd = cfg80211_regd; 2653 2654 wiphy2_regd = rcu_dereference(wiphy2->regd); 2655 if (!wiphy2_regd) 2656 wiphy2_regd = cfg80211_regd; 2657 2658 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2659 2660 rcu_read_unlock(); 2661 2662 return dfs_domain_same; 2663 } 2664 2665 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2666 struct ieee80211_channel *src_chan) 2667 { 2668 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2669 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2670 return; 2671 2672 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2673 src_chan->flags & IEEE80211_CHAN_DISABLED) 2674 return; 2675 2676 if (src_chan->center_freq == dst_chan->center_freq && 2677 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2678 dst_chan->dfs_state = src_chan->dfs_state; 2679 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2680 } 2681 } 2682 2683 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2684 struct wiphy *src_wiphy) 2685 { 2686 struct ieee80211_supported_band *src_sband, *dst_sband; 2687 struct ieee80211_channel *src_chan, *dst_chan; 2688 int i, j, band; 2689 2690 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2691 return; 2692 2693 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2694 dst_sband = dst_wiphy->bands[band]; 2695 src_sband = src_wiphy->bands[band]; 2696 if (!dst_sband || !src_sband) 2697 continue; 2698 2699 for (i = 0; i < dst_sband->n_channels; i++) { 2700 dst_chan = &dst_sband->channels[i]; 2701 for (j = 0; j < src_sband->n_channels; j++) { 2702 src_chan = &src_sband->channels[j]; 2703 reg_copy_dfs_chan_state(dst_chan, src_chan); 2704 } 2705 } 2706 } 2707 } 2708 2709 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2710 { 2711 struct cfg80211_registered_device *rdev; 2712 2713 ASSERT_RTNL(); 2714 2715 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2716 if (wiphy == &rdev->wiphy) 2717 continue; 2718 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2719 } 2720 } 2721 2722 /* This processes *all* regulatory hints */ 2723 static void reg_process_hint(struct regulatory_request *reg_request) 2724 { 2725 struct wiphy *wiphy = NULL; 2726 enum reg_request_treatment treatment; 2727 2728 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2729 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2730 2731 switch (reg_request->initiator) { 2732 case NL80211_REGDOM_SET_BY_CORE: 2733 treatment = reg_process_hint_core(reg_request); 2734 break; 2735 case NL80211_REGDOM_SET_BY_USER: 2736 treatment = reg_process_hint_user(reg_request); 2737 break; 2738 case NL80211_REGDOM_SET_BY_DRIVER: 2739 if (!wiphy) 2740 goto out_free; 2741 treatment = reg_process_hint_driver(wiphy, reg_request); 2742 break; 2743 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2744 if (!wiphy) 2745 goto out_free; 2746 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2747 break; 2748 default: 2749 WARN(1, "invalid initiator %d\n", reg_request->initiator); 2750 goto out_free; 2751 } 2752 2753 if (treatment == REG_REQ_IGNORE) 2754 goto out_free; 2755 2756 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 2757 "unexpected treatment value %d\n", treatment); 2758 2759 /* This is required so that the orig_* parameters are saved. 2760 * NOTE: treatment must be set for any case that reaches here! 2761 */ 2762 if (treatment == REG_REQ_ALREADY_SET && wiphy && 2763 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2764 wiphy_update_regulatory(wiphy, reg_request->initiator); 2765 wiphy_all_share_dfs_chan_state(wiphy); 2766 reg_check_channels(); 2767 } 2768 2769 return; 2770 2771 out_free: 2772 reg_free_request(reg_request); 2773 } 2774 2775 static void notify_self_managed_wiphys(struct regulatory_request *request) 2776 { 2777 struct cfg80211_registered_device *rdev; 2778 struct wiphy *wiphy; 2779 2780 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2781 wiphy = &rdev->wiphy; 2782 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 2783 request->initiator == NL80211_REGDOM_SET_BY_USER && 2784 request->user_reg_hint_type == 2785 NL80211_USER_REG_HINT_CELL_BASE) 2786 reg_call_notifier(wiphy, request); 2787 } 2788 } 2789 2790 static bool reg_only_self_managed_wiphys(void) 2791 { 2792 struct cfg80211_registered_device *rdev; 2793 struct wiphy *wiphy; 2794 bool self_managed_found = false; 2795 2796 ASSERT_RTNL(); 2797 2798 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2799 wiphy = &rdev->wiphy; 2800 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2801 self_managed_found = true; 2802 else 2803 return false; 2804 } 2805 2806 /* make sure at least one self-managed wiphy exists */ 2807 return self_managed_found; 2808 } 2809 2810 /* 2811 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 2812 * Regulatory hints come on a first come first serve basis and we 2813 * must process each one atomically. 2814 */ 2815 static void reg_process_pending_hints(void) 2816 { 2817 struct regulatory_request *reg_request, *lr; 2818 2819 lr = get_last_request(); 2820 2821 /* When last_request->processed becomes true this will be rescheduled */ 2822 if (lr && !lr->processed) { 2823 reg_process_hint(lr); 2824 return; 2825 } 2826 2827 spin_lock(®_requests_lock); 2828 2829 if (list_empty(®_requests_list)) { 2830 spin_unlock(®_requests_lock); 2831 return; 2832 } 2833 2834 reg_request = list_first_entry(®_requests_list, 2835 struct regulatory_request, 2836 list); 2837 list_del_init(®_request->list); 2838 2839 spin_unlock(®_requests_lock); 2840 2841 notify_self_managed_wiphys(reg_request); 2842 if (reg_only_self_managed_wiphys()) { 2843 reg_free_request(reg_request); 2844 return; 2845 } 2846 2847 reg_process_hint(reg_request); 2848 2849 lr = get_last_request(); 2850 2851 spin_lock(®_requests_lock); 2852 if (!list_empty(®_requests_list) && lr && lr->processed) 2853 schedule_work(®_work); 2854 spin_unlock(®_requests_lock); 2855 } 2856 2857 /* Processes beacon hints -- this has nothing to do with country IEs */ 2858 static void reg_process_pending_beacon_hints(void) 2859 { 2860 struct cfg80211_registered_device *rdev; 2861 struct reg_beacon *pending_beacon, *tmp; 2862 2863 /* This goes through the _pending_ beacon list */ 2864 spin_lock_bh(®_pending_beacons_lock); 2865 2866 list_for_each_entry_safe(pending_beacon, tmp, 2867 ®_pending_beacons, list) { 2868 list_del_init(&pending_beacon->list); 2869 2870 /* Applies the beacon hint to current wiphys */ 2871 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2872 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 2873 2874 /* Remembers the beacon hint for new wiphys or reg changes */ 2875 list_add_tail(&pending_beacon->list, ®_beacon_list); 2876 } 2877 2878 spin_unlock_bh(®_pending_beacons_lock); 2879 } 2880 2881 static void reg_process_self_managed_hints(void) 2882 { 2883 struct cfg80211_registered_device *rdev; 2884 struct wiphy *wiphy; 2885 const struct ieee80211_regdomain *tmp; 2886 const struct ieee80211_regdomain *regd; 2887 enum nl80211_band band; 2888 struct regulatory_request request = {}; 2889 2890 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2891 wiphy = &rdev->wiphy; 2892 2893 spin_lock(®_requests_lock); 2894 regd = rdev->requested_regd; 2895 rdev->requested_regd = NULL; 2896 spin_unlock(®_requests_lock); 2897 2898 if (regd == NULL) 2899 continue; 2900 2901 tmp = get_wiphy_regdom(wiphy); 2902 rcu_assign_pointer(wiphy->regd, regd); 2903 rcu_free_regdom(tmp); 2904 2905 for (band = 0; band < NUM_NL80211_BANDS; band++) 2906 handle_band_custom(wiphy, wiphy->bands[band], regd); 2907 2908 reg_process_ht_flags(wiphy); 2909 2910 request.wiphy_idx = get_wiphy_idx(wiphy); 2911 request.alpha2[0] = regd->alpha2[0]; 2912 request.alpha2[1] = regd->alpha2[1]; 2913 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 2914 2915 nl80211_send_wiphy_reg_change_event(&request); 2916 } 2917 2918 reg_check_channels(); 2919 } 2920 2921 static void reg_todo(struct work_struct *work) 2922 { 2923 rtnl_lock(); 2924 reg_process_pending_hints(); 2925 reg_process_pending_beacon_hints(); 2926 reg_process_self_managed_hints(); 2927 rtnl_unlock(); 2928 } 2929 2930 static void queue_regulatory_request(struct regulatory_request *request) 2931 { 2932 request->alpha2[0] = toupper(request->alpha2[0]); 2933 request->alpha2[1] = toupper(request->alpha2[1]); 2934 2935 spin_lock(®_requests_lock); 2936 list_add_tail(&request->list, ®_requests_list); 2937 spin_unlock(®_requests_lock); 2938 2939 schedule_work(®_work); 2940 } 2941 2942 /* 2943 * Core regulatory hint -- happens during cfg80211_init() 2944 * and when we restore regulatory settings. 2945 */ 2946 static int regulatory_hint_core(const char *alpha2) 2947 { 2948 struct regulatory_request *request; 2949 2950 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2951 if (!request) 2952 return -ENOMEM; 2953 2954 request->alpha2[0] = alpha2[0]; 2955 request->alpha2[1] = alpha2[1]; 2956 request->initiator = NL80211_REGDOM_SET_BY_CORE; 2957 2958 queue_regulatory_request(request); 2959 2960 return 0; 2961 } 2962 2963 /* User hints */ 2964 int regulatory_hint_user(const char *alpha2, 2965 enum nl80211_user_reg_hint_type user_reg_hint_type) 2966 { 2967 struct regulatory_request *request; 2968 2969 if (WARN_ON(!alpha2)) 2970 return -EINVAL; 2971 2972 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2973 if (!request) 2974 return -ENOMEM; 2975 2976 request->wiphy_idx = WIPHY_IDX_INVALID; 2977 request->alpha2[0] = alpha2[0]; 2978 request->alpha2[1] = alpha2[1]; 2979 request->initiator = NL80211_REGDOM_SET_BY_USER; 2980 request->user_reg_hint_type = user_reg_hint_type; 2981 2982 /* Allow calling CRDA again */ 2983 reset_crda_timeouts(); 2984 2985 queue_regulatory_request(request); 2986 2987 return 0; 2988 } 2989 2990 int regulatory_hint_indoor(bool is_indoor, u32 portid) 2991 { 2992 spin_lock(®_indoor_lock); 2993 2994 /* It is possible that more than one user space process is trying to 2995 * configure the indoor setting. To handle such cases, clear the indoor 2996 * setting in case that some process does not think that the device 2997 * is operating in an indoor environment. In addition, if a user space 2998 * process indicates that it is controlling the indoor setting, save its 2999 * portid, i.e., make it the owner. 3000 */ 3001 reg_is_indoor = is_indoor; 3002 if (reg_is_indoor) { 3003 if (!reg_is_indoor_portid) 3004 reg_is_indoor_portid = portid; 3005 } else { 3006 reg_is_indoor_portid = 0; 3007 } 3008 3009 spin_unlock(®_indoor_lock); 3010 3011 if (!is_indoor) 3012 reg_check_channels(); 3013 3014 return 0; 3015 } 3016 3017 void regulatory_netlink_notify(u32 portid) 3018 { 3019 spin_lock(®_indoor_lock); 3020 3021 if (reg_is_indoor_portid != portid) { 3022 spin_unlock(®_indoor_lock); 3023 return; 3024 } 3025 3026 reg_is_indoor = false; 3027 reg_is_indoor_portid = 0; 3028 3029 spin_unlock(®_indoor_lock); 3030 3031 reg_check_channels(); 3032 } 3033 3034 /* Driver hints */ 3035 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3036 { 3037 struct regulatory_request *request; 3038 3039 if (WARN_ON(!alpha2 || !wiphy)) 3040 return -EINVAL; 3041 3042 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3043 3044 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3045 if (!request) 3046 return -ENOMEM; 3047 3048 request->wiphy_idx = get_wiphy_idx(wiphy); 3049 3050 request->alpha2[0] = alpha2[0]; 3051 request->alpha2[1] = alpha2[1]; 3052 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3053 3054 /* Allow calling CRDA again */ 3055 reset_crda_timeouts(); 3056 3057 queue_regulatory_request(request); 3058 3059 return 0; 3060 } 3061 EXPORT_SYMBOL(regulatory_hint); 3062 3063 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3064 const u8 *country_ie, u8 country_ie_len) 3065 { 3066 char alpha2[2]; 3067 enum environment_cap env = ENVIRON_ANY; 3068 struct regulatory_request *request = NULL, *lr; 3069 3070 /* IE len must be evenly divisible by 2 */ 3071 if (country_ie_len & 0x01) 3072 return; 3073 3074 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3075 return; 3076 3077 request = kzalloc(sizeof(*request), GFP_KERNEL); 3078 if (!request) 3079 return; 3080 3081 alpha2[0] = country_ie[0]; 3082 alpha2[1] = country_ie[1]; 3083 3084 if (country_ie[2] == 'I') 3085 env = ENVIRON_INDOOR; 3086 else if (country_ie[2] == 'O') 3087 env = ENVIRON_OUTDOOR; 3088 3089 rcu_read_lock(); 3090 lr = get_last_request(); 3091 3092 if (unlikely(!lr)) 3093 goto out; 3094 3095 /* 3096 * We will run this only upon a successful connection on cfg80211. 3097 * We leave conflict resolution to the workqueue, where can hold 3098 * the RTNL. 3099 */ 3100 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3101 lr->wiphy_idx != WIPHY_IDX_INVALID) 3102 goto out; 3103 3104 request->wiphy_idx = get_wiphy_idx(wiphy); 3105 request->alpha2[0] = alpha2[0]; 3106 request->alpha2[1] = alpha2[1]; 3107 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3108 request->country_ie_env = env; 3109 3110 /* Allow calling CRDA again */ 3111 reset_crda_timeouts(); 3112 3113 queue_regulatory_request(request); 3114 request = NULL; 3115 out: 3116 kfree(request); 3117 rcu_read_unlock(); 3118 } 3119 3120 static void restore_alpha2(char *alpha2, bool reset_user) 3121 { 3122 /* indicates there is no alpha2 to consider for restoration */ 3123 alpha2[0] = '9'; 3124 alpha2[1] = '7'; 3125 3126 /* The user setting has precedence over the module parameter */ 3127 if (is_user_regdom_saved()) { 3128 /* Unless we're asked to ignore it and reset it */ 3129 if (reset_user) { 3130 pr_debug("Restoring regulatory settings including user preference\n"); 3131 user_alpha2[0] = '9'; 3132 user_alpha2[1] = '7'; 3133 3134 /* 3135 * If we're ignoring user settings, we still need to 3136 * check the module parameter to ensure we put things 3137 * back as they were for a full restore. 3138 */ 3139 if (!is_world_regdom(ieee80211_regdom)) { 3140 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3141 ieee80211_regdom[0], ieee80211_regdom[1]); 3142 alpha2[0] = ieee80211_regdom[0]; 3143 alpha2[1] = ieee80211_regdom[1]; 3144 } 3145 } else { 3146 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3147 user_alpha2[0], user_alpha2[1]); 3148 alpha2[0] = user_alpha2[0]; 3149 alpha2[1] = user_alpha2[1]; 3150 } 3151 } else if (!is_world_regdom(ieee80211_regdom)) { 3152 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3153 ieee80211_regdom[0], ieee80211_regdom[1]); 3154 alpha2[0] = ieee80211_regdom[0]; 3155 alpha2[1] = ieee80211_regdom[1]; 3156 } else 3157 pr_debug("Restoring regulatory settings\n"); 3158 } 3159 3160 static void restore_custom_reg_settings(struct wiphy *wiphy) 3161 { 3162 struct ieee80211_supported_band *sband; 3163 enum nl80211_band band; 3164 struct ieee80211_channel *chan; 3165 int i; 3166 3167 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3168 sband = wiphy->bands[band]; 3169 if (!sband) 3170 continue; 3171 for (i = 0; i < sband->n_channels; i++) { 3172 chan = &sband->channels[i]; 3173 chan->flags = chan->orig_flags; 3174 chan->max_antenna_gain = chan->orig_mag; 3175 chan->max_power = chan->orig_mpwr; 3176 chan->beacon_found = false; 3177 } 3178 } 3179 } 3180 3181 /* 3182 * Restoring regulatory settings involves ingoring any 3183 * possibly stale country IE information and user regulatory 3184 * settings if so desired, this includes any beacon hints 3185 * learned as we could have traveled outside to another country 3186 * after disconnection. To restore regulatory settings we do 3187 * exactly what we did at bootup: 3188 * 3189 * - send a core regulatory hint 3190 * - send a user regulatory hint if applicable 3191 * 3192 * Device drivers that send a regulatory hint for a specific country 3193 * keep their own regulatory domain on wiphy->regd so that does does 3194 * not need to be remembered. 3195 */ 3196 static void restore_regulatory_settings(bool reset_user) 3197 { 3198 char alpha2[2]; 3199 char world_alpha2[2]; 3200 struct reg_beacon *reg_beacon, *btmp; 3201 LIST_HEAD(tmp_reg_req_list); 3202 struct cfg80211_registered_device *rdev; 3203 3204 ASSERT_RTNL(); 3205 3206 /* 3207 * Clear the indoor setting in case that it is not controlled by user 3208 * space, as otherwise there is no guarantee that the device is still 3209 * operating in an indoor environment. 3210 */ 3211 spin_lock(®_indoor_lock); 3212 if (reg_is_indoor && !reg_is_indoor_portid) { 3213 reg_is_indoor = false; 3214 reg_check_channels(); 3215 } 3216 spin_unlock(®_indoor_lock); 3217 3218 reset_regdomains(true, &world_regdom); 3219 restore_alpha2(alpha2, reset_user); 3220 3221 /* 3222 * If there's any pending requests we simply 3223 * stash them to a temporary pending queue and 3224 * add then after we've restored regulatory 3225 * settings. 3226 */ 3227 spin_lock(®_requests_lock); 3228 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3229 spin_unlock(®_requests_lock); 3230 3231 /* Clear beacon hints */ 3232 spin_lock_bh(®_pending_beacons_lock); 3233 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3234 list_del(®_beacon->list); 3235 kfree(reg_beacon); 3236 } 3237 spin_unlock_bh(®_pending_beacons_lock); 3238 3239 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3240 list_del(®_beacon->list); 3241 kfree(reg_beacon); 3242 } 3243 3244 /* First restore to the basic regulatory settings */ 3245 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3246 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3247 3248 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3249 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3250 continue; 3251 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3252 restore_custom_reg_settings(&rdev->wiphy); 3253 } 3254 3255 regulatory_hint_core(world_alpha2); 3256 3257 /* 3258 * This restores the ieee80211_regdom module parameter 3259 * preference or the last user requested regulatory 3260 * settings, user regulatory settings takes precedence. 3261 */ 3262 if (is_an_alpha2(alpha2)) 3263 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3264 3265 spin_lock(®_requests_lock); 3266 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3267 spin_unlock(®_requests_lock); 3268 3269 pr_debug("Kicking the queue\n"); 3270 3271 schedule_work(®_work); 3272 } 3273 3274 void regulatory_hint_disconnect(void) 3275 { 3276 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3277 restore_regulatory_settings(false); 3278 } 3279 3280 static bool freq_is_chan_12_13_14(u16 freq) 3281 { 3282 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3283 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3284 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3285 return true; 3286 return false; 3287 } 3288 3289 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3290 { 3291 struct reg_beacon *pending_beacon; 3292 3293 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3294 if (beacon_chan->center_freq == 3295 pending_beacon->chan.center_freq) 3296 return true; 3297 return false; 3298 } 3299 3300 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3301 struct ieee80211_channel *beacon_chan, 3302 gfp_t gfp) 3303 { 3304 struct reg_beacon *reg_beacon; 3305 bool processing; 3306 3307 if (beacon_chan->beacon_found || 3308 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3309 (beacon_chan->band == NL80211_BAND_2GHZ && 3310 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3311 return 0; 3312 3313 spin_lock_bh(®_pending_beacons_lock); 3314 processing = pending_reg_beacon(beacon_chan); 3315 spin_unlock_bh(®_pending_beacons_lock); 3316 3317 if (processing) 3318 return 0; 3319 3320 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3321 if (!reg_beacon) 3322 return -ENOMEM; 3323 3324 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 3325 beacon_chan->center_freq, 3326 ieee80211_frequency_to_channel(beacon_chan->center_freq), 3327 wiphy_name(wiphy)); 3328 3329 memcpy(®_beacon->chan, beacon_chan, 3330 sizeof(struct ieee80211_channel)); 3331 3332 /* 3333 * Since we can be called from BH or and non-BH context 3334 * we must use spin_lock_bh() 3335 */ 3336 spin_lock_bh(®_pending_beacons_lock); 3337 list_add_tail(®_beacon->list, ®_pending_beacons); 3338 spin_unlock_bh(®_pending_beacons_lock); 3339 3340 schedule_work(®_work); 3341 3342 return 0; 3343 } 3344 3345 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3346 { 3347 unsigned int i; 3348 const struct ieee80211_reg_rule *reg_rule = NULL; 3349 const struct ieee80211_freq_range *freq_range = NULL; 3350 const struct ieee80211_power_rule *power_rule = NULL; 3351 char bw[32], cac_time[32]; 3352 3353 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3354 3355 for (i = 0; i < rd->n_reg_rules; i++) { 3356 reg_rule = &rd->reg_rules[i]; 3357 freq_range = ®_rule->freq_range; 3358 power_rule = ®_rule->power_rule; 3359 3360 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3361 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 3362 freq_range->max_bandwidth_khz, 3363 reg_get_max_bandwidth(rd, reg_rule)); 3364 else 3365 snprintf(bw, sizeof(bw), "%d KHz", 3366 freq_range->max_bandwidth_khz); 3367 3368 if (reg_rule->flags & NL80211_RRF_DFS) 3369 scnprintf(cac_time, sizeof(cac_time), "%u s", 3370 reg_rule->dfs_cac_ms/1000); 3371 else 3372 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3373 3374 3375 /* 3376 * There may not be documentation for max antenna gain 3377 * in certain regions 3378 */ 3379 if (power_rule->max_antenna_gain) 3380 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3381 freq_range->start_freq_khz, 3382 freq_range->end_freq_khz, 3383 bw, 3384 power_rule->max_antenna_gain, 3385 power_rule->max_eirp, 3386 cac_time); 3387 else 3388 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3389 freq_range->start_freq_khz, 3390 freq_range->end_freq_khz, 3391 bw, 3392 power_rule->max_eirp, 3393 cac_time); 3394 } 3395 } 3396 3397 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3398 { 3399 switch (dfs_region) { 3400 case NL80211_DFS_UNSET: 3401 case NL80211_DFS_FCC: 3402 case NL80211_DFS_ETSI: 3403 case NL80211_DFS_JP: 3404 return true; 3405 default: 3406 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3407 return false; 3408 } 3409 } 3410 3411 static void print_regdomain(const struct ieee80211_regdomain *rd) 3412 { 3413 struct regulatory_request *lr = get_last_request(); 3414 3415 if (is_intersected_alpha2(rd->alpha2)) { 3416 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3417 struct cfg80211_registered_device *rdev; 3418 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3419 if (rdev) { 3420 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3421 rdev->country_ie_alpha2[0], 3422 rdev->country_ie_alpha2[1]); 3423 } else 3424 pr_debug("Current regulatory domain intersected:\n"); 3425 } else 3426 pr_debug("Current regulatory domain intersected:\n"); 3427 } else if (is_world_regdom(rd->alpha2)) { 3428 pr_debug("World regulatory domain updated:\n"); 3429 } else { 3430 if (is_unknown_alpha2(rd->alpha2)) 3431 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3432 else { 3433 if (reg_request_cell_base(lr)) 3434 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3435 rd->alpha2[0], rd->alpha2[1]); 3436 else 3437 pr_debug("Regulatory domain changed to country: %c%c\n", 3438 rd->alpha2[0], rd->alpha2[1]); 3439 } 3440 } 3441 3442 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3443 print_rd_rules(rd); 3444 } 3445 3446 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3447 { 3448 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3449 print_rd_rules(rd); 3450 } 3451 3452 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3453 { 3454 if (!is_world_regdom(rd->alpha2)) 3455 return -EINVAL; 3456 update_world_regdomain(rd); 3457 return 0; 3458 } 3459 3460 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3461 struct regulatory_request *user_request) 3462 { 3463 const struct ieee80211_regdomain *intersected_rd = NULL; 3464 3465 if (!regdom_changes(rd->alpha2)) 3466 return -EALREADY; 3467 3468 if (!is_valid_rd(rd)) { 3469 pr_err("Invalid regulatory domain detected: %c%c\n", 3470 rd->alpha2[0], rd->alpha2[1]); 3471 print_regdomain_info(rd); 3472 return -EINVAL; 3473 } 3474 3475 if (!user_request->intersect) { 3476 reset_regdomains(false, rd); 3477 return 0; 3478 } 3479 3480 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3481 if (!intersected_rd) 3482 return -EINVAL; 3483 3484 kfree(rd); 3485 rd = NULL; 3486 reset_regdomains(false, intersected_rd); 3487 3488 return 0; 3489 } 3490 3491 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3492 struct regulatory_request *driver_request) 3493 { 3494 const struct ieee80211_regdomain *regd; 3495 const struct ieee80211_regdomain *intersected_rd = NULL; 3496 const struct ieee80211_regdomain *tmp; 3497 struct wiphy *request_wiphy; 3498 3499 if (is_world_regdom(rd->alpha2)) 3500 return -EINVAL; 3501 3502 if (!regdom_changes(rd->alpha2)) 3503 return -EALREADY; 3504 3505 if (!is_valid_rd(rd)) { 3506 pr_err("Invalid regulatory domain detected: %c%c\n", 3507 rd->alpha2[0], rd->alpha2[1]); 3508 print_regdomain_info(rd); 3509 return -EINVAL; 3510 } 3511 3512 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3513 if (!request_wiphy) 3514 return -ENODEV; 3515 3516 if (!driver_request->intersect) { 3517 if (request_wiphy->regd) 3518 return -EALREADY; 3519 3520 regd = reg_copy_regd(rd); 3521 if (IS_ERR(regd)) 3522 return PTR_ERR(regd); 3523 3524 rcu_assign_pointer(request_wiphy->regd, regd); 3525 reset_regdomains(false, rd); 3526 return 0; 3527 } 3528 3529 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3530 if (!intersected_rd) 3531 return -EINVAL; 3532 3533 /* 3534 * We can trash what CRDA provided now. 3535 * However if a driver requested this specific regulatory 3536 * domain we keep it for its private use 3537 */ 3538 tmp = get_wiphy_regdom(request_wiphy); 3539 rcu_assign_pointer(request_wiphy->regd, rd); 3540 rcu_free_regdom(tmp); 3541 3542 rd = NULL; 3543 3544 reset_regdomains(false, intersected_rd); 3545 3546 return 0; 3547 } 3548 3549 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3550 struct regulatory_request *country_ie_request) 3551 { 3552 struct wiphy *request_wiphy; 3553 3554 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3555 !is_unknown_alpha2(rd->alpha2)) 3556 return -EINVAL; 3557 3558 /* 3559 * Lets only bother proceeding on the same alpha2 if the current 3560 * rd is non static (it means CRDA was present and was used last) 3561 * and the pending request came in from a country IE 3562 */ 3563 3564 if (!is_valid_rd(rd)) { 3565 pr_err("Invalid regulatory domain detected: %c%c\n", 3566 rd->alpha2[0], rd->alpha2[1]); 3567 print_regdomain_info(rd); 3568 return -EINVAL; 3569 } 3570 3571 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3572 if (!request_wiphy) 3573 return -ENODEV; 3574 3575 if (country_ie_request->intersect) 3576 return -EINVAL; 3577 3578 reset_regdomains(false, rd); 3579 return 0; 3580 } 3581 3582 /* 3583 * Use this call to set the current regulatory domain. Conflicts with 3584 * multiple drivers can be ironed out later. Caller must've already 3585 * kmalloc'd the rd structure. 3586 */ 3587 int set_regdom(const struct ieee80211_regdomain *rd, 3588 enum ieee80211_regd_source regd_src) 3589 { 3590 struct regulatory_request *lr; 3591 bool user_reset = false; 3592 int r; 3593 3594 if (!reg_is_valid_request(rd->alpha2)) { 3595 kfree(rd); 3596 return -EINVAL; 3597 } 3598 3599 if (regd_src == REGD_SOURCE_CRDA) 3600 reset_crda_timeouts(); 3601 3602 lr = get_last_request(); 3603 3604 /* Note that this doesn't update the wiphys, this is done below */ 3605 switch (lr->initiator) { 3606 case NL80211_REGDOM_SET_BY_CORE: 3607 r = reg_set_rd_core(rd); 3608 break; 3609 case NL80211_REGDOM_SET_BY_USER: 3610 r = reg_set_rd_user(rd, lr); 3611 user_reset = true; 3612 break; 3613 case NL80211_REGDOM_SET_BY_DRIVER: 3614 r = reg_set_rd_driver(rd, lr); 3615 break; 3616 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3617 r = reg_set_rd_country_ie(rd, lr); 3618 break; 3619 default: 3620 WARN(1, "invalid initiator %d\n", lr->initiator); 3621 kfree(rd); 3622 return -EINVAL; 3623 } 3624 3625 if (r) { 3626 switch (r) { 3627 case -EALREADY: 3628 reg_set_request_processed(); 3629 break; 3630 default: 3631 /* Back to world regulatory in case of errors */ 3632 restore_regulatory_settings(user_reset); 3633 } 3634 3635 kfree(rd); 3636 return r; 3637 } 3638 3639 /* This would make this whole thing pointless */ 3640 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3641 return -EINVAL; 3642 3643 /* update all wiphys now with the new established regulatory domain */ 3644 update_all_wiphy_regulatory(lr->initiator); 3645 3646 print_regdomain(get_cfg80211_regdom()); 3647 3648 nl80211_send_reg_change_event(lr); 3649 3650 reg_set_request_processed(); 3651 3652 return 0; 3653 } 3654 3655 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 3656 struct ieee80211_regdomain *rd) 3657 { 3658 const struct ieee80211_regdomain *regd; 3659 const struct ieee80211_regdomain *prev_regd; 3660 struct cfg80211_registered_device *rdev; 3661 3662 if (WARN_ON(!wiphy || !rd)) 3663 return -EINVAL; 3664 3665 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 3666 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 3667 return -EPERM; 3668 3669 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { 3670 print_regdomain_info(rd); 3671 return -EINVAL; 3672 } 3673 3674 regd = reg_copy_regd(rd); 3675 if (IS_ERR(regd)) 3676 return PTR_ERR(regd); 3677 3678 rdev = wiphy_to_rdev(wiphy); 3679 3680 spin_lock(®_requests_lock); 3681 prev_regd = rdev->requested_regd; 3682 rdev->requested_regd = regd; 3683 spin_unlock(®_requests_lock); 3684 3685 kfree(prev_regd); 3686 return 0; 3687 } 3688 3689 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 3690 struct ieee80211_regdomain *rd) 3691 { 3692 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 3693 3694 if (ret) 3695 return ret; 3696 3697 schedule_work(®_work); 3698 return 0; 3699 } 3700 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 3701 3702 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, 3703 struct ieee80211_regdomain *rd) 3704 { 3705 int ret; 3706 3707 ASSERT_RTNL(); 3708 3709 ret = __regulatory_set_wiphy_regd(wiphy, rd); 3710 if (ret) 3711 return ret; 3712 3713 /* process the request immediately */ 3714 reg_process_self_managed_hints(); 3715 return 0; 3716 } 3717 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); 3718 3719 void wiphy_regulatory_register(struct wiphy *wiphy) 3720 { 3721 struct regulatory_request *lr = get_last_request(); 3722 3723 /* self-managed devices ignore beacon hints and country IE */ 3724 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 3725 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 3726 REGULATORY_COUNTRY_IE_IGNORE; 3727 3728 /* 3729 * The last request may have been received before this 3730 * registration call. Call the driver notifier if 3731 * initiator is USER and user type is CELL_BASE. 3732 */ 3733 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 3734 lr->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE) 3735 reg_call_notifier(wiphy, lr); 3736 } 3737 3738 if (!reg_dev_ignore_cell_hint(wiphy)) 3739 reg_num_devs_support_basehint++; 3740 3741 wiphy_update_regulatory(wiphy, lr->initiator); 3742 wiphy_all_share_dfs_chan_state(wiphy); 3743 } 3744 3745 void wiphy_regulatory_deregister(struct wiphy *wiphy) 3746 { 3747 struct wiphy *request_wiphy = NULL; 3748 struct regulatory_request *lr; 3749 3750 lr = get_last_request(); 3751 3752 if (!reg_dev_ignore_cell_hint(wiphy)) 3753 reg_num_devs_support_basehint--; 3754 3755 rcu_free_regdom(get_wiphy_regdom(wiphy)); 3756 RCU_INIT_POINTER(wiphy->regd, NULL); 3757 3758 if (lr) 3759 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 3760 3761 if (!request_wiphy || request_wiphy != wiphy) 3762 return; 3763 3764 lr->wiphy_idx = WIPHY_IDX_INVALID; 3765 lr->country_ie_env = ENVIRON_ANY; 3766 } 3767 3768 /* 3769 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for 3770 * UNII band definitions 3771 */ 3772 int cfg80211_get_unii(int freq) 3773 { 3774 /* UNII-1 */ 3775 if (freq >= 5150 && freq <= 5250) 3776 return 0; 3777 3778 /* UNII-2A */ 3779 if (freq > 5250 && freq <= 5350) 3780 return 1; 3781 3782 /* UNII-2B */ 3783 if (freq > 5350 && freq <= 5470) 3784 return 2; 3785 3786 /* UNII-2C */ 3787 if (freq > 5470 && freq <= 5725) 3788 return 3; 3789 3790 /* UNII-3 */ 3791 if (freq > 5725 && freq <= 5825) 3792 return 4; 3793 3794 return -EINVAL; 3795 } 3796 3797 bool regulatory_indoor_allowed(void) 3798 { 3799 return reg_is_indoor; 3800 } 3801 3802 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 3803 { 3804 const struct ieee80211_regdomain *regd = NULL; 3805 const struct ieee80211_regdomain *wiphy_regd = NULL; 3806 bool pre_cac_allowed = false; 3807 3808 rcu_read_lock(); 3809 3810 regd = rcu_dereference(cfg80211_regdomain); 3811 wiphy_regd = rcu_dereference(wiphy->regd); 3812 if (!wiphy_regd) { 3813 if (regd->dfs_region == NL80211_DFS_ETSI) 3814 pre_cac_allowed = true; 3815 3816 rcu_read_unlock(); 3817 3818 return pre_cac_allowed; 3819 } 3820 3821 if (regd->dfs_region == wiphy_regd->dfs_region && 3822 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 3823 pre_cac_allowed = true; 3824 3825 rcu_read_unlock(); 3826 3827 return pre_cac_allowed; 3828 } 3829 3830 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 3831 struct cfg80211_chan_def *chandef, 3832 enum nl80211_dfs_state dfs_state, 3833 enum nl80211_radar_event event) 3834 { 3835 struct cfg80211_registered_device *rdev; 3836 3837 ASSERT_RTNL(); 3838 3839 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 3840 return; 3841 3842 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3843 if (wiphy == &rdev->wiphy) 3844 continue; 3845 3846 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 3847 continue; 3848 3849 if (!ieee80211_get_channel(&rdev->wiphy, 3850 chandef->chan->center_freq)) 3851 continue; 3852 3853 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 3854 3855 if (event == NL80211_RADAR_DETECTED || 3856 event == NL80211_RADAR_CAC_FINISHED) 3857 cfg80211_sched_dfs_chan_update(rdev); 3858 3859 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 3860 } 3861 } 3862 3863 static int __init regulatory_init_db(void) 3864 { 3865 int err; 3866 3867 err = load_builtin_regdb_keys(); 3868 if (err) 3869 return err; 3870 3871 /* We always try to get an update for the static regdomain */ 3872 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 3873 if (err) { 3874 if (err == -ENOMEM) { 3875 platform_device_unregister(reg_pdev); 3876 return err; 3877 } 3878 /* 3879 * N.B. kobject_uevent_env() can fail mainly for when we're out 3880 * memory which is handled and propagated appropriately above 3881 * but it can also fail during a netlink_broadcast() or during 3882 * early boot for call_usermodehelper(). For now treat these 3883 * errors as non-fatal. 3884 */ 3885 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 3886 } 3887 3888 /* 3889 * Finally, if the user set the module parameter treat it 3890 * as a user hint. 3891 */ 3892 if (!is_world_regdom(ieee80211_regdom)) 3893 regulatory_hint_user(ieee80211_regdom, 3894 NL80211_USER_REG_HINT_USER); 3895 3896 return 0; 3897 } 3898 #ifndef MODULE 3899 late_initcall(regulatory_init_db); 3900 #endif 3901 3902 int __init regulatory_init(void) 3903 { 3904 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 3905 if (IS_ERR(reg_pdev)) 3906 return PTR_ERR(reg_pdev); 3907 3908 spin_lock_init(®_requests_lock); 3909 spin_lock_init(®_pending_beacons_lock); 3910 spin_lock_init(®_indoor_lock); 3911 3912 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 3913 3914 user_alpha2[0] = '9'; 3915 user_alpha2[1] = '7'; 3916 3917 #ifdef MODULE 3918 return regulatory_init_db(); 3919 #else 3920 return 0; 3921 #endif 3922 } 3923 3924 void regulatory_exit(void) 3925 { 3926 struct regulatory_request *reg_request, *tmp; 3927 struct reg_beacon *reg_beacon, *btmp; 3928 3929 cancel_work_sync(®_work); 3930 cancel_crda_timeout_sync(); 3931 cancel_delayed_work_sync(®_check_chans); 3932 3933 /* Lock to suppress warnings */ 3934 rtnl_lock(); 3935 reset_regdomains(true, NULL); 3936 rtnl_unlock(); 3937 3938 dev_set_uevent_suppress(®_pdev->dev, true); 3939 3940 platform_device_unregister(reg_pdev); 3941 3942 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3943 list_del(®_beacon->list); 3944 kfree(reg_beacon); 3945 } 3946 3947 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3948 list_del(®_beacon->list); 3949 kfree(reg_beacon); 3950 } 3951 3952 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 3953 list_del(®_request->list); 3954 kfree(reg_request); 3955 } 3956 3957 if (!IS_ERR_OR_NULL(regdb)) 3958 kfree(regdb); 3959 3960 free_regdb_keyring(); 3961 } 3962