xref: /openbmc/linux/net/wireless/reg.c (revision c1d45424)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60 
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...)			\
63 	printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67 
68 enum reg_request_treatment {
69 	REG_REQ_OK,
70 	REG_REQ_IGNORE,
71 	REG_REQ_INTERSECT,
72 	REG_REQ_ALREADY_SET,
73 };
74 
75 static struct regulatory_request core_request_world = {
76 	.initiator = NL80211_REGDOM_SET_BY_CORE,
77 	.alpha2[0] = '0',
78 	.alpha2[1] = '0',
79 	.intersect = false,
80 	.processed = true,
81 	.country_ie_env = ENVIRON_ANY,
82 };
83 
84 /*
85  * Receipt of information from last regulatory request,
86  * protected by RTNL (and can be accessed with RCU protection)
87  */
88 static struct regulatory_request __rcu *last_request =
89 	(void __rcu *)&core_request_world;
90 
91 /* To trigger userspace events */
92 static struct platform_device *reg_pdev;
93 
94 static struct device_type reg_device_type = {
95 	.uevent = reg_device_uevent,
96 };
97 
98 /*
99  * Central wireless core regulatory domains, we only need two,
100  * the current one and a world regulatory domain in case we have no
101  * information to give us an alpha2.
102  * (protected by RTNL, can be read under RCU)
103  */
104 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
105 
106 /*
107  * Number of devices that registered to the core
108  * that support cellular base station regulatory hints
109  * (protected by RTNL)
110  */
111 static int reg_num_devs_support_basehint;
112 
113 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
114 {
115 	return rtnl_dereference(cfg80211_regdomain);
116 }
117 
118 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
119 {
120 	return rtnl_dereference(wiphy->regd);
121 }
122 
123 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
124 {
125 	if (!r)
126 		return;
127 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
128 }
129 
130 static struct regulatory_request *get_last_request(void)
131 {
132 	return rcu_dereference_rtnl(last_request);
133 }
134 
135 /* Used to queue up regulatory hints */
136 static LIST_HEAD(reg_requests_list);
137 static spinlock_t reg_requests_lock;
138 
139 /* Used to queue up beacon hints for review */
140 static LIST_HEAD(reg_pending_beacons);
141 static spinlock_t reg_pending_beacons_lock;
142 
143 /* Used to keep track of processed beacon hints */
144 static LIST_HEAD(reg_beacon_list);
145 
146 struct reg_beacon {
147 	struct list_head list;
148 	struct ieee80211_channel chan;
149 };
150 
151 static void reg_todo(struct work_struct *work);
152 static DECLARE_WORK(reg_work, reg_todo);
153 
154 static void reg_timeout_work(struct work_struct *work);
155 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
156 
157 /* We keep a static world regulatory domain in case of the absence of CRDA */
158 static const struct ieee80211_regdomain world_regdom = {
159 	.n_reg_rules = 6,
160 	.alpha2 =  "00",
161 	.reg_rules = {
162 		/* IEEE 802.11b/g, channels 1..11 */
163 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
164 		/* IEEE 802.11b/g, channels 12..13. */
165 		REG_RULE(2467-10, 2472+10, 40, 6, 20,
166 			NL80211_RRF_PASSIVE_SCAN |
167 			NL80211_RRF_NO_IBSS),
168 		/* IEEE 802.11 channel 14 - Only JP enables
169 		 * this and for 802.11b only */
170 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
171 			NL80211_RRF_PASSIVE_SCAN |
172 			NL80211_RRF_NO_IBSS |
173 			NL80211_RRF_NO_OFDM),
174 		/* IEEE 802.11a, channel 36..48 */
175 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
176                         NL80211_RRF_PASSIVE_SCAN |
177                         NL80211_RRF_NO_IBSS),
178 
179 		/* NB: 5260 MHz - 5700 MHz requires DFS */
180 
181 		/* IEEE 802.11a, channel 149..165 */
182 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
183 			NL80211_RRF_PASSIVE_SCAN |
184 			NL80211_RRF_NO_IBSS),
185 
186 		/* IEEE 802.11ad (60gHz), channels 1..3 */
187 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
188 	}
189 };
190 
191 /* protected by RTNL */
192 static const struct ieee80211_regdomain *cfg80211_world_regdom =
193 	&world_regdom;
194 
195 static char *ieee80211_regdom = "00";
196 static char user_alpha2[2];
197 
198 module_param(ieee80211_regdom, charp, 0444);
199 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
200 
201 static void reset_regdomains(bool full_reset,
202 			     const struct ieee80211_regdomain *new_regdom)
203 {
204 	const struct ieee80211_regdomain *r;
205 	struct regulatory_request *lr;
206 
207 	ASSERT_RTNL();
208 
209 	r = get_cfg80211_regdom();
210 
211 	/* avoid freeing static information or freeing something twice */
212 	if (r == cfg80211_world_regdom)
213 		r = NULL;
214 	if (cfg80211_world_regdom == &world_regdom)
215 		cfg80211_world_regdom = NULL;
216 	if (r == &world_regdom)
217 		r = NULL;
218 
219 	rcu_free_regdom(r);
220 	rcu_free_regdom(cfg80211_world_regdom);
221 
222 	cfg80211_world_regdom = &world_regdom;
223 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
224 
225 	if (!full_reset)
226 		return;
227 
228 	lr = get_last_request();
229 	if (lr != &core_request_world && lr)
230 		kfree_rcu(lr, rcu_head);
231 	rcu_assign_pointer(last_request, &core_request_world);
232 }
233 
234 /*
235  * Dynamic world regulatory domain requested by the wireless
236  * core upon initialization
237  */
238 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
239 {
240 	struct regulatory_request *lr;
241 
242 	lr = get_last_request();
243 
244 	WARN_ON(!lr);
245 
246 	reset_regdomains(false, rd);
247 
248 	cfg80211_world_regdom = rd;
249 }
250 
251 bool is_world_regdom(const char *alpha2)
252 {
253 	if (!alpha2)
254 		return false;
255 	return alpha2[0] == '0' && alpha2[1] == '0';
256 }
257 
258 static bool is_alpha2_set(const char *alpha2)
259 {
260 	if (!alpha2)
261 		return false;
262 	return alpha2[0] && alpha2[1];
263 }
264 
265 static bool is_unknown_alpha2(const char *alpha2)
266 {
267 	if (!alpha2)
268 		return false;
269 	/*
270 	 * Special case where regulatory domain was built by driver
271 	 * but a specific alpha2 cannot be determined
272 	 */
273 	return alpha2[0] == '9' && alpha2[1] == '9';
274 }
275 
276 static bool is_intersected_alpha2(const char *alpha2)
277 {
278 	if (!alpha2)
279 		return false;
280 	/*
281 	 * Special case where regulatory domain is the
282 	 * result of an intersection between two regulatory domain
283 	 * structures
284 	 */
285 	return alpha2[0] == '9' && alpha2[1] == '8';
286 }
287 
288 static bool is_an_alpha2(const char *alpha2)
289 {
290 	if (!alpha2)
291 		return false;
292 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
293 }
294 
295 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
296 {
297 	if (!alpha2_x || !alpha2_y)
298 		return false;
299 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
300 }
301 
302 static bool regdom_changes(const char *alpha2)
303 {
304 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
305 
306 	if (!r)
307 		return true;
308 	return !alpha2_equal(r->alpha2, alpha2);
309 }
310 
311 /*
312  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
313  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
314  * has ever been issued.
315  */
316 static bool is_user_regdom_saved(void)
317 {
318 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
319 		return false;
320 
321 	/* This would indicate a mistake on the design */
322 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
323 		 "Unexpected user alpha2: %c%c\n",
324 		 user_alpha2[0], user_alpha2[1]))
325 		return false;
326 
327 	return true;
328 }
329 
330 static const struct ieee80211_regdomain *
331 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
332 {
333 	struct ieee80211_regdomain *regd;
334 	int size_of_regd;
335 	unsigned int i;
336 
337 	size_of_regd =
338 		sizeof(struct ieee80211_regdomain) +
339 		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
340 
341 	regd = kzalloc(size_of_regd, GFP_KERNEL);
342 	if (!regd)
343 		return ERR_PTR(-ENOMEM);
344 
345 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
346 
347 	for (i = 0; i < src_regd->n_reg_rules; i++)
348 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
349 		       sizeof(struct ieee80211_reg_rule));
350 
351 	return regd;
352 }
353 
354 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
355 struct reg_regdb_search_request {
356 	char alpha2[2];
357 	struct list_head list;
358 };
359 
360 static LIST_HEAD(reg_regdb_search_list);
361 static DEFINE_MUTEX(reg_regdb_search_mutex);
362 
363 static void reg_regdb_search(struct work_struct *work)
364 {
365 	struct reg_regdb_search_request *request;
366 	const struct ieee80211_regdomain *curdom, *regdom = NULL;
367 	int i;
368 
369 	rtnl_lock();
370 
371 	mutex_lock(&reg_regdb_search_mutex);
372 	while (!list_empty(&reg_regdb_search_list)) {
373 		request = list_first_entry(&reg_regdb_search_list,
374 					   struct reg_regdb_search_request,
375 					   list);
376 		list_del(&request->list);
377 
378 		for (i = 0; i < reg_regdb_size; i++) {
379 			curdom = reg_regdb[i];
380 
381 			if (alpha2_equal(request->alpha2, curdom->alpha2)) {
382 				regdom = reg_copy_regd(curdom);
383 				break;
384 			}
385 		}
386 
387 		kfree(request);
388 	}
389 	mutex_unlock(&reg_regdb_search_mutex);
390 
391 	if (!IS_ERR_OR_NULL(regdom))
392 		set_regdom(regdom);
393 
394 	rtnl_unlock();
395 }
396 
397 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
398 
399 static void reg_regdb_query(const char *alpha2)
400 {
401 	struct reg_regdb_search_request *request;
402 
403 	if (!alpha2)
404 		return;
405 
406 	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
407 	if (!request)
408 		return;
409 
410 	memcpy(request->alpha2, alpha2, 2);
411 
412 	mutex_lock(&reg_regdb_search_mutex);
413 	list_add_tail(&request->list, &reg_regdb_search_list);
414 	mutex_unlock(&reg_regdb_search_mutex);
415 
416 	schedule_work(&reg_regdb_work);
417 }
418 
419 /* Feel free to add any other sanity checks here */
420 static void reg_regdb_size_check(void)
421 {
422 	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
423 	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
424 }
425 #else
426 static inline void reg_regdb_size_check(void) {}
427 static inline void reg_regdb_query(const char *alpha2) {}
428 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
429 
430 /*
431  * This lets us keep regulatory code which is updated on a regulatory
432  * basis in userspace. Country information is filled in by
433  * reg_device_uevent
434  */
435 static int call_crda(const char *alpha2)
436 {
437 	if (!is_world_regdom((char *) alpha2))
438 		pr_info("Calling CRDA for country: %c%c\n",
439 			alpha2[0], alpha2[1]);
440 	else
441 		pr_info("Calling CRDA to update world regulatory domain\n");
442 
443 	/* query internal regulatory database (if it exists) */
444 	reg_regdb_query(alpha2);
445 
446 	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
447 }
448 
449 static bool reg_is_valid_request(const char *alpha2)
450 {
451 	struct regulatory_request *lr = get_last_request();
452 
453 	if (!lr || lr->processed)
454 		return false;
455 
456 	return alpha2_equal(lr->alpha2, alpha2);
457 }
458 
459 /* Sanity check on a regulatory rule */
460 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
461 {
462 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
463 	u32 freq_diff;
464 
465 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
466 		return false;
467 
468 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
469 		return false;
470 
471 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
472 
473 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
474 	    freq_range->max_bandwidth_khz > freq_diff)
475 		return false;
476 
477 	return true;
478 }
479 
480 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
481 {
482 	const struct ieee80211_reg_rule *reg_rule = NULL;
483 	unsigned int i;
484 
485 	if (!rd->n_reg_rules)
486 		return false;
487 
488 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
489 		return false;
490 
491 	for (i = 0; i < rd->n_reg_rules; i++) {
492 		reg_rule = &rd->reg_rules[i];
493 		if (!is_valid_reg_rule(reg_rule))
494 			return false;
495 	}
496 
497 	return true;
498 }
499 
500 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
501 			    u32 center_freq_khz, u32 bw_khz)
502 {
503 	u32 start_freq_khz, end_freq_khz;
504 
505 	start_freq_khz = center_freq_khz - (bw_khz/2);
506 	end_freq_khz = center_freq_khz + (bw_khz/2);
507 
508 	if (start_freq_khz >= freq_range->start_freq_khz &&
509 	    end_freq_khz <= freq_range->end_freq_khz)
510 		return true;
511 
512 	return false;
513 }
514 
515 /**
516  * freq_in_rule_band - tells us if a frequency is in a frequency band
517  * @freq_range: frequency rule we want to query
518  * @freq_khz: frequency we are inquiring about
519  *
520  * This lets us know if a specific frequency rule is or is not relevant to
521  * a specific frequency's band. Bands are device specific and artificial
522  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
523  * however it is safe for now to assume that a frequency rule should not be
524  * part of a frequency's band if the start freq or end freq are off by more
525  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
526  * 60 GHz band.
527  * This resolution can be lowered and should be considered as we add
528  * regulatory rule support for other "bands".
529  **/
530 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
531 			      u32 freq_khz)
532 {
533 #define ONE_GHZ_IN_KHZ	1000000
534 	/*
535 	 * From 802.11ad: directional multi-gigabit (DMG):
536 	 * Pertaining to operation in a frequency band containing a channel
537 	 * with the Channel starting frequency above 45 GHz.
538 	 */
539 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
540 			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
541 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
542 		return true;
543 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
544 		return true;
545 	return false;
546 #undef ONE_GHZ_IN_KHZ
547 }
548 
549 /*
550  * Helper for regdom_intersect(), this does the real
551  * mathematical intersection fun
552  */
553 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
554 			       const struct ieee80211_reg_rule *rule2,
555 			       struct ieee80211_reg_rule *intersected_rule)
556 {
557 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
558 	struct ieee80211_freq_range *freq_range;
559 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
560 	struct ieee80211_power_rule *power_rule;
561 	u32 freq_diff;
562 
563 	freq_range1 = &rule1->freq_range;
564 	freq_range2 = &rule2->freq_range;
565 	freq_range = &intersected_rule->freq_range;
566 
567 	power_rule1 = &rule1->power_rule;
568 	power_rule2 = &rule2->power_rule;
569 	power_rule = &intersected_rule->power_rule;
570 
571 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
572 					 freq_range2->start_freq_khz);
573 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
574 				       freq_range2->end_freq_khz);
575 	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
576 					    freq_range2->max_bandwidth_khz);
577 
578 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
579 	if (freq_range->max_bandwidth_khz > freq_diff)
580 		freq_range->max_bandwidth_khz = freq_diff;
581 
582 	power_rule->max_eirp = min(power_rule1->max_eirp,
583 		power_rule2->max_eirp);
584 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
585 		power_rule2->max_antenna_gain);
586 
587 	intersected_rule->flags = rule1->flags | rule2->flags;
588 
589 	if (!is_valid_reg_rule(intersected_rule))
590 		return -EINVAL;
591 
592 	return 0;
593 }
594 
595 /**
596  * regdom_intersect - do the intersection between two regulatory domains
597  * @rd1: first regulatory domain
598  * @rd2: second regulatory domain
599  *
600  * Use this function to get the intersection between two regulatory domains.
601  * Once completed we will mark the alpha2 for the rd as intersected, "98",
602  * as no one single alpha2 can represent this regulatory domain.
603  *
604  * Returns a pointer to the regulatory domain structure which will hold the
605  * resulting intersection of rules between rd1 and rd2. We will
606  * kzalloc() this structure for you.
607  */
608 static struct ieee80211_regdomain *
609 regdom_intersect(const struct ieee80211_regdomain *rd1,
610 		 const struct ieee80211_regdomain *rd2)
611 {
612 	int r, size_of_regd;
613 	unsigned int x, y;
614 	unsigned int num_rules = 0, rule_idx = 0;
615 	const struct ieee80211_reg_rule *rule1, *rule2;
616 	struct ieee80211_reg_rule *intersected_rule;
617 	struct ieee80211_regdomain *rd;
618 	/* This is just a dummy holder to help us count */
619 	struct ieee80211_reg_rule dummy_rule;
620 
621 	if (!rd1 || !rd2)
622 		return NULL;
623 
624 	/*
625 	 * First we get a count of the rules we'll need, then we actually
626 	 * build them. This is to so we can malloc() and free() a
627 	 * regdomain once. The reason we use reg_rules_intersect() here
628 	 * is it will return -EINVAL if the rule computed makes no sense.
629 	 * All rules that do check out OK are valid.
630 	 */
631 
632 	for (x = 0; x < rd1->n_reg_rules; x++) {
633 		rule1 = &rd1->reg_rules[x];
634 		for (y = 0; y < rd2->n_reg_rules; y++) {
635 			rule2 = &rd2->reg_rules[y];
636 			if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
637 				num_rules++;
638 		}
639 	}
640 
641 	if (!num_rules)
642 		return NULL;
643 
644 	size_of_regd = sizeof(struct ieee80211_regdomain) +
645 		       num_rules * sizeof(struct ieee80211_reg_rule);
646 
647 	rd = kzalloc(size_of_regd, GFP_KERNEL);
648 	if (!rd)
649 		return NULL;
650 
651 	for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
652 		rule1 = &rd1->reg_rules[x];
653 		for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
654 			rule2 = &rd2->reg_rules[y];
655 			/*
656 			 * This time around instead of using the stack lets
657 			 * write to the target rule directly saving ourselves
658 			 * a memcpy()
659 			 */
660 			intersected_rule = &rd->reg_rules[rule_idx];
661 			r = reg_rules_intersect(rule1, rule2, intersected_rule);
662 			/*
663 			 * No need to memset here the intersected rule here as
664 			 * we're not using the stack anymore
665 			 */
666 			if (r)
667 				continue;
668 			rule_idx++;
669 		}
670 	}
671 
672 	if (rule_idx != num_rules) {
673 		kfree(rd);
674 		return NULL;
675 	}
676 
677 	rd->n_reg_rules = num_rules;
678 	rd->alpha2[0] = '9';
679 	rd->alpha2[1] = '8';
680 
681 	return rd;
682 }
683 
684 /*
685  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
686  * want to just have the channel structure use these
687  */
688 static u32 map_regdom_flags(u32 rd_flags)
689 {
690 	u32 channel_flags = 0;
691 	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
692 		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
693 	if (rd_flags & NL80211_RRF_NO_IBSS)
694 		channel_flags |= IEEE80211_CHAN_NO_IBSS;
695 	if (rd_flags & NL80211_RRF_DFS)
696 		channel_flags |= IEEE80211_CHAN_RADAR;
697 	if (rd_flags & NL80211_RRF_NO_OFDM)
698 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
699 	return channel_flags;
700 }
701 
702 static const struct ieee80211_reg_rule *
703 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
704 		   const struct ieee80211_regdomain *regd)
705 {
706 	int i;
707 	bool band_rule_found = false;
708 	bool bw_fits = false;
709 
710 	if (!regd)
711 		return ERR_PTR(-EINVAL);
712 
713 	for (i = 0; i < regd->n_reg_rules; i++) {
714 		const struct ieee80211_reg_rule *rr;
715 		const struct ieee80211_freq_range *fr = NULL;
716 
717 		rr = &regd->reg_rules[i];
718 		fr = &rr->freq_range;
719 
720 		/*
721 		 * We only need to know if one frequency rule was
722 		 * was in center_freq's band, that's enough, so lets
723 		 * not overwrite it once found
724 		 */
725 		if (!band_rule_found)
726 			band_rule_found = freq_in_rule_band(fr, center_freq);
727 
728 		bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
729 
730 		if (band_rule_found && bw_fits)
731 			return rr;
732 	}
733 
734 	if (!band_rule_found)
735 		return ERR_PTR(-ERANGE);
736 
737 	return ERR_PTR(-EINVAL);
738 }
739 
740 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
741 					       u32 center_freq)
742 {
743 	const struct ieee80211_regdomain *regd;
744 	struct regulatory_request *lr = get_last_request();
745 
746 	/*
747 	 * Follow the driver's regulatory domain, if present, unless a country
748 	 * IE has been processed or a user wants to help complaince further
749 	 */
750 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
751 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
752 	    wiphy->regd)
753 		regd = get_wiphy_regdom(wiphy);
754 	else
755 		regd = get_cfg80211_regdom();
756 
757 	return freq_reg_info_regd(wiphy, center_freq, regd);
758 }
759 EXPORT_SYMBOL(freq_reg_info);
760 
761 #ifdef CONFIG_CFG80211_REG_DEBUG
762 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
763 {
764 	switch (initiator) {
765 	case NL80211_REGDOM_SET_BY_CORE:
766 		return "Set by core";
767 	case NL80211_REGDOM_SET_BY_USER:
768 		return "Set by user";
769 	case NL80211_REGDOM_SET_BY_DRIVER:
770 		return "Set by driver";
771 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
772 		return "Set by country IE";
773 	default:
774 		WARN_ON(1);
775 		return "Set by bug";
776 	}
777 }
778 
779 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
780 				    const struct ieee80211_reg_rule *reg_rule)
781 {
782 	const struct ieee80211_power_rule *power_rule;
783 	const struct ieee80211_freq_range *freq_range;
784 	char max_antenna_gain[32];
785 
786 	power_rule = &reg_rule->power_rule;
787 	freq_range = &reg_rule->freq_range;
788 
789 	if (!power_rule->max_antenna_gain)
790 		snprintf(max_antenna_gain, 32, "N/A");
791 	else
792 		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
793 
794 	REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
795 		      chan->center_freq);
796 
797 	REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
798 		      freq_range->start_freq_khz, freq_range->end_freq_khz,
799 		      freq_range->max_bandwidth_khz, max_antenna_gain,
800 		      power_rule->max_eirp);
801 }
802 #else
803 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
804 				    const struct ieee80211_reg_rule *reg_rule)
805 {
806 	return;
807 }
808 #endif
809 
810 /*
811  * Note that right now we assume the desired channel bandwidth
812  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
813  * per channel, the primary and the extension channel).
814  */
815 static void handle_channel(struct wiphy *wiphy,
816 			   enum nl80211_reg_initiator initiator,
817 			   struct ieee80211_channel *chan)
818 {
819 	u32 flags, bw_flags = 0;
820 	const struct ieee80211_reg_rule *reg_rule = NULL;
821 	const struct ieee80211_power_rule *power_rule = NULL;
822 	const struct ieee80211_freq_range *freq_range = NULL;
823 	struct wiphy *request_wiphy = NULL;
824 	struct regulatory_request *lr = get_last_request();
825 
826 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
827 
828 	flags = chan->orig_flags;
829 
830 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
831 	if (IS_ERR(reg_rule)) {
832 		/*
833 		 * We will disable all channels that do not match our
834 		 * received regulatory rule unless the hint is coming
835 		 * from a Country IE and the Country IE had no information
836 		 * about a band. The IEEE 802.11 spec allows for an AP
837 		 * to send only a subset of the regulatory rules allowed,
838 		 * so an AP in the US that only supports 2.4 GHz may only send
839 		 * a country IE with information for the 2.4 GHz band
840 		 * while 5 GHz is still supported.
841 		 */
842 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
843 		    PTR_ERR(reg_rule) == -ERANGE)
844 			return;
845 
846 		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
847 		chan->flags |= IEEE80211_CHAN_DISABLED;
848 		return;
849 	}
850 
851 	chan_reg_rule_print_dbg(chan, reg_rule);
852 
853 	power_rule = &reg_rule->power_rule;
854 	freq_range = &reg_rule->freq_range;
855 
856 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
857 		bw_flags = IEEE80211_CHAN_NO_HT40;
858 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
859 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
860 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
861 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
862 
863 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
864 	    request_wiphy && request_wiphy == wiphy &&
865 	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
866 		/*
867 		 * This guarantees the driver's requested regulatory domain
868 		 * will always be used as a base for further regulatory
869 		 * settings
870 		 */
871 		chan->flags = chan->orig_flags =
872 			map_regdom_flags(reg_rule->flags) | bw_flags;
873 		chan->max_antenna_gain = chan->orig_mag =
874 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
875 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
876 			(int) MBM_TO_DBM(power_rule->max_eirp);
877 		return;
878 	}
879 
880 	chan->dfs_state = NL80211_DFS_USABLE;
881 	chan->dfs_state_entered = jiffies;
882 
883 	chan->beacon_found = false;
884 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
885 	chan->max_antenna_gain =
886 		min_t(int, chan->orig_mag,
887 		      MBI_TO_DBI(power_rule->max_antenna_gain));
888 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
889 	if (chan->orig_mpwr) {
890 		/*
891 		 * Devices that have their own custom regulatory domain
892 		 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
893 		 * passed country IE power settings.
894 		 */
895 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
896 		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
897 		    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
898 			chan->max_power = chan->max_reg_power;
899 		else
900 			chan->max_power = min(chan->orig_mpwr,
901 					      chan->max_reg_power);
902 	} else
903 		chan->max_power = chan->max_reg_power;
904 }
905 
906 static void handle_band(struct wiphy *wiphy,
907 			enum nl80211_reg_initiator initiator,
908 			struct ieee80211_supported_band *sband)
909 {
910 	unsigned int i;
911 
912 	if (!sband)
913 		return;
914 
915 	for (i = 0; i < sband->n_channels; i++)
916 		handle_channel(wiphy, initiator, &sband->channels[i]);
917 }
918 
919 static bool reg_request_cell_base(struct regulatory_request *request)
920 {
921 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
922 		return false;
923 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
924 }
925 
926 bool reg_last_request_cell_base(void)
927 {
928 	return reg_request_cell_base(get_last_request());
929 }
930 
931 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
932 /* Core specific check */
933 static enum reg_request_treatment
934 reg_ignore_cell_hint(struct regulatory_request *pending_request)
935 {
936 	struct regulatory_request *lr = get_last_request();
937 
938 	if (!reg_num_devs_support_basehint)
939 		return REG_REQ_IGNORE;
940 
941 	if (reg_request_cell_base(lr) &&
942 	    !regdom_changes(pending_request->alpha2))
943 		return REG_REQ_ALREADY_SET;
944 
945 	return REG_REQ_OK;
946 }
947 
948 /* Device specific check */
949 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
950 {
951 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
952 }
953 #else
954 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
955 {
956 	return REG_REQ_IGNORE;
957 }
958 
959 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
960 {
961 	return true;
962 }
963 #endif
964 
965 
966 static bool ignore_reg_update(struct wiphy *wiphy,
967 			      enum nl80211_reg_initiator initiator)
968 {
969 	struct regulatory_request *lr = get_last_request();
970 
971 	if (!lr) {
972 		REG_DBG_PRINT("Ignoring regulatory request %s since last_request is not set\n",
973 			      reg_initiator_name(initiator));
974 		return true;
975 	}
976 
977 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
978 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
979 		REG_DBG_PRINT("Ignoring regulatory request %s since the driver uses its own custom regulatory domain\n",
980 			      reg_initiator_name(initiator));
981 		return true;
982 	}
983 
984 	/*
985 	 * wiphy->regd will be set once the device has its own
986 	 * desired regulatory domain set
987 	 */
988 	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
989 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
990 	    !is_world_regdom(lr->alpha2)) {
991 		REG_DBG_PRINT("Ignoring regulatory request %s since the driver requires its own regulatory domain to be set first\n",
992 			      reg_initiator_name(initiator));
993 		return true;
994 	}
995 
996 	if (reg_request_cell_base(lr))
997 		return reg_dev_ignore_cell_hint(wiphy);
998 
999 	return false;
1000 }
1001 
1002 static bool reg_is_world_roaming(struct wiphy *wiphy)
1003 {
1004 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1005 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1006 	struct regulatory_request *lr = get_last_request();
1007 
1008 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1009 		return true;
1010 
1011 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1012 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1013 		return true;
1014 
1015 	return false;
1016 }
1017 
1018 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1019 			      struct reg_beacon *reg_beacon)
1020 {
1021 	struct ieee80211_supported_band *sband;
1022 	struct ieee80211_channel *chan;
1023 	bool channel_changed = false;
1024 	struct ieee80211_channel chan_before;
1025 
1026 	sband = wiphy->bands[reg_beacon->chan.band];
1027 	chan = &sband->channels[chan_idx];
1028 
1029 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1030 		return;
1031 
1032 	if (chan->beacon_found)
1033 		return;
1034 
1035 	chan->beacon_found = true;
1036 
1037 	if (!reg_is_world_roaming(wiphy))
1038 		return;
1039 
1040 	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1041 		return;
1042 
1043 	chan_before.center_freq = chan->center_freq;
1044 	chan_before.flags = chan->flags;
1045 
1046 	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1047 		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1048 		channel_changed = true;
1049 	}
1050 
1051 	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1052 		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1053 		channel_changed = true;
1054 	}
1055 
1056 	if (channel_changed)
1057 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1058 }
1059 
1060 /*
1061  * Called when a scan on a wiphy finds a beacon on
1062  * new channel
1063  */
1064 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1065 				    struct reg_beacon *reg_beacon)
1066 {
1067 	unsigned int i;
1068 	struct ieee80211_supported_band *sband;
1069 
1070 	if (!wiphy->bands[reg_beacon->chan.band])
1071 		return;
1072 
1073 	sband = wiphy->bands[reg_beacon->chan.band];
1074 
1075 	for (i = 0; i < sband->n_channels; i++)
1076 		handle_reg_beacon(wiphy, i, reg_beacon);
1077 }
1078 
1079 /*
1080  * Called upon reg changes or a new wiphy is added
1081  */
1082 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1083 {
1084 	unsigned int i;
1085 	struct ieee80211_supported_band *sband;
1086 	struct reg_beacon *reg_beacon;
1087 
1088 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1089 		if (!wiphy->bands[reg_beacon->chan.band])
1090 			continue;
1091 		sband = wiphy->bands[reg_beacon->chan.band];
1092 		for (i = 0; i < sband->n_channels; i++)
1093 			handle_reg_beacon(wiphy, i, reg_beacon);
1094 	}
1095 }
1096 
1097 /* Reap the advantages of previously found beacons */
1098 static void reg_process_beacons(struct wiphy *wiphy)
1099 {
1100 	/*
1101 	 * Means we are just firing up cfg80211, so no beacons would
1102 	 * have been processed yet.
1103 	 */
1104 	if (!last_request)
1105 		return;
1106 	wiphy_update_beacon_reg(wiphy);
1107 }
1108 
1109 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1110 {
1111 	if (!chan)
1112 		return false;
1113 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1114 		return false;
1115 	/* This would happen when regulatory rules disallow HT40 completely */
1116 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1117 		return false;
1118 	return true;
1119 }
1120 
1121 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1122 					 struct ieee80211_channel *channel)
1123 {
1124 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1125 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1126 	unsigned int i;
1127 
1128 	if (!is_ht40_allowed(channel)) {
1129 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1130 		return;
1131 	}
1132 
1133 	/*
1134 	 * We need to ensure the extension channels exist to
1135 	 * be able to use HT40- or HT40+, this finds them (or not)
1136 	 */
1137 	for (i = 0; i < sband->n_channels; i++) {
1138 		struct ieee80211_channel *c = &sband->channels[i];
1139 
1140 		if (c->center_freq == (channel->center_freq - 20))
1141 			channel_before = c;
1142 		if (c->center_freq == (channel->center_freq + 20))
1143 			channel_after = c;
1144 	}
1145 
1146 	/*
1147 	 * Please note that this assumes target bandwidth is 20 MHz,
1148 	 * if that ever changes we also need to change the below logic
1149 	 * to include that as well.
1150 	 */
1151 	if (!is_ht40_allowed(channel_before))
1152 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1153 	else
1154 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1155 
1156 	if (!is_ht40_allowed(channel_after))
1157 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1158 	else
1159 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1160 }
1161 
1162 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1163 				      struct ieee80211_supported_band *sband)
1164 {
1165 	unsigned int i;
1166 
1167 	if (!sband)
1168 		return;
1169 
1170 	for (i = 0; i < sband->n_channels; i++)
1171 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1172 }
1173 
1174 static void reg_process_ht_flags(struct wiphy *wiphy)
1175 {
1176 	enum ieee80211_band band;
1177 
1178 	if (!wiphy)
1179 		return;
1180 
1181 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1182 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1183 }
1184 
1185 static void wiphy_update_regulatory(struct wiphy *wiphy,
1186 				    enum nl80211_reg_initiator initiator)
1187 {
1188 	enum ieee80211_band band;
1189 	struct regulatory_request *lr = get_last_request();
1190 
1191 	if (ignore_reg_update(wiphy, initiator))
1192 		return;
1193 
1194 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1195 
1196 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1197 		handle_band(wiphy, initiator, wiphy->bands[band]);
1198 
1199 	reg_process_beacons(wiphy);
1200 	reg_process_ht_flags(wiphy);
1201 
1202 	if (wiphy->reg_notifier)
1203 		wiphy->reg_notifier(wiphy, lr);
1204 }
1205 
1206 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1207 {
1208 	struct cfg80211_registered_device *rdev;
1209 	struct wiphy *wiphy;
1210 
1211 	ASSERT_RTNL();
1212 
1213 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1214 		wiphy = &rdev->wiphy;
1215 		wiphy_update_regulatory(wiphy, initiator);
1216 		/*
1217 		 * Regulatory updates set by CORE are ignored for custom
1218 		 * regulatory cards. Let us notify the changes to the driver,
1219 		 * as some drivers used this to restore its orig_* reg domain.
1220 		 */
1221 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1222 		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1223 		    wiphy->reg_notifier)
1224 			wiphy->reg_notifier(wiphy, get_last_request());
1225 	}
1226 }
1227 
1228 static void handle_channel_custom(struct wiphy *wiphy,
1229 				  struct ieee80211_channel *chan,
1230 				  const struct ieee80211_regdomain *regd)
1231 {
1232 	u32 bw_flags = 0;
1233 	const struct ieee80211_reg_rule *reg_rule = NULL;
1234 	const struct ieee80211_power_rule *power_rule = NULL;
1235 	const struct ieee80211_freq_range *freq_range = NULL;
1236 
1237 	reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1238 				      regd);
1239 
1240 	if (IS_ERR(reg_rule)) {
1241 		REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1242 			      chan->center_freq);
1243 		chan->flags = IEEE80211_CHAN_DISABLED;
1244 		return;
1245 	}
1246 
1247 	chan_reg_rule_print_dbg(chan, reg_rule);
1248 
1249 	power_rule = &reg_rule->power_rule;
1250 	freq_range = &reg_rule->freq_range;
1251 
1252 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1253 		bw_flags = IEEE80211_CHAN_NO_HT40;
1254 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
1255 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1256 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
1257 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1258 
1259 	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1260 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1261 	chan->max_reg_power = chan->max_power =
1262 		(int) MBM_TO_DBM(power_rule->max_eirp);
1263 }
1264 
1265 static void handle_band_custom(struct wiphy *wiphy,
1266 			       struct ieee80211_supported_band *sband,
1267 			       const struct ieee80211_regdomain *regd)
1268 {
1269 	unsigned int i;
1270 
1271 	if (!sband)
1272 		return;
1273 
1274 	for (i = 0; i < sband->n_channels; i++)
1275 		handle_channel_custom(wiphy, &sband->channels[i], regd);
1276 }
1277 
1278 /* Used by drivers prior to wiphy registration */
1279 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1280 				   const struct ieee80211_regdomain *regd)
1281 {
1282 	enum ieee80211_band band;
1283 	unsigned int bands_set = 0;
1284 
1285 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1286 		if (!wiphy->bands[band])
1287 			continue;
1288 		handle_band_custom(wiphy, wiphy->bands[band], regd);
1289 		bands_set++;
1290 	}
1291 
1292 	/*
1293 	 * no point in calling this if it won't have any effect
1294 	 * on your device's supported bands.
1295 	 */
1296 	WARN_ON(!bands_set);
1297 }
1298 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1299 
1300 /* This has the logic which determines when a new request
1301  * should be ignored. */
1302 static enum reg_request_treatment
1303 get_reg_request_treatment(struct wiphy *wiphy,
1304 			  struct regulatory_request *pending_request)
1305 {
1306 	struct wiphy *last_wiphy = NULL;
1307 	struct regulatory_request *lr = get_last_request();
1308 
1309 	/* All initial requests are respected */
1310 	if (!lr)
1311 		return REG_REQ_OK;
1312 
1313 	switch (pending_request->initiator) {
1314 	case NL80211_REGDOM_SET_BY_CORE:
1315 		return REG_REQ_OK;
1316 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1317 		if (reg_request_cell_base(lr)) {
1318 			/* Trust a Cell base station over the AP's country IE */
1319 			if (regdom_changes(pending_request->alpha2))
1320 				return REG_REQ_IGNORE;
1321 			return REG_REQ_ALREADY_SET;
1322 		}
1323 
1324 		last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1325 
1326 		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1327 			return -EINVAL;
1328 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1329 			if (last_wiphy != wiphy) {
1330 				/*
1331 				 * Two cards with two APs claiming different
1332 				 * Country IE alpha2s. We could
1333 				 * intersect them, but that seems unlikely
1334 				 * to be correct. Reject second one for now.
1335 				 */
1336 				if (regdom_changes(pending_request->alpha2))
1337 					return REG_REQ_IGNORE;
1338 				return REG_REQ_ALREADY_SET;
1339 			}
1340 			/*
1341 			 * Two consecutive Country IE hints on the same wiphy.
1342 			 * This should be picked up early by the driver/stack
1343 			 */
1344 			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1345 				return REG_REQ_OK;
1346 			return REG_REQ_ALREADY_SET;
1347 		}
1348 		return REG_REQ_OK;
1349 	case NL80211_REGDOM_SET_BY_DRIVER:
1350 		if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1351 			if (regdom_changes(pending_request->alpha2))
1352 				return REG_REQ_OK;
1353 			return REG_REQ_ALREADY_SET;
1354 		}
1355 
1356 		/*
1357 		 * This would happen if you unplug and plug your card
1358 		 * back in or if you add a new device for which the previously
1359 		 * loaded card also agrees on the regulatory domain.
1360 		 */
1361 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1362 		    !regdom_changes(pending_request->alpha2))
1363 			return REG_REQ_ALREADY_SET;
1364 
1365 		return REG_REQ_INTERSECT;
1366 	case NL80211_REGDOM_SET_BY_USER:
1367 		if (reg_request_cell_base(pending_request))
1368 			return reg_ignore_cell_hint(pending_request);
1369 
1370 		if (reg_request_cell_base(lr))
1371 			return REG_REQ_IGNORE;
1372 
1373 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1374 			return REG_REQ_INTERSECT;
1375 		/*
1376 		 * If the user knows better the user should set the regdom
1377 		 * to their country before the IE is picked up
1378 		 */
1379 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1380 		    lr->intersect)
1381 			return REG_REQ_IGNORE;
1382 		/*
1383 		 * Process user requests only after previous user/driver/core
1384 		 * requests have been processed
1385 		 */
1386 		if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1387 		     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1388 		     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1389 		    regdom_changes(lr->alpha2))
1390 			return REG_REQ_IGNORE;
1391 
1392 		if (!regdom_changes(pending_request->alpha2))
1393 			return REG_REQ_ALREADY_SET;
1394 
1395 		return REG_REQ_OK;
1396 	}
1397 
1398 	return REG_REQ_IGNORE;
1399 }
1400 
1401 static void reg_set_request_processed(void)
1402 {
1403 	bool need_more_processing = false;
1404 	struct regulatory_request *lr = get_last_request();
1405 
1406 	lr->processed = true;
1407 
1408 	spin_lock(&reg_requests_lock);
1409 	if (!list_empty(&reg_requests_list))
1410 		need_more_processing = true;
1411 	spin_unlock(&reg_requests_lock);
1412 
1413 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1414 		cancel_delayed_work(&reg_timeout);
1415 
1416 	if (need_more_processing)
1417 		schedule_work(&reg_work);
1418 }
1419 
1420 /**
1421  * __regulatory_hint - hint to the wireless core a regulatory domain
1422  * @wiphy: if the hint comes from country information from an AP, this
1423  *	is required to be set to the wiphy that received the information
1424  * @pending_request: the regulatory request currently being processed
1425  *
1426  * The Wireless subsystem can use this function to hint to the wireless core
1427  * what it believes should be the current regulatory domain.
1428  *
1429  * Returns one of the different reg request treatment values.
1430  */
1431 static enum reg_request_treatment
1432 __regulatory_hint(struct wiphy *wiphy,
1433 		  struct regulatory_request *pending_request)
1434 {
1435 	const struct ieee80211_regdomain *regd;
1436 	bool intersect = false;
1437 	enum reg_request_treatment treatment;
1438 	struct regulatory_request *lr;
1439 
1440 	treatment = get_reg_request_treatment(wiphy, pending_request);
1441 
1442 	switch (treatment) {
1443 	case REG_REQ_INTERSECT:
1444 		if (pending_request->initiator ==
1445 		    NL80211_REGDOM_SET_BY_DRIVER) {
1446 			regd = reg_copy_regd(get_cfg80211_regdom());
1447 			if (IS_ERR(regd)) {
1448 				kfree(pending_request);
1449 				return PTR_ERR(regd);
1450 			}
1451 			rcu_assign_pointer(wiphy->regd, regd);
1452 		}
1453 		intersect = true;
1454 		break;
1455 	case REG_REQ_OK:
1456 		break;
1457 	default:
1458 		/*
1459 		 * If the regulatory domain being requested by the
1460 		 * driver has already been set just copy it to the
1461 		 * wiphy
1462 		 */
1463 		if (treatment == REG_REQ_ALREADY_SET &&
1464 		    pending_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
1465 			regd = reg_copy_regd(get_cfg80211_regdom());
1466 			if (IS_ERR(regd)) {
1467 				kfree(pending_request);
1468 				return REG_REQ_IGNORE;
1469 			}
1470 			treatment = REG_REQ_ALREADY_SET;
1471 			rcu_assign_pointer(wiphy->regd, regd);
1472 			goto new_request;
1473 		}
1474 		kfree(pending_request);
1475 		return treatment;
1476 	}
1477 
1478 new_request:
1479 	lr = get_last_request();
1480 	if (lr != &core_request_world && lr)
1481 		kfree_rcu(lr, rcu_head);
1482 
1483 	pending_request->intersect = intersect;
1484 	pending_request->processed = false;
1485 	rcu_assign_pointer(last_request, pending_request);
1486 	lr = pending_request;
1487 
1488 	pending_request = NULL;
1489 
1490 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER) {
1491 		user_alpha2[0] = lr->alpha2[0];
1492 		user_alpha2[1] = lr->alpha2[1];
1493 	}
1494 
1495 	/* When r == REG_REQ_INTERSECT we do need to call CRDA */
1496 	if (treatment != REG_REQ_OK && treatment != REG_REQ_INTERSECT) {
1497 		/*
1498 		 * Since CRDA will not be called in this case as we already
1499 		 * have applied the requested regulatory domain before we just
1500 		 * inform userspace we have processed the request
1501 		 */
1502 		if (treatment == REG_REQ_ALREADY_SET) {
1503 			nl80211_send_reg_change_event(lr);
1504 			reg_set_request_processed();
1505 		}
1506 		return treatment;
1507 	}
1508 
1509 	if (call_crda(lr->alpha2))
1510 		return REG_REQ_IGNORE;
1511 	return REG_REQ_OK;
1512 }
1513 
1514 /* This processes *all* regulatory hints */
1515 static void reg_process_hint(struct regulatory_request *reg_request,
1516 			     enum nl80211_reg_initiator reg_initiator)
1517 {
1518 	struct wiphy *wiphy = NULL;
1519 
1520 	if (WARN_ON(!reg_request->alpha2))
1521 		return;
1522 
1523 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1524 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1525 
1526 	if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) {
1527 		kfree(reg_request);
1528 		return;
1529 	}
1530 
1531 	switch (__regulatory_hint(wiphy, reg_request)) {
1532 	case REG_REQ_ALREADY_SET:
1533 		/* This is required so that the orig_* parameters are saved */
1534 		if (wiphy && wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1535 			wiphy_update_regulatory(wiphy, reg_initiator);
1536 		break;
1537 	default:
1538 		if (reg_initiator == NL80211_REGDOM_SET_BY_USER)
1539 			schedule_delayed_work(&reg_timeout,
1540 					      msecs_to_jiffies(3142));
1541 		break;
1542 	}
1543 }
1544 
1545 /*
1546  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1547  * Regulatory hints come on a first come first serve basis and we
1548  * must process each one atomically.
1549  */
1550 static void reg_process_pending_hints(void)
1551 {
1552 	struct regulatory_request *reg_request, *lr;
1553 
1554 	lr = get_last_request();
1555 
1556 	/* When last_request->processed becomes true this will be rescheduled */
1557 	if (lr && !lr->processed) {
1558 		REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1559 		return;
1560 	}
1561 
1562 	spin_lock(&reg_requests_lock);
1563 
1564 	if (list_empty(&reg_requests_list)) {
1565 		spin_unlock(&reg_requests_lock);
1566 		return;
1567 	}
1568 
1569 	reg_request = list_first_entry(&reg_requests_list,
1570 				       struct regulatory_request,
1571 				       list);
1572 	list_del_init(&reg_request->list);
1573 
1574 	spin_unlock(&reg_requests_lock);
1575 
1576 	reg_process_hint(reg_request, reg_request->initiator);
1577 }
1578 
1579 /* Processes beacon hints -- this has nothing to do with country IEs */
1580 static void reg_process_pending_beacon_hints(void)
1581 {
1582 	struct cfg80211_registered_device *rdev;
1583 	struct reg_beacon *pending_beacon, *tmp;
1584 
1585 	/* This goes through the _pending_ beacon list */
1586 	spin_lock_bh(&reg_pending_beacons_lock);
1587 
1588 	list_for_each_entry_safe(pending_beacon, tmp,
1589 				 &reg_pending_beacons, list) {
1590 		list_del_init(&pending_beacon->list);
1591 
1592 		/* Applies the beacon hint to current wiphys */
1593 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1594 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1595 
1596 		/* Remembers the beacon hint for new wiphys or reg changes */
1597 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
1598 	}
1599 
1600 	spin_unlock_bh(&reg_pending_beacons_lock);
1601 }
1602 
1603 static void reg_todo(struct work_struct *work)
1604 {
1605 	rtnl_lock();
1606 	reg_process_pending_hints();
1607 	reg_process_pending_beacon_hints();
1608 	rtnl_unlock();
1609 }
1610 
1611 static void queue_regulatory_request(struct regulatory_request *request)
1612 {
1613 	request->alpha2[0] = toupper(request->alpha2[0]);
1614 	request->alpha2[1] = toupper(request->alpha2[1]);
1615 
1616 	spin_lock(&reg_requests_lock);
1617 	list_add_tail(&request->list, &reg_requests_list);
1618 	spin_unlock(&reg_requests_lock);
1619 
1620 	schedule_work(&reg_work);
1621 }
1622 
1623 /*
1624  * Core regulatory hint -- happens during cfg80211_init()
1625  * and when we restore regulatory settings.
1626  */
1627 static int regulatory_hint_core(const char *alpha2)
1628 {
1629 	struct regulatory_request *request;
1630 
1631 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1632 	if (!request)
1633 		return -ENOMEM;
1634 
1635 	request->alpha2[0] = alpha2[0];
1636 	request->alpha2[1] = alpha2[1];
1637 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1638 
1639 	queue_regulatory_request(request);
1640 
1641 	return 0;
1642 }
1643 
1644 /* User hints */
1645 int regulatory_hint_user(const char *alpha2,
1646 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
1647 {
1648 	struct regulatory_request *request;
1649 
1650 	if (WARN_ON(!alpha2))
1651 		return -EINVAL;
1652 
1653 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1654 	if (!request)
1655 		return -ENOMEM;
1656 
1657 	request->wiphy_idx = WIPHY_IDX_INVALID;
1658 	request->alpha2[0] = alpha2[0];
1659 	request->alpha2[1] = alpha2[1];
1660 	request->initiator = NL80211_REGDOM_SET_BY_USER;
1661 	request->user_reg_hint_type = user_reg_hint_type;
1662 
1663 	queue_regulatory_request(request);
1664 
1665 	return 0;
1666 }
1667 
1668 /* Driver hints */
1669 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1670 {
1671 	struct regulatory_request *request;
1672 
1673 	if (WARN_ON(!alpha2 || !wiphy))
1674 		return -EINVAL;
1675 
1676 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1677 	if (!request)
1678 		return -ENOMEM;
1679 
1680 	request->wiphy_idx = get_wiphy_idx(wiphy);
1681 
1682 	request->alpha2[0] = alpha2[0];
1683 	request->alpha2[1] = alpha2[1];
1684 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1685 
1686 	queue_regulatory_request(request);
1687 
1688 	return 0;
1689 }
1690 EXPORT_SYMBOL(regulatory_hint);
1691 
1692 void regulatory_hint_11d(struct wiphy *wiphy, enum ieee80211_band band,
1693 			 const u8 *country_ie, u8 country_ie_len)
1694 {
1695 	char alpha2[2];
1696 	enum environment_cap env = ENVIRON_ANY;
1697 	struct regulatory_request *request = NULL, *lr;
1698 
1699 	/* IE len must be evenly divisible by 2 */
1700 	if (country_ie_len & 0x01)
1701 		return;
1702 
1703 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1704 		return;
1705 
1706 	request = kzalloc(sizeof(*request), GFP_KERNEL);
1707 	if (!request)
1708 		return;
1709 
1710 	alpha2[0] = country_ie[0];
1711 	alpha2[1] = country_ie[1];
1712 
1713 	if (country_ie[2] == 'I')
1714 		env = ENVIRON_INDOOR;
1715 	else if (country_ie[2] == 'O')
1716 		env = ENVIRON_OUTDOOR;
1717 
1718 	rcu_read_lock();
1719 	lr = get_last_request();
1720 
1721 	if (unlikely(!lr))
1722 		goto out;
1723 
1724 	/*
1725 	 * We will run this only upon a successful connection on cfg80211.
1726 	 * We leave conflict resolution to the workqueue, where can hold
1727 	 * the RTNL.
1728 	 */
1729 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1730 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
1731 		goto out;
1732 
1733 	request->wiphy_idx = get_wiphy_idx(wiphy);
1734 	request->alpha2[0] = alpha2[0];
1735 	request->alpha2[1] = alpha2[1];
1736 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1737 	request->country_ie_env = env;
1738 
1739 	queue_regulatory_request(request);
1740 	request = NULL;
1741 out:
1742 	kfree(request);
1743 	rcu_read_unlock();
1744 }
1745 
1746 static void restore_alpha2(char *alpha2, bool reset_user)
1747 {
1748 	/* indicates there is no alpha2 to consider for restoration */
1749 	alpha2[0] = '9';
1750 	alpha2[1] = '7';
1751 
1752 	/* The user setting has precedence over the module parameter */
1753 	if (is_user_regdom_saved()) {
1754 		/* Unless we're asked to ignore it and reset it */
1755 		if (reset_user) {
1756 			REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1757 			user_alpha2[0] = '9';
1758 			user_alpha2[1] = '7';
1759 
1760 			/*
1761 			 * If we're ignoring user settings, we still need to
1762 			 * check the module parameter to ensure we put things
1763 			 * back as they were for a full restore.
1764 			 */
1765 			if (!is_world_regdom(ieee80211_regdom)) {
1766 				REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1767 					      ieee80211_regdom[0], ieee80211_regdom[1]);
1768 				alpha2[0] = ieee80211_regdom[0];
1769 				alpha2[1] = ieee80211_regdom[1];
1770 			}
1771 		} else {
1772 			REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1773 				      user_alpha2[0], user_alpha2[1]);
1774 			alpha2[0] = user_alpha2[0];
1775 			alpha2[1] = user_alpha2[1];
1776 		}
1777 	} else if (!is_world_regdom(ieee80211_regdom)) {
1778 		REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1779 			      ieee80211_regdom[0], ieee80211_regdom[1]);
1780 		alpha2[0] = ieee80211_regdom[0];
1781 		alpha2[1] = ieee80211_regdom[1];
1782 	} else
1783 		REG_DBG_PRINT("Restoring regulatory settings\n");
1784 }
1785 
1786 static void restore_custom_reg_settings(struct wiphy *wiphy)
1787 {
1788 	struct ieee80211_supported_band *sband;
1789 	enum ieee80211_band band;
1790 	struct ieee80211_channel *chan;
1791 	int i;
1792 
1793 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1794 		sband = wiphy->bands[band];
1795 		if (!sband)
1796 			continue;
1797 		for (i = 0; i < sband->n_channels; i++) {
1798 			chan = &sband->channels[i];
1799 			chan->flags = chan->orig_flags;
1800 			chan->max_antenna_gain = chan->orig_mag;
1801 			chan->max_power = chan->orig_mpwr;
1802 			chan->beacon_found = false;
1803 		}
1804 	}
1805 }
1806 
1807 /*
1808  * Restoring regulatory settings involves ingoring any
1809  * possibly stale country IE information and user regulatory
1810  * settings if so desired, this includes any beacon hints
1811  * learned as we could have traveled outside to another country
1812  * after disconnection. To restore regulatory settings we do
1813  * exactly what we did at bootup:
1814  *
1815  *   - send a core regulatory hint
1816  *   - send a user regulatory hint if applicable
1817  *
1818  * Device drivers that send a regulatory hint for a specific country
1819  * keep their own regulatory domain on wiphy->regd so that does does
1820  * not need to be remembered.
1821  */
1822 static void restore_regulatory_settings(bool reset_user)
1823 {
1824 	char alpha2[2];
1825 	char world_alpha2[2];
1826 	struct reg_beacon *reg_beacon, *btmp;
1827 	struct regulatory_request *reg_request, *tmp;
1828 	LIST_HEAD(tmp_reg_req_list);
1829 	struct cfg80211_registered_device *rdev;
1830 
1831 	ASSERT_RTNL();
1832 
1833 	reset_regdomains(true, &world_regdom);
1834 	restore_alpha2(alpha2, reset_user);
1835 
1836 	/*
1837 	 * If there's any pending requests we simply
1838 	 * stash them to a temporary pending queue and
1839 	 * add then after we've restored regulatory
1840 	 * settings.
1841 	 */
1842 	spin_lock(&reg_requests_lock);
1843 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
1844 		if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
1845 			continue;
1846 		list_move_tail(&reg_request->list, &tmp_reg_req_list);
1847 	}
1848 	spin_unlock(&reg_requests_lock);
1849 
1850 	/* Clear beacon hints */
1851 	spin_lock_bh(&reg_pending_beacons_lock);
1852 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
1853 		list_del(&reg_beacon->list);
1854 		kfree(reg_beacon);
1855 	}
1856 	spin_unlock_bh(&reg_pending_beacons_lock);
1857 
1858 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
1859 		list_del(&reg_beacon->list);
1860 		kfree(reg_beacon);
1861 	}
1862 
1863 	/* First restore to the basic regulatory settings */
1864 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
1865 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
1866 
1867 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1868 		if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1869 			restore_custom_reg_settings(&rdev->wiphy);
1870 	}
1871 
1872 	regulatory_hint_core(world_alpha2);
1873 
1874 	/*
1875 	 * This restores the ieee80211_regdom module parameter
1876 	 * preference or the last user requested regulatory
1877 	 * settings, user regulatory settings takes precedence.
1878 	 */
1879 	if (is_an_alpha2(alpha2))
1880 		regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1881 
1882 	spin_lock(&reg_requests_lock);
1883 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
1884 	spin_unlock(&reg_requests_lock);
1885 
1886 	REG_DBG_PRINT("Kicking the queue\n");
1887 
1888 	schedule_work(&reg_work);
1889 }
1890 
1891 void regulatory_hint_disconnect(void)
1892 {
1893 	REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
1894 	restore_regulatory_settings(false);
1895 }
1896 
1897 static bool freq_is_chan_12_13_14(u16 freq)
1898 {
1899 	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1900 	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1901 	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1902 		return true;
1903 	return false;
1904 }
1905 
1906 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
1907 {
1908 	struct reg_beacon *pending_beacon;
1909 
1910 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
1911 		if (beacon_chan->center_freq ==
1912 		    pending_beacon->chan.center_freq)
1913 			return true;
1914 	return false;
1915 }
1916 
1917 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1918 				 struct ieee80211_channel *beacon_chan,
1919 				 gfp_t gfp)
1920 {
1921 	struct reg_beacon *reg_beacon;
1922 	bool processing;
1923 
1924 	if (beacon_chan->beacon_found ||
1925 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
1926 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1927 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
1928 		return 0;
1929 
1930 	spin_lock_bh(&reg_pending_beacons_lock);
1931 	processing = pending_reg_beacon(beacon_chan);
1932 	spin_unlock_bh(&reg_pending_beacons_lock);
1933 
1934 	if (processing)
1935 		return 0;
1936 
1937 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1938 	if (!reg_beacon)
1939 		return -ENOMEM;
1940 
1941 	REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
1942 		      beacon_chan->center_freq,
1943 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
1944 		      wiphy_name(wiphy));
1945 
1946 	memcpy(&reg_beacon->chan, beacon_chan,
1947 	       sizeof(struct ieee80211_channel));
1948 
1949 	/*
1950 	 * Since we can be called from BH or and non-BH context
1951 	 * we must use spin_lock_bh()
1952 	 */
1953 	spin_lock_bh(&reg_pending_beacons_lock);
1954 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1955 	spin_unlock_bh(&reg_pending_beacons_lock);
1956 
1957 	schedule_work(&reg_work);
1958 
1959 	return 0;
1960 }
1961 
1962 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1963 {
1964 	unsigned int i;
1965 	const struct ieee80211_reg_rule *reg_rule = NULL;
1966 	const struct ieee80211_freq_range *freq_range = NULL;
1967 	const struct ieee80211_power_rule *power_rule = NULL;
1968 
1969 	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1970 
1971 	for (i = 0; i < rd->n_reg_rules; i++) {
1972 		reg_rule = &rd->reg_rules[i];
1973 		freq_range = &reg_rule->freq_range;
1974 		power_rule = &reg_rule->power_rule;
1975 
1976 		/*
1977 		 * There may not be documentation for max antenna gain
1978 		 * in certain regions
1979 		 */
1980 		if (power_rule->max_antenna_gain)
1981 			pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1982 				freq_range->start_freq_khz,
1983 				freq_range->end_freq_khz,
1984 				freq_range->max_bandwidth_khz,
1985 				power_rule->max_antenna_gain,
1986 				power_rule->max_eirp);
1987 		else
1988 			pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1989 				freq_range->start_freq_khz,
1990 				freq_range->end_freq_khz,
1991 				freq_range->max_bandwidth_khz,
1992 				power_rule->max_eirp);
1993 	}
1994 }
1995 
1996 bool reg_supported_dfs_region(u8 dfs_region)
1997 {
1998 	switch (dfs_region) {
1999 	case NL80211_DFS_UNSET:
2000 	case NL80211_DFS_FCC:
2001 	case NL80211_DFS_ETSI:
2002 	case NL80211_DFS_JP:
2003 		return true;
2004 	default:
2005 		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2006 			      dfs_region);
2007 		return false;
2008 	}
2009 }
2010 
2011 static void print_dfs_region(u8 dfs_region)
2012 {
2013 	if (!dfs_region)
2014 		return;
2015 
2016 	switch (dfs_region) {
2017 	case NL80211_DFS_FCC:
2018 		pr_info(" DFS Master region FCC");
2019 		break;
2020 	case NL80211_DFS_ETSI:
2021 		pr_info(" DFS Master region ETSI");
2022 		break;
2023 	case NL80211_DFS_JP:
2024 		pr_info(" DFS Master region JP");
2025 		break;
2026 	default:
2027 		pr_info(" DFS Master region Unknown");
2028 		break;
2029 	}
2030 }
2031 
2032 static void print_regdomain(const struct ieee80211_regdomain *rd)
2033 {
2034 	struct regulatory_request *lr = get_last_request();
2035 
2036 	if (is_intersected_alpha2(rd->alpha2)) {
2037 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2038 			struct cfg80211_registered_device *rdev;
2039 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2040 			if (rdev) {
2041 				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2042 					rdev->country_ie_alpha2[0],
2043 					rdev->country_ie_alpha2[1]);
2044 			} else
2045 				pr_info("Current regulatory domain intersected:\n");
2046 		} else
2047 			pr_info("Current regulatory domain intersected:\n");
2048 	} else if (is_world_regdom(rd->alpha2)) {
2049 		pr_info("World regulatory domain updated:\n");
2050 	} else {
2051 		if (is_unknown_alpha2(rd->alpha2))
2052 			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2053 		else {
2054 			if (reg_request_cell_base(lr))
2055 				pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2056 					rd->alpha2[0], rd->alpha2[1]);
2057 			else
2058 				pr_info("Regulatory domain changed to country: %c%c\n",
2059 					rd->alpha2[0], rd->alpha2[1]);
2060 		}
2061 	}
2062 
2063 	print_dfs_region(rd->dfs_region);
2064 	print_rd_rules(rd);
2065 }
2066 
2067 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2068 {
2069 	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2070 	print_rd_rules(rd);
2071 }
2072 
2073 /* Takes ownership of rd only if it doesn't fail */
2074 static int __set_regdom(const struct ieee80211_regdomain *rd)
2075 {
2076 	const struct ieee80211_regdomain *regd;
2077 	const struct ieee80211_regdomain *intersected_rd = NULL;
2078 	struct wiphy *request_wiphy;
2079 	struct regulatory_request *lr = get_last_request();
2080 
2081 	/* Some basic sanity checks first */
2082 
2083 	if (!reg_is_valid_request(rd->alpha2))
2084 		return -EINVAL;
2085 
2086 	if (is_world_regdom(rd->alpha2)) {
2087 		update_world_regdomain(rd);
2088 		return 0;
2089 	}
2090 
2091 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2092 	    !is_unknown_alpha2(rd->alpha2))
2093 		return -EINVAL;
2094 
2095 	/*
2096 	 * Lets only bother proceeding on the same alpha2 if the current
2097 	 * rd is non static (it means CRDA was present and was used last)
2098 	 * and the pending request came in from a country IE
2099 	 */
2100 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2101 		/*
2102 		 * If someone else asked us to change the rd lets only bother
2103 		 * checking if the alpha2 changes if CRDA was already called
2104 		 */
2105 		if (!regdom_changes(rd->alpha2))
2106 			return -EALREADY;
2107 	}
2108 
2109 	/*
2110 	 * Now lets set the regulatory domain, update all driver channels
2111 	 * and finally inform them of what we have done, in case they want
2112 	 * to review or adjust their own settings based on their own
2113 	 * internal EEPROM data
2114 	 */
2115 
2116 	if (!is_valid_rd(rd)) {
2117 		pr_err("Invalid regulatory domain detected:\n");
2118 		print_regdomain_info(rd);
2119 		return -EINVAL;
2120 	}
2121 
2122 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2123 	if (!request_wiphy &&
2124 	    (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2125 	     lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2126 		schedule_delayed_work(&reg_timeout, 0);
2127 		return -ENODEV;
2128 	}
2129 
2130 	if (!lr->intersect) {
2131 		if (lr->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2132 			reset_regdomains(false, rd);
2133 			return 0;
2134 		}
2135 
2136 		/*
2137 		 * For a driver hint, lets copy the regulatory domain the
2138 		 * driver wanted to the wiphy to deal with conflicts
2139 		 */
2140 
2141 		/*
2142 		 * Userspace could have sent two replies with only
2143 		 * one kernel request.
2144 		 */
2145 		if (request_wiphy->regd)
2146 			return -EALREADY;
2147 
2148 		regd = reg_copy_regd(rd);
2149 		if (IS_ERR(regd))
2150 			return PTR_ERR(regd);
2151 
2152 		rcu_assign_pointer(request_wiphy->regd, regd);
2153 		reset_regdomains(false, rd);
2154 		return 0;
2155 	}
2156 
2157 	/* Intersection requires a bit more work */
2158 
2159 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2160 		intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2161 		if (!intersected_rd)
2162 			return -EINVAL;
2163 
2164 		/*
2165 		 * We can trash what CRDA provided now.
2166 		 * However if a driver requested this specific regulatory
2167 		 * domain we keep it for its private use
2168 		 */
2169 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
2170 			const struct ieee80211_regdomain *tmp;
2171 
2172 			tmp = get_wiphy_regdom(request_wiphy);
2173 			rcu_assign_pointer(request_wiphy->regd, rd);
2174 			rcu_free_regdom(tmp);
2175 		} else {
2176 			kfree(rd);
2177 		}
2178 
2179 		rd = NULL;
2180 
2181 		reset_regdomains(false, intersected_rd);
2182 
2183 		return 0;
2184 	}
2185 
2186 	return -EINVAL;
2187 }
2188 
2189 
2190 /*
2191  * Use this call to set the current regulatory domain. Conflicts with
2192  * multiple drivers can be ironed out later. Caller must've already
2193  * kmalloc'd the rd structure.
2194  */
2195 int set_regdom(const struct ieee80211_regdomain *rd)
2196 {
2197 	struct regulatory_request *lr;
2198 	int r;
2199 
2200 	lr = get_last_request();
2201 
2202 	/* Note that this doesn't update the wiphys, this is done below */
2203 	r = __set_regdom(rd);
2204 	if (r) {
2205 		if (r == -EALREADY)
2206 			reg_set_request_processed();
2207 
2208 		kfree(rd);
2209 		return r;
2210 	}
2211 
2212 	/* This would make this whole thing pointless */
2213 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2214 		return -EINVAL;
2215 
2216 	/* update all wiphys now with the new established regulatory domain */
2217 	update_all_wiphy_regulatory(lr->initiator);
2218 
2219 	print_regdomain(get_cfg80211_regdom());
2220 
2221 	nl80211_send_reg_change_event(lr);
2222 
2223 	reg_set_request_processed();
2224 
2225 	return 0;
2226 }
2227 
2228 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2229 {
2230 	struct regulatory_request *lr;
2231 	u8 alpha2[2];
2232 	bool add = false;
2233 
2234 	rcu_read_lock();
2235 	lr = get_last_request();
2236 	if (lr && !lr->processed) {
2237 		memcpy(alpha2, lr->alpha2, 2);
2238 		add = true;
2239 	}
2240 	rcu_read_unlock();
2241 
2242 	if (add)
2243 		return add_uevent_var(env, "COUNTRY=%c%c",
2244 				      alpha2[0], alpha2[1]);
2245 	return 0;
2246 }
2247 
2248 void wiphy_regulatory_register(struct wiphy *wiphy)
2249 {
2250 	struct regulatory_request *lr;
2251 
2252 	if (!reg_dev_ignore_cell_hint(wiphy))
2253 		reg_num_devs_support_basehint++;
2254 
2255 	lr = get_last_request();
2256 	wiphy_update_regulatory(wiphy, lr->initiator);
2257 }
2258 
2259 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2260 {
2261 	struct wiphy *request_wiphy = NULL;
2262 	struct regulatory_request *lr;
2263 
2264 	lr = get_last_request();
2265 
2266 	if (!reg_dev_ignore_cell_hint(wiphy))
2267 		reg_num_devs_support_basehint--;
2268 
2269 	rcu_free_regdom(get_wiphy_regdom(wiphy));
2270 	rcu_assign_pointer(wiphy->regd, NULL);
2271 
2272 	if (lr)
2273 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2274 
2275 	if (!request_wiphy || request_wiphy != wiphy)
2276 		return;
2277 
2278 	lr->wiphy_idx = WIPHY_IDX_INVALID;
2279 	lr->country_ie_env = ENVIRON_ANY;
2280 }
2281 
2282 static void reg_timeout_work(struct work_struct *work)
2283 {
2284 	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2285 	rtnl_lock();
2286 	restore_regulatory_settings(true);
2287 	rtnl_unlock();
2288 }
2289 
2290 int __init regulatory_init(void)
2291 {
2292 	int err = 0;
2293 
2294 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2295 	if (IS_ERR(reg_pdev))
2296 		return PTR_ERR(reg_pdev);
2297 
2298 	reg_pdev->dev.type = &reg_device_type;
2299 
2300 	spin_lock_init(&reg_requests_lock);
2301 	spin_lock_init(&reg_pending_beacons_lock);
2302 
2303 	reg_regdb_size_check();
2304 
2305 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2306 
2307 	user_alpha2[0] = '9';
2308 	user_alpha2[1] = '7';
2309 
2310 	/* We always try to get an update for the static regdomain */
2311 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2312 	if (err) {
2313 		if (err == -ENOMEM)
2314 			return err;
2315 		/*
2316 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
2317 		 * memory which is handled and propagated appropriately above
2318 		 * but it can also fail during a netlink_broadcast() or during
2319 		 * early boot for call_usermodehelper(). For now treat these
2320 		 * errors as non-fatal.
2321 		 */
2322 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2323 	}
2324 
2325 	/*
2326 	 * Finally, if the user set the module parameter treat it
2327 	 * as a user hint.
2328 	 */
2329 	if (!is_world_regdom(ieee80211_regdom))
2330 		regulatory_hint_user(ieee80211_regdom,
2331 				     NL80211_USER_REG_HINT_USER);
2332 
2333 	return 0;
2334 }
2335 
2336 void regulatory_exit(void)
2337 {
2338 	struct regulatory_request *reg_request, *tmp;
2339 	struct reg_beacon *reg_beacon, *btmp;
2340 
2341 	cancel_work_sync(&reg_work);
2342 	cancel_delayed_work_sync(&reg_timeout);
2343 
2344 	/* Lock to suppress warnings */
2345 	rtnl_lock();
2346 	reset_regdomains(true, NULL);
2347 	rtnl_unlock();
2348 
2349 	dev_set_uevent_suppress(&reg_pdev->dev, true);
2350 
2351 	platform_device_unregister(reg_pdev);
2352 
2353 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2354 		list_del(&reg_beacon->list);
2355 		kfree(reg_beacon);
2356 	}
2357 
2358 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2359 		list_del(&reg_beacon->list);
2360 		kfree(reg_beacon);
2361 	}
2362 
2363 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2364 		list_del(&reg_request->list);
2365 		kfree(reg_request);
2366 	}
2367 }
2368