xref: /openbmc/linux/net/wireless/reg.c (revision dd2934a95701576203b2f61e8ded4e4a2f9183ea)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user);
135 
136 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
137 {
138 	return rcu_dereference_rtnl(cfg80211_regdomain);
139 }
140 
141 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
142 {
143 	return rcu_dereference_rtnl(wiphy->regd);
144 }
145 
146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
147 {
148 	switch (dfs_region) {
149 	case NL80211_DFS_UNSET:
150 		return "unset";
151 	case NL80211_DFS_FCC:
152 		return "FCC";
153 	case NL80211_DFS_ETSI:
154 		return "ETSI";
155 	case NL80211_DFS_JP:
156 		return "JP";
157 	}
158 	return "Unknown";
159 }
160 
161 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
162 {
163 	const struct ieee80211_regdomain *regd = NULL;
164 	const struct ieee80211_regdomain *wiphy_regd = NULL;
165 
166 	regd = get_cfg80211_regdom();
167 	if (!wiphy)
168 		goto out;
169 
170 	wiphy_regd = get_wiphy_regdom(wiphy);
171 	if (!wiphy_regd)
172 		goto out;
173 
174 	if (wiphy_regd->dfs_region == regd->dfs_region)
175 		goto out;
176 
177 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
178 		 dev_name(&wiphy->dev),
179 		 reg_dfs_region_str(wiphy_regd->dfs_region),
180 		 reg_dfs_region_str(regd->dfs_region));
181 
182 out:
183 	return regd->dfs_region;
184 }
185 
186 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
187 {
188 	if (!r)
189 		return;
190 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
191 }
192 
193 static struct regulatory_request *get_last_request(void)
194 {
195 	return rcu_dereference_rtnl(last_request);
196 }
197 
198 /* Used to queue up regulatory hints */
199 static LIST_HEAD(reg_requests_list);
200 static spinlock_t reg_requests_lock;
201 
202 /* Used to queue up beacon hints for review */
203 static LIST_HEAD(reg_pending_beacons);
204 static spinlock_t reg_pending_beacons_lock;
205 
206 /* Used to keep track of processed beacon hints */
207 static LIST_HEAD(reg_beacon_list);
208 
209 struct reg_beacon {
210 	struct list_head list;
211 	struct ieee80211_channel chan;
212 };
213 
214 static void reg_check_chans_work(struct work_struct *work);
215 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
216 
217 static void reg_todo(struct work_struct *work);
218 static DECLARE_WORK(reg_work, reg_todo);
219 
220 /* We keep a static world regulatory domain in case of the absence of CRDA */
221 static const struct ieee80211_regdomain world_regdom = {
222 	.n_reg_rules = 8,
223 	.alpha2 =  "00",
224 	.reg_rules = {
225 		/* IEEE 802.11b/g, channels 1..11 */
226 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
227 		/* IEEE 802.11b/g, channels 12..13. */
228 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
229 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
230 		/* IEEE 802.11 channel 14 - Only JP enables
231 		 * this and for 802.11b only */
232 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
233 			NL80211_RRF_NO_IR |
234 			NL80211_RRF_NO_OFDM),
235 		/* IEEE 802.11a, channel 36..48 */
236 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
237                         NL80211_RRF_NO_IR |
238                         NL80211_RRF_AUTO_BW),
239 
240 		/* IEEE 802.11a, channel 52..64 - DFS required */
241 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
242 			NL80211_RRF_NO_IR |
243 			NL80211_RRF_AUTO_BW |
244 			NL80211_RRF_DFS),
245 
246 		/* IEEE 802.11a, channel 100..144 - DFS required */
247 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
248 			NL80211_RRF_NO_IR |
249 			NL80211_RRF_DFS),
250 
251 		/* IEEE 802.11a, channel 149..165 */
252 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
253 			NL80211_RRF_NO_IR),
254 
255 		/* IEEE 802.11ad (60GHz), channels 1..3 */
256 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
257 	}
258 };
259 
260 /* protected by RTNL */
261 static const struct ieee80211_regdomain *cfg80211_world_regdom =
262 	&world_regdom;
263 
264 static char *ieee80211_regdom = "00";
265 static char user_alpha2[2];
266 
267 module_param(ieee80211_regdom, charp, 0444);
268 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
269 
270 static void reg_free_request(struct regulatory_request *request)
271 {
272 	if (request == &core_request_world)
273 		return;
274 
275 	if (request != get_last_request())
276 		kfree(request);
277 }
278 
279 static void reg_free_last_request(void)
280 {
281 	struct regulatory_request *lr = get_last_request();
282 
283 	if (lr != &core_request_world && lr)
284 		kfree_rcu(lr, rcu_head);
285 }
286 
287 static void reg_update_last_request(struct regulatory_request *request)
288 {
289 	struct regulatory_request *lr;
290 
291 	lr = get_last_request();
292 	if (lr == request)
293 		return;
294 
295 	reg_free_last_request();
296 	rcu_assign_pointer(last_request, request);
297 }
298 
299 static void reset_regdomains(bool full_reset,
300 			     const struct ieee80211_regdomain *new_regdom)
301 {
302 	const struct ieee80211_regdomain *r;
303 
304 	ASSERT_RTNL();
305 
306 	r = get_cfg80211_regdom();
307 
308 	/* avoid freeing static information or freeing something twice */
309 	if (r == cfg80211_world_regdom)
310 		r = NULL;
311 	if (cfg80211_world_regdom == &world_regdom)
312 		cfg80211_world_regdom = NULL;
313 	if (r == &world_regdom)
314 		r = NULL;
315 
316 	rcu_free_regdom(r);
317 	rcu_free_regdom(cfg80211_world_regdom);
318 
319 	cfg80211_world_regdom = &world_regdom;
320 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
321 
322 	if (!full_reset)
323 		return;
324 
325 	reg_update_last_request(&core_request_world);
326 }
327 
328 /*
329  * Dynamic world regulatory domain requested by the wireless
330  * core upon initialization
331  */
332 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
333 {
334 	struct regulatory_request *lr;
335 
336 	lr = get_last_request();
337 
338 	WARN_ON(!lr);
339 
340 	reset_regdomains(false, rd);
341 
342 	cfg80211_world_regdom = rd;
343 }
344 
345 bool is_world_regdom(const char *alpha2)
346 {
347 	if (!alpha2)
348 		return false;
349 	return alpha2[0] == '0' && alpha2[1] == '0';
350 }
351 
352 static bool is_alpha2_set(const char *alpha2)
353 {
354 	if (!alpha2)
355 		return false;
356 	return alpha2[0] && alpha2[1];
357 }
358 
359 static bool is_unknown_alpha2(const char *alpha2)
360 {
361 	if (!alpha2)
362 		return false;
363 	/*
364 	 * Special case where regulatory domain was built by driver
365 	 * but a specific alpha2 cannot be determined
366 	 */
367 	return alpha2[0] == '9' && alpha2[1] == '9';
368 }
369 
370 static bool is_intersected_alpha2(const char *alpha2)
371 {
372 	if (!alpha2)
373 		return false;
374 	/*
375 	 * Special case where regulatory domain is the
376 	 * result of an intersection between two regulatory domain
377 	 * structures
378 	 */
379 	return alpha2[0] == '9' && alpha2[1] == '8';
380 }
381 
382 static bool is_an_alpha2(const char *alpha2)
383 {
384 	if (!alpha2)
385 		return false;
386 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
387 }
388 
389 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
390 {
391 	if (!alpha2_x || !alpha2_y)
392 		return false;
393 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
394 }
395 
396 static bool regdom_changes(const char *alpha2)
397 {
398 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
399 
400 	if (!r)
401 		return true;
402 	return !alpha2_equal(r->alpha2, alpha2);
403 }
404 
405 /*
406  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
407  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
408  * has ever been issued.
409  */
410 static bool is_user_regdom_saved(void)
411 {
412 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
413 		return false;
414 
415 	/* This would indicate a mistake on the design */
416 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
417 		 "Unexpected user alpha2: %c%c\n",
418 		 user_alpha2[0], user_alpha2[1]))
419 		return false;
420 
421 	return true;
422 }
423 
424 static const struct ieee80211_regdomain *
425 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
426 {
427 	struct ieee80211_regdomain *regd;
428 	int size_of_regd;
429 	unsigned int i;
430 
431 	size_of_regd =
432 		sizeof(struct ieee80211_regdomain) +
433 		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
434 
435 	regd = kzalloc(size_of_regd, GFP_KERNEL);
436 	if (!regd)
437 		return ERR_PTR(-ENOMEM);
438 
439 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
440 
441 	for (i = 0; i < src_regd->n_reg_rules; i++)
442 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
443 		       sizeof(struct ieee80211_reg_rule));
444 
445 	return regd;
446 }
447 
448 struct reg_regdb_apply_request {
449 	struct list_head list;
450 	const struct ieee80211_regdomain *regdom;
451 };
452 
453 static LIST_HEAD(reg_regdb_apply_list);
454 static DEFINE_MUTEX(reg_regdb_apply_mutex);
455 
456 static void reg_regdb_apply(struct work_struct *work)
457 {
458 	struct reg_regdb_apply_request *request;
459 
460 	rtnl_lock();
461 
462 	mutex_lock(&reg_regdb_apply_mutex);
463 	while (!list_empty(&reg_regdb_apply_list)) {
464 		request = list_first_entry(&reg_regdb_apply_list,
465 					   struct reg_regdb_apply_request,
466 					   list);
467 		list_del(&request->list);
468 
469 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
470 		kfree(request);
471 	}
472 	mutex_unlock(&reg_regdb_apply_mutex);
473 
474 	rtnl_unlock();
475 }
476 
477 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
478 
479 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
480 {
481 	struct reg_regdb_apply_request *request;
482 
483 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
484 	if (!request) {
485 		kfree(regdom);
486 		return -ENOMEM;
487 	}
488 
489 	request->regdom = regdom;
490 
491 	mutex_lock(&reg_regdb_apply_mutex);
492 	list_add_tail(&request->list, &reg_regdb_apply_list);
493 	mutex_unlock(&reg_regdb_apply_mutex);
494 
495 	schedule_work(&reg_regdb_work);
496 	return 0;
497 }
498 
499 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
500 /* Max number of consecutive attempts to communicate with CRDA  */
501 #define REG_MAX_CRDA_TIMEOUTS 10
502 
503 static u32 reg_crda_timeouts;
504 
505 static void crda_timeout_work(struct work_struct *work);
506 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
507 
508 static void crda_timeout_work(struct work_struct *work)
509 {
510 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
511 	rtnl_lock();
512 	reg_crda_timeouts++;
513 	restore_regulatory_settings(true);
514 	rtnl_unlock();
515 }
516 
517 static void cancel_crda_timeout(void)
518 {
519 	cancel_delayed_work(&crda_timeout);
520 }
521 
522 static void cancel_crda_timeout_sync(void)
523 {
524 	cancel_delayed_work_sync(&crda_timeout);
525 }
526 
527 static void reset_crda_timeouts(void)
528 {
529 	reg_crda_timeouts = 0;
530 }
531 
532 /*
533  * This lets us keep regulatory code which is updated on a regulatory
534  * basis in userspace.
535  */
536 static int call_crda(const char *alpha2)
537 {
538 	char country[12];
539 	char *env[] = { country, NULL };
540 	int ret;
541 
542 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
543 		 alpha2[0], alpha2[1]);
544 
545 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
546 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
547 		return -EINVAL;
548 	}
549 
550 	if (!is_world_regdom((char *) alpha2))
551 		pr_debug("Calling CRDA for country: %c%c\n",
552 			 alpha2[0], alpha2[1]);
553 	else
554 		pr_debug("Calling CRDA to update world regulatory domain\n");
555 
556 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
557 	if (ret)
558 		return ret;
559 
560 	queue_delayed_work(system_power_efficient_wq,
561 			   &crda_timeout, msecs_to_jiffies(3142));
562 	return 0;
563 }
564 #else
565 static inline void cancel_crda_timeout(void) {}
566 static inline void cancel_crda_timeout_sync(void) {}
567 static inline void reset_crda_timeouts(void) {}
568 static inline int call_crda(const char *alpha2)
569 {
570 	return -ENODATA;
571 }
572 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
573 
574 /* code to directly load a firmware database through request_firmware */
575 static const struct fwdb_header *regdb;
576 
577 struct fwdb_country {
578 	u8 alpha2[2];
579 	__be16 coll_ptr;
580 	/* this struct cannot be extended */
581 } __packed __aligned(4);
582 
583 struct fwdb_collection {
584 	u8 len;
585 	u8 n_rules;
586 	u8 dfs_region;
587 	/* no optional data yet */
588 	/* aligned to 2, then followed by __be16 array of rule pointers */
589 } __packed __aligned(4);
590 
591 enum fwdb_flags {
592 	FWDB_FLAG_NO_OFDM	= BIT(0),
593 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
594 	FWDB_FLAG_DFS		= BIT(2),
595 	FWDB_FLAG_NO_IR		= BIT(3),
596 	FWDB_FLAG_AUTO_BW	= BIT(4),
597 };
598 
599 struct fwdb_wmm_ac {
600 	u8 ecw;
601 	u8 aifsn;
602 	__be16 cot;
603 } __packed;
604 
605 struct fwdb_wmm_rule {
606 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
607 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
608 } __packed;
609 
610 struct fwdb_rule {
611 	u8 len;
612 	u8 flags;
613 	__be16 max_eirp;
614 	__be32 start, end, max_bw;
615 	/* start of optional data */
616 	__be16 cac_timeout;
617 	__be16 wmm_ptr;
618 } __packed __aligned(4);
619 
620 #define FWDB_MAGIC 0x52474442
621 #define FWDB_VERSION 20
622 
623 struct fwdb_header {
624 	__be32 magic;
625 	__be32 version;
626 	struct fwdb_country country[];
627 } __packed __aligned(4);
628 
629 static int ecw2cw(int ecw)
630 {
631 	return (1 << ecw) - 1;
632 }
633 
634 static bool valid_wmm(struct fwdb_wmm_rule *rule)
635 {
636 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
637 	int i;
638 
639 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
640 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
641 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
642 		u8 aifsn = ac[i].aifsn;
643 
644 		if (cw_min >= cw_max)
645 			return false;
646 
647 		if (aifsn < 1)
648 			return false;
649 	}
650 
651 	return true;
652 }
653 
654 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
655 {
656 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
657 
658 	if ((u8 *)rule + sizeof(rule->len) > data + size)
659 		return false;
660 
661 	/* mandatory fields */
662 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
663 		return false;
664 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
665 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
666 		struct fwdb_wmm_rule *wmm;
667 
668 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
669 			return false;
670 
671 		wmm = (void *)(data + wmm_ptr);
672 
673 		if (!valid_wmm(wmm))
674 			return false;
675 	}
676 	return true;
677 }
678 
679 static bool valid_country(const u8 *data, unsigned int size,
680 			  const struct fwdb_country *country)
681 {
682 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
683 	struct fwdb_collection *coll = (void *)(data + ptr);
684 	__be16 *rules_ptr;
685 	unsigned int i;
686 
687 	/* make sure we can read len/n_rules */
688 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
689 		return false;
690 
691 	/* make sure base struct and all rules fit */
692 	if ((u8 *)coll + ALIGN(coll->len, 2) +
693 	    (coll->n_rules * 2) > data + size)
694 		return false;
695 
696 	/* mandatory fields must exist */
697 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
698 		return false;
699 
700 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
701 
702 	for (i = 0; i < coll->n_rules; i++) {
703 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
704 
705 		if (!valid_rule(data, size, rule_ptr))
706 			return false;
707 	}
708 
709 	return true;
710 }
711 
712 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
713 static struct key *builtin_regdb_keys;
714 
715 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
716 {
717 	const u8 *end = p + buflen;
718 	size_t plen;
719 	key_ref_t key;
720 
721 	while (p < end) {
722 		/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
723 		 * than 256 bytes in size.
724 		 */
725 		if (end - p < 4)
726 			goto dodgy_cert;
727 		if (p[0] != 0x30 &&
728 		    p[1] != 0x82)
729 			goto dodgy_cert;
730 		plen = (p[2] << 8) | p[3];
731 		plen += 4;
732 		if (plen > end - p)
733 			goto dodgy_cert;
734 
735 		key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
736 					   "asymmetric", NULL, p, plen,
737 					   ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
738 					    KEY_USR_VIEW | KEY_USR_READ),
739 					   KEY_ALLOC_NOT_IN_QUOTA |
740 					   KEY_ALLOC_BUILT_IN |
741 					   KEY_ALLOC_BYPASS_RESTRICTION);
742 		if (IS_ERR(key)) {
743 			pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
744 			       PTR_ERR(key));
745 		} else {
746 			pr_notice("Loaded X.509 cert '%s'\n",
747 				  key_ref_to_ptr(key)->description);
748 			key_ref_put(key);
749 		}
750 		p += plen;
751 	}
752 
753 	return;
754 
755 dodgy_cert:
756 	pr_err("Problem parsing in-kernel X.509 certificate list\n");
757 }
758 
759 static int __init load_builtin_regdb_keys(void)
760 {
761 	builtin_regdb_keys =
762 		keyring_alloc(".builtin_regdb_keys",
763 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
764 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
766 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
767 	if (IS_ERR(builtin_regdb_keys))
768 		return PTR_ERR(builtin_regdb_keys);
769 
770 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
771 
772 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
773 	load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
774 #endif
775 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
776 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
777 		load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
778 #endif
779 
780 	return 0;
781 }
782 
783 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
784 {
785 	const struct firmware *sig;
786 	bool result;
787 
788 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
789 		return false;
790 
791 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
792 					builtin_regdb_keys,
793 					VERIFYING_UNSPECIFIED_SIGNATURE,
794 					NULL, NULL) == 0;
795 
796 	release_firmware(sig);
797 
798 	return result;
799 }
800 
801 static void free_regdb_keyring(void)
802 {
803 	key_put(builtin_regdb_keys);
804 }
805 #else
806 static int load_builtin_regdb_keys(void)
807 {
808 	return 0;
809 }
810 
811 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
812 {
813 	return true;
814 }
815 
816 static void free_regdb_keyring(void)
817 {
818 }
819 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
820 
821 static bool valid_regdb(const u8 *data, unsigned int size)
822 {
823 	const struct fwdb_header *hdr = (void *)data;
824 	const struct fwdb_country *country;
825 
826 	if (size < sizeof(*hdr))
827 		return false;
828 
829 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
830 		return false;
831 
832 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
833 		return false;
834 
835 	if (!regdb_has_valid_signature(data, size))
836 		return false;
837 
838 	country = &hdr->country[0];
839 	while ((u8 *)(country + 1) <= data + size) {
840 		if (!country->coll_ptr)
841 			break;
842 		if (!valid_country(data, size, country))
843 			return false;
844 		country++;
845 	}
846 
847 	return true;
848 }
849 
850 static void set_wmm_rule(const struct fwdb_header *db,
851 			 const struct fwdb_country *country,
852 			 const struct fwdb_rule *rule,
853 			 struct ieee80211_reg_rule *rrule)
854 {
855 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
856 	struct fwdb_wmm_rule *wmm;
857 	unsigned int i, wmm_ptr;
858 
859 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
860 	wmm = (void *)((u8 *)db + wmm_ptr);
861 
862 	if (!valid_wmm(wmm)) {
863 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
864 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
865 		       country->alpha2[0], country->alpha2[1]);
866 		return;
867 	}
868 
869 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
870 		wmm_rule->client[i].cw_min =
871 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
872 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
873 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
874 		wmm_rule->client[i].cot =
875 			1000 * be16_to_cpu(wmm->client[i].cot);
876 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
877 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
878 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
879 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
880 	}
881 
882 	rrule->has_wmm = true;
883 }
884 
885 static int __regdb_query_wmm(const struct fwdb_header *db,
886 			     const struct fwdb_country *country, int freq,
887 			     struct ieee80211_reg_rule *rrule)
888 {
889 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
890 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
891 	int i;
892 
893 	for (i = 0; i < coll->n_rules; i++) {
894 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
895 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
896 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
897 
898 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
899 			continue;
900 
901 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
902 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
903 			set_wmm_rule(db, country, rule, rrule);
904 			return 0;
905 		}
906 	}
907 
908 	return -ENODATA;
909 }
910 
911 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
912 {
913 	const struct fwdb_header *hdr = regdb;
914 	const struct fwdb_country *country;
915 
916 	if (!regdb)
917 		return -ENODATA;
918 
919 	if (IS_ERR(regdb))
920 		return PTR_ERR(regdb);
921 
922 	country = &hdr->country[0];
923 	while (country->coll_ptr) {
924 		if (alpha2_equal(alpha2, country->alpha2))
925 			return __regdb_query_wmm(regdb, country, freq, rule);
926 
927 		country++;
928 	}
929 
930 	return -ENODATA;
931 }
932 EXPORT_SYMBOL(reg_query_regdb_wmm);
933 
934 static int regdb_query_country(const struct fwdb_header *db,
935 			       const struct fwdb_country *country)
936 {
937 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
938 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
939 	struct ieee80211_regdomain *regdom;
940 	unsigned int size_of_regd, i;
941 
942 	size_of_regd = sizeof(struct ieee80211_regdomain) +
943 		coll->n_rules * sizeof(struct ieee80211_reg_rule);
944 
945 	regdom = kzalloc(size_of_regd, GFP_KERNEL);
946 	if (!regdom)
947 		return -ENOMEM;
948 
949 	regdom->n_reg_rules = coll->n_rules;
950 	regdom->alpha2[0] = country->alpha2[0];
951 	regdom->alpha2[1] = country->alpha2[1];
952 	regdom->dfs_region = coll->dfs_region;
953 
954 	for (i = 0; i < regdom->n_reg_rules; i++) {
955 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
956 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
957 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
958 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
959 
960 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
961 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
962 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
963 
964 		rrule->power_rule.max_antenna_gain = 0;
965 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
966 
967 		rrule->flags = 0;
968 		if (rule->flags & FWDB_FLAG_NO_OFDM)
969 			rrule->flags |= NL80211_RRF_NO_OFDM;
970 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
971 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
972 		if (rule->flags & FWDB_FLAG_DFS)
973 			rrule->flags |= NL80211_RRF_DFS;
974 		if (rule->flags & FWDB_FLAG_NO_IR)
975 			rrule->flags |= NL80211_RRF_NO_IR;
976 		if (rule->flags & FWDB_FLAG_AUTO_BW)
977 			rrule->flags |= NL80211_RRF_AUTO_BW;
978 
979 		rrule->dfs_cac_ms = 0;
980 
981 		/* handle optional data */
982 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
983 			rrule->dfs_cac_ms =
984 				1000 * be16_to_cpu(rule->cac_timeout);
985 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
986 			set_wmm_rule(db, country, rule, rrule);
987 	}
988 
989 	return reg_schedule_apply(regdom);
990 }
991 
992 static int query_regdb(const char *alpha2)
993 {
994 	const struct fwdb_header *hdr = regdb;
995 	const struct fwdb_country *country;
996 
997 	ASSERT_RTNL();
998 
999 	if (IS_ERR(regdb))
1000 		return PTR_ERR(regdb);
1001 
1002 	country = &hdr->country[0];
1003 	while (country->coll_ptr) {
1004 		if (alpha2_equal(alpha2, country->alpha2))
1005 			return regdb_query_country(regdb, country);
1006 		country++;
1007 	}
1008 
1009 	return -ENODATA;
1010 }
1011 
1012 static void regdb_fw_cb(const struct firmware *fw, void *context)
1013 {
1014 	int set_error = 0;
1015 	bool restore = true;
1016 	void *db;
1017 
1018 	if (!fw) {
1019 		pr_info("failed to load regulatory.db\n");
1020 		set_error = -ENODATA;
1021 	} else if (!valid_regdb(fw->data, fw->size)) {
1022 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1023 		set_error = -EINVAL;
1024 	}
1025 
1026 	rtnl_lock();
1027 	if (WARN_ON(regdb && !IS_ERR(regdb))) {
1028 		/* just restore and free new db */
1029 	} else if (set_error) {
1030 		regdb = ERR_PTR(set_error);
1031 	} else if (fw) {
1032 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1033 		if (db) {
1034 			regdb = db;
1035 			restore = context && query_regdb(context);
1036 		} else {
1037 			restore = true;
1038 		}
1039 	}
1040 
1041 	if (restore)
1042 		restore_regulatory_settings(true);
1043 
1044 	rtnl_unlock();
1045 
1046 	kfree(context);
1047 
1048 	release_firmware(fw);
1049 }
1050 
1051 static int query_regdb_file(const char *alpha2)
1052 {
1053 	ASSERT_RTNL();
1054 
1055 	if (regdb)
1056 		return query_regdb(alpha2);
1057 
1058 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1059 	if (!alpha2)
1060 		return -ENOMEM;
1061 
1062 	return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1063 				       &reg_pdev->dev, GFP_KERNEL,
1064 				       (void *)alpha2, regdb_fw_cb);
1065 }
1066 
1067 int reg_reload_regdb(void)
1068 {
1069 	const struct firmware *fw;
1070 	void *db;
1071 	int err;
1072 
1073 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1074 	if (err)
1075 		return err;
1076 
1077 	if (!valid_regdb(fw->data, fw->size)) {
1078 		err = -ENODATA;
1079 		goto out;
1080 	}
1081 
1082 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1083 	if (!db) {
1084 		err = -ENOMEM;
1085 		goto out;
1086 	}
1087 
1088 	rtnl_lock();
1089 	if (!IS_ERR_OR_NULL(regdb))
1090 		kfree(regdb);
1091 	regdb = db;
1092 	rtnl_unlock();
1093 
1094  out:
1095 	release_firmware(fw);
1096 	return err;
1097 }
1098 
1099 static bool reg_query_database(struct regulatory_request *request)
1100 {
1101 	if (query_regdb_file(request->alpha2) == 0)
1102 		return true;
1103 
1104 	if (call_crda(request->alpha2) == 0)
1105 		return true;
1106 
1107 	return false;
1108 }
1109 
1110 bool reg_is_valid_request(const char *alpha2)
1111 {
1112 	struct regulatory_request *lr = get_last_request();
1113 
1114 	if (!lr || lr->processed)
1115 		return false;
1116 
1117 	return alpha2_equal(lr->alpha2, alpha2);
1118 }
1119 
1120 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1121 {
1122 	struct regulatory_request *lr = get_last_request();
1123 
1124 	/*
1125 	 * Follow the driver's regulatory domain, if present, unless a country
1126 	 * IE has been processed or a user wants to help complaince further
1127 	 */
1128 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1129 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1130 	    wiphy->regd)
1131 		return get_wiphy_regdom(wiphy);
1132 
1133 	return get_cfg80211_regdom();
1134 }
1135 
1136 static unsigned int
1137 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1138 				 const struct ieee80211_reg_rule *rule)
1139 {
1140 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1141 	const struct ieee80211_freq_range *freq_range_tmp;
1142 	const struct ieee80211_reg_rule *tmp;
1143 	u32 start_freq, end_freq, idx, no;
1144 
1145 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1146 		if (rule == &rd->reg_rules[idx])
1147 			break;
1148 
1149 	if (idx == rd->n_reg_rules)
1150 		return 0;
1151 
1152 	/* get start_freq */
1153 	no = idx;
1154 
1155 	while (no) {
1156 		tmp = &rd->reg_rules[--no];
1157 		freq_range_tmp = &tmp->freq_range;
1158 
1159 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1160 			break;
1161 
1162 		freq_range = freq_range_tmp;
1163 	}
1164 
1165 	start_freq = freq_range->start_freq_khz;
1166 
1167 	/* get end_freq */
1168 	freq_range = &rule->freq_range;
1169 	no = idx;
1170 
1171 	while (no < rd->n_reg_rules - 1) {
1172 		tmp = &rd->reg_rules[++no];
1173 		freq_range_tmp = &tmp->freq_range;
1174 
1175 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1176 			break;
1177 
1178 		freq_range = freq_range_tmp;
1179 	}
1180 
1181 	end_freq = freq_range->end_freq_khz;
1182 
1183 	return end_freq - start_freq;
1184 }
1185 
1186 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1187 				   const struct ieee80211_reg_rule *rule)
1188 {
1189 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1190 
1191 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1192 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1193 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1194 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1195 
1196 	/*
1197 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1198 	 * are not allowed.
1199 	 */
1200 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1201 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1202 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1203 
1204 	return bw;
1205 }
1206 
1207 /* Sanity check on a regulatory rule */
1208 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1209 {
1210 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1211 	u32 freq_diff;
1212 
1213 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1214 		return false;
1215 
1216 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1217 		return false;
1218 
1219 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1220 
1221 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1222 	    freq_range->max_bandwidth_khz > freq_diff)
1223 		return false;
1224 
1225 	return true;
1226 }
1227 
1228 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1229 {
1230 	const struct ieee80211_reg_rule *reg_rule = NULL;
1231 	unsigned int i;
1232 
1233 	if (!rd->n_reg_rules)
1234 		return false;
1235 
1236 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1237 		return false;
1238 
1239 	for (i = 0; i < rd->n_reg_rules; i++) {
1240 		reg_rule = &rd->reg_rules[i];
1241 		if (!is_valid_reg_rule(reg_rule))
1242 			return false;
1243 	}
1244 
1245 	return true;
1246 }
1247 
1248 /**
1249  * freq_in_rule_band - tells us if a frequency is in a frequency band
1250  * @freq_range: frequency rule we want to query
1251  * @freq_khz: frequency we are inquiring about
1252  *
1253  * This lets us know if a specific frequency rule is or is not relevant to
1254  * a specific frequency's band. Bands are device specific and artificial
1255  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1256  * however it is safe for now to assume that a frequency rule should not be
1257  * part of a frequency's band if the start freq or end freq are off by more
1258  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
1259  * 60 GHz band.
1260  * This resolution can be lowered and should be considered as we add
1261  * regulatory rule support for other "bands".
1262  **/
1263 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1264 			      u32 freq_khz)
1265 {
1266 #define ONE_GHZ_IN_KHZ	1000000
1267 	/*
1268 	 * From 802.11ad: directional multi-gigabit (DMG):
1269 	 * Pertaining to operation in a frequency band containing a channel
1270 	 * with the Channel starting frequency above 45 GHz.
1271 	 */
1272 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1273 			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1274 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1275 		return true;
1276 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1277 		return true;
1278 	return false;
1279 #undef ONE_GHZ_IN_KHZ
1280 }
1281 
1282 /*
1283  * Later on we can perhaps use the more restrictive DFS
1284  * region but we don't have information for that yet so
1285  * for now simply disallow conflicts.
1286  */
1287 static enum nl80211_dfs_regions
1288 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1289 			 const enum nl80211_dfs_regions dfs_region2)
1290 {
1291 	if (dfs_region1 != dfs_region2)
1292 		return NL80211_DFS_UNSET;
1293 	return dfs_region1;
1294 }
1295 
1296 /*
1297  * Helper for regdom_intersect(), this does the real
1298  * mathematical intersection fun
1299  */
1300 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1301 			       const struct ieee80211_regdomain *rd2,
1302 			       const struct ieee80211_reg_rule *rule1,
1303 			       const struct ieee80211_reg_rule *rule2,
1304 			       struct ieee80211_reg_rule *intersected_rule)
1305 {
1306 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1307 	struct ieee80211_freq_range *freq_range;
1308 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1309 	struct ieee80211_power_rule *power_rule;
1310 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1311 
1312 	freq_range1 = &rule1->freq_range;
1313 	freq_range2 = &rule2->freq_range;
1314 	freq_range = &intersected_rule->freq_range;
1315 
1316 	power_rule1 = &rule1->power_rule;
1317 	power_rule2 = &rule2->power_rule;
1318 	power_rule = &intersected_rule->power_rule;
1319 
1320 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1321 					 freq_range2->start_freq_khz);
1322 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1323 				       freq_range2->end_freq_khz);
1324 
1325 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1326 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1327 
1328 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1329 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1330 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1331 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1332 
1333 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1334 
1335 	intersected_rule->flags = rule1->flags | rule2->flags;
1336 
1337 	/*
1338 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1339 	 * set AUTO_BW in intersected rule also. Next we will
1340 	 * calculate BW correctly in handle_channel function.
1341 	 * In other case remove AUTO_BW flag while we calculate
1342 	 * maximum bandwidth correctly and auto calculation is
1343 	 * not required.
1344 	 */
1345 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1346 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1347 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1348 	else
1349 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1350 
1351 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1352 	if (freq_range->max_bandwidth_khz > freq_diff)
1353 		freq_range->max_bandwidth_khz = freq_diff;
1354 
1355 	power_rule->max_eirp = min(power_rule1->max_eirp,
1356 		power_rule2->max_eirp);
1357 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1358 		power_rule2->max_antenna_gain);
1359 
1360 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1361 					   rule2->dfs_cac_ms);
1362 
1363 	if (!is_valid_reg_rule(intersected_rule))
1364 		return -EINVAL;
1365 
1366 	return 0;
1367 }
1368 
1369 /* check whether old rule contains new rule */
1370 static bool rule_contains(struct ieee80211_reg_rule *r1,
1371 			  struct ieee80211_reg_rule *r2)
1372 {
1373 	/* for simplicity, currently consider only same flags */
1374 	if (r1->flags != r2->flags)
1375 		return false;
1376 
1377 	/* verify r1 is more restrictive */
1378 	if ((r1->power_rule.max_antenna_gain >
1379 	     r2->power_rule.max_antenna_gain) ||
1380 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1381 		return false;
1382 
1383 	/* make sure r2's range is contained within r1 */
1384 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1385 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1386 		return false;
1387 
1388 	/* and finally verify that r1.max_bw >= r2.max_bw */
1389 	if (r1->freq_range.max_bandwidth_khz <
1390 	    r2->freq_range.max_bandwidth_khz)
1391 		return false;
1392 
1393 	return true;
1394 }
1395 
1396 /* add or extend current rules. do nothing if rule is already contained */
1397 static void add_rule(struct ieee80211_reg_rule *rule,
1398 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1399 {
1400 	struct ieee80211_reg_rule *tmp_rule;
1401 	int i;
1402 
1403 	for (i = 0; i < *n_rules; i++) {
1404 		tmp_rule = &reg_rules[i];
1405 		/* rule is already contained - do nothing */
1406 		if (rule_contains(tmp_rule, rule))
1407 			return;
1408 
1409 		/* extend rule if possible */
1410 		if (rule_contains(rule, tmp_rule)) {
1411 			memcpy(tmp_rule, rule, sizeof(*rule));
1412 			return;
1413 		}
1414 	}
1415 
1416 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1417 	(*n_rules)++;
1418 }
1419 
1420 /**
1421  * regdom_intersect - do the intersection between two regulatory domains
1422  * @rd1: first regulatory domain
1423  * @rd2: second regulatory domain
1424  *
1425  * Use this function to get the intersection between two regulatory domains.
1426  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1427  * as no one single alpha2 can represent this regulatory domain.
1428  *
1429  * Returns a pointer to the regulatory domain structure which will hold the
1430  * resulting intersection of rules between rd1 and rd2. We will
1431  * kzalloc() this structure for you.
1432  */
1433 static struct ieee80211_regdomain *
1434 regdom_intersect(const struct ieee80211_regdomain *rd1,
1435 		 const struct ieee80211_regdomain *rd2)
1436 {
1437 	int r, size_of_regd;
1438 	unsigned int x, y;
1439 	unsigned int num_rules = 0;
1440 	const struct ieee80211_reg_rule *rule1, *rule2;
1441 	struct ieee80211_reg_rule intersected_rule;
1442 	struct ieee80211_regdomain *rd;
1443 
1444 	if (!rd1 || !rd2)
1445 		return NULL;
1446 
1447 	/*
1448 	 * First we get a count of the rules we'll need, then we actually
1449 	 * build them. This is to so we can malloc() and free() a
1450 	 * regdomain once. The reason we use reg_rules_intersect() here
1451 	 * is it will return -EINVAL if the rule computed makes no sense.
1452 	 * All rules that do check out OK are valid.
1453 	 */
1454 
1455 	for (x = 0; x < rd1->n_reg_rules; x++) {
1456 		rule1 = &rd1->reg_rules[x];
1457 		for (y = 0; y < rd2->n_reg_rules; y++) {
1458 			rule2 = &rd2->reg_rules[y];
1459 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1460 						 &intersected_rule))
1461 				num_rules++;
1462 		}
1463 	}
1464 
1465 	if (!num_rules)
1466 		return NULL;
1467 
1468 	size_of_regd = sizeof(struct ieee80211_regdomain) +
1469 		       num_rules * sizeof(struct ieee80211_reg_rule);
1470 
1471 	rd = kzalloc(size_of_regd, GFP_KERNEL);
1472 	if (!rd)
1473 		return NULL;
1474 
1475 	for (x = 0; x < rd1->n_reg_rules; x++) {
1476 		rule1 = &rd1->reg_rules[x];
1477 		for (y = 0; y < rd2->n_reg_rules; y++) {
1478 			rule2 = &rd2->reg_rules[y];
1479 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1480 						&intersected_rule);
1481 			/*
1482 			 * No need to memset here the intersected rule here as
1483 			 * we're not using the stack anymore
1484 			 */
1485 			if (r)
1486 				continue;
1487 
1488 			add_rule(&intersected_rule, rd->reg_rules,
1489 				 &rd->n_reg_rules);
1490 		}
1491 	}
1492 
1493 	rd->alpha2[0] = '9';
1494 	rd->alpha2[1] = '8';
1495 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1496 						  rd2->dfs_region);
1497 
1498 	return rd;
1499 }
1500 
1501 /*
1502  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1503  * want to just have the channel structure use these
1504  */
1505 static u32 map_regdom_flags(u32 rd_flags)
1506 {
1507 	u32 channel_flags = 0;
1508 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1509 		channel_flags |= IEEE80211_CHAN_NO_IR;
1510 	if (rd_flags & NL80211_RRF_DFS)
1511 		channel_flags |= IEEE80211_CHAN_RADAR;
1512 	if (rd_flags & NL80211_RRF_NO_OFDM)
1513 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1514 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1515 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1516 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1517 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1518 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1519 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1520 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1521 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1522 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1523 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1524 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1525 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1526 	return channel_flags;
1527 }
1528 
1529 static const struct ieee80211_reg_rule *
1530 freq_reg_info_regd(u32 center_freq,
1531 		   const struct ieee80211_regdomain *regd, u32 bw)
1532 {
1533 	int i;
1534 	bool band_rule_found = false;
1535 	bool bw_fits = false;
1536 
1537 	if (!regd)
1538 		return ERR_PTR(-EINVAL);
1539 
1540 	for (i = 0; i < regd->n_reg_rules; i++) {
1541 		const struct ieee80211_reg_rule *rr;
1542 		const struct ieee80211_freq_range *fr = NULL;
1543 
1544 		rr = &regd->reg_rules[i];
1545 		fr = &rr->freq_range;
1546 
1547 		/*
1548 		 * We only need to know if one frequency rule was
1549 		 * was in center_freq's band, that's enough, so lets
1550 		 * not overwrite it once found
1551 		 */
1552 		if (!band_rule_found)
1553 			band_rule_found = freq_in_rule_band(fr, center_freq);
1554 
1555 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1556 
1557 		if (band_rule_found && bw_fits)
1558 			return rr;
1559 	}
1560 
1561 	if (!band_rule_found)
1562 		return ERR_PTR(-ERANGE);
1563 
1564 	return ERR_PTR(-EINVAL);
1565 }
1566 
1567 static const struct ieee80211_reg_rule *
1568 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1569 {
1570 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1571 	const struct ieee80211_reg_rule *reg_rule = NULL;
1572 	u32 bw;
1573 
1574 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1575 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1576 		if (!IS_ERR(reg_rule))
1577 			return reg_rule;
1578 	}
1579 
1580 	return reg_rule;
1581 }
1582 
1583 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1584 					       u32 center_freq)
1585 {
1586 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1587 }
1588 EXPORT_SYMBOL(freq_reg_info);
1589 
1590 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1591 {
1592 	switch (initiator) {
1593 	case NL80211_REGDOM_SET_BY_CORE:
1594 		return "core";
1595 	case NL80211_REGDOM_SET_BY_USER:
1596 		return "user";
1597 	case NL80211_REGDOM_SET_BY_DRIVER:
1598 		return "driver";
1599 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1600 		return "country element";
1601 	default:
1602 		WARN_ON(1);
1603 		return "bug";
1604 	}
1605 }
1606 EXPORT_SYMBOL(reg_initiator_name);
1607 
1608 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1609 					  const struct ieee80211_reg_rule *reg_rule,
1610 					  const struct ieee80211_channel *chan)
1611 {
1612 	const struct ieee80211_freq_range *freq_range = NULL;
1613 	u32 max_bandwidth_khz, bw_flags = 0;
1614 
1615 	freq_range = &reg_rule->freq_range;
1616 
1617 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1618 	/* Check if auto calculation requested */
1619 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1620 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1621 
1622 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1623 	if (!cfg80211_does_bw_fit_range(freq_range,
1624 					MHZ_TO_KHZ(chan->center_freq),
1625 					MHZ_TO_KHZ(10)))
1626 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1627 	if (!cfg80211_does_bw_fit_range(freq_range,
1628 					MHZ_TO_KHZ(chan->center_freq),
1629 					MHZ_TO_KHZ(20)))
1630 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1631 
1632 	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1633 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1634 	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1635 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1636 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1637 		bw_flags |= IEEE80211_CHAN_NO_HT40;
1638 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1639 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1640 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1641 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1642 	return bw_flags;
1643 }
1644 
1645 /*
1646  * Note that right now we assume the desired channel bandwidth
1647  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1648  * per channel, the primary and the extension channel).
1649  */
1650 static void handle_channel(struct wiphy *wiphy,
1651 			   enum nl80211_reg_initiator initiator,
1652 			   struct ieee80211_channel *chan)
1653 {
1654 	u32 flags, bw_flags = 0;
1655 	const struct ieee80211_reg_rule *reg_rule = NULL;
1656 	const struct ieee80211_power_rule *power_rule = NULL;
1657 	struct wiphy *request_wiphy = NULL;
1658 	struct regulatory_request *lr = get_last_request();
1659 	const struct ieee80211_regdomain *regd;
1660 
1661 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1662 
1663 	flags = chan->orig_flags;
1664 
1665 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1666 	if (IS_ERR(reg_rule)) {
1667 		/*
1668 		 * We will disable all channels that do not match our
1669 		 * received regulatory rule unless the hint is coming
1670 		 * from a Country IE and the Country IE had no information
1671 		 * about a band. The IEEE 802.11 spec allows for an AP
1672 		 * to send only a subset of the regulatory rules allowed,
1673 		 * so an AP in the US that only supports 2.4 GHz may only send
1674 		 * a country IE with information for the 2.4 GHz band
1675 		 * while 5 GHz is still supported.
1676 		 */
1677 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1678 		    PTR_ERR(reg_rule) == -ERANGE)
1679 			return;
1680 
1681 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1682 		    request_wiphy && request_wiphy == wiphy &&
1683 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1684 			pr_debug("Disabling freq %d MHz for good\n",
1685 				 chan->center_freq);
1686 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1687 			chan->flags = chan->orig_flags;
1688 		} else {
1689 			pr_debug("Disabling freq %d MHz\n",
1690 				 chan->center_freq);
1691 			chan->flags |= IEEE80211_CHAN_DISABLED;
1692 		}
1693 		return;
1694 	}
1695 
1696 	regd = reg_get_regdomain(wiphy);
1697 
1698 	power_rule = &reg_rule->power_rule;
1699 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1700 
1701 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1702 	    request_wiphy && request_wiphy == wiphy &&
1703 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1704 		/*
1705 		 * This guarantees the driver's requested regulatory domain
1706 		 * will always be used as a base for further regulatory
1707 		 * settings
1708 		 */
1709 		chan->flags = chan->orig_flags =
1710 			map_regdom_flags(reg_rule->flags) | bw_flags;
1711 		chan->max_antenna_gain = chan->orig_mag =
1712 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1713 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1714 			(int) MBM_TO_DBM(power_rule->max_eirp);
1715 
1716 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1717 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1718 			if (reg_rule->dfs_cac_ms)
1719 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1720 		}
1721 
1722 		return;
1723 	}
1724 
1725 	chan->dfs_state = NL80211_DFS_USABLE;
1726 	chan->dfs_state_entered = jiffies;
1727 
1728 	chan->beacon_found = false;
1729 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1730 	chan->max_antenna_gain =
1731 		min_t(int, chan->orig_mag,
1732 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1733 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1734 
1735 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1736 		if (reg_rule->dfs_cac_ms)
1737 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1738 		else
1739 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1740 	}
1741 
1742 	if (chan->orig_mpwr) {
1743 		/*
1744 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1745 		 * will always follow the passed country IE power settings.
1746 		 */
1747 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1748 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1749 			chan->max_power = chan->max_reg_power;
1750 		else
1751 			chan->max_power = min(chan->orig_mpwr,
1752 					      chan->max_reg_power);
1753 	} else
1754 		chan->max_power = chan->max_reg_power;
1755 }
1756 
1757 static void handle_band(struct wiphy *wiphy,
1758 			enum nl80211_reg_initiator initiator,
1759 			struct ieee80211_supported_band *sband)
1760 {
1761 	unsigned int i;
1762 
1763 	if (!sband)
1764 		return;
1765 
1766 	for (i = 0; i < sband->n_channels; i++)
1767 		handle_channel(wiphy, initiator, &sband->channels[i]);
1768 }
1769 
1770 static bool reg_request_cell_base(struct regulatory_request *request)
1771 {
1772 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1773 		return false;
1774 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1775 }
1776 
1777 bool reg_last_request_cell_base(void)
1778 {
1779 	return reg_request_cell_base(get_last_request());
1780 }
1781 
1782 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1783 /* Core specific check */
1784 static enum reg_request_treatment
1785 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1786 {
1787 	struct regulatory_request *lr = get_last_request();
1788 
1789 	if (!reg_num_devs_support_basehint)
1790 		return REG_REQ_IGNORE;
1791 
1792 	if (reg_request_cell_base(lr) &&
1793 	    !regdom_changes(pending_request->alpha2))
1794 		return REG_REQ_ALREADY_SET;
1795 
1796 	return REG_REQ_OK;
1797 }
1798 
1799 /* Device specific check */
1800 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1801 {
1802 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1803 }
1804 #else
1805 static enum reg_request_treatment
1806 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1807 {
1808 	return REG_REQ_IGNORE;
1809 }
1810 
1811 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1812 {
1813 	return true;
1814 }
1815 #endif
1816 
1817 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1818 {
1819 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1820 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1821 		return true;
1822 	return false;
1823 }
1824 
1825 static bool ignore_reg_update(struct wiphy *wiphy,
1826 			      enum nl80211_reg_initiator initiator)
1827 {
1828 	struct regulatory_request *lr = get_last_request();
1829 
1830 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1831 		return true;
1832 
1833 	if (!lr) {
1834 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1835 			 reg_initiator_name(initiator));
1836 		return true;
1837 	}
1838 
1839 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1840 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1841 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1842 			 reg_initiator_name(initiator));
1843 		return true;
1844 	}
1845 
1846 	/*
1847 	 * wiphy->regd will be set once the device has its own
1848 	 * desired regulatory domain set
1849 	 */
1850 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1851 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1852 	    !is_world_regdom(lr->alpha2)) {
1853 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1854 			 reg_initiator_name(initiator));
1855 		return true;
1856 	}
1857 
1858 	if (reg_request_cell_base(lr))
1859 		return reg_dev_ignore_cell_hint(wiphy);
1860 
1861 	return false;
1862 }
1863 
1864 static bool reg_is_world_roaming(struct wiphy *wiphy)
1865 {
1866 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1867 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1868 	struct regulatory_request *lr = get_last_request();
1869 
1870 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1871 		return true;
1872 
1873 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1874 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1875 		return true;
1876 
1877 	return false;
1878 }
1879 
1880 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1881 			      struct reg_beacon *reg_beacon)
1882 {
1883 	struct ieee80211_supported_band *sband;
1884 	struct ieee80211_channel *chan;
1885 	bool channel_changed = false;
1886 	struct ieee80211_channel chan_before;
1887 
1888 	sband = wiphy->bands[reg_beacon->chan.band];
1889 	chan = &sband->channels[chan_idx];
1890 
1891 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1892 		return;
1893 
1894 	if (chan->beacon_found)
1895 		return;
1896 
1897 	chan->beacon_found = true;
1898 
1899 	if (!reg_is_world_roaming(wiphy))
1900 		return;
1901 
1902 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1903 		return;
1904 
1905 	chan_before = *chan;
1906 
1907 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1908 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1909 		channel_changed = true;
1910 	}
1911 
1912 	if (channel_changed)
1913 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1914 }
1915 
1916 /*
1917  * Called when a scan on a wiphy finds a beacon on
1918  * new channel
1919  */
1920 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1921 				    struct reg_beacon *reg_beacon)
1922 {
1923 	unsigned int i;
1924 	struct ieee80211_supported_band *sband;
1925 
1926 	if (!wiphy->bands[reg_beacon->chan.band])
1927 		return;
1928 
1929 	sband = wiphy->bands[reg_beacon->chan.band];
1930 
1931 	for (i = 0; i < sband->n_channels; i++)
1932 		handle_reg_beacon(wiphy, i, reg_beacon);
1933 }
1934 
1935 /*
1936  * Called upon reg changes or a new wiphy is added
1937  */
1938 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1939 {
1940 	unsigned int i;
1941 	struct ieee80211_supported_band *sband;
1942 	struct reg_beacon *reg_beacon;
1943 
1944 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1945 		if (!wiphy->bands[reg_beacon->chan.band])
1946 			continue;
1947 		sband = wiphy->bands[reg_beacon->chan.band];
1948 		for (i = 0; i < sband->n_channels; i++)
1949 			handle_reg_beacon(wiphy, i, reg_beacon);
1950 	}
1951 }
1952 
1953 /* Reap the advantages of previously found beacons */
1954 static void reg_process_beacons(struct wiphy *wiphy)
1955 {
1956 	/*
1957 	 * Means we are just firing up cfg80211, so no beacons would
1958 	 * have been processed yet.
1959 	 */
1960 	if (!last_request)
1961 		return;
1962 	wiphy_update_beacon_reg(wiphy);
1963 }
1964 
1965 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1966 {
1967 	if (!chan)
1968 		return false;
1969 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1970 		return false;
1971 	/* This would happen when regulatory rules disallow HT40 completely */
1972 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1973 		return false;
1974 	return true;
1975 }
1976 
1977 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1978 					 struct ieee80211_channel *channel)
1979 {
1980 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1981 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1982 	const struct ieee80211_regdomain *regd;
1983 	unsigned int i;
1984 	u32 flags;
1985 
1986 	if (!is_ht40_allowed(channel)) {
1987 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1988 		return;
1989 	}
1990 
1991 	/*
1992 	 * We need to ensure the extension channels exist to
1993 	 * be able to use HT40- or HT40+, this finds them (or not)
1994 	 */
1995 	for (i = 0; i < sband->n_channels; i++) {
1996 		struct ieee80211_channel *c = &sband->channels[i];
1997 
1998 		if (c->center_freq == (channel->center_freq - 20))
1999 			channel_before = c;
2000 		if (c->center_freq == (channel->center_freq + 20))
2001 			channel_after = c;
2002 	}
2003 
2004 	flags = 0;
2005 	regd = get_wiphy_regdom(wiphy);
2006 	if (regd) {
2007 		const struct ieee80211_reg_rule *reg_rule =
2008 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2009 					   regd, MHZ_TO_KHZ(20));
2010 
2011 		if (!IS_ERR(reg_rule))
2012 			flags = reg_rule->flags;
2013 	}
2014 
2015 	/*
2016 	 * Please note that this assumes target bandwidth is 20 MHz,
2017 	 * if that ever changes we also need to change the below logic
2018 	 * to include that as well.
2019 	 */
2020 	if (!is_ht40_allowed(channel_before) ||
2021 	    flags & NL80211_RRF_NO_HT40MINUS)
2022 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2023 	else
2024 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2025 
2026 	if (!is_ht40_allowed(channel_after) ||
2027 	    flags & NL80211_RRF_NO_HT40PLUS)
2028 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2029 	else
2030 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2031 }
2032 
2033 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2034 				      struct ieee80211_supported_band *sband)
2035 {
2036 	unsigned int i;
2037 
2038 	if (!sband)
2039 		return;
2040 
2041 	for (i = 0; i < sband->n_channels; i++)
2042 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2043 }
2044 
2045 static void reg_process_ht_flags(struct wiphy *wiphy)
2046 {
2047 	enum nl80211_band band;
2048 
2049 	if (!wiphy)
2050 		return;
2051 
2052 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2053 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2054 }
2055 
2056 static void reg_call_notifier(struct wiphy *wiphy,
2057 			      struct regulatory_request *request)
2058 {
2059 	if (wiphy->reg_notifier)
2060 		wiphy->reg_notifier(wiphy, request);
2061 }
2062 
2063 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2064 {
2065 	struct cfg80211_chan_def chandef;
2066 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2067 	enum nl80211_iftype iftype;
2068 
2069 	wdev_lock(wdev);
2070 	iftype = wdev->iftype;
2071 
2072 	/* make sure the interface is active */
2073 	if (!wdev->netdev || !netif_running(wdev->netdev))
2074 		goto wdev_inactive_unlock;
2075 
2076 	switch (iftype) {
2077 	case NL80211_IFTYPE_AP:
2078 	case NL80211_IFTYPE_P2P_GO:
2079 		if (!wdev->beacon_interval)
2080 			goto wdev_inactive_unlock;
2081 		chandef = wdev->chandef;
2082 		break;
2083 	case NL80211_IFTYPE_ADHOC:
2084 		if (!wdev->ssid_len)
2085 			goto wdev_inactive_unlock;
2086 		chandef = wdev->chandef;
2087 		break;
2088 	case NL80211_IFTYPE_STATION:
2089 	case NL80211_IFTYPE_P2P_CLIENT:
2090 		if (!wdev->current_bss ||
2091 		    !wdev->current_bss->pub.channel)
2092 			goto wdev_inactive_unlock;
2093 
2094 		if (!rdev->ops->get_channel ||
2095 		    rdev_get_channel(rdev, wdev, &chandef))
2096 			cfg80211_chandef_create(&chandef,
2097 						wdev->current_bss->pub.channel,
2098 						NL80211_CHAN_NO_HT);
2099 		break;
2100 	case NL80211_IFTYPE_MONITOR:
2101 	case NL80211_IFTYPE_AP_VLAN:
2102 	case NL80211_IFTYPE_P2P_DEVICE:
2103 		/* no enforcement required */
2104 		break;
2105 	default:
2106 		/* others not implemented for now */
2107 		WARN_ON(1);
2108 		break;
2109 	}
2110 
2111 	wdev_unlock(wdev);
2112 
2113 	switch (iftype) {
2114 	case NL80211_IFTYPE_AP:
2115 	case NL80211_IFTYPE_P2P_GO:
2116 	case NL80211_IFTYPE_ADHOC:
2117 		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2118 	case NL80211_IFTYPE_STATION:
2119 	case NL80211_IFTYPE_P2P_CLIENT:
2120 		return cfg80211_chandef_usable(wiphy, &chandef,
2121 					       IEEE80211_CHAN_DISABLED);
2122 	default:
2123 		break;
2124 	}
2125 
2126 	return true;
2127 
2128 wdev_inactive_unlock:
2129 	wdev_unlock(wdev);
2130 	return true;
2131 }
2132 
2133 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2134 {
2135 	struct wireless_dev *wdev;
2136 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2137 
2138 	ASSERT_RTNL();
2139 
2140 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2141 		if (!reg_wdev_chan_valid(wiphy, wdev))
2142 			cfg80211_leave(rdev, wdev);
2143 }
2144 
2145 static void reg_check_chans_work(struct work_struct *work)
2146 {
2147 	struct cfg80211_registered_device *rdev;
2148 
2149 	pr_debug("Verifying active interfaces after reg change\n");
2150 	rtnl_lock();
2151 
2152 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2153 		if (!(rdev->wiphy.regulatory_flags &
2154 		      REGULATORY_IGNORE_STALE_KICKOFF))
2155 			reg_leave_invalid_chans(&rdev->wiphy);
2156 
2157 	rtnl_unlock();
2158 }
2159 
2160 static void reg_check_channels(void)
2161 {
2162 	/*
2163 	 * Give usermode a chance to do something nicer (move to another
2164 	 * channel, orderly disconnection), before forcing a disconnection.
2165 	 */
2166 	mod_delayed_work(system_power_efficient_wq,
2167 			 &reg_check_chans,
2168 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2169 }
2170 
2171 static void wiphy_update_regulatory(struct wiphy *wiphy,
2172 				    enum nl80211_reg_initiator initiator)
2173 {
2174 	enum nl80211_band band;
2175 	struct regulatory_request *lr = get_last_request();
2176 
2177 	if (ignore_reg_update(wiphy, initiator)) {
2178 		/*
2179 		 * Regulatory updates set by CORE are ignored for custom
2180 		 * regulatory cards. Let us notify the changes to the driver,
2181 		 * as some drivers used this to restore its orig_* reg domain.
2182 		 */
2183 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2184 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2185 		    !(wiphy->regulatory_flags &
2186 		      REGULATORY_WIPHY_SELF_MANAGED))
2187 			reg_call_notifier(wiphy, lr);
2188 		return;
2189 	}
2190 
2191 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2192 
2193 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2194 		handle_band(wiphy, initiator, wiphy->bands[band]);
2195 
2196 	reg_process_beacons(wiphy);
2197 	reg_process_ht_flags(wiphy);
2198 	reg_call_notifier(wiphy, lr);
2199 }
2200 
2201 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2202 {
2203 	struct cfg80211_registered_device *rdev;
2204 	struct wiphy *wiphy;
2205 
2206 	ASSERT_RTNL();
2207 
2208 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2209 		wiphy = &rdev->wiphy;
2210 		wiphy_update_regulatory(wiphy, initiator);
2211 	}
2212 
2213 	reg_check_channels();
2214 }
2215 
2216 static void handle_channel_custom(struct wiphy *wiphy,
2217 				  struct ieee80211_channel *chan,
2218 				  const struct ieee80211_regdomain *regd)
2219 {
2220 	u32 bw_flags = 0;
2221 	const struct ieee80211_reg_rule *reg_rule = NULL;
2222 	const struct ieee80211_power_rule *power_rule = NULL;
2223 	u32 bw;
2224 
2225 	for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2226 		reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2227 					      regd, bw);
2228 		if (!IS_ERR(reg_rule))
2229 			break;
2230 	}
2231 
2232 	if (IS_ERR(reg_rule)) {
2233 		pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2234 			 chan->center_freq);
2235 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2236 			chan->flags |= IEEE80211_CHAN_DISABLED;
2237 		} else {
2238 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2239 			chan->flags = chan->orig_flags;
2240 		}
2241 		return;
2242 	}
2243 
2244 	power_rule = &reg_rule->power_rule;
2245 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2246 
2247 	chan->dfs_state_entered = jiffies;
2248 	chan->dfs_state = NL80211_DFS_USABLE;
2249 
2250 	chan->beacon_found = false;
2251 
2252 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2253 		chan->flags = chan->orig_flags | bw_flags |
2254 			      map_regdom_flags(reg_rule->flags);
2255 	else
2256 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2257 
2258 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2259 	chan->max_reg_power = chan->max_power =
2260 		(int) MBM_TO_DBM(power_rule->max_eirp);
2261 
2262 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2263 		if (reg_rule->dfs_cac_ms)
2264 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2265 		else
2266 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2267 	}
2268 
2269 	chan->max_power = chan->max_reg_power;
2270 }
2271 
2272 static void handle_band_custom(struct wiphy *wiphy,
2273 			       struct ieee80211_supported_band *sband,
2274 			       const struct ieee80211_regdomain *regd)
2275 {
2276 	unsigned int i;
2277 
2278 	if (!sband)
2279 		return;
2280 
2281 	for (i = 0; i < sband->n_channels; i++)
2282 		handle_channel_custom(wiphy, &sband->channels[i], regd);
2283 }
2284 
2285 /* Used by drivers prior to wiphy registration */
2286 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2287 				   const struct ieee80211_regdomain *regd)
2288 {
2289 	enum nl80211_band band;
2290 	unsigned int bands_set = 0;
2291 
2292 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2293 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2294 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2295 
2296 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2297 		if (!wiphy->bands[band])
2298 			continue;
2299 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2300 		bands_set++;
2301 	}
2302 
2303 	/*
2304 	 * no point in calling this if it won't have any effect
2305 	 * on your device's supported bands.
2306 	 */
2307 	WARN_ON(!bands_set);
2308 }
2309 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2310 
2311 static void reg_set_request_processed(void)
2312 {
2313 	bool need_more_processing = false;
2314 	struct regulatory_request *lr = get_last_request();
2315 
2316 	lr->processed = true;
2317 
2318 	spin_lock(&reg_requests_lock);
2319 	if (!list_empty(&reg_requests_list))
2320 		need_more_processing = true;
2321 	spin_unlock(&reg_requests_lock);
2322 
2323 	cancel_crda_timeout();
2324 
2325 	if (need_more_processing)
2326 		schedule_work(&reg_work);
2327 }
2328 
2329 /**
2330  * reg_process_hint_core - process core regulatory requests
2331  * @pending_request: a pending core regulatory request
2332  *
2333  * The wireless subsystem can use this function to process
2334  * a regulatory request issued by the regulatory core.
2335  */
2336 static enum reg_request_treatment
2337 reg_process_hint_core(struct regulatory_request *core_request)
2338 {
2339 	if (reg_query_database(core_request)) {
2340 		core_request->intersect = false;
2341 		core_request->processed = false;
2342 		reg_update_last_request(core_request);
2343 		return REG_REQ_OK;
2344 	}
2345 
2346 	return REG_REQ_IGNORE;
2347 }
2348 
2349 static enum reg_request_treatment
2350 __reg_process_hint_user(struct regulatory_request *user_request)
2351 {
2352 	struct regulatory_request *lr = get_last_request();
2353 
2354 	if (reg_request_cell_base(user_request))
2355 		return reg_ignore_cell_hint(user_request);
2356 
2357 	if (reg_request_cell_base(lr))
2358 		return REG_REQ_IGNORE;
2359 
2360 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2361 		return REG_REQ_INTERSECT;
2362 	/*
2363 	 * If the user knows better the user should set the regdom
2364 	 * to their country before the IE is picked up
2365 	 */
2366 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2367 	    lr->intersect)
2368 		return REG_REQ_IGNORE;
2369 	/*
2370 	 * Process user requests only after previous user/driver/core
2371 	 * requests have been processed
2372 	 */
2373 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2374 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2375 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2376 	    regdom_changes(lr->alpha2))
2377 		return REG_REQ_IGNORE;
2378 
2379 	if (!regdom_changes(user_request->alpha2))
2380 		return REG_REQ_ALREADY_SET;
2381 
2382 	return REG_REQ_OK;
2383 }
2384 
2385 /**
2386  * reg_process_hint_user - process user regulatory requests
2387  * @user_request: a pending user regulatory request
2388  *
2389  * The wireless subsystem can use this function to process
2390  * a regulatory request initiated by userspace.
2391  */
2392 static enum reg_request_treatment
2393 reg_process_hint_user(struct regulatory_request *user_request)
2394 {
2395 	enum reg_request_treatment treatment;
2396 
2397 	treatment = __reg_process_hint_user(user_request);
2398 	if (treatment == REG_REQ_IGNORE ||
2399 	    treatment == REG_REQ_ALREADY_SET)
2400 		return REG_REQ_IGNORE;
2401 
2402 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2403 	user_request->processed = false;
2404 
2405 	if (reg_query_database(user_request)) {
2406 		reg_update_last_request(user_request);
2407 		user_alpha2[0] = user_request->alpha2[0];
2408 		user_alpha2[1] = user_request->alpha2[1];
2409 		return REG_REQ_OK;
2410 	}
2411 
2412 	return REG_REQ_IGNORE;
2413 }
2414 
2415 static enum reg_request_treatment
2416 __reg_process_hint_driver(struct regulatory_request *driver_request)
2417 {
2418 	struct regulatory_request *lr = get_last_request();
2419 
2420 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2421 		if (regdom_changes(driver_request->alpha2))
2422 			return REG_REQ_OK;
2423 		return REG_REQ_ALREADY_SET;
2424 	}
2425 
2426 	/*
2427 	 * This would happen if you unplug and plug your card
2428 	 * back in or if you add a new device for which the previously
2429 	 * loaded card also agrees on the regulatory domain.
2430 	 */
2431 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2432 	    !regdom_changes(driver_request->alpha2))
2433 		return REG_REQ_ALREADY_SET;
2434 
2435 	return REG_REQ_INTERSECT;
2436 }
2437 
2438 /**
2439  * reg_process_hint_driver - process driver regulatory requests
2440  * @driver_request: a pending driver regulatory request
2441  *
2442  * The wireless subsystem can use this function to process
2443  * a regulatory request issued by an 802.11 driver.
2444  *
2445  * Returns one of the different reg request treatment values.
2446  */
2447 static enum reg_request_treatment
2448 reg_process_hint_driver(struct wiphy *wiphy,
2449 			struct regulatory_request *driver_request)
2450 {
2451 	const struct ieee80211_regdomain *regd, *tmp;
2452 	enum reg_request_treatment treatment;
2453 
2454 	treatment = __reg_process_hint_driver(driver_request);
2455 
2456 	switch (treatment) {
2457 	case REG_REQ_OK:
2458 		break;
2459 	case REG_REQ_IGNORE:
2460 		return REG_REQ_IGNORE;
2461 	case REG_REQ_INTERSECT:
2462 	case REG_REQ_ALREADY_SET:
2463 		regd = reg_copy_regd(get_cfg80211_regdom());
2464 		if (IS_ERR(regd))
2465 			return REG_REQ_IGNORE;
2466 
2467 		tmp = get_wiphy_regdom(wiphy);
2468 		rcu_assign_pointer(wiphy->regd, regd);
2469 		rcu_free_regdom(tmp);
2470 	}
2471 
2472 
2473 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2474 	driver_request->processed = false;
2475 
2476 	/*
2477 	 * Since CRDA will not be called in this case as we already
2478 	 * have applied the requested regulatory domain before we just
2479 	 * inform userspace we have processed the request
2480 	 */
2481 	if (treatment == REG_REQ_ALREADY_SET) {
2482 		nl80211_send_reg_change_event(driver_request);
2483 		reg_update_last_request(driver_request);
2484 		reg_set_request_processed();
2485 		return REG_REQ_ALREADY_SET;
2486 	}
2487 
2488 	if (reg_query_database(driver_request)) {
2489 		reg_update_last_request(driver_request);
2490 		return REG_REQ_OK;
2491 	}
2492 
2493 	return REG_REQ_IGNORE;
2494 }
2495 
2496 static enum reg_request_treatment
2497 __reg_process_hint_country_ie(struct wiphy *wiphy,
2498 			      struct regulatory_request *country_ie_request)
2499 {
2500 	struct wiphy *last_wiphy = NULL;
2501 	struct regulatory_request *lr = get_last_request();
2502 
2503 	if (reg_request_cell_base(lr)) {
2504 		/* Trust a Cell base station over the AP's country IE */
2505 		if (regdom_changes(country_ie_request->alpha2))
2506 			return REG_REQ_IGNORE;
2507 		return REG_REQ_ALREADY_SET;
2508 	} else {
2509 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2510 			return REG_REQ_IGNORE;
2511 	}
2512 
2513 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2514 		return -EINVAL;
2515 
2516 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2517 		return REG_REQ_OK;
2518 
2519 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2520 
2521 	if (last_wiphy != wiphy) {
2522 		/*
2523 		 * Two cards with two APs claiming different
2524 		 * Country IE alpha2s. We could
2525 		 * intersect them, but that seems unlikely
2526 		 * to be correct. Reject second one for now.
2527 		 */
2528 		if (regdom_changes(country_ie_request->alpha2))
2529 			return REG_REQ_IGNORE;
2530 		return REG_REQ_ALREADY_SET;
2531 	}
2532 
2533 	if (regdom_changes(country_ie_request->alpha2))
2534 		return REG_REQ_OK;
2535 	return REG_REQ_ALREADY_SET;
2536 }
2537 
2538 /**
2539  * reg_process_hint_country_ie - process regulatory requests from country IEs
2540  * @country_ie_request: a regulatory request from a country IE
2541  *
2542  * The wireless subsystem can use this function to process
2543  * a regulatory request issued by a country Information Element.
2544  *
2545  * Returns one of the different reg request treatment values.
2546  */
2547 static enum reg_request_treatment
2548 reg_process_hint_country_ie(struct wiphy *wiphy,
2549 			    struct regulatory_request *country_ie_request)
2550 {
2551 	enum reg_request_treatment treatment;
2552 
2553 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2554 
2555 	switch (treatment) {
2556 	case REG_REQ_OK:
2557 		break;
2558 	case REG_REQ_IGNORE:
2559 		return REG_REQ_IGNORE;
2560 	case REG_REQ_ALREADY_SET:
2561 		reg_free_request(country_ie_request);
2562 		return REG_REQ_ALREADY_SET;
2563 	case REG_REQ_INTERSECT:
2564 		/*
2565 		 * This doesn't happen yet, not sure we
2566 		 * ever want to support it for this case.
2567 		 */
2568 		WARN_ONCE(1, "Unexpected intersection for country elements");
2569 		return REG_REQ_IGNORE;
2570 	}
2571 
2572 	country_ie_request->intersect = false;
2573 	country_ie_request->processed = false;
2574 
2575 	if (reg_query_database(country_ie_request)) {
2576 		reg_update_last_request(country_ie_request);
2577 		return REG_REQ_OK;
2578 	}
2579 
2580 	return REG_REQ_IGNORE;
2581 }
2582 
2583 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2584 {
2585 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2586 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2587 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2588 	bool dfs_domain_same;
2589 
2590 	rcu_read_lock();
2591 
2592 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2593 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2594 	if (!wiphy1_regd)
2595 		wiphy1_regd = cfg80211_regd;
2596 
2597 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2598 	if (!wiphy2_regd)
2599 		wiphy2_regd = cfg80211_regd;
2600 
2601 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2602 
2603 	rcu_read_unlock();
2604 
2605 	return dfs_domain_same;
2606 }
2607 
2608 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2609 				    struct ieee80211_channel *src_chan)
2610 {
2611 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2612 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2613 		return;
2614 
2615 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2616 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2617 		return;
2618 
2619 	if (src_chan->center_freq == dst_chan->center_freq &&
2620 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2621 		dst_chan->dfs_state = src_chan->dfs_state;
2622 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2623 	}
2624 }
2625 
2626 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2627 				       struct wiphy *src_wiphy)
2628 {
2629 	struct ieee80211_supported_band *src_sband, *dst_sband;
2630 	struct ieee80211_channel *src_chan, *dst_chan;
2631 	int i, j, band;
2632 
2633 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2634 		return;
2635 
2636 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2637 		dst_sband = dst_wiphy->bands[band];
2638 		src_sband = src_wiphy->bands[band];
2639 		if (!dst_sband || !src_sband)
2640 			continue;
2641 
2642 		for (i = 0; i < dst_sband->n_channels; i++) {
2643 			dst_chan = &dst_sband->channels[i];
2644 			for (j = 0; j < src_sband->n_channels; j++) {
2645 				src_chan = &src_sband->channels[j];
2646 				reg_copy_dfs_chan_state(dst_chan, src_chan);
2647 			}
2648 		}
2649 	}
2650 }
2651 
2652 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2653 {
2654 	struct cfg80211_registered_device *rdev;
2655 
2656 	ASSERT_RTNL();
2657 
2658 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2659 		if (wiphy == &rdev->wiphy)
2660 			continue;
2661 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2662 	}
2663 }
2664 
2665 /* This processes *all* regulatory hints */
2666 static void reg_process_hint(struct regulatory_request *reg_request)
2667 {
2668 	struct wiphy *wiphy = NULL;
2669 	enum reg_request_treatment treatment;
2670 
2671 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2672 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2673 
2674 	switch (reg_request->initiator) {
2675 	case NL80211_REGDOM_SET_BY_CORE:
2676 		treatment = reg_process_hint_core(reg_request);
2677 		break;
2678 	case NL80211_REGDOM_SET_BY_USER:
2679 		treatment = reg_process_hint_user(reg_request);
2680 		break;
2681 	case NL80211_REGDOM_SET_BY_DRIVER:
2682 		if (!wiphy)
2683 			goto out_free;
2684 		treatment = reg_process_hint_driver(wiphy, reg_request);
2685 		break;
2686 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2687 		if (!wiphy)
2688 			goto out_free;
2689 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2690 		break;
2691 	default:
2692 		WARN(1, "invalid initiator %d\n", reg_request->initiator);
2693 		goto out_free;
2694 	}
2695 
2696 	if (treatment == REG_REQ_IGNORE)
2697 		goto out_free;
2698 
2699 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2700 	     "unexpected treatment value %d\n", treatment);
2701 
2702 	/* This is required so that the orig_* parameters are saved.
2703 	 * NOTE: treatment must be set for any case that reaches here!
2704 	 */
2705 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2706 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2707 		wiphy_update_regulatory(wiphy, reg_request->initiator);
2708 		wiphy_all_share_dfs_chan_state(wiphy);
2709 		reg_check_channels();
2710 	}
2711 
2712 	return;
2713 
2714 out_free:
2715 	reg_free_request(reg_request);
2716 }
2717 
2718 static void notify_self_managed_wiphys(struct regulatory_request *request)
2719 {
2720 	struct cfg80211_registered_device *rdev;
2721 	struct wiphy *wiphy;
2722 
2723 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2724 		wiphy = &rdev->wiphy;
2725 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2726 		    request->initiator == NL80211_REGDOM_SET_BY_USER &&
2727 		    request->user_reg_hint_type ==
2728 				NL80211_USER_REG_HINT_CELL_BASE)
2729 			reg_call_notifier(wiphy, request);
2730 	}
2731 }
2732 
2733 /*
2734  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2735  * Regulatory hints come on a first come first serve basis and we
2736  * must process each one atomically.
2737  */
2738 static void reg_process_pending_hints(void)
2739 {
2740 	struct regulatory_request *reg_request, *lr;
2741 
2742 	lr = get_last_request();
2743 
2744 	/* When last_request->processed becomes true this will be rescheduled */
2745 	if (lr && !lr->processed) {
2746 		reg_process_hint(lr);
2747 		return;
2748 	}
2749 
2750 	spin_lock(&reg_requests_lock);
2751 
2752 	if (list_empty(&reg_requests_list)) {
2753 		spin_unlock(&reg_requests_lock);
2754 		return;
2755 	}
2756 
2757 	reg_request = list_first_entry(&reg_requests_list,
2758 				       struct regulatory_request,
2759 				       list);
2760 	list_del_init(&reg_request->list);
2761 
2762 	spin_unlock(&reg_requests_lock);
2763 
2764 	notify_self_managed_wiphys(reg_request);
2765 
2766 	reg_process_hint(reg_request);
2767 
2768 	lr = get_last_request();
2769 
2770 	spin_lock(&reg_requests_lock);
2771 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
2772 		schedule_work(&reg_work);
2773 	spin_unlock(&reg_requests_lock);
2774 }
2775 
2776 /* Processes beacon hints -- this has nothing to do with country IEs */
2777 static void reg_process_pending_beacon_hints(void)
2778 {
2779 	struct cfg80211_registered_device *rdev;
2780 	struct reg_beacon *pending_beacon, *tmp;
2781 
2782 	/* This goes through the _pending_ beacon list */
2783 	spin_lock_bh(&reg_pending_beacons_lock);
2784 
2785 	list_for_each_entry_safe(pending_beacon, tmp,
2786 				 &reg_pending_beacons, list) {
2787 		list_del_init(&pending_beacon->list);
2788 
2789 		/* Applies the beacon hint to current wiphys */
2790 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2791 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2792 
2793 		/* Remembers the beacon hint for new wiphys or reg changes */
2794 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2795 	}
2796 
2797 	spin_unlock_bh(&reg_pending_beacons_lock);
2798 }
2799 
2800 static void reg_process_self_managed_hints(void)
2801 {
2802 	struct cfg80211_registered_device *rdev;
2803 	struct wiphy *wiphy;
2804 	const struct ieee80211_regdomain *tmp;
2805 	const struct ieee80211_regdomain *regd;
2806 	enum nl80211_band band;
2807 	struct regulatory_request request = {};
2808 
2809 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2810 		wiphy = &rdev->wiphy;
2811 
2812 		spin_lock(&reg_requests_lock);
2813 		regd = rdev->requested_regd;
2814 		rdev->requested_regd = NULL;
2815 		spin_unlock(&reg_requests_lock);
2816 
2817 		if (regd == NULL)
2818 			continue;
2819 
2820 		tmp = get_wiphy_regdom(wiphy);
2821 		rcu_assign_pointer(wiphy->regd, regd);
2822 		rcu_free_regdom(tmp);
2823 
2824 		for (band = 0; band < NUM_NL80211_BANDS; band++)
2825 			handle_band_custom(wiphy, wiphy->bands[band], regd);
2826 
2827 		reg_process_ht_flags(wiphy);
2828 
2829 		request.wiphy_idx = get_wiphy_idx(wiphy);
2830 		request.alpha2[0] = regd->alpha2[0];
2831 		request.alpha2[1] = regd->alpha2[1];
2832 		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2833 
2834 		nl80211_send_wiphy_reg_change_event(&request);
2835 	}
2836 
2837 	reg_check_channels();
2838 }
2839 
2840 static void reg_todo(struct work_struct *work)
2841 {
2842 	rtnl_lock();
2843 	reg_process_pending_hints();
2844 	reg_process_pending_beacon_hints();
2845 	reg_process_self_managed_hints();
2846 	rtnl_unlock();
2847 }
2848 
2849 static void queue_regulatory_request(struct regulatory_request *request)
2850 {
2851 	request->alpha2[0] = toupper(request->alpha2[0]);
2852 	request->alpha2[1] = toupper(request->alpha2[1]);
2853 
2854 	spin_lock(&reg_requests_lock);
2855 	list_add_tail(&request->list, &reg_requests_list);
2856 	spin_unlock(&reg_requests_lock);
2857 
2858 	schedule_work(&reg_work);
2859 }
2860 
2861 /*
2862  * Core regulatory hint -- happens during cfg80211_init()
2863  * and when we restore regulatory settings.
2864  */
2865 static int regulatory_hint_core(const char *alpha2)
2866 {
2867 	struct regulatory_request *request;
2868 
2869 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2870 	if (!request)
2871 		return -ENOMEM;
2872 
2873 	request->alpha2[0] = alpha2[0];
2874 	request->alpha2[1] = alpha2[1];
2875 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2876 
2877 	queue_regulatory_request(request);
2878 
2879 	return 0;
2880 }
2881 
2882 /* User hints */
2883 int regulatory_hint_user(const char *alpha2,
2884 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2885 {
2886 	struct regulatory_request *request;
2887 
2888 	if (WARN_ON(!alpha2))
2889 		return -EINVAL;
2890 
2891 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2892 	if (!request)
2893 		return -ENOMEM;
2894 
2895 	request->wiphy_idx = WIPHY_IDX_INVALID;
2896 	request->alpha2[0] = alpha2[0];
2897 	request->alpha2[1] = alpha2[1];
2898 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2899 	request->user_reg_hint_type = user_reg_hint_type;
2900 
2901 	/* Allow calling CRDA again */
2902 	reset_crda_timeouts();
2903 
2904 	queue_regulatory_request(request);
2905 
2906 	return 0;
2907 }
2908 
2909 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2910 {
2911 	spin_lock(&reg_indoor_lock);
2912 
2913 	/* It is possible that more than one user space process is trying to
2914 	 * configure the indoor setting. To handle such cases, clear the indoor
2915 	 * setting in case that some process does not think that the device
2916 	 * is operating in an indoor environment. In addition, if a user space
2917 	 * process indicates that it is controlling the indoor setting, save its
2918 	 * portid, i.e., make it the owner.
2919 	 */
2920 	reg_is_indoor = is_indoor;
2921 	if (reg_is_indoor) {
2922 		if (!reg_is_indoor_portid)
2923 			reg_is_indoor_portid = portid;
2924 	} else {
2925 		reg_is_indoor_portid = 0;
2926 	}
2927 
2928 	spin_unlock(&reg_indoor_lock);
2929 
2930 	if (!is_indoor)
2931 		reg_check_channels();
2932 
2933 	return 0;
2934 }
2935 
2936 void regulatory_netlink_notify(u32 portid)
2937 {
2938 	spin_lock(&reg_indoor_lock);
2939 
2940 	if (reg_is_indoor_portid != portid) {
2941 		spin_unlock(&reg_indoor_lock);
2942 		return;
2943 	}
2944 
2945 	reg_is_indoor = false;
2946 	reg_is_indoor_portid = 0;
2947 
2948 	spin_unlock(&reg_indoor_lock);
2949 
2950 	reg_check_channels();
2951 }
2952 
2953 /* Driver hints */
2954 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2955 {
2956 	struct regulatory_request *request;
2957 
2958 	if (WARN_ON(!alpha2 || !wiphy))
2959 		return -EINVAL;
2960 
2961 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2962 
2963 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2964 	if (!request)
2965 		return -ENOMEM;
2966 
2967 	request->wiphy_idx = get_wiphy_idx(wiphy);
2968 
2969 	request->alpha2[0] = alpha2[0];
2970 	request->alpha2[1] = alpha2[1];
2971 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2972 
2973 	/* Allow calling CRDA again */
2974 	reset_crda_timeouts();
2975 
2976 	queue_regulatory_request(request);
2977 
2978 	return 0;
2979 }
2980 EXPORT_SYMBOL(regulatory_hint);
2981 
2982 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2983 				const u8 *country_ie, u8 country_ie_len)
2984 {
2985 	char alpha2[2];
2986 	enum environment_cap env = ENVIRON_ANY;
2987 	struct regulatory_request *request = NULL, *lr;
2988 
2989 	/* IE len must be evenly divisible by 2 */
2990 	if (country_ie_len & 0x01)
2991 		return;
2992 
2993 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2994 		return;
2995 
2996 	request = kzalloc(sizeof(*request), GFP_KERNEL);
2997 	if (!request)
2998 		return;
2999 
3000 	alpha2[0] = country_ie[0];
3001 	alpha2[1] = country_ie[1];
3002 
3003 	if (country_ie[2] == 'I')
3004 		env = ENVIRON_INDOOR;
3005 	else if (country_ie[2] == 'O')
3006 		env = ENVIRON_OUTDOOR;
3007 
3008 	rcu_read_lock();
3009 	lr = get_last_request();
3010 
3011 	if (unlikely(!lr))
3012 		goto out;
3013 
3014 	/*
3015 	 * We will run this only upon a successful connection on cfg80211.
3016 	 * We leave conflict resolution to the workqueue, where can hold
3017 	 * the RTNL.
3018 	 */
3019 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3020 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3021 		goto out;
3022 
3023 	request->wiphy_idx = get_wiphy_idx(wiphy);
3024 	request->alpha2[0] = alpha2[0];
3025 	request->alpha2[1] = alpha2[1];
3026 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3027 	request->country_ie_env = env;
3028 
3029 	/* Allow calling CRDA again */
3030 	reset_crda_timeouts();
3031 
3032 	queue_regulatory_request(request);
3033 	request = NULL;
3034 out:
3035 	kfree(request);
3036 	rcu_read_unlock();
3037 }
3038 
3039 static void restore_alpha2(char *alpha2, bool reset_user)
3040 {
3041 	/* indicates there is no alpha2 to consider for restoration */
3042 	alpha2[0] = '9';
3043 	alpha2[1] = '7';
3044 
3045 	/* The user setting has precedence over the module parameter */
3046 	if (is_user_regdom_saved()) {
3047 		/* Unless we're asked to ignore it and reset it */
3048 		if (reset_user) {
3049 			pr_debug("Restoring regulatory settings including user preference\n");
3050 			user_alpha2[0] = '9';
3051 			user_alpha2[1] = '7';
3052 
3053 			/*
3054 			 * If we're ignoring user settings, we still need to
3055 			 * check the module parameter to ensure we put things
3056 			 * back as they were for a full restore.
3057 			 */
3058 			if (!is_world_regdom(ieee80211_regdom)) {
3059 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3060 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3061 				alpha2[0] = ieee80211_regdom[0];
3062 				alpha2[1] = ieee80211_regdom[1];
3063 			}
3064 		} else {
3065 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3066 				 user_alpha2[0], user_alpha2[1]);
3067 			alpha2[0] = user_alpha2[0];
3068 			alpha2[1] = user_alpha2[1];
3069 		}
3070 	} else if (!is_world_regdom(ieee80211_regdom)) {
3071 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3072 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3073 		alpha2[0] = ieee80211_regdom[0];
3074 		alpha2[1] = ieee80211_regdom[1];
3075 	} else
3076 		pr_debug("Restoring regulatory settings\n");
3077 }
3078 
3079 static void restore_custom_reg_settings(struct wiphy *wiphy)
3080 {
3081 	struct ieee80211_supported_band *sband;
3082 	enum nl80211_band band;
3083 	struct ieee80211_channel *chan;
3084 	int i;
3085 
3086 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3087 		sband = wiphy->bands[band];
3088 		if (!sband)
3089 			continue;
3090 		for (i = 0; i < sband->n_channels; i++) {
3091 			chan = &sband->channels[i];
3092 			chan->flags = chan->orig_flags;
3093 			chan->max_antenna_gain = chan->orig_mag;
3094 			chan->max_power = chan->orig_mpwr;
3095 			chan->beacon_found = false;
3096 		}
3097 	}
3098 }
3099 
3100 /*
3101  * Restoring regulatory settings involves ingoring any
3102  * possibly stale country IE information and user regulatory
3103  * settings if so desired, this includes any beacon hints
3104  * learned as we could have traveled outside to another country
3105  * after disconnection. To restore regulatory settings we do
3106  * exactly what we did at bootup:
3107  *
3108  *   - send a core regulatory hint
3109  *   - send a user regulatory hint if applicable
3110  *
3111  * Device drivers that send a regulatory hint for a specific country
3112  * keep their own regulatory domain on wiphy->regd so that does does
3113  * not need to be remembered.
3114  */
3115 static void restore_regulatory_settings(bool reset_user)
3116 {
3117 	char alpha2[2];
3118 	char world_alpha2[2];
3119 	struct reg_beacon *reg_beacon, *btmp;
3120 	LIST_HEAD(tmp_reg_req_list);
3121 	struct cfg80211_registered_device *rdev;
3122 
3123 	ASSERT_RTNL();
3124 
3125 	/*
3126 	 * Clear the indoor setting in case that it is not controlled by user
3127 	 * space, as otherwise there is no guarantee that the device is still
3128 	 * operating in an indoor environment.
3129 	 */
3130 	spin_lock(&reg_indoor_lock);
3131 	if (reg_is_indoor && !reg_is_indoor_portid) {
3132 		reg_is_indoor = false;
3133 		reg_check_channels();
3134 	}
3135 	spin_unlock(&reg_indoor_lock);
3136 
3137 	reset_regdomains(true, &world_regdom);
3138 	restore_alpha2(alpha2, reset_user);
3139 
3140 	/*
3141 	 * If there's any pending requests we simply
3142 	 * stash them to a temporary pending queue and
3143 	 * add then after we've restored regulatory
3144 	 * settings.
3145 	 */
3146 	spin_lock(&reg_requests_lock);
3147 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3148 	spin_unlock(&reg_requests_lock);
3149 
3150 	/* Clear beacon hints */
3151 	spin_lock_bh(&reg_pending_beacons_lock);
3152 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3153 		list_del(&reg_beacon->list);
3154 		kfree(reg_beacon);
3155 	}
3156 	spin_unlock_bh(&reg_pending_beacons_lock);
3157 
3158 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3159 		list_del(&reg_beacon->list);
3160 		kfree(reg_beacon);
3161 	}
3162 
3163 	/* First restore to the basic regulatory settings */
3164 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3165 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3166 
3167 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3168 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3169 			continue;
3170 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3171 			restore_custom_reg_settings(&rdev->wiphy);
3172 	}
3173 
3174 	regulatory_hint_core(world_alpha2);
3175 
3176 	/*
3177 	 * This restores the ieee80211_regdom module parameter
3178 	 * preference or the last user requested regulatory
3179 	 * settings, user regulatory settings takes precedence.
3180 	 */
3181 	if (is_an_alpha2(alpha2))
3182 		regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3183 
3184 	spin_lock(&reg_requests_lock);
3185 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3186 	spin_unlock(&reg_requests_lock);
3187 
3188 	pr_debug("Kicking the queue\n");
3189 
3190 	schedule_work(&reg_work);
3191 }
3192 
3193 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3194 {
3195 	struct cfg80211_registered_device *rdev;
3196 	struct wireless_dev *wdev;
3197 
3198 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3199 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3200 			wdev_lock(wdev);
3201 			if (!(wdev->wiphy->regulatory_flags & flag)) {
3202 				wdev_unlock(wdev);
3203 				return false;
3204 			}
3205 			wdev_unlock(wdev);
3206 		}
3207 	}
3208 
3209 	return true;
3210 }
3211 
3212 void regulatory_hint_disconnect(void)
3213 {
3214 	/* Restore of regulatory settings is not required when wiphy(s)
3215 	 * ignore IE from connected access point but clearance of beacon hints
3216 	 * is required when wiphy(s) supports beacon hints.
3217 	 */
3218 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3219 		struct reg_beacon *reg_beacon, *btmp;
3220 
3221 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3222 			return;
3223 
3224 		spin_lock_bh(&reg_pending_beacons_lock);
3225 		list_for_each_entry_safe(reg_beacon, btmp,
3226 					 &reg_pending_beacons, list) {
3227 			list_del(&reg_beacon->list);
3228 			kfree(reg_beacon);
3229 		}
3230 		spin_unlock_bh(&reg_pending_beacons_lock);
3231 
3232 		list_for_each_entry_safe(reg_beacon, btmp,
3233 					 &reg_beacon_list, list) {
3234 			list_del(&reg_beacon->list);
3235 			kfree(reg_beacon);
3236 		}
3237 
3238 		return;
3239 	}
3240 
3241 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3242 	restore_regulatory_settings(false);
3243 }
3244 
3245 static bool freq_is_chan_12_13_14(u32 freq)
3246 {
3247 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3248 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3249 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3250 		return true;
3251 	return false;
3252 }
3253 
3254 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3255 {
3256 	struct reg_beacon *pending_beacon;
3257 
3258 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3259 		if (beacon_chan->center_freq ==
3260 		    pending_beacon->chan.center_freq)
3261 			return true;
3262 	return false;
3263 }
3264 
3265 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3266 				 struct ieee80211_channel *beacon_chan,
3267 				 gfp_t gfp)
3268 {
3269 	struct reg_beacon *reg_beacon;
3270 	bool processing;
3271 
3272 	if (beacon_chan->beacon_found ||
3273 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3274 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3275 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3276 		return 0;
3277 
3278 	spin_lock_bh(&reg_pending_beacons_lock);
3279 	processing = pending_reg_beacon(beacon_chan);
3280 	spin_unlock_bh(&reg_pending_beacons_lock);
3281 
3282 	if (processing)
3283 		return 0;
3284 
3285 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3286 	if (!reg_beacon)
3287 		return -ENOMEM;
3288 
3289 	pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3290 		 beacon_chan->center_freq,
3291 		 ieee80211_frequency_to_channel(beacon_chan->center_freq),
3292 		 wiphy_name(wiphy));
3293 
3294 	memcpy(&reg_beacon->chan, beacon_chan,
3295 	       sizeof(struct ieee80211_channel));
3296 
3297 	/*
3298 	 * Since we can be called from BH or and non-BH context
3299 	 * we must use spin_lock_bh()
3300 	 */
3301 	spin_lock_bh(&reg_pending_beacons_lock);
3302 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3303 	spin_unlock_bh(&reg_pending_beacons_lock);
3304 
3305 	schedule_work(&reg_work);
3306 
3307 	return 0;
3308 }
3309 
3310 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3311 {
3312 	unsigned int i;
3313 	const struct ieee80211_reg_rule *reg_rule = NULL;
3314 	const struct ieee80211_freq_range *freq_range = NULL;
3315 	const struct ieee80211_power_rule *power_rule = NULL;
3316 	char bw[32], cac_time[32];
3317 
3318 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3319 
3320 	for (i = 0; i < rd->n_reg_rules; i++) {
3321 		reg_rule = &rd->reg_rules[i];
3322 		freq_range = &reg_rule->freq_range;
3323 		power_rule = &reg_rule->power_rule;
3324 
3325 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3326 			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3327 				 freq_range->max_bandwidth_khz,
3328 				 reg_get_max_bandwidth(rd, reg_rule));
3329 		else
3330 			snprintf(bw, sizeof(bw), "%d KHz",
3331 				 freq_range->max_bandwidth_khz);
3332 
3333 		if (reg_rule->flags & NL80211_RRF_DFS)
3334 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3335 				  reg_rule->dfs_cac_ms/1000);
3336 		else
3337 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3338 
3339 
3340 		/*
3341 		 * There may not be documentation for max antenna gain
3342 		 * in certain regions
3343 		 */
3344 		if (power_rule->max_antenna_gain)
3345 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3346 				freq_range->start_freq_khz,
3347 				freq_range->end_freq_khz,
3348 				bw,
3349 				power_rule->max_antenna_gain,
3350 				power_rule->max_eirp,
3351 				cac_time);
3352 		else
3353 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3354 				freq_range->start_freq_khz,
3355 				freq_range->end_freq_khz,
3356 				bw,
3357 				power_rule->max_eirp,
3358 				cac_time);
3359 	}
3360 }
3361 
3362 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3363 {
3364 	switch (dfs_region) {
3365 	case NL80211_DFS_UNSET:
3366 	case NL80211_DFS_FCC:
3367 	case NL80211_DFS_ETSI:
3368 	case NL80211_DFS_JP:
3369 		return true;
3370 	default:
3371 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3372 		return false;
3373 	}
3374 }
3375 
3376 static void print_regdomain(const struct ieee80211_regdomain *rd)
3377 {
3378 	struct regulatory_request *lr = get_last_request();
3379 
3380 	if (is_intersected_alpha2(rd->alpha2)) {
3381 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3382 			struct cfg80211_registered_device *rdev;
3383 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3384 			if (rdev) {
3385 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3386 					rdev->country_ie_alpha2[0],
3387 					rdev->country_ie_alpha2[1]);
3388 			} else
3389 				pr_debug("Current regulatory domain intersected:\n");
3390 		} else
3391 			pr_debug("Current regulatory domain intersected:\n");
3392 	} else if (is_world_regdom(rd->alpha2)) {
3393 		pr_debug("World regulatory domain updated:\n");
3394 	} else {
3395 		if (is_unknown_alpha2(rd->alpha2))
3396 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3397 		else {
3398 			if (reg_request_cell_base(lr))
3399 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3400 					rd->alpha2[0], rd->alpha2[1]);
3401 			else
3402 				pr_debug("Regulatory domain changed to country: %c%c\n",
3403 					rd->alpha2[0], rd->alpha2[1]);
3404 		}
3405 	}
3406 
3407 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3408 	print_rd_rules(rd);
3409 }
3410 
3411 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3412 {
3413 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3414 	print_rd_rules(rd);
3415 }
3416 
3417 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3418 {
3419 	if (!is_world_regdom(rd->alpha2))
3420 		return -EINVAL;
3421 	update_world_regdomain(rd);
3422 	return 0;
3423 }
3424 
3425 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3426 			   struct regulatory_request *user_request)
3427 {
3428 	const struct ieee80211_regdomain *intersected_rd = NULL;
3429 
3430 	if (!regdom_changes(rd->alpha2))
3431 		return -EALREADY;
3432 
3433 	if (!is_valid_rd(rd)) {
3434 		pr_err("Invalid regulatory domain detected: %c%c\n",
3435 		       rd->alpha2[0], rd->alpha2[1]);
3436 		print_regdomain_info(rd);
3437 		return -EINVAL;
3438 	}
3439 
3440 	if (!user_request->intersect) {
3441 		reset_regdomains(false, rd);
3442 		return 0;
3443 	}
3444 
3445 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3446 	if (!intersected_rd)
3447 		return -EINVAL;
3448 
3449 	kfree(rd);
3450 	rd = NULL;
3451 	reset_regdomains(false, intersected_rd);
3452 
3453 	return 0;
3454 }
3455 
3456 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3457 			     struct regulatory_request *driver_request)
3458 {
3459 	const struct ieee80211_regdomain *regd;
3460 	const struct ieee80211_regdomain *intersected_rd = NULL;
3461 	const struct ieee80211_regdomain *tmp;
3462 	struct wiphy *request_wiphy;
3463 
3464 	if (is_world_regdom(rd->alpha2))
3465 		return -EINVAL;
3466 
3467 	if (!regdom_changes(rd->alpha2))
3468 		return -EALREADY;
3469 
3470 	if (!is_valid_rd(rd)) {
3471 		pr_err("Invalid regulatory domain detected: %c%c\n",
3472 		       rd->alpha2[0], rd->alpha2[1]);
3473 		print_regdomain_info(rd);
3474 		return -EINVAL;
3475 	}
3476 
3477 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3478 	if (!request_wiphy)
3479 		return -ENODEV;
3480 
3481 	if (!driver_request->intersect) {
3482 		if (request_wiphy->regd)
3483 			return -EALREADY;
3484 
3485 		regd = reg_copy_regd(rd);
3486 		if (IS_ERR(regd))
3487 			return PTR_ERR(regd);
3488 
3489 		rcu_assign_pointer(request_wiphy->regd, regd);
3490 		reset_regdomains(false, rd);
3491 		return 0;
3492 	}
3493 
3494 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3495 	if (!intersected_rd)
3496 		return -EINVAL;
3497 
3498 	/*
3499 	 * We can trash what CRDA provided now.
3500 	 * However if a driver requested this specific regulatory
3501 	 * domain we keep it for its private use
3502 	 */
3503 	tmp = get_wiphy_regdom(request_wiphy);
3504 	rcu_assign_pointer(request_wiphy->regd, rd);
3505 	rcu_free_regdom(tmp);
3506 
3507 	rd = NULL;
3508 
3509 	reset_regdomains(false, intersected_rd);
3510 
3511 	return 0;
3512 }
3513 
3514 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3515 				 struct regulatory_request *country_ie_request)
3516 {
3517 	struct wiphy *request_wiphy;
3518 
3519 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3520 	    !is_unknown_alpha2(rd->alpha2))
3521 		return -EINVAL;
3522 
3523 	/*
3524 	 * Lets only bother proceeding on the same alpha2 if the current
3525 	 * rd is non static (it means CRDA was present and was used last)
3526 	 * and the pending request came in from a country IE
3527 	 */
3528 
3529 	if (!is_valid_rd(rd)) {
3530 		pr_err("Invalid regulatory domain detected: %c%c\n",
3531 		       rd->alpha2[0], rd->alpha2[1]);
3532 		print_regdomain_info(rd);
3533 		return -EINVAL;
3534 	}
3535 
3536 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3537 	if (!request_wiphy)
3538 		return -ENODEV;
3539 
3540 	if (country_ie_request->intersect)
3541 		return -EINVAL;
3542 
3543 	reset_regdomains(false, rd);
3544 	return 0;
3545 }
3546 
3547 /*
3548  * Use this call to set the current regulatory domain. Conflicts with
3549  * multiple drivers can be ironed out later. Caller must've already
3550  * kmalloc'd the rd structure.
3551  */
3552 int set_regdom(const struct ieee80211_regdomain *rd,
3553 	       enum ieee80211_regd_source regd_src)
3554 {
3555 	struct regulatory_request *lr;
3556 	bool user_reset = false;
3557 	int r;
3558 
3559 	if (!reg_is_valid_request(rd->alpha2)) {
3560 		kfree(rd);
3561 		return -EINVAL;
3562 	}
3563 
3564 	if (regd_src == REGD_SOURCE_CRDA)
3565 		reset_crda_timeouts();
3566 
3567 	lr = get_last_request();
3568 
3569 	/* Note that this doesn't update the wiphys, this is done below */
3570 	switch (lr->initiator) {
3571 	case NL80211_REGDOM_SET_BY_CORE:
3572 		r = reg_set_rd_core(rd);
3573 		break;
3574 	case NL80211_REGDOM_SET_BY_USER:
3575 		r = reg_set_rd_user(rd, lr);
3576 		user_reset = true;
3577 		break;
3578 	case NL80211_REGDOM_SET_BY_DRIVER:
3579 		r = reg_set_rd_driver(rd, lr);
3580 		break;
3581 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3582 		r = reg_set_rd_country_ie(rd, lr);
3583 		break;
3584 	default:
3585 		WARN(1, "invalid initiator %d\n", lr->initiator);
3586 		kfree(rd);
3587 		return -EINVAL;
3588 	}
3589 
3590 	if (r) {
3591 		switch (r) {
3592 		case -EALREADY:
3593 			reg_set_request_processed();
3594 			break;
3595 		default:
3596 			/* Back to world regulatory in case of errors */
3597 			restore_regulatory_settings(user_reset);
3598 		}
3599 
3600 		kfree(rd);
3601 		return r;
3602 	}
3603 
3604 	/* This would make this whole thing pointless */
3605 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3606 		return -EINVAL;
3607 
3608 	/* update all wiphys now with the new established regulatory domain */
3609 	update_all_wiphy_regulatory(lr->initiator);
3610 
3611 	print_regdomain(get_cfg80211_regdom());
3612 
3613 	nl80211_send_reg_change_event(lr);
3614 
3615 	reg_set_request_processed();
3616 
3617 	return 0;
3618 }
3619 
3620 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3621 				       struct ieee80211_regdomain *rd)
3622 {
3623 	const struct ieee80211_regdomain *regd;
3624 	const struct ieee80211_regdomain *prev_regd;
3625 	struct cfg80211_registered_device *rdev;
3626 
3627 	if (WARN_ON(!wiphy || !rd))
3628 		return -EINVAL;
3629 
3630 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3631 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3632 		return -EPERM;
3633 
3634 	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3635 		print_regdomain_info(rd);
3636 		return -EINVAL;
3637 	}
3638 
3639 	regd = reg_copy_regd(rd);
3640 	if (IS_ERR(regd))
3641 		return PTR_ERR(regd);
3642 
3643 	rdev = wiphy_to_rdev(wiphy);
3644 
3645 	spin_lock(&reg_requests_lock);
3646 	prev_regd = rdev->requested_regd;
3647 	rdev->requested_regd = regd;
3648 	spin_unlock(&reg_requests_lock);
3649 
3650 	kfree(prev_regd);
3651 	return 0;
3652 }
3653 
3654 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3655 			      struct ieee80211_regdomain *rd)
3656 {
3657 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3658 
3659 	if (ret)
3660 		return ret;
3661 
3662 	schedule_work(&reg_work);
3663 	return 0;
3664 }
3665 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3666 
3667 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3668 					struct ieee80211_regdomain *rd)
3669 {
3670 	int ret;
3671 
3672 	ASSERT_RTNL();
3673 
3674 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3675 	if (ret)
3676 		return ret;
3677 
3678 	/* process the request immediately */
3679 	reg_process_self_managed_hints();
3680 	return 0;
3681 }
3682 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3683 
3684 void wiphy_regulatory_register(struct wiphy *wiphy)
3685 {
3686 	struct regulatory_request *lr = get_last_request();
3687 
3688 	/* self-managed devices ignore beacon hints and country IE */
3689 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3690 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3691 					   REGULATORY_COUNTRY_IE_IGNORE;
3692 
3693 		/*
3694 		 * The last request may have been received before this
3695 		 * registration call. Call the driver notifier if
3696 		 * initiator is USER and user type is CELL_BASE.
3697 		 */
3698 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
3699 		    lr->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE)
3700 			reg_call_notifier(wiphy, lr);
3701 	}
3702 
3703 	if (!reg_dev_ignore_cell_hint(wiphy))
3704 		reg_num_devs_support_basehint++;
3705 
3706 	wiphy_update_regulatory(wiphy, lr->initiator);
3707 	wiphy_all_share_dfs_chan_state(wiphy);
3708 }
3709 
3710 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3711 {
3712 	struct wiphy *request_wiphy = NULL;
3713 	struct regulatory_request *lr;
3714 
3715 	lr = get_last_request();
3716 
3717 	if (!reg_dev_ignore_cell_hint(wiphy))
3718 		reg_num_devs_support_basehint--;
3719 
3720 	rcu_free_regdom(get_wiphy_regdom(wiphy));
3721 	RCU_INIT_POINTER(wiphy->regd, NULL);
3722 
3723 	if (lr)
3724 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3725 
3726 	if (!request_wiphy || request_wiphy != wiphy)
3727 		return;
3728 
3729 	lr->wiphy_idx = WIPHY_IDX_INVALID;
3730 	lr->country_ie_env = ENVIRON_ANY;
3731 }
3732 
3733 /*
3734  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3735  * UNII band definitions
3736  */
3737 int cfg80211_get_unii(int freq)
3738 {
3739 	/* UNII-1 */
3740 	if (freq >= 5150 && freq <= 5250)
3741 		return 0;
3742 
3743 	/* UNII-2A */
3744 	if (freq > 5250 && freq <= 5350)
3745 		return 1;
3746 
3747 	/* UNII-2B */
3748 	if (freq > 5350 && freq <= 5470)
3749 		return 2;
3750 
3751 	/* UNII-2C */
3752 	if (freq > 5470 && freq <= 5725)
3753 		return 3;
3754 
3755 	/* UNII-3 */
3756 	if (freq > 5725 && freq <= 5825)
3757 		return 4;
3758 
3759 	return -EINVAL;
3760 }
3761 
3762 bool regulatory_indoor_allowed(void)
3763 {
3764 	return reg_is_indoor;
3765 }
3766 
3767 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3768 {
3769 	const struct ieee80211_regdomain *regd = NULL;
3770 	const struct ieee80211_regdomain *wiphy_regd = NULL;
3771 	bool pre_cac_allowed = false;
3772 
3773 	rcu_read_lock();
3774 
3775 	regd = rcu_dereference(cfg80211_regdomain);
3776 	wiphy_regd = rcu_dereference(wiphy->regd);
3777 	if (!wiphy_regd) {
3778 		if (regd->dfs_region == NL80211_DFS_ETSI)
3779 			pre_cac_allowed = true;
3780 
3781 		rcu_read_unlock();
3782 
3783 		return pre_cac_allowed;
3784 	}
3785 
3786 	if (regd->dfs_region == wiphy_regd->dfs_region &&
3787 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3788 		pre_cac_allowed = true;
3789 
3790 	rcu_read_unlock();
3791 
3792 	return pre_cac_allowed;
3793 }
3794 
3795 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3796 				    struct cfg80211_chan_def *chandef,
3797 				    enum nl80211_dfs_state dfs_state,
3798 				    enum nl80211_radar_event event)
3799 {
3800 	struct cfg80211_registered_device *rdev;
3801 
3802 	ASSERT_RTNL();
3803 
3804 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3805 		return;
3806 
3807 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3808 		if (wiphy == &rdev->wiphy)
3809 			continue;
3810 
3811 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3812 			continue;
3813 
3814 		if (!ieee80211_get_channel(&rdev->wiphy,
3815 					   chandef->chan->center_freq))
3816 			continue;
3817 
3818 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3819 
3820 		if (event == NL80211_RADAR_DETECTED ||
3821 		    event == NL80211_RADAR_CAC_FINISHED)
3822 			cfg80211_sched_dfs_chan_update(rdev);
3823 
3824 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3825 	}
3826 }
3827 
3828 static int __init regulatory_init_db(void)
3829 {
3830 	int err;
3831 
3832 	err = load_builtin_regdb_keys();
3833 	if (err)
3834 		return err;
3835 
3836 	/* We always try to get an update for the static regdomain */
3837 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3838 	if (err) {
3839 		if (err == -ENOMEM) {
3840 			platform_device_unregister(reg_pdev);
3841 			return err;
3842 		}
3843 		/*
3844 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
3845 		 * memory which is handled and propagated appropriately above
3846 		 * but it can also fail during a netlink_broadcast() or during
3847 		 * early boot for call_usermodehelper(). For now treat these
3848 		 * errors as non-fatal.
3849 		 */
3850 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3851 	}
3852 
3853 	/*
3854 	 * Finally, if the user set the module parameter treat it
3855 	 * as a user hint.
3856 	 */
3857 	if (!is_world_regdom(ieee80211_regdom))
3858 		regulatory_hint_user(ieee80211_regdom,
3859 				     NL80211_USER_REG_HINT_USER);
3860 
3861 	return 0;
3862 }
3863 #ifndef MODULE
3864 late_initcall(regulatory_init_db);
3865 #endif
3866 
3867 int __init regulatory_init(void)
3868 {
3869 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3870 	if (IS_ERR(reg_pdev))
3871 		return PTR_ERR(reg_pdev);
3872 
3873 	spin_lock_init(&reg_requests_lock);
3874 	spin_lock_init(&reg_pending_beacons_lock);
3875 	spin_lock_init(&reg_indoor_lock);
3876 
3877 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3878 
3879 	user_alpha2[0] = '9';
3880 	user_alpha2[1] = '7';
3881 
3882 #ifdef MODULE
3883 	return regulatory_init_db();
3884 #else
3885 	return 0;
3886 #endif
3887 }
3888 
3889 void regulatory_exit(void)
3890 {
3891 	struct regulatory_request *reg_request, *tmp;
3892 	struct reg_beacon *reg_beacon, *btmp;
3893 
3894 	cancel_work_sync(&reg_work);
3895 	cancel_crda_timeout_sync();
3896 	cancel_delayed_work_sync(&reg_check_chans);
3897 
3898 	/* Lock to suppress warnings */
3899 	rtnl_lock();
3900 	reset_regdomains(true, NULL);
3901 	rtnl_unlock();
3902 
3903 	dev_set_uevent_suppress(&reg_pdev->dev, true);
3904 
3905 	platform_device_unregister(reg_pdev);
3906 
3907 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3908 		list_del(&reg_beacon->list);
3909 		kfree(reg_beacon);
3910 	}
3911 
3912 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3913 		list_del(&reg_beacon->list);
3914 		kfree(reg_beacon);
3915 	}
3916 
3917 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3918 		list_del(&reg_request->list);
3919 		kfree(reg_request);
3920 	}
3921 
3922 	if (!IS_ERR_OR_NULL(regdb))
3923 		kfree(regdb);
3924 
3925 	free_regdb_keyring();
3926 }
3927