1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 21 /** 22 * DOC: Wireless regulatory infrastructure 23 * 24 * The usual implementation is for a driver to read a device EEPROM to 25 * determine which regulatory domain it should be operating under, then 26 * looking up the allowable channels in a driver-local table and finally 27 * registering those channels in the wiphy structure. 28 * 29 * Another set of compliance enforcement is for drivers to use their 30 * own compliance limits which can be stored on the EEPROM. The host 31 * driver or firmware may ensure these are used. 32 * 33 * In addition to all this we provide an extra layer of regulatory 34 * conformance. For drivers which do not have any regulatory 35 * information CRDA provides the complete regulatory solution. 36 * For others it provides a community effort on further restrictions 37 * to enhance compliance. 38 * 39 * Note: When number of rules --> infinity we will not be able to 40 * index on alpha2 any more, instead we'll probably have to 41 * rely on some SHA1 checksum of the regdomain for example. 42 * 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/kernel.h> 48 #include <linux/export.h> 49 #include <linux/slab.h> 50 #include <linux/list.h> 51 #include <linux/ctype.h> 52 #include <linux/nl80211.h> 53 #include <linux/platform_device.h> 54 #include <linux/moduleparam.h> 55 #include <net/cfg80211.h> 56 #include "core.h" 57 #include "reg.h" 58 #include "regdb.h" 59 #include "nl80211.h" 60 61 #ifdef CONFIG_CFG80211_REG_DEBUG 62 #define REG_DBG_PRINT(format, args...) \ 63 printk(KERN_DEBUG pr_fmt(format), ##args) 64 #else 65 #define REG_DBG_PRINT(args...) 66 #endif 67 68 /** 69 * enum reg_request_treatment - regulatory request treatment 70 * 71 * @REG_REQ_OK: continue processing the regulatory request 72 * @REG_REQ_IGNORE: ignore the regulatory request 73 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 74 * be intersected with the current one. 75 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 76 * regulatory settings, and no further processing is required. 77 * @REG_REQ_USER_HINT_HANDLED: a non alpha2 user hint was handled and no 78 * further processing is required, i.e., not need to update last_request 79 * etc. This should be used for user hints that do not provide an alpha2 80 * but some other type of regulatory hint, i.e., indoor operation. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 REG_REQ_USER_HINT_HANDLED, 88 }; 89 90 static struct regulatory_request core_request_world = { 91 .initiator = NL80211_REGDOM_SET_BY_CORE, 92 .alpha2[0] = '0', 93 .alpha2[1] = '0', 94 .intersect = false, 95 .processed = true, 96 .country_ie_env = ENVIRON_ANY, 97 }; 98 99 /* 100 * Receipt of information from last regulatory request, 101 * protected by RTNL (and can be accessed with RCU protection) 102 */ 103 static struct regulatory_request __rcu *last_request = 104 (void __rcu *)&core_request_world; 105 106 /* To trigger userspace events */ 107 static struct platform_device *reg_pdev; 108 109 /* 110 * Central wireless core regulatory domains, we only need two, 111 * the current one and a world regulatory domain in case we have no 112 * information to give us an alpha2. 113 * (protected by RTNL, can be read under RCU) 114 */ 115 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 116 117 /* 118 * Number of devices that registered to the core 119 * that support cellular base station regulatory hints 120 * (protected by RTNL) 121 */ 122 static int reg_num_devs_support_basehint; 123 124 /* 125 * State variable indicating if the platform on which the devices 126 * are attached is operating in an indoor environment. The state variable 127 * is relevant for all registered devices. 128 * (protected by RTNL) 129 */ 130 static bool reg_is_indoor; 131 132 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 133 { 134 return rtnl_dereference(cfg80211_regdomain); 135 } 136 137 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 138 { 139 return rtnl_dereference(wiphy->regd); 140 } 141 142 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 143 { 144 switch (dfs_region) { 145 case NL80211_DFS_UNSET: 146 return "unset"; 147 case NL80211_DFS_FCC: 148 return "FCC"; 149 case NL80211_DFS_ETSI: 150 return "ETSI"; 151 case NL80211_DFS_JP: 152 return "JP"; 153 } 154 return "Unknown"; 155 } 156 157 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 158 { 159 const struct ieee80211_regdomain *regd = NULL; 160 const struct ieee80211_regdomain *wiphy_regd = NULL; 161 162 regd = get_cfg80211_regdom(); 163 if (!wiphy) 164 goto out; 165 166 wiphy_regd = get_wiphy_regdom(wiphy); 167 if (!wiphy_regd) 168 goto out; 169 170 if (wiphy_regd->dfs_region == regd->dfs_region) 171 goto out; 172 173 REG_DBG_PRINT("%s: device specific dfs_region " 174 "(%s) disagrees with cfg80211's " 175 "central dfs_region (%s)\n", 176 dev_name(&wiphy->dev), 177 reg_dfs_region_str(wiphy_regd->dfs_region), 178 reg_dfs_region_str(regd->dfs_region)); 179 180 out: 181 return regd->dfs_region; 182 } 183 184 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 185 { 186 if (!r) 187 return; 188 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 189 } 190 191 static struct regulatory_request *get_last_request(void) 192 { 193 return rcu_dereference_rtnl(last_request); 194 } 195 196 /* Used to queue up regulatory hints */ 197 static LIST_HEAD(reg_requests_list); 198 static spinlock_t reg_requests_lock; 199 200 /* Used to queue up beacon hints for review */ 201 static LIST_HEAD(reg_pending_beacons); 202 static spinlock_t reg_pending_beacons_lock; 203 204 /* Used to keep track of processed beacon hints */ 205 static LIST_HEAD(reg_beacon_list); 206 207 struct reg_beacon { 208 struct list_head list; 209 struct ieee80211_channel chan; 210 }; 211 212 static void reg_todo(struct work_struct *work); 213 static DECLARE_WORK(reg_work, reg_todo); 214 215 static void reg_timeout_work(struct work_struct *work); 216 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work); 217 218 /* We keep a static world regulatory domain in case of the absence of CRDA */ 219 static const struct ieee80211_regdomain world_regdom = { 220 .n_reg_rules = 6, 221 .alpha2 = "00", 222 .reg_rules = { 223 /* IEEE 802.11b/g, channels 1..11 */ 224 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 225 /* IEEE 802.11b/g, channels 12..13. */ 226 REG_RULE(2467-10, 2472+10, 40, 6, 20, 227 NL80211_RRF_NO_IR), 228 /* IEEE 802.11 channel 14 - Only JP enables 229 * this and for 802.11b only */ 230 REG_RULE(2484-10, 2484+10, 20, 6, 20, 231 NL80211_RRF_NO_IR | 232 NL80211_RRF_NO_OFDM), 233 /* IEEE 802.11a, channel 36..48 */ 234 REG_RULE(5180-10, 5240+10, 160, 6, 20, 235 NL80211_RRF_NO_IR), 236 237 /* IEEE 802.11a, channel 52..64 - DFS required */ 238 REG_RULE(5260-10, 5320+10, 160, 6, 20, 239 NL80211_RRF_NO_IR | 240 NL80211_RRF_DFS), 241 242 /* IEEE 802.11a, channel 100..144 - DFS required */ 243 REG_RULE(5500-10, 5720+10, 160, 6, 20, 244 NL80211_RRF_NO_IR | 245 NL80211_RRF_DFS), 246 247 /* IEEE 802.11a, channel 149..165 */ 248 REG_RULE(5745-10, 5825+10, 80, 6, 20, 249 NL80211_RRF_NO_IR), 250 251 /* IEEE 802.11ad (60gHz), channels 1..3 */ 252 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 253 } 254 }; 255 256 /* protected by RTNL */ 257 static const struct ieee80211_regdomain *cfg80211_world_regdom = 258 &world_regdom; 259 260 static char *ieee80211_regdom = "00"; 261 static char user_alpha2[2]; 262 263 module_param(ieee80211_regdom, charp, 0444); 264 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 265 266 static void reg_free_request(struct regulatory_request *request) 267 { 268 if (request != get_last_request()) 269 kfree(request); 270 } 271 272 static void reg_free_last_request(void) 273 { 274 struct regulatory_request *lr = get_last_request(); 275 276 if (lr != &core_request_world && lr) 277 kfree_rcu(lr, rcu_head); 278 } 279 280 static void reg_update_last_request(struct regulatory_request *request) 281 { 282 struct regulatory_request *lr; 283 284 lr = get_last_request(); 285 if (lr == request) 286 return; 287 288 reg_free_last_request(); 289 rcu_assign_pointer(last_request, request); 290 } 291 292 static void reset_regdomains(bool full_reset, 293 const struct ieee80211_regdomain *new_regdom) 294 { 295 const struct ieee80211_regdomain *r; 296 297 ASSERT_RTNL(); 298 299 r = get_cfg80211_regdom(); 300 301 /* avoid freeing static information or freeing something twice */ 302 if (r == cfg80211_world_regdom) 303 r = NULL; 304 if (cfg80211_world_regdom == &world_regdom) 305 cfg80211_world_regdom = NULL; 306 if (r == &world_regdom) 307 r = NULL; 308 309 rcu_free_regdom(r); 310 rcu_free_regdom(cfg80211_world_regdom); 311 312 cfg80211_world_regdom = &world_regdom; 313 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 314 315 if (!full_reset) 316 return; 317 318 reg_update_last_request(&core_request_world); 319 } 320 321 /* 322 * Dynamic world regulatory domain requested by the wireless 323 * core upon initialization 324 */ 325 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 326 { 327 struct regulatory_request *lr; 328 329 lr = get_last_request(); 330 331 WARN_ON(!lr); 332 333 reset_regdomains(false, rd); 334 335 cfg80211_world_regdom = rd; 336 } 337 338 bool is_world_regdom(const char *alpha2) 339 { 340 if (!alpha2) 341 return false; 342 return alpha2[0] == '0' && alpha2[1] == '0'; 343 } 344 345 static bool is_alpha2_set(const char *alpha2) 346 { 347 if (!alpha2) 348 return false; 349 return alpha2[0] && alpha2[1]; 350 } 351 352 static bool is_unknown_alpha2(const char *alpha2) 353 { 354 if (!alpha2) 355 return false; 356 /* 357 * Special case where regulatory domain was built by driver 358 * but a specific alpha2 cannot be determined 359 */ 360 return alpha2[0] == '9' && alpha2[1] == '9'; 361 } 362 363 static bool is_intersected_alpha2(const char *alpha2) 364 { 365 if (!alpha2) 366 return false; 367 /* 368 * Special case where regulatory domain is the 369 * result of an intersection between two regulatory domain 370 * structures 371 */ 372 return alpha2[0] == '9' && alpha2[1] == '8'; 373 } 374 375 static bool is_an_alpha2(const char *alpha2) 376 { 377 if (!alpha2) 378 return false; 379 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 380 } 381 382 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 383 { 384 if (!alpha2_x || !alpha2_y) 385 return false; 386 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 387 } 388 389 static bool regdom_changes(const char *alpha2) 390 { 391 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 392 393 if (!r) 394 return true; 395 return !alpha2_equal(r->alpha2, alpha2); 396 } 397 398 /* 399 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 400 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 401 * has ever been issued. 402 */ 403 static bool is_user_regdom_saved(void) 404 { 405 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 406 return false; 407 408 /* This would indicate a mistake on the design */ 409 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 410 "Unexpected user alpha2: %c%c\n", 411 user_alpha2[0], user_alpha2[1])) 412 return false; 413 414 return true; 415 } 416 417 static const struct ieee80211_regdomain * 418 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 419 { 420 struct ieee80211_regdomain *regd; 421 int size_of_regd; 422 unsigned int i; 423 424 size_of_regd = 425 sizeof(struct ieee80211_regdomain) + 426 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); 427 428 regd = kzalloc(size_of_regd, GFP_KERNEL); 429 if (!regd) 430 return ERR_PTR(-ENOMEM); 431 432 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 433 434 for (i = 0; i < src_regd->n_reg_rules; i++) 435 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 436 sizeof(struct ieee80211_reg_rule)); 437 438 return regd; 439 } 440 441 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 442 struct reg_regdb_search_request { 443 char alpha2[2]; 444 struct list_head list; 445 }; 446 447 static LIST_HEAD(reg_regdb_search_list); 448 static DEFINE_MUTEX(reg_regdb_search_mutex); 449 450 static void reg_regdb_search(struct work_struct *work) 451 { 452 struct reg_regdb_search_request *request; 453 const struct ieee80211_regdomain *curdom, *regdom = NULL; 454 int i; 455 456 rtnl_lock(); 457 458 mutex_lock(®_regdb_search_mutex); 459 while (!list_empty(®_regdb_search_list)) { 460 request = list_first_entry(®_regdb_search_list, 461 struct reg_regdb_search_request, 462 list); 463 list_del(&request->list); 464 465 for (i = 0; i < reg_regdb_size; i++) { 466 curdom = reg_regdb[i]; 467 468 if (alpha2_equal(request->alpha2, curdom->alpha2)) { 469 regdom = reg_copy_regd(curdom); 470 break; 471 } 472 } 473 474 kfree(request); 475 } 476 mutex_unlock(®_regdb_search_mutex); 477 478 if (!IS_ERR_OR_NULL(regdom)) 479 set_regdom(regdom); 480 481 rtnl_unlock(); 482 } 483 484 static DECLARE_WORK(reg_regdb_work, reg_regdb_search); 485 486 static void reg_regdb_query(const char *alpha2) 487 { 488 struct reg_regdb_search_request *request; 489 490 if (!alpha2) 491 return; 492 493 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL); 494 if (!request) 495 return; 496 497 memcpy(request->alpha2, alpha2, 2); 498 499 mutex_lock(®_regdb_search_mutex); 500 list_add_tail(&request->list, ®_regdb_search_list); 501 mutex_unlock(®_regdb_search_mutex); 502 503 schedule_work(®_regdb_work); 504 } 505 506 /* Feel free to add any other sanity checks here */ 507 static void reg_regdb_size_check(void) 508 { 509 /* We should ideally BUILD_BUG_ON() but then random builds would fail */ 510 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it..."); 511 } 512 #else 513 static inline void reg_regdb_size_check(void) {} 514 static inline void reg_regdb_query(const char *alpha2) {} 515 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 516 517 /* 518 * This lets us keep regulatory code which is updated on a regulatory 519 * basis in userspace. 520 */ 521 static int call_crda(const char *alpha2) 522 { 523 char country[12]; 524 char *env[] = { country, NULL }; 525 526 snprintf(country, sizeof(country), "COUNTRY=%c%c", 527 alpha2[0], alpha2[1]); 528 529 if (!is_world_regdom((char *) alpha2)) 530 pr_info("Calling CRDA for country: %c%c\n", 531 alpha2[0], alpha2[1]); 532 else 533 pr_info("Calling CRDA to update world regulatory domain\n"); 534 535 /* query internal regulatory database (if it exists) */ 536 reg_regdb_query(alpha2); 537 538 return kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 539 } 540 541 static enum reg_request_treatment 542 reg_call_crda(struct regulatory_request *request) 543 { 544 if (call_crda(request->alpha2)) 545 return REG_REQ_IGNORE; 546 return REG_REQ_OK; 547 } 548 549 bool reg_is_valid_request(const char *alpha2) 550 { 551 struct regulatory_request *lr = get_last_request(); 552 553 if (!lr || lr->processed) 554 return false; 555 556 return alpha2_equal(lr->alpha2, alpha2); 557 } 558 559 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 560 { 561 struct regulatory_request *lr = get_last_request(); 562 563 /* 564 * Follow the driver's regulatory domain, if present, unless a country 565 * IE has been processed or a user wants to help complaince further 566 */ 567 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 568 lr->initiator != NL80211_REGDOM_SET_BY_USER && 569 wiphy->regd) 570 return get_wiphy_regdom(wiphy); 571 572 return get_cfg80211_regdom(); 573 } 574 575 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 576 const struct ieee80211_reg_rule *rule) 577 { 578 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 579 const struct ieee80211_freq_range *freq_range_tmp; 580 const struct ieee80211_reg_rule *tmp; 581 u32 start_freq, end_freq, idx, no; 582 583 for (idx = 0; idx < rd->n_reg_rules; idx++) 584 if (rule == &rd->reg_rules[idx]) 585 break; 586 587 if (idx == rd->n_reg_rules) 588 return 0; 589 590 /* get start_freq */ 591 no = idx; 592 593 while (no) { 594 tmp = &rd->reg_rules[--no]; 595 freq_range_tmp = &tmp->freq_range; 596 597 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 598 break; 599 600 freq_range = freq_range_tmp; 601 } 602 603 start_freq = freq_range->start_freq_khz; 604 605 /* get end_freq */ 606 freq_range = &rule->freq_range; 607 no = idx; 608 609 while (no < rd->n_reg_rules - 1) { 610 tmp = &rd->reg_rules[++no]; 611 freq_range_tmp = &tmp->freq_range; 612 613 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 614 break; 615 616 freq_range = freq_range_tmp; 617 } 618 619 end_freq = freq_range->end_freq_khz; 620 621 return end_freq - start_freq; 622 } 623 624 /* Sanity check on a regulatory rule */ 625 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 626 { 627 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 628 u32 freq_diff; 629 630 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 631 return false; 632 633 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 634 return false; 635 636 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 637 638 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 639 freq_range->max_bandwidth_khz > freq_diff) 640 return false; 641 642 return true; 643 } 644 645 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 646 { 647 const struct ieee80211_reg_rule *reg_rule = NULL; 648 unsigned int i; 649 650 if (!rd->n_reg_rules) 651 return false; 652 653 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 654 return false; 655 656 for (i = 0; i < rd->n_reg_rules; i++) { 657 reg_rule = &rd->reg_rules[i]; 658 if (!is_valid_reg_rule(reg_rule)) 659 return false; 660 } 661 662 return true; 663 } 664 665 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 666 u32 center_freq_khz, u32 bw_khz) 667 { 668 u32 start_freq_khz, end_freq_khz; 669 670 start_freq_khz = center_freq_khz - (bw_khz/2); 671 end_freq_khz = center_freq_khz + (bw_khz/2); 672 673 if (start_freq_khz >= freq_range->start_freq_khz && 674 end_freq_khz <= freq_range->end_freq_khz) 675 return true; 676 677 return false; 678 } 679 680 /** 681 * freq_in_rule_band - tells us if a frequency is in a frequency band 682 * @freq_range: frequency rule we want to query 683 * @freq_khz: frequency we are inquiring about 684 * 685 * This lets us know if a specific frequency rule is or is not relevant to 686 * a specific frequency's band. Bands are device specific and artificial 687 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 688 * however it is safe for now to assume that a frequency rule should not be 689 * part of a frequency's band if the start freq or end freq are off by more 690 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the 691 * 60 GHz band. 692 * This resolution can be lowered and should be considered as we add 693 * regulatory rule support for other "bands". 694 **/ 695 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 696 u32 freq_khz) 697 { 698 #define ONE_GHZ_IN_KHZ 1000000 699 /* 700 * From 802.11ad: directional multi-gigabit (DMG): 701 * Pertaining to operation in a frequency band containing a channel 702 * with the Channel starting frequency above 45 GHz. 703 */ 704 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 705 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 706 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 707 return true; 708 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 709 return true; 710 return false; 711 #undef ONE_GHZ_IN_KHZ 712 } 713 714 /* 715 * Later on we can perhaps use the more restrictive DFS 716 * region but we don't have information for that yet so 717 * for now simply disallow conflicts. 718 */ 719 static enum nl80211_dfs_regions 720 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 721 const enum nl80211_dfs_regions dfs_region2) 722 { 723 if (dfs_region1 != dfs_region2) 724 return NL80211_DFS_UNSET; 725 return dfs_region1; 726 } 727 728 /* 729 * Helper for regdom_intersect(), this does the real 730 * mathematical intersection fun 731 */ 732 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 733 const struct ieee80211_regdomain *rd2, 734 const struct ieee80211_reg_rule *rule1, 735 const struct ieee80211_reg_rule *rule2, 736 struct ieee80211_reg_rule *intersected_rule) 737 { 738 const struct ieee80211_freq_range *freq_range1, *freq_range2; 739 struct ieee80211_freq_range *freq_range; 740 const struct ieee80211_power_rule *power_rule1, *power_rule2; 741 struct ieee80211_power_rule *power_rule; 742 u32 freq_diff, max_bandwidth1, max_bandwidth2; 743 744 freq_range1 = &rule1->freq_range; 745 freq_range2 = &rule2->freq_range; 746 freq_range = &intersected_rule->freq_range; 747 748 power_rule1 = &rule1->power_rule; 749 power_rule2 = &rule2->power_rule; 750 power_rule = &intersected_rule->power_rule; 751 752 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 753 freq_range2->start_freq_khz); 754 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 755 freq_range2->end_freq_khz); 756 757 max_bandwidth1 = freq_range1->max_bandwidth_khz; 758 max_bandwidth2 = freq_range2->max_bandwidth_khz; 759 760 if (rule1->flags & NL80211_RRF_AUTO_BW) 761 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 762 if (rule2->flags & NL80211_RRF_AUTO_BW) 763 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 764 765 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 766 767 intersected_rule->flags = rule1->flags | rule2->flags; 768 769 /* 770 * In case NL80211_RRF_AUTO_BW requested for both rules 771 * set AUTO_BW in intersected rule also. Next we will 772 * calculate BW correctly in handle_channel function. 773 * In other case remove AUTO_BW flag while we calculate 774 * maximum bandwidth correctly and auto calculation is 775 * not required. 776 */ 777 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 778 (rule2->flags & NL80211_RRF_AUTO_BW)) 779 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 780 else 781 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 782 783 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 784 if (freq_range->max_bandwidth_khz > freq_diff) 785 freq_range->max_bandwidth_khz = freq_diff; 786 787 power_rule->max_eirp = min(power_rule1->max_eirp, 788 power_rule2->max_eirp); 789 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 790 power_rule2->max_antenna_gain); 791 792 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 793 rule2->dfs_cac_ms); 794 795 if (!is_valid_reg_rule(intersected_rule)) 796 return -EINVAL; 797 798 return 0; 799 } 800 801 /** 802 * regdom_intersect - do the intersection between two regulatory domains 803 * @rd1: first regulatory domain 804 * @rd2: second regulatory domain 805 * 806 * Use this function to get the intersection between two regulatory domains. 807 * Once completed we will mark the alpha2 for the rd as intersected, "98", 808 * as no one single alpha2 can represent this regulatory domain. 809 * 810 * Returns a pointer to the regulatory domain structure which will hold the 811 * resulting intersection of rules between rd1 and rd2. We will 812 * kzalloc() this structure for you. 813 */ 814 static struct ieee80211_regdomain * 815 regdom_intersect(const struct ieee80211_regdomain *rd1, 816 const struct ieee80211_regdomain *rd2) 817 { 818 int r, size_of_regd; 819 unsigned int x, y; 820 unsigned int num_rules = 0, rule_idx = 0; 821 const struct ieee80211_reg_rule *rule1, *rule2; 822 struct ieee80211_reg_rule *intersected_rule; 823 struct ieee80211_regdomain *rd; 824 /* This is just a dummy holder to help us count */ 825 struct ieee80211_reg_rule dummy_rule; 826 827 if (!rd1 || !rd2) 828 return NULL; 829 830 /* 831 * First we get a count of the rules we'll need, then we actually 832 * build them. This is to so we can malloc() and free() a 833 * regdomain once. The reason we use reg_rules_intersect() here 834 * is it will return -EINVAL if the rule computed makes no sense. 835 * All rules that do check out OK are valid. 836 */ 837 838 for (x = 0; x < rd1->n_reg_rules; x++) { 839 rule1 = &rd1->reg_rules[x]; 840 for (y = 0; y < rd2->n_reg_rules; y++) { 841 rule2 = &rd2->reg_rules[y]; 842 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 843 &dummy_rule)) 844 num_rules++; 845 } 846 } 847 848 if (!num_rules) 849 return NULL; 850 851 size_of_regd = sizeof(struct ieee80211_regdomain) + 852 num_rules * sizeof(struct ieee80211_reg_rule); 853 854 rd = kzalloc(size_of_regd, GFP_KERNEL); 855 if (!rd) 856 return NULL; 857 858 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) { 859 rule1 = &rd1->reg_rules[x]; 860 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) { 861 rule2 = &rd2->reg_rules[y]; 862 /* 863 * This time around instead of using the stack lets 864 * write to the target rule directly saving ourselves 865 * a memcpy() 866 */ 867 intersected_rule = &rd->reg_rules[rule_idx]; 868 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 869 intersected_rule); 870 /* 871 * No need to memset here the intersected rule here as 872 * we're not using the stack anymore 873 */ 874 if (r) 875 continue; 876 rule_idx++; 877 } 878 } 879 880 if (rule_idx != num_rules) { 881 kfree(rd); 882 return NULL; 883 } 884 885 rd->n_reg_rules = num_rules; 886 rd->alpha2[0] = '9'; 887 rd->alpha2[1] = '8'; 888 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 889 rd2->dfs_region); 890 891 return rd; 892 } 893 894 /* 895 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 896 * want to just have the channel structure use these 897 */ 898 static u32 map_regdom_flags(u32 rd_flags) 899 { 900 u32 channel_flags = 0; 901 if (rd_flags & NL80211_RRF_NO_IR_ALL) 902 channel_flags |= IEEE80211_CHAN_NO_IR; 903 if (rd_flags & NL80211_RRF_DFS) 904 channel_flags |= IEEE80211_CHAN_RADAR; 905 if (rd_flags & NL80211_RRF_NO_OFDM) 906 channel_flags |= IEEE80211_CHAN_NO_OFDM; 907 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 908 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 909 return channel_flags; 910 } 911 912 static const struct ieee80211_reg_rule * 913 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq, 914 const struct ieee80211_regdomain *regd) 915 { 916 int i; 917 bool band_rule_found = false; 918 bool bw_fits = false; 919 920 if (!regd) 921 return ERR_PTR(-EINVAL); 922 923 for (i = 0; i < regd->n_reg_rules; i++) { 924 const struct ieee80211_reg_rule *rr; 925 const struct ieee80211_freq_range *fr = NULL; 926 927 rr = ®d->reg_rules[i]; 928 fr = &rr->freq_range; 929 930 /* 931 * We only need to know if one frequency rule was 932 * was in center_freq's band, that's enough, so lets 933 * not overwrite it once found 934 */ 935 if (!band_rule_found) 936 band_rule_found = freq_in_rule_band(fr, center_freq); 937 938 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(5)); 939 940 if (band_rule_found && bw_fits) 941 return rr; 942 } 943 944 if (!band_rule_found) 945 return ERR_PTR(-ERANGE); 946 947 return ERR_PTR(-EINVAL); 948 } 949 950 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 951 u32 center_freq) 952 { 953 const struct ieee80211_regdomain *regd; 954 955 regd = reg_get_regdomain(wiphy); 956 957 return freq_reg_info_regd(wiphy, center_freq, regd); 958 } 959 EXPORT_SYMBOL(freq_reg_info); 960 961 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 962 { 963 switch (initiator) { 964 case NL80211_REGDOM_SET_BY_CORE: 965 return "core"; 966 case NL80211_REGDOM_SET_BY_USER: 967 return "user"; 968 case NL80211_REGDOM_SET_BY_DRIVER: 969 return "driver"; 970 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 971 return "country IE"; 972 default: 973 WARN_ON(1); 974 return "bug"; 975 } 976 } 977 EXPORT_SYMBOL(reg_initiator_name); 978 979 #ifdef CONFIG_CFG80211_REG_DEBUG 980 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd, 981 struct ieee80211_channel *chan, 982 const struct ieee80211_reg_rule *reg_rule) 983 { 984 const struct ieee80211_power_rule *power_rule; 985 const struct ieee80211_freq_range *freq_range; 986 char max_antenna_gain[32], bw[32]; 987 988 power_rule = ®_rule->power_rule; 989 freq_range = ®_rule->freq_range; 990 991 if (!power_rule->max_antenna_gain) 992 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A"); 993 else 994 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d", 995 power_rule->max_antenna_gain); 996 997 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 998 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 999 freq_range->max_bandwidth_khz, 1000 reg_get_max_bandwidth(regd, reg_rule)); 1001 else 1002 snprintf(bw, sizeof(bw), "%d KHz", 1003 freq_range->max_bandwidth_khz); 1004 1005 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n", 1006 chan->center_freq); 1007 1008 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n", 1009 freq_range->start_freq_khz, freq_range->end_freq_khz, 1010 bw, max_antenna_gain, 1011 power_rule->max_eirp); 1012 } 1013 #else 1014 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd, 1015 struct ieee80211_channel *chan, 1016 const struct ieee80211_reg_rule *reg_rule) 1017 { 1018 return; 1019 } 1020 #endif 1021 1022 /* Find an ieee80211_reg_rule such that a 5MHz channel with frequency 1023 * chan->center_freq fits there. 1024 * If there is no such reg_rule, disable the channel, otherwise set the 1025 * flags corresponding to the bandwidths allowed in the particular reg_rule 1026 */ 1027 static void handle_channel(struct wiphy *wiphy, 1028 enum nl80211_reg_initiator initiator, 1029 struct ieee80211_channel *chan) 1030 { 1031 u32 flags, bw_flags = 0; 1032 const struct ieee80211_reg_rule *reg_rule = NULL; 1033 const struct ieee80211_power_rule *power_rule = NULL; 1034 const struct ieee80211_freq_range *freq_range = NULL; 1035 struct wiphy *request_wiphy = NULL; 1036 struct regulatory_request *lr = get_last_request(); 1037 const struct ieee80211_regdomain *regd; 1038 u32 max_bandwidth_khz; 1039 1040 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1041 1042 flags = chan->orig_flags; 1043 1044 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 1045 if (IS_ERR(reg_rule)) { 1046 /* 1047 * We will disable all channels that do not match our 1048 * received regulatory rule unless the hint is coming 1049 * from a Country IE and the Country IE had no information 1050 * about a band. The IEEE 802.11 spec allows for an AP 1051 * to send only a subset of the regulatory rules allowed, 1052 * so an AP in the US that only supports 2.4 GHz may only send 1053 * a country IE with information for the 2.4 GHz band 1054 * while 5 GHz is still supported. 1055 */ 1056 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1057 PTR_ERR(reg_rule) == -ERANGE) 1058 return; 1059 1060 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1061 request_wiphy && request_wiphy == wiphy && 1062 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1063 REG_DBG_PRINT("Disabling freq %d MHz for good\n", 1064 chan->center_freq); 1065 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1066 chan->flags = chan->orig_flags; 1067 } else { 1068 REG_DBG_PRINT("Disabling freq %d MHz\n", 1069 chan->center_freq); 1070 chan->flags |= IEEE80211_CHAN_DISABLED; 1071 } 1072 return; 1073 } 1074 1075 regd = reg_get_regdomain(wiphy); 1076 chan_reg_rule_print_dbg(regd, chan, reg_rule); 1077 1078 power_rule = ®_rule->power_rule; 1079 freq_range = ®_rule->freq_range; 1080 1081 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1082 /* Check if auto calculation requested */ 1083 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1084 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1085 1086 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1087 bw_flags = IEEE80211_CHAN_NO_10MHZ; 1088 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1089 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1090 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1091 bw_flags |= IEEE80211_CHAN_NO_HT40; 1092 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1093 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1094 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1095 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1096 1097 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1098 request_wiphy && request_wiphy == wiphy && 1099 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1100 /* 1101 * This guarantees the driver's requested regulatory domain 1102 * will always be used as a base for further regulatory 1103 * settings 1104 */ 1105 chan->flags = chan->orig_flags = 1106 map_regdom_flags(reg_rule->flags) | bw_flags; 1107 chan->max_antenna_gain = chan->orig_mag = 1108 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1109 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1110 (int) MBM_TO_DBM(power_rule->max_eirp); 1111 1112 if (chan->flags & IEEE80211_CHAN_RADAR) { 1113 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1114 if (reg_rule->dfs_cac_ms) 1115 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1116 } 1117 1118 return; 1119 } 1120 1121 chan->dfs_state = NL80211_DFS_USABLE; 1122 chan->dfs_state_entered = jiffies; 1123 1124 chan->beacon_found = false; 1125 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1126 chan->max_antenna_gain = 1127 min_t(int, chan->orig_mag, 1128 MBI_TO_DBI(power_rule->max_antenna_gain)); 1129 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1130 1131 if (chan->flags & IEEE80211_CHAN_RADAR) { 1132 if (reg_rule->dfs_cac_ms) 1133 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1134 else 1135 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1136 } 1137 1138 if (chan->orig_mpwr) { 1139 /* 1140 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1141 * will always follow the passed country IE power settings. 1142 */ 1143 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1144 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1145 chan->max_power = chan->max_reg_power; 1146 else 1147 chan->max_power = min(chan->orig_mpwr, 1148 chan->max_reg_power); 1149 } else 1150 chan->max_power = chan->max_reg_power; 1151 } 1152 1153 static void handle_band(struct wiphy *wiphy, 1154 enum nl80211_reg_initiator initiator, 1155 struct ieee80211_supported_band *sband) 1156 { 1157 unsigned int i; 1158 1159 if (!sband) 1160 return; 1161 1162 for (i = 0; i < sband->n_channels; i++) 1163 handle_channel(wiphy, initiator, &sband->channels[i]); 1164 } 1165 1166 static bool reg_request_cell_base(struct regulatory_request *request) 1167 { 1168 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1169 return false; 1170 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 1171 } 1172 1173 static bool reg_request_indoor(struct regulatory_request *request) 1174 { 1175 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1176 return false; 1177 return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR; 1178 } 1179 1180 bool reg_last_request_cell_base(void) 1181 { 1182 return reg_request_cell_base(get_last_request()); 1183 } 1184 1185 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 1186 /* Core specific check */ 1187 static enum reg_request_treatment 1188 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1189 { 1190 struct regulatory_request *lr = get_last_request(); 1191 1192 if (!reg_num_devs_support_basehint) 1193 return REG_REQ_IGNORE; 1194 1195 if (reg_request_cell_base(lr) && 1196 !regdom_changes(pending_request->alpha2)) 1197 return REG_REQ_ALREADY_SET; 1198 1199 return REG_REQ_OK; 1200 } 1201 1202 /* Device specific check */ 1203 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1204 { 1205 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 1206 } 1207 #else 1208 static int reg_ignore_cell_hint(struct regulatory_request *pending_request) 1209 { 1210 return REG_REQ_IGNORE; 1211 } 1212 1213 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1214 { 1215 return true; 1216 } 1217 #endif 1218 1219 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 1220 { 1221 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 1222 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 1223 return true; 1224 return false; 1225 } 1226 1227 static bool ignore_reg_update(struct wiphy *wiphy, 1228 enum nl80211_reg_initiator initiator) 1229 { 1230 struct regulatory_request *lr = get_last_request(); 1231 1232 if (!lr) { 1233 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1234 "since last_request is not set\n", 1235 reg_initiator_name(initiator)); 1236 return true; 1237 } 1238 1239 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1240 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 1241 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1242 "since the driver uses its own custom " 1243 "regulatory domain\n", 1244 reg_initiator_name(initiator)); 1245 return true; 1246 } 1247 1248 /* 1249 * wiphy->regd will be set once the device has its own 1250 * desired regulatory domain set 1251 */ 1252 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1253 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1254 !is_world_regdom(lr->alpha2)) { 1255 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1256 "since the driver requires its own regulatory " 1257 "domain to be set first\n", 1258 reg_initiator_name(initiator)); 1259 return true; 1260 } 1261 1262 if (reg_request_cell_base(lr)) 1263 return reg_dev_ignore_cell_hint(wiphy); 1264 1265 return false; 1266 } 1267 1268 static bool reg_is_world_roaming(struct wiphy *wiphy) 1269 { 1270 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1271 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1272 struct regulatory_request *lr = get_last_request(); 1273 1274 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1275 return true; 1276 1277 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1278 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1279 return true; 1280 1281 return false; 1282 } 1283 1284 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1285 struct reg_beacon *reg_beacon) 1286 { 1287 struct ieee80211_supported_band *sband; 1288 struct ieee80211_channel *chan; 1289 bool channel_changed = false; 1290 struct ieee80211_channel chan_before; 1291 1292 sband = wiphy->bands[reg_beacon->chan.band]; 1293 chan = &sband->channels[chan_idx]; 1294 1295 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1296 return; 1297 1298 if (chan->beacon_found) 1299 return; 1300 1301 chan->beacon_found = true; 1302 1303 if (!reg_is_world_roaming(wiphy)) 1304 return; 1305 1306 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 1307 return; 1308 1309 chan_before.center_freq = chan->center_freq; 1310 chan_before.flags = chan->flags; 1311 1312 if (chan->flags & IEEE80211_CHAN_NO_IR) { 1313 chan->flags &= ~IEEE80211_CHAN_NO_IR; 1314 channel_changed = true; 1315 } 1316 1317 if (channel_changed) 1318 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1319 } 1320 1321 /* 1322 * Called when a scan on a wiphy finds a beacon on 1323 * new channel 1324 */ 1325 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1326 struct reg_beacon *reg_beacon) 1327 { 1328 unsigned int i; 1329 struct ieee80211_supported_band *sband; 1330 1331 if (!wiphy->bands[reg_beacon->chan.band]) 1332 return; 1333 1334 sband = wiphy->bands[reg_beacon->chan.band]; 1335 1336 for (i = 0; i < sband->n_channels; i++) 1337 handle_reg_beacon(wiphy, i, reg_beacon); 1338 } 1339 1340 /* 1341 * Called upon reg changes or a new wiphy is added 1342 */ 1343 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1344 { 1345 unsigned int i; 1346 struct ieee80211_supported_band *sband; 1347 struct reg_beacon *reg_beacon; 1348 1349 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1350 if (!wiphy->bands[reg_beacon->chan.band]) 1351 continue; 1352 sband = wiphy->bands[reg_beacon->chan.band]; 1353 for (i = 0; i < sband->n_channels; i++) 1354 handle_reg_beacon(wiphy, i, reg_beacon); 1355 } 1356 } 1357 1358 /* Reap the advantages of previously found beacons */ 1359 static void reg_process_beacons(struct wiphy *wiphy) 1360 { 1361 /* 1362 * Means we are just firing up cfg80211, so no beacons would 1363 * have been processed yet. 1364 */ 1365 if (!last_request) 1366 return; 1367 wiphy_update_beacon_reg(wiphy); 1368 } 1369 1370 static bool is_ht40_allowed(struct ieee80211_channel *chan) 1371 { 1372 if (!chan) 1373 return false; 1374 if (chan->flags & IEEE80211_CHAN_DISABLED) 1375 return false; 1376 /* This would happen when regulatory rules disallow HT40 completely */ 1377 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 1378 return false; 1379 return true; 1380 } 1381 1382 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1383 struct ieee80211_channel *channel) 1384 { 1385 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 1386 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1387 unsigned int i; 1388 1389 if (!is_ht40_allowed(channel)) { 1390 channel->flags |= IEEE80211_CHAN_NO_HT40; 1391 return; 1392 } 1393 1394 /* 1395 * We need to ensure the extension channels exist to 1396 * be able to use HT40- or HT40+, this finds them (or not) 1397 */ 1398 for (i = 0; i < sband->n_channels; i++) { 1399 struct ieee80211_channel *c = &sband->channels[i]; 1400 1401 if (c->center_freq == (channel->center_freq - 20)) 1402 channel_before = c; 1403 if (c->center_freq == (channel->center_freq + 20)) 1404 channel_after = c; 1405 } 1406 1407 /* 1408 * Please note that this assumes target bandwidth is 20 MHz, 1409 * if that ever changes we also need to change the below logic 1410 * to include that as well. 1411 */ 1412 if (!is_ht40_allowed(channel_before)) 1413 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1414 else 1415 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1416 1417 if (!is_ht40_allowed(channel_after)) 1418 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1419 else 1420 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1421 } 1422 1423 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1424 struct ieee80211_supported_band *sband) 1425 { 1426 unsigned int i; 1427 1428 if (!sband) 1429 return; 1430 1431 for (i = 0; i < sband->n_channels; i++) 1432 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 1433 } 1434 1435 static void reg_process_ht_flags(struct wiphy *wiphy) 1436 { 1437 enum ieee80211_band band; 1438 1439 if (!wiphy) 1440 return; 1441 1442 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1443 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 1444 } 1445 1446 static void reg_call_notifier(struct wiphy *wiphy, 1447 struct regulatory_request *request) 1448 { 1449 if (wiphy->reg_notifier) 1450 wiphy->reg_notifier(wiphy, request); 1451 } 1452 1453 static void wiphy_update_regulatory(struct wiphy *wiphy, 1454 enum nl80211_reg_initiator initiator) 1455 { 1456 enum ieee80211_band band; 1457 struct regulatory_request *lr = get_last_request(); 1458 1459 if (ignore_reg_update(wiphy, initiator)) { 1460 /* 1461 * Regulatory updates set by CORE are ignored for custom 1462 * regulatory cards. Let us notify the changes to the driver, 1463 * as some drivers used this to restore its orig_* reg domain. 1464 */ 1465 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1466 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1467 reg_call_notifier(wiphy, lr); 1468 return; 1469 } 1470 1471 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 1472 1473 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1474 handle_band(wiphy, initiator, wiphy->bands[band]); 1475 1476 reg_process_beacons(wiphy); 1477 reg_process_ht_flags(wiphy); 1478 reg_call_notifier(wiphy, lr); 1479 } 1480 1481 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 1482 { 1483 struct cfg80211_registered_device *rdev; 1484 struct wiphy *wiphy; 1485 1486 ASSERT_RTNL(); 1487 1488 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1489 wiphy = &rdev->wiphy; 1490 wiphy_update_regulatory(wiphy, initiator); 1491 } 1492 } 1493 1494 static void handle_channel_custom(struct wiphy *wiphy, 1495 struct ieee80211_channel *chan, 1496 const struct ieee80211_regdomain *regd) 1497 { 1498 u32 bw_flags = 0; 1499 const struct ieee80211_reg_rule *reg_rule = NULL; 1500 const struct ieee80211_power_rule *power_rule = NULL; 1501 const struct ieee80211_freq_range *freq_range = NULL; 1502 u32 max_bandwidth_khz; 1503 1504 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq), 1505 regd); 1506 1507 if (IS_ERR(reg_rule)) { 1508 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n", 1509 chan->center_freq); 1510 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1511 chan->flags = chan->orig_flags; 1512 return; 1513 } 1514 1515 chan_reg_rule_print_dbg(regd, chan, reg_rule); 1516 1517 power_rule = ®_rule->power_rule; 1518 freq_range = ®_rule->freq_range; 1519 1520 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1521 /* Check if auto calculation requested */ 1522 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1523 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1524 1525 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1526 bw_flags = IEEE80211_CHAN_NO_10MHZ; 1527 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1528 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1529 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1530 bw_flags |= IEEE80211_CHAN_NO_HT40; 1531 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1532 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1533 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1534 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1535 1536 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1537 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1538 chan->max_reg_power = chan->max_power = 1539 (int) MBM_TO_DBM(power_rule->max_eirp); 1540 } 1541 1542 static void handle_band_custom(struct wiphy *wiphy, 1543 struct ieee80211_supported_band *sband, 1544 const struct ieee80211_regdomain *regd) 1545 { 1546 unsigned int i; 1547 1548 if (!sband) 1549 return; 1550 1551 for (i = 0; i < sband->n_channels; i++) 1552 handle_channel_custom(wiphy, &sband->channels[i], regd); 1553 } 1554 1555 /* Used by drivers prior to wiphy registration */ 1556 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1557 const struct ieee80211_regdomain *regd) 1558 { 1559 enum ieee80211_band band; 1560 unsigned int bands_set = 0; 1561 1562 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 1563 "wiphy should have REGULATORY_CUSTOM_REG\n"); 1564 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 1565 1566 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1567 if (!wiphy->bands[band]) 1568 continue; 1569 handle_band_custom(wiphy, wiphy->bands[band], regd); 1570 bands_set++; 1571 } 1572 1573 /* 1574 * no point in calling this if it won't have any effect 1575 * on your device's supported bands. 1576 */ 1577 WARN_ON(!bands_set); 1578 } 1579 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1580 1581 static void reg_set_request_processed(void) 1582 { 1583 bool need_more_processing = false; 1584 struct regulatory_request *lr = get_last_request(); 1585 1586 lr->processed = true; 1587 1588 spin_lock(®_requests_lock); 1589 if (!list_empty(®_requests_list)) 1590 need_more_processing = true; 1591 spin_unlock(®_requests_lock); 1592 1593 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 1594 cancel_delayed_work(®_timeout); 1595 1596 if (need_more_processing) 1597 schedule_work(®_work); 1598 } 1599 1600 /** 1601 * reg_process_hint_core - process core regulatory requests 1602 * @pending_request: a pending core regulatory request 1603 * 1604 * The wireless subsystem can use this function to process 1605 * a regulatory request issued by the regulatory core. 1606 * 1607 * Returns one of the different reg request treatment values. 1608 */ 1609 static enum reg_request_treatment 1610 reg_process_hint_core(struct regulatory_request *core_request) 1611 { 1612 1613 core_request->intersect = false; 1614 core_request->processed = false; 1615 1616 reg_update_last_request(core_request); 1617 1618 return reg_call_crda(core_request); 1619 } 1620 1621 static enum reg_request_treatment 1622 __reg_process_hint_user(struct regulatory_request *user_request) 1623 { 1624 struct regulatory_request *lr = get_last_request(); 1625 1626 if (reg_request_indoor(user_request)) { 1627 reg_is_indoor = true; 1628 return REG_REQ_USER_HINT_HANDLED; 1629 } 1630 1631 if (reg_request_cell_base(user_request)) 1632 return reg_ignore_cell_hint(user_request); 1633 1634 if (reg_request_cell_base(lr)) 1635 return REG_REQ_IGNORE; 1636 1637 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1638 return REG_REQ_INTERSECT; 1639 /* 1640 * If the user knows better the user should set the regdom 1641 * to their country before the IE is picked up 1642 */ 1643 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 1644 lr->intersect) 1645 return REG_REQ_IGNORE; 1646 /* 1647 * Process user requests only after previous user/driver/core 1648 * requests have been processed 1649 */ 1650 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 1651 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1652 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 1653 regdom_changes(lr->alpha2)) 1654 return REG_REQ_IGNORE; 1655 1656 if (!regdom_changes(user_request->alpha2)) 1657 return REG_REQ_ALREADY_SET; 1658 1659 return REG_REQ_OK; 1660 } 1661 1662 /** 1663 * reg_process_hint_user - process user regulatory requests 1664 * @user_request: a pending user regulatory request 1665 * 1666 * The wireless subsystem can use this function to process 1667 * a regulatory request initiated by userspace. 1668 * 1669 * Returns one of the different reg request treatment values. 1670 */ 1671 static enum reg_request_treatment 1672 reg_process_hint_user(struct regulatory_request *user_request) 1673 { 1674 enum reg_request_treatment treatment; 1675 1676 treatment = __reg_process_hint_user(user_request); 1677 if (treatment == REG_REQ_IGNORE || 1678 treatment == REG_REQ_ALREADY_SET || 1679 treatment == REG_REQ_USER_HINT_HANDLED) { 1680 reg_free_request(user_request); 1681 return treatment; 1682 } 1683 1684 user_request->intersect = treatment == REG_REQ_INTERSECT; 1685 user_request->processed = false; 1686 1687 reg_update_last_request(user_request); 1688 1689 user_alpha2[0] = user_request->alpha2[0]; 1690 user_alpha2[1] = user_request->alpha2[1]; 1691 1692 return reg_call_crda(user_request); 1693 } 1694 1695 static enum reg_request_treatment 1696 __reg_process_hint_driver(struct regulatory_request *driver_request) 1697 { 1698 struct regulatory_request *lr = get_last_request(); 1699 1700 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 1701 if (regdom_changes(driver_request->alpha2)) 1702 return REG_REQ_OK; 1703 return REG_REQ_ALREADY_SET; 1704 } 1705 1706 /* 1707 * This would happen if you unplug and plug your card 1708 * back in or if you add a new device for which the previously 1709 * loaded card also agrees on the regulatory domain. 1710 */ 1711 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1712 !regdom_changes(driver_request->alpha2)) 1713 return REG_REQ_ALREADY_SET; 1714 1715 return REG_REQ_INTERSECT; 1716 } 1717 1718 /** 1719 * reg_process_hint_driver - process driver regulatory requests 1720 * @driver_request: a pending driver regulatory request 1721 * 1722 * The wireless subsystem can use this function to process 1723 * a regulatory request issued by an 802.11 driver. 1724 * 1725 * Returns one of the different reg request treatment values. 1726 */ 1727 static enum reg_request_treatment 1728 reg_process_hint_driver(struct wiphy *wiphy, 1729 struct regulatory_request *driver_request) 1730 { 1731 const struct ieee80211_regdomain *regd; 1732 enum reg_request_treatment treatment; 1733 1734 treatment = __reg_process_hint_driver(driver_request); 1735 1736 switch (treatment) { 1737 case REG_REQ_OK: 1738 break; 1739 case REG_REQ_IGNORE: 1740 case REG_REQ_USER_HINT_HANDLED: 1741 reg_free_request(driver_request); 1742 return treatment; 1743 case REG_REQ_INTERSECT: 1744 /* fall through */ 1745 case REG_REQ_ALREADY_SET: 1746 regd = reg_copy_regd(get_cfg80211_regdom()); 1747 if (IS_ERR(regd)) { 1748 reg_free_request(driver_request); 1749 return REG_REQ_IGNORE; 1750 } 1751 rcu_assign_pointer(wiphy->regd, regd); 1752 } 1753 1754 1755 driver_request->intersect = treatment == REG_REQ_INTERSECT; 1756 driver_request->processed = false; 1757 1758 reg_update_last_request(driver_request); 1759 1760 /* 1761 * Since CRDA will not be called in this case as we already 1762 * have applied the requested regulatory domain before we just 1763 * inform userspace we have processed the request 1764 */ 1765 if (treatment == REG_REQ_ALREADY_SET) { 1766 nl80211_send_reg_change_event(driver_request); 1767 reg_set_request_processed(); 1768 return treatment; 1769 } 1770 1771 return reg_call_crda(driver_request); 1772 } 1773 1774 static enum reg_request_treatment 1775 __reg_process_hint_country_ie(struct wiphy *wiphy, 1776 struct regulatory_request *country_ie_request) 1777 { 1778 struct wiphy *last_wiphy = NULL; 1779 struct regulatory_request *lr = get_last_request(); 1780 1781 if (reg_request_cell_base(lr)) { 1782 /* Trust a Cell base station over the AP's country IE */ 1783 if (regdom_changes(country_ie_request->alpha2)) 1784 return REG_REQ_IGNORE; 1785 return REG_REQ_ALREADY_SET; 1786 } else { 1787 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 1788 return REG_REQ_IGNORE; 1789 } 1790 1791 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 1792 return -EINVAL; 1793 1794 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 1795 return REG_REQ_OK; 1796 1797 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1798 1799 if (last_wiphy != wiphy) { 1800 /* 1801 * Two cards with two APs claiming different 1802 * Country IE alpha2s. We could 1803 * intersect them, but that seems unlikely 1804 * to be correct. Reject second one for now. 1805 */ 1806 if (regdom_changes(country_ie_request->alpha2)) 1807 return REG_REQ_IGNORE; 1808 return REG_REQ_ALREADY_SET; 1809 } 1810 /* 1811 * Two consecutive Country IE hints on the same wiphy. 1812 * This should be picked up early by the driver/stack 1813 */ 1814 if (WARN_ON(regdom_changes(country_ie_request->alpha2))) 1815 return REG_REQ_OK; 1816 return REG_REQ_ALREADY_SET; 1817 } 1818 1819 /** 1820 * reg_process_hint_country_ie - process regulatory requests from country IEs 1821 * @country_ie_request: a regulatory request from a country IE 1822 * 1823 * The wireless subsystem can use this function to process 1824 * a regulatory request issued by a country Information Element. 1825 * 1826 * Returns one of the different reg request treatment values. 1827 */ 1828 static enum reg_request_treatment 1829 reg_process_hint_country_ie(struct wiphy *wiphy, 1830 struct regulatory_request *country_ie_request) 1831 { 1832 enum reg_request_treatment treatment; 1833 1834 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 1835 1836 switch (treatment) { 1837 case REG_REQ_OK: 1838 break; 1839 case REG_REQ_IGNORE: 1840 case REG_REQ_USER_HINT_HANDLED: 1841 /* fall through */ 1842 case REG_REQ_ALREADY_SET: 1843 reg_free_request(country_ie_request); 1844 return treatment; 1845 case REG_REQ_INTERSECT: 1846 reg_free_request(country_ie_request); 1847 /* 1848 * This doesn't happen yet, not sure we 1849 * ever want to support it for this case. 1850 */ 1851 WARN_ONCE(1, "Unexpected intersection for country IEs"); 1852 return REG_REQ_IGNORE; 1853 } 1854 1855 country_ie_request->intersect = false; 1856 country_ie_request->processed = false; 1857 1858 reg_update_last_request(country_ie_request); 1859 1860 return reg_call_crda(country_ie_request); 1861 } 1862 1863 /* This processes *all* regulatory hints */ 1864 static void reg_process_hint(struct regulatory_request *reg_request) 1865 { 1866 struct wiphy *wiphy = NULL; 1867 enum reg_request_treatment treatment; 1868 1869 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 1870 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 1871 1872 switch (reg_request->initiator) { 1873 case NL80211_REGDOM_SET_BY_CORE: 1874 reg_process_hint_core(reg_request); 1875 return; 1876 case NL80211_REGDOM_SET_BY_USER: 1877 treatment = reg_process_hint_user(reg_request); 1878 if (treatment == REG_REQ_IGNORE || 1879 treatment == REG_REQ_ALREADY_SET || 1880 treatment == REG_REQ_USER_HINT_HANDLED) 1881 return; 1882 queue_delayed_work(system_power_efficient_wq, 1883 ®_timeout, msecs_to_jiffies(3142)); 1884 return; 1885 case NL80211_REGDOM_SET_BY_DRIVER: 1886 if (!wiphy) 1887 goto out_free; 1888 treatment = reg_process_hint_driver(wiphy, reg_request); 1889 break; 1890 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1891 if (!wiphy) 1892 goto out_free; 1893 treatment = reg_process_hint_country_ie(wiphy, reg_request); 1894 break; 1895 default: 1896 WARN(1, "invalid initiator %d\n", reg_request->initiator); 1897 goto out_free; 1898 } 1899 1900 /* This is required so that the orig_* parameters are saved */ 1901 if (treatment == REG_REQ_ALREADY_SET && wiphy && 1902 wiphy->regulatory_flags & REGULATORY_STRICT_REG) 1903 wiphy_update_regulatory(wiphy, reg_request->initiator); 1904 1905 return; 1906 1907 out_free: 1908 reg_free_request(reg_request); 1909 } 1910 1911 /* 1912 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 1913 * Regulatory hints come on a first come first serve basis and we 1914 * must process each one atomically. 1915 */ 1916 static void reg_process_pending_hints(void) 1917 { 1918 struct regulatory_request *reg_request, *lr; 1919 1920 lr = get_last_request(); 1921 1922 /* When last_request->processed becomes true this will be rescheduled */ 1923 if (lr && !lr->processed) { 1924 reg_process_hint(lr); 1925 return; 1926 } 1927 1928 spin_lock(®_requests_lock); 1929 1930 if (list_empty(®_requests_list)) { 1931 spin_unlock(®_requests_lock); 1932 return; 1933 } 1934 1935 reg_request = list_first_entry(®_requests_list, 1936 struct regulatory_request, 1937 list); 1938 list_del_init(®_request->list); 1939 1940 spin_unlock(®_requests_lock); 1941 1942 reg_process_hint(reg_request); 1943 } 1944 1945 /* Processes beacon hints -- this has nothing to do with country IEs */ 1946 static void reg_process_pending_beacon_hints(void) 1947 { 1948 struct cfg80211_registered_device *rdev; 1949 struct reg_beacon *pending_beacon, *tmp; 1950 1951 /* This goes through the _pending_ beacon list */ 1952 spin_lock_bh(®_pending_beacons_lock); 1953 1954 list_for_each_entry_safe(pending_beacon, tmp, 1955 ®_pending_beacons, list) { 1956 list_del_init(&pending_beacon->list); 1957 1958 /* Applies the beacon hint to current wiphys */ 1959 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1960 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 1961 1962 /* Remembers the beacon hint for new wiphys or reg changes */ 1963 list_add_tail(&pending_beacon->list, ®_beacon_list); 1964 } 1965 1966 spin_unlock_bh(®_pending_beacons_lock); 1967 } 1968 1969 static void reg_todo(struct work_struct *work) 1970 { 1971 rtnl_lock(); 1972 reg_process_pending_hints(); 1973 reg_process_pending_beacon_hints(); 1974 rtnl_unlock(); 1975 } 1976 1977 static void queue_regulatory_request(struct regulatory_request *request) 1978 { 1979 request->alpha2[0] = toupper(request->alpha2[0]); 1980 request->alpha2[1] = toupper(request->alpha2[1]); 1981 1982 spin_lock(®_requests_lock); 1983 list_add_tail(&request->list, ®_requests_list); 1984 spin_unlock(®_requests_lock); 1985 1986 schedule_work(®_work); 1987 } 1988 1989 /* 1990 * Core regulatory hint -- happens during cfg80211_init() 1991 * and when we restore regulatory settings. 1992 */ 1993 static int regulatory_hint_core(const char *alpha2) 1994 { 1995 struct regulatory_request *request; 1996 1997 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1998 if (!request) 1999 return -ENOMEM; 2000 2001 request->alpha2[0] = alpha2[0]; 2002 request->alpha2[1] = alpha2[1]; 2003 request->initiator = NL80211_REGDOM_SET_BY_CORE; 2004 2005 queue_regulatory_request(request); 2006 2007 return 0; 2008 } 2009 2010 /* User hints */ 2011 int regulatory_hint_user(const char *alpha2, 2012 enum nl80211_user_reg_hint_type user_reg_hint_type) 2013 { 2014 struct regulatory_request *request; 2015 2016 if (WARN_ON(!alpha2)) 2017 return -EINVAL; 2018 2019 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2020 if (!request) 2021 return -ENOMEM; 2022 2023 request->wiphy_idx = WIPHY_IDX_INVALID; 2024 request->alpha2[0] = alpha2[0]; 2025 request->alpha2[1] = alpha2[1]; 2026 request->initiator = NL80211_REGDOM_SET_BY_USER; 2027 request->user_reg_hint_type = user_reg_hint_type; 2028 2029 queue_regulatory_request(request); 2030 2031 return 0; 2032 } 2033 2034 int regulatory_hint_indoor_user(void) 2035 { 2036 struct regulatory_request *request; 2037 2038 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2039 if (!request) 2040 return -ENOMEM; 2041 2042 request->wiphy_idx = WIPHY_IDX_INVALID; 2043 request->initiator = NL80211_REGDOM_SET_BY_USER; 2044 request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR; 2045 queue_regulatory_request(request); 2046 2047 return 0; 2048 } 2049 2050 /* Driver hints */ 2051 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 2052 { 2053 struct regulatory_request *request; 2054 2055 if (WARN_ON(!alpha2 || !wiphy)) 2056 return -EINVAL; 2057 2058 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 2059 2060 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2061 if (!request) 2062 return -ENOMEM; 2063 2064 request->wiphy_idx = get_wiphy_idx(wiphy); 2065 2066 request->alpha2[0] = alpha2[0]; 2067 request->alpha2[1] = alpha2[1]; 2068 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 2069 2070 queue_regulatory_request(request); 2071 2072 return 0; 2073 } 2074 EXPORT_SYMBOL(regulatory_hint); 2075 2076 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band, 2077 const u8 *country_ie, u8 country_ie_len) 2078 { 2079 char alpha2[2]; 2080 enum environment_cap env = ENVIRON_ANY; 2081 struct regulatory_request *request = NULL, *lr; 2082 2083 /* IE len must be evenly divisible by 2 */ 2084 if (country_ie_len & 0x01) 2085 return; 2086 2087 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 2088 return; 2089 2090 request = kzalloc(sizeof(*request), GFP_KERNEL); 2091 if (!request) 2092 return; 2093 2094 alpha2[0] = country_ie[0]; 2095 alpha2[1] = country_ie[1]; 2096 2097 if (country_ie[2] == 'I') 2098 env = ENVIRON_INDOOR; 2099 else if (country_ie[2] == 'O') 2100 env = ENVIRON_OUTDOOR; 2101 2102 rcu_read_lock(); 2103 lr = get_last_request(); 2104 2105 if (unlikely(!lr)) 2106 goto out; 2107 2108 /* 2109 * We will run this only upon a successful connection on cfg80211. 2110 * We leave conflict resolution to the workqueue, where can hold 2111 * the RTNL. 2112 */ 2113 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2114 lr->wiphy_idx != WIPHY_IDX_INVALID) 2115 goto out; 2116 2117 request->wiphy_idx = get_wiphy_idx(wiphy); 2118 request->alpha2[0] = alpha2[0]; 2119 request->alpha2[1] = alpha2[1]; 2120 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 2121 request->country_ie_env = env; 2122 2123 queue_regulatory_request(request); 2124 request = NULL; 2125 out: 2126 kfree(request); 2127 rcu_read_unlock(); 2128 } 2129 2130 static void restore_alpha2(char *alpha2, bool reset_user) 2131 { 2132 /* indicates there is no alpha2 to consider for restoration */ 2133 alpha2[0] = '9'; 2134 alpha2[1] = '7'; 2135 2136 /* The user setting has precedence over the module parameter */ 2137 if (is_user_regdom_saved()) { 2138 /* Unless we're asked to ignore it and reset it */ 2139 if (reset_user) { 2140 REG_DBG_PRINT("Restoring regulatory settings including user preference\n"); 2141 user_alpha2[0] = '9'; 2142 user_alpha2[1] = '7'; 2143 2144 /* 2145 * If we're ignoring user settings, we still need to 2146 * check the module parameter to ensure we put things 2147 * back as they were for a full restore. 2148 */ 2149 if (!is_world_regdom(ieee80211_regdom)) { 2150 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 2151 ieee80211_regdom[0], ieee80211_regdom[1]); 2152 alpha2[0] = ieee80211_regdom[0]; 2153 alpha2[1] = ieee80211_regdom[1]; 2154 } 2155 } else { 2156 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n", 2157 user_alpha2[0], user_alpha2[1]); 2158 alpha2[0] = user_alpha2[0]; 2159 alpha2[1] = user_alpha2[1]; 2160 } 2161 } else if (!is_world_regdom(ieee80211_regdom)) { 2162 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 2163 ieee80211_regdom[0], ieee80211_regdom[1]); 2164 alpha2[0] = ieee80211_regdom[0]; 2165 alpha2[1] = ieee80211_regdom[1]; 2166 } else 2167 REG_DBG_PRINT("Restoring regulatory settings\n"); 2168 } 2169 2170 static void restore_custom_reg_settings(struct wiphy *wiphy) 2171 { 2172 struct ieee80211_supported_band *sband; 2173 enum ieee80211_band band; 2174 struct ieee80211_channel *chan; 2175 int i; 2176 2177 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 2178 sband = wiphy->bands[band]; 2179 if (!sband) 2180 continue; 2181 for (i = 0; i < sband->n_channels; i++) { 2182 chan = &sband->channels[i]; 2183 chan->flags = chan->orig_flags; 2184 chan->max_antenna_gain = chan->orig_mag; 2185 chan->max_power = chan->orig_mpwr; 2186 chan->beacon_found = false; 2187 } 2188 } 2189 } 2190 2191 /* 2192 * Restoring regulatory settings involves ingoring any 2193 * possibly stale country IE information and user regulatory 2194 * settings if so desired, this includes any beacon hints 2195 * learned as we could have traveled outside to another country 2196 * after disconnection. To restore regulatory settings we do 2197 * exactly what we did at bootup: 2198 * 2199 * - send a core regulatory hint 2200 * - send a user regulatory hint if applicable 2201 * 2202 * Device drivers that send a regulatory hint for a specific country 2203 * keep their own regulatory domain on wiphy->regd so that does does 2204 * not need to be remembered. 2205 */ 2206 static void restore_regulatory_settings(bool reset_user) 2207 { 2208 char alpha2[2]; 2209 char world_alpha2[2]; 2210 struct reg_beacon *reg_beacon, *btmp; 2211 struct regulatory_request *reg_request, *tmp; 2212 LIST_HEAD(tmp_reg_req_list); 2213 struct cfg80211_registered_device *rdev; 2214 2215 ASSERT_RTNL(); 2216 2217 reg_is_indoor = false; 2218 2219 reset_regdomains(true, &world_regdom); 2220 restore_alpha2(alpha2, reset_user); 2221 2222 /* 2223 * If there's any pending requests we simply 2224 * stash them to a temporary pending queue and 2225 * add then after we've restored regulatory 2226 * settings. 2227 */ 2228 spin_lock(®_requests_lock); 2229 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 2230 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER) 2231 continue; 2232 list_move_tail(®_request->list, &tmp_reg_req_list); 2233 } 2234 spin_unlock(®_requests_lock); 2235 2236 /* Clear beacon hints */ 2237 spin_lock_bh(®_pending_beacons_lock); 2238 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 2239 list_del(®_beacon->list); 2240 kfree(reg_beacon); 2241 } 2242 spin_unlock_bh(®_pending_beacons_lock); 2243 2244 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 2245 list_del(®_beacon->list); 2246 kfree(reg_beacon); 2247 } 2248 2249 /* First restore to the basic regulatory settings */ 2250 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 2251 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 2252 2253 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2254 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 2255 restore_custom_reg_settings(&rdev->wiphy); 2256 } 2257 2258 regulatory_hint_core(world_alpha2); 2259 2260 /* 2261 * This restores the ieee80211_regdom module parameter 2262 * preference or the last user requested regulatory 2263 * settings, user regulatory settings takes precedence. 2264 */ 2265 if (is_an_alpha2(alpha2)) 2266 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER); 2267 2268 spin_lock(®_requests_lock); 2269 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 2270 spin_unlock(®_requests_lock); 2271 2272 REG_DBG_PRINT("Kicking the queue\n"); 2273 2274 schedule_work(®_work); 2275 } 2276 2277 void regulatory_hint_disconnect(void) 2278 { 2279 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n"); 2280 restore_regulatory_settings(false); 2281 } 2282 2283 static bool freq_is_chan_12_13_14(u16 freq) 2284 { 2285 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || 2286 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || 2287 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) 2288 return true; 2289 return false; 2290 } 2291 2292 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 2293 { 2294 struct reg_beacon *pending_beacon; 2295 2296 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 2297 if (beacon_chan->center_freq == 2298 pending_beacon->chan.center_freq) 2299 return true; 2300 return false; 2301 } 2302 2303 int regulatory_hint_found_beacon(struct wiphy *wiphy, 2304 struct ieee80211_channel *beacon_chan, 2305 gfp_t gfp) 2306 { 2307 struct reg_beacon *reg_beacon; 2308 bool processing; 2309 2310 if (beacon_chan->beacon_found || 2311 beacon_chan->flags & IEEE80211_CHAN_RADAR || 2312 (beacon_chan->band == IEEE80211_BAND_2GHZ && 2313 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 2314 return 0; 2315 2316 spin_lock_bh(®_pending_beacons_lock); 2317 processing = pending_reg_beacon(beacon_chan); 2318 spin_unlock_bh(®_pending_beacons_lock); 2319 2320 if (processing) 2321 return 0; 2322 2323 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 2324 if (!reg_beacon) 2325 return -ENOMEM; 2326 2327 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 2328 beacon_chan->center_freq, 2329 ieee80211_frequency_to_channel(beacon_chan->center_freq), 2330 wiphy_name(wiphy)); 2331 2332 memcpy(®_beacon->chan, beacon_chan, 2333 sizeof(struct ieee80211_channel)); 2334 2335 /* 2336 * Since we can be called from BH or and non-BH context 2337 * we must use spin_lock_bh() 2338 */ 2339 spin_lock_bh(®_pending_beacons_lock); 2340 list_add_tail(®_beacon->list, ®_pending_beacons); 2341 spin_unlock_bh(®_pending_beacons_lock); 2342 2343 schedule_work(®_work); 2344 2345 return 0; 2346 } 2347 2348 static void print_rd_rules(const struct ieee80211_regdomain *rd) 2349 { 2350 unsigned int i; 2351 const struct ieee80211_reg_rule *reg_rule = NULL; 2352 const struct ieee80211_freq_range *freq_range = NULL; 2353 const struct ieee80211_power_rule *power_rule = NULL; 2354 char bw[32], cac_time[32]; 2355 2356 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 2357 2358 for (i = 0; i < rd->n_reg_rules; i++) { 2359 reg_rule = &rd->reg_rules[i]; 2360 freq_range = ®_rule->freq_range; 2361 power_rule = ®_rule->power_rule; 2362 2363 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 2364 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 2365 freq_range->max_bandwidth_khz, 2366 reg_get_max_bandwidth(rd, reg_rule)); 2367 else 2368 snprintf(bw, sizeof(bw), "%d KHz", 2369 freq_range->max_bandwidth_khz); 2370 2371 if (reg_rule->flags & NL80211_RRF_DFS) 2372 scnprintf(cac_time, sizeof(cac_time), "%u s", 2373 reg_rule->dfs_cac_ms/1000); 2374 else 2375 scnprintf(cac_time, sizeof(cac_time), "N/A"); 2376 2377 2378 /* 2379 * There may not be documentation for max antenna gain 2380 * in certain regions 2381 */ 2382 if (power_rule->max_antenna_gain) 2383 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 2384 freq_range->start_freq_khz, 2385 freq_range->end_freq_khz, 2386 bw, 2387 power_rule->max_antenna_gain, 2388 power_rule->max_eirp, 2389 cac_time); 2390 else 2391 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 2392 freq_range->start_freq_khz, 2393 freq_range->end_freq_khz, 2394 bw, 2395 power_rule->max_eirp, 2396 cac_time); 2397 } 2398 } 2399 2400 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 2401 { 2402 switch (dfs_region) { 2403 case NL80211_DFS_UNSET: 2404 case NL80211_DFS_FCC: 2405 case NL80211_DFS_ETSI: 2406 case NL80211_DFS_JP: 2407 return true; 2408 default: 2409 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n", 2410 dfs_region); 2411 return false; 2412 } 2413 } 2414 2415 static void print_regdomain(const struct ieee80211_regdomain *rd) 2416 { 2417 struct regulatory_request *lr = get_last_request(); 2418 2419 if (is_intersected_alpha2(rd->alpha2)) { 2420 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2421 struct cfg80211_registered_device *rdev; 2422 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 2423 if (rdev) { 2424 pr_info("Current regulatory domain updated by AP to: %c%c\n", 2425 rdev->country_ie_alpha2[0], 2426 rdev->country_ie_alpha2[1]); 2427 } else 2428 pr_info("Current regulatory domain intersected:\n"); 2429 } else 2430 pr_info("Current regulatory domain intersected:\n"); 2431 } else if (is_world_regdom(rd->alpha2)) { 2432 pr_info("World regulatory domain updated:\n"); 2433 } else { 2434 if (is_unknown_alpha2(rd->alpha2)) 2435 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); 2436 else { 2437 if (reg_request_cell_base(lr)) 2438 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n", 2439 rd->alpha2[0], rd->alpha2[1]); 2440 else 2441 pr_info("Regulatory domain changed to country: %c%c\n", 2442 rd->alpha2[0], rd->alpha2[1]); 2443 } 2444 } 2445 2446 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 2447 print_rd_rules(rd); 2448 } 2449 2450 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 2451 { 2452 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 2453 print_rd_rules(rd); 2454 } 2455 2456 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 2457 { 2458 if (!is_world_regdom(rd->alpha2)) 2459 return -EINVAL; 2460 update_world_regdomain(rd); 2461 return 0; 2462 } 2463 2464 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 2465 struct regulatory_request *user_request) 2466 { 2467 const struct ieee80211_regdomain *intersected_rd = NULL; 2468 2469 if (!regdom_changes(rd->alpha2)) 2470 return -EALREADY; 2471 2472 if (!is_valid_rd(rd)) { 2473 pr_err("Invalid regulatory domain detected:\n"); 2474 print_regdomain_info(rd); 2475 return -EINVAL; 2476 } 2477 2478 if (!user_request->intersect) { 2479 reset_regdomains(false, rd); 2480 return 0; 2481 } 2482 2483 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2484 if (!intersected_rd) 2485 return -EINVAL; 2486 2487 kfree(rd); 2488 rd = NULL; 2489 reset_regdomains(false, intersected_rd); 2490 2491 return 0; 2492 } 2493 2494 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 2495 struct regulatory_request *driver_request) 2496 { 2497 const struct ieee80211_regdomain *regd; 2498 const struct ieee80211_regdomain *intersected_rd = NULL; 2499 const struct ieee80211_regdomain *tmp; 2500 struct wiphy *request_wiphy; 2501 2502 if (is_world_regdom(rd->alpha2)) 2503 return -EINVAL; 2504 2505 if (!regdom_changes(rd->alpha2)) 2506 return -EALREADY; 2507 2508 if (!is_valid_rd(rd)) { 2509 pr_err("Invalid regulatory domain detected:\n"); 2510 print_regdomain_info(rd); 2511 return -EINVAL; 2512 } 2513 2514 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 2515 if (!request_wiphy) { 2516 queue_delayed_work(system_power_efficient_wq, 2517 ®_timeout, 0); 2518 return -ENODEV; 2519 } 2520 2521 if (!driver_request->intersect) { 2522 if (request_wiphy->regd) 2523 return -EALREADY; 2524 2525 regd = reg_copy_regd(rd); 2526 if (IS_ERR(regd)) 2527 return PTR_ERR(regd); 2528 2529 rcu_assign_pointer(request_wiphy->regd, regd); 2530 reset_regdomains(false, rd); 2531 return 0; 2532 } 2533 2534 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2535 if (!intersected_rd) 2536 return -EINVAL; 2537 2538 /* 2539 * We can trash what CRDA provided now. 2540 * However if a driver requested this specific regulatory 2541 * domain we keep it for its private use 2542 */ 2543 tmp = get_wiphy_regdom(request_wiphy); 2544 rcu_assign_pointer(request_wiphy->regd, rd); 2545 rcu_free_regdom(tmp); 2546 2547 rd = NULL; 2548 2549 reset_regdomains(false, intersected_rd); 2550 2551 return 0; 2552 } 2553 2554 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 2555 struct regulatory_request *country_ie_request) 2556 { 2557 struct wiphy *request_wiphy; 2558 2559 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 2560 !is_unknown_alpha2(rd->alpha2)) 2561 return -EINVAL; 2562 2563 /* 2564 * Lets only bother proceeding on the same alpha2 if the current 2565 * rd is non static (it means CRDA was present and was used last) 2566 * and the pending request came in from a country IE 2567 */ 2568 2569 if (!is_valid_rd(rd)) { 2570 pr_err("Invalid regulatory domain detected:\n"); 2571 print_regdomain_info(rd); 2572 return -EINVAL; 2573 } 2574 2575 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 2576 if (!request_wiphy) { 2577 queue_delayed_work(system_power_efficient_wq, 2578 ®_timeout, 0); 2579 return -ENODEV; 2580 } 2581 2582 if (country_ie_request->intersect) 2583 return -EINVAL; 2584 2585 reset_regdomains(false, rd); 2586 return 0; 2587 } 2588 2589 /* 2590 * Use this call to set the current regulatory domain. Conflicts with 2591 * multiple drivers can be ironed out later. Caller must've already 2592 * kmalloc'd the rd structure. 2593 */ 2594 int set_regdom(const struct ieee80211_regdomain *rd) 2595 { 2596 struct regulatory_request *lr; 2597 bool user_reset = false; 2598 int r; 2599 2600 if (!reg_is_valid_request(rd->alpha2)) { 2601 kfree(rd); 2602 return -EINVAL; 2603 } 2604 2605 lr = get_last_request(); 2606 2607 /* Note that this doesn't update the wiphys, this is done below */ 2608 switch (lr->initiator) { 2609 case NL80211_REGDOM_SET_BY_CORE: 2610 r = reg_set_rd_core(rd); 2611 break; 2612 case NL80211_REGDOM_SET_BY_USER: 2613 r = reg_set_rd_user(rd, lr); 2614 user_reset = true; 2615 break; 2616 case NL80211_REGDOM_SET_BY_DRIVER: 2617 r = reg_set_rd_driver(rd, lr); 2618 break; 2619 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2620 r = reg_set_rd_country_ie(rd, lr); 2621 break; 2622 default: 2623 WARN(1, "invalid initiator %d\n", lr->initiator); 2624 return -EINVAL; 2625 } 2626 2627 if (r) { 2628 switch (r) { 2629 case -EALREADY: 2630 reg_set_request_processed(); 2631 break; 2632 default: 2633 /* Back to world regulatory in case of errors */ 2634 restore_regulatory_settings(user_reset); 2635 } 2636 2637 kfree(rd); 2638 return r; 2639 } 2640 2641 /* This would make this whole thing pointless */ 2642 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 2643 return -EINVAL; 2644 2645 /* update all wiphys now with the new established regulatory domain */ 2646 update_all_wiphy_regulatory(lr->initiator); 2647 2648 print_regdomain(get_cfg80211_regdom()); 2649 2650 nl80211_send_reg_change_event(lr); 2651 2652 reg_set_request_processed(); 2653 2654 return 0; 2655 } 2656 2657 void wiphy_regulatory_register(struct wiphy *wiphy) 2658 { 2659 struct regulatory_request *lr; 2660 2661 if (!reg_dev_ignore_cell_hint(wiphy)) 2662 reg_num_devs_support_basehint++; 2663 2664 lr = get_last_request(); 2665 wiphy_update_regulatory(wiphy, lr->initiator); 2666 } 2667 2668 void wiphy_regulatory_deregister(struct wiphy *wiphy) 2669 { 2670 struct wiphy *request_wiphy = NULL; 2671 struct regulatory_request *lr; 2672 2673 lr = get_last_request(); 2674 2675 if (!reg_dev_ignore_cell_hint(wiphy)) 2676 reg_num_devs_support_basehint--; 2677 2678 rcu_free_regdom(get_wiphy_regdom(wiphy)); 2679 RCU_INIT_POINTER(wiphy->regd, NULL); 2680 2681 if (lr) 2682 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2683 2684 if (!request_wiphy || request_wiphy != wiphy) 2685 return; 2686 2687 lr->wiphy_idx = WIPHY_IDX_INVALID; 2688 lr->country_ie_env = ENVIRON_ANY; 2689 } 2690 2691 static void reg_timeout_work(struct work_struct *work) 2692 { 2693 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 2694 rtnl_lock(); 2695 restore_regulatory_settings(true); 2696 rtnl_unlock(); 2697 } 2698 2699 /* 2700 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for 2701 * UNII band definitions 2702 */ 2703 int cfg80211_get_unii(int freq) 2704 { 2705 /* UNII-1 */ 2706 if (freq >= 5150 && freq <= 5250) 2707 return 0; 2708 2709 /* UNII-2A */ 2710 if (freq > 5250 && freq <= 5350) 2711 return 1; 2712 2713 /* UNII-2B */ 2714 if (freq > 5350 && freq <= 5470) 2715 return 2; 2716 2717 /* UNII-2C */ 2718 if (freq > 5470 && freq <= 5725) 2719 return 3; 2720 2721 /* UNII-3 */ 2722 if (freq > 5725 && freq <= 5825) 2723 return 4; 2724 2725 return -EINVAL; 2726 } 2727 2728 bool regulatory_indoor_allowed(void) 2729 { 2730 return reg_is_indoor; 2731 } 2732 2733 int __init regulatory_init(void) 2734 { 2735 int err = 0; 2736 2737 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 2738 if (IS_ERR(reg_pdev)) 2739 return PTR_ERR(reg_pdev); 2740 2741 spin_lock_init(®_requests_lock); 2742 spin_lock_init(®_pending_beacons_lock); 2743 2744 reg_regdb_size_check(); 2745 2746 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 2747 2748 user_alpha2[0] = '9'; 2749 user_alpha2[1] = '7'; 2750 2751 /* We always try to get an update for the static regdomain */ 2752 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 2753 if (err) { 2754 if (err == -ENOMEM) 2755 return err; 2756 /* 2757 * N.B. kobject_uevent_env() can fail mainly for when we're out 2758 * memory which is handled and propagated appropriately above 2759 * but it can also fail during a netlink_broadcast() or during 2760 * early boot for call_usermodehelper(). For now treat these 2761 * errors as non-fatal. 2762 */ 2763 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 2764 } 2765 2766 /* 2767 * Finally, if the user set the module parameter treat it 2768 * as a user hint. 2769 */ 2770 if (!is_world_regdom(ieee80211_regdom)) 2771 regulatory_hint_user(ieee80211_regdom, 2772 NL80211_USER_REG_HINT_USER); 2773 2774 return 0; 2775 } 2776 2777 void regulatory_exit(void) 2778 { 2779 struct regulatory_request *reg_request, *tmp; 2780 struct reg_beacon *reg_beacon, *btmp; 2781 2782 cancel_work_sync(®_work); 2783 cancel_delayed_work_sync(®_timeout); 2784 2785 /* Lock to suppress warnings */ 2786 rtnl_lock(); 2787 reset_regdomains(true, NULL); 2788 rtnl_unlock(); 2789 2790 dev_set_uevent_suppress(®_pdev->dev, true); 2791 2792 platform_device_unregister(reg_pdev); 2793 2794 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 2795 list_del(®_beacon->list); 2796 kfree(reg_beacon); 2797 } 2798 2799 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 2800 list_del(®_beacon->list); 2801 kfree(reg_beacon); 2802 } 2803 2804 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 2805 list_del(®_request->list); 2806 kfree(reg_request); 2807 } 2808 } 2809