xref: /openbmc/linux/net/wireless/reg.c (revision cd4d09ec)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 
22 /**
23  * DOC: Wireless regulatory infrastructure
24  *
25  * The usual implementation is for a driver to read a device EEPROM to
26  * determine which regulatory domain it should be operating under, then
27  * looking up the allowable channels in a driver-local table and finally
28  * registering those channels in the wiphy structure.
29  *
30  * Another set of compliance enforcement is for drivers to use their
31  * own compliance limits which can be stored on the EEPROM. The host
32  * driver or firmware may ensure these are used.
33  *
34  * In addition to all this we provide an extra layer of regulatory
35  * conformance. For drivers which do not have any regulatory
36  * information CRDA provides the complete regulatory solution.
37  * For others it provides a community effort on further restrictions
38  * to enhance compliance.
39  *
40  * Note: When number of rules --> infinity we will not be able to
41  * index on alpha2 any more, instead we'll probably have to
42  * rely on some SHA1 checksum of the regdomain for example.
43  *
44  */
45 
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62 
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...)			\
65 	printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69 
70 /*
71  * Grace period we give before making sure all current interfaces reside on
72  * channels allowed by the current regulatory domain.
73  */
74 #define REG_ENFORCE_GRACE_MS 60000
75 
76 /**
77  * enum reg_request_treatment - regulatory request treatment
78  *
79  * @REG_REQ_OK: continue processing the regulatory request
80  * @REG_REQ_IGNORE: ignore the regulatory request
81  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82  *	be intersected with the current one.
83  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84  *	regulatory settings, and no further processing is required.
85  */
86 enum reg_request_treatment {
87 	REG_REQ_OK,
88 	REG_REQ_IGNORE,
89 	REG_REQ_INTERSECT,
90 	REG_REQ_ALREADY_SET,
91 };
92 
93 static struct regulatory_request core_request_world = {
94 	.initiator = NL80211_REGDOM_SET_BY_CORE,
95 	.alpha2[0] = '0',
96 	.alpha2[1] = '0',
97 	.intersect = false,
98 	.processed = true,
99 	.country_ie_env = ENVIRON_ANY,
100 };
101 
102 /*
103  * Receipt of information from last regulatory request,
104  * protected by RTNL (and can be accessed with RCU protection)
105  */
106 static struct regulatory_request __rcu *last_request =
107 	(void __force __rcu *)&core_request_world;
108 
109 /* To trigger userspace events */
110 static struct platform_device *reg_pdev;
111 
112 /*
113  * Central wireless core regulatory domains, we only need two,
114  * the current one and a world regulatory domain in case we have no
115  * information to give us an alpha2.
116  * (protected by RTNL, can be read under RCU)
117  */
118 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
119 
120 /*
121  * Number of devices that registered to the core
122  * that support cellular base station regulatory hints
123  * (protected by RTNL)
124  */
125 static int reg_num_devs_support_basehint;
126 
127 /*
128  * State variable indicating if the platform on which the devices
129  * are attached is operating in an indoor environment. The state variable
130  * is relevant for all registered devices.
131  */
132 static bool reg_is_indoor;
133 static spinlock_t reg_indoor_lock;
134 
135 /* Used to track the userspace process controlling the indoor setting */
136 static u32 reg_is_indoor_portid;
137 
138 static void restore_regulatory_settings(bool reset_user);
139 
140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142 	return rtnl_dereference(cfg80211_regdomain);
143 }
144 
145 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
146 {
147 	return rtnl_dereference(wiphy->regd);
148 }
149 
150 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
151 {
152 	switch (dfs_region) {
153 	case NL80211_DFS_UNSET:
154 		return "unset";
155 	case NL80211_DFS_FCC:
156 		return "FCC";
157 	case NL80211_DFS_ETSI:
158 		return "ETSI";
159 	case NL80211_DFS_JP:
160 		return "JP";
161 	}
162 	return "Unknown";
163 }
164 
165 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
166 {
167 	const struct ieee80211_regdomain *regd = NULL;
168 	const struct ieee80211_regdomain *wiphy_regd = NULL;
169 
170 	regd = get_cfg80211_regdom();
171 	if (!wiphy)
172 		goto out;
173 
174 	wiphy_regd = get_wiphy_regdom(wiphy);
175 	if (!wiphy_regd)
176 		goto out;
177 
178 	if (wiphy_regd->dfs_region == regd->dfs_region)
179 		goto out;
180 
181 	REG_DBG_PRINT("%s: device specific dfs_region "
182 		      "(%s) disagrees with cfg80211's "
183 		      "central dfs_region (%s)\n",
184 		      dev_name(&wiphy->dev),
185 		      reg_dfs_region_str(wiphy_regd->dfs_region),
186 		      reg_dfs_region_str(regd->dfs_region));
187 
188 out:
189 	return regd->dfs_region;
190 }
191 
192 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
193 {
194 	if (!r)
195 		return;
196 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
197 }
198 
199 static struct regulatory_request *get_last_request(void)
200 {
201 	return rcu_dereference_rtnl(last_request);
202 }
203 
204 /* Used to queue up regulatory hints */
205 static LIST_HEAD(reg_requests_list);
206 static spinlock_t reg_requests_lock;
207 
208 /* Used to queue up beacon hints for review */
209 static LIST_HEAD(reg_pending_beacons);
210 static spinlock_t reg_pending_beacons_lock;
211 
212 /* Used to keep track of processed beacon hints */
213 static LIST_HEAD(reg_beacon_list);
214 
215 struct reg_beacon {
216 	struct list_head list;
217 	struct ieee80211_channel chan;
218 };
219 
220 static void reg_check_chans_work(struct work_struct *work);
221 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
222 
223 static void reg_todo(struct work_struct *work);
224 static DECLARE_WORK(reg_work, reg_todo);
225 
226 /* We keep a static world regulatory domain in case of the absence of CRDA */
227 static const struct ieee80211_regdomain world_regdom = {
228 	.n_reg_rules = 8,
229 	.alpha2 =  "00",
230 	.reg_rules = {
231 		/* IEEE 802.11b/g, channels 1..11 */
232 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
233 		/* IEEE 802.11b/g, channels 12..13. */
234 		REG_RULE(2467-10, 2472+10, 40, 6, 20,
235 			NL80211_RRF_NO_IR),
236 		/* IEEE 802.11 channel 14 - Only JP enables
237 		 * this and for 802.11b only */
238 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
239 			NL80211_RRF_NO_IR |
240 			NL80211_RRF_NO_OFDM),
241 		/* IEEE 802.11a, channel 36..48 */
242 		REG_RULE(5180-10, 5240+10, 160, 6, 20,
243                         NL80211_RRF_NO_IR),
244 
245 		/* IEEE 802.11a, channel 52..64 - DFS required */
246 		REG_RULE(5260-10, 5320+10, 160, 6, 20,
247 			NL80211_RRF_NO_IR |
248 			NL80211_RRF_DFS),
249 
250 		/* IEEE 802.11a, channel 100..144 - DFS required */
251 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
252 			NL80211_RRF_NO_IR |
253 			NL80211_RRF_DFS),
254 
255 		/* IEEE 802.11a, channel 149..165 */
256 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
257 			NL80211_RRF_NO_IR),
258 
259 		/* IEEE 802.11ad (60GHz), channels 1..3 */
260 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
261 	}
262 };
263 
264 /* protected by RTNL */
265 static const struct ieee80211_regdomain *cfg80211_world_regdom =
266 	&world_regdom;
267 
268 static char *ieee80211_regdom = "00";
269 static char user_alpha2[2];
270 
271 module_param(ieee80211_regdom, charp, 0444);
272 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
273 
274 static void reg_free_request(struct regulatory_request *request)
275 {
276 	if (request == &core_request_world)
277 		return;
278 
279 	if (request != get_last_request())
280 		kfree(request);
281 }
282 
283 static void reg_free_last_request(void)
284 {
285 	struct regulatory_request *lr = get_last_request();
286 
287 	if (lr != &core_request_world && lr)
288 		kfree_rcu(lr, rcu_head);
289 }
290 
291 static void reg_update_last_request(struct regulatory_request *request)
292 {
293 	struct regulatory_request *lr;
294 
295 	lr = get_last_request();
296 	if (lr == request)
297 		return;
298 
299 	reg_free_last_request();
300 	rcu_assign_pointer(last_request, request);
301 }
302 
303 static void reset_regdomains(bool full_reset,
304 			     const struct ieee80211_regdomain *new_regdom)
305 {
306 	const struct ieee80211_regdomain *r;
307 
308 	ASSERT_RTNL();
309 
310 	r = get_cfg80211_regdom();
311 
312 	/* avoid freeing static information or freeing something twice */
313 	if (r == cfg80211_world_regdom)
314 		r = NULL;
315 	if (cfg80211_world_regdom == &world_regdom)
316 		cfg80211_world_regdom = NULL;
317 	if (r == &world_regdom)
318 		r = NULL;
319 
320 	rcu_free_regdom(r);
321 	rcu_free_regdom(cfg80211_world_regdom);
322 
323 	cfg80211_world_regdom = &world_regdom;
324 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
325 
326 	if (!full_reset)
327 		return;
328 
329 	reg_update_last_request(&core_request_world);
330 }
331 
332 /*
333  * Dynamic world regulatory domain requested by the wireless
334  * core upon initialization
335  */
336 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
337 {
338 	struct regulatory_request *lr;
339 
340 	lr = get_last_request();
341 
342 	WARN_ON(!lr);
343 
344 	reset_regdomains(false, rd);
345 
346 	cfg80211_world_regdom = rd;
347 }
348 
349 bool is_world_regdom(const char *alpha2)
350 {
351 	if (!alpha2)
352 		return false;
353 	return alpha2[0] == '0' && alpha2[1] == '0';
354 }
355 
356 static bool is_alpha2_set(const char *alpha2)
357 {
358 	if (!alpha2)
359 		return false;
360 	return alpha2[0] && alpha2[1];
361 }
362 
363 static bool is_unknown_alpha2(const char *alpha2)
364 {
365 	if (!alpha2)
366 		return false;
367 	/*
368 	 * Special case where regulatory domain was built by driver
369 	 * but a specific alpha2 cannot be determined
370 	 */
371 	return alpha2[0] == '9' && alpha2[1] == '9';
372 }
373 
374 static bool is_intersected_alpha2(const char *alpha2)
375 {
376 	if (!alpha2)
377 		return false;
378 	/*
379 	 * Special case where regulatory domain is the
380 	 * result of an intersection between two regulatory domain
381 	 * structures
382 	 */
383 	return alpha2[0] == '9' && alpha2[1] == '8';
384 }
385 
386 static bool is_an_alpha2(const char *alpha2)
387 {
388 	if (!alpha2)
389 		return false;
390 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
391 }
392 
393 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
394 {
395 	if (!alpha2_x || !alpha2_y)
396 		return false;
397 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
398 }
399 
400 static bool regdom_changes(const char *alpha2)
401 {
402 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
403 
404 	if (!r)
405 		return true;
406 	return !alpha2_equal(r->alpha2, alpha2);
407 }
408 
409 /*
410  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
411  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
412  * has ever been issued.
413  */
414 static bool is_user_regdom_saved(void)
415 {
416 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
417 		return false;
418 
419 	/* This would indicate a mistake on the design */
420 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
421 		 "Unexpected user alpha2: %c%c\n",
422 		 user_alpha2[0], user_alpha2[1]))
423 		return false;
424 
425 	return true;
426 }
427 
428 static const struct ieee80211_regdomain *
429 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
430 {
431 	struct ieee80211_regdomain *regd;
432 	int size_of_regd;
433 	unsigned int i;
434 
435 	size_of_regd =
436 		sizeof(struct ieee80211_regdomain) +
437 		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
438 
439 	regd = kzalloc(size_of_regd, GFP_KERNEL);
440 	if (!regd)
441 		return ERR_PTR(-ENOMEM);
442 
443 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
444 
445 	for (i = 0; i < src_regd->n_reg_rules; i++)
446 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
447 		       sizeof(struct ieee80211_reg_rule));
448 
449 	return regd;
450 }
451 
452 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
453 struct reg_regdb_apply_request {
454 	struct list_head list;
455 	const struct ieee80211_regdomain *regdom;
456 };
457 
458 static LIST_HEAD(reg_regdb_apply_list);
459 static DEFINE_MUTEX(reg_regdb_apply_mutex);
460 
461 static void reg_regdb_apply(struct work_struct *work)
462 {
463 	struct reg_regdb_apply_request *request;
464 
465 	rtnl_lock();
466 
467 	mutex_lock(&reg_regdb_apply_mutex);
468 	while (!list_empty(&reg_regdb_apply_list)) {
469 		request = list_first_entry(&reg_regdb_apply_list,
470 					   struct reg_regdb_apply_request,
471 					   list);
472 		list_del(&request->list);
473 
474 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
475 		kfree(request);
476 	}
477 	mutex_unlock(&reg_regdb_apply_mutex);
478 
479 	rtnl_unlock();
480 }
481 
482 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
483 
484 static int reg_query_builtin(const char *alpha2)
485 {
486 	const struct ieee80211_regdomain *regdom = NULL;
487 	struct reg_regdb_apply_request *request;
488 	unsigned int i;
489 
490 	for (i = 0; i < reg_regdb_size; i++) {
491 		if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
492 			regdom = reg_regdb[i];
493 			break;
494 		}
495 	}
496 
497 	if (!regdom)
498 		return -ENODATA;
499 
500 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
501 	if (!request)
502 		return -ENOMEM;
503 
504 	request->regdom = reg_copy_regd(regdom);
505 	if (IS_ERR_OR_NULL(request->regdom)) {
506 		kfree(request);
507 		return -ENOMEM;
508 	}
509 
510 	mutex_lock(&reg_regdb_apply_mutex);
511 	list_add_tail(&request->list, &reg_regdb_apply_list);
512 	mutex_unlock(&reg_regdb_apply_mutex);
513 
514 	schedule_work(&reg_regdb_work);
515 
516 	return 0;
517 }
518 
519 /* Feel free to add any other sanity checks here */
520 static void reg_regdb_size_check(void)
521 {
522 	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
523 	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
524 }
525 #else
526 static inline void reg_regdb_size_check(void) {}
527 static inline int reg_query_builtin(const char *alpha2)
528 {
529 	return -ENODATA;
530 }
531 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
532 
533 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
534 /* Max number of consecutive attempts to communicate with CRDA  */
535 #define REG_MAX_CRDA_TIMEOUTS 10
536 
537 static u32 reg_crda_timeouts;
538 
539 static void crda_timeout_work(struct work_struct *work);
540 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
541 
542 static void crda_timeout_work(struct work_struct *work)
543 {
544 	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
545 	rtnl_lock();
546 	reg_crda_timeouts++;
547 	restore_regulatory_settings(true);
548 	rtnl_unlock();
549 }
550 
551 static void cancel_crda_timeout(void)
552 {
553 	cancel_delayed_work(&crda_timeout);
554 }
555 
556 static void cancel_crda_timeout_sync(void)
557 {
558 	cancel_delayed_work_sync(&crda_timeout);
559 }
560 
561 static void reset_crda_timeouts(void)
562 {
563 	reg_crda_timeouts = 0;
564 }
565 
566 /*
567  * This lets us keep regulatory code which is updated on a regulatory
568  * basis in userspace.
569  */
570 static int call_crda(const char *alpha2)
571 {
572 	char country[12];
573 	char *env[] = { country, NULL };
574 	int ret;
575 
576 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
577 		 alpha2[0], alpha2[1]);
578 
579 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
580 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
581 		return -EINVAL;
582 	}
583 
584 	if (!is_world_regdom((char *) alpha2))
585 		pr_debug("Calling CRDA for country: %c%c\n",
586 			alpha2[0], alpha2[1]);
587 	else
588 		pr_debug("Calling CRDA to update world regulatory domain\n");
589 
590 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
591 	if (ret)
592 		return ret;
593 
594 	queue_delayed_work(system_power_efficient_wq,
595 			   &crda_timeout, msecs_to_jiffies(3142));
596 	return 0;
597 }
598 #else
599 static inline void cancel_crda_timeout(void) {}
600 static inline void cancel_crda_timeout_sync(void) {}
601 static inline void reset_crda_timeouts(void) {}
602 static inline int call_crda(const char *alpha2)
603 {
604 	return -ENODATA;
605 }
606 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
607 
608 static bool reg_query_database(struct regulatory_request *request)
609 {
610 	/* query internal regulatory database (if it exists) */
611 	if (reg_query_builtin(request->alpha2) == 0)
612 		return true;
613 
614 	if (call_crda(request->alpha2) == 0)
615 		return true;
616 
617 	return false;
618 }
619 
620 bool reg_is_valid_request(const char *alpha2)
621 {
622 	struct regulatory_request *lr = get_last_request();
623 
624 	if (!lr || lr->processed)
625 		return false;
626 
627 	return alpha2_equal(lr->alpha2, alpha2);
628 }
629 
630 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
631 {
632 	struct regulatory_request *lr = get_last_request();
633 
634 	/*
635 	 * Follow the driver's regulatory domain, if present, unless a country
636 	 * IE has been processed or a user wants to help complaince further
637 	 */
638 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
639 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
640 	    wiphy->regd)
641 		return get_wiphy_regdom(wiphy);
642 
643 	return get_cfg80211_regdom();
644 }
645 
646 static unsigned int
647 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
648 				 const struct ieee80211_reg_rule *rule)
649 {
650 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
651 	const struct ieee80211_freq_range *freq_range_tmp;
652 	const struct ieee80211_reg_rule *tmp;
653 	u32 start_freq, end_freq, idx, no;
654 
655 	for (idx = 0; idx < rd->n_reg_rules; idx++)
656 		if (rule == &rd->reg_rules[idx])
657 			break;
658 
659 	if (idx == rd->n_reg_rules)
660 		return 0;
661 
662 	/* get start_freq */
663 	no = idx;
664 
665 	while (no) {
666 		tmp = &rd->reg_rules[--no];
667 		freq_range_tmp = &tmp->freq_range;
668 
669 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
670 			break;
671 
672 		freq_range = freq_range_tmp;
673 	}
674 
675 	start_freq = freq_range->start_freq_khz;
676 
677 	/* get end_freq */
678 	freq_range = &rule->freq_range;
679 	no = idx;
680 
681 	while (no < rd->n_reg_rules - 1) {
682 		tmp = &rd->reg_rules[++no];
683 		freq_range_tmp = &tmp->freq_range;
684 
685 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
686 			break;
687 
688 		freq_range = freq_range_tmp;
689 	}
690 
691 	end_freq = freq_range->end_freq_khz;
692 
693 	return end_freq - start_freq;
694 }
695 
696 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
697 				   const struct ieee80211_reg_rule *rule)
698 {
699 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
700 
701 	if (rule->flags & NL80211_RRF_NO_160MHZ)
702 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
703 	if (rule->flags & NL80211_RRF_NO_80MHZ)
704 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
705 
706 	/*
707 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
708 	 * are not allowed.
709 	 */
710 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
711 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
712 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
713 
714 	return bw;
715 }
716 
717 /* Sanity check on a regulatory rule */
718 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
719 {
720 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
721 	u32 freq_diff;
722 
723 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
724 		return false;
725 
726 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
727 		return false;
728 
729 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
730 
731 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
732 	    freq_range->max_bandwidth_khz > freq_diff)
733 		return false;
734 
735 	return true;
736 }
737 
738 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
739 {
740 	const struct ieee80211_reg_rule *reg_rule = NULL;
741 	unsigned int i;
742 
743 	if (!rd->n_reg_rules)
744 		return false;
745 
746 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
747 		return false;
748 
749 	for (i = 0; i < rd->n_reg_rules; i++) {
750 		reg_rule = &rd->reg_rules[i];
751 		if (!is_valid_reg_rule(reg_rule))
752 			return false;
753 	}
754 
755 	return true;
756 }
757 
758 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
759 			    u32 center_freq_khz, u32 bw_khz)
760 {
761 	u32 start_freq_khz, end_freq_khz;
762 
763 	start_freq_khz = center_freq_khz - (bw_khz/2);
764 	end_freq_khz = center_freq_khz + (bw_khz/2);
765 
766 	if (start_freq_khz >= freq_range->start_freq_khz &&
767 	    end_freq_khz <= freq_range->end_freq_khz)
768 		return true;
769 
770 	return false;
771 }
772 
773 /**
774  * freq_in_rule_band - tells us if a frequency is in a frequency band
775  * @freq_range: frequency rule we want to query
776  * @freq_khz: frequency we are inquiring about
777  *
778  * This lets us know if a specific frequency rule is or is not relevant to
779  * a specific frequency's band. Bands are device specific and artificial
780  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
781  * however it is safe for now to assume that a frequency rule should not be
782  * part of a frequency's band if the start freq or end freq are off by more
783  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
784  * 60 GHz band.
785  * This resolution can be lowered and should be considered as we add
786  * regulatory rule support for other "bands".
787  **/
788 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
789 			      u32 freq_khz)
790 {
791 #define ONE_GHZ_IN_KHZ	1000000
792 	/*
793 	 * From 802.11ad: directional multi-gigabit (DMG):
794 	 * Pertaining to operation in a frequency band containing a channel
795 	 * with the Channel starting frequency above 45 GHz.
796 	 */
797 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
798 			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
799 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
800 		return true;
801 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
802 		return true;
803 	return false;
804 #undef ONE_GHZ_IN_KHZ
805 }
806 
807 /*
808  * Later on we can perhaps use the more restrictive DFS
809  * region but we don't have information for that yet so
810  * for now simply disallow conflicts.
811  */
812 static enum nl80211_dfs_regions
813 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
814 			 const enum nl80211_dfs_regions dfs_region2)
815 {
816 	if (dfs_region1 != dfs_region2)
817 		return NL80211_DFS_UNSET;
818 	return dfs_region1;
819 }
820 
821 /*
822  * Helper for regdom_intersect(), this does the real
823  * mathematical intersection fun
824  */
825 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
826 			       const struct ieee80211_regdomain *rd2,
827 			       const struct ieee80211_reg_rule *rule1,
828 			       const struct ieee80211_reg_rule *rule2,
829 			       struct ieee80211_reg_rule *intersected_rule)
830 {
831 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
832 	struct ieee80211_freq_range *freq_range;
833 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
834 	struct ieee80211_power_rule *power_rule;
835 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
836 
837 	freq_range1 = &rule1->freq_range;
838 	freq_range2 = &rule2->freq_range;
839 	freq_range = &intersected_rule->freq_range;
840 
841 	power_rule1 = &rule1->power_rule;
842 	power_rule2 = &rule2->power_rule;
843 	power_rule = &intersected_rule->power_rule;
844 
845 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
846 					 freq_range2->start_freq_khz);
847 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
848 				       freq_range2->end_freq_khz);
849 
850 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
851 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
852 
853 	if (rule1->flags & NL80211_RRF_AUTO_BW)
854 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
855 	if (rule2->flags & NL80211_RRF_AUTO_BW)
856 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
857 
858 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
859 
860 	intersected_rule->flags = rule1->flags | rule2->flags;
861 
862 	/*
863 	 * In case NL80211_RRF_AUTO_BW requested for both rules
864 	 * set AUTO_BW in intersected rule also. Next we will
865 	 * calculate BW correctly in handle_channel function.
866 	 * In other case remove AUTO_BW flag while we calculate
867 	 * maximum bandwidth correctly and auto calculation is
868 	 * not required.
869 	 */
870 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
871 	    (rule2->flags & NL80211_RRF_AUTO_BW))
872 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
873 	else
874 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
875 
876 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
877 	if (freq_range->max_bandwidth_khz > freq_diff)
878 		freq_range->max_bandwidth_khz = freq_diff;
879 
880 	power_rule->max_eirp = min(power_rule1->max_eirp,
881 		power_rule2->max_eirp);
882 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
883 		power_rule2->max_antenna_gain);
884 
885 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
886 					   rule2->dfs_cac_ms);
887 
888 	if (!is_valid_reg_rule(intersected_rule))
889 		return -EINVAL;
890 
891 	return 0;
892 }
893 
894 /* check whether old rule contains new rule */
895 static bool rule_contains(struct ieee80211_reg_rule *r1,
896 			  struct ieee80211_reg_rule *r2)
897 {
898 	/* for simplicity, currently consider only same flags */
899 	if (r1->flags != r2->flags)
900 		return false;
901 
902 	/* verify r1 is more restrictive */
903 	if ((r1->power_rule.max_antenna_gain >
904 	     r2->power_rule.max_antenna_gain) ||
905 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
906 		return false;
907 
908 	/* make sure r2's range is contained within r1 */
909 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
910 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
911 		return false;
912 
913 	/* and finally verify that r1.max_bw >= r2.max_bw */
914 	if (r1->freq_range.max_bandwidth_khz <
915 	    r2->freq_range.max_bandwidth_khz)
916 		return false;
917 
918 	return true;
919 }
920 
921 /* add or extend current rules. do nothing if rule is already contained */
922 static void add_rule(struct ieee80211_reg_rule *rule,
923 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
924 {
925 	struct ieee80211_reg_rule *tmp_rule;
926 	int i;
927 
928 	for (i = 0; i < *n_rules; i++) {
929 		tmp_rule = &reg_rules[i];
930 		/* rule is already contained - do nothing */
931 		if (rule_contains(tmp_rule, rule))
932 			return;
933 
934 		/* extend rule if possible */
935 		if (rule_contains(rule, tmp_rule)) {
936 			memcpy(tmp_rule, rule, sizeof(*rule));
937 			return;
938 		}
939 	}
940 
941 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
942 	(*n_rules)++;
943 }
944 
945 /**
946  * regdom_intersect - do the intersection between two regulatory domains
947  * @rd1: first regulatory domain
948  * @rd2: second regulatory domain
949  *
950  * Use this function to get the intersection between two regulatory domains.
951  * Once completed we will mark the alpha2 for the rd as intersected, "98",
952  * as no one single alpha2 can represent this regulatory domain.
953  *
954  * Returns a pointer to the regulatory domain structure which will hold the
955  * resulting intersection of rules between rd1 and rd2. We will
956  * kzalloc() this structure for you.
957  */
958 static struct ieee80211_regdomain *
959 regdom_intersect(const struct ieee80211_regdomain *rd1,
960 		 const struct ieee80211_regdomain *rd2)
961 {
962 	int r, size_of_regd;
963 	unsigned int x, y;
964 	unsigned int num_rules = 0;
965 	const struct ieee80211_reg_rule *rule1, *rule2;
966 	struct ieee80211_reg_rule intersected_rule;
967 	struct ieee80211_regdomain *rd;
968 
969 	if (!rd1 || !rd2)
970 		return NULL;
971 
972 	/*
973 	 * First we get a count of the rules we'll need, then we actually
974 	 * build them. This is to so we can malloc() and free() a
975 	 * regdomain once. The reason we use reg_rules_intersect() here
976 	 * is it will return -EINVAL if the rule computed makes no sense.
977 	 * All rules that do check out OK are valid.
978 	 */
979 
980 	for (x = 0; x < rd1->n_reg_rules; x++) {
981 		rule1 = &rd1->reg_rules[x];
982 		for (y = 0; y < rd2->n_reg_rules; y++) {
983 			rule2 = &rd2->reg_rules[y];
984 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
985 						 &intersected_rule))
986 				num_rules++;
987 		}
988 	}
989 
990 	if (!num_rules)
991 		return NULL;
992 
993 	size_of_regd = sizeof(struct ieee80211_regdomain) +
994 		       num_rules * sizeof(struct ieee80211_reg_rule);
995 
996 	rd = kzalloc(size_of_regd, GFP_KERNEL);
997 	if (!rd)
998 		return NULL;
999 
1000 	for (x = 0; x < rd1->n_reg_rules; x++) {
1001 		rule1 = &rd1->reg_rules[x];
1002 		for (y = 0; y < rd2->n_reg_rules; y++) {
1003 			rule2 = &rd2->reg_rules[y];
1004 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1005 						&intersected_rule);
1006 			/*
1007 			 * No need to memset here the intersected rule here as
1008 			 * we're not using the stack anymore
1009 			 */
1010 			if (r)
1011 				continue;
1012 
1013 			add_rule(&intersected_rule, rd->reg_rules,
1014 				 &rd->n_reg_rules);
1015 		}
1016 	}
1017 
1018 	rd->alpha2[0] = '9';
1019 	rd->alpha2[1] = '8';
1020 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1021 						  rd2->dfs_region);
1022 
1023 	return rd;
1024 }
1025 
1026 /*
1027  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1028  * want to just have the channel structure use these
1029  */
1030 static u32 map_regdom_flags(u32 rd_flags)
1031 {
1032 	u32 channel_flags = 0;
1033 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1034 		channel_flags |= IEEE80211_CHAN_NO_IR;
1035 	if (rd_flags & NL80211_RRF_DFS)
1036 		channel_flags |= IEEE80211_CHAN_RADAR;
1037 	if (rd_flags & NL80211_RRF_NO_OFDM)
1038 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1039 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1040 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1041 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1042 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1043 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1044 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1045 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1046 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1047 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1048 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1049 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1050 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1051 	return channel_flags;
1052 }
1053 
1054 static const struct ieee80211_reg_rule *
1055 freq_reg_info_regd(u32 center_freq,
1056 		   const struct ieee80211_regdomain *regd, u32 bw)
1057 {
1058 	int i;
1059 	bool band_rule_found = false;
1060 	bool bw_fits = false;
1061 
1062 	if (!regd)
1063 		return ERR_PTR(-EINVAL);
1064 
1065 	for (i = 0; i < regd->n_reg_rules; i++) {
1066 		const struct ieee80211_reg_rule *rr;
1067 		const struct ieee80211_freq_range *fr = NULL;
1068 
1069 		rr = &regd->reg_rules[i];
1070 		fr = &rr->freq_range;
1071 
1072 		/*
1073 		 * We only need to know if one frequency rule was
1074 		 * was in center_freq's band, that's enough, so lets
1075 		 * not overwrite it once found
1076 		 */
1077 		if (!band_rule_found)
1078 			band_rule_found = freq_in_rule_band(fr, center_freq);
1079 
1080 		bw_fits = reg_does_bw_fit(fr, center_freq, bw);
1081 
1082 		if (band_rule_found && bw_fits)
1083 			return rr;
1084 	}
1085 
1086 	if (!band_rule_found)
1087 		return ERR_PTR(-ERANGE);
1088 
1089 	return ERR_PTR(-EINVAL);
1090 }
1091 
1092 static const struct ieee80211_reg_rule *
1093 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1094 {
1095 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1096 	const struct ieee80211_reg_rule *reg_rule = NULL;
1097 	u32 bw;
1098 
1099 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1100 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1101 		if (!IS_ERR(reg_rule))
1102 			return reg_rule;
1103 	}
1104 
1105 	return reg_rule;
1106 }
1107 
1108 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1109 					       u32 center_freq)
1110 {
1111 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1112 }
1113 EXPORT_SYMBOL(freq_reg_info);
1114 
1115 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1116 {
1117 	switch (initiator) {
1118 	case NL80211_REGDOM_SET_BY_CORE:
1119 		return "core";
1120 	case NL80211_REGDOM_SET_BY_USER:
1121 		return "user";
1122 	case NL80211_REGDOM_SET_BY_DRIVER:
1123 		return "driver";
1124 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1125 		return "country IE";
1126 	default:
1127 		WARN_ON(1);
1128 		return "bug";
1129 	}
1130 }
1131 EXPORT_SYMBOL(reg_initiator_name);
1132 
1133 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1134 				    struct ieee80211_channel *chan,
1135 				    const struct ieee80211_reg_rule *reg_rule)
1136 {
1137 #ifdef CONFIG_CFG80211_REG_DEBUG
1138 	const struct ieee80211_power_rule *power_rule;
1139 	const struct ieee80211_freq_range *freq_range;
1140 	char max_antenna_gain[32], bw[32];
1141 
1142 	power_rule = &reg_rule->power_rule;
1143 	freq_range = &reg_rule->freq_range;
1144 
1145 	if (!power_rule->max_antenna_gain)
1146 		snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1147 	else
1148 		snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d mBi",
1149 			 power_rule->max_antenna_gain);
1150 
1151 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1152 		snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1153 			 freq_range->max_bandwidth_khz,
1154 			 reg_get_max_bandwidth(regd, reg_rule));
1155 	else
1156 		snprintf(bw, sizeof(bw), "%d KHz",
1157 			 freq_range->max_bandwidth_khz);
1158 
1159 	REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1160 		      chan->center_freq);
1161 
1162 	REG_DBG_PRINT("(%d KHz - %d KHz @ %s), (%s, %d mBm)\n",
1163 		      freq_range->start_freq_khz, freq_range->end_freq_khz,
1164 		      bw, max_antenna_gain,
1165 		      power_rule->max_eirp);
1166 #endif
1167 }
1168 
1169 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1170 					  const struct ieee80211_reg_rule *reg_rule,
1171 					  const struct ieee80211_channel *chan)
1172 {
1173 	const struct ieee80211_freq_range *freq_range = NULL;
1174 	u32 max_bandwidth_khz, bw_flags = 0;
1175 
1176 	freq_range = &reg_rule->freq_range;
1177 
1178 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1179 	/* Check if auto calculation requested */
1180 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1181 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1182 
1183 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1184 	if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1185 			     MHZ_TO_KHZ(10)))
1186 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1187 	if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1188 			     MHZ_TO_KHZ(20)))
1189 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1190 
1191 	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1192 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1193 	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1194 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1195 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1196 		bw_flags |= IEEE80211_CHAN_NO_HT40;
1197 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1198 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1199 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1200 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1201 	return bw_flags;
1202 }
1203 
1204 /*
1205  * Note that right now we assume the desired channel bandwidth
1206  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1207  * per channel, the primary and the extension channel).
1208  */
1209 static void handle_channel(struct wiphy *wiphy,
1210 			   enum nl80211_reg_initiator initiator,
1211 			   struct ieee80211_channel *chan)
1212 {
1213 	u32 flags, bw_flags = 0;
1214 	const struct ieee80211_reg_rule *reg_rule = NULL;
1215 	const struct ieee80211_power_rule *power_rule = NULL;
1216 	struct wiphy *request_wiphy = NULL;
1217 	struct regulatory_request *lr = get_last_request();
1218 	const struct ieee80211_regdomain *regd;
1219 
1220 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1221 
1222 	flags = chan->orig_flags;
1223 
1224 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1225 	if (IS_ERR(reg_rule)) {
1226 		/*
1227 		 * We will disable all channels that do not match our
1228 		 * received regulatory rule unless the hint is coming
1229 		 * from a Country IE and the Country IE had no information
1230 		 * about a band. The IEEE 802.11 spec allows for an AP
1231 		 * to send only a subset of the regulatory rules allowed,
1232 		 * so an AP in the US that only supports 2.4 GHz may only send
1233 		 * a country IE with information for the 2.4 GHz band
1234 		 * while 5 GHz is still supported.
1235 		 */
1236 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1237 		    PTR_ERR(reg_rule) == -ERANGE)
1238 			return;
1239 
1240 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1241 		    request_wiphy && request_wiphy == wiphy &&
1242 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1243 			REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1244 				      chan->center_freq);
1245 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1246 			chan->flags = chan->orig_flags;
1247 		} else {
1248 			REG_DBG_PRINT("Disabling freq %d MHz\n",
1249 				      chan->center_freq);
1250 			chan->flags |= IEEE80211_CHAN_DISABLED;
1251 		}
1252 		return;
1253 	}
1254 
1255 	regd = reg_get_regdomain(wiphy);
1256 	chan_reg_rule_print_dbg(regd, chan, reg_rule);
1257 
1258 	power_rule = &reg_rule->power_rule;
1259 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1260 
1261 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1262 	    request_wiphy && request_wiphy == wiphy &&
1263 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1264 		/*
1265 		 * This guarantees the driver's requested regulatory domain
1266 		 * will always be used as a base for further regulatory
1267 		 * settings
1268 		 */
1269 		chan->flags = chan->orig_flags =
1270 			map_regdom_flags(reg_rule->flags) | bw_flags;
1271 		chan->max_antenna_gain = chan->orig_mag =
1272 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1273 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1274 			(int) MBM_TO_DBM(power_rule->max_eirp);
1275 
1276 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1277 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1278 			if (reg_rule->dfs_cac_ms)
1279 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1280 		}
1281 
1282 		return;
1283 	}
1284 
1285 	chan->dfs_state = NL80211_DFS_USABLE;
1286 	chan->dfs_state_entered = jiffies;
1287 
1288 	chan->beacon_found = false;
1289 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1290 	chan->max_antenna_gain =
1291 		min_t(int, chan->orig_mag,
1292 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1293 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1294 
1295 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1296 		if (reg_rule->dfs_cac_ms)
1297 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1298 		else
1299 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1300 	}
1301 
1302 	if (chan->orig_mpwr) {
1303 		/*
1304 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1305 		 * will always follow the passed country IE power settings.
1306 		 */
1307 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1308 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1309 			chan->max_power = chan->max_reg_power;
1310 		else
1311 			chan->max_power = min(chan->orig_mpwr,
1312 					      chan->max_reg_power);
1313 	} else
1314 		chan->max_power = chan->max_reg_power;
1315 }
1316 
1317 static void handle_band(struct wiphy *wiphy,
1318 			enum nl80211_reg_initiator initiator,
1319 			struct ieee80211_supported_band *sband)
1320 {
1321 	unsigned int i;
1322 
1323 	if (!sband)
1324 		return;
1325 
1326 	for (i = 0; i < sband->n_channels; i++)
1327 		handle_channel(wiphy, initiator, &sband->channels[i]);
1328 }
1329 
1330 static bool reg_request_cell_base(struct regulatory_request *request)
1331 {
1332 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1333 		return false;
1334 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1335 }
1336 
1337 bool reg_last_request_cell_base(void)
1338 {
1339 	return reg_request_cell_base(get_last_request());
1340 }
1341 
1342 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1343 /* Core specific check */
1344 static enum reg_request_treatment
1345 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1346 {
1347 	struct regulatory_request *lr = get_last_request();
1348 
1349 	if (!reg_num_devs_support_basehint)
1350 		return REG_REQ_IGNORE;
1351 
1352 	if (reg_request_cell_base(lr) &&
1353 	    !regdom_changes(pending_request->alpha2))
1354 		return REG_REQ_ALREADY_SET;
1355 
1356 	return REG_REQ_OK;
1357 }
1358 
1359 /* Device specific check */
1360 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1361 {
1362 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1363 }
1364 #else
1365 static enum reg_request_treatment
1366 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1367 {
1368 	return REG_REQ_IGNORE;
1369 }
1370 
1371 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1372 {
1373 	return true;
1374 }
1375 #endif
1376 
1377 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1378 {
1379 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1380 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1381 		return true;
1382 	return false;
1383 }
1384 
1385 static bool ignore_reg_update(struct wiphy *wiphy,
1386 			      enum nl80211_reg_initiator initiator)
1387 {
1388 	struct regulatory_request *lr = get_last_request();
1389 
1390 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1391 		return true;
1392 
1393 	if (!lr) {
1394 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1395 			      "since last_request is not set\n",
1396 			      reg_initiator_name(initiator));
1397 		return true;
1398 	}
1399 
1400 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1401 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1402 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1403 			      "since the driver uses its own custom "
1404 			      "regulatory domain\n",
1405 			      reg_initiator_name(initiator));
1406 		return true;
1407 	}
1408 
1409 	/*
1410 	 * wiphy->regd will be set once the device has its own
1411 	 * desired regulatory domain set
1412 	 */
1413 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1414 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1415 	    !is_world_regdom(lr->alpha2)) {
1416 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1417 			      "since the driver requires its own regulatory "
1418 			      "domain to be set first\n",
1419 			      reg_initiator_name(initiator));
1420 		return true;
1421 	}
1422 
1423 	if (reg_request_cell_base(lr))
1424 		return reg_dev_ignore_cell_hint(wiphy);
1425 
1426 	return false;
1427 }
1428 
1429 static bool reg_is_world_roaming(struct wiphy *wiphy)
1430 {
1431 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1432 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1433 	struct regulatory_request *lr = get_last_request();
1434 
1435 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1436 		return true;
1437 
1438 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1439 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1440 		return true;
1441 
1442 	return false;
1443 }
1444 
1445 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1446 			      struct reg_beacon *reg_beacon)
1447 {
1448 	struct ieee80211_supported_band *sband;
1449 	struct ieee80211_channel *chan;
1450 	bool channel_changed = false;
1451 	struct ieee80211_channel chan_before;
1452 
1453 	sband = wiphy->bands[reg_beacon->chan.band];
1454 	chan = &sband->channels[chan_idx];
1455 
1456 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1457 		return;
1458 
1459 	if (chan->beacon_found)
1460 		return;
1461 
1462 	chan->beacon_found = true;
1463 
1464 	if (!reg_is_world_roaming(wiphy))
1465 		return;
1466 
1467 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1468 		return;
1469 
1470 	chan_before.center_freq = chan->center_freq;
1471 	chan_before.flags = chan->flags;
1472 
1473 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1474 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1475 		channel_changed = true;
1476 	}
1477 
1478 	if (channel_changed)
1479 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1480 }
1481 
1482 /*
1483  * Called when a scan on a wiphy finds a beacon on
1484  * new channel
1485  */
1486 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1487 				    struct reg_beacon *reg_beacon)
1488 {
1489 	unsigned int i;
1490 	struct ieee80211_supported_band *sband;
1491 
1492 	if (!wiphy->bands[reg_beacon->chan.band])
1493 		return;
1494 
1495 	sband = wiphy->bands[reg_beacon->chan.band];
1496 
1497 	for (i = 0; i < sband->n_channels; i++)
1498 		handle_reg_beacon(wiphy, i, reg_beacon);
1499 }
1500 
1501 /*
1502  * Called upon reg changes or a new wiphy is added
1503  */
1504 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1505 {
1506 	unsigned int i;
1507 	struct ieee80211_supported_band *sband;
1508 	struct reg_beacon *reg_beacon;
1509 
1510 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1511 		if (!wiphy->bands[reg_beacon->chan.band])
1512 			continue;
1513 		sband = wiphy->bands[reg_beacon->chan.band];
1514 		for (i = 0; i < sband->n_channels; i++)
1515 			handle_reg_beacon(wiphy, i, reg_beacon);
1516 	}
1517 }
1518 
1519 /* Reap the advantages of previously found beacons */
1520 static void reg_process_beacons(struct wiphy *wiphy)
1521 {
1522 	/*
1523 	 * Means we are just firing up cfg80211, so no beacons would
1524 	 * have been processed yet.
1525 	 */
1526 	if (!last_request)
1527 		return;
1528 	wiphy_update_beacon_reg(wiphy);
1529 }
1530 
1531 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1532 {
1533 	if (!chan)
1534 		return false;
1535 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1536 		return false;
1537 	/* This would happen when regulatory rules disallow HT40 completely */
1538 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1539 		return false;
1540 	return true;
1541 }
1542 
1543 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1544 					 struct ieee80211_channel *channel)
1545 {
1546 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1547 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1548 	unsigned int i;
1549 
1550 	if (!is_ht40_allowed(channel)) {
1551 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1552 		return;
1553 	}
1554 
1555 	/*
1556 	 * We need to ensure the extension channels exist to
1557 	 * be able to use HT40- or HT40+, this finds them (or not)
1558 	 */
1559 	for (i = 0; i < sband->n_channels; i++) {
1560 		struct ieee80211_channel *c = &sband->channels[i];
1561 
1562 		if (c->center_freq == (channel->center_freq - 20))
1563 			channel_before = c;
1564 		if (c->center_freq == (channel->center_freq + 20))
1565 			channel_after = c;
1566 	}
1567 
1568 	/*
1569 	 * Please note that this assumes target bandwidth is 20 MHz,
1570 	 * if that ever changes we also need to change the below logic
1571 	 * to include that as well.
1572 	 */
1573 	if (!is_ht40_allowed(channel_before))
1574 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1575 	else
1576 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1577 
1578 	if (!is_ht40_allowed(channel_after))
1579 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1580 	else
1581 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1582 }
1583 
1584 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1585 				      struct ieee80211_supported_band *sband)
1586 {
1587 	unsigned int i;
1588 
1589 	if (!sband)
1590 		return;
1591 
1592 	for (i = 0; i < sband->n_channels; i++)
1593 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1594 }
1595 
1596 static void reg_process_ht_flags(struct wiphy *wiphy)
1597 {
1598 	enum ieee80211_band band;
1599 
1600 	if (!wiphy)
1601 		return;
1602 
1603 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1604 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1605 }
1606 
1607 static void reg_call_notifier(struct wiphy *wiphy,
1608 			      struct regulatory_request *request)
1609 {
1610 	if (wiphy->reg_notifier)
1611 		wiphy->reg_notifier(wiphy, request);
1612 }
1613 
1614 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1615 {
1616 	struct cfg80211_chan_def chandef;
1617 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1618 	enum nl80211_iftype iftype;
1619 
1620 	wdev_lock(wdev);
1621 	iftype = wdev->iftype;
1622 
1623 	/* make sure the interface is active */
1624 	if (!wdev->netdev || !netif_running(wdev->netdev))
1625 		goto wdev_inactive_unlock;
1626 
1627 	switch (iftype) {
1628 	case NL80211_IFTYPE_AP:
1629 	case NL80211_IFTYPE_P2P_GO:
1630 		if (!wdev->beacon_interval)
1631 			goto wdev_inactive_unlock;
1632 		chandef = wdev->chandef;
1633 		break;
1634 	case NL80211_IFTYPE_ADHOC:
1635 		if (!wdev->ssid_len)
1636 			goto wdev_inactive_unlock;
1637 		chandef = wdev->chandef;
1638 		break;
1639 	case NL80211_IFTYPE_STATION:
1640 	case NL80211_IFTYPE_P2P_CLIENT:
1641 		if (!wdev->current_bss ||
1642 		    !wdev->current_bss->pub.channel)
1643 			goto wdev_inactive_unlock;
1644 
1645 		if (!rdev->ops->get_channel ||
1646 		    rdev_get_channel(rdev, wdev, &chandef))
1647 			cfg80211_chandef_create(&chandef,
1648 						wdev->current_bss->pub.channel,
1649 						NL80211_CHAN_NO_HT);
1650 		break;
1651 	case NL80211_IFTYPE_MONITOR:
1652 	case NL80211_IFTYPE_AP_VLAN:
1653 	case NL80211_IFTYPE_P2P_DEVICE:
1654 		/* no enforcement required */
1655 		break;
1656 	default:
1657 		/* others not implemented for now */
1658 		WARN_ON(1);
1659 		break;
1660 	}
1661 
1662 	wdev_unlock(wdev);
1663 
1664 	switch (iftype) {
1665 	case NL80211_IFTYPE_AP:
1666 	case NL80211_IFTYPE_P2P_GO:
1667 	case NL80211_IFTYPE_ADHOC:
1668 		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1669 	case NL80211_IFTYPE_STATION:
1670 	case NL80211_IFTYPE_P2P_CLIENT:
1671 		return cfg80211_chandef_usable(wiphy, &chandef,
1672 					       IEEE80211_CHAN_DISABLED);
1673 	default:
1674 		break;
1675 	}
1676 
1677 	return true;
1678 
1679 wdev_inactive_unlock:
1680 	wdev_unlock(wdev);
1681 	return true;
1682 }
1683 
1684 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1685 {
1686 	struct wireless_dev *wdev;
1687 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1688 
1689 	ASSERT_RTNL();
1690 
1691 	list_for_each_entry(wdev, &rdev->wdev_list, list)
1692 		if (!reg_wdev_chan_valid(wiphy, wdev))
1693 			cfg80211_leave(rdev, wdev);
1694 }
1695 
1696 static void reg_check_chans_work(struct work_struct *work)
1697 {
1698 	struct cfg80211_registered_device *rdev;
1699 
1700 	REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1701 	rtnl_lock();
1702 
1703 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1704 		if (!(rdev->wiphy.regulatory_flags &
1705 		      REGULATORY_IGNORE_STALE_KICKOFF))
1706 			reg_leave_invalid_chans(&rdev->wiphy);
1707 
1708 	rtnl_unlock();
1709 }
1710 
1711 static void reg_check_channels(void)
1712 {
1713 	/*
1714 	 * Give usermode a chance to do something nicer (move to another
1715 	 * channel, orderly disconnection), before forcing a disconnection.
1716 	 */
1717 	mod_delayed_work(system_power_efficient_wq,
1718 			 &reg_check_chans,
1719 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1720 }
1721 
1722 static void wiphy_update_regulatory(struct wiphy *wiphy,
1723 				    enum nl80211_reg_initiator initiator)
1724 {
1725 	enum ieee80211_band band;
1726 	struct regulatory_request *lr = get_last_request();
1727 
1728 	if (ignore_reg_update(wiphy, initiator)) {
1729 		/*
1730 		 * Regulatory updates set by CORE are ignored for custom
1731 		 * regulatory cards. Let us notify the changes to the driver,
1732 		 * as some drivers used this to restore its orig_* reg domain.
1733 		 */
1734 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1735 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1736 			reg_call_notifier(wiphy, lr);
1737 		return;
1738 	}
1739 
1740 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1741 
1742 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1743 		handle_band(wiphy, initiator, wiphy->bands[band]);
1744 
1745 	reg_process_beacons(wiphy);
1746 	reg_process_ht_flags(wiphy);
1747 	reg_call_notifier(wiphy, lr);
1748 }
1749 
1750 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1751 {
1752 	struct cfg80211_registered_device *rdev;
1753 	struct wiphy *wiphy;
1754 
1755 	ASSERT_RTNL();
1756 
1757 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1758 		wiphy = &rdev->wiphy;
1759 		wiphy_update_regulatory(wiphy, initiator);
1760 	}
1761 
1762 	reg_check_channels();
1763 }
1764 
1765 static void handle_channel_custom(struct wiphy *wiphy,
1766 				  struct ieee80211_channel *chan,
1767 				  const struct ieee80211_regdomain *regd)
1768 {
1769 	u32 bw_flags = 0;
1770 	const struct ieee80211_reg_rule *reg_rule = NULL;
1771 	const struct ieee80211_power_rule *power_rule = NULL;
1772 	u32 bw;
1773 
1774 	for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1775 		reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
1776 					      regd, bw);
1777 		if (!IS_ERR(reg_rule))
1778 			break;
1779 	}
1780 
1781 	if (IS_ERR(reg_rule)) {
1782 		REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1783 			      chan->center_freq);
1784 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1785 			chan->flags |= IEEE80211_CHAN_DISABLED;
1786 		} else {
1787 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1788 			chan->flags = chan->orig_flags;
1789 		}
1790 		return;
1791 	}
1792 
1793 	chan_reg_rule_print_dbg(regd, chan, reg_rule);
1794 
1795 	power_rule = &reg_rule->power_rule;
1796 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1797 
1798 	chan->dfs_state_entered = jiffies;
1799 	chan->dfs_state = NL80211_DFS_USABLE;
1800 
1801 	chan->beacon_found = false;
1802 
1803 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1804 		chan->flags = chan->orig_flags | bw_flags |
1805 			      map_regdom_flags(reg_rule->flags);
1806 	else
1807 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1808 
1809 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1810 	chan->max_reg_power = chan->max_power =
1811 		(int) MBM_TO_DBM(power_rule->max_eirp);
1812 
1813 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1814 		if (reg_rule->dfs_cac_ms)
1815 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1816 		else
1817 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1818 	}
1819 
1820 	chan->max_power = chan->max_reg_power;
1821 }
1822 
1823 static void handle_band_custom(struct wiphy *wiphy,
1824 			       struct ieee80211_supported_band *sband,
1825 			       const struct ieee80211_regdomain *regd)
1826 {
1827 	unsigned int i;
1828 
1829 	if (!sband)
1830 		return;
1831 
1832 	for (i = 0; i < sband->n_channels; i++)
1833 		handle_channel_custom(wiphy, &sband->channels[i], regd);
1834 }
1835 
1836 /* Used by drivers prior to wiphy registration */
1837 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1838 				   const struct ieee80211_regdomain *regd)
1839 {
1840 	enum ieee80211_band band;
1841 	unsigned int bands_set = 0;
1842 
1843 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1844 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
1845 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1846 
1847 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1848 		if (!wiphy->bands[band])
1849 			continue;
1850 		handle_band_custom(wiphy, wiphy->bands[band], regd);
1851 		bands_set++;
1852 	}
1853 
1854 	/*
1855 	 * no point in calling this if it won't have any effect
1856 	 * on your device's supported bands.
1857 	 */
1858 	WARN_ON(!bands_set);
1859 }
1860 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1861 
1862 static void reg_set_request_processed(void)
1863 {
1864 	bool need_more_processing = false;
1865 	struct regulatory_request *lr = get_last_request();
1866 
1867 	lr->processed = true;
1868 
1869 	spin_lock(&reg_requests_lock);
1870 	if (!list_empty(&reg_requests_list))
1871 		need_more_processing = true;
1872 	spin_unlock(&reg_requests_lock);
1873 
1874 	cancel_crda_timeout();
1875 
1876 	if (need_more_processing)
1877 		schedule_work(&reg_work);
1878 }
1879 
1880 /**
1881  * reg_process_hint_core - process core regulatory requests
1882  * @pending_request: a pending core regulatory request
1883  *
1884  * The wireless subsystem can use this function to process
1885  * a regulatory request issued by the regulatory core.
1886  */
1887 static enum reg_request_treatment
1888 reg_process_hint_core(struct regulatory_request *core_request)
1889 {
1890 	if (reg_query_database(core_request)) {
1891 		core_request->intersect = false;
1892 		core_request->processed = false;
1893 		reg_update_last_request(core_request);
1894 		return REG_REQ_OK;
1895 	}
1896 
1897 	return REG_REQ_IGNORE;
1898 }
1899 
1900 static enum reg_request_treatment
1901 __reg_process_hint_user(struct regulatory_request *user_request)
1902 {
1903 	struct regulatory_request *lr = get_last_request();
1904 
1905 	if (reg_request_cell_base(user_request))
1906 		return reg_ignore_cell_hint(user_request);
1907 
1908 	if (reg_request_cell_base(lr))
1909 		return REG_REQ_IGNORE;
1910 
1911 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1912 		return REG_REQ_INTERSECT;
1913 	/*
1914 	 * If the user knows better the user should set the regdom
1915 	 * to their country before the IE is picked up
1916 	 */
1917 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1918 	    lr->intersect)
1919 		return REG_REQ_IGNORE;
1920 	/*
1921 	 * Process user requests only after previous user/driver/core
1922 	 * requests have been processed
1923 	 */
1924 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1925 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1926 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1927 	    regdom_changes(lr->alpha2))
1928 		return REG_REQ_IGNORE;
1929 
1930 	if (!regdom_changes(user_request->alpha2))
1931 		return REG_REQ_ALREADY_SET;
1932 
1933 	return REG_REQ_OK;
1934 }
1935 
1936 /**
1937  * reg_process_hint_user - process user regulatory requests
1938  * @user_request: a pending user regulatory request
1939  *
1940  * The wireless subsystem can use this function to process
1941  * a regulatory request initiated by userspace.
1942  */
1943 static enum reg_request_treatment
1944 reg_process_hint_user(struct regulatory_request *user_request)
1945 {
1946 	enum reg_request_treatment treatment;
1947 
1948 	treatment = __reg_process_hint_user(user_request);
1949 	if (treatment == REG_REQ_IGNORE ||
1950 	    treatment == REG_REQ_ALREADY_SET)
1951 		return REG_REQ_IGNORE;
1952 
1953 	user_request->intersect = treatment == REG_REQ_INTERSECT;
1954 	user_request->processed = false;
1955 
1956 	if (reg_query_database(user_request)) {
1957 		reg_update_last_request(user_request);
1958 		user_alpha2[0] = user_request->alpha2[0];
1959 		user_alpha2[1] = user_request->alpha2[1];
1960 		return REG_REQ_OK;
1961 	}
1962 
1963 	return REG_REQ_IGNORE;
1964 }
1965 
1966 static enum reg_request_treatment
1967 __reg_process_hint_driver(struct regulatory_request *driver_request)
1968 {
1969 	struct regulatory_request *lr = get_last_request();
1970 
1971 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1972 		if (regdom_changes(driver_request->alpha2))
1973 			return REG_REQ_OK;
1974 		return REG_REQ_ALREADY_SET;
1975 	}
1976 
1977 	/*
1978 	 * This would happen if you unplug and plug your card
1979 	 * back in or if you add a new device for which the previously
1980 	 * loaded card also agrees on the regulatory domain.
1981 	 */
1982 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1983 	    !regdom_changes(driver_request->alpha2))
1984 		return REG_REQ_ALREADY_SET;
1985 
1986 	return REG_REQ_INTERSECT;
1987 }
1988 
1989 /**
1990  * reg_process_hint_driver - process driver regulatory requests
1991  * @driver_request: a pending driver regulatory request
1992  *
1993  * The wireless subsystem can use this function to process
1994  * a regulatory request issued by an 802.11 driver.
1995  *
1996  * Returns one of the different reg request treatment values.
1997  */
1998 static enum reg_request_treatment
1999 reg_process_hint_driver(struct wiphy *wiphy,
2000 			struct regulatory_request *driver_request)
2001 {
2002 	const struct ieee80211_regdomain *regd, *tmp;
2003 	enum reg_request_treatment treatment;
2004 
2005 	treatment = __reg_process_hint_driver(driver_request);
2006 
2007 	switch (treatment) {
2008 	case REG_REQ_OK:
2009 		break;
2010 	case REG_REQ_IGNORE:
2011 		return REG_REQ_IGNORE;
2012 	case REG_REQ_INTERSECT:
2013 	case REG_REQ_ALREADY_SET:
2014 		regd = reg_copy_regd(get_cfg80211_regdom());
2015 		if (IS_ERR(regd))
2016 			return REG_REQ_IGNORE;
2017 
2018 		tmp = get_wiphy_regdom(wiphy);
2019 		rcu_assign_pointer(wiphy->regd, regd);
2020 		rcu_free_regdom(tmp);
2021 	}
2022 
2023 
2024 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2025 	driver_request->processed = false;
2026 
2027 	/*
2028 	 * Since CRDA will not be called in this case as we already
2029 	 * have applied the requested regulatory domain before we just
2030 	 * inform userspace we have processed the request
2031 	 */
2032 	if (treatment == REG_REQ_ALREADY_SET) {
2033 		nl80211_send_reg_change_event(driver_request);
2034 		reg_update_last_request(driver_request);
2035 		reg_set_request_processed();
2036 		return REG_REQ_ALREADY_SET;
2037 	}
2038 
2039 	if (reg_query_database(driver_request)) {
2040 		reg_update_last_request(driver_request);
2041 		return REG_REQ_OK;
2042 	}
2043 
2044 	return REG_REQ_IGNORE;
2045 }
2046 
2047 static enum reg_request_treatment
2048 __reg_process_hint_country_ie(struct wiphy *wiphy,
2049 			      struct regulatory_request *country_ie_request)
2050 {
2051 	struct wiphy *last_wiphy = NULL;
2052 	struct regulatory_request *lr = get_last_request();
2053 
2054 	if (reg_request_cell_base(lr)) {
2055 		/* Trust a Cell base station over the AP's country IE */
2056 		if (regdom_changes(country_ie_request->alpha2))
2057 			return REG_REQ_IGNORE;
2058 		return REG_REQ_ALREADY_SET;
2059 	} else {
2060 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2061 			return REG_REQ_IGNORE;
2062 	}
2063 
2064 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2065 		return -EINVAL;
2066 
2067 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2068 		return REG_REQ_OK;
2069 
2070 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2071 
2072 	if (last_wiphy != wiphy) {
2073 		/*
2074 		 * Two cards with two APs claiming different
2075 		 * Country IE alpha2s. We could
2076 		 * intersect them, but that seems unlikely
2077 		 * to be correct. Reject second one for now.
2078 		 */
2079 		if (regdom_changes(country_ie_request->alpha2))
2080 			return REG_REQ_IGNORE;
2081 		return REG_REQ_ALREADY_SET;
2082 	}
2083 
2084 	if (regdom_changes(country_ie_request->alpha2))
2085 		return REG_REQ_OK;
2086 	return REG_REQ_ALREADY_SET;
2087 }
2088 
2089 /**
2090  * reg_process_hint_country_ie - process regulatory requests from country IEs
2091  * @country_ie_request: a regulatory request from a country IE
2092  *
2093  * The wireless subsystem can use this function to process
2094  * a regulatory request issued by a country Information Element.
2095  *
2096  * Returns one of the different reg request treatment values.
2097  */
2098 static enum reg_request_treatment
2099 reg_process_hint_country_ie(struct wiphy *wiphy,
2100 			    struct regulatory_request *country_ie_request)
2101 {
2102 	enum reg_request_treatment treatment;
2103 
2104 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2105 
2106 	switch (treatment) {
2107 	case REG_REQ_OK:
2108 		break;
2109 	case REG_REQ_IGNORE:
2110 		return REG_REQ_IGNORE;
2111 	case REG_REQ_ALREADY_SET:
2112 		reg_free_request(country_ie_request);
2113 		return REG_REQ_ALREADY_SET;
2114 	case REG_REQ_INTERSECT:
2115 		/*
2116 		 * This doesn't happen yet, not sure we
2117 		 * ever want to support it for this case.
2118 		 */
2119 		WARN_ONCE(1, "Unexpected intersection for country IEs");
2120 		return REG_REQ_IGNORE;
2121 	}
2122 
2123 	country_ie_request->intersect = false;
2124 	country_ie_request->processed = false;
2125 
2126 	if (reg_query_database(country_ie_request)) {
2127 		reg_update_last_request(country_ie_request);
2128 		return REG_REQ_OK;
2129 	}
2130 
2131 	return REG_REQ_IGNORE;
2132 }
2133 
2134 /* This processes *all* regulatory hints */
2135 static void reg_process_hint(struct regulatory_request *reg_request)
2136 {
2137 	struct wiphy *wiphy = NULL;
2138 	enum reg_request_treatment treatment;
2139 
2140 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2141 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2142 
2143 	switch (reg_request->initiator) {
2144 	case NL80211_REGDOM_SET_BY_CORE:
2145 		treatment = reg_process_hint_core(reg_request);
2146 		break;
2147 	case NL80211_REGDOM_SET_BY_USER:
2148 		treatment = reg_process_hint_user(reg_request);
2149 		break;
2150 	case NL80211_REGDOM_SET_BY_DRIVER:
2151 		if (!wiphy)
2152 			goto out_free;
2153 		treatment = reg_process_hint_driver(wiphy, reg_request);
2154 		break;
2155 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2156 		if (!wiphy)
2157 			goto out_free;
2158 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2159 		break;
2160 	default:
2161 		WARN(1, "invalid initiator %d\n", reg_request->initiator);
2162 		goto out_free;
2163 	}
2164 
2165 	if (treatment == REG_REQ_IGNORE)
2166 		goto out_free;
2167 
2168 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2169 	     "unexpected treatment value %d\n", treatment);
2170 
2171 	/* This is required so that the orig_* parameters are saved.
2172 	 * NOTE: treatment must be set for any case that reaches here!
2173 	 */
2174 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2175 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2176 		wiphy_update_regulatory(wiphy, reg_request->initiator);
2177 		reg_check_channels();
2178 	}
2179 
2180 	return;
2181 
2182 out_free:
2183 	reg_free_request(reg_request);
2184 }
2185 
2186 static bool reg_only_self_managed_wiphys(void)
2187 {
2188 	struct cfg80211_registered_device *rdev;
2189 	struct wiphy *wiphy;
2190 	bool self_managed_found = false;
2191 
2192 	ASSERT_RTNL();
2193 
2194 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2195 		wiphy = &rdev->wiphy;
2196 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2197 			self_managed_found = true;
2198 		else
2199 			return false;
2200 	}
2201 
2202 	/* make sure at least one self-managed wiphy exists */
2203 	return self_managed_found;
2204 }
2205 
2206 /*
2207  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2208  * Regulatory hints come on a first come first serve basis and we
2209  * must process each one atomically.
2210  */
2211 static void reg_process_pending_hints(void)
2212 {
2213 	struct regulatory_request *reg_request, *lr;
2214 
2215 	lr = get_last_request();
2216 
2217 	/* When last_request->processed becomes true this will be rescheduled */
2218 	if (lr && !lr->processed) {
2219 		reg_process_hint(lr);
2220 		return;
2221 	}
2222 
2223 	spin_lock(&reg_requests_lock);
2224 
2225 	if (list_empty(&reg_requests_list)) {
2226 		spin_unlock(&reg_requests_lock);
2227 		return;
2228 	}
2229 
2230 	reg_request = list_first_entry(&reg_requests_list,
2231 				       struct regulatory_request,
2232 				       list);
2233 	list_del_init(&reg_request->list);
2234 
2235 	spin_unlock(&reg_requests_lock);
2236 
2237 	if (reg_only_self_managed_wiphys()) {
2238 		reg_free_request(reg_request);
2239 		return;
2240 	}
2241 
2242 	reg_process_hint(reg_request);
2243 
2244 	lr = get_last_request();
2245 
2246 	spin_lock(&reg_requests_lock);
2247 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
2248 		schedule_work(&reg_work);
2249 	spin_unlock(&reg_requests_lock);
2250 }
2251 
2252 /* Processes beacon hints -- this has nothing to do with country IEs */
2253 static void reg_process_pending_beacon_hints(void)
2254 {
2255 	struct cfg80211_registered_device *rdev;
2256 	struct reg_beacon *pending_beacon, *tmp;
2257 
2258 	/* This goes through the _pending_ beacon list */
2259 	spin_lock_bh(&reg_pending_beacons_lock);
2260 
2261 	list_for_each_entry_safe(pending_beacon, tmp,
2262 				 &reg_pending_beacons, list) {
2263 		list_del_init(&pending_beacon->list);
2264 
2265 		/* Applies the beacon hint to current wiphys */
2266 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2267 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2268 
2269 		/* Remembers the beacon hint for new wiphys or reg changes */
2270 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2271 	}
2272 
2273 	spin_unlock_bh(&reg_pending_beacons_lock);
2274 }
2275 
2276 static void reg_process_self_managed_hints(void)
2277 {
2278 	struct cfg80211_registered_device *rdev;
2279 	struct wiphy *wiphy;
2280 	const struct ieee80211_regdomain *tmp;
2281 	const struct ieee80211_regdomain *regd;
2282 	enum ieee80211_band band;
2283 	struct regulatory_request request = {};
2284 
2285 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2286 		wiphy = &rdev->wiphy;
2287 
2288 		spin_lock(&reg_requests_lock);
2289 		regd = rdev->requested_regd;
2290 		rdev->requested_regd = NULL;
2291 		spin_unlock(&reg_requests_lock);
2292 
2293 		if (regd == NULL)
2294 			continue;
2295 
2296 		tmp = get_wiphy_regdom(wiphy);
2297 		rcu_assign_pointer(wiphy->regd, regd);
2298 		rcu_free_regdom(tmp);
2299 
2300 		for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2301 			handle_band_custom(wiphy, wiphy->bands[band], regd);
2302 
2303 		reg_process_ht_flags(wiphy);
2304 
2305 		request.wiphy_idx = get_wiphy_idx(wiphy);
2306 		request.alpha2[0] = regd->alpha2[0];
2307 		request.alpha2[1] = regd->alpha2[1];
2308 		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2309 
2310 		nl80211_send_wiphy_reg_change_event(&request);
2311 	}
2312 
2313 	reg_check_channels();
2314 }
2315 
2316 static void reg_todo(struct work_struct *work)
2317 {
2318 	rtnl_lock();
2319 	reg_process_pending_hints();
2320 	reg_process_pending_beacon_hints();
2321 	reg_process_self_managed_hints();
2322 	rtnl_unlock();
2323 }
2324 
2325 static void queue_regulatory_request(struct regulatory_request *request)
2326 {
2327 	request->alpha2[0] = toupper(request->alpha2[0]);
2328 	request->alpha2[1] = toupper(request->alpha2[1]);
2329 
2330 	spin_lock(&reg_requests_lock);
2331 	list_add_tail(&request->list, &reg_requests_list);
2332 	spin_unlock(&reg_requests_lock);
2333 
2334 	schedule_work(&reg_work);
2335 }
2336 
2337 /*
2338  * Core regulatory hint -- happens during cfg80211_init()
2339  * and when we restore regulatory settings.
2340  */
2341 static int regulatory_hint_core(const char *alpha2)
2342 {
2343 	struct regulatory_request *request;
2344 
2345 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2346 	if (!request)
2347 		return -ENOMEM;
2348 
2349 	request->alpha2[0] = alpha2[0];
2350 	request->alpha2[1] = alpha2[1];
2351 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2352 
2353 	queue_regulatory_request(request);
2354 
2355 	return 0;
2356 }
2357 
2358 /* User hints */
2359 int regulatory_hint_user(const char *alpha2,
2360 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2361 {
2362 	struct regulatory_request *request;
2363 
2364 	if (WARN_ON(!alpha2))
2365 		return -EINVAL;
2366 
2367 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2368 	if (!request)
2369 		return -ENOMEM;
2370 
2371 	request->wiphy_idx = WIPHY_IDX_INVALID;
2372 	request->alpha2[0] = alpha2[0];
2373 	request->alpha2[1] = alpha2[1];
2374 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2375 	request->user_reg_hint_type = user_reg_hint_type;
2376 
2377 	/* Allow calling CRDA again */
2378 	reset_crda_timeouts();
2379 
2380 	queue_regulatory_request(request);
2381 
2382 	return 0;
2383 }
2384 
2385 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2386 {
2387 	spin_lock(&reg_indoor_lock);
2388 
2389 	/* It is possible that more than one user space process is trying to
2390 	 * configure the indoor setting. To handle such cases, clear the indoor
2391 	 * setting in case that some process does not think that the device
2392 	 * is operating in an indoor environment. In addition, if a user space
2393 	 * process indicates that it is controlling the indoor setting, save its
2394 	 * portid, i.e., make it the owner.
2395 	 */
2396 	reg_is_indoor = is_indoor;
2397 	if (reg_is_indoor) {
2398 		if (!reg_is_indoor_portid)
2399 			reg_is_indoor_portid = portid;
2400 	} else {
2401 		reg_is_indoor_portid = 0;
2402 	}
2403 
2404 	spin_unlock(&reg_indoor_lock);
2405 
2406 	if (!is_indoor)
2407 		reg_check_channels();
2408 
2409 	return 0;
2410 }
2411 
2412 void regulatory_netlink_notify(u32 portid)
2413 {
2414 	spin_lock(&reg_indoor_lock);
2415 
2416 	if (reg_is_indoor_portid != portid) {
2417 		spin_unlock(&reg_indoor_lock);
2418 		return;
2419 	}
2420 
2421 	reg_is_indoor = false;
2422 	reg_is_indoor_portid = 0;
2423 
2424 	spin_unlock(&reg_indoor_lock);
2425 
2426 	reg_check_channels();
2427 }
2428 
2429 /* Driver hints */
2430 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2431 {
2432 	struct regulatory_request *request;
2433 
2434 	if (WARN_ON(!alpha2 || !wiphy))
2435 		return -EINVAL;
2436 
2437 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2438 
2439 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2440 	if (!request)
2441 		return -ENOMEM;
2442 
2443 	request->wiphy_idx = get_wiphy_idx(wiphy);
2444 
2445 	request->alpha2[0] = alpha2[0];
2446 	request->alpha2[1] = alpha2[1];
2447 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2448 
2449 	/* Allow calling CRDA again */
2450 	reset_crda_timeouts();
2451 
2452 	queue_regulatory_request(request);
2453 
2454 	return 0;
2455 }
2456 EXPORT_SYMBOL(regulatory_hint);
2457 
2458 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2459 				const u8 *country_ie, u8 country_ie_len)
2460 {
2461 	char alpha2[2];
2462 	enum environment_cap env = ENVIRON_ANY;
2463 	struct regulatory_request *request = NULL, *lr;
2464 
2465 	/* IE len must be evenly divisible by 2 */
2466 	if (country_ie_len & 0x01)
2467 		return;
2468 
2469 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2470 		return;
2471 
2472 	request = kzalloc(sizeof(*request), GFP_KERNEL);
2473 	if (!request)
2474 		return;
2475 
2476 	alpha2[0] = country_ie[0];
2477 	alpha2[1] = country_ie[1];
2478 
2479 	if (country_ie[2] == 'I')
2480 		env = ENVIRON_INDOOR;
2481 	else if (country_ie[2] == 'O')
2482 		env = ENVIRON_OUTDOOR;
2483 
2484 	rcu_read_lock();
2485 	lr = get_last_request();
2486 
2487 	if (unlikely(!lr))
2488 		goto out;
2489 
2490 	/*
2491 	 * We will run this only upon a successful connection on cfg80211.
2492 	 * We leave conflict resolution to the workqueue, where can hold
2493 	 * the RTNL.
2494 	 */
2495 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2496 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
2497 		goto out;
2498 
2499 	request->wiphy_idx = get_wiphy_idx(wiphy);
2500 	request->alpha2[0] = alpha2[0];
2501 	request->alpha2[1] = alpha2[1];
2502 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2503 	request->country_ie_env = env;
2504 
2505 	/* Allow calling CRDA again */
2506 	reset_crda_timeouts();
2507 
2508 	queue_regulatory_request(request);
2509 	request = NULL;
2510 out:
2511 	kfree(request);
2512 	rcu_read_unlock();
2513 }
2514 
2515 static void restore_alpha2(char *alpha2, bool reset_user)
2516 {
2517 	/* indicates there is no alpha2 to consider for restoration */
2518 	alpha2[0] = '9';
2519 	alpha2[1] = '7';
2520 
2521 	/* The user setting has precedence over the module parameter */
2522 	if (is_user_regdom_saved()) {
2523 		/* Unless we're asked to ignore it and reset it */
2524 		if (reset_user) {
2525 			REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2526 			user_alpha2[0] = '9';
2527 			user_alpha2[1] = '7';
2528 
2529 			/*
2530 			 * If we're ignoring user settings, we still need to
2531 			 * check the module parameter to ensure we put things
2532 			 * back as they were for a full restore.
2533 			 */
2534 			if (!is_world_regdom(ieee80211_regdom)) {
2535 				REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2536 					      ieee80211_regdom[0], ieee80211_regdom[1]);
2537 				alpha2[0] = ieee80211_regdom[0];
2538 				alpha2[1] = ieee80211_regdom[1];
2539 			}
2540 		} else {
2541 			REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2542 				      user_alpha2[0], user_alpha2[1]);
2543 			alpha2[0] = user_alpha2[0];
2544 			alpha2[1] = user_alpha2[1];
2545 		}
2546 	} else if (!is_world_regdom(ieee80211_regdom)) {
2547 		REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2548 			      ieee80211_regdom[0], ieee80211_regdom[1]);
2549 		alpha2[0] = ieee80211_regdom[0];
2550 		alpha2[1] = ieee80211_regdom[1];
2551 	} else
2552 		REG_DBG_PRINT("Restoring regulatory settings\n");
2553 }
2554 
2555 static void restore_custom_reg_settings(struct wiphy *wiphy)
2556 {
2557 	struct ieee80211_supported_band *sband;
2558 	enum ieee80211_band band;
2559 	struct ieee80211_channel *chan;
2560 	int i;
2561 
2562 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2563 		sband = wiphy->bands[band];
2564 		if (!sband)
2565 			continue;
2566 		for (i = 0; i < sband->n_channels; i++) {
2567 			chan = &sband->channels[i];
2568 			chan->flags = chan->orig_flags;
2569 			chan->max_antenna_gain = chan->orig_mag;
2570 			chan->max_power = chan->orig_mpwr;
2571 			chan->beacon_found = false;
2572 		}
2573 	}
2574 }
2575 
2576 /*
2577  * Restoring regulatory settings involves ingoring any
2578  * possibly stale country IE information and user regulatory
2579  * settings if so desired, this includes any beacon hints
2580  * learned as we could have traveled outside to another country
2581  * after disconnection. To restore regulatory settings we do
2582  * exactly what we did at bootup:
2583  *
2584  *   - send a core regulatory hint
2585  *   - send a user regulatory hint if applicable
2586  *
2587  * Device drivers that send a regulatory hint for a specific country
2588  * keep their own regulatory domain on wiphy->regd so that does does
2589  * not need to be remembered.
2590  */
2591 static void restore_regulatory_settings(bool reset_user)
2592 {
2593 	char alpha2[2];
2594 	char world_alpha2[2];
2595 	struct reg_beacon *reg_beacon, *btmp;
2596 	LIST_HEAD(tmp_reg_req_list);
2597 	struct cfg80211_registered_device *rdev;
2598 
2599 	ASSERT_RTNL();
2600 
2601 	/*
2602 	 * Clear the indoor setting in case that it is not controlled by user
2603 	 * space, as otherwise there is no guarantee that the device is still
2604 	 * operating in an indoor environment.
2605 	 */
2606 	spin_lock(&reg_indoor_lock);
2607 	if (reg_is_indoor && !reg_is_indoor_portid) {
2608 		reg_is_indoor = false;
2609 		reg_check_channels();
2610 	}
2611 	spin_unlock(&reg_indoor_lock);
2612 
2613 	reset_regdomains(true, &world_regdom);
2614 	restore_alpha2(alpha2, reset_user);
2615 
2616 	/*
2617 	 * If there's any pending requests we simply
2618 	 * stash them to a temporary pending queue and
2619 	 * add then after we've restored regulatory
2620 	 * settings.
2621 	 */
2622 	spin_lock(&reg_requests_lock);
2623 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2624 	spin_unlock(&reg_requests_lock);
2625 
2626 	/* Clear beacon hints */
2627 	spin_lock_bh(&reg_pending_beacons_lock);
2628 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2629 		list_del(&reg_beacon->list);
2630 		kfree(reg_beacon);
2631 	}
2632 	spin_unlock_bh(&reg_pending_beacons_lock);
2633 
2634 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2635 		list_del(&reg_beacon->list);
2636 		kfree(reg_beacon);
2637 	}
2638 
2639 	/* First restore to the basic regulatory settings */
2640 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2641 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2642 
2643 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2644 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2645 			continue;
2646 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2647 			restore_custom_reg_settings(&rdev->wiphy);
2648 	}
2649 
2650 	regulatory_hint_core(world_alpha2);
2651 
2652 	/*
2653 	 * This restores the ieee80211_regdom module parameter
2654 	 * preference or the last user requested regulatory
2655 	 * settings, user regulatory settings takes precedence.
2656 	 */
2657 	if (is_an_alpha2(alpha2))
2658 		regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2659 
2660 	spin_lock(&reg_requests_lock);
2661 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2662 	spin_unlock(&reg_requests_lock);
2663 
2664 	REG_DBG_PRINT("Kicking the queue\n");
2665 
2666 	schedule_work(&reg_work);
2667 }
2668 
2669 void regulatory_hint_disconnect(void)
2670 {
2671 	REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2672 	restore_regulatory_settings(false);
2673 }
2674 
2675 static bool freq_is_chan_12_13_14(u16 freq)
2676 {
2677 	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2678 	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2679 	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2680 		return true;
2681 	return false;
2682 }
2683 
2684 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2685 {
2686 	struct reg_beacon *pending_beacon;
2687 
2688 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2689 		if (beacon_chan->center_freq ==
2690 		    pending_beacon->chan.center_freq)
2691 			return true;
2692 	return false;
2693 }
2694 
2695 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2696 				 struct ieee80211_channel *beacon_chan,
2697 				 gfp_t gfp)
2698 {
2699 	struct reg_beacon *reg_beacon;
2700 	bool processing;
2701 
2702 	if (beacon_chan->beacon_found ||
2703 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2704 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2705 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2706 		return 0;
2707 
2708 	spin_lock_bh(&reg_pending_beacons_lock);
2709 	processing = pending_reg_beacon(beacon_chan);
2710 	spin_unlock_bh(&reg_pending_beacons_lock);
2711 
2712 	if (processing)
2713 		return 0;
2714 
2715 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2716 	if (!reg_beacon)
2717 		return -ENOMEM;
2718 
2719 	REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2720 		      beacon_chan->center_freq,
2721 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
2722 		      wiphy_name(wiphy));
2723 
2724 	memcpy(&reg_beacon->chan, beacon_chan,
2725 	       sizeof(struct ieee80211_channel));
2726 
2727 	/*
2728 	 * Since we can be called from BH or and non-BH context
2729 	 * we must use spin_lock_bh()
2730 	 */
2731 	spin_lock_bh(&reg_pending_beacons_lock);
2732 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2733 	spin_unlock_bh(&reg_pending_beacons_lock);
2734 
2735 	schedule_work(&reg_work);
2736 
2737 	return 0;
2738 }
2739 
2740 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2741 {
2742 	unsigned int i;
2743 	const struct ieee80211_reg_rule *reg_rule = NULL;
2744 	const struct ieee80211_freq_range *freq_range = NULL;
2745 	const struct ieee80211_power_rule *power_rule = NULL;
2746 	char bw[32], cac_time[32];
2747 
2748 	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2749 
2750 	for (i = 0; i < rd->n_reg_rules; i++) {
2751 		reg_rule = &rd->reg_rules[i];
2752 		freq_range = &reg_rule->freq_range;
2753 		power_rule = &reg_rule->power_rule;
2754 
2755 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2756 			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2757 				 freq_range->max_bandwidth_khz,
2758 				 reg_get_max_bandwidth(rd, reg_rule));
2759 		else
2760 			snprintf(bw, sizeof(bw), "%d KHz",
2761 				 freq_range->max_bandwidth_khz);
2762 
2763 		if (reg_rule->flags & NL80211_RRF_DFS)
2764 			scnprintf(cac_time, sizeof(cac_time), "%u s",
2765 				  reg_rule->dfs_cac_ms/1000);
2766 		else
2767 			scnprintf(cac_time, sizeof(cac_time), "N/A");
2768 
2769 
2770 		/*
2771 		 * There may not be documentation for max antenna gain
2772 		 * in certain regions
2773 		 */
2774 		if (power_rule->max_antenna_gain)
2775 			pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2776 				freq_range->start_freq_khz,
2777 				freq_range->end_freq_khz,
2778 				bw,
2779 				power_rule->max_antenna_gain,
2780 				power_rule->max_eirp,
2781 				cac_time);
2782 		else
2783 			pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2784 				freq_range->start_freq_khz,
2785 				freq_range->end_freq_khz,
2786 				bw,
2787 				power_rule->max_eirp,
2788 				cac_time);
2789 	}
2790 }
2791 
2792 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2793 {
2794 	switch (dfs_region) {
2795 	case NL80211_DFS_UNSET:
2796 	case NL80211_DFS_FCC:
2797 	case NL80211_DFS_ETSI:
2798 	case NL80211_DFS_JP:
2799 		return true;
2800 	default:
2801 		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2802 			      dfs_region);
2803 		return false;
2804 	}
2805 }
2806 
2807 static void print_regdomain(const struct ieee80211_regdomain *rd)
2808 {
2809 	struct regulatory_request *lr = get_last_request();
2810 
2811 	if (is_intersected_alpha2(rd->alpha2)) {
2812 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2813 			struct cfg80211_registered_device *rdev;
2814 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2815 			if (rdev) {
2816 				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2817 					rdev->country_ie_alpha2[0],
2818 					rdev->country_ie_alpha2[1]);
2819 			} else
2820 				pr_info("Current regulatory domain intersected:\n");
2821 		} else
2822 			pr_info("Current regulatory domain intersected:\n");
2823 	} else if (is_world_regdom(rd->alpha2)) {
2824 		pr_info("World regulatory domain updated:\n");
2825 	} else {
2826 		if (is_unknown_alpha2(rd->alpha2))
2827 			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2828 		else {
2829 			if (reg_request_cell_base(lr))
2830 				pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2831 					rd->alpha2[0], rd->alpha2[1]);
2832 			else
2833 				pr_info("Regulatory domain changed to country: %c%c\n",
2834 					rd->alpha2[0], rd->alpha2[1]);
2835 		}
2836 	}
2837 
2838 	pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2839 	print_rd_rules(rd);
2840 }
2841 
2842 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2843 {
2844 	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2845 	print_rd_rules(rd);
2846 }
2847 
2848 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2849 {
2850 	if (!is_world_regdom(rd->alpha2))
2851 		return -EINVAL;
2852 	update_world_regdomain(rd);
2853 	return 0;
2854 }
2855 
2856 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2857 			   struct regulatory_request *user_request)
2858 {
2859 	const struct ieee80211_regdomain *intersected_rd = NULL;
2860 
2861 	if (!regdom_changes(rd->alpha2))
2862 		return -EALREADY;
2863 
2864 	if (!is_valid_rd(rd)) {
2865 		pr_err("Invalid regulatory domain detected:\n");
2866 		print_regdomain_info(rd);
2867 		return -EINVAL;
2868 	}
2869 
2870 	if (!user_request->intersect) {
2871 		reset_regdomains(false, rd);
2872 		return 0;
2873 	}
2874 
2875 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2876 	if (!intersected_rd)
2877 		return -EINVAL;
2878 
2879 	kfree(rd);
2880 	rd = NULL;
2881 	reset_regdomains(false, intersected_rd);
2882 
2883 	return 0;
2884 }
2885 
2886 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2887 			     struct regulatory_request *driver_request)
2888 {
2889 	const struct ieee80211_regdomain *regd;
2890 	const struct ieee80211_regdomain *intersected_rd = NULL;
2891 	const struct ieee80211_regdomain *tmp;
2892 	struct wiphy *request_wiphy;
2893 
2894 	if (is_world_regdom(rd->alpha2))
2895 		return -EINVAL;
2896 
2897 	if (!regdom_changes(rd->alpha2))
2898 		return -EALREADY;
2899 
2900 	if (!is_valid_rd(rd)) {
2901 		pr_err("Invalid regulatory domain detected:\n");
2902 		print_regdomain_info(rd);
2903 		return -EINVAL;
2904 	}
2905 
2906 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2907 	if (!request_wiphy)
2908 		return -ENODEV;
2909 
2910 	if (!driver_request->intersect) {
2911 		if (request_wiphy->regd)
2912 			return -EALREADY;
2913 
2914 		regd = reg_copy_regd(rd);
2915 		if (IS_ERR(regd))
2916 			return PTR_ERR(regd);
2917 
2918 		rcu_assign_pointer(request_wiphy->regd, regd);
2919 		reset_regdomains(false, rd);
2920 		return 0;
2921 	}
2922 
2923 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2924 	if (!intersected_rd)
2925 		return -EINVAL;
2926 
2927 	/*
2928 	 * We can trash what CRDA provided now.
2929 	 * However if a driver requested this specific regulatory
2930 	 * domain we keep it for its private use
2931 	 */
2932 	tmp = get_wiphy_regdom(request_wiphy);
2933 	rcu_assign_pointer(request_wiphy->regd, rd);
2934 	rcu_free_regdom(tmp);
2935 
2936 	rd = NULL;
2937 
2938 	reset_regdomains(false, intersected_rd);
2939 
2940 	return 0;
2941 }
2942 
2943 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2944 				 struct regulatory_request *country_ie_request)
2945 {
2946 	struct wiphy *request_wiphy;
2947 
2948 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2949 	    !is_unknown_alpha2(rd->alpha2))
2950 		return -EINVAL;
2951 
2952 	/*
2953 	 * Lets only bother proceeding on the same alpha2 if the current
2954 	 * rd is non static (it means CRDA was present and was used last)
2955 	 * and the pending request came in from a country IE
2956 	 */
2957 
2958 	if (!is_valid_rd(rd)) {
2959 		pr_err("Invalid regulatory domain detected:\n");
2960 		print_regdomain_info(rd);
2961 		return -EINVAL;
2962 	}
2963 
2964 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2965 	if (!request_wiphy)
2966 		return -ENODEV;
2967 
2968 	if (country_ie_request->intersect)
2969 		return -EINVAL;
2970 
2971 	reset_regdomains(false, rd);
2972 	return 0;
2973 }
2974 
2975 /*
2976  * Use this call to set the current regulatory domain. Conflicts with
2977  * multiple drivers can be ironed out later. Caller must've already
2978  * kmalloc'd the rd structure.
2979  */
2980 int set_regdom(const struct ieee80211_regdomain *rd,
2981 	       enum ieee80211_regd_source regd_src)
2982 {
2983 	struct regulatory_request *lr;
2984 	bool user_reset = false;
2985 	int r;
2986 
2987 	if (!reg_is_valid_request(rd->alpha2)) {
2988 		kfree(rd);
2989 		return -EINVAL;
2990 	}
2991 
2992 	if (regd_src == REGD_SOURCE_CRDA)
2993 		reset_crda_timeouts();
2994 
2995 	lr = get_last_request();
2996 
2997 	/* Note that this doesn't update the wiphys, this is done below */
2998 	switch (lr->initiator) {
2999 	case NL80211_REGDOM_SET_BY_CORE:
3000 		r = reg_set_rd_core(rd);
3001 		break;
3002 	case NL80211_REGDOM_SET_BY_USER:
3003 		r = reg_set_rd_user(rd, lr);
3004 		user_reset = true;
3005 		break;
3006 	case NL80211_REGDOM_SET_BY_DRIVER:
3007 		r = reg_set_rd_driver(rd, lr);
3008 		break;
3009 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3010 		r = reg_set_rd_country_ie(rd, lr);
3011 		break;
3012 	default:
3013 		WARN(1, "invalid initiator %d\n", lr->initiator);
3014 		kfree(rd);
3015 		return -EINVAL;
3016 	}
3017 
3018 	if (r) {
3019 		switch (r) {
3020 		case -EALREADY:
3021 			reg_set_request_processed();
3022 			break;
3023 		default:
3024 			/* Back to world regulatory in case of errors */
3025 			restore_regulatory_settings(user_reset);
3026 		}
3027 
3028 		kfree(rd);
3029 		return r;
3030 	}
3031 
3032 	/* This would make this whole thing pointless */
3033 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3034 		return -EINVAL;
3035 
3036 	/* update all wiphys now with the new established regulatory domain */
3037 	update_all_wiphy_regulatory(lr->initiator);
3038 
3039 	print_regdomain(get_cfg80211_regdom());
3040 
3041 	nl80211_send_reg_change_event(lr);
3042 
3043 	reg_set_request_processed();
3044 
3045 	return 0;
3046 }
3047 
3048 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3049 				       struct ieee80211_regdomain *rd)
3050 {
3051 	const struct ieee80211_regdomain *regd;
3052 	const struct ieee80211_regdomain *prev_regd;
3053 	struct cfg80211_registered_device *rdev;
3054 
3055 	if (WARN_ON(!wiphy || !rd))
3056 		return -EINVAL;
3057 
3058 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3059 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3060 		return -EPERM;
3061 
3062 	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3063 		print_regdomain_info(rd);
3064 		return -EINVAL;
3065 	}
3066 
3067 	regd = reg_copy_regd(rd);
3068 	if (IS_ERR(regd))
3069 		return PTR_ERR(regd);
3070 
3071 	rdev = wiphy_to_rdev(wiphy);
3072 
3073 	spin_lock(&reg_requests_lock);
3074 	prev_regd = rdev->requested_regd;
3075 	rdev->requested_regd = regd;
3076 	spin_unlock(&reg_requests_lock);
3077 
3078 	kfree(prev_regd);
3079 	return 0;
3080 }
3081 
3082 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3083 			      struct ieee80211_regdomain *rd)
3084 {
3085 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3086 
3087 	if (ret)
3088 		return ret;
3089 
3090 	schedule_work(&reg_work);
3091 	return 0;
3092 }
3093 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3094 
3095 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3096 					struct ieee80211_regdomain *rd)
3097 {
3098 	int ret;
3099 
3100 	ASSERT_RTNL();
3101 
3102 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3103 	if (ret)
3104 		return ret;
3105 
3106 	/* process the request immediately */
3107 	reg_process_self_managed_hints();
3108 	return 0;
3109 }
3110 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3111 
3112 void wiphy_regulatory_register(struct wiphy *wiphy)
3113 {
3114 	struct regulatory_request *lr;
3115 
3116 	/* self-managed devices ignore external hints */
3117 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3118 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3119 					   REGULATORY_COUNTRY_IE_IGNORE;
3120 
3121 	if (!reg_dev_ignore_cell_hint(wiphy))
3122 		reg_num_devs_support_basehint++;
3123 
3124 	lr = get_last_request();
3125 	wiphy_update_regulatory(wiphy, lr->initiator);
3126 }
3127 
3128 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3129 {
3130 	struct wiphy *request_wiphy = NULL;
3131 	struct regulatory_request *lr;
3132 
3133 	lr = get_last_request();
3134 
3135 	if (!reg_dev_ignore_cell_hint(wiphy))
3136 		reg_num_devs_support_basehint--;
3137 
3138 	rcu_free_regdom(get_wiphy_regdom(wiphy));
3139 	RCU_INIT_POINTER(wiphy->regd, NULL);
3140 
3141 	if (lr)
3142 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3143 
3144 	if (!request_wiphy || request_wiphy != wiphy)
3145 		return;
3146 
3147 	lr->wiphy_idx = WIPHY_IDX_INVALID;
3148 	lr->country_ie_env = ENVIRON_ANY;
3149 }
3150 
3151 /*
3152  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3153  * UNII band definitions
3154  */
3155 int cfg80211_get_unii(int freq)
3156 {
3157 	/* UNII-1 */
3158 	if (freq >= 5150 && freq <= 5250)
3159 		return 0;
3160 
3161 	/* UNII-2A */
3162 	if (freq > 5250 && freq <= 5350)
3163 		return 1;
3164 
3165 	/* UNII-2B */
3166 	if (freq > 5350 && freq <= 5470)
3167 		return 2;
3168 
3169 	/* UNII-2C */
3170 	if (freq > 5470 && freq <= 5725)
3171 		return 3;
3172 
3173 	/* UNII-3 */
3174 	if (freq > 5725 && freq <= 5825)
3175 		return 4;
3176 
3177 	return -EINVAL;
3178 }
3179 
3180 bool regulatory_indoor_allowed(void)
3181 {
3182 	return reg_is_indoor;
3183 }
3184 
3185 int __init regulatory_init(void)
3186 {
3187 	int err = 0;
3188 
3189 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3190 	if (IS_ERR(reg_pdev))
3191 		return PTR_ERR(reg_pdev);
3192 
3193 	spin_lock_init(&reg_requests_lock);
3194 	spin_lock_init(&reg_pending_beacons_lock);
3195 	spin_lock_init(&reg_indoor_lock);
3196 
3197 	reg_regdb_size_check();
3198 
3199 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3200 
3201 	user_alpha2[0] = '9';
3202 	user_alpha2[1] = '7';
3203 
3204 	/* We always try to get an update for the static regdomain */
3205 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3206 	if (err) {
3207 		if (err == -ENOMEM) {
3208 			platform_device_unregister(reg_pdev);
3209 			return err;
3210 		}
3211 		/*
3212 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
3213 		 * memory which is handled and propagated appropriately above
3214 		 * but it can also fail during a netlink_broadcast() or during
3215 		 * early boot for call_usermodehelper(). For now treat these
3216 		 * errors as non-fatal.
3217 		 */
3218 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3219 	}
3220 
3221 	/*
3222 	 * Finally, if the user set the module parameter treat it
3223 	 * as a user hint.
3224 	 */
3225 	if (!is_world_regdom(ieee80211_regdom))
3226 		regulatory_hint_user(ieee80211_regdom,
3227 				     NL80211_USER_REG_HINT_USER);
3228 
3229 	return 0;
3230 }
3231 
3232 void regulatory_exit(void)
3233 {
3234 	struct regulatory_request *reg_request, *tmp;
3235 	struct reg_beacon *reg_beacon, *btmp;
3236 
3237 	cancel_work_sync(&reg_work);
3238 	cancel_crda_timeout_sync();
3239 	cancel_delayed_work_sync(&reg_check_chans);
3240 
3241 	/* Lock to suppress warnings */
3242 	rtnl_lock();
3243 	reset_regdomains(true, NULL);
3244 	rtnl_unlock();
3245 
3246 	dev_set_uevent_suppress(&reg_pdev->dev, true);
3247 
3248 	platform_device_unregister(reg_pdev);
3249 
3250 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3251 		list_del(&reg_beacon->list);
3252 		kfree(reg_beacon);
3253 	}
3254 
3255 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3256 		list_del(&reg_beacon->list);
3257 		kfree(reg_beacon);
3258 	}
3259 
3260 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3261 		list_del(&reg_request->list);
3262 		kfree(reg_request);
3263 	}
3264 }
3265