xref: /openbmc/linux/net/wireless/reg.c (revision ca79522c)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60 
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...)			\
63 	printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67 
68 enum reg_request_treatment {
69 	REG_REQ_OK,
70 	REG_REQ_IGNORE,
71 	REG_REQ_INTERSECT,
72 	REG_REQ_ALREADY_SET,
73 };
74 
75 static struct regulatory_request core_request_world = {
76 	.initiator = NL80211_REGDOM_SET_BY_CORE,
77 	.alpha2[0] = '0',
78 	.alpha2[1] = '0',
79 	.intersect = false,
80 	.processed = true,
81 	.country_ie_env = ENVIRON_ANY,
82 };
83 
84 /* Receipt of information from last regulatory request */
85 static struct regulatory_request __rcu *last_request =
86 	(void __rcu *)&core_request_world;
87 
88 /* To trigger userspace events */
89 static struct platform_device *reg_pdev;
90 
91 static struct device_type reg_device_type = {
92 	.uevent = reg_device_uevent,
93 };
94 
95 /*
96  * Central wireless core regulatory domains, we only need two,
97  * the current one and a world regulatory domain in case we have no
98  * information to give us an alpha2.
99  */
100 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
101 
102 /*
103  * Protects static reg.c components:
104  *	- cfg80211_regdomain (if not used with RCU)
105  *	- cfg80211_world_regdom
106  *	- last_request (if not used with RCU)
107  *	- reg_num_devs_support_basehint
108  */
109 static DEFINE_MUTEX(reg_mutex);
110 
111 /*
112  * Number of devices that registered to the core
113  * that support cellular base station regulatory hints
114  */
115 static int reg_num_devs_support_basehint;
116 
117 static inline void assert_reg_lock(void)
118 {
119 	lockdep_assert_held(&reg_mutex);
120 }
121 
122 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
123 {
124 	return rcu_dereference_protected(cfg80211_regdomain,
125 					 lockdep_is_held(&reg_mutex));
126 }
127 
128 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
129 {
130 	return rcu_dereference_protected(wiphy->regd,
131 					 lockdep_is_held(&reg_mutex));
132 }
133 
134 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
135 {
136 	if (!r)
137 		return;
138 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
139 }
140 
141 static struct regulatory_request *get_last_request(void)
142 {
143 	return rcu_dereference_check(last_request,
144 				     lockdep_is_held(&reg_mutex));
145 }
146 
147 /* Used to queue up regulatory hints */
148 static LIST_HEAD(reg_requests_list);
149 static spinlock_t reg_requests_lock;
150 
151 /* Used to queue up beacon hints for review */
152 static LIST_HEAD(reg_pending_beacons);
153 static spinlock_t reg_pending_beacons_lock;
154 
155 /* Used to keep track of processed beacon hints */
156 static LIST_HEAD(reg_beacon_list);
157 
158 struct reg_beacon {
159 	struct list_head list;
160 	struct ieee80211_channel chan;
161 };
162 
163 static void reg_todo(struct work_struct *work);
164 static DECLARE_WORK(reg_work, reg_todo);
165 
166 static void reg_timeout_work(struct work_struct *work);
167 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
168 
169 /* We keep a static world regulatory domain in case of the absence of CRDA */
170 static const struct ieee80211_regdomain world_regdom = {
171 	.n_reg_rules = 6,
172 	.alpha2 =  "00",
173 	.reg_rules = {
174 		/* IEEE 802.11b/g, channels 1..11 */
175 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
176 		/* IEEE 802.11b/g, channels 12..13. */
177 		REG_RULE(2467-10, 2472+10, 40, 6, 20,
178 			NL80211_RRF_PASSIVE_SCAN |
179 			NL80211_RRF_NO_IBSS),
180 		/* IEEE 802.11 channel 14 - Only JP enables
181 		 * this and for 802.11b only */
182 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
183 			NL80211_RRF_PASSIVE_SCAN |
184 			NL80211_RRF_NO_IBSS |
185 			NL80211_RRF_NO_OFDM),
186 		/* IEEE 802.11a, channel 36..48 */
187 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
188                         NL80211_RRF_PASSIVE_SCAN |
189                         NL80211_RRF_NO_IBSS),
190 
191 		/* NB: 5260 MHz - 5700 MHz requires DFS */
192 
193 		/* IEEE 802.11a, channel 149..165 */
194 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
195 			NL80211_RRF_PASSIVE_SCAN |
196 			NL80211_RRF_NO_IBSS),
197 
198 		/* IEEE 802.11ad (60gHz), channels 1..3 */
199 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
200 	}
201 };
202 
203 static const struct ieee80211_regdomain *cfg80211_world_regdom =
204 	&world_regdom;
205 
206 static char *ieee80211_regdom = "00";
207 static char user_alpha2[2];
208 
209 module_param(ieee80211_regdom, charp, 0444);
210 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
211 
212 static void reset_regdomains(bool full_reset,
213 			     const struct ieee80211_regdomain *new_regdom)
214 {
215 	const struct ieee80211_regdomain *r;
216 	struct regulatory_request *lr;
217 
218 	assert_reg_lock();
219 
220 	r = get_cfg80211_regdom();
221 
222 	/* avoid freeing static information or freeing something twice */
223 	if (r == cfg80211_world_regdom)
224 		r = NULL;
225 	if (cfg80211_world_regdom == &world_regdom)
226 		cfg80211_world_regdom = NULL;
227 	if (r == &world_regdom)
228 		r = NULL;
229 
230 	rcu_free_regdom(r);
231 	rcu_free_regdom(cfg80211_world_regdom);
232 
233 	cfg80211_world_regdom = &world_regdom;
234 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
235 
236 	if (!full_reset)
237 		return;
238 
239 	lr = get_last_request();
240 	if (lr != &core_request_world && lr)
241 		kfree_rcu(lr, rcu_head);
242 	rcu_assign_pointer(last_request, &core_request_world);
243 }
244 
245 /*
246  * Dynamic world regulatory domain requested by the wireless
247  * core upon initialization
248  */
249 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
250 {
251 	struct regulatory_request *lr;
252 
253 	lr = get_last_request();
254 
255 	WARN_ON(!lr);
256 
257 	reset_regdomains(false, rd);
258 
259 	cfg80211_world_regdom = rd;
260 }
261 
262 bool is_world_regdom(const char *alpha2)
263 {
264 	if (!alpha2)
265 		return false;
266 	return alpha2[0] == '0' && alpha2[1] == '0';
267 }
268 
269 static bool is_alpha2_set(const char *alpha2)
270 {
271 	if (!alpha2)
272 		return false;
273 	return alpha2[0] && alpha2[1];
274 }
275 
276 static bool is_unknown_alpha2(const char *alpha2)
277 {
278 	if (!alpha2)
279 		return false;
280 	/*
281 	 * Special case where regulatory domain was built by driver
282 	 * but a specific alpha2 cannot be determined
283 	 */
284 	return alpha2[0] == '9' && alpha2[1] == '9';
285 }
286 
287 static bool is_intersected_alpha2(const char *alpha2)
288 {
289 	if (!alpha2)
290 		return false;
291 	/*
292 	 * Special case where regulatory domain is the
293 	 * result of an intersection between two regulatory domain
294 	 * structures
295 	 */
296 	return alpha2[0] == '9' && alpha2[1] == '8';
297 }
298 
299 static bool is_an_alpha2(const char *alpha2)
300 {
301 	if (!alpha2)
302 		return false;
303 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
304 }
305 
306 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
307 {
308 	if (!alpha2_x || !alpha2_y)
309 		return false;
310 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
311 }
312 
313 static bool regdom_changes(const char *alpha2)
314 {
315 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
316 
317 	if (!r)
318 		return true;
319 	return !alpha2_equal(r->alpha2, alpha2);
320 }
321 
322 /*
323  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
324  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
325  * has ever been issued.
326  */
327 static bool is_user_regdom_saved(void)
328 {
329 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
330 		return false;
331 
332 	/* This would indicate a mistake on the design */
333 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
334 		 "Unexpected user alpha2: %c%c\n",
335 		 user_alpha2[0], user_alpha2[1]))
336 		return false;
337 
338 	return true;
339 }
340 
341 static const struct ieee80211_regdomain *
342 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
343 {
344 	struct ieee80211_regdomain *regd;
345 	int size_of_regd;
346 	unsigned int i;
347 
348 	size_of_regd =
349 		sizeof(struct ieee80211_regdomain) +
350 		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
351 
352 	regd = kzalloc(size_of_regd, GFP_KERNEL);
353 	if (!regd)
354 		return ERR_PTR(-ENOMEM);
355 
356 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
357 
358 	for (i = 0; i < src_regd->n_reg_rules; i++)
359 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
360 		       sizeof(struct ieee80211_reg_rule));
361 
362 	return regd;
363 }
364 
365 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
366 struct reg_regdb_search_request {
367 	char alpha2[2];
368 	struct list_head list;
369 };
370 
371 static LIST_HEAD(reg_regdb_search_list);
372 static DEFINE_MUTEX(reg_regdb_search_mutex);
373 
374 static void reg_regdb_search(struct work_struct *work)
375 {
376 	struct reg_regdb_search_request *request;
377 	const struct ieee80211_regdomain *curdom, *regdom = NULL;
378 	int i;
379 
380 	mutex_lock(&cfg80211_mutex);
381 
382 	mutex_lock(&reg_regdb_search_mutex);
383 	while (!list_empty(&reg_regdb_search_list)) {
384 		request = list_first_entry(&reg_regdb_search_list,
385 					   struct reg_regdb_search_request,
386 					   list);
387 		list_del(&request->list);
388 
389 		for (i = 0; i < reg_regdb_size; i++) {
390 			curdom = reg_regdb[i];
391 
392 			if (alpha2_equal(request->alpha2, curdom->alpha2)) {
393 				regdom = reg_copy_regd(curdom);
394 				break;
395 			}
396 		}
397 
398 		kfree(request);
399 	}
400 	mutex_unlock(&reg_regdb_search_mutex);
401 
402 	if (!IS_ERR_OR_NULL(regdom))
403 		set_regdom(regdom);
404 
405 	mutex_unlock(&cfg80211_mutex);
406 }
407 
408 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
409 
410 static void reg_regdb_query(const char *alpha2)
411 {
412 	struct reg_regdb_search_request *request;
413 
414 	if (!alpha2)
415 		return;
416 
417 	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
418 	if (!request)
419 		return;
420 
421 	memcpy(request->alpha2, alpha2, 2);
422 
423 	mutex_lock(&reg_regdb_search_mutex);
424 	list_add_tail(&request->list, &reg_regdb_search_list);
425 	mutex_unlock(&reg_regdb_search_mutex);
426 
427 	schedule_work(&reg_regdb_work);
428 }
429 
430 /* Feel free to add any other sanity checks here */
431 static void reg_regdb_size_check(void)
432 {
433 	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
434 	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
435 }
436 #else
437 static inline void reg_regdb_size_check(void) {}
438 static inline void reg_regdb_query(const char *alpha2) {}
439 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
440 
441 /*
442  * This lets us keep regulatory code which is updated on a regulatory
443  * basis in userspace. Country information is filled in by
444  * reg_device_uevent
445  */
446 static int call_crda(const char *alpha2)
447 {
448 	if (!is_world_regdom((char *) alpha2))
449 		pr_info("Calling CRDA for country: %c%c\n",
450 			alpha2[0], alpha2[1]);
451 	else
452 		pr_info("Calling CRDA to update world regulatory domain\n");
453 
454 	/* query internal regulatory database (if it exists) */
455 	reg_regdb_query(alpha2);
456 
457 	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
458 }
459 
460 static bool reg_is_valid_request(const char *alpha2)
461 {
462 	struct regulatory_request *lr = get_last_request();
463 
464 	if (!lr || lr->processed)
465 		return false;
466 
467 	return alpha2_equal(lr->alpha2, alpha2);
468 }
469 
470 /* Sanity check on a regulatory rule */
471 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
472 {
473 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
474 	u32 freq_diff;
475 
476 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
477 		return false;
478 
479 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
480 		return false;
481 
482 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
483 
484 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
485 	    freq_range->max_bandwidth_khz > freq_diff)
486 		return false;
487 
488 	return true;
489 }
490 
491 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
492 {
493 	const struct ieee80211_reg_rule *reg_rule = NULL;
494 	unsigned int i;
495 
496 	if (!rd->n_reg_rules)
497 		return false;
498 
499 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
500 		return false;
501 
502 	for (i = 0; i < rd->n_reg_rules; i++) {
503 		reg_rule = &rd->reg_rules[i];
504 		if (!is_valid_reg_rule(reg_rule))
505 			return false;
506 	}
507 
508 	return true;
509 }
510 
511 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
512 			    u32 center_freq_khz, u32 bw_khz)
513 {
514 	u32 start_freq_khz, end_freq_khz;
515 
516 	start_freq_khz = center_freq_khz - (bw_khz/2);
517 	end_freq_khz = center_freq_khz + (bw_khz/2);
518 
519 	if (start_freq_khz >= freq_range->start_freq_khz &&
520 	    end_freq_khz <= freq_range->end_freq_khz)
521 		return true;
522 
523 	return false;
524 }
525 
526 /**
527  * freq_in_rule_band - tells us if a frequency is in a frequency band
528  * @freq_range: frequency rule we want to query
529  * @freq_khz: frequency we are inquiring about
530  *
531  * This lets us know if a specific frequency rule is or is not relevant to
532  * a specific frequency's band. Bands are device specific and artificial
533  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
534  * however it is safe for now to assume that a frequency rule should not be
535  * part of a frequency's band if the start freq or end freq are off by more
536  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
537  * 60 GHz band.
538  * This resolution can be lowered and should be considered as we add
539  * regulatory rule support for other "bands".
540  **/
541 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
542 			      u32 freq_khz)
543 {
544 #define ONE_GHZ_IN_KHZ	1000000
545 	/*
546 	 * From 802.11ad: directional multi-gigabit (DMG):
547 	 * Pertaining to operation in a frequency band containing a channel
548 	 * with the Channel starting frequency above 45 GHz.
549 	 */
550 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
551 			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
552 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
553 		return true;
554 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
555 		return true;
556 	return false;
557 #undef ONE_GHZ_IN_KHZ
558 }
559 
560 /*
561  * Helper for regdom_intersect(), this does the real
562  * mathematical intersection fun
563  */
564 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
565 			       const struct ieee80211_reg_rule *rule2,
566 			       struct ieee80211_reg_rule *intersected_rule)
567 {
568 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
569 	struct ieee80211_freq_range *freq_range;
570 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
571 	struct ieee80211_power_rule *power_rule;
572 	u32 freq_diff;
573 
574 	freq_range1 = &rule1->freq_range;
575 	freq_range2 = &rule2->freq_range;
576 	freq_range = &intersected_rule->freq_range;
577 
578 	power_rule1 = &rule1->power_rule;
579 	power_rule2 = &rule2->power_rule;
580 	power_rule = &intersected_rule->power_rule;
581 
582 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
583 					 freq_range2->start_freq_khz);
584 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
585 				       freq_range2->end_freq_khz);
586 	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
587 					    freq_range2->max_bandwidth_khz);
588 
589 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
590 	if (freq_range->max_bandwidth_khz > freq_diff)
591 		freq_range->max_bandwidth_khz = freq_diff;
592 
593 	power_rule->max_eirp = min(power_rule1->max_eirp,
594 		power_rule2->max_eirp);
595 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
596 		power_rule2->max_antenna_gain);
597 
598 	intersected_rule->flags = rule1->flags | rule2->flags;
599 
600 	if (!is_valid_reg_rule(intersected_rule))
601 		return -EINVAL;
602 
603 	return 0;
604 }
605 
606 /**
607  * regdom_intersect - do the intersection between two regulatory domains
608  * @rd1: first regulatory domain
609  * @rd2: second regulatory domain
610  *
611  * Use this function to get the intersection between two regulatory domains.
612  * Once completed we will mark the alpha2 for the rd as intersected, "98",
613  * as no one single alpha2 can represent this regulatory domain.
614  *
615  * Returns a pointer to the regulatory domain structure which will hold the
616  * resulting intersection of rules between rd1 and rd2. We will
617  * kzalloc() this structure for you.
618  */
619 static struct ieee80211_regdomain *
620 regdom_intersect(const struct ieee80211_regdomain *rd1,
621 		 const struct ieee80211_regdomain *rd2)
622 {
623 	int r, size_of_regd;
624 	unsigned int x, y;
625 	unsigned int num_rules = 0, rule_idx = 0;
626 	const struct ieee80211_reg_rule *rule1, *rule2;
627 	struct ieee80211_reg_rule *intersected_rule;
628 	struct ieee80211_regdomain *rd;
629 	/* This is just a dummy holder to help us count */
630 	struct ieee80211_reg_rule dummy_rule;
631 
632 	if (!rd1 || !rd2)
633 		return NULL;
634 
635 	/*
636 	 * First we get a count of the rules we'll need, then we actually
637 	 * build them. This is to so we can malloc() and free() a
638 	 * regdomain once. The reason we use reg_rules_intersect() here
639 	 * is it will return -EINVAL if the rule computed makes no sense.
640 	 * All rules that do check out OK are valid.
641 	 */
642 
643 	for (x = 0; x < rd1->n_reg_rules; x++) {
644 		rule1 = &rd1->reg_rules[x];
645 		for (y = 0; y < rd2->n_reg_rules; y++) {
646 			rule2 = &rd2->reg_rules[y];
647 			if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
648 				num_rules++;
649 		}
650 	}
651 
652 	if (!num_rules)
653 		return NULL;
654 
655 	size_of_regd = sizeof(struct ieee80211_regdomain) +
656 		       num_rules * sizeof(struct ieee80211_reg_rule);
657 
658 	rd = kzalloc(size_of_regd, GFP_KERNEL);
659 	if (!rd)
660 		return NULL;
661 
662 	for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
663 		rule1 = &rd1->reg_rules[x];
664 		for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
665 			rule2 = &rd2->reg_rules[y];
666 			/*
667 			 * This time around instead of using the stack lets
668 			 * write to the target rule directly saving ourselves
669 			 * a memcpy()
670 			 */
671 			intersected_rule = &rd->reg_rules[rule_idx];
672 			r = reg_rules_intersect(rule1, rule2, intersected_rule);
673 			/*
674 			 * No need to memset here the intersected rule here as
675 			 * we're not using the stack anymore
676 			 */
677 			if (r)
678 				continue;
679 			rule_idx++;
680 		}
681 	}
682 
683 	if (rule_idx != num_rules) {
684 		kfree(rd);
685 		return NULL;
686 	}
687 
688 	rd->n_reg_rules = num_rules;
689 	rd->alpha2[0] = '9';
690 	rd->alpha2[1] = '8';
691 
692 	return rd;
693 }
694 
695 /*
696  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
697  * want to just have the channel structure use these
698  */
699 static u32 map_regdom_flags(u32 rd_flags)
700 {
701 	u32 channel_flags = 0;
702 	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
703 		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
704 	if (rd_flags & NL80211_RRF_NO_IBSS)
705 		channel_flags |= IEEE80211_CHAN_NO_IBSS;
706 	if (rd_flags & NL80211_RRF_DFS)
707 		channel_flags |= IEEE80211_CHAN_RADAR;
708 	if (rd_flags & NL80211_RRF_NO_OFDM)
709 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
710 	return channel_flags;
711 }
712 
713 static const struct ieee80211_reg_rule *
714 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
715 		   const struct ieee80211_regdomain *regd)
716 {
717 	int i;
718 	bool band_rule_found = false;
719 	bool bw_fits = false;
720 
721 	if (!regd)
722 		return ERR_PTR(-EINVAL);
723 
724 	for (i = 0; i < regd->n_reg_rules; i++) {
725 		const struct ieee80211_reg_rule *rr;
726 		const struct ieee80211_freq_range *fr = NULL;
727 
728 		rr = &regd->reg_rules[i];
729 		fr = &rr->freq_range;
730 
731 		/*
732 		 * We only need to know if one frequency rule was
733 		 * was in center_freq's band, that's enough, so lets
734 		 * not overwrite it once found
735 		 */
736 		if (!band_rule_found)
737 			band_rule_found = freq_in_rule_band(fr, center_freq);
738 
739 		bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
740 
741 		if (band_rule_found && bw_fits)
742 			return rr;
743 	}
744 
745 	if (!band_rule_found)
746 		return ERR_PTR(-ERANGE);
747 
748 	return ERR_PTR(-EINVAL);
749 }
750 
751 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
752 					       u32 center_freq)
753 {
754 	const struct ieee80211_regdomain *regd;
755 	struct regulatory_request *lr = get_last_request();
756 
757 	/*
758 	 * Follow the driver's regulatory domain, if present, unless a country
759 	 * IE has been processed or a user wants to help complaince further
760 	 */
761 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
762 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
763 	    wiphy->regd)
764 		regd = get_wiphy_regdom(wiphy);
765 	else
766 		regd = get_cfg80211_regdom();
767 
768 	return freq_reg_info_regd(wiphy, center_freq, regd);
769 }
770 EXPORT_SYMBOL(freq_reg_info);
771 
772 #ifdef CONFIG_CFG80211_REG_DEBUG
773 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
774 {
775 	switch (initiator) {
776 	case NL80211_REGDOM_SET_BY_CORE:
777 		return "Set by core";
778 	case NL80211_REGDOM_SET_BY_USER:
779 		return "Set by user";
780 	case NL80211_REGDOM_SET_BY_DRIVER:
781 		return "Set by driver";
782 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
783 		return "Set by country IE";
784 	default:
785 		WARN_ON(1);
786 		return "Set by bug";
787 	}
788 }
789 
790 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
791 				    const struct ieee80211_reg_rule *reg_rule)
792 {
793 	const struct ieee80211_power_rule *power_rule;
794 	const struct ieee80211_freq_range *freq_range;
795 	char max_antenna_gain[32];
796 
797 	power_rule = &reg_rule->power_rule;
798 	freq_range = &reg_rule->freq_range;
799 
800 	if (!power_rule->max_antenna_gain)
801 		snprintf(max_antenna_gain, 32, "N/A");
802 	else
803 		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
804 
805 	REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
806 		      chan->center_freq);
807 
808 	REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
809 		      freq_range->start_freq_khz, freq_range->end_freq_khz,
810 		      freq_range->max_bandwidth_khz, max_antenna_gain,
811 		      power_rule->max_eirp);
812 }
813 #else
814 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
815 				    const struct ieee80211_reg_rule *reg_rule)
816 {
817 	return;
818 }
819 #endif
820 
821 /*
822  * Note that right now we assume the desired channel bandwidth
823  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
824  * per channel, the primary and the extension channel).
825  */
826 static void handle_channel(struct wiphy *wiphy,
827 			   enum nl80211_reg_initiator initiator,
828 			   struct ieee80211_channel *chan)
829 {
830 	u32 flags, bw_flags = 0;
831 	const struct ieee80211_reg_rule *reg_rule = NULL;
832 	const struct ieee80211_power_rule *power_rule = NULL;
833 	const struct ieee80211_freq_range *freq_range = NULL;
834 	struct wiphy *request_wiphy = NULL;
835 	struct regulatory_request *lr = get_last_request();
836 
837 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
838 
839 	flags = chan->orig_flags;
840 
841 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
842 	if (IS_ERR(reg_rule)) {
843 		/*
844 		 * We will disable all channels that do not match our
845 		 * received regulatory rule unless the hint is coming
846 		 * from a Country IE and the Country IE had no information
847 		 * about a band. The IEEE 802.11 spec allows for an AP
848 		 * to send only a subset of the regulatory rules allowed,
849 		 * so an AP in the US that only supports 2.4 GHz may only send
850 		 * a country IE with information for the 2.4 GHz band
851 		 * while 5 GHz is still supported.
852 		 */
853 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
854 		    PTR_ERR(reg_rule) == -ERANGE)
855 			return;
856 
857 		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
858 		chan->flags |= IEEE80211_CHAN_DISABLED;
859 		return;
860 	}
861 
862 	chan_reg_rule_print_dbg(chan, reg_rule);
863 
864 	power_rule = &reg_rule->power_rule;
865 	freq_range = &reg_rule->freq_range;
866 
867 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
868 		bw_flags = IEEE80211_CHAN_NO_HT40;
869 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
870 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
871 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
872 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
873 
874 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
875 	    request_wiphy && request_wiphy == wiphy &&
876 	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
877 		/*
878 		 * This guarantees the driver's requested regulatory domain
879 		 * will always be used as a base for further regulatory
880 		 * settings
881 		 */
882 		chan->flags = chan->orig_flags =
883 			map_regdom_flags(reg_rule->flags) | bw_flags;
884 		chan->max_antenna_gain = chan->orig_mag =
885 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
886 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
887 			(int) MBM_TO_DBM(power_rule->max_eirp);
888 		return;
889 	}
890 
891 	chan->dfs_state = NL80211_DFS_USABLE;
892 	chan->dfs_state_entered = jiffies;
893 
894 	chan->beacon_found = false;
895 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
896 	chan->max_antenna_gain =
897 		min_t(int, chan->orig_mag,
898 		      MBI_TO_DBI(power_rule->max_antenna_gain));
899 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
900 	if (chan->orig_mpwr) {
901 		/*
902 		 * Devices that have their own custom regulatory domain
903 		 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
904 		 * passed country IE power settings.
905 		 */
906 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
907 		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
908 		    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
909 			chan->max_power = chan->max_reg_power;
910 		else
911 			chan->max_power = min(chan->orig_mpwr,
912 					      chan->max_reg_power);
913 	} else
914 		chan->max_power = chan->max_reg_power;
915 }
916 
917 static void handle_band(struct wiphy *wiphy,
918 			enum nl80211_reg_initiator initiator,
919 			struct ieee80211_supported_band *sband)
920 {
921 	unsigned int i;
922 
923 	if (!sband)
924 		return;
925 
926 	for (i = 0; i < sband->n_channels; i++)
927 		handle_channel(wiphy, initiator, &sband->channels[i]);
928 }
929 
930 static bool reg_request_cell_base(struct regulatory_request *request)
931 {
932 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
933 		return false;
934 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
935 }
936 
937 bool reg_last_request_cell_base(void)
938 {
939 	bool val;
940 
941 	mutex_lock(&reg_mutex);
942 	val = reg_request_cell_base(get_last_request());
943 	mutex_unlock(&reg_mutex);
944 
945 	return val;
946 }
947 
948 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
949 /* Core specific check */
950 static enum reg_request_treatment
951 reg_ignore_cell_hint(struct regulatory_request *pending_request)
952 {
953 	struct regulatory_request *lr = get_last_request();
954 
955 	if (!reg_num_devs_support_basehint)
956 		return REG_REQ_IGNORE;
957 
958 	if (reg_request_cell_base(lr) &&
959 	    !regdom_changes(pending_request->alpha2))
960 		return REG_REQ_ALREADY_SET;
961 
962 	return REG_REQ_OK;
963 }
964 
965 /* Device specific check */
966 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
967 {
968 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
969 }
970 #else
971 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
972 {
973 	return REG_REQ_IGNORE;
974 }
975 
976 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
977 {
978 	return true;
979 }
980 #endif
981 
982 
983 static bool ignore_reg_update(struct wiphy *wiphy,
984 			      enum nl80211_reg_initiator initiator)
985 {
986 	struct regulatory_request *lr = get_last_request();
987 
988 	if (!lr) {
989 		REG_DBG_PRINT("Ignoring regulatory request %s since last_request is not set\n",
990 			      reg_initiator_name(initiator));
991 		return true;
992 	}
993 
994 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
995 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
996 		REG_DBG_PRINT("Ignoring regulatory request %s since the driver uses its own custom regulatory domain\n",
997 			      reg_initiator_name(initiator));
998 		return true;
999 	}
1000 
1001 	/*
1002 	 * wiphy->regd will be set once the device has its own
1003 	 * desired regulatory domain set
1004 	 */
1005 	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1006 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1007 	    !is_world_regdom(lr->alpha2)) {
1008 		REG_DBG_PRINT("Ignoring regulatory request %s since the driver requires its own regulatory domain to be set first\n",
1009 			      reg_initiator_name(initiator));
1010 		return true;
1011 	}
1012 
1013 	if (reg_request_cell_base(lr))
1014 		return reg_dev_ignore_cell_hint(wiphy);
1015 
1016 	return false;
1017 }
1018 
1019 static bool reg_is_world_roaming(struct wiphy *wiphy)
1020 {
1021 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1022 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1023 	struct regulatory_request *lr = get_last_request();
1024 
1025 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1026 		return true;
1027 
1028 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1029 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1030 		return true;
1031 
1032 	return false;
1033 }
1034 
1035 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1036 			      struct reg_beacon *reg_beacon)
1037 {
1038 	struct ieee80211_supported_band *sband;
1039 	struct ieee80211_channel *chan;
1040 	bool channel_changed = false;
1041 	struct ieee80211_channel chan_before;
1042 
1043 	sband = wiphy->bands[reg_beacon->chan.band];
1044 	chan = &sband->channels[chan_idx];
1045 
1046 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1047 		return;
1048 
1049 	if (chan->beacon_found)
1050 		return;
1051 
1052 	chan->beacon_found = true;
1053 
1054 	if (!reg_is_world_roaming(wiphy))
1055 		return;
1056 
1057 	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1058 		return;
1059 
1060 	chan_before.center_freq = chan->center_freq;
1061 	chan_before.flags = chan->flags;
1062 
1063 	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1064 		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1065 		channel_changed = true;
1066 	}
1067 
1068 	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1069 		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1070 		channel_changed = true;
1071 	}
1072 
1073 	if (channel_changed)
1074 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1075 }
1076 
1077 /*
1078  * Called when a scan on a wiphy finds a beacon on
1079  * new channel
1080  */
1081 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1082 				    struct reg_beacon *reg_beacon)
1083 {
1084 	unsigned int i;
1085 	struct ieee80211_supported_band *sband;
1086 
1087 	if (!wiphy->bands[reg_beacon->chan.band])
1088 		return;
1089 
1090 	sband = wiphy->bands[reg_beacon->chan.band];
1091 
1092 	for (i = 0; i < sband->n_channels; i++)
1093 		handle_reg_beacon(wiphy, i, reg_beacon);
1094 }
1095 
1096 /*
1097  * Called upon reg changes or a new wiphy is added
1098  */
1099 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1100 {
1101 	unsigned int i;
1102 	struct ieee80211_supported_band *sband;
1103 	struct reg_beacon *reg_beacon;
1104 
1105 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1106 		if (!wiphy->bands[reg_beacon->chan.band])
1107 			continue;
1108 		sband = wiphy->bands[reg_beacon->chan.band];
1109 		for (i = 0; i < sband->n_channels; i++)
1110 			handle_reg_beacon(wiphy, i, reg_beacon);
1111 	}
1112 }
1113 
1114 /* Reap the advantages of previously found beacons */
1115 static void reg_process_beacons(struct wiphy *wiphy)
1116 {
1117 	/*
1118 	 * Means we are just firing up cfg80211, so no beacons would
1119 	 * have been processed yet.
1120 	 */
1121 	if (!last_request)
1122 		return;
1123 	wiphy_update_beacon_reg(wiphy);
1124 }
1125 
1126 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1127 {
1128 	if (!chan)
1129 		return false;
1130 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1131 		return false;
1132 	/* This would happen when regulatory rules disallow HT40 completely */
1133 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1134 		return false;
1135 	return true;
1136 }
1137 
1138 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1139 					 struct ieee80211_channel *channel)
1140 {
1141 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1142 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1143 	unsigned int i;
1144 
1145 	if (!is_ht40_allowed(channel)) {
1146 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1147 		return;
1148 	}
1149 
1150 	/*
1151 	 * We need to ensure the extension channels exist to
1152 	 * be able to use HT40- or HT40+, this finds them (or not)
1153 	 */
1154 	for (i = 0; i < sband->n_channels; i++) {
1155 		struct ieee80211_channel *c = &sband->channels[i];
1156 
1157 		if (c->center_freq == (channel->center_freq - 20))
1158 			channel_before = c;
1159 		if (c->center_freq == (channel->center_freq + 20))
1160 			channel_after = c;
1161 	}
1162 
1163 	/*
1164 	 * Please note that this assumes target bandwidth is 20 MHz,
1165 	 * if that ever changes we also need to change the below logic
1166 	 * to include that as well.
1167 	 */
1168 	if (!is_ht40_allowed(channel_before))
1169 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1170 	else
1171 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1172 
1173 	if (!is_ht40_allowed(channel_after))
1174 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1175 	else
1176 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1177 }
1178 
1179 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1180 				      struct ieee80211_supported_band *sband)
1181 {
1182 	unsigned int i;
1183 
1184 	if (!sband)
1185 		return;
1186 
1187 	for (i = 0; i < sband->n_channels; i++)
1188 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1189 }
1190 
1191 static void reg_process_ht_flags(struct wiphy *wiphy)
1192 {
1193 	enum ieee80211_band band;
1194 
1195 	if (!wiphy)
1196 		return;
1197 
1198 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1199 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1200 }
1201 
1202 static void wiphy_update_regulatory(struct wiphy *wiphy,
1203 				    enum nl80211_reg_initiator initiator)
1204 {
1205 	enum ieee80211_band band;
1206 	struct regulatory_request *lr = get_last_request();
1207 
1208 	if (ignore_reg_update(wiphy, initiator))
1209 		return;
1210 
1211 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1212 
1213 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1214 		handle_band(wiphy, initiator, wiphy->bands[band]);
1215 
1216 	reg_process_beacons(wiphy);
1217 	reg_process_ht_flags(wiphy);
1218 
1219 	if (wiphy->reg_notifier)
1220 		wiphy->reg_notifier(wiphy, lr);
1221 }
1222 
1223 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1224 {
1225 	struct cfg80211_registered_device *rdev;
1226 	struct wiphy *wiphy;
1227 
1228 	assert_cfg80211_lock();
1229 
1230 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1231 		wiphy = &rdev->wiphy;
1232 		wiphy_update_regulatory(wiphy, initiator);
1233 		/*
1234 		 * Regulatory updates set by CORE are ignored for custom
1235 		 * regulatory cards. Let us notify the changes to the driver,
1236 		 * as some drivers used this to restore its orig_* reg domain.
1237 		 */
1238 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1239 		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1240 		    wiphy->reg_notifier)
1241 			wiphy->reg_notifier(wiphy, get_last_request());
1242 	}
1243 }
1244 
1245 static void handle_channel_custom(struct wiphy *wiphy,
1246 				  struct ieee80211_channel *chan,
1247 				  const struct ieee80211_regdomain *regd)
1248 {
1249 	u32 bw_flags = 0;
1250 	const struct ieee80211_reg_rule *reg_rule = NULL;
1251 	const struct ieee80211_power_rule *power_rule = NULL;
1252 	const struct ieee80211_freq_range *freq_range = NULL;
1253 
1254 	reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1255 				      regd);
1256 
1257 	if (IS_ERR(reg_rule)) {
1258 		REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1259 			      chan->center_freq);
1260 		chan->flags = IEEE80211_CHAN_DISABLED;
1261 		return;
1262 	}
1263 
1264 	chan_reg_rule_print_dbg(chan, reg_rule);
1265 
1266 	power_rule = &reg_rule->power_rule;
1267 	freq_range = &reg_rule->freq_range;
1268 
1269 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1270 		bw_flags = IEEE80211_CHAN_NO_HT40;
1271 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
1272 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1273 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
1274 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1275 
1276 	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1277 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1278 	chan->max_reg_power = chan->max_power =
1279 		(int) MBM_TO_DBM(power_rule->max_eirp);
1280 }
1281 
1282 static void handle_band_custom(struct wiphy *wiphy,
1283 			       struct ieee80211_supported_band *sband,
1284 			       const struct ieee80211_regdomain *regd)
1285 {
1286 	unsigned int i;
1287 
1288 	if (!sband)
1289 		return;
1290 
1291 	for (i = 0; i < sband->n_channels; i++)
1292 		handle_channel_custom(wiphy, &sband->channels[i], regd);
1293 }
1294 
1295 /* Used by drivers prior to wiphy registration */
1296 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1297 				   const struct ieee80211_regdomain *regd)
1298 {
1299 	enum ieee80211_band band;
1300 	unsigned int bands_set = 0;
1301 
1302 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1303 		if (!wiphy->bands[band])
1304 			continue;
1305 		handle_band_custom(wiphy, wiphy->bands[band], regd);
1306 		bands_set++;
1307 	}
1308 
1309 	/*
1310 	 * no point in calling this if it won't have any effect
1311 	 * on your device's supported bands.
1312 	 */
1313 	WARN_ON(!bands_set);
1314 }
1315 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1316 
1317 /* This has the logic which determines when a new request
1318  * should be ignored. */
1319 static enum reg_request_treatment
1320 get_reg_request_treatment(struct wiphy *wiphy,
1321 			  struct regulatory_request *pending_request)
1322 {
1323 	struct wiphy *last_wiphy = NULL;
1324 	struct regulatory_request *lr = get_last_request();
1325 
1326 	/* All initial requests are respected */
1327 	if (!lr)
1328 		return REG_REQ_OK;
1329 
1330 	switch (pending_request->initiator) {
1331 	case NL80211_REGDOM_SET_BY_CORE:
1332 		return REG_REQ_OK;
1333 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1334 		if (reg_request_cell_base(lr)) {
1335 			/* Trust a Cell base station over the AP's country IE */
1336 			if (regdom_changes(pending_request->alpha2))
1337 				return REG_REQ_IGNORE;
1338 			return REG_REQ_ALREADY_SET;
1339 		}
1340 
1341 		last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1342 
1343 		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1344 			return -EINVAL;
1345 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1346 			if (last_wiphy != wiphy) {
1347 				/*
1348 				 * Two cards with two APs claiming different
1349 				 * Country IE alpha2s. We could
1350 				 * intersect them, but that seems unlikely
1351 				 * to be correct. Reject second one for now.
1352 				 */
1353 				if (regdom_changes(pending_request->alpha2))
1354 					return REG_REQ_IGNORE;
1355 				return REG_REQ_ALREADY_SET;
1356 			}
1357 			/*
1358 			 * Two consecutive Country IE hints on the same wiphy.
1359 			 * This should be picked up early by the driver/stack
1360 			 */
1361 			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1362 				return REG_REQ_OK;
1363 			return REG_REQ_ALREADY_SET;
1364 		}
1365 		return 0;
1366 	case NL80211_REGDOM_SET_BY_DRIVER:
1367 		if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1368 			if (regdom_changes(pending_request->alpha2))
1369 				return REG_REQ_OK;
1370 			return REG_REQ_ALREADY_SET;
1371 		}
1372 
1373 		/*
1374 		 * This would happen if you unplug and plug your card
1375 		 * back in or if you add a new device for which the previously
1376 		 * loaded card also agrees on the regulatory domain.
1377 		 */
1378 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1379 		    !regdom_changes(pending_request->alpha2))
1380 			return REG_REQ_ALREADY_SET;
1381 
1382 		return REG_REQ_INTERSECT;
1383 	case NL80211_REGDOM_SET_BY_USER:
1384 		if (reg_request_cell_base(pending_request))
1385 			return reg_ignore_cell_hint(pending_request);
1386 
1387 		if (reg_request_cell_base(lr))
1388 			return REG_REQ_IGNORE;
1389 
1390 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1391 			return REG_REQ_INTERSECT;
1392 		/*
1393 		 * If the user knows better the user should set the regdom
1394 		 * to their country before the IE is picked up
1395 		 */
1396 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1397 		    lr->intersect)
1398 			return REG_REQ_IGNORE;
1399 		/*
1400 		 * Process user requests only after previous user/driver/core
1401 		 * requests have been processed
1402 		 */
1403 		if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1404 		     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1405 		     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1406 		    regdom_changes(lr->alpha2))
1407 			return REG_REQ_IGNORE;
1408 
1409 		if (!regdom_changes(pending_request->alpha2))
1410 			return REG_REQ_ALREADY_SET;
1411 
1412 		return REG_REQ_OK;
1413 	}
1414 
1415 	return REG_REQ_IGNORE;
1416 }
1417 
1418 static void reg_set_request_processed(void)
1419 {
1420 	bool need_more_processing = false;
1421 	struct regulatory_request *lr = get_last_request();
1422 
1423 	lr->processed = true;
1424 
1425 	spin_lock(&reg_requests_lock);
1426 	if (!list_empty(&reg_requests_list))
1427 		need_more_processing = true;
1428 	spin_unlock(&reg_requests_lock);
1429 
1430 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1431 		cancel_delayed_work(&reg_timeout);
1432 
1433 	if (need_more_processing)
1434 		schedule_work(&reg_work);
1435 }
1436 
1437 /**
1438  * __regulatory_hint - hint to the wireless core a regulatory domain
1439  * @wiphy: if the hint comes from country information from an AP, this
1440  *	is required to be set to the wiphy that received the information
1441  * @pending_request: the regulatory request currently being processed
1442  *
1443  * The Wireless subsystem can use this function to hint to the wireless core
1444  * what it believes should be the current regulatory domain.
1445  *
1446  * Returns one of the different reg request treatment values.
1447  *
1448  * Caller must hold &reg_mutex
1449  */
1450 static enum reg_request_treatment
1451 __regulatory_hint(struct wiphy *wiphy,
1452 		  struct regulatory_request *pending_request)
1453 {
1454 	const struct ieee80211_regdomain *regd;
1455 	bool intersect = false;
1456 	enum reg_request_treatment treatment;
1457 	struct regulatory_request *lr;
1458 
1459 	treatment = get_reg_request_treatment(wiphy, pending_request);
1460 
1461 	switch (treatment) {
1462 	case REG_REQ_INTERSECT:
1463 		if (pending_request->initiator ==
1464 		    NL80211_REGDOM_SET_BY_DRIVER) {
1465 			regd = reg_copy_regd(get_cfg80211_regdom());
1466 			if (IS_ERR(regd)) {
1467 				kfree(pending_request);
1468 				return PTR_ERR(regd);
1469 			}
1470 			rcu_assign_pointer(wiphy->regd, regd);
1471 		}
1472 		intersect = true;
1473 		break;
1474 	case REG_REQ_OK:
1475 		break;
1476 	default:
1477 		/*
1478 		 * If the regulatory domain being requested by the
1479 		 * driver has already been set just copy it to the
1480 		 * wiphy
1481 		 */
1482 		if (treatment == REG_REQ_ALREADY_SET &&
1483 		    pending_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
1484 			regd = reg_copy_regd(get_cfg80211_regdom());
1485 			if (IS_ERR(regd)) {
1486 				kfree(pending_request);
1487 				return REG_REQ_IGNORE;
1488 			}
1489 			treatment = REG_REQ_ALREADY_SET;
1490 			rcu_assign_pointer(wiphy->regd, regd);
1491 			goto new_request;
1492 		}
1493 		kfree(pending_request);
1494 		return treatment;
1495 	}
1496 
1497 new_request:
1498 	lr = get_last_request();
1499 	if (lr != &core_request_world && lr)
1500 		kfree_rcu(lr, rcu_head);
1501 
1502 	pending_request->intersect = intersect;
1503 	pending_request->processed = false;
1504 	rcu_assign_pointer(last_request, pending_request);
1505 	lr = pending_request;
1506 
1507 	pending_request = NULL;
1508 
1509 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER) {
1510 		user_alpha2[0] = lr->alpha2[0];
1511 		user_alpha2[1] = lr->alpha2[1];
1512 	}
1513 
1514 	/* When r == REG_REQ_INTERSECT we do need to call CRDA */
1515 	if (treatment != REG_REQ_OK && treatment != REG_REQ_INTERSECT) {
1516 		/*
1517 		 * Since CRDA will not be called in this case as we already
1518 		 * have applied the requested regulatory domain before we just
1519 		 * inform userspace we have processed the request
1520 		 */
1521 		if (treatment == REG_REQ_ALREADY_SET) {
1522 			nl80211_send_reg_change_event(lr);
1523 			reg_set_request_processed();
1524 		}
1525 		return treatment;
1526 	}
1527 
1528 	if (call_crda(lr->alpha2))
1529 		return REG_REQ_IGNORE;
1530 	return REG_REQ_OK;
1531 }
1532 
1533 /* This processes *all* regulatory hints */
1534 static void reg_process_hint(struct regulatory_request *reg_request,
1535 			     enum nl80211_reg_initiator reg_initiator)
1536 {
1537 	struct wiphy *wiphy = NULL;
1538 
1539 	if (WARN_ON(!reg_request->alpha2))
1540 		return;
1541 
1542 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1543 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1544 
1545 	if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) {
1546 		kfree(reg_request);
1547 		return;
1548 	}
1549 
1550 	switch (__regulatory_hint(wiphy, reg_request)) {
1551 	case REG_REQ_ALREADY_SET:
1552 		/* This is required so that the orig_* parameters are saved */
1553 		if (wiphy && wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1554 			wiphy_update_regulatory(wiphy, reg_initiator);
1555 		break;
1556 	default:
1557 		if (reg_initiator == NL80211_REGDOM_SET_BY_USER)
1558 			schedule_delayed_work(&reg_timeout,
1559 					      msecs_to_jiffies(3142));
1560 		break;
1561 	}
1562 }
1563 
1564 /*
1565  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1566  * Regulatory hints come on a first come first serve basis and we
1567  * must process each one atomically.
1568  */
1569 static void reg_process_pending_hints(void)
1570 {
1571 	struct regulatory_request *reg_request, *lr;
1572 
1573 	mutex_lock(&cfg80211_mutex);
1574 	mutex_lock(&reg_mutex);
1575 	lr = get_last_request();
1576 
1577 	/* When last_request->processed becomes true this will be rescheduled */
1578 	if (lr && !lr->processed) {
1579 		REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1580 		goto out;
1581 	}
1582 
1583 	spin_lock(&reg_requests_lock);
1584 
1585 	if (list_empty(&reg_requests_list)) {
1586 		spin_unlock(&reg_requests_lock);
1587 		goto out;
1588 	}
1589 
1590 	reg_request = list_first_entry(&reg_requests_list,
1591 				       struct regulatory_request,
1592 				       list);
1593 	list_del_init(&reg_request->list);
1594 
1595 	spin_unlock(&reg_requests_lock);
1596 
1597 	reg_process_hint(reg_request, reg_request->initiator);
1598 
1599 out:
1600 	mutex_unlock(&reg_mutex);
1601 	mutex_unlock(&cfg80211_mutex);
1602 }
1603 
1604 /* Processes beacon hints -- this has nothing to do with country IEs */
1605 static void reg_process_pending_beacon_hints(void)
1606 {
1607 	struct cfg80211_registered_device *rdev;
1608 	struct reg_beacon *pending_beacon, *tmp;
1609 
1610 	mutex_lock(&cfg80211_mutex);
1611 	mutex_lock(&reg_mutex);
1612 
1613 	/* This goes through the _pending_ beacon list */
1614 	spin_lock_bh(&reg_pending_beacons_lock);
1615 
1616 	list_for_each_entry_safe(pending_beacon, tmp,
1617 				 &reg_pending_beacons, list) {
1618 		list_del_init(&pending_beacon->list);
1619 
1620 		/* Applies the beacon hint to current wiphys */
1621 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1622 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1623 
1624 		/* Remembers the beacon hint for new wiphys or reg changes */
1625 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
1626 	}
1627 
1628 	spin_unlock_bh(&reg_pending_beacons_lock);
1629 	mutex_unlock(&reg_mutex);
1630 	mutex_unlock(&cfg80211_mutex);
1631 }
1632 
1633 static void reg_todo(struct work_struct *work)
1634 {
1635 	reg_process_pending_hints();
1636 	reg_process_pending_beacon_hints();
1637 }
1638 
1639 static void queue_regulatory_request(struct regulatory_request *request)
1640 {
1641 	request->alpha2[0] = toupper(request->alpha2[0]);
1642 	request->alpha2[1] = toupper(request->alpha2[1]);
1643 
1644 	spin_lock(&reg_requests_lock);
1645 	list_add_tail(&request->list, &reg_requests_list);
1646 	spin_unlock(&reg_requests_lock);
1647 
1648 	schedule_work(&reg_work);
1649 }
1650 
1651 /*
1652  * Core regulatory hint -- happens during cfg80211_init()
1653  * and when we restore regulatory settings.
1654  */
1655 static int regulatory_hint_core(const char *alpha2)
1656 {
1657 	struct regulatory_request *request;
1658 
1659 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1660 	if (!request)
1661 		return -ENOMEM;
1662 
1663 	request->alpha2[0] = alpha2[0];
1664 	request->alpha2[1] = alpha2[1];
1665 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1666 
1667 	queue_regulatory_request(request);
1668 
1669 	return 0;
1670 }
1671 
1672 /* User hints */
1673 int regulatory_hint_user(const char *alpha2,
1674 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
1675 {
1676 	struct regulatory_request *request;
1677 
1678 	if (WARN_ON(!alpha2))
1679 		return -EINVAL;
1680 
1681 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1682 	if (!request)
1683 		return -ENOMEM;
1684 
1685 	request->wiphy_idx = WIPHY_IDX_INVALID;
1686 	request->alpha2[0] = alpha2[0];
1687 	request->alpha2[1] = alpha2[1];
1688 	request->initiator = NL80211_REGDOM_SET_BY_USER;
1689 	request->user_reg_hint_type = user_reg_hint_type;
1690 
1691 	queue_regulatory_request(request);
1692 
1693 	return 0;
1694 }
1695 
1696 /* Driver hints */
1697 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1698 {
1699 	struct regulatory_request *request;
1700 
1701 	if (WARN_ON(!alpha2 || !wiphy))
1702 		return -EINVAL;
1703 
1704 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1705 	if (!request)
1706 		return -ENOMEM;
1707 
1708 	request->wiphy_idx = get_wiphy_idx(wiphy);
1709 
1710 	request->alpha2[0] = alpha2[0];
1711 	request->alpha2[1] = alpha2[1];
1712 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1713 
1714 	queue_regulatory_request(request);
1715 
1716 	return 0;
1717 }
1718 EXPORT_SYMBOL(regulatory_hint);
1719 
1720 /*
1721  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1722  * therefore cannot iterate over the rdev list here.
1723  */
1724 void regulatory_hint_11d(struct wiphy *wiphy, enum ieee80211_band band,
1725 			 const u8 *country_ie, u8 country_ie_len)
1726 {
1727 	char alpha2[2];
1728 	enum environment_cap env = ENVIRON_ANY;
1729 	struct regulatory_request *request, *lr;
1730 
1731 	mutex_lock(&reg_mutex);
1732 	lr = get_last_request();
1733 
1734 	if (unlikely(!lr))
1735 		goto out;
1736 
1737 	/* IE len must be evenly divisible by 2 */
1738 	if (country_ie_len & 0x01)
1739 		goto out;
1740 
1741 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1742 		goto out;
1743 
1744 	alpha2[0] = country_ie[0];
1745 	alpha2[1] = country_ie[1];
1746 
1747 	if (country_ie[2] == 'I')
1748 		env = ENVIRON_INDOOR;
1749 	else if (country_ie[2] == 'O')
1750 		env = ENVIRON_OUTDOOR;
1751 
1752 	/*
1753 	 * We will run this only upon a successful connection on cfg80211.
1754 	 * We leave conflict resolution to the workqueue, where can hold
1755 	 * cfg80211_mutex.
1756 	 */
1757 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1758 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
1759 		goto out;
1760 
1761 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1762 	if (!request)
1763 		goto out;
1764 
1765 	request->wiphy_idx = get_wiphy_idx(wiphy);
1766 	request->alpha2[0] = alpha2[0];
1767 	request->alpha2[1] = alpha2[1];
1768 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1769 	request->country_ie_env = env;
1770 
1771 	queue_regulatory_request(request);
1772 out:
1773 	mutex_unlock(&reg_mutex);
1774 }
1775 
1776 static void restore_alpha2(char *alpha2, bool reset_user)
1777 {
1778 	/* indicates there is no alpha2 to consider for restoration */
1779 	alpha2[0] = '9';
1780 	alpha2[1] = '7';
1781 
1782 	/* The user setting has precedence over the module parameter */
1783 	if (is_user_regdom_saved()) {
1784 		/* Unless we're asked to ignore it and reset it */
1785 		if (reset_user) {
1786 			REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1787 			user_alpha2[0] = '9';
1788 			user_alpha2[1] = '7';
1789 
1790 			/*
1791 			 * If we're ignoring user settings, we still need to
1792 			 * check the module parameter to ensure we put things
1793 			 * back as they were for a full restore.
1794 			 */
1795 			if (!is_world_regdom(ieee80211_regdom)) {
1796 				REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1797 					      ieee80211_regdom[0], ieee80211_regdom[1]);
1798 				alpha2[0] = ieee80211_regdom[0];
1799 				alpha2[1] = ieee80211_regdom[1];
1800 			}
1801 		} else {
1802 			REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1803 				      user_alpha2[0], user_alpha2[1]);
1804 			alpha2[0] = user_alpha2[0];
1805 			alpha2[1] = user_alpha2[1];
1806 		}
1807 	} else if (!is_world_regdom(ieee80211_regdom)) {
1808 		REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1809 			      ieee80211_regdom[0], ieee80211_regdom[1]);
1810 		alpha2[0] = ieee80211_regdom[0];
1811 		alpha2[1] = ieee80211_regdom[1];
1812 	} else
1813 		REG_DBG_PRINT("Restoring regulatory settings\n");
1814 }
1815 
1816 static void restore_custom_reg_settings(struct wiphy *wiphy)
1817 {
1818 	struct ieee80211_supported_band *sband;
1819 	enum ieee80211_band band;
1820 	struct ieee80211_channel *chan;
1821 	int i;
1822 
1823 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1824 		sband = wiphy->bands[band];
1825 		if (!sband)
1826 			continue;
1827 		for (i = 0; i < sband->n_channels; i++) {
1828 			chan = &sband->channels[i];
1829 			chan->flags = chan->orig_flags;
1830 			chan->max_antenna_gain = chan->orig_mag;
1831 			chan->max_power = chan->orig_mpwr;
1832 			chan->beacon_found = false;
1833 		}
1834 	}
1835 }
1836 
1837 /*
1838  * Restoring regulatory settings involves ingoring any
1839  * possibly stale country IE information and user regulatory
1840  * settings if so desired, this includes any beacon hints
1841  * learned as we could have traveled outside to another country
1842  * after disconnection. To restore regulatory settings we do
1843  * exactly what we did at bootup:
1844  *
1845  *   - send a core regulatory hint
1846  *   - send a user regulatory hint if applicable
1847  *
1848  * Device drivers that send a regulatory hint for a specific country
1849  * keep their own regulatory domain on wiphy->regd so that does does
1850  * not need to be remembered.
1851  */
1852 static void restore_regulatory_settings(bool reset_user)
1853 {
1854 	char alpha2[2];
1855 	char world_alpha2[2];
1856 	struct reg_beacon *reg_beacon, *btmp;
1857 	struct regulatory_request *reg_request, *tmp;
1858 	LIST_HEAD(tmp_reg_req_list);
1859 	struct cfg80211_registered_device *rdev;
1860 
1861 	mutex_lock(&cfg80211_mutex);
1862 	mutex_lock(&reg_mutex);
1863 
1864 	reset_regdomains(true, &world_regdom);
1865 	restore_alpha2(alpha2, reset_user);
1866 
1867 	/*
1868 	 * If there's any pending requests we simply
1869 	 * stash them to a temporary pending queue and
1870 	 * add then after we've restored regulatory
1871 	 * settings.
1872 	 */
1873 	spin_lock(&reg_requests_lock);
1874 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
1875 		if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
1876 			continue;
1877 		list_move_tail(&reg_request->list, &tmp_reg_req_list);
1878 	}
1879 	spin_unlock(&reg_requests_lock);
1880 
1881 	/* Clear beacon hints */
1882 	spin_lock_bh(&reg_pending_beacons_lock);
1883 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
1884 		list_del(&reg_beacon->list);
1885 		kfree(reg_beacon);
1886 	}
1887 	spin_unlock_bh(&reg_pending_beacons_lock);
1888 
1889 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
1890 		list_del(&reg_beacon->list);
1891 		kfree(reg_beacon);
1892 	}
1893 
1894 	/* First restore to the basic regulatory settings */
1895 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
1896 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
1897 
1898 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1899 		if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1900 			restore_custom_reg_settings(&rdev->wiphy);
1901 	}
1902 
1903 	regulatory_hint_core(world_alpha2);
1904 
1905 	/*
1906 	 * This restores the ieee80211_regdom module parameter
1907 	 * preference or the last user requested regulatory
1908 	 * settings, user regulatory settings takes precedence.
1909 	 */
1910 	if (is_an_alpha2(alpha2))
1911 		regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1912 
1913 	spin_lock(&reg_requests_lock);
1914 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
1915 	spin_unlock(&reg_requests_lock);
1916 
1917 	mutex_unlock(&reg_mutex);
1918 	mutex_unlock(&cfg80211_mutex);
1919 
1920 	REG_DBG_PRINT("Kicking the queue\n");
1921 
1922 	schedule_work(&reg_work);
1923 }
1924 
1925 void regulatory_hint_disconnect(void)
1926 {
1927 	REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
1928 	restore_regulatory_settings(false);
1929 }
1930 
1931 static bool freq_is_chan_12_13_14(u16 freq)
1932 {
1933 	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1934 	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1935 	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1936 		return true;
1937 	return false;
1938 }
1939 
1940 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
1941 {
1942 	struct reg_beacon *pending_beacon;
1943 
1944 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
1945 		if (beacon_chan->center_freq ==
1946 		    pending_beacon->chan.center_freq)
1947 			return true;
1948 	return false;
1949 }
1950 
1951 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1952 				 struct ieee80211_channel *beacon_chan,
1953 				 gfp_t gfp)
1954 {
1955 	struct reg_beacon *reg_beacon;
1956 	bool processing;
1957 
1958 	if (beacon_chan->beacon_found ||
1959 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
1960 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1961 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
1962 		return 0;
1963 
1964 	spin_lock_bh(&reg_pending_beacons_lock);
1965 	processing = pending_reg_beacon(beacon_chan);
1966 	spin_unlock_bh(&reg_pending_beacons_lock);
1967 
1968 	if (processing)
1969 		return 0;
1970 
1971 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1972 	if (!reg_beacon)
1973 		return -ENOMEM;
1974 
1975 	REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
1976 		      beacon_chan->center_freq,
1977 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
1978 		      wiphy_name(wiphy));
1979 
1980 	memcpy(&reg_beacon->chan, beacon_chan,
1981 	       sizeof(struct ieee80211_channel));
1982 
1983 	/*
1984 	 * Since we can be called from BH or and non-BH context
1985 	 * we must use spin_lock_bh()
1986 	 */
1987 	spin_lock_bh(&reg_pending_beacons_lock);
1988 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1989 	spin_unlock_bh(&reg_pending_beacons_lock);
1990 
1991 	schedule_work(&reg_work);
1992 
1993 	return 0;
1994 }
1995 
1996 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1997 {
1998 	unsigned int i;
1999 	const struct ieee80211_reg_rule *reg_rule = NULL;
2000 	const struct ieee80211_freq_range *freq_range = NULL;
2001 	const struct ieee80211_power_rule *power_rule = NULL;
2002 
2003 	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2004 
2005 	for (i = 0; i < rd->n_reg_rules; i++) {
2006 		reg_rule = &rd->reg_rules[i];
2007 		freq_range = &reg_rule->freq_range;
2008 		power_rule = &reg_rule->power_rule;
2009 
2010 		/*
2011 		 * There may not be documentation for max antenna gain
2012 		 * in certain regions
2013 		 */
2014 		if (power_rule->max_antenna_gain)
2015 			pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2016 				freq_range->start_freq_khz,
2017 				freq_range->end_freq_khz,
2018 				freq_range->max_bandwidth_khz,
2019 				power_rule->max_antenna_gain,
2020 				power_rule->max_eirp);
2021 		else
2022 			pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2023 				freq_range->start_freq_khz,
2024 				freq_range->end_freq_khz,
2025 				freq_range->max_bandwidth_khz,
2026 				power_rule->max_eirp);
2027 	}
2028 }
2029 
2030 bool reg_supported_dfs_region(u8 dfs_region)
2031 {
2032 	switch (dfs_region) {
2033 	case NL80211_DFS_UNSET:
2034 	case NL80211_DFS_FCC:
2035 	case NL80211_DFS_ETSI:
2036 	case NL80211_DFS_JP:
2037 		return true;
2038 	default:
2039 		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2040 			      dfs_region);
2041 		return false;
2042 	}
2043 }
2044 
2045 static void print_dfs_region(u8 dfs_region)
2046 {
2047 	if (!dfs_region)
2048 		return;
2049 
2050 	switch (dfs_region) {
2051 	case NL80211_DFS_FCC:
2052 		pr_info(" DFS Master region FCC");
2053 		break;
2054 	case NL80211_DFS_ETSI:
2055 		pr_info(" DFS Master region ETSI");
2056 		break;
2057 	case NL80211_DFS_JP:
2058 		pr_info(" DFS Master region JP");
2059 		break;
2060 	default:
2061 		pr_info(" DFS Master region Unknown");
2062 		break;
2063 	}
2064 }
2065 
2066 static void print_regdomain(const struct ieee80211_regdomain *rd)
2067 {
2068 	struct regulatory_request *lr = get_last_request();
2069 
2070 	if (is_intersected_alpha2(rd->alpha2)) {
2071 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2072 			struct cfg80211_registered_device *rdev;
2073 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2074 			if (rdev) {
2075 				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2076 					rdev->country_ie_alpha2[0],
2077 					rdev->country_ie_alpha2[1]);
2078 			} else
2079 				pr_info("Current regulatory domain intersected:\n");
2080 		} else
2081 			pr_info("Current regulatory domain intersected:\n");
2082 	} else if (is_world_regdom(rd->alpha2)) {
2083 		pr_info("World regulatory domain updated:\n");
2084 	} else {
2085 		if (is_unknown_alpha2(rd->alpha2))
2086 			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2087 		else {
2088 			if (reg_request_cell_base(lr))
2089 				pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2090 					rd->alpha2[0], rd->alpha2[1]);
2091 			else
2092 				pr_info("Regulatory domain changed to country: %c%c\n",
2093 					rd->alpha2[0], rd->alpha2[1]);
2094 		}
2095 	}
2096 
2097 	print_dfs_region(rd->dfs_region);
2098 	print_rd_rules(rd);
2099 }
2100 
2101 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2102 {
2103 	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2104 	print_rd_rules(rd);
2105 }
2106 
2107 /* Takes ownership of rd only if it doesn't fail */
2108 static int __set_regdom(const struct ieee80211_regdomain *rd)
2109 {
2110 	const struct ieee80211_regdomain *regd;
2111 	const struct ieee80211_regdomain *intersected_rd = NULL;
2112 	struct wiphy *request_wiphy;
2113 	struct regulatory_request *lr = get_last_request();
2114 
2115 	/* Some basic sanity checks first */
2116 
2117 	if (!reg_is_valid_request(rd->alpha2))
2118 		return -EINVAL;
2119 
2120 	if (is_world_regdom(rd->alpha2)) {
2121 		update_world_regdomain(rd);
2122 		return 0;
2123 	}
2124 
2125 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2126 	    !is_unknown_alpha2(rd->alpha2))
2127 		return -EINVAL;
2128 
2129 	/*
2130 	 * Lets only bother proceeding on the same alpha2 if the current
2131 	 * rd is non static (it means CRDA was present and was used last)
2132 	 * and the pending request came in from a country IE
2133 	 */
2134 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2135 		/*
2136 		 * If someone else asked us to change the rd lets only bother
2137 		 * checking if the alpha2 changes if CRDA was already called
2138 		 */
2139 		if (!regdom_changes(rd->alpha2))
2140 			return -EALREADY;
2141 	}
2142 
2143 	/*
2144 	 * Now lets set the regulatory domain, update all driver channels
2145 	 * and finally inform them of what we have done, in case they want
2146 	 * to review or adjust their own settings based on their own
2147 	 * internal EEPROM data
2148 	 */
2149 
2150 	if (!is_valid_rd(rd)) {
2151 		pr_err("Invalid regulatory domain detected:\n");
2152 		print_regdomain_info(rd);
2153 		return -EINVAL;
2154 	}
2155 
2156 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2157 	if (!request_wiphy &&
2158 	    (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2159 	     lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2160 		schedule_delayed_work(&reg_timeout, 0);
2161 		return -ENODEV;
2162 	}
2163 
2164 	if (!lr->intersect) {
2165 		if (lr->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2166 			reset_regdomains(false, rd);
2167 			return 0;
2168 		}
2169 
2170 		/*
2171 		 * For a driver hint, lets copy the regulatory domain the
2172 		 * driver wanted to the wiphy to deal with conflicts
2173 		 */
2174 
2175 		/*
2176 		 * Userspace could have sent two replies with only
2177 		 * one kernel request.
2178 		 */
2179 		if (request_wiphy->regd)
2180 			return -EALREADY;
2181 
2182 		regd = reg_copy_regd(rd);
2183 		if (IS_ERR(regd))
2184 			return PTR_ERR(regd);
2185 
2186 		rcu_assign_pointer(request_wiphy->regd, regd);
2187 		reset_regdomains(false, rd);
2188 		return 0;
2189 	}
2190 
2191 	/* Intersection requires a bit more work */
2192 
2193 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2194 		intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2195 		if (!intersected_rd)
2196 			return -EINVAL;
2197 
2198 		/*
2199 		 * We can trash what CRDA provided now.
2200 		 * However if a driver requested this specific regulatory
2201 		 * domain we keep it for its private use
2202 		 */
2203 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
2204 			const struct ieee80211_regdomain *tmp;
2205 
2206 			tmp = get_wiphy_regdom(request_wiphy);
2207 			rcu_assign_pointer(request_wiphy->regd, rd);
2208 			rcu_free_regdom(tmp);
2209 		} else {
2210 			kfree(rd);
2211 		}
2212 
2213 		rd = NULL;
2214 
2215 		reset_regdomains(false, intersected_rd);
2216 
2217 		return 0;
2218 	}
2219 
2220 	return -EINVAL;
2221 }
2222 
2223 
2224 /*
2225  * Use this call to set the current regulatory domain. Conflicts with
2226  * multiple drivers can be ironed out later. Caller must've already
2227  * kmalloc'd the rd structure.
2228  */
2229 int set_regdom(const struct ieee80211_regdomain *rd)
2230 {
2231 	struct regulatory_request *lr;
2232 	int r;
2233 
2234 	mutex_lock(&reg_mutex);
2235 	lr = get_last_request();
2236 
2237 	/* Note that this doesn't update the wiphys, this is done below */
2238 	r = __set_regdom(rd);
2239 	if (r) {
2240 		if (r == -EALREADY)
2241 			reg_set_request_processed();
2242 
2243 		kfree(rd);
2244 		goto out;
2245 	}
2246 
2247 	/* This would make this whole thing pointless */
2248 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) {
2249 		r = -EINVAL;
2250 		goto out;
2251 	}
2252 
2253 	/* update all wiphys now with the new established regulatory domain */
2254 	update_all_wiphy_regulatory(lr->initiator);
2255 
2256 	print_regdomain(get_cfg80211_regdom());
2257 
2258 	nl80211_send_reg_change_event(lr);
2259 
2260 	reg_set_request_processed();
2261 
2262  out:
2263 	mutex_unlock(&reg_mutex);
2264 
2265 	return r;
2266 }
2267 
2268 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2269 {
2270 	struct regulatory_request *lr;
2271 	u8 alpha2[2];
2272 	bool add = false;
2273 
2274 	rcu_read_lock();
2275 	lr = get_last_request();
2276 	if (lr && !lr->processed) {
2277 		memcpy(alpha2, lr->alpha2, 2);
2278 		add = true;
2279 	}
2280 	rcu_read_unlock();
2281 
2282 	if (add)
2283 		return add_uevent_var(env, "COUNTRY=%c%c",
2284 				      alpha2[0], alpha2[1]);
2285 	return 0;
2286 }
2287 
2288 void wiphy_regulatory_register(struct wiphy *wiphy)
2289 {
2290 	mutex_lock(&reg_mutex);
2291 
2292 	if (!reg_dev_ignore_cell_hint(wiphy))
2293 		reg_num_devs_support_basehint++;
2294 
2295 	wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2296 
2297 	mutex_unlock(&reg_mutex);
2298 }
2299 
2300 /* Caller must hold cfg80211_mutex */
2301 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2302 {
2303 	struct wiphy *request_wiphy = NULL;
2304 	struct regulatory_request *lr;
2305 
2306 	mutex_lock(&reg_mutex);
2307 	lr = get_last_request();
2308 
2309 	if (!reg_dev_ignore_cell_hint(wiphy))
2310 		reg_num_devs_support_basehint--;
2311 
2312 	rcu_free_regdom(get_wiphy_regdom(wiphy));
2313 	rcu_assign_pointer(wiphy->regd, NULL);
2314 
2315 	if (lr)
2316 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2317 
2318 	if (!request_wiphy || request_wiphy != wiphy)
2319 		goto out;
2320 
2321 	lr->wiphy_idx = WIPHY_IDX_INVALID;
2322 	lr->country_ie_env = ENVIRON_ANY;
2323 out:
2324 	mutex_unlock(&reg_mutex);
2325 }
2326 
2327 static void reg_timeout_work(struct work_struct *work)
2328 {
2329 	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2330 	restore_regulatory_settings(true);
2331 }
2332 
2333 int __init regulatory_init(void)
2334 {
2335 	int err = 0;
2336 
2337 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2338 	if (IS_ERR(reg_pdev))
2339 		return PTR_ERR(reg_pdev);
2340 
2341 	reg_pdev->dev.type = &reg_device_type;
2342 
2343 	spin_lock_init(&reg_requests_lock);
2344 	spin_lock_init(&reg_pending_beacons_lock);
2345 
2346 	reg_regdb_size_check();
2347 
2348 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2349 
2350 	user_alpha2[0] = '9';
2351 	user_alpha2[1] = '7';
2352 
2353 	/* We always try to get an update for the static regdomain */
2354 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2355 	if (err) {
2356 		if (err == -ENOMEM)
2357 			return err;
2358 		/*
2359 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
2360 		 * memory which is handled and propagated appropriately above
2361 		 * but it can also fail during a netlink_broadcast() or during
2362 		 * early boot for call_usermodehelper(). For now treat these
2363 		 * errors as non-fatal.
2364 		 */
2365 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2366 	}
2367 
2368 	/*
2369 	 * Finally, if the user set the module parameter treat it
2370 	 * as a user hint.
2371 	 */
2372 	if (!is_world_regdom(ieee80211_regdom))
2373 		regulatory_hint_user(ieee80211_regdom,
2374 				     NL80211_USER_REG_HINT_USER);
2375 
2376 	return 0;
2377 }
2378 
2379 void regulatory_exit(void)
2380 {
2381 	struct regulatory_request *reg_request, *tmp;
2382 	struct reg_beacon *reg_beacon, *btmp;
2383 
2384 	cancel_work_sync(&reg_work);
2385 	cancel_delayed_work_sync(&reg_timeout);
2386 
2387 	/* Lock to suppress warnings */
2388 	mutex_lock(&reg_mutex);
2389 	reset_regdomains(true, NULL);
2390 	mutex_unlock(&reg_mutex);
2391 
2392 	dev_set_uevent_suppress(&reg_pdev->dev, true);
2393 
2394 	platform_device_unregister(reg_pdev);
2395 
2396 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2397 		list_del(&reg_beacon->list);
2398 		kfree(reg_beacon);
2399 	}
2400 
2401 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2402 		list_del(&reg_beacon->list);
2403 		kfree(reg_beacon);
2404 	}
2405 
2406 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2407 		list_del(&reg_request->list);
2408 		kfree(reg_request);
2409 	}
2410 }
2411