xref: /openbmc/linux/net/wireless/reg.c (revision dfc66bef)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2021 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137 
138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140 	return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142 
143 /*
144  * Returns the regulatory domain associated with the wiphy.
145  *
146  * Requires any of RTNL, wiphy mutex or RCU protection.
147  */
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150 	return rcu_dereference_check(wiphy->regd,
151 				     lockdep_is_held(&wiphy->mtx) ||
152 				     lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155 
156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158 	switch (dfs_region) {
159 	case NL80211_DFS_UNSET:
160 		return "unset";
161 	case NL80211_DFS_FCC:
162 		return "FCC";
163 	case NL80211_DFS_ETSI:
164 		return "ETSI";
165 	case NL80211_DFS_JP:
166 		return "JP";
167 	}
168 	return "Unknown";
169 }
170 
171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173 	const struct ieee80211_regdomain *regd = NULL;
174 	const struct ieee80211_regdomain *wiphy_regd = NULL;
175 	enum nl80211_dfs_regions dfs_region;
176 
177 	rcu_read_lock();
178 	regd = get_cfg80211_regdom();
179 	dfs_region = regd->dfs_region;
180 
181 	if (!wiphy)
182 		goto out;
183 
184 	wiphy_regd = get_wiphy_regdom(wiphy);
185 	if (!wiphy_regd)
186 		goto out;
187 
188 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 		dfs_region = wiphy_regd->dfs_region;
190 		goto out;
191 	}
192 
193 	if (wiphy_regd->dfs_region == regd->dfs_region)
194 		goto out;
195 
196 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 		 dev_name(&wiphy->dev),
198 		 reg_dfs_region_str(wiphy_regd->dfs_region),
199 		 reg_dfs_region_str(regd->dfs_region));
200 
201 out:
202 	rcu_read_unlock();
203 
204 	return dfs_region;
205 }
206 
207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209 	if (!r)
210 		return;
211 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213 
214 static struct regulatory_request *get_last_request(void)
215 {
216 	return rcu_dereference_rtnl(last_request);
217 }
218 
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222 
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226 
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229 
230 struct reg_beacon {
231 	struct list_head list;
232 	struct ieee80211_channel chan;
233 };
234 
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237 
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240 
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243 	.n_reg_rules = 8,
244 	.alpha2 =  "00",
245 	.reg_rules = {
246 		/* IEEE 802.11b/g, channels 1..11 */
247 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 		/* IEEE 802.11b/g, channels 12..13. */
249 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 		/* IEEE 802.11 channel 14 - Only JP enables
252 		 * this and for 802.11b only */
253 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 			NL80211_RRF_NO_IR |
255 			NL80211_RRF_NO_OFDM),
256 		/* IEEE 802.11a, channel 36..48 */
257 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
258                         NL80211_RRF_NO_IR |
259                         NL80211_RRF_AUTO_BW),
260 
261 		/* IEEE 802.11a, channel 52..64 - DFS required */
262 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 			NL80211_RRF_NO_IR |
264 			NL80211_RRF_AUTO_BW |
265 			NL80211_RRF_DFS),
266 
267 		/* IEEE 802.11a, channel 100..144 - DFS required */
268 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 			NL80211_RRF_NO_IR |
270 			NL80211_RRF_DFS),
271 
272 		/* IEEE 802.11a, channel 149..165 */
273 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 			NL80211_RRF_NO_IR),
275 
276 		/* IEEE 802.11ad (60GHz), channels 1..3 */
277 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 	}
279 };
280 
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 	&world_regdom;
284 
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288 
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291 
292 static void reg_free_request(struct regulatory_request *request)
293 {
294 	if (request == &core_request_world)
295 		return;
296 
297 	if (request != get_last_request())
298 		kfree(request);
299 }
300 
301 static void reg_free_last_request(void)
302 {
303 	struct regulatory_request *lr = get_last_request();
304 
305 	if (lr != &core_request_world && lr)
306 		kfree_rcu(lr, rcu_head);
307 }
308 
309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311 	struct regulatory_request *lr;
312 
313 	lr = get_last_request();
314 	if (lr == request)
315 		return;
316 
317 	reg_free_last_request();
318 	rcu_assign_pointer(last_request, request);
319 }
320 
321 static void reset_regdomains(bool full_reset,
322 			     const struct ieee80211_regdomain *new_regdom)
323 {
324 	const struct ieee80211_regdomain *r;
325 
326 	ASSERT_RTNL();
327 
328 	r = get_cfg80211_regdom();
329 
330 	/* avoid freeing static information or freeing something twice */
331 	if (r == cfg80211_world_regdom)
332 		r = NULL;
333 	if (cfg80211_world_regdom == &world_regdom)
334 		cfg80211_world_regdom = NULL;
335 	if (r == &world_regdom)
336 		r = NULL;
337 
338 	rcu_free_regdom(r);
339 	rcu_free_regdom(cfg80211_world_regdom);
340 
341 	cfg80211_world_regdom = &world_regdom;
342 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343 
344 	if (!full_reset)
345 		return;
346 
347 	reg_update_last_request(&core_request_world);
348 }
349 
350 /*
351  * Dynamic world regulatory domain requested by the wireless
352  * core upon initialization
353  */
354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356 	struct regulatory_request *lr;
357 
358 	lr = get_last_request();
359 
360 	WARN_ON(!lr);
361 
362 	reset_regdomains(false, rd);
363 
364 	cfg80211_world_regdom = rd;
365 }
366 
367 bool is_world_regdom(const char *alpha2)
368 {
369 	if (!alpha2)
370 		return false;
371 	return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373 
374 static bool is_alpha2_set(const char *alpha2)
375 {
376 	if (!alpha2)
377 		return false;
378 	return alpha2[0] && alpha2[1];
379 }
380 
381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383 	if (!alpha2)
384 		return false;
385 	/*
386 	 * Special case where regulatory domain was built by driver
387 	 * but a specific alpha2 cannot be determined
388 	 */
389 	return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391 
392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394 	if (!alpha2)
395 		return false;
396 	/*
397 	 * Special case where regulatory domain is the
398 	 * result of an intersection between two regulatory domain
399 	 * structures
400 	 */
401 	return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403 
404 static bool is_an_alpha2(const char *alpha2)
405 {
406 	if (!alpha2)
407 		return false;
408 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410 
411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413 	if (!alpha2_x || !alpha2_y)
414 		return false;
415 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417 
418 static bool regdom_changes(const char *alpha2)
419 {
420 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421 
422 	if (!r)
423 		return true;
424 	return !alpha2_equal(r->alpha2, alpha2);
425 }
426 
427 /*
428  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430  * has ever been issued.
431  */
432 static bool is_user_regdom_saved(void)
433 {
434 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435 		return false;
436 
437 	/* This would indicate a mistake on the design */
438 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 		 "Unexpected user alpha2: %c%c\n",
440 		 user_alpha2[0], user_alpha2[1]))
441 		return false;
442 
443 	return true;
444 }
445 
446 static const struct ieee80211_regdomain *
447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449 	struct ieee80211_regdomain *regd;
450 	unsigned int i;
451 
452 	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453 		       GFP_KERNEL);
454 	if (!regd)
455 		return ERR_PTR(-ENOMEM);
456 
457 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458 
459 	for (i = 0; i < src_regd->n_reg_rules; i++)
460 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
461 		       sizeof(struct ieee80211_reg_rule));
462 
463 	return regd;
464 }
465 
466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468 	ASSERT_RTNL();
469 
470 	if (!IS_ERR(cfg80211_user_regdom))
471 		kfree(cfg80211_user_regdom);
472 	cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474 
475 struct reg_regdb_apply_request {
476 	struct list_head list;
477 	const struct ieee80211_regdomain *regdom;
478 };
479 
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482 
483 static void reg_regdb_apply(struct work_struct *work)
484 {
485 	struct reg_regdb_apply_request *request;
486 
487 	rtnl_lock();
488 
489 	mutex_lock(&reg_regdb_apply_mutex);
490 	while (!list_empty(&reg_regdb_apply_list)) {
491 		request = list_first_entry(&reg_regdb_apply_list,
492 					   struct reg_regdb_apply_request,
493 					   list);
494 		list_del(&request->list);
495 
496 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497 		kfree(request);
498 	}
499 	mutex_unlock(&reg_regdb_apply_mutex);
500 
501 	rtnl_unlock();
502 }
503 
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505 
506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508 	struct reg_regdb_apply_request *request;
509 
510 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511 	if (!request) {
512 		kfree(regdom);
513 		return -ENOMEM;
514 	}
515 
516 	request->regdom = regdom;
517 
518 	mutex_lock(&reg_regdb_apply_mutex);
519 	list_add_tail(&request->list, &reg_regdb_apply_list);
520 	mutex_unlock(&reg_regdb_apply_mutex);
521 
522 	schedule_work(&reg_regdb_work);
523 	return 0;
524 }
525 
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529 
530 static u32 reg_crda_timeouts;
531 
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534 
535 static void crda_timeout_work(struct work_struct *work)
536 {
537 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 	rtnl_lock();
539 	reg_crda_timeouts++;
540 	restore_regulatory_settings(true, false);
541 	rtnl_unlock();
542 }
543 
544 static void cancel_crda_timeout(void)
545 {
546 	cancel_delayed_work(&crda_timeout);
547 }
548 
549 static void cancel_crda_timeout_sync(void)
550 {
551 	cancel_delayed_work_sync(&crda_timeout);
552 }
553 
554 static void reset_crda_timeouts(void)
555 {
556 	reg_crda_timeouts = 0;
557 }
558 
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
563 static int call_crda(const char *alpha2)
564 {
565 	char country[12];
566 	char *env[] = { country, NULL };
567 	int ret;
568 
569 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 		 alpha2[0], alpha2[1]);
571 
572 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 		return -EINVAL;
575 	}
576 
577 	if (!is_world_regdom((char *) alpha2))
578 		pr_debug("Calling CRDA for country: %c%c\n",
579 			 alpha2[0], alpha2[1]);
580 	else
581 		pr_debug("Calling CRDA to update world regulatory domain\n");
582 
583 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584 	if (ret)
585 		return ret;
586 
587 	queue_delayed_work(system_power_efficient_wq,
588 			   &crda_timeout, msecs_to_jiffies(3142));
589 	return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597 	return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600 
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603 
604 struct fwdb_country {
605 	u8 alpha2[2];
606 	__be16 coll_ptr;
607 	/* this struct cannot be extended */
608 } __packed __aligned(4);
609 
610 struct fwdb_collection {
611 	u8 len;
612 	u8 n_rules;
613 	u8 dfs_region;
614 	/* no optional data yet */
615 	/* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617 
618 enum fwdb_flags {
619 	FWDB_FLAG_NO_OFDM	= BIT(0),
620 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
621 	FWDB_FLAG_DFS		= BIT(2),
622 	FWDB_FLAG_NO_IR		= BIT(3),
623 	FWDB_FLAG_AUTO_BW	= BIT(4),
624 };
625 
626 struct fwdb_wmm_ac {
627 	u8 ecw;
628 	u8 aifsn;
629 	__be16 cot;
630 } __packed;
631 
632 struct fwdb_wmm_rule {
633 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636 
637 struct fwdb_rule {
638 	u8 len;
639 	u8 flags;
640 	__be16 max_eirp;
641 	__be32 start, end, max_bw;
642 	/* start of optional data */
643 	__be16 cac_timeout;
644 	__be16 wmm_ptr;
645 } __packed __aligned(4);
646 
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649 
650 struct fwdb_header {
651 	__be32 magic;
652 	__be32 version;
653 	struct fwdb_country country[];
654 } __packed __aligned(4);
655 
656 static int ecw2cw(int ecw)
657 {
658 	return (1 << ecw) - 1;
659 }
660 
661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664 	int i;
665 
666 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 		u8 aifsn = ac[i].aifsn;
670 
671 		if (cw_min >= cw_max)
672 			return false;
673 
674 		if (aifsn < 1)
675 			return false;
676 	}
677 
678 	return true;
679 }
680 
681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684 
685 	if ((u8 *)rule + sizeof(rule->len) > data + size)
686 		return false;
687 
688 	/* mandatory fields */
689 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690 		return false;
691 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 		struct fwdb_wmm_rule *wmm;
694 
695 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696 			return false;
697 
698 		wmm = (void *)(data + wmm_ptr);
699 
700 		if (!valid_wmm(wmm))
701 			return false;
702 	}
703 	return true;
704 }
705 
706 static bool valid_country(const u8 *data, unsigned int size,
707 			  const struct fwdb_country *country)
708 {
709 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 	struct fwdb_collection *coll = (void *)(data + ptr);
711 	__be16 *rules_ptr;
712 	unsigned int i;
713 
714 	/* make sure we can read len/n_rules */
715 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716 		return false;
717 
718 	/* make sure base struct and all rules fit */
719 	if ((u8 *)coll + ALIGN(coll->len, 2) +
720 	    (coll->n_rules * 2) > data + size)
721 		return false;
722 
723 	/* mandatory fields must exist */
724 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725 		return false;
726 
727 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728 
729 	for (i = 0; i < coll->n_rules; i++) {
730 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731 
732 		if (!valid_rule(data, size, rule_ptr))
733 			return false;
734 	}
735 
736 	return true;
737 }
738 
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 static struct key *builtin_regdb_keys;
741 
742 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
743 {
744 	const u8 *end = p + buflen;
745 	size_t plen;
746 	key_ref_t key;
747 
748 	while (p < end) {
749 		/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
750 		 * than 256 bytes in size.
751 		 */
752 		if (end - p < 4)
753 			goto dodgy_cert;
754 		if (p[0] != 0x30 &&
755 		    p[1] != 0x82)
756 			goto dodgy_cert;
757 		plen = (p[2] << 8) | p[3];
758 		plen += 4;
759 		if (plen > end - p)
760 			goto dodgy_cert;
761 
762 		key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
763 					   "asymmetric", NULL, p, plen,
764 					   ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765 					    KEY_USR_VIEW | KEY_USR_READ),
766 					   KEY_ALLOC_NOT_IN_QUOTA |
767 					   KEY_ALLOC_BUILT_IN |
768 					   KEY_ALLOC_BYPASS_RESTRICTION);
769 		if (IS_ERR(key)) {
770 			pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
771 			       PTR_ERR(key));
772 		} else {
773 			pr_notice("Loaded X.509 cert '%s'\n",
774 				  key_ref_to_ptr(key)->description);
775 			key_ref_put(key);
776 		}
777 		p += plen;
778 	}
779 
780 	return;
781 
782 dodgy_cert:
783 	pr_err("Problem parsing in-kernel X.509 certificate list\n");
784 }
785 
786 static int __init load_builtin_regdb_keys(void)
787 {
788 	builtin_regdb_keys =
789 		keyring_alloc(".builtin_regdb_keys",
790 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
791 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
792 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
793 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
794 	if (IS_ERR(builtin_regdb_keys))
795 		return PTR_ERR(builtin_regdb_keys);
796 
797 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
798 
799 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
800 	load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
801 #endif
802 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
803 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
804 		load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
805 #endif
806 
807 	return 0;
808 }
809 
810 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
811 {
812 	const struct firmware *sig;
813 	bool result;
814 
815 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
816 		return false;
817 
818 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
819 					builtin_regdb_keys,
820 					VERIFYING_UNSPECIFIED_SIGNATURE,
821 					NULL, NULL) == 0;
822 
823 	release_firmware(sig);
824 
825 	return result;
826 }
827 
828 static void free_regdb_keyring(void)
829 {
830 	key_put(builtin_regdb_keys);
831 }
832 #else
833 static int load_builtin_regdb_keys(void)
834 {
835 	return 0;
836 }
837 
838 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
839 {
840 	return true;
841 }
842 
843 static void free_regdb_keyring(void)
844 {
845 }
846 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
847 
848 static bool valid_regdb(const u8 *data, unsigned int size)
849 {
850 	const struct fwdb_header *hdr = (void *)data;
851 	const struct fwdb_country *country;
852 
853 	if (size < sizeof(*hdr))
854 		return false;
855 
856 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
857 		return false;
858 
859 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
860 		return false;
861 
862 	if (!regdb_has_valid_signature(data, size))
863 		return false;
864 
865 	country = &hdr->country[0];
866 	while ((u8 *)(country + 1) <= data + size) {
867 		if (!country->coll_ptr)
868 			break;
869 		if (!valid_country(data, size, country))
870 			return false;
871 		country++;
872 	}
873 
874 	return true;
875 }
876 
877 static void set_wmm_rule(const struct fwdb_header *db,
878 			 const struct fwdb_country *country,
879 			 const struct fwdb_rule *rule,
880 			 struct ieee80211_reg_rule *rrule)
881 {
882 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
883 	struct fwdb_wmm_rule *wmm;
884 	unsigned int i, wmm_ptr;
885 
886 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
887 	wmm = (void *)((u8 *)db + wmm_ptr);
888 
889 	if (!valid_wmm(wmm)) {
890 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
891 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
892 		       country->alpha2[0], country->alpha2[1]);
893 		return;
894 	}
895 
896 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
897 		wmm_rule->client[i].cw_min =
898 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
899 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
900 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
901 		wmm_rule->client[i].cot =
902 			1000 * be16_to_cpu(wmm->client[i].cot);
903 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
904 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
905 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
906 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
907 	}
908 
909 	rrule->has_wmm = true;
910 }
911 
912 static int __regdb_query_wmm(const struct fwdb_header *db,
913 			     const struct fwdb_country *country, int freq,
914 			     struct ieee80211_reg_rule *rrule)
915 {
916 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
917 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
918 	int i;
919 
920 	for (i = 0; i < coll->n_rules; i++) {
921 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
922 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
923 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
924 
925 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
926 			continue;
927 
928 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
929 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
930 			set_wmm_rule(db, country, rule, rrule);
931 			return 0;
932 		}
933 	}
934 
935 	return -ENODATA;
936 }
937 
938 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
939 {
940 	const struct fwdb_header *hdr = regdb;
941 	const struct fwdb_country *country;
942 
943 	if (!regdb)
944 		return -ENODATA;
945 
946 	if (IS_ERR(regdb))
947 		return PTR_ERR(regdb);
948 
949 	country = &hdr->country[0];
950 	while (country->coll_ptr) {
951 		if (alpha2_equal(alpha2, country->alpha2))
952 			return __regdb_query_wmm(regdb, country, freq, rule);
953 
954 		country++;
955 	}
956 
957 	return -ENODATA;
958 }
959 EXPORT_SYMBOL(reg_query_regdb_wmm);
960 
961 static int regdb_query_country(const struct fwdb_header *db,
962 			       const struct fwdb_country *country)
963 {
964 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
965 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
966 	struct ieee80211_regdomain *regdom;
967 	unsigned int i;
968 
969 	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
970 			 GFP_KERNEL);
971 	if (!regdom)
972 		return -ENOMEM;
973 
974 	regdom->n_reg_rules = coll->n_rules;
975 	regdom->alpha2[0] = country->alpha2[0];
976 	regdom->alpha2[1] = country->alpha2[1];
977 	regdom->dfs_region = coll->dfs_region;
978 
979 	for (i = 0; i < regdom->n_reg_rules; i++) {
980 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
981 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
982 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
983 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
984 
985 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
986 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
987 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
988 
989 		rrule->power_rule.max_antenna_gain = 0;
990 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
991 
992 		rrule->flags = 0;
993 		if (rule->flags & FWDB_FLAG_NO_OFDM)
994 			rrule->flags |= NL80211_RRF_NO_OFDM;
995 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
996 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
997 		if (rule->flags & FWDB_FLAG_DFS)
998 			rrule->flags |= NL80211_RRF_DFS;
999 		if (rule->flags & FWDB_FLAG_NO_IR)
1000 			rrule->flags |= NL80211_RRF_NO_IR;
1001 		if (rule->flags & FWDB_FLAG_AUTO_BW)
1002 			rrule->flags |= NL80211_RRF_AUTO_BW;
1003 
1004 		rrule->dfs_cac_ms = 0;
1005 
1006 		/* handle optional data */
1007 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1008 			rrule->dfs_cac_ms =
1009 				1000 * be16_to_cpu(rule->cac_timeout);
1010 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1011 			set_wmm_rule(db, country, rule, rrule);
1012 	}
1013 
1014 	return reg_schedule_apply(regdom);
1015 }
1016 
1017 static int query_regdb(const char *alpha2)
1018 {
1019 	const struct fwdb_header *hdr = regdb;
1020 	const struct fwdb_country *country;
1021 
1022 	ASSERT_RTNL();
1023 
1024 	if (IS_ERR(regdb))
1025 		return PTR_ERR(regdb);
1026 
1027 	country = &hdr->country[0];
1028 	while (country->coll_ptr) {
1029 		if (alpha2_equal(alpha2, country->alpha2))
1030 			return regdb_query_country(regdb, country);
1031 		country++;
1032 	}
1033 
1034 	return -ENODATA;
1035 }
1036 
1037 static void regdb_fw_cb(const struct firmware *fw, void *context)
1038 {
1039 	int set_error = 0;
1040 	bool restore = true;
1041 	void *db;
1042 
1043 	if (!fw) {
1044 		pr_info("failed to load regulatory.db\n");
1045 		set_error = -ENODATA;
1046 	} else if (!valid_regdb(fw->data, fw->size)) {
1047 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1048 		set_error = -EINVAL;
1049 	}
1050 
1051 	rtnl_lock();
1052 	if (regdb && !IS_ERR(regdb)) {
1053 		/* negative case - a bug
1054 		 * positive case - can happen due to race in case of multiple cb's in
1055 		 * queue, due to usage of asynchronous callback
1056 		 *
1057 		 * Either case, just restore and free new db.
1058 		 */
1059 	} else if (set_error) {
1060 		regdb = ERR_PTR(set_error);
1061 	} else if (fw) {
1062 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1063 		if (db) {
1064 			regdb = db;
1065 			restore = context && query_regdb(context);
1066 		} else {
1067 			restore = true;
1068 		}
1069 	}
1070 
1071 	if (restore)
1072 		restore_regulatory_settings(true, false);
1073 
1074 	rtnl_unlock();
1075 
1076 	kfree(context);
1077 
1078 	release_firmware(fw);
1079 }
1080 
1081 static int query_regdb_file(const char *alpha2)
1082 {
1083 	ASSERT_RTNL();
1084 
1085 	if (regdb)
1086 		return query_regdb(alpha2);
1087 
1088 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1089 	if (!alpha2)
1090 		return -ENOMEM;
1091 
1092 	return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1093 				       &reg_pdev->dev, GFP_KERNEL,
1094 				       (void *)alpha2, regdb_fw_cb);
1095 }
1096 
1097 int reg_reload_regdb(void)
1098 {
1099 	const struct firmware *fw;
1100 	void *db;
1101 	int err;
1102 	const struct ieee80211_regdomain *current_regdomain;
1103 	struct regulatory_request *request;
1104 
1105 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1106 	if (err)
1107 		return err;
1108 
1109 	if (!valid_regdb(fw->data, fw->size)) {
1110 		err = -ENODATA;
1111 		goto out;
1112 	}
1113 
1114 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1115 	if (!db) {
1116 		err = -ENOMEM;
1117 		goto out;
1118 	}
1119 
1120 	rtnl_lock();
1121 	if (!IS_ERR_OR_NULL(regdb))
1122 		kfree(regdb);
1123 	regdb = db;
1124 
1125 	/* reset regulatory domain */
1126 	current_regdomain = get_cfg80211_regdom();
1127 
1128 	request = kzalloc(sizeof(*request), GFP_KERNEL);
1129 	if (!request) {
1130 		err = -ENOMEM;
1131 		goto out_unlock;
1132 	}
1133 
1134 	request->wiphy_idx = WIPHY_IDX_INVALID;
1135 	request->alpha2[0] = current_regdomain->alpha2[0];
1136 	request->alpha2[1] = current_regdomain->alpha2[1];
1137 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1138 	request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1139 
1140 	reg_process_hint(request);
1141 
1142 out_unlock:
1143 	rtnl_unlock();
1144  out:
1145 	release_firmware(fw);
1146 	return err;
1147 }
1148 
1149 static bool reg_query_database(struct regulatory_request *request)
1150 {
1151 	if (query_regdb_file(request->alpha2) == 0)
1152 		return true;
1153 
1154 	if (call_crda(request->alpha2) == 0)
1155 		return true;
1156 
1157 	return false;
1158 }
1159 
1160 bool reg_is_valid_request(const char *alpha2)
1161 {
1162 	struct regulatory_request *lr = get_last_request();
1163 
1164 	if (!lr || lr->processed)
1165 		return false;
1166 
1167 	return alpha2_equal(lr->alpha2, alpha2);
1168 }
1169 
1170 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1171 {
1172 	struct regulatory_request *lr = get_last_request();
1173 
1174 	/*
1175 	 * Follow the driver's regulatory domain, if present, unless a country
1176 	 * IE has been processed or a user wants to help complaince further
1177 	 */
1178 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1179 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1180 	    wiphy->regd)
1181 		return get_wiphy_regdom(wiphy);
1182 
1183 	return get_cfg80211_regdom();
1184 }
1185 
1186 static unsigned int
1187 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1188 				 const struct ieee80211_reg_rule *rule)
1189 {
1190 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1191 	const struct ieee80211_freq_range *freq_range_tmp;
1192 	const struct ieee80211_reg_rule *tmp;
1193 	u32 start_freq, end_freq, idx, no;
1194 
1195 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1196 		if (rule == &rd->reg_rules[idx])
1197 			break;
1198 
1199 	if (idx == rd->n_reg_rules)
1200 		return 0;
1201 
1202 	/* get start_freq */
1203 	no = idx;
1204 
1205 	while (no) {
1206 		tmp = &rd->reg_rules[--no];
1207 		freq_range_tmp = &tmp->freq_range;
1208 
1209 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1210 			break;
1211 
1212 		freq_range = freq_range_tmp;
1213 	}
1214 
1215 	start_freq = freq_range->start_freq_khz;
1216 
1217 	/* get end_freq */
1218 	freq_range = &rule->freq_range;
1219 	no = idx;
1220 
1221 	while (no < rd->n_reg_rules - 1) {
1222 		tmp = &rd->reg_rules[++no];
1223 		freq_range_tmp = &tmp->freq_range;
1224 
1225 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1226 			break;
1227 
1228 		freq_range = freq_range_tmp;
1229 	}
1230 
1231 	end_freq = freq_range->end_freq_khz;
1232 
1233 	return end_freq - start_freq;
1234 }
1235 
1236 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1237 				   const struct ieee80211_reg_rule *rule)
1238 {
1239 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1240 
1241 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1242 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1243 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1244 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1245 
1246 	/*
1247 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1248 	 * are not allowed.
1249 	 */
1250 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1251 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1252 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1253 
1254 	return bw;
1255 }
1256 
1257 /* Sanity check on a regulatory rule */
1258 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1259 {
1260 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1261 	u32 freq_diff;
1262 
1263 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1264 		return false;
1265 
1266 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1267 		return false;
1268 
1269 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1270 
1271 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1272 	    freq_range->max_bandwidth_khz > freq_diff)
1273 		return false;
1274 
1275 	return true;
1276 }
1277 
1278 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1279 {
1280 	const struct ieee80211_reg_rule *reg_rule = NULL;
1281 	unsigned int i;
1282 
1283 	if (!rd->n_reg_rules)
1284 		return false;
1285 
1286 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1287 		return false;
1288 
1289 	for (i = 0; i < rd->n_reg_rules; i++) {
1290 		reg_rule = &rd->reg_rules[i];
1291 		if (!is_valid_reg_rule(reg_rule))
1292 			return false;
1293 	}
1294 
1295 	return true;
1296 }
1297 
1298 /**
1299  * freq_in_rule_band - tells us if a frequency is in a frequency band
1300  * @freq_range: frequency rule we want to query
1301  * @freq_khz: frequency we are inquiring about
1302  *
1303  * This lets us know if a specific frequency rule is or is not relevant to
1304  * a specific frequency's band. Bands are device specific and artificial
1305  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1306  * however it is safe for now to assume that a frequency rule should not be
1307  * part of a frequency's band if the start freq or end freq are off by more
1308  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1309  * 60 GHz band.
1310  * This resolution can be lowered and should be considered as we add
1311  * regulatory rule support for other "bands".
1312  **/
1313 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1314 			      u32 freq_khz)
1315 {
1316 #define ONE_GHZ_IN_KHZ	1000000
1317 	/*
1318 	 * From 802.11ad: directional multi-gigabit (DMG):
1319 	 * Pertaining to operation in a frequency band containing a channel
1320 	 * with the Channel starting frequency above 45 GHz.
1321 	 */
1322 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1323 			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1324 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1325 		return true;
1326 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1327 		return true;
1328 	return false;
1329 #undef ONE_GHZ_IN_KHZ
1330 }
1331 
1332 /*
1333  * Later on we can perhaps use the more restrictive DFS
1334  * region but we don't have information for that yet so
1335  * for now simply disallow conflicts.
1336  */
1337 static enum nl80211_dfs_regions
1338 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1339 			 const enum nl80211_dfs_regions dfs_region2)
1340 {
1341 	if (dfs_region1 != dfs_region2)
1342 		return NL80211_DFS_UNSET;
1343 	return dfs_region1;
1344 }
1345 
1346 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1347 				    const struct ieee80211_wmm_ac *wmm_ac2,
1348 				    struct ieee80211_wmm_ac *intersect)
1349 {
1350 	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1351 	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1352 	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1353 	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1354 }
1355 
1356 /*
1357  * Helper for regdom_intersect(), this does the real
1358  * mathematical intersection fun
1359  */
1360 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1361 			       const struct ieee80211_regdomain *rd2,
1362 			       const struct ieee80211_reg_rule *rule1,
1363 			       const struct ieee80211_reg_rule *rule2,
1364 			       struct ieee80211_reg_rule *intersected_rule)
1365 {
1366 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1367 	struct ieee80211_freq_range *freq_range;
1368 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1369 	struct ieee80211_power_rule *power_rule;
1370 	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1371 	struct ieee80211_wmm_rule *wmm_rule;
1372 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1373 
1374 	freq_range1 = &rule1->freq_range;
1375 	freq_range2 = &rule2->freq_range;
1376 	freq_range = &intersected_rule->freq_range;
1377 
1378 	power_rule1 = &rule1->power_rule;
1379 	power_rule2 = &rule2->power_rule;
1380 	power_rule = &intersected_rule->power_rule;
1381 
1382 	wmm_rule1 = &rule1->wmm_rule;
1383 	wmm_rule2 = &rule2->wmm_rule;
1384 	wmm_rule = &intersected_rule->wmm_rule;
1385 
1386 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1387 					 freq_range2->start_freq_khz);
1388 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1389 				       freq_range2->end_freq_khz);
1390 
1391 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1392 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1393 
1394 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1395 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1396 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1397 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1398 
1399 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1400 
1401 	intersected_rule->flags = rule1->flags | rule2->flags;
1402 
1403 	/*
1404 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1405 	 * set AUTO_BW in intersected rule also. Next we will
1406 	 * calculate BW correctly in handle_channel function.
1407 	 * In other case remove AUTO_BW flag while we calculate
1408 	 * maximum bandwidth correctly and auto calculation is
1409 	 * not required.
1410 	 */
1411 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1412 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1413 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1414 	else
1415 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1416 
1417 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1418 	if (freq_range->max_bandwidth_khz > freq_diff)
1419 		freq_range->max_bandwidth_khz = freq_diff;
1420 
1421 	power_rule->max_eirp = min(power_rule1->max_eirp,
1422 		power_rule2->max_eirp);
1423 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1424 		power_rule2->max_antenna_gain);
1425 
1426 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1427 					   rule2->dfs_cac_ms);
1428 
1429 	if (rule1->has_wmm && rule2->has_wmm) {
1430 		u8 ac;
1431 
1432 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1433 			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1434 						&wmm_rule2->client[ac],
1435 						&wmm_rule->client[ac]);
1436 			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1437 						&wmm_rule2->ap[ac],
1438 						&wmm_rule->ap[ac]);
1439 		}
1440 
1441 		intersected_rule->has_wmm = true;
1442 	} else if (rule1->has_wmm) {
1443 		*wmm_rule = *wmm_rule1;
1444 		intersected_rule->has_wmm = true;
1445 	} else if (rule2->has_wmm) {
1446 		*wmm_rule = *wmm_rule2;
1447 		intersected_rule->has_wmm = true;
1448 	} else {
1449 		intersected_rule->has_wmm = false;
1450 	}
1451 
1452 	if (!is_valid_reg_rule(intersected_rule))
1453 		return -EINVAL;
1454 
1455 	return 0;
1456 }
1457 
1458 /* check whether old rule contains new rule */
1459 static bool rule_contains(struct ieee80211_reg_rule *r1,
1460 			  struct ieee80211_reg_rule *r2)
1461 {
1462 	/* for simplicity, currently consider only same flags */
1463 	if (r1->flags != r2->flags)
1464 		return false;
1465 
1466 	/* verify r1 is more restrictive */
1467 	if ((r1->power_rule.max_antenna_gain >
1468 	     r2->power_rule.max_antenna_gain) ||
1469 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1470 		return false;
1471 
1472 	/* make sure r2's range is contained within r1 */
1473 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1474 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1475 		return false;
1476 
1477 	/* and finally verify that r1.max_bw >= r2.max_bw */
1478 	if (r1->freq_range.max_bandwidth_khz <
1479 	    r2->freq_range.max_bandwidth_khz)
1480 		return false;
1481 
1482 	return true;
1483 }
1484 
1485 /* add or extend current rules. do nothing if rule is already contained */
1486 static void add_rule(struct ieee80211_reg_rule *rule,
1487 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1488 {
1489 	struct ieee80211_reg_rule *tmp_rule;
1490 	int i;
1491 
1492 	for (i = 0; i < *n_rules; i++) {
1493 		tmp_rule = &reg_rules[i];
1494 		/* rule is already contained - do nothing */
1495 		if (rule_contains(tmp_rule, rule))
1496 			return;
1497 
1498 		/* extend rule if possible */
1499 		if (rule_contains(rule, tmp_rule)) {
1500 			memcpy(tmp_rule, rule, sizeof(*rule));
1501 			return;
1502 		}
1503 	}
1504 
1505 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1506 	(*n_rules)++;
1507 }
1508 
1509 /**
1510  * regdom_intersect - do the intersection between two regulatory domains
1511  * @rd1: first regulatory domain
1512  * @rd2: second regulatory domain
1513  *
1514  * Use this function to get the intersection between two regulatory domains.
1515  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1516  * as no one single alpha2 can represent this regulatory domain.
1517  *
1518  * Returns a pointer to the regulatory domain structure which will hold the
1519  * resulting intersection of rules between rd1 and rd2. We will
1520  * kzalloc() this structure for you.
1521  */
1522 static struct ieee80211_regdomain *
1523 regdom_intersect(const struct ieee80211_regdomain *rd1,
1524 		 const struct ieee80211_regdomain *rd2)
1525 {
1526 	int r;
1527 	unsigned int x, y;
1528 	unsigned int num_rules = 0;
1529 	const struct ieee80211_reg_rule *rule1, *rule2;
1530 	struct ieee80211_reg_rule intersected_rule;
1531 	struct ieee80211_regdomain *rd;
1532 
1533 	if (!rd1 || !rd2)
1534 		return NULL;
1535 
1536 	/*
1537 	 * First we get a count of the rules we'll need, then we actually
1538 	 * build them. This is to so we can malloc() and free() a
1539 	 * regdomain once. The reason we use reg_rules_intersect() here
1540 	 * is it will return -EINVAL if the rule computed makes no sense.
1541 	 * All rules that do check out OK are valid.
1542 	 */
1543 
1544 	for (x = 0; x < rd1->n_reg_rules; x++) {
1545 		rule1 = &rd1->reg_rules[x];
1546 		for (y = 0; y < rd2->n_reg_rules; y++) {
1547 			rule2 = &rd2->reg_rules[y];
1548 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1549 						 &intersected_rule))
1550 				num_rules++;
1551 		}
1552 	}
1553 
1554 	if (!num_rules)
1555 		return NULL;
1556 
1557 	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1558 	if (!rd)
1559 		return NULL;
1560 
1561 	for (x = 0; x < rd1->n_reg_rules; x++) {
1562 		rule1 = &rd1->reg_rules[x];
1563 		for (y = 0; y < rd2->n_reg_rules; y++) {
1564 			rule2 = &rd2->reg_rules[y];
1565 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1566 						&intersected_rule);
1567 			/*
1568 			 * No need to memset here the intersected rule here as
1569 			 * we're not using the stack anymore
1570 			 */
1571 			if (r)
1572 				continue;
1573 
1574 			add_rule(&intersected_rule, rd->reg_rules,
1575 				 &rd->n_reg_rules);
1576 		}
1577 	}
1578 
1579 	rd->alpha2[0] = '9';
1580 	rd->alpha2[1] = '8';
1581 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1582 						  rd2->dfs_region);
1583 
1584 	return rd;
1585 }
1586 
1587 /*
1588  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1589  * want to just have the channel structure use these
1590  */
1591 static u32 map_regdom_flags(u32 rd_flags)
1592 {
1593 	u32 channel_flags = 0;
1594 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1595 		channel_flags |= IEEE80211_CHAN_NO_IR;
1596 	if (rd_flags & NL80211_RRF_DFS)
1597 		channel_flags |= IEEE80211_CHAN_RADAR;
1598 	if (rd_flags & NL80211_RRF_NO_OFDM)
1599 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1600 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1601 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1602 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1603 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1604 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1605 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1606 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1607 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1608 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1609 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1610 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1611 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1612 	if (rd_flags & NL80211_RRF_NO_HE)
1613 		channel_flags |= IEEE80211_CHAN_NO_HE;
1614 	return channel_flags;
1615 }
1616 
1617 static const struct ieee80211_reg_rule *
1618 freq_reg_info_regd(u32 center_freq,
1619 		   const struct ieee80211_regdomain *regd, u32 bw)
1620 {
1621 	int i;
1622 	bool band_rule_found = false;
1623 	bool bw_fits = false;
1624 
1625 	if (!regd)
1626 		return ERR_PTR(-EINVAL);
1627 
1628 	for (i = 0; i < regd->n_reg_rules; i++) {
1629 		const struct ieee80211_reg_rule *rr;
1630 		const struct ieee80211_freq_range *fr = NULL;
1631 
1632 		rr = &regd->reg_rules[i];
1633 		fr = &rr->freq_range;
1634 
1635 		/*
1636 		 * We only need to know if one frequency rule was
1637 		 * in center_freq's band, that's enough, so let's
1638 		 * not overwrite it once found
1639 		 */
1640 		if (!band_rule_found)
1641 			band_rule_found = freq_in_rule_band(fr, center_freq);
1642 
1643 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1644 
1645 		if (band_rule_found && bw_fits)
1646 			return rr;
1647 	}
1648 
1649 	if (!band_rule_found)
1650 		return ERR_PTR(-ERANGE);
1651 
1652 	return ERR_PTR(-EINVAL);
1653 }
1654 
1655 static const struct ieee80211_reg_rule *
1656 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1657 {
1658 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1659 	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1660 	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1661 	int i = ARRAY_SIZE(bws) - 1;
1662 	u32 bw;
1663 
1664 	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1665 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1666 		if (!IS_ERR(reg_rule))
1667 			return reg_rule;
1668 	}
1669 
1670 	return reg_rule;
1671 }
1672 
1673 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1674 					       u32 center_freq)
1675 {
1676 	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1677 
1678 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1679 }
1680 EXPORT_SYMBOL(freq_reg_info);
1681 
1682 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1683 {
1684 	switch (initiator) {
1685 	case NL80211_REGDOM_SET_BY_CORE:
1686 		return "core";
1687 	case NL80211_REGDOM_SET_BY_USER:
1688 		return "user";
1689 	case NL80211_REGDOM_SET_BY_DRIVER:
1690 		return "driver";
1691 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1692 		return "country element";
1693 	default:
1694 		WARN_ON(1);
1695 		return "bug";
1696 	}
1697 }
1698 EXPORT_SYMBOL(reg_initiator_name);
1699 
1700 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1701 					  const struct ieee80211_reg_rule *reg_rule,
1702 					  const struct ieee80211_channel *chan)
1703 {
1704 	const struct ieee80211_freq_range *freq_range = NULL;
1705 	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1706 	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1707 
1708 	freq_range = &reg_rule->freq_range;
1709 
1710 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1711 	center_freq_khz = ieee80211_channel_to_khz(chan);
1712 	/* Check if auto calculation requested */
1713 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1714 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1715 
1716 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1717 	if (!cfg80211_does_bw_fit_range(freq_range,
1718 					center_freq_khz,
1719 					MHZ_TO_KHZ(10)))
1720 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1721 	if (!cfg80211_does_bw_fit_range(freq_range,
1722 					center_freq_khz,
1723 					MHZ_TO_KHZ(20)))
1724 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1725 
1726 	if (is_s1g) {
1727 		/* S1G is strict about non overlapping channels. We can
1728 		 * calculate which bandwidth is allowed per channel by finding
1729 		 * the largest bandwidth which cleanly divides the freq_range.
1730 		 */
1731 		int edge_offset;
1732 		int ch_bw = max_bandwidth_khz;
1733 
1734 		while (ch_bw) {
1735 			edge_offset = (center_freq_khz - ch_bw / 2) -
1736 				      freq_range->start_freq_khz;
1737 			if (edge_offset % ch_bw == 0) {
1738 				switch (KHZ_TO_MHZ(ch_bw)) {
1739 				case 1:
1740 					bw_flags |= IEEE80211_CHAN_1MHZ;
1741 					break;
1742 				case 2:
1743 					bw_flags |= IEEE80211_CHAN_2MHZ;
1744 					break;
1745 				case 4:
1746 					bw_flags |= IEEE80211_CHAN_4MHZ;
1747 					break;
1748 				case 8:
1749 					bw_flags |= IEEE80211_CHAN_8MHZ;
1750 					break;
1751 				case 16:
1752 					bw_flags |= IEEE80211_CHAN_16MHZ;
1753 					break;
1754 				default:
1755 					/* If we got here, no bandwidths fit on
1756 					 * this frequency, ie. band edge.
1757 					 */
1758 					bw_flags |= IEEE80211_CHAN_DISABLED;
1759 					break;
1760 				}
1761 				break;
1762 			}
1763 			ch_bw /= 2;
1764 		}
1765 	} else {
1766 		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1767 			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1768 		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1769 			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1770 		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1771 			bw_flags |= IEEE80211_CHAN_NO_HT40;
1772 		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1773 			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1774 		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1775 			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1776 	}
1777 	return bw_flags;
1778 }
1779 
1780 static void handle_channel_single_rule(struct wiphy *wiphy,
1781 				       enum nl80211_reg_initiator initiator,
1782 				       struct ieee80211_channel *chan,
1783 				       u32 flags,
1784 				       struct regulatory_request *lr,
1785 				       struct wiphy *request_wiphy,
1786 				       const struct ieee80211_reg_rule *reg_rule)
1787 {
1788 	u32 bw_flags = 0;
1789 	const struct ieee80211_power_rule *power_rule = NULL;
1790 	const struct ieee80211_regdomain *regd;
1791 
1792 	regd = reg_get_regdomain(wiphy);
1793 
1794 	power_rule = &reg_rule->power_rule;
1795 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1796 
1797 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1798 	    request_wiphy && request_wiphy == wiphy &&
1799 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1800 		/*
1801 		 * This guarantees the driver's requested regulatory domain
1802 		 * will always be used as a base for further regulatory
1803 		 * settings
1804 		 */
1805 		chan->flags = chan->orig_flags =
1806 			map_regdom_flags(reg_rule->flags) | bw_flags;
1807 		chan->max_antenna_gain = chan->orig_mag =
1808 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1809 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1810 			(int) MBM_TO_DBM(power_rule->max_eirp);
1811 
1812 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1813 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1814 			if (reg_rule->dfs_cac_ms)
1815 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1816 		}
1817 
1818 		return;
1819 	}
1820 
1821 	chan->dfs_state = NL80211_DFS_USABLE;
1822 	chan->dfs_state_entered = jiffies;
1823 
1824 	chan->beacon_found = false;
1825 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1826 	chan->max_antenna_gain =
1827 		min_t(int, chan->orig_mag,
1828 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1829 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1830 
1831 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1832 		if (reg_rule->dfs_cac_ms)
1833 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1834 		else
1835 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1836 	}
1837 
1838 	if (chan->orig_mpwr) {
1839 		/*
1840 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1841 		 * will always follow the passed country IE power settings.
1842 		 */
1843 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1844 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1845 			chan->max_power = chan->max_reg_power;
1846 		else
1847 			chan->max_power = min(chan->orig_mpwr,
1848 					      chan->max_reg_power);
1849 	} else
1850 		chan->max_power = chan->max_reg_power;
1851 }
1852 
1853 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1854 					  enum nl80211_reg_initiator initiator,
1855 					  struct ieee80211_channel *chan,
1856 					  u32 flags,
1857 					  struct regulatory_request *lr,
1858 					  struct wiphy *request_wiphy,
1859 					  const struct ieee80211_reg_rule *rrule1,
1860 					  const struct ieee80211_reg_rule *rrule2,
1861 					  struct ieee80211_freq_range *comb_range)
1862 {
1863 	u32 bw_flags1 = 0;
1864 	u32 bw_flags2 = 0;
1865 	const struct ieee80211_power_rule *power_rule1 = NULL;
1866 	const struct ieee80211_power_rule *power_rule2 = NULL;
1867 	const struct ieee80211_regdomain *regd;
1868 
1869 	regd = reg_get_regdomain(wiphy);
1870 
1871 	power_rule1 = &rrule1->power_rule;
1872 	power_rule2 = &rrule2->power_rule;
1873 	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1874 	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1875 
1876 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1877 	    request_wiphy && request_wiphy == wiphy &&
1878 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1879 		/* This guarantees the driver's requested regulatory domain
1880 		 * will always be used as a base for further regulatory
1881 		 * settings
1882 		 */
1883 		chan->flags =
1884 			map_regdom_flags(rrule1->flags) |
1885 			map_regdom_flags(rrule2->flags) |
1886 			bw_flags1 |
1887 			bw_flags2;
1888 		chan->orig_flags = chan->flags;
1889 		chan->max_antenna_gain =
1890 			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1891 			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1892 		chan->orig_mag = chan->max_antenna_gain;
1893 		chan->max_reg_power =
1894 			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1895 			      MBM_TO_DBM(power_rule2->max_eirp));
1896 		chan->max_power = chan->max_reg_power;
1897 		chan->orig_mpwr = chan->max_reg_power;
1898 
1899 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1900 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1901 			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1902 				chan->dfs_cac_ms = max_t(unsigned int,
1903 							 rrule1->dfs_cac_ms,
1904 							 rrule2->dfs_cac_ms);
1905 		}
1906 
1907 		return;
1908 	}
1909 
1910 	chan->dfs_state = NL80211_DFS_USABLE;
1911 	chan->dfs_state_entered = jiffies;
1912 
1913 	chan->beacon_found = false;
1914 	chan->flags = flags | bw_flags1 | bw_flags2 |
1915 		      map_regdom_flags(rrule1->flags) |
1916 		      map_regdom_flags(rrule2->flags);
1917 
1918 	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1919 	 * (otherwise no adj. rule case), recheck therefore
1920 	 */
1921 	if (cfg80211_does_bw_fit_range(comb_range,
1922 				       ieee80211_channel_to_khz(chan),
1923 				       MHZ_TO_KHZ(10)))
1924 		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1925 	if (cfg80211_does_bw_fit_range(comb_range,
1926 				       ieee80211_channel_to_khz(chan),
1927 				       MHZ_TO_KHZ(20)))
1928 		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1929 
1930 	chan->max_antenna_gain =
1931 		min_t(int, chan->orig_mag,
1932 		      min_t(int,
1933 			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1934 			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1935 	chan->max_reg_power = min_t(int,
1936 				    MBM_TO_DBM(power_rule1->max_eirp),
1937 				    MBM_TO_DBM(power_rule2->max_eirp));
1938 
1939 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1940 		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1941 			chan->dfs_cac_ms = max_t(unsigned int,
1942 						 rrule1->dfs_cac_ms,
1943 						 rrule2->dfs_cac_ms);
1944 		else
1945 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1946 	}
1947 
1948 	if (chan->orig_mpwr) {
1949 		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1950 		 * will always follow the passed country IE power settings.
1951 		 */
1952 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1953 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1954 			chan->max_power = chan->max_reg_power;
1955 		else
1956 			chan->max_power = min(chan->orig_mpwr,
1957 					      chan->max_reg_power);
1958 	} else {
1959 		chan->max_power = chan->max_reg_power;
1960 	}
1961 }
1962 
1963 /* Note that right now we assume the desired channel bandwidth
1964  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1965  * per channel, the primary and the extension channel).
1966  */
1967 static void handle_channel(struct wiphy *wiphy,
1968 			   enum nl80211_reg_initiator initiator,
1969 			   struct ieee80211_channel *chan)
1970 {
1971 	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1972 	struct regulatory_request *lr = get_last_request();
1973 	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1974 	const struct ieee80211_reg_rule *rrule = NULL;
1975 	const struct ieee80211_reg_rule *rrule1 = NULL;
1976 	const struct ieee80211_reg_rule *rrule2 = NULL;
1977 
1978 	u32 flags = chan->orig_flags;
1979 
1980 	rrule = freq_reg_info(wiphy, orig_chan_freq);
1981 	if (IS_ERR(rrule)) {
1982 		/* check for adjacent match, therefore get rules for
1983 		 * chan - 20 MHz and chan + 20 MHz and test
1984 		 * if reg rules are adjacent
1985 		 */
1986 		rrule1 = freq_reg_info(wiphy,
1987 				       orig_chan_freq - MHZ_TO_KHZ(20));
1988 		rrule2 = freq_reg_info(wiphy,
1989 				       orig_chan_freq + MHZ_TO_KHZ(20));
1990 		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1991 			struct ieee80211_freq_range comb_range;
1992 
1993 			if (rrule1->freq_range.end_freq_khz !=
1994 			    rrule2->freq_range.start_freq_khz)
1995 				goto disable_chan;
1996 
1997 			comb_range.start_freq_khz =
1998 				rrule1->freq_range.start_freq_khz;
1999 			comb_range.end_freq_khz =
2000 				rrule2->freq_range.end_freq_khz;
2001 			comb_range.max_bandwidth_khz =
2002 				min_t(u32,
2003 				      rrule1->freq_range.max_bandwidth_khz,
2004 				      rrule2->freq_range.max_bandwidth_khz);
2005 
2006 			if (!cfg80211_does_bw_fit_range(&comb_range,
2007 							orig_chan_freq,
2008 							MHZ_TO_KHZ(20)))
2009 				goto disable_chan;
2010 
2011 			handle_channel_adjacent_rules(wiphy, initiator, chan,
2012 						      flags, lr, request_wiphy,
2013 						      rrule1, rrule2,
2014 						      &comb_range);
2015 			return;
2016 		}
2017 
2018 disable_chan:
2019 		/* We will disable all channels that do not match our
2020 		 * received regulatory rule unless the hint is coming
2021 		 * from a Country IE and the Country IE had no information
2022 		 * about a band. The IEEE 802.11 spec allows for an AP
2023 		 * to send only a subset of the regulatory rules allowed,
2024 		 * so an AP in the US that only supports 2.4 GHz may only send
2025 		 * a country IE with information for the 2.4 GHz band
2026 		 * while 5 GHz is still supported.
2027 		 */
2028 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2029 		    PTR_ERR(rrule) == -ERANGE)
2030 			return;
2031 
2032 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2033 		    request_wiphy && request_wiphy == wiphy &&
2034 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2035 			pr_debug("Disabling freq %d.%03d MHz for good\n",
2036 				 chan->center_freq, chan->freq_offset);
2037 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2038 			chan->flags = chan->orig_flags;
2039 		} else {
2040 			pr_debug("Disabling freq %d.%03d MHz\n",
2041 				 chan->center_freq, chan->freq_offset);
2042 			chan->flags |= IEEE80211_CHAN_DISABLED;
2043 		}
2044 		return;
2045 	}
2046 
2047 	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2048 				   request_wiphy, rrule);
2049 }
2050 
2051 static void handle_band(struct wiphy *wiphy,
2052 			enum nl80211_reg_initiator initiator,
2053 			struct ieee80211_supported_band *sband)
2054 {
2055 	unsigned int i;
2056 
2057 	if (!sband)
2058 		return;
2059 
2060 	for (i = 0; i < sband->n_channels; i++)
2061 		handle_channel(wiphy, initiator, &sband->channels[i]);
2062 }
2063 
2064 static bool reg_request_cell_base(struct regulatory_request *request)
2065 {
2066 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2067 		return false;
2068 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2069 }
2070 
2071 bool reg_last_request_cell_base(void)
2072 {
2073 	return reg_request_cell_base(get_last_request());
2074 }
2075 
2076 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2077 /* Core specific check */
2078 static enum reg_request_treatment
2079 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2080 {
2081 	struct regulatory_request *lr = get_last_request();
2082 
2083 	if (!reg_num_devs_support_basehint)
2084 		return REG_REQ_IGNORE;
2085 
2086 	if (reg_request_cell_base(lr) &&
2087 	    !regdom_changes(pending_request->alpha2))
2088 		return REG_REQ_ALREADY_SET;
2089 
2090 	return REG_REQ_OK;
2091 }
2092 
2093 /* Device specific check */
2094 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2095 {
2096 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2097 }
2098 #else
2099 static enum reg_request_treatment
2100 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2101 {
2102 	return REG_REQ_IGNORE;
2103 }
2104 
2105 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2106 {
2107 	return true;
2108 }
2109 #endif
2110 
2111 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2112 {
2113 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2114 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2115 		return true;
2116 	return false;
2117 }
2118 
2119 static bool ignore_reg_update(struct wiphy *wiphy,
2120 			      enum nl80211_reg_initiator initiator)
2121 {
2122 	struct regulatory_request *lr = get_last_request();
2123 
2124 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2125 		return true;
2126 
2127 	if (!lr) {
2128 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2129 			 reg_initiator_name(initiator));
2130 		return true;
2131 	}
2132 
2133 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2134 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2135 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2136 			 reg_initiator_name(initiator));
2137 		return true;
2138 	}
2139 
2140 	/*
2141 	 * wiphy->regd will be set once the device has its own
2142 	 * desired regulatory domain set
2143 	 */
2144 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2145 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2146 	    !is_world_regdom(lr->alpha2)) {
2147 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2148 			 reg_initiator_name(initiator));
2149 		return true;
2150 	}
2151 
2152 	if (reg_request_cell_base(lr))
2153 		return reg_dev_ignore_cell_hint(wiphy);
2154 
2155 	return false;
2156 }
2157 
2158 static bool reg_is_world_roaming(struct wiphy *wiphy)
2159 {
2160 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2161 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2162 	struct regulatory_request *lr = get_last_request();
2163 
2164 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2165 		return true;
2166 
2167 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2168 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2169 		return true;
2170 
2171 	return false;
2172 }
2173 
2174 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2175 			      struct reg_beacon *reg_beacon)
2176 {
2177 	struct ieee80211_supported_band *sband;
2178 	struct ieee80211_channel *chan;
2179 	bool channel_changed = false;
2180 	struct ieee80211_channel chan_before;
2181 
2182 	sband = wiphy->bands[reg_beacon->chan.band];
2183 	chan = &sband->channels[chan_idx];
2184 
2185 	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2186 		return;
2187 
2188 	if (chan->beacon_found)
2189 		return;
2190 
2191 	chan->beacon_found = true;
2192 
2193 	if (!reg_is_world_roaming(wiphy))
2194 		return;
2195 
2196 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2197 		return;
2198 
2199 	chan_before = *chan;
2200 
2201 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2202 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2203 		channel_changed = true;
2204 	}
2205 
2206 	if (channel_changed)
2207 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2208 }
2209 
2210 /*
2211  * Called when a scan on a wiphy finds a beacon on
2212  * new channel
2213  */
2214 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2215 				    struct reg_beacon *reg_beacon)
2216 {
2217 	unsigned int i;
2218 	struct ieee80211_supported_band *sband;
2219 
2220 	if (!wiphy->bands[reg_beacon->chan.band])
2221 		return;
2222 
2223 	sband = wiphy->bands[reg_beacon->chan.band];
2224 
2225 	for (i = 0; i < sband->n_channels; i++)
2226 		handle_reg_beacon(wiphy, i, reg_beacon);
2227 }
2228 
2229 /*
2230  * Called upon reg changes or a new wiphy is added
2231  */
2232 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2233 {
2234 	unsigned int i;
2235 	struct ieee80211_supported_band *sband;
2236 	struct reg_beacon *reg_beacon;
2237 
2238 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2239 		if (!wiphy->bands[reg_beacon->chan.band])
2240 			continue;
2241 		sband = wiphy->bands[reg_beacon->chan.band];
2242 		for (i = 0; i < sband->n_channels; i++)
2243 			handle_reg_beacon(wiphy, i, reg_beacon);
2244 	}
2245 }
2246 
2247 /* Reap the advantages of previously found beacons */
2248 static void reg_process_beacons(struct wiphy *wiphy)
2249 {
2250 	/*
2251 	 * Means we are just firing up cfg80211, so no beacons would
2252 	 * have been processed yet.
2253 	 */
2254 	if (!last_request)
2255 		return;
2256 	wiphy_update_beacon_reg(wiphy);
2257 }
2258 
2259 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2260 {
2261 	if (!chan)
2262 		return false;
2263 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2264 		return false;
2265 	/* This would happen when regulatory rules disallow HT40 completely */
2266 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2267 		return false;
2268 	return true;
2269 }
2270 
2271 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2272 					 struct ieee80211_channel *channel)
2273 {
2274 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2275 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2276 	const struct ieee80211_regdomain *regd;
2277 	unsigned int i;
2278 	u32 flags;
2279 
2280 	if (!is_ht40_allowed(channel)) {
2281 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2282 		return;
2283 	}
2284 
2285 	/*
2286 	 * We need to ensure the extension channels exist to
2287 	 * be able to use HT40- or HT40+, this finds them (or not)
2288 	 */
2289 	for (i = 0; i < sband->n_channels; i++) {
2290 		struct ieee80211_channel *c = &sband->channels[i];
2291 
2292 		if (c->center_freq == (channel->center_freq - 20))
2293 			channel_before = c;
2294 		if (c->center_freq == (channel->center_freq + 20))
2295 			channel_after = c;
2296 	}
2297 
2298 	flags = 0;
2299 	regd = get_wiphy_regdom(wiphy);
2300 	if (regd) {
2301 		const struct ieee80211_reg_rule *reg_rule =
2302 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2303 					   regd, MHZ_TO_KHZ(20));
2304 
2305 		if (!IS_ERR(reg_rule))
2306 			flags = reg_rule->flags;
2307 	}
2308 
2309 	/*
2310 	 * Please note that this assumes target bandwidth is 20 MHz,
2311 	 * if that ever changes we also need to change the below logic
2312 	 * to include that as well.
2313 	 */
2314 	if (!is_ht40_allowed(channel_before) ||
2315 	    flags & NL80211_RRF_NO_HT40MINUS)
2316 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2317 	else
2318 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2319 
2320 	if (!is_ht40_allowed(channel_after) ||
2321 	    flags & NL80211_RRF_NO_HT40PLUS)
2322 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2323 	else
2324 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2325 }
2326 
2327 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2328 				      struct ieee80211_supported_band *sband)
2329 {
2330 	unsigned int i;
2331 
2332 	if (!sband)
2333 		return;
2334 
2335 	for (i = 0; i < sband->n_channels; i++)
2336 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2337 }
2338 
2339 static void reg_process_ht_flags(struct wiphy *wiphy)
2340 {
2341 	enum nl80211_band band;
2342 
2343 	if (!wiphy)
2344 		return;
2345 
2346 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2347 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2348 }
2349 
2350 static void reg_call_notifier(struct wiphy *wiphy,
2351 			      struct regulatory_request *request)
2352 {
2353 	if (wiphy->reg_notifier)
2354 		wiphy->reg_notifier(wiphy, request);
2355 }
2356 
2357 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2358 {
2359 	struct cfg80211_chan_def chandef = {};
2360 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2361 	enum nl80211_iftype iftype;
2362 	bool ret;
2363 
2364 	wdev_lock(wdev);
2365 	iftype = wdev->iftype;
2366 
2367 	/* make sure the interface is active */
2368 	if (!wdev->netdev || !netif_running(wdev->netdev))
2369 		goto wdev_inactive_unlock;
2370 
2371 	switch (iftype) {
2372 	case NL80211_IFTYPE_AP:
2373 	case NL80211_IFTYPE_P2P_GO:
2374 		if (!wdev->beacon_interval)
2375 			goto wdev_inactive_unlock;
2376 		chandef = wdev->chandef;
2377 		break;
2378 	case NL80211_IFTYPE_ADHOC:
2379 		if (!wdev->ssid_len)
2380 			goto wdev_inactive_unlock;
2381 		chandef = wdev->chandef;
2382 		break;
2383 	case NL80211_IFTYPE_STATION:
2384 	case NL80211_IFTYPE_P2P_CLIENT:
2385 		if (!wdev->current_bss ||
2386 		    !wdev->current_bss->pub.channel)
2387 			goto wdev_inactive_unlock;
2388 
2389 		if (!rdev->ops->get_channel ||
2390 		    rdev_get_channel(rdev, wdev, &chandef))
2391 			cfg80211_chandef_create(&chandef,
2392 						wdev->current_bss->pub.channel,
2393 						NL80211_CHAN_NO_HT);
2394 		break;
2395 	case NL80211_IFTYPE_MONITOR:
2396 	case NL80211_IFTYPE_AP_VLAN:
2397 	case NL80211_IFTYPE_P2P_DEVICE:
2398 		/* no enforcement required */
2399 		break;
2400 	default:
2401 		/* others not implemented for now */
2402 		WARN_ON(1);
2403 		break;
2404 	}
2405 
2406 	wdev_unlock(wdev);
2407 
2408 	switch (iftype) {
2409 	case NL80211_IFTYPE_AP:
2410 	case NL80211_IFTYPE_P2P_GO:
2411 	case NL80211_IFTYPE_ADHOC:
2412 		wiphy_lock(wiphy);
2413 		ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2414 		wiphy_unlock(wiphy);
2415 
2416 		return ret;
2417 	case NL80211_IFTYPE_STATION:
2418 	case NL80211_IFTYPE_P2P_CLIENT:
2419 		return cfg80211_chandef_usable(wiphy, &chandef,
2420 					       IEEE80211_CHAN_DISABLED);
2421 	default:
2422 		break;
2423 	}
2424 
2425 	return true;
2426 
2427 wdev_inactive_unlock:
2428 	wdev_unlock(wdev);
2429 	return true;
2430 }
2431 
2432 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2433 {
2434 	struct wireless_dev *wdev;
2435 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2436 
2437 	ASSERT_RTNL();
2438 
2439 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2440 		if (!reg_wdev_chan_valid(wiphy, wdev))
2441 			cfg80211_leave(rdev, wdev);
2442 }
2443 
2444 static void reg_check_chans_work(struct work_struct *work)
2445 {
2446 	struct cfg80211_registered_device *rdev;
2447 
2448 	pr_debug("Verifying active interfaces after reg change\n");
2449 	rtnl_lock();
2450 
2451 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2452 		if (!(rdev->wiphy.regulatory_flags &
2453 		      REGULATORY_IGNORE_STALE_KICKOFF))
2454 			reg_leave_invalid_chans(&rdev->wiphy);
2455 
2456 	rtnl_unlock();
2457 }
2458 
2459 static void reg_check_channels(void)
2460 {
2461 	/*
2462 	 * Give usermode a chance to do something nicer (move to another
2463 	 * channel, orderly disconnection), before forcing a disconnection.
2464 	 */
2465 	mod_delayed_work(system_power_efficient_wq,
2466 			 &reg_check_chans,
2467 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2468 }
2469 
2470 static void wiphy_update_regulatory(struct wiphy *wiphy,
2471 				    enum nl80211_reg_initiator initiator)
2472 {
2473 	enum nl80211_band band;
2474 	struct regulatory_request *lr = get_last_request();
2475 
2476 	if (ignore_reg_update(wiphy, initiator)) {
2477 		/*
2478 		 * Regulatory updates set by CORE are ignored for custom
2479 		 * regulatory cards. Let us notify the changes to the driver,
2480 		 * as some drivers used this to restore its orig_* reg domain.
2481 		 */
2482 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2483 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2484 		    !(wiphy->regulatory_flags &
2485 		      REGULATORY_WIPHY_SELF_MANAGED))
2486 			reg_call_notifier(wiphy, lr);
2487 		return;
2488 	}
2489 
2490 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2491 
2492 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2493 		handle_band(wiphy, initiator, wiphy->bands[band]);
2494 
2495 	reg_process_beacons(wiphy);
2496 	reg_process_ht_flags(wiphy);
2497 	reg_call_notifier(wiphy, lr);
2498 }
2499 
2500 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2501 {
2502 	struct cfg80211_registered_device *rdev;
2503 	struct wiphy *wiphy;
2504 
2505 	ASSERT_RTNL();
2506 
2507 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2508 		wiphy = &rdev->wiphy;
2509 		wiphy_update_regulatory(wiphy, initiator);
2510 	}
2511 
2512 	reg_check_channels();
2513 }
2514 
2515 static void handle_channel_custom(struct wiphy *wiphy,
2516 				  struct ieee80211_channel *chan,
2517 				  const struct ieee80211_regdomain *regd,
2518 				  u32 min_bw)
2519 {
2520 	u32 bw_flags = 0;
2521 	const struct ieee80211_reg_rule *reg_rule = NULL;
2522 	const struct ieee80211_power_rule *power_rule = NULL;
2523 	u32 bw, center_freq_khz;
2524 
2525 	center_freq_khz = ieee80211_channel_to_khz(chan);
2526 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2527 		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2528 		if (!IS_ERR(reg_rule))
2529 			break;
2530 	}
2531 
2532 	if (IS_ERR_OR_NULL(reg_rule)) {
2533 		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2534 			 chan->center_freq, chan->freq_offset);
2535 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2536 			chan->flags |= IEEE80211_CHAN_DISABLED;
2537 		} else {
2538 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2539 			chan->flags = chan->orig_flags;
2540 		}
2541 		return;
2542 	}
2543 
2544 	power_rule = &reg_rule->power_rule;
2545 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2546 
2547 	chan->dfs_state_entered = jiffies;
2548 	chan->dfs_state = NL80211_DFS_USABLE;
2549 
2550 	chan->beacon_found = false;
2551 
2552 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2553 		chan->flags = chan->orig_flags | bw_flags |
2554 			      map_regdom_flags(reg_rule->flags);
2555 	else
2556 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2557 
2558 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2559 	chan->max_reg_power = chan->max_power =
2560 		(int) MBM_TO_DBM(power_rule->max_eirp);
2561 
2562 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2563 		if (reg_rule->dfs_cac_ms)
2564 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2565 		else
2566 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2567 	}
2568 
2569 	chan->max_power = chan->max_reg_power;
2570 }
2571 
2572 static void handle_band_custom(struct wiphy *wiphy,
2573 			       struct ieee80211_supported_band *sband,
2574 			       const struct ieee80211_regdomain *regd)
2575 {
2576 	unsigned int i;
2577 
2578 	if (!sband)
2579 		return;
2580 
2581 	/*
2582 	 * We currently assume that you always want at least 20 MHz,
2583 	 * otherwise channel 12 might get enabled if this rule is
2584 	 * compatible to US, which permits 2402 - 2472 MHz.
2585 	 */
2586 	for (i = 0; i < sband->n_channels; i++)
2587 		handle_channel_custom(wiphy, &sband->channels[i], regd,
2588 				      MHZ_TO_KHZ(20));
2589 }
2590 
2591 /* Used by drivers prior to wiphy registration */
2592 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2593 				   const struct ieee80211_regdomain *regd)
2594 {
2595 	const struct ieee80211_regdomain *new_regd, *tmp;
2596 	enum nl80211_band band;
2597 	unsigned int bands_set = 0;
2598 
2599 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2600 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2601 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2602 
2603 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2604 		if (!wiphy->bands[band])
2605 			continue;
2606 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2607 		bands_set++;
2608 	}
2609 
2610 	/*
2611 	 * no point in calling this if it won't have any effect
2612 	 * on your device's supported bands.
2613 	 */
2614 	WARN_ON(!bands_set);
2615 	new_regd = reg_copy_regd(regd);
2616 	if (IS_ERR(new_regd))
2617 		return;
2618 
2619 	rtnl_lock();
2620 	wiphy_lock(wiphy);
2621 
2622 	tmp = get_wiphy_regdom(wiphy);
2623 	rcu_assign_pointer(wiphy->regd, new_regd);
2624 	rcu_free_regdom(tmp);
2625 
2626 	wiphy_unlock(wiphy);
2627 	rtnl_unlock();
2628 }
2629 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2630 
2631 static void reg_set_request_processed(void)
2632 {
2633 	bool need_more_processing = false;
2634 	struct regulatory_request *lr = get_last_request();
2635 
2636 	lr->processed = true;
2637 
2638 	spin_lock(&reg_requests_lock);
2639 	if (!list_empty(&reg_requests_list))
2640 		need_more_processing = true;
2641 	spin_unlock(&reg_requests_lock);
2642 
2643 	cancel_crda_timeout();
2644 
2645 	if (need_more_processing)
2646 		schedule_work(&reg_work);
2647 }
2648 
2649 /**
2650  * reg_process_hint_core - process core regulatory requests
2651  * @core_request: a pending core regulatory request
2652  *
2653  * The wireless subsystem can use this function to process
2654  * a regulatory request issued by the regulatory core.
2655  */
2656 static enum reg_request_treatment
2657 reg_process_hint_core(struct regulatory_request *core_request)
2658 {
2659 	if (reg_query_database(core_request)) {
2660 		core_request->intersect = false;
2661 		core_request->processed = false;
2662 		reg_update_last_request(core_request);
2663 		return REG_REQ_OK;
2664 	}
2665 
2666 	return REG_REQ_IGNORE;
2667 }
2668 
2669 static enum reg_request_treatment
2670 __reg_process_hint_user(struct regulatory_request *user_request)
2671 {
2672 	struct regulatory_request *lr = get_last_request();
2673 
2674 	if (reg_request_cell_base(user_request))
2675 		return reg_ignore_cell_hint(user_request);
2676 
2677 	if (reg_request_cell_base(lr))
2678 		return REG_REQ_IGNORE;
2679 
2680 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2681 		return REG_REQ_INTERSECT;
2682 	/*
2683 	 * If the user knows better the user should set the regdom
2684 	 * to their country before the IE is picked up
2685 	 */
2686 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2687 	    lr->intersect)
2688 		return REG_REQ_IGNORE;
2689 	/*
2690 	 * Process user requests only after previous user/driver/core
2691 	 * requests have been processed
2692 	 */
2693 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2694 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2695 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2696 	    regdom_changes(lr->alpha2))
2697 		return REG_REQ_IGNORE;
2698 
2699 	if (!regdom_changes(user_request->alpha2))
2700 		return REG_REQ_ALREADY_SET;
2701 
2702 	return REG_REQ_OK;
2703 }
2704 
2705 /**
2706  * reg_process_hint_user - process user regulatory requests
2707  * @user_request: a pending user regulatory request
2708  *
2709  * The wireless subsystem can use this function to process
2710  * a regulatory request initiated by userspace.
2711  */
2712 static enum reg_request_treatment
2713 reg_process_hint_user(struct regulatory_request *user_request)
2714 {
2715 	enum reg_request_treatment treatment;
2716 
2717 	treatment = __reg_process_hint_user(user_request);
2718 	if (treatment == REG_REQ_IGNORE ||
2719 	    treatment == REG_REQ_ALREADY_SET)
2720 		return REG_REQ_IGNORE;
2721 
2722 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2723 	user_request->processed = false;
2724 
2725 	if (reg_query_database(user_request)) {
2726 		reg_update_last_request(user_request);
2727 		user_alpha2[0] = user_request->alpha2[0];
2728 		user_alpha2[1] = user_request->alpha2[1];
2729 		return REG_REQ_OK;
2730 	}
2731 
2732 	return REG_REQ_IGNORE;
2733 }
2734 
2735 static enum reg_request_treatment
2736 __reg_process_hint_driver(struct regulatory_request *driver_request)
2737 {
2738 	struct regulatory_request *lr = get_last_request();
2739 
2740 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2741 		if (regdom_changes(driver_request->alpha2))
2742 			return REG_REQ_OK;
2743 		return REG_REQ_ALREADY_SET;
2744 	}
2745 
2746 	/*
2747 	 * This would happen if you unplug and plug your card
2748 	 * back in or if you add a new device for which the previously
2749 	 * loaded card also agrees on the regulatory domain.
2750 	 */
2751 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2752 	    !regdom_changes(driver_request->alpha2))
2753 		return REG_REQ_ALREADY_SET;
2754 
2755 	return REG_REQ_INTERSECT;
2756 }
2757 
2758 /**
2759  * reg_process_hint_driver - process driver regulatory requests
2760  * @wiphy: the wireless device for the regulatory request
2761  * @driver_request: a pending driver regulatory request
2762  *
2763  * The wireless subsystem can use this function to process
2764  * a regulatory request issued by an 802.11 driver.
2765  *
2766  * Returns one of the different reg request treatment values.
2767  */
2768 static enum reg_request_treatment
2769 reg_process_hint_driver(struct wiphy *wiphy,
2770 			struct regulatory_request *driver_request)
2771 {
2772 	const struct ieee80211_regdomain *regd, *tmp;
2773 	enum reg_request_treatment treatment;
2774 
2775 	treatment = __reg_process_hint_driver(driver_request);
2776 
2777 	switch (treatment) {
2778 	case REG_REQ_OK:
2779 		break;
2780 	case REG_REQ_IGNORE:
2781 		return REG_REQ_IGNORE;
2782 	case REG_REQ_INTERSECT:
2783 	case REG_REQ_ALREADY_SET:
2784 		regd = reg_copy_regd(get_cfg80211_regdom());
2785 		if (IS_ERR(regd))
2786 			return REG_REQ_IGNORE;
2787 
2788 		tmp = get_wiphy_regdom(wiphy);
2789 		ASSERT_RTNL();
2790 		wiphy_lock(wiphy);
2791 		rcu_assign_pointer(wiphy->regd, regd);
2792 		wiphy_unlock(wiphy);
2793 		rcu_free_regdom(tmp);
2794 	}
2795 
2796 
2797 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2798 	driver_request->processed = false;
2799 
2800 	/*
2801 	 * Since CRDA will not be called in this case as we already
2802 	 * have applied the requested regulatory domain before we just
2803 	 * inform userspace we have processed the request
2804 	 */
2805 	if (treatment == REG_REQ_ALREADY_SET) {
2806 		nl80211_send_reg_change_event(driver_request);
2807 		reg_update_last_request(driver_request);
2808 		reg_set_request_processed();
2809 		return REG_REQ_ALREADY_SET;
2810 	}
2811 
2812 	if (reg_query_database(driver_request)) {
2813 		reg_update_last_request(driver_request);
2814 		return REG_REQ_OK;
2815 	}
2816 
2817 	return REG_REQ_IGNORE;
2818 }
2819 
2820 static enum reg_request_treatment
2821 __reg_process_hint_country_ie(struct wiphy *wiphy,
2822 			      struct regulatory_request *country_ie_request)
2823 {
2824 	struct wiphy *last_wiphy = NULL;
2825 	struct regulatory_request *lr = get_last_request();
2826 
2827 	if (reg_request_cell_base(lr)) {
2828 		/* Trust a Cell base station over the AP's country IE */
2829 		if (regdom_changes(country_ie_request->alpha2))
2830 			return REG_REQ_IGNORE;
2831 		return REG_REQ_ALREADY_SET;
2832 	} else {
2833 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2834 			return REG_REQ_IGNORE;
2835 	}
2836 
2837 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2838 		return -EINVAL;
2839 
2840 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2841 		return REG_REQ_OK;
2842 
2843 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2844 
2845 	if (last_wiphy != wiphy) {
2846 		/*
2847 		 * Two cards with two APs claiming different
2848 		 * Country IE alpha2s. We could
2849 		 * intersect them, but that seems unlikely
2850 		 * to be correct. Reject second one for now.
2851 		 */
2852 		if (regdom_changes(country_ie_request->alpha2))
2853 			return REG_REQ_IGNORE;
2854 		return REG_REQ_ALREADY_SET;
2855 	}
2856 
2857 	if (regdom_changes(country_ie_request->alpha2))
2858 		return REG_REQ_OK;
2859 	return REG_REQ_ALREADY_SET;
2860 }
2861 
2862 /**
2863  * reg_process_hint_country_ie - process regulatory requests from country IEs
2864  * @wiphy: the wireless device for the regulatory request
2865  * @country_ie_request: a regulatory request from a country IE
2866  *
2867  * The wireless subsystem can use this function to process
2868  * a regulatory request issued by a country Information Element.
2869  *
2870  * Returns one of the different reg request treatment values.
2871  */
2872 static enum reg_request_treatment
2873 reg_process_hint_country_ie(struct wiphy *wiphy,
2874 			    struct regulatory_request *country_ie_request)
2875 {
2876 	enum reg_request_treatment treatment;
2877 
2878 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2879 
2880 	switch (treatment) {
2881 	case REG_REQ_OK:
2882 		break;
2883 	case REG_REQ_IGNORE:
2884 		return REG_REQ_IGNORE;
2885 	case REG_REQ_ALREADY_SET:
2886 		reg_free_request(country_ie_request);
2887 		return REG_REQ_ALREADY_SET;
2888 	case REG_REQ_INTERSECT:
2889 		/*
2890 		 * This doesn't happen yet, not sure we
2891 		 * ever want to support it for this case.
2892 		 */
2893 		WARN_ONCE(1, "Unexpected intersection for country elements");
2894 		return REG_REQ_IGNORE;
2895 	}
2896 
2897 	country_ie_request->intersect = false;
2898 	country_ie_request->processed = false;
2899 
2900 	if (reg_query_database(country_ie_request)) {
2901 		reg_update_last_request(country_ie_request);
2902 		return REG_REQ_OK;
2903 	}
2904 
2905 	return REG_REQ_IGNORE;
2906 }
2907 
2908 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2909 {
2910 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2911 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2912 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2913 	bool dfs_domain_same;
2914 
2915 	rcu_read_lock();
2916 
2917 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2918 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2919 	if (!wiphy1_regd)
2920 		wiphy1_regd = cfg80211_regd;
2921 
2922 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2923 	if (!wiphy2_regd)
2924 		wiphy2_regd = cfg80211_regd;
2925 
2926 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2927 
2928 	rcu_read_unlock();
2929 
2930 	return dfs_domain_same;
2931 }
2932 
2933 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2934 				    struct ieee80211_channel *src_chan)
2935 {
2936 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2937 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2938 		return;
2939 
2940 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2941 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2942 		return;
2943 
2944 	if (src_chan->center_freq == dst_chan->center_freq &&
2945 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2946 		dst_chan->dfs_state = src_chan->dfs_state;
2947 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2948 	}
2949 }
2950 
2951 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2952 				       struct wiphy *src_wiphy)
2953 {
2954 	struct ieee80211_supported_band *src_sband, *dst_sband;
2955 	struct ieee80211_channel *src_chan, *dst_chan;
2956 	int i, j, band;
2957 
2958 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2959 		return;
2960 
2961 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2962 		dst_sband = dst_wiphy->bands[band];
2963 		src_sband = src_wiphy->bands[band];
2964 		if (!dst_sband || !src_sband)
2965 			continue;
2966 
2967 		for (i = 0; i < dst_sband->n_channels; i++) {
2968 			dst_chan = &dst_sband->channels[i];
2969 			for (j = 0; j < src_sband->n_channels; j++) {
2970 				src_chan = &src_sband->channels[j];
2971 				reg_copy_dfs_chan_state(dst_chan, src_chan);
2972 			}
2973 		}
2974 	}
2975 }
2976 
2977 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2978 {
2979 	struct cfg80211_registered_device *rdev;
2980 
2981 	ASSERT_RTNL();
2982 
2983 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2984 		if (wiphy == &rdev->wiphy)
2985 			continue;
2986 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2987 	}
2988 }
2989 
2990 /* This processes *all* regulatory hints */
2991 static void reg_process_hint(struct regulatory_request *reg_request)
2992 {
2993 	struct wiphy *wiphy = NULL;
2994 	enum reg_request_treatment treatment;
2995 	enum nl80211_reg_initiator initiator = reg_request->initiator;
2996 
2997 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2998 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2999 
3000 	switch (initiator) {
3001 	case NL80211_REGDOM_SET_BY_CORE:
3002 		treatment = reg_process_hint_core(reg_request);
3003 		break;
3004 	case NL80211_REGDOM_SET_BY_USER:
3005 		treatment = reg_process_hint_user(reg_request);
3006 		break;
3007 	case NL80211_REGDOM_SET_BY_DRIVER:
3008 		if (!wiphy)
3009 			goto out_free;
3010 		treatment = reg_process_hint_driver(wiphy, reg_request);
3011 		break;
3012 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3013 		if (!wiphy)
3014 			goto out_free;
3015 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
3016 		break;
3017 	default:
3018 		WARN(1, "invalid initiator %d\n", initiator);
3019 		goto out_free;
3020 	}
3021 
3022 	if (treatment == REG_REQ_IGNORE)
3023 		goto out_free;
3024 
3025 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3026 	     "unexpected treatment value %d\n", treatment);
3027 
3028 	/* This is required so that the orig_* parameters are saved.
3029 	 * NOTE: treatment must be set for any case that reaches here!
3030 	 */
3031 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3032 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3033 		wiphy_update_regulatory(wiphy, initiator);
3034 		wiphy_all_share_dfs_chan_state(wiphy);
3035 		reg_check_channels();
3036 	}
3037 
3038 	return;
3039 
3040 out_free:
3041 	reg_free_request(reg_request);
3042 }
3043 
3044 static void notify_self_managed_wiphys(struct regulatory_request *request)
3045 {
3046 	struct cfg80211_registered_device *rdev;
3047 	struct wiphy *wiphy;
3048 
3049 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3050 		wiphy = &rdev->wiphy;
3051 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3052 		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3053 			reg_call_notifier(wiphy, request);
3054 	}
3055 }
3056 
3057 /*
3058  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3059  * Regulatory hints come on a first come first serve basis and we
3060  * must process each one atomically.
3061  */
3062 static void reg_process_pending_hints(void)
3063 {
3064 	struct regulatory_request *reg_request, *lr;
3065 
3066 	lr = get_last_request();
3067 
3068 	/* When last_request->processed becomes true this will be rescheduled */
3069 	if (lr && !lr->processed) {
3070 		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3071 		return;
3072 	}
3073 
3074 	spin_lock(&reg_requests_lock);
3075 
3076 	if (list_empty(&reg_requests_list)) {
3077 		spin_unlock(&reg_requests_lock);
3078 		return;
3079 	}
3080 
3081 	reg_request = list_first_entry(&reg_requests_list,
3082 				       struct regulatory_request,
3083 				       list);
3084 	list_del_init(&reg_request->list);
3085 
3086 	spin_unlock(&reg_requests_lock);
3087 
3088 	notify_self_managed_wiphys(reg_request);
3089 
3090 	reg_process_hint(reg_request);
3091 
3092 	lr = get_last_request();
3093 
3094 	spin_lock(&reg_requests_lock);
3095 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3096 		schedule_work(&reg_work);
3097 	spin_unlock(&reg_requests_lock);
3098 }
3099 
3100 /* Processes beacon hints -- this has nothing to do with country IEs */
3101 static void reg_process_pending_beacon_hints(void)
3102 {
3103 	struct cfg80211_registered_device *rdev;
3104 	struct reg_beacon *pending_beacon, *tmp;
3105 
3106 	/* This goes through the _pending_ beacon list */
3107 	spin_lock_bh(&reg_pending_beacons_lock);
3108 
3109 	list_for_each_entry_safe(pending_beacon, tmp,
3110 				 &reg_pending_beacons, list) {
3111 		list_del_init(&pending_beacon->list);
3112 
3113 		/* Applies the beacon hint to current wiphys */
3114 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3115 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3116 
3117 		/* Remembers the beacon hint for new wiphys or reg changes */
3118 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3119 	}
3120 
3121 	spin_unlock_bh(&reg_pending_beacons_lock);
3122 }
3123 
3124 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3125 {
3126 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3127 	const struct ieee80211_regdomain *tmp;
3128 	const struct ieee80211_regdomain *regd;
3129 	enum nl80211_band band;
3130 	struct regulatory_request request = {};
3131 
3132 	ASSERT_RTNL();
3133 	lockdep_assert_wiphy(wiphy);
3134 
3135 	spin_lock(&reg_requests_lock);
3136 	regd = rdev->requested_regd;
3137 	rdev->requested_regd = NULL;
3138 	spin_unlock(&reg_requests_lock);
3139 
3140 	if (!regd)
3141 		return;
3142 
3143 	tmp = get_wiphy_regdom(wiphy);
3144 	rcu_assign_pointer(wiphy->regd, regd);
3145 	rcu_free_regdom(tmp);
3146 
3147 	for (band = 0; band < NUM_NL80211_BANDS; band++)
3148 		handle_band_custom(wiphy, wiphy->bands[band], regd);
3149 
3150 	reg_process_ht_flags(wiphy);
3151 
3152 	request.wiphy_idx = get_wiphy_idx(wiphy);
3153 	request.alpha2[0] = regd->alpha2[0];
3154 	request.alpha2[1] = regd->alpha2[1];
3155 	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3156 
3157 	nl80211_send_wiphy_reg_change_event(&request);
3158 }
3159 
3160 static void reg_process_self_managed_hints(void)
3161 {
3162 	struct cfg80211_registered_device *rdev;
3163 
3164 	ASSERT_RTNL();
3165 
3166 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3167 		wiphy_lock(&rdev->wiphy);
3168 		reg_process_self_managed_hint(&rdev->wiphy);
3169 		wiphy_unlock(&rdev->wiphy);
3170 	}
3171 
3172 	reg_check_channels();
3173 }
3174 
3175 static void reg_todo(struct work_struct *work)
3176 {
3177 	rtnl_lock();
3178 	reg_process_pending_hints();
3179 	reg_process_pending_beacon_hints();
3180 	reg_process_self_managed_hints();
3181 	rtnl_unlock();
3182 }
3183 
3184 static void queue_regulatory_request(struct regulatory_request *request)
3185 {
3186 	request->alpha2[0] = toupper(request->alpha2[0]);
3187 	request->alpha2[1] = toupper(request->alpha2[1]);
3188 
3189 	spin_lock(&reg_requests_lock);
3190 	list_add_tail(&request->list, &reg_requests_list);
3191 	spin_unlock(&reg_requests_lock);
3192 
3193 	schedule_work(&reg_work);
3194 }
3195 
3196 /*
3197  * Core regulatory hint -- happens during cfg80211_init()
3198  * and when we restore regulatory settings.
3199  */
3200 static int regulatory_hint_core(const char *alpha2)
3201 {
3202 	struct regulatory_request *request;
3203 
3204 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3205 	if (!request)
3206 		return -ENOMEM;
3207 
3208 	request->alpha2[0] = alpha2[0];
3209 	request->alpha2[1] = alpha2[1];
3210 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3211 	request->wiphy_idx = WIPHY_IDX_INVALID;
3212 
3213 	queue_regulatory_request(request);
3214 
3215 	return 0;
3216 }
3217 
3218 /* User hints */
3219 int regulatory_hint_user(const char *alpha2,
3220 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3221 {
3222 	struct regulatory_request *request;
3223 
3224 	if (WARN_ON(!alpha2))
3225 		return -EINVAL;
3226 
3227 	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3228 		return -EINVAL;
3229 
3230 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3231 	if (!request)
3232 		return -ENOMEM;
3233 
3234 	request->wiphy_idx = WIPHY_IDX_INVALID;
3235 	request->alpha2[0] = alpha2[0];
3236 	request->alpha2[1] = alpha2[1];
3237 	request->initiator = NL80211_REGDOM_SET_BY_USER;
3238 	request->user_reg_hint_type = user_reg_hint_type;
3239 
3240 	/* Allow calling CRDA again */
3241 	reset_crda_timeouts();
3242 
3243 	queue_regulatory_request(request);
3244 
3245 	return 0;
3246 }
3247 
3248 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3249 {
3250 	spin_lock(&reg_indoor_lock);
3251 
3252 	/* It is possible that more than one user space process is trying to
3253 	 * configure the indoor setting. To handle such cases, clear the indoor
3254 	 * setting in case that some process does not think that the device
3255 	 * is operating in an indoor environment. In addition, if a user space
3256 	 * process indicates that it is controlling the indoor setting, save its
3257 	 * portid, i.e., make it the owner.
3258 	 */
3259 	reg_is_indoor = is_indoor;
3260 	if (reg_is_indoor) {
3261 		if (!reg_is_indoor_portid)
3262 			reg_is_indoor_portid = portid;
3263 	} else {
3264 		reg_is_indoor_portid = 0;
3265 	}
3266 
3267 	spin_unlock(&reg_indoor_lock);
3268 
3269 	if (!is_indoor)
3270 		reg_check_channels();
3271 
3272 	return 0;
3273 }
3274 
3275 void regulatory_netlink_notify(u32 portid)
3276 {
3277 	spin_lock(&reg_indoor_lock);
3278 
3279 	if (reg_is_indoor_portid != portid) {
3280 		spin_unlock(&reg_indoor_lock);
3281 		return;
3282 	}
3283 
3284 	reg_is_indoor = false;
3285 	reg_is_indoor_portid = 0;
3286 
3287 	spin_unlock(&reg_indoor_lock);
3288 
3289 	reg_check_channels();
3290 }
3291 
3292 /* Driver hints */
3293 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3294 {
3295 	struct regulatory_request *request;
3296 
3297 	if (WARN_ON(!alpha2 || !wiphy))
3298 		return -EINVAL;
3299 
3300 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3301 
3302 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3303 	if (!request)
3304 		return -ENOMEM;
3305 
3306 	request->wiphy_idx = get_wiphy_idx(wiphy);
3307 
3308 	request->alpha2[0] = alpha2[0];
3309 	request->alpha2[1] = alpha2[1];
3310 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3311 
3312 	/* Allow calling CRDA again */
3313 	reset_crda_timeouts();
3314 
3315 	queue_regulatory_request(request);
3316 
3317 	return 0;
3318 }
3319 EXPORT_SYMBOL(regulatory_hint);
3320 
3321 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3322 				const u8 *country_ie, u8 country_ie_len)
3323 {
3324 	char alpha2[2];
3325 	enum environment_cap env = ENVIRON_ANY;
3326 	struct regulatory_request *request = NULL, *lr;
3327 
3328 	/* IE len must be evenly divisible by 2 */
3329 	if (country_ie_len & 0x01)
3330 		return;
3331 
3332 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3333 		return;
3334 
3335 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3336 	if (!request)
3337 		return;
3338 
3339 	alpha2[0] = country_ie[0];
3340 	alpha2[1] = country_ie[1];
3341 
3342 	if (country_ie[2] == 'I')
3343 		env = ENVIRON_INDOOR;
3344 	else if (country_ie[2] == 'O')
3345 		env = ENVIRON_OUTDOOR;
3346 
3347 	rcu_read_lock();
3348 	lr = get_last_request();
3349 
3350 	if (unlikely(!lr))
3351 		goto out;
3352 
3353 	/*
3354 	 * We will run this only upon a successful connection on cfg80211.
3355 	 * We leave conflict resolution to the workqueue, where can hold
3356 	 * the RTNL.
3357 	 */
3358 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3359 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3360 		goto out;
3361 
3362 	request->wiphy_idx = get_wiphy_idx(wiphy);
3363 	request->alpha2[0] = alpha2[0];
3364 	request->alpha2[1] = alpha2[1];
3365 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3366 	request->country_ie_env = env;
3367 
3368 	/* Allow calling CRDA again */
3369 	reset_crda_timeouts();
3370 
3371 	queue_regulatory_request(request);
3372 	request = NULL;
3373 out:
3374 	kfree(request);
3375 	rcu_read_unlock();
3376 }
3377 
3378 static void restore_alpha2(char *alpha2, bool reset_user)
3379 {
3380 	/* indicates there is no alpha2 to consider for restoration */
3381 	alpha2[0] = '9';
3382 	alpha2[1] = '7';
3383 
3384 	/* The user setting has precedence over the module parameter */
3385 	if (is_user_regdom_saved()) {
3386 		/* Unless we're asked to ignore it and reset it */
3387 		if (reset_user) {
3388 			pr_debug("Restoring regulatory settings including user preference\n");
3389 			user_alpha2[0] = '9';
3390 			user_alpha2[1] = '7';
3391 
3392 			/*
3393 			 * If we're ignoring user settings, we still need to
3394 			 * check the module parameter to ensure we put things
3395 			 * back as they were for a full restore.
3396 			 */
3397 			if (!is_world_regdom(ieee80211_regdom)) {
3398 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3399 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3400 				alpha2[0] = ieee80211_regdom[0];
3401 				alpha2[1] = ieee80211_regdom[1];
3402 			}
3403 		} else {
3404 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3405 				 user_alpha2[0], user_alpha2[1]);
3406 			alpha2[0] = user_alpha2[0];
3407 			alpha2[1] = user_alpha2[1];
3408 		}
3409 	} else if (!is_world_regdom(ieee80211_regdom)) {
3410 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3411 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3412 		alpha2[0] = ieee80211_regdom[0];
3413 		alpha2[1] = ieee80211_regdom[1];
3414 	} else
3415 		pr_debug("Restoring regulatory settings\n");
3416 }
3417 
3418 static void restore_custom_reg_settings(struct wiphy *wiphy)
3419 {
3420 	struct ieee80211_supported_band *sband;
3421 	enum nl80211_band band;
3422 	struct ieee80211_channel *chan;
3423 	int i;
3424 
3425 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3426 		sband = wiphy->bands[band];
3427 		if (!sband)
3428 			continue;
3429 		for (i = 0; i < sband->n_channels; i++) {
3430 			chan = &sband->channels[i];
3431 			chan->flags = chan->orig_flags;
3432 			chan->max_antenna_gain = chan->orig_mag;
3433 			chan->max_power = chan->orig_mpwr;
3434 			chan->beacon_found = false;
3435 		}
3436 	}
3437 }
3438 
3439 /*
3440  * Restoring regulatory settings involves ignoring any
3441  * possibly stale country IE information and user regulatory
3442  * settings if so desired, this includes any beacon hints
3443  * learned as we could have traveled outside to another country
3444  * after disconnection. To restore regulatory settings we do
3445  * exactly what we did at bootup:
3446  *
3447  *   - send a core regulatory hint
3448  *   - send a user regulatory hint if applicable
3449  *
3450  * Device drivers that send a regulatory hint for a specific country
3451  * keep their own regulatory domain on wiphy->regd so that does
3452  * not need to be remembered.
3453  */
3454 static void restore_regulatory_settings(bool reset_user, bool cached)
3455 {
3456 	char alpha2[2];
3457 	char world_alpha2[2];
3458 	struct reg_beacon *reg_beacon, *btmp;
3459 	LIST_HEAD(tmp_reg_req_list);
3460 	struct cfg80211_registered_device *rdev;
3461 
3462 	ASSERT_RTNL();
3463 
3464 	/*
3465 	 * Clear the indoor setting in case that it is not controlled by user
3466 	 * space, as otherwise there is no guarantee that the device is still
3467 	 * operating in an indoor environment.
3468 	 */
3469 	spin_lock(&reg_indoor_lock);
3470 	if (reg_is_indoor && !reg_is_indoor_portid) {
3471 		reg_is_indoor = false;
3472 		reg_check_channels();
3473 	}
3474 	spin_unlock(&reg_indoor_lock);
3475 
3476 	reset_regdomains(true, &world_regdom);
3477 	restore_alpha2(alpha2, reset_user);
3478 
3479 	/*
3480 	 * If there's any pending requests we simply
3481 	 * stash them to a temporary pending queue and
3482 	 * add then after we've restored regulatory
3483 	 * settings.
3484 	 */
3485 	spin_lock(&reg_requests_lock);
3486 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3487 	spin_unlock(&reg_requests_lock);
3488 
3489 	/* Clear beacon hints */
3490 	spin_lock_bh(&reg_pending_beacons_lock);
3491 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3492 		list_del(&reg_beacon->list);
3493 		kfree(reg_beacon);
3494 	}
3495 	spin_unlock_bh(&reg_pending_beacons_lock);
3496 
3497 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3498 		list_del(&reg_beacon->list);
3499 		kfree(reg_beacon);
3500 	}
3501 
3502 	/* First restore to the basic regulatory settings */
3503 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3504 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3505 
3506 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3507 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3508 			continue;
3509 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3510 			restore_custom_reg_settings(&rdev->wiphy);
3511 	}
3512 
3513 	if (cached && (!is_an_alpha2(alpha2) ||
3514 		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3515 		reset_regdomains(false, cfg80211_world_regdom);
3516 		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3517 		print_regdomain(get_cfg80211_regdom());
3518 		nl80211_send_reg_change_event(&core_request_world);
3519 		reg_set_request_processed();
3520 
3521 		if (is_an_alpha2(alpha2) &&
3522 		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3523 			struct regulatory_request *ureq;
3524 
3525 			spin_lock(&reg_requests_lock);
3526 			ureq = list_last_entry(&reg_requests_list,
3527 					       struct regulatory_request,
3528 					       list);
3529 			list_del(&ureq->list);
3530 			spin_unlock(&reg_requests_lock);
3531 
3532 			notify_self_managed_wiphys(ureq);
3533 			reg_update_last_request(ureq);
3534 			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3535 				   REGD_SOURCE_CACHED);
3536 		}
3537 	} else {
3538 		regulatory_hint_core(world_alpha2);
3539 
3540 		/*
3541 		 * This restores the ieee80211_regdom module parameter
3542 		 * preference or the last user requested regulatory
3543 		 * settings, user regulatory settings takes precedence.
3544 		 */
3545 		if (is_an_alpha2(alpha2))
3546 			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3547 	}
3548 
3549 	spin_lock(&reg_requests_lock);
3550 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3551 	spin_unlock(&reg_requests_lock);
3552 
3553 	pr_debug("Kicking the queue\n");
3554 
3555 	schedule_work(&reg_work);
3556 }
3557 
3558 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3559 {
3560 	struct cfg80211_registered_device *rdev;
3561 	struct wireless_dev *wdev;
3562 
3563 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3564 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3565 			wdev_lock(wdev);
3566 			if (!(wdev->wiphy->regulatory_flags & flag)) {
3567 				wdev_unlock(wdev);
3568 				return false;
3569 			}
3570 			wdev_unlock(wdev);
3571 		}
3572 	}
3573 
3574 	return true;
3575 }
3576 
3577 void regulatory_hint_disconnect(void)
3578 {
3579 	/* Restore of regulatory settings is not required when wiphy(s)
3580 	 * ignore IE from connected access point but clearance of beacon hints
3581 	 * is required when wiphy(s) supports beacon hints.
3582 	 */
3583 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3584 		struct reg_beacon *reg_beacon, *btmp;
3585 
3586 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3587 			return;
3588 
3589 		spin_lock_bh(&reg_pending_beacons_lock);
3590 		list_for_each_entry_safe(reg_beacon, btmp,
3591 					 &reg_pending_beacons, list) {
3592 			list_del(&reg_beacon->list);
3593 			kfree(reg_beacon);
3594 		}
3595 		spin_unlock_bh(&reg_pending_beacons_lock);
3596 
3597 		list_for_each_entry_safe(reg_beacon, btmp,
3598 					 &reg_beacon_list, list) {
3599 			list_del(&reg_beacon->list);
3600 			kfree(reg_beacon);
3601 		}
3602 
3603 		return;
3604 	}
3605 
3606 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3607 	restore_regulatory_settings(false, true);
3608 }
3609 
3610 static bool freq_is_chan_12_13_14(u32 freq)
3611 {
3612 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3613 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3614 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3615 		return true;
3616 	return false;
3617 }
3618 
3619 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3620 {
3621 	struct reg_beacon *pending_beacon;
3622 
3623 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3624 		if (ieee80211_channel_equal(beacon_chan,
3625 					    &pending_beacon->chan))
3626 			return true;
3627 	return false;
3628 }
3629 
3630 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3631 				 struct ieee80211_channel *beacon_chan,
3632 				 gfp_t gfp)
3633 {
3634 	struct reg_beacon *reg_beacon;
3635 	bool processing;
3636 
3637 	if (beacon_chan->beacon_found ||
3638 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3639 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3640 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3641 		return 0;
3642 
3643 	spin_lock_bh(&reg_pending_beacons_lock);
3644 	processing = pending_reg_beacon(beacon_chan);
3645 	spin_unlock_bh(&reg_pending_beacons_lock);
3646 
3647 	if (processing)
3648 		return 0;
3649 
3650 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3651 	if (!reg_beacon)
3652 		return -ENOMEM;
3653 
3654 	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3655 		 beacon_chan->center_freq, beacon_chan->freq_offset,
3656 		 ieee80211_freq_khz_to_channel(
3657 			 ieee80211_channel_to_khz(beacon_chan)),
3658 		 wiphy_name(wiphy));
3659 
3660 	memcpy(&reg_beacon->chan, beacon_chan,
3661 	       sizeof(struct ieee80211_channel));
3662 
3663 	/*
3664 	 * Since we can be called from BH or and non-BH context
3665 	 * we must use spin_lock_bh()
3666 	 */
3667 	spin_lock_bh(&reg_pending_beacons_lock);
3668 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3669 	spin_unlock_bh(&reg_pending_beacons_lock);
3670 
3671 	schedule_work(&reg_work);
3672 
3673 	return 0;
3674 }
3675 
3676 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3677 {
3678 	unsigned int i;
3679 	const struct ieee80211_reg_rule *reg_rule = NULL;
3680 	const struct ieee80211_freq_range *freq_range = NULL;
3681 	const struct ieee80211_power_rule *power_rule = NULL;
3682 	char bw[32], cac_time[32];
3683 
3684 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3685 
3686 	for (i = 0; i < rd->n_reg_rules; i++) {
3687 		reg_rule = &rd->reg_rules[i];
3688 		freq_range = &reg_rule->freq_range;
3689 		power_rule = &reg_rule->power_rule;
3690 
3691 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3692 			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3693 				 freq_range->max_bandwidth_khz,
3694 				 reg_get_max_bandwidth(rd, reg_rule));
3695 		else
3696 			snprintf(bw, sizeof(bw), "%d KHz",
3697 				 freq_range->max_bandwidth_khz);
3698 
3699 		if (reg_rule->flags & NL80211_RRF_DFS)
3700 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3701 				  reg_rule->dfs_cac_ms/1000);
3702 		else
3703 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3704 
3705 
3706 		/*
3707 		 * There may not be documentation for max antenna gain
3708 		 * in certain regions
3709 		 */
3710 		if (power_rule->max_antenna_gain)
3711 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3712 				freq_range->start_freq_khz,
3713 				freq_range->end_freq_khz,
3714 				bw,
3715 				power_rule->max_antenna_gain,
3716 				power_rule->max_eirp,
3717 				cac_time);
3718 		else
3719 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3720 				freq_range->start_freq_khz,
3721 				freq_range->end_freq_khz,
3722 				bw,
3723 				power_rule->max_eirp,
3724 				cac_time);
3725 	}
3726 }
3727 
3728 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3729 {
3730 	switch (dfs_region) {
3731 	case NL80211_DFS_UNSET:
3732 	case NL80211_DFS_FCC:
3733 	case NL80211_DFS_ETSI:
3734 	case NL80211_DFS_JP:
3735 		return true;
3736 	default:
3737 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3738 		return false;
3739 	}
3740 }
3741 
3742 static void print_regdomain(const struct ieee80211_regdomain *rd)
3743 {
3744 	struct regulatory_request *lr = get_last_request();
3745 
3746 	if (is_intersected_alpha2(rd->alpha2)) {
3747 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3748 			struct cfg80211_registered_device *rdev;
3749 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3750 			if (rdev) {
3751 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3752 					rdev->country_ie_alpha2[0],
3753 					rdev->country_ie_alpha2[1]);
3754 			} else
3755 				pr_debug("Current regulatory domain intersected:\n");
3756 		} else
3757 			pr_debug("Current regulatory domain intersected:\n");
3758 	} else if (is_world_regdom(rd->alpha2)) {
3759 		pr_debug("World regulatory domain updated:\n");
3760 	} else {
3761 		if (is_unknown_alpha2(rd->alpha2))
3762 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3763 		else {
3764 			if (reg_request_cell_base(lr))
3765 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3766 					rd->alpha2[0], rd->alpha2[1]);
3767 			else
3768 				pr_debug("Regulatory domain changed to country: %c%c\n",
3769 					rd->alpha2[0], rd->alpha2[1]);
3770 		}
3771 	}
3772 
3773 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3774 	print_rd_rules(rd);
3775 }
3776 
3777 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3778 {
3779 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3780 	print_rd_rules(rd);
3781 }
3782 
3783 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3784 {
3785 	if (!is_world_regdom(rd->alpha2))
3786 		return -EINVAL;
3787 	update_world_regdomain(rd);
3788 	return 0;
3789 }
3790 
3791 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3792 			   struct regulatory_request *user_request)
3793 {
3794 	const struct ieee80211_regdomain *intersected_rd = NULL;
3795 
3796 	if (!regdom_changes(rd->alpha2))
3797 		return -EALREADY;
3798 
3799 	if (!is_valid_rd(rd)) {
3800 		pr_err("Invalid regulatory domain detected: %c%c\n",
3801 		       rd->alpha2[0], rd->alpha2[1]);
3802 		print_regdomain_info(rd);
3803 		return -EINVAL;
3804 	}
3805 
3806 	if (!user_request->intersect) {
3807 		reset_regdomains(false, rd);
3808 		return 0;
3809 	}
3810 
3811 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3812 	if (!intersected_rd)
3813 		return -EINVAL;
3814 
3815 	kfree(rd);
3816 	rd = NULL;
3817 	reset_regdomains(false, intersected_rd);
3818 
3819 	return 0;
3820 }
3821 
3822 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3823 			     struct regulatory_request *driver_request)
3824 {
3825 	const struct ieee80211_regdomain *regd;
3826 	const struct ieee80211_regdomain *intersected_rd = NULL;
3827 	const struct ieee80211_regdomain *tmp;
3828 	struct wiphy *request_wiphy;
3829 
3830 	if (is_world_regdom(rd->alpha2))
3831 		return -EINVAL;
3832 
3833 	if (!regdom_changes(rd->alpha2))
3834 		return -EALREADY;
3835 
3836 	if (!is_valid_rd(rd)) {
3837 		pr_err("Invalid regulatory domain detected: %c%c\n",
3838 		       rd->alpha2[0], rd->alpha2[1]);
3839 		print_regdomain_info(rd);
3840 		return -EINVAL;
3841 	}
3842 
3843 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3844 	if (!request_wiphy)
3845 		return -ENODEV;
3846 
3847 	if (!driver_request->intersect) {
3848 		ASSERT_RTNL();
3849 		wiphy_lock(request_wiphy);
3850 		if (request_wiphy->regd) {
3851 			wiphy_unlock(request_wiphy);
3852 			return -EALREADY;
3853 		}
3854 
3855 		regd = reg_copy_regd(rd);
3856 		if (IS_ERR(regd)) {
3857 			wiphy_unlock(request_wiphy);
3858 			return PTR_ERR(regd);
3859 		}
3860 
3861 		rcu_assign_pointer(request_wiphy->regd, regd);
3862 		wiphy_unlock(request_wiphy);
3863 		reset_regdomains(false, rd);
3864 		return 0;
3865 	}
3866 
3867 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3868 	if (!intersected_rd)
3869 		return -EINVAL;
3870 
3871 	/*
3872 	 * We can trash what CRDA provided now.
3873 	 * However if a driver requested this specific regulatory
3874 	 * domain we keep it for its private use
3875 	 */
3876 	tmp = get_wiphy_regdom(request_wiphy);
3877 	rcu_assign_pointer(request_wiphy->regd, rd);
3878 	rcu_free_regdom(tmp);
3879 
3880 	rd = NULL;
3881 
3882 	reset_regdomains(false, intersected_rd);
3883 
3884 	return 0;
3885 }
3886 
3887 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3888 				 struct regulatory_request *country_ie_request)
3889 {
3890 	struct wiphy *request_wiphy;
3891 
3892 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3893 	    !is_unknown_alpha2(rd->alpha2))
3894 		return -EINVAL;
3895 
3896 	/*
3897 	 * Lets only bother proceeding on the same alpha2 if the current
3898 	 * rd is non static (it means CRDA was present and was used last)
3899 	 * and the pending request came in from a country IE
3900 	 */
3901 
3902 	if (!is_valid_rd(rd)) {
3903 		pr_err("Invalid regulatory domain detected: %c%c\n",
3904 		       rd->alpha2[0], rd->alpha2[1]);
3905 		print_regdomain_info(rd);
3906 		return -EINVAL;
3907 	}
3908 
3909 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3910 	if (!request_wiphy)
3911 		return -ENODEV;
3912 
3913 	if (country_ie_request->intersect)
3914 		return -EINVAL;
3915 
3916 	reset_regdomains(false, rd);
3917 	return 0;
3918 }
3919 
3920 /*
3921  * Use this call to set the current regulatory domain. Conflicts with
3922  * multiple drivers can be ironed out later. Caller must've already
3923  * kmalloc'd the rd structure.
3924  */
3925 int set_regdom(const struct ieee80211_regdomain *rd,
3926 	       enum ieee80211_regd_source regd_src)
3927 {
3928 	struct regulatory_request *lr;
3929 	bool user_reset = false;
3930 	int r;
3931 
3932 	if (IS_ERR_OR_NULL(rd))
3933 		return -ENODATA;
3934 
3935 	if (!reg_is_valid_request(rd->alpha2)) {
3936 		kfree(rd);
3937 		return -EINVAL;
3938 	}
3939 
3940 	if (regd_src == REGD_SOURCE_CRDA)
3941 		reset_crda_timeouts();
3942 
3943 	lr = get_last_request();
3944 
3945 	/* Note that this doesn't update the wiphys, this is done below */
3946 	switch (lr->initiator) {
3947 	case NL80211_REGDOM_SET_BY_CORE:
3948 		r = reg_set_rd_core(rd);
3949 		break;
3950 	case NL80211_REGDOM_SET_BY_USER:
3951 		cfg80211_save_user_regdom(rd);
3952 		r = reg_set_rd_user(rd, lr);
3953 		user_reset = true;
3954 		break;
3955 	case NL80211_REGDOM_SET_BY_DRIVER:
3956 		r = reg_set_rd_driver(rd, lr);
3957 		break;
3958 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3959 		r = reg_set_rd_country_ie(rd, lr);
3960 		break;
3961 	default:
3962 		WARN(1, "invalid initiator %d\n", lr->initiator);
3963 		kfree(rd);
3964 		return -EINVAL;
3965 	}
3966 
3967 	if (r) {
3968 		switch (r) {
3969 		case -EALREADY:
3970 			reg_set_request_processed();
3971 			break;
3972 		default:
3973 			/* Back to world regulatory in case of errors */
3974 			restore_regulatory_settings(user_reset, false);
3975 		}
3976 
3977 		kfree(rd);
3978 		return r;
3979 	}
3980 
3981 	/* This would make this whole thing pointless */
3982 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3983 		return -EINVAL;
3984 
3985 	/* update all wiphys now with the new established regulatory domain */
3986 	update_all_wiphy_regulatory(lr->initiator);
3987 
3988 	print_regdomain(get_cfg80211_regdom());
3989 
3990 	nl80211_send_reg_change_event(lr);
3991 
3992 	reg_set_request_processed();
3993 
3994 	return 0;
3995 }
3996 
3997 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3998 				       struct ieee80211_regdomain *rd)
3999 {
4000 	const struct ieee80211_regdomain *regd;
4001 	const struct ieee80211_regdomain *prev_regd;
4002 	struct cfg80211_registered_device *rdev;
4003 
4004 	if (WARN_ON(!wiphy || !rd))
4005 		return -EINVAL;
4006 
4007 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4008 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4009 		return -EPERM;
4010 
4011 	if (WARN(!is_valid_rd(rd),
4012 		 "Invalid regulatory domain detected: %c%c\n",
4013 		 rd->alpha2[0], rd->alpha2[1])) {
4014 		print_regdomain_info(rd);
4015 		return -EINVAL;
4016 	}
4017 
4018 	regd = reg_copy_regd(rd);
4019 	if (IS_ERR(regd))
4020 		return PTR_ERR(regd);
4021 
4022 	rdev = wiphy_to_rdev(wiphy);
4023 
4024 	spin_lock(&reg_requests_lock);
4025 	prev_regd = rdev->requested_regd;
4026 	rdev->requested_regd = regd;
4027 	spin_unlock(&reg_requests_lock);
4028 
4029 	kfree(prev_regd);
4030 	return 0;
4031 }
4032 
4033 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4034 			      struct ieee80211_regdomain *rd)
4035 {
4036 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4037 
4038 	if (ret)
4039 		return ret;
4040 
4041 	schedule_work(&reg_work);
4042 	return 0;
4043 }
4044 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4045 
4046 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4047 				   struct ieee80211_regdomain *rd)
4048 {
4049 	int ret;
4050 
4051 	ASSERT_RTNL();
4052 
4053 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4054 	if (ret)
4055 		return ret;
4056 
4057 	/* process the request immediately */
4058 	reg_process_self_managed_hint(wiphy);
4059 	reg_check_channels();
4060 	return 0;
4061 }
4062 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4063 
4064 void wiphy_regulatory_register(struct wiphy *wiphy)
4065 {
4066 	struct regulatory_request *lr = get_last_request();
4067 
4068 	/* self-managed devices ignore beacon hints and country IE */
4069 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4070 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4071 					   REGULATORY_COUNTRY_IE_IGNORE;
4072 
4073 		/*
4074 		 * The last request may have been received before this
4075 		 * registration call. Call the driver notifier if
4076 		 * initiator is USER.
4077 		 */
4078 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4079 			reg_call_notifier(wiphy, lr);
4080 	}
4081 
4082 	if (!reg_dev_ignore_cell_hint(wiphy))
4083 		reg_num_devs_support_basehint++;
4084 
4085 	wiphy_update_regulatory(wiphy, lr->initiator);
4086 	wiphy_all_share_dfs_chan_state(wiphy);
4087 	reg_process_self_managed_hints();
4088 }
4089 
4090 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4091 {
4092 	struct wiphy *request_wiphy = NULL;
4093 	struct regulatory_request *lr;
4094 
4095 	lr = get_last_request();
4096 
4097 	if (!reg_dev_ignore_cell_hint(wiphy))
4098 		reg_num_devs_support_basehint--;
4099 
4100 	rcu_free_regdom(get_wiphy_regdom(wiphy));
4101 	RCU_INIT_POINTER(wiphy->regd, NULL);
4102 
4103 	if (lr)
4104 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4105 
4106 	if (!request_wiphy || request_wiphy != wiphy)
4107 		return;
4108 
4109 	lr->wiphy_idx = WIPHY_IDX_INVALID;
4110 	lr->country_ie_env = ENVIRON_ANY;
4111 }
4112 
4113 /*
4114  * See FCC notices for UNII band definitions
4115  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4116  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4117  */
4118 int cfg80211_get_unii(int freq)
4119 {
4120 	/* UNII-1 */
4121 	if (freq >= 5150 && freq <= 5250)
4122 		return 0;
4123 
4124 	/* UNII-2A */
4125 	if (freq > 5250 && freq <= 5350)
4126 		return 1;
4127 
4128 	/* UNII-2B */
4129 	if (freq > 5350 && freq <= 5470)
4130 		return 2;
4131 
4132 	/* UNII-2C */
4133 	if (freq > 5470 && freq <= 5725)
4134 		return 3;
4135 
4136 	/* UNII-3 */
4137 	if (freq > 5725 && freq <= 5825)
4138 		return 4;
4139 
4140 	/* UNII-5 */
4141 	if (freq > 5925 && freq <= 6425)
4142 		return 5;
4143 
4144 	/* UNII-6 */
4145 	if (freq > 6425 && freq <= 6525)
4146 		return 6;
4147 
4148 	/* UNII-7 */
4149 	if (freq > 6525 && freq <= 6875)
4150 		return 7;
4151 
4152 	/* UNII-8 */
4153 	if (freq > 6875 && freq <= 7125)
4154 		return 8;
4155 
4156 	return -EINVAL;
4157 }
4158 
4159 bool regulatory_indoor_allowed(void)
4160 {
4161 	return reg_is_indoor;
4162 }
4163 
4164 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4165 {
4166 	const struct ieee80211_regdomain *regd = NULL;
4167 	const struct ieee80211_regdomain *wiphy_regd = NULL;
4168 	bool pre_cac_allowed = false;
4169 
4170 	rcu_read_lock();
4171 
4172 	regd = rcu_dereference(cfg80211_regdomain);
4173 	wiphy_regd = rcu_dereference(wiphy->regd);
4174 	if (!wiphy_regd) {
4175 		if (regd->dfs_region == NL80211_DFS_ETSI)
4176 			pre_cac_allowed = true;
4177 
4178 		rcu_read_unlock();
4179 
4180 		return pre_cac_allowed;
4181 	}
4182 
4183 	if (regd->dfs_region == wiphy_regd->dfs_region &&
4184 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4185 		pre_cac_allowed = true;
4186 
4187 	rcu_read_unlock();
4188 
4189 	return pre_cac_allowed;
4190 }
4191 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4192 
4193 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4194 {
4195 	struct wireless_dev *wdev;
4196 	/* If we finished CAC or received radar, we should end any
4197 	 * CAC running on the same channels.
4198 	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4199 	 * either all channels are available - those the CAC_FINISHED
4200 	 * event has effected another wdev state, or there is a channel
4201 	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4202 	 * event has effected another wdev state.
4203 	 * In both cases we should end the CAC on the wdev.
4204 	 */
4205 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4206 		if (wdev->cac_started &&
4207 		    !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
4208 			rdev_end_cac(rdev, wdev->netdev);
4209 	}
4210 }
4211 
4212 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4213 				    struct cfg80211_chan_def *chandef,
4214 				    enum nl80211_dfs_state dfs_state,
4215 				    enum nl80211_radar_event event)
4216 {
4217 	struct cfg80211_registered_device *rdev;
4218 
4219 	ASSERT_RTNL();
4220 
4221 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4222 		return;
4223 
4224 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4225 		if (wiphy == &rdev->wiphy)
4226 			continue;
4227 
4228 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4229 			continue;
4230 
4231 		if (!ieee80211_get_channel(&rdev->wiphy,
4232 					   chandef->chan->center_freq))
4233 			continue;
4234 
4235 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4236 
4237 		if (event == NL80211_RADAR_DETECTED ||
4238 		    event == NL80211_RADAR_CAC_FINISHED) {
4239 			cfg80211_sched_dfs_chan_update(rdev);
4240 			cfg80211_check_and_end_cac(rdev);
4241 		}
4242 
4243 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4244 	}
4245 }
4246 
4247 static int __init regulatory_init_db(void)
4248 {
4249 	int err;
4250 
4251 	/*
4252 	 * It's possible that - due to other bugs/issues - cfg80211
4253 	 * never called regulatory_init() below, or that it failed;
4254 	 * in that case, don't try to do any further work here as
4255 	 * it's doomed to lead to crashes.
4256 	 */
4257 	if (IS_ERR_OR_NULL(reg_pdev))
4258 		return -EINVAL;
4259 
4260 	err = load_builtin_regdb_keys();
4261 	if (err)
4262 		return err;
4263 
4264 	/* We always try to get an update for the static regdomain */
4265 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4266 	if (err) {
4267 		if (err == -ENOMEM) {
4268 			platform_device_unregister(reg_pdev);
4269 			return err;
4270 		}
4271 		/*
4272 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4273 		 * memory which is handled and propagated appropriately above
4274 		 * but it can also fail during a netlink_broadcast() or during
4275 		 * early boot for call_usermodehelper(). For now treat these
4276 		 * errors as non-fatal.
4277 		 */
4278 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4279 	}
4280 
4281 	/*
4282 	 * Finally, if the user set the module parameter treat it
4283 	 * as a user hint.
4284 	 */
4285 	if (!is_world_regdom(ieee80211_regdom))
4286 		regulatory_hint_user(ieee80211_regdom,
4287 				     NL80211_USER_REG_HINT_USER);
4288 
4289 	return 0;
4290 }
4291 #ifndef MODULE
4292 late_initcall(regulatory_init_db);
4293 #endif
4294 
4295 int __init regulatory_init(void)
4296 {
4297 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4298 	if (IS_ERR(reg_pdev))
4299 		return PTR_ERR(reg_pdev);
4300 
4301 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4302 
4303 	user_alpha2[0] = '9';
4304 	user_alpha2[1] = '7';
4305 
4306 #ifdef MODULE
4307 	return regulatory_init_db();
4308 #else
4309 	return 0;
4310 #endif
4311 }
4312 
4313 void regulatory_exit(void)
4314 {
4315 	struct regulatory_request *reg_request, *tmp;
4316 	struct reg_beacon *reg_beacon, *btmp;
4317 
4318 	cancel_work_sync(&reg_work);
4319 	cancel_crda_timeout_sync();
4320 	cancel_delayed_work_sync(&reg_check_chans);
4321 
4322 	/* Lock to suppress warnings */
4323 	rtnl_lock();
4324 	reset_regdomains(true, NULL);
4325 	rtnl_unlock();
4326 
4327 	dev_set_uevent_suppress(&reg_pdev->dev, true);
4328 
4329 	platform_device_unregister(reg_pdev);
4330 
4331 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4332 		list_del(&reg_beacon->list);
4333 		kfree(reg_beacon);
4334 	}
4335 
4336 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4337 		list_del(&reg_beacon->list);
4338 		kfree(reg_beacon);
4339 	}
4340 
4341 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4342 		list_del(&reg_request->list);
4343 		kfree(reg_request);
4344 	}
4345 
4346 	if (!IS_ERR_OR_NULL(regdb))
4347 		kfree(regdb);
4348 	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4349 		kfree(cfg80211_user_regdom);
4350 
4351 	free_regdb_keyring();
4352 }
4353