1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2021 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static DEFINE_SPINLOCK(reg_indoor_lock); 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user, bool cached); 135 static void print_regdomain(const struct ieee80211_regdomain *rd); 136 static void reg_process_hint(struct regulatory_request *reg_request); 137 138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 139 { 140 return rcu_dereference_rtnl(cfg80211_regdomain); 141 } 142 143 /* 144 * Returns the regulatory domain associated with the wiphy. 145 * 146 * Requires any of RTNL, wiphy mutex or RCU protection. 147 */ 148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 149 { 150 return rcu_dereference_check(wiphy->regd, 151 lockdep_is_held(&wiphy->mtx) || 152 lockdep_rtnl_is_held()); 153 } 154 EXPORT_SYMBOL(get_wiphy_regdom); 155 156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 157 { 158 switch (dfs_region) { 159 case NL80211_DFS_UNSET: 160 return "unset"; 161 case NL80211_DFS_FCC: 162 return "FCC"; 163 case NL80211_DFS_ETSI: 164 return "ETSI"; 165 case NL80211_DFS_JP: 166 return "JP"; 167 } 168 return "Unknown"; 169 } 170 171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 172 { 173 const struct ieee80211_regdomain *regd = NULL; 174 const struct ieee80211_regdomain *wiphy_regd = NULL; 175 enum nl80211_dfs_regions dfs_region; 176 177 rcu_read_lock(); 178 regd = get_cfg80211_regdom(); 179 dfs_region = regd->dfs_region; 180 181 if (!wiphy) 182 goto out; 183 184 wiphy_regd = get_wiphy_regdom(wiphy); 185 if (!wiphy_regd) 186 goto out; 187 188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 189 dfs_region = wiphy_regd->dfs_region; 190 goto out; 191 } 192 193 if (wiphy_regd->dfs_region == regd->dfs_region) 194 goto out; 195 196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 197 dev_name(&wiphy->dev), 198 reg_dfs_region_str(wiphy_regd->dfs_region), 199 reg_dfs_region_str(regd->dfs_region)); 200 201 out: 202 rcu_read_unlock(); 203 204 return dfs_region; 205 } 206 207 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 208 { 209 if (!r) 210 return; 211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 212 } 213 214 static struct regulatory_request *get_last_request(void) 215 { 216 return rcu_dereference_rtnl(last_request); 217 } 218 219 /* Used to queue up regulatory hints */ 220 static LIST_HEAD(reg_requests_list); 221 static DEFINE_SPINLOCK(reg_requests_lock); 222 223 /* Used to queue up beacon hints for review */ 224 static LIST_HEAD(reg_pending_beacons); 225 static DEFINE_SPINLOCK(reg_pending_beacons_lock); 226 227 /* Used to keep track of processed beacon hints */ 228 static LIST_HEAD(reg_beacon_list); 229 230 struct reg_beacon { 231 struct list_head list; 232 struct ieee80211_channel chan; 233 }; 234 235 static void reg_check_chans_work(struct work_struct *work); 236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 237 238 static void reg_todo(struct work_struct *work); 239 static DECLARE_WORK(reg_work, reg_todo); 240 241 /* We keep a static world regulatory domain in case of the absence of CRDA */ 242 static const struct ieee80211_regdomain world_regdom = { 243 .n_reg_rules = 8, 244 .alpha2 = "00", 245 .reg_rules = { 246 /* IEEE 802.11b/g, channels 1..11 */ 247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 248 /* IEEE 802.11b/g, channels 12..13. */ 249 REG_RULE(2467-10, 2472+10, 20, 6, 20, 250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 251 /* IEEE 802.11 channel 14 - Only JP enables 252 * this and for 802.11b only */ 253 REG_RULE(2484-10, 2484+10, 20, 6, 20, 254 NL80211_RRF_NO_IR | 255 NL80211_RRF_NO_OFDM), 256 /* IEEE 802.11a, channel 36..48 */ 257 REG_RULE(5180-10, 5240+10, 80, 6, 20, 258 NL80211_RRF_NO_IR | 259 NL80211_RRF_AUTO_BW), 260 261 /* IEEE 802.11a, channel 52..64 - DFS required */ 262 REG_RULE(5260-10, 5320+10, 80, 6, 20, 263 NL80211_RRF_NO_IR | 264 NL80211_RRF_AUTO_BW | 265 NL80211_RRF_DFS), 266 267 /* IEEE 802.11a, channel 100..144 - DFS required */ 268 REG_RULE(5500-10, 5720+10, 160, 6, 20, 269 NL80211_RRF_NO_IR | 270 NL80211_RRF_DFS), 271 272 /* IEEE 802.11a, channel 149..165 */ 273 REG_RULE(5745-10, 5825+10, 80, 6, 20, 274 NL80211_RRF_NO_IR), 275 276 /* IEEE 802.11ad (60GHz), channels 1..3 */ 277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 278 } 279 }; 280 281 /* protected by RTNL */ 282 static const struct ieee80211_regdomain *cfg80211_world_regdom = 283 &world_regdom; 284 285 static char *ieee80211_regdom = "00"; 286 static char user_alpha2[2]; 287 static const struct ieee80211_regdomain *cfg80211_user_regdom; 288 289 module_param(ieee80211_regdom, charp, 0444); 290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 291 292 static void reg_free_request(struct regulatory_request *request) 293 { 294 if (request == &core_request_world) 295 return; 296 297 if (request != get_last_request()) 298 kfree(request); 299 } 300 301 static void reg_free_last_request(void) 302 { 303 struct regulatory_request *lr = get_last_request(); 304 305 if (lr != &core_request_world && lr) 306 kfree_rcu(lr, rcu_head); 307 } 308 309 static void reg_update_last_request(struct regulatory_request *request) 310 { 311 struct regulatory_request *lr; 312 313 lr = get_last_request(); 314 if (lr == request) 315 return; 316 317 reg_free_last_request(); 318 rcu_assign_pointer(last_request, request); 319 } 320 321 static void reset_regdomains(bool full_reset, 322 const struct ieee80211_regdomain *new_regdom) 323 { 324 const struct ieee80211_regdomain *r; 325 326 ASSERT_RTNL(); 327 328 r = get_cfg80211_regdom(); 329 330 /* avoid freeing static information or freeing something twice */ 331 if (r == cfg80211_world_regdom) 332 r = NULL; 333 if (cfg80211_world_regdom == &world_regdom) 334 cfg80211_world_regdom = NULL; 335 if (r == &world_regdom) 336 r = NULL; 337 338 rcu_free_regdom(r); 339 rcu_free_regdom(cfg80211_world_regdom); 340 341 cfg80211_world_regdom = &world_regdom; 342 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 343 344 if (!full_reset) 345 return; 346 347 reg_update_last_request(&core_request_world); 348 } 349 350 /* 351 * Dynamic world regulatory domain requested by the wireless 352 * core upon initialization 353 */ 354 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 355 { 356 struct regulatory_request *lr; 357 358 lr = get_last_request(); 359 360 WARN_ON(!lr); 361 362 reset_regdomains(false, rd); 363 364 cfg80211_world_regdom = rd; 365 } 366 367 bool is_world_regdom(const char *alpha2) 368 { 369 if (!alpha2) 370 return false; 371 return alpha2[0] == '0' && alpha2[1] == '0'; 372 } 373 374 static bool is_alpha2_set(const char *alpha2) 375 { 376 if (!alpha2) 377 return false; 378 return alpha2[0] && alpha2[1]; 379 } 380 381 static bool is_unknown_alpha2(const char *alpha2) 382 { 383 if (!alpha2) 384 return false; 385 /* 386 * Special case where regulatory domain was built by driver 387 * but a specific alpha2 cannot be determined 388 */ 389 return alpha2[0] == '9' && alpha2[1] == '9'; 390 } 391 392 static bool is_intersected_alpha2(const char *alpha2) 393 { 394 if (!alpha2) 395 return false; 396 /* 397 * Special case where regulatory domain is the 398 * result of an intersection between two regulatory domain 399 * structures 400 */ 401 return alpha2[0] == '9' && alpha2[1] == '8'; 402 } 403 404 static bool is_an_alpha2(const char *alpha2) 405 { 406 if (!alpha2) 407 return false; 408 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 409 } 410 411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 412 { 413 if (!alpha2_x || !alpha2_y) 414 return false; 415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 416 } 417 418 static bool regdom_changes(const char *alpha2) 419 { 420 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 421 422 if (!r) 423 return true; 424 return !alpha2_equal(r->alpha2, alpha2); 425 } 426 427 /* 428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 430 * has ever been issued. 431 */ 432 static bool is_user_regdom_saved(void) 433 { 434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 435 return false; 436 437 /* This would indicate a mistake on the design */ 438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 439 "Unexpected user alpha2: %c%c\n", 440 user_alpha2[0], user_alpha2[1])) 441 return false; 442 443 return true; 444 } 445 446 static const struct ieee80211_regdomain * 447 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 448 { 449 struct ieee80211_regdomain *regd; 450 unsigned int i; 451 452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 453 GFP_KERNEL); 454 if (!regd) 455 return ERR_PTR(-ENOMEM); 456 457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 458 459 for (i = 0; i < src_regd->n_reg_rules; i++) 460 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 461 sizeof(struct ieee80211_reg_rule)); 462 463 return regd; 464 } 465 466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 467 { 468 ASSERT_RTNL(); 469 470 if (!IS_ERR(cfg80211_user_regdom)) 471 kfree(cfg80211_user_regdom); 472 cfg80211_user_regdom = reg_copy_regd(rd); 473 } 474 475 struct reg_regdb_apply_request { 476 struct list_head list; 477 const struct ieee80211_regdomain *regdom; 478 }; 479 480 static LIST_HEAD(reg_regdb_apply_list); 481 static DEFINE_MUTEX(reg_regdb_apply_mutex); 482 483 static void reg_regdb_apply(struct work_struct *work) 484 { 485 struct reg_regdb_apply_request *request; 486 487 rtnl_lock(); 488 489 mutex_lock(®_regdb_apply_mutex); 490 while (!list_empty(®_regdb_apply_list)) { 491 request = list_first_entry(®_regdb_apply_list, 492 struct reg_regdb_apply_request, 493 list); 494 list_del(&request->list); 495 496 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 497 kfree(request); 498 } 499 mutex_unlock(®_regdb_apply_mutex); 500 501 rtnl_unlock(); 502 } 503 504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 505 506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 507 { 508 struct reg_regdb_apply_request *request; 509 510 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 511 if (!request) { 512 kfree(regdom); 513 return -ENOMEM; 514 } 515 516 request->regdom = regdom; 517 518 mutex_lock(®_regdb_apply_mutex); 519 list_add_tail(&request->list, ®_regdb_apply_list); 520 mutex_unlock(®_regdb_apply_mutex); 521 522 schedule_work(®_regdb_work); 523 return 0; 524 } 525 526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 527 /* Max number of consecutive attempts to communicate with CRDA */ 528 #define REG_MAX_CRDA_TIMEOUTS 10 529 530 static u32 reg_crda_timeouts; 531 532 static void crda_timeout_work(struct work_struct *work); 533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 534 535 static void crda_timeout_work(struct work_struct *work) 536 { 537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 538 rtnl_lock(); 539 reg_crda_timeouts++; 540 restore_regulatory_settings(true, false); 541 rtnl_unlock(); 542 } 543 544 static void cancel_crda_timeout(void) 545 { 546 cancel_delayed_work(&crda_timeout); 547 } 548 549 static void cancel_crda_timeout_sync(void) 550 { 551 cancel_delayed_work_sync(&crda_timeout); 552 } 553 554 static void reset_crda_timeouts(void) 555 { 556 reg_crda_timeouts = 0; 557 } 558 559 /* 560 * This lets us keep regulatory code which is updated on a regulatory 561 * basis in userspace. 562 */ 563 static int call_crda(const char *alpha2) 564 { 565 char country[12]; 566 char *env[] = { country, NULL }; 567 int ret; 568 569 snprintf(country, sizeof(country), "COUNTRY=%c%c", 570 alpha2[0], alpha2[1]); 571 572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 574 return -EINVAL; 575 } 576 577 if (!is_world_regdom((char *) alpha2)) 578 pr_debug("Calling CRDA for country: %c%c\n", 579 alpha2[0], alpha2[1]); 580 else 581 pr_debug("Calling CRDA to update world regulatory domain\n"); 582 583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 584 if (ret) 585 return ret; 586 587 queue_delayed_work(system_power_efficient_wq, 588 &crda_timeout, msecs_to_jiffies(3142)); 589 return 0; 590 } 591 #else 592 static inline void cancel_crda_timeout(void) {} 593 static inline void cancel_crda_timeout_sync(void) {} 594 static inline void reset_crda_timeouts(void) {} 595 static inline int call_crda(const char *alpha2) 596 { 597 return -ENODATA; 598 } 599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 600 601 /* code to directly load a firmware database through request_firmware */ 602 static const struct fwdb_header *regdb; 603 604 struct fwdb_country { 605 u8 alpha2[2]; 606 __be16 coll_ptr; 607 /* this struct cannot be extended */ 608 } __packed __aligned(4); 609 610 struct fwdb_collection { 611 u8 len; 612 u8 n_rules; 613 u8 dfs_region; 614 /* no optional data yet */ 615 /* aligned to 2, then followed by __be16 array of rule pointers */ 616 } __packed __aligned(4); 617 618 enum fwdb_flags { 619 FWDB_FLAG_NO_OFDM = BIT(0), 620 FWDB_FLAG_NO_OUTDOOR = BIT(1), 621 FWDB_FLAG_DFS = BIT(2), 622 FWDB_FLAG_NO_IR = BIT(3), 623 FWDB_FLAG_AUTO_BW = BIT(4), 624 }; 625 626 struct fwdb_wmm_ac { 627 u8 ecw; 628 u8 aifsn; 629 __be16 cot; 630 } __packed; 631 632 struct fwdb_wmm_rule { 633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 635 } __packed; 636 637 struct fwdb_rule { 638 u8 len; 639 u8 flags; 640 __be16 max_eirp; 641 __be32 start, end, max_bw; 642 /* start of optional data */ 643 __be16 cac_timeout; 644 __be16 wmm_ptr; 645 } __packed __aligned(4); 646 647 #define FWDB_MAGIC 0x52474442 648 #define FWDB_VERSION 20 649 650 struct fwdb_header { 651 __be32 magic; 652 __be32 version; 653 struct fwdb_country country[]; 654 } __packed __aligned(4); 655 656 static int ecw2cw(int ecw) 657 { 658 return (1 << ecw) - 1; 659 } 660 661 static bool valid_wmm(struct fwdb_wmm_rule *rule) 662 { 663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 664 int i; 665 666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 667 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 668 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 669 u8 aifsn = ac[i].aifsn; 670 671 if (cw_min >= cw_max) 672 return false; 673 674 if (aifsn < 1) 675 return false; 676 } 677 678 return true; 679 } 680 681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 682 { 683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 684 685 if ((u8 *)rule + sizeof(rule->len) > data + size) 686 return false; 687 688 /* mandatory fields */ 689 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 690 return false; 691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 693 struct fwdb_wmm_rule *wmm; 694 695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 696 return false; 697 698 wmm = (void *)(data + wmm_ptr); 699 700 if (!valid_wmm(wmm)) 701 return false; 702 } 703 return true; 704 } 705 706 static bool valid_country(const u8 *data, unsigned int size, 707 const struct fwdb_country *country) 708 { 709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 710 struct fwdb_collection *coll = (void *)(data + ptr); 711 __be16 *rules_ptr; 712 unsigned int i; 713 714 /* make sure we can read len/n_rules */ 715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 716 return false; 717 718 /* make sure base struct and all rules fit */ 719 if ((u8 *)coll + ALIGN(coll->len, 2) + 720 (coll->n_rules * 2) > data + size) 721 return false; 722 723 /* mandatory fields must exist */ 724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 725 return false; 726 727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 728 729 for (i = 0; i < coll->n_rules; i++) { 730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 731 732 if (!valid_rule(data, size, rule_ptr)) 733 return false; 734 } 735 736 return true; 737 } 738 739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 740 static struct key *builtin_regdb_keys; 741 742 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen) 743 { 744 const u8 *end = p + buflen; 745 size_t plen; 746 key_ref_t key; 747 748 while (p < end) { 749 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more 750 * than 256 bytes in size. 751 */ 752 if (end - p < 4) 753 goto dodgy_cert; 754 if (p[0] != 0x30 && 755 p[1] != 0x82) 756 goto dodgy_cert; 757 plen = (p[2] << 8) | p[3]; 758 plen += 4; 759 if (plen > end - p) 760 goto dodgy_cert; 761 762 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1), 763 "asymmetric", NULL, p, plen, 764 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 765 KEY_USR_VIEW | KEY_USR_READ), 766 KEY_ALLOC_NOT_IN_QUOTA | 767 KEY_ALLOC_BUILT_IN | 768 KEY_ALLOC_BYPASS_RESTRICTION); 769 if (IS_ERR(key)) { 770 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n", 771 PTR_ERR(key)); 772 } else { 773 pr_notice("Loaded X.509 cert '%s'\n", 774 key_ref_to_ptr(key)->description); 775 key_ref_put(key); 776 } 777 p += plen; 778 } 779 780 return; 781 782 dodgy_cert: 783 pr_err("Problem parsing in-kernel X.509 certificate list\n"); 784 } 785 786 static int __init load_builtin_regdb_keys(void) 787 { 788 builtin_regdb_keys = 789 keyring_alloc(".builtin_regdb_keys", 790 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 791 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 792 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 793 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 794 if (IS_ERR(builtin_regdb_keys)) 795 return PTR_ERR(builtin_regdb_keys); 796 797 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 798 799 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 800 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len); 801 #endif 802 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 803 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 804 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len); 805 #endif 806 807 return 0; 808 } 809 810 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 811 { 812 const struct firmware *sig; 813 bool result; 814 815 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 816 return false; 817 818 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 819 builtin_regdb_keys, 820 VERIFYING_UNSPECIFIED_SIGNATURE, 821 NULL, NULL) == 0; 822 823 release_firmware(sig); 824 825 return result; 826 } 827 828 static void free_regdb_keyring(void) 829 { 830 key_put(builtin_regdb_keys); 831 } 832 #else 833 static int load_builtin_regdb_keys(void) 834 { 835 return 0; 836 } 837 838 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 839 { 840 return true; 841 } 842 843 static void free_regdb_keyring(void) 844 { 845 } 846 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 847 848 static bool valid_regdb(const u8 *data, unsigned int size) 849 { 850 const struct fwdb_header *hdr = (void *)data; 851 const struct fwdb_country *country; 852 853 if (size < sizeof(*hdr)) 854 return false; 855 856 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 857 return false; 858 859 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 860 return false; 861 862 if (!regdb_has_valid_signature(data, size)) 863 return false; 864 865 country = &hdr->country[0]; 866 while ((u8 *)(country + 1) <= data + size) { 867 if (!country->coll_ptr) 868 break; 869 if (!valid_country(data, size, country)) 870 return false; 871 country++; 872 } 873 874 return true; 875 } 876 877 static void set_wmm_rule(const struct fwdb_header *db, 878 const struct fwdb_country *country, 879 const struct fwdb_rule *rule, 880 struct ieee80211_reg_rule *rrule) 881 { 882 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 883 struct fwdb_wmm_rule *wmm; 884 unsigned int i, wmm_ptr; 885 886 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 887 wmm = (void *)((u8 *)db + wmm_ptr); 888 889 if (!valid_wmm(wmm)) { 890 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 891 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 892 country->alpha2[0], country->alpha2[1]); 893 return; 894 } 895 896 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 897 wmm_rule->client[i].cw_min = 898 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 899 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 900 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 901 wmm_rule->client[i].cot = 902 1000 * be16_to_cpu(wmm->client[i].cot); 903 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 904 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 905 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 906 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 907 } 908 909 rrule->has_wmm = true; 910 } 911 912 static int __regdb_query_wmm(const struct fwdb_header *db, 913 const struct fwdb_country *country, int freq, 914 struct ieee80211_reg_rule *rrule) 915 { 916 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 917 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 918 int i; 919 920 for (i = 0; i < coll->n_rules; i++) { 921 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 922 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 923 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 924 925 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 926 continue; 927 928 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 929 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 930 set_wmm_rule(db, country, rule, rrule); 931 return 0; 932 } 933 } 934 935 return -ENODATA; 936 } 937 938 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 939 { 940 const struct fwdb_header *hdr = regdb; 941 const struct fwdb_country *country; 942 943 if (!regdb) 944 return -ENODATA; 945 946 if (IS_ERR(regdb)) 947 return PTR_ERR(regdb); 948 949 country = &hdr->country[0]; 950 while (country->coll_ptr) { 951 if (alpha2_equal(alpha2, country->alpha2)) 952 return __regdb_query_wmm(regdb, country, freq, rule); 953 954 country++; 955 } 956 957 return -ENODATA; 958 } 959 EXPORT_SYMBOL(reg_query_regdb_wmm); 960 961 static int regdb_query_country(const struct fwdb_header *db, 962 const struct fwdb_country *country) 963 { 964 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 965 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 966 struct ieee80211_regdomain *regdom; 967 unsigned int i; 968 969 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 970 GFP_KERNEL); 971 if (!regdom) 972 return -ENOMEM; 973 974 regdom->n_reg_rules = coll->n_rules; 975 regdom->alpha2[0] = country->alpha2[0]; 976 regdom->alpha2[1] = country->alpha2[1]; 977 regdom->dfs_region = coll->dfs_region; 978 979 for (i = 0; i < regdom->n_reg_rules; i++) { 980 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 981 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 982 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 983 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 984 985 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 986 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 987 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 988 989 rrule->power_rule.max_antenna_gain = 0; 990 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 991 992 rrule->flags = 0; 993 if (rule->flags & FWDB_FLAG_NO_OFDM) 994 rrule->flags |= NL80211_RRF_NO_OFDM; 995 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 996 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 997 if (rule->flags & FWDB_FLAG_DFS) 998 rrule->flags |= NL80211_RRF_DFS; 999 if (rule->flags & FWDB_FLAG_NO_IR) 1000 rrule->flags |= NL80211_RRF_NO_IR; 1001 if (rule->flags & FWDB_FLAG_AUTO_BW) 1002 rrule->flags |= NL80211_RRF_AUTO_BW; 1003 1004 rrule->dfs_cac_ms = 0; 1005 1006 /* handle optional data */ 1007 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 1008 rrule->dfs_cac_ms = 1009 1000 * be16_to_cpu(rule->cac_timeout); 1010 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 1011 set_wmm_rule(db, country, rule, rrule); 1012 } 1013 1014 return reg_schedule_apply(regdom); 1015 } 1016 1017 static int query_regdb(const char *alpha2) 1018 { 1019 const struct fwdb_header *hdr = regdb; 1020 const struct fwdb_country *country; 1021 1022 ASSERT_RTNL(); 1023 1024 if (IS_ERR(regdb)) 1025 return PTR_ERR(regdb); 1026 1027 country = &hdr->country[0]; 1028 while (country->coll_ptr) { 1029 if (alpha2_equal(alpha2, country->alpha2)) 1030 return regdb_query_country(regdb, country); 1031 country++; 1032 } 1033 1034 return -ENODATA; 1035 } 1036 1037 static void regdb_fw_cb(const struct firmware *fw, void *context) 1038 { 1039 int set_error = 0; 1040 bool restore = true; 1041 void *db; 1042 1043 if (!fw) { 1044 pr_info("failed to load regulatory.db\n"); 1045 set_error = -ENODATA; 1046 } else if (!valid_regdb(fw->data, fw->size)) { 1047 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1048 set_error = -EINVAL; 1049 } 1050 1051 rtnl_lock(); 1052 if (regdb && !IS_ERR(regdb)) { 1053 /* negative case - a bug 1054 * positive case - can happen due to race in case of multiple cb's in 1055 * queue, due to usage of asynchronous callback 1056 * 1057 * Either case, just restore and free new db. 1058 */ 1059 } else if (set_error) { 1060 regdb = ERR_PTR(set_error); 1061 } else if (fw) { 1062 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1063 if (db) { 1064 regdb = db; 1065 restore = context && query_regdb(context); 1066 } else { 1067 restore = true; 1068 } 1069 } 1070 1071 if (restore) 1072 restore_regulatory_settings(true, false); 1073 1074 rtnl_unlock(); 1075 1076 kfree(context); 1077 1078 release_firmware(fw); 1079 } 1080 1081 static int query_regdb_file(const char *alpha2) 1082 { 1083 ASSERT_RTNL(); 1084 1085 if (regdb) 1086 return query_regdb(alpha2); 1087 1088 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1089 if (!alpha2) 1090 return -ENOMEM; 1091 1092 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1093 ®_pdev->dev, GFP_KERNEL, 1094 (void *)alpha2, regdb_fw_cb); 1095 } 1096 1097 int reg_reload_regdb(void) 1098 { 1099 const struct firmware *fw; 1100 void *db; 1101 int err; 1102 const struct ieee80211_regdomain *current_regdomain; 1103 struct regulatory_request *request; 1104 1105 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1106 if (err) 1107 return err; 1108 1109 if (!valid_regdb(fw->data, fw->size)) { 1110 err = -ENODATA; 1111 goto out; 1112 } 1113 1114 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1115 if (!db) { 1116 err = -ENOMEM; 1117 goto out; 1118 } 1119 1120 rtnl_lock(); 1121 if (!IS_ERR_OR_NULL(regdb)) 1122 kfree(regdb); 1123 regdb = db; 1124 1125 /* reset regulatory domain */ 1126 current_regdomain = get_cfg80211_regdom(); 1127 1128 request = kzalloc(sizeof(*request), GFP_KERNEL); 1129 if (!request) { 1130 err = -ENOMEM; 1131 goto out_unlock; 1132 } 1133 1134 request->wiphy_idx = WIPHY_IDX_INVALID; 1135 request->alpha2[0] = current_regdomain->alpha2[0]; 1136 request->alpha2[1] = current_regdomain->alpha2[1]; 1137 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1138 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER; 1139 1140 reg_process_hint(request); 1141 1142 out_unlock: 1143 rtnl_unlock(); 1144 out: 1145 release_firmware(fw); 1146 return err; 1147 } 1148 1149 static bool reg_query_database(struct regulatory_request *request) 1150 { 1151 if (query_regdb_file(request->alpha2) == 0) 1152 return true; 1153 1154 if (call_crda(request->alpha2) == 0) 1155 return true; 1156 1157 return false; 1158 } 1159 1160 bool reg_is_valid_request(const char *alpha2) 1161 { 1162 struct regulatory_request *lr = get_last_request(); 1163 1164 if (!lr || lr->processed) 1165 return false; 1166 1167 return alpha2_equal(lr->alpha2, alpha2); 1168 } 1169 1170 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1171 { 1172 struct regulatory_request *lr = get_last_request(); 1173 1174 /* 1175 * Follow the driver's regulatory domain, if present, unless a country 1176 * IE has been processed or a user wants to help complaince further 1177 */ 1178 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1179 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1180 wiphy->regd) 1181 return get_wiphy_regdom(wiphy); 1182 1183 return get_cfg80211_regdom(); 1184 } 1185 1186 static unsigned int 1187 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1188 const struct ieee80211_reg_rule *rule) 1189 { 1190 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1191 const struct ieee80211_freq_range *freq_range_tmp; 1192 const struct ieee80211_reg_rule *tmp; 1193 u32 start_freq, end_freq, idx, no; 1194 1195 for (idx = 0; idx < rd->n_reg_rules; idx++) 1196 if (rule == &rd->reg_rules[idx]) 1197 break; 1198 1199 if (idx == rd->n_reg_rules) 1200 return 0; 1201 1202 /* get start_freq */ 1203 no = idx; 1204 1205 while (no) { 1206 tmp = &rd->reg_rules[--no]; 1207 freq_range_tmp = &tmp->freq_range; 1208 1209 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1210 break; 1211 1212 freq_range = freq_range_tmp; 1213 } 1214 1215 start_freq = freq_range->start_freq_khz; 1216 1217 /* get end_freq */ 1218 freq_range = &rule->freq_range; 1219 no = idx; 1220 1221 while (no < rd->n_reg_rules - 1) { 1222 tmp = &rd->reg_rules[++no]; 1223 freq_range_tmp = &tmp->freq_range; 1224 1225 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1226 break; 1227 1228 freq_range = freq_range_tmp; 1229 } 1230 1231 end_freq = freq_range->end_freq_khz; 1232 1233 return end_freq - start_freq; 1234 } 1235 1236 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1237 const struct ieee80211_reg_rule *rule) 1238 { 1239 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1240 1241 if (rule->flags & NL80211_RRF_NO_160MHZ) 1242 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1243 if (rule->flags & NL80211_RRF_NO_80MHZ) 1244 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1245 1246 /* 1247 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1248 * are not allowed. 1249 */ 1250 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1251 rule->flags & NL80211_RRF_NO_HT40PLUS) 1252 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1253 1254 return bw; 1255 } 1256 1257 /* Sanity check on a regulatory rule */ 1258 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1259 { 1260 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1261 u32 freq_diff; 1262 1263 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1264 return false; 1265 1266 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1267 return false; 1268 1269 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1270 1271 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1272 freq_range->max_bandwidth_khz > freq_diff) 1273 return false; 1274 1275 return true; 1276 } 1277 1278 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1279 { 1280 const struct ieee80211_reg_rule *reg_rule = NULL; 1281 unsigned int i; 1282 1283 if (!rd->n_reg_rules) 1284 return false; 1285 1286 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1287 return false; 1288 1289 for (i = 0; i < rd->n_reg_rules; i++) { 1290 reg_rule = &rd->reg_rules[i]; 1291 if (!is_valid_reg_rule(reg_rule)) 1292 return false; 1293 } 1294 1295 return true; 1296 } 1297 1298 /** 1299 * freq_in_rule_band - tells us if a frequency is in a frequency band 1300 * @freq_range: frequency rule we want to query 1301 * @freq_khz: frequency we are inquiring about 1302 * 1303 * This lets us know if a specific frequency rule is or is not relevant to 1304 * a specific frequency's band. Bands are device specific and artificial 1305 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1306 * however it is safe for now to assume that a frequency rule should not be 1307 * part of a frequency's band if the start freq or end freq are off by more 1308 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1309 * 60 GHz band. 1310 * This resolution can be lowered and should be considered as we add 1311 * regulatory rule support for other "bands". 1312 **/ 1313 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1314 u32 freq_khz) 1315 { 1316 #define ONE_GHZ_IN_KHZ 1000000 1317 /* 1318 * From 802.11ad: directional multi-gigabit (DMG): 1319 * Pertaining to operation in a frequency band containing a channel 1320 * with the Channel starting frequency above 45 GHz. 1321 */ 1322 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1323 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1324 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1325 return true; 1326 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1327 return true; 1328 return false; 1329 #undef ONE_GHZ_IN_KHZ 1330 } 1331 1332 /* 1333 * Later on we can perhaps use the more restrictive DFS 1334 * region but we don't have information for that yet so 1335 * for now simply disallow conflicts. 1336 */ 1337 static enum nl80211_dfs_regions 1338 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1339 const enum nl80211_dfs_regions dfs_region2) 1340 { 1341 if (dfs_region1 != dfs_region2) 1342 return NL80211_DFS_UNSET; 1343 return dfs_region1; 1344 } 1345 1346 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1347 const struct ieee80211_wmm_ac *wmm_ac2, 1348 struct ieee80211_wmm_ac *intersect) 1349 { 1350 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1351 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1352 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1353 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1354 } 1355 1356 /* 1357 * Helper for regdom_intersect(), this does the real 1358 * mathematical intersection fun 1359 */ 1360 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1361 const struct ieee80211_regdomain *rd2, 1362 const struct ieee80211_reg_rule *rule1, 1363 const struct ieee80211_reg_rule *rule2, 1364 struct ieee80211_reg_rule *intersected_rule) 1365 { 1366 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1367 struct ieee80211_freq_range *freq_range; 1368 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1369 struct ieee80211_power_rule *power_rule; 1370 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1371 struct ieee80211_wmm_rule *wmm_rule; 1372 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1373 1374 freq_range1 = &rule1->freq_range; 1375 freq_range2 = &rule2->freq_range; 1376 freq_range = &intersected_rule->freq_range; 1377 1378 power_rule1 = &rule1->power_rule; 1379 power_rule2 = &rule2->power_rule; 1380 power_rule = &intersected_rule->power_rule; 1381 1382 wmm_rule1 = &rule1->wmm_rule; 1383 wmm_rule2 = &rule2->wmm_rule; 1384 wmm_rule = &intersected_rule->wmm_rule; 1385 1386 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1387 freq_range2->start_freq_khz); 1388 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1389 freq_range2->end_freq_khz); 1390 1391 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1392 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1393 1394 if (rule1->flags & NL80211_RRF_AUTO_BW) 1395 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1396 if (rule2->flags & NL80211_RRF_AUTO_BW) 1397 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1398 1399 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1400 1401 intersected_rule->flags = rule1->flags | rule2->flags; 1402 1403 /* 1404 * In case NL80211_RRF_AUTO_BW requested for both rules 1405 * set AUTO_BW in intersected rule also. Next we will 1406 * calculate BW correctly in handle_channel function. 1407 * In other case remove AUTO_BW flag while we calculate 1408 * maximum bandwidth correctly and auto calculation is 1409 * not required. 1410 */ 1411 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1412 (rule2->flags & NL80211_RRF_AUTO_BW)) 1413 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1414 else 1415 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1416 1417 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1418 if (freq_range->max_bandwidth_khz > freq_diff) 1419 freq_range->max_bandwidth_khz = freq_diff; 1420 1421 power_rule->max_eirp = min(power_rule1->max_eirp, 1422 power_rule2->max_eirp); 1423 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1424 power_rule2->max_antenna_gain); 1425 1426 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1427 rule2->dfs_cac_ms); 1428 1429 if (rule1->has_wmm && rule2->has_wmm) { 1430 u8 ac; 1431 1432 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1433 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1434 &wmm_rule2->client[ac], 1435 &wmm_rule->client[ac]); 1436 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1437 &wmm_rule2->ap[ac], 1438 &wmm_rule->ap[ac]); 1439 } 1440 1441 intersected_rule->has_wmm = true; 1442 } else if (rule1->has_wmm) { 1443 *wmm_rule = *wmm_rule1; 1444 intersected_rule->has_wmm = true; 1445 } else if (rule2->has_wmm) { 1446 *wmm_rule = *wmm_rule2; 1447 intersected_rule->has_wmm = true; 1448 } else { 1449 intersected_rule->has_wmm = false; 1450 } 1451 1452 if (!is_valid_reg_rule(intersected_rule)) 1453 return -EINVAL; 1454 1455 return 0; 1456 } 1457 1458 /* check whether old rule contains new rule */ 1459 static bool rule_contains(struct ieee80211_reg_rule *r1, 1460 struct ieee80211_reg_rule *r2) 1461 { 1462 /* for simplicity, currently consider only same flags */ 1463 if (r1->flags != r2->flags) 1464 return false; 1465 1466 /* verify r1 is more restrictive */ 1467 if ((r1->power_rule.max_antenna_gain > 1468 r2->power_rule.max_antenna_gain) || 1469 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1470 return false; 1471 1472 /* make sure r2's range is contained within r1 */ 1473 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1474 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1475 return false; 1476 1477 /* and finally verify that r1.max_bw >= r2.max_bw */ 1478 if (r1->freq_range.max_bandwidth_khz < 1479 r2->freq_range.max_bandwidth_khz) 1480 return false; 1481 1482 return true; 1483 } 1484 1485 /* add or extend current rules. do nothing if rule is already contained */ 1486 static void add_rule(struct ieee80211_reg_rule *rule, 1487 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1488 { 1489 struct ieee80211_reg_rule *tmp_rule; 1490 int i; 1491 1492 for (i = 0; i < *n_rules; i++) { 1493 tmp_rule = ®_rules[i]; 1494 /* rule is already contained - do nothing */ 1495 if (rule_contains(tmp_rule, rule)) 1496 return; 1497 1498 /* extend rule if possible */ 1499 if (rule_contains(rule, tmp_rule)) { 1500 memcpy(tmp_rule, rule, sizeof(*rule)); 1501 return; 1502 } 1503 } 1504 1505 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1506 (*n_rules)++; 1507 } 1508 1509 /** 1510 * regdom_intersect - do the intersection between two regulatory domains 1511 * @rd1: first regulatory domain 1512 * @rd2: second regulatory domain 1513 * 1514 * Use this function to get the intersection between two regulatory domains. 1515 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1516 * as no one single alpha2 can represent this regulatory domain. 1517 * 1518 * Returns a pointer to the regulatory domain structure which will hold the 1519 * resulting intersection of rules between rd1 and rd2. We will 1520 * kzalloc() this structure for you. 1521 */ 1522 static struct ieee80211_regdomain * 1523 regdom_intersect(const struct ieee80211_regdomain *rd1, 1524 const struct ieee80211_regdomain *rd2) 1525 { 1526 int r; 1527 unsigned int x, y; 1528 unsigned int num_rules = 0; 1529 const struct ieee80211_reg_rule *rule1, *rule2; 1530 struct ieee80211_reg_rule intersected_rule; 1531 struct ieee80211_regdomain *rd; 1532 1533 if (!rd1 || !rd2) 1534 return NULL; 1535 1536 /* 1537 * First we get a count of the rules we'll need, then we actually 1538 * build them. This is to so we can malloc() and free() a 1539 * regdomain once. The reason we use reg_rules_intersect() here 1540 * is it will return -EINVAL if the rule computed makes no sense. 1541 * All rules that do check out OK are valid. 1542 */ 1543 1544 for (x = 0; x < rd1->n_reg_rules; x++) { 1545 rule1 = &rd1->reg_rules[x]; 1546 for (y = 0; y < rd2->n_reg_rules; y++) { 1547 rule2 = &rd2->reg_rules[y]; 1548 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1549 &intersected_rule)) 1550 num_rules++; 1551 } 1552 } 1553 1554 if (!num_rules) 1555 return NULL; 1556 1557 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1558 if (!rd) 1559 return NULL; 1560 1561 for (x = 0; x < rd1->n_reg_rules; x++) { 1562 rule1 = &rd1->reg_rules[x]; 1563 for (y = 0; y < rd2->n_reg_rules; y++) { 1564 rule2 = &rd2->reg_rules[y]; 1565 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1566 &intersected_rule); 1567 /* 1568 * No need to memset here the intersected rule here as 1569 * we're not using the stack anymore 1570 */ 1571 if (r) 1572 continue; 1573 1574 add_rule(&intersected_rule, rd->reg_rules, 1575 &rd->n_reg_rules); 1576 } 1577 } 1578 1579 rd->alpha2[0] = '9'; 1580 rd->alpha2[1] = '8'; 1581 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1582 rd2->dfs_region); 1583 1584 return rd; 1585 } 1586 1587 /* 1588 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1589 * want to just have the channel structure use these 1590 */ 1591 static u32 map_regdom_flags(u32 rd_flags) 1592 { 1593 u32 channel_flags = 0; 1594 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1595 channel_flags |= IEEE80211_CHAN_NO_IR; 1596 if (rd_flags & NL80211_RRF_DFS) 1597 channel_flags |= IEEE80211_CHAN_RADAR; 1598 if (rd_flags & NL80211_RRF_NO_OFDM) 1599 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1600 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1601 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1602 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1603 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1604 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1605 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1606 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1607 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1608 if (rd_flags & NL80211_RRF_NO_80MHZ) 1609 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1610 if (rd_flags & NL80211_RRF_NO_160MHZ) 1611 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1612 if (rd_flags & NL80211_RRF_NO_HE) 1613 channel_flags |= IEEE80211_CHAN_NO_HE; 1614 return channel_flags; 1615 } 1616 1617 static const struct ieee80211_reg_rule * 1618 freq_reg_info_regd(u32 center_freq, 1619 const struct ieee80211_regdomain *regd, u32 bw) 1620 { 1621 int i; 1622 bool band_rule_found = false; 1623 bool bw_fits = false; 1624 1625 if (!regd) 1626 return ERR_PTR(-EINVAL); 1627 1628 for (i = 0; i < regd->n_reg_rules; i++) { 1629 const struct ieee80211_reg_rule *rr; 1630 const struct ieee80211_freq_range *fr = NULL; 1631 1632 rr = ®d->reg_rules[i]; 1633 fr = &rr->freq_range; 1634 1635 /* 1636 * We only need to know if one frequency rule was 1637 * in center_freq's band, that's enough, so let's 1638 * not overwrite it once found 1639 */ 1640 if (!band_rule_found) 1641 band_rule_found = freq_in_rule_band(fr, center_freq); 1642 1643 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1644 1645 if (band_rule_found && bw_fits) 1646 return rr; 1647 } 1648 1649 if (!band_rule_found) 1650 return ERR_PTR(-ERANGE); 1651 1652 return ERR_PTR(-EINVAL); 1653 } 1654 1655 static const struct ieee80211_reg_rule * 1656 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1657 { 1658 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1659 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20}; 1660 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE); 1661 int i = ARRAY_SIZE(bws) - 1; 1662 u32 bw; 1663 1664 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) { 1665 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1666 if (!IS_ERR(reg_rule)) 1667 return reg_rule; 1668 } 1669 1670 return reg_rule; 1671 } 1672 1673 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1674 u32 center_freq) 1675 { 1676 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20; 1677 1678 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw)); 1679 } 1680 EXPORT_SYMBOL(freq_reg_info); 1681 1682 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1683 { 1684 switch (initiator) { 1685 case NL80211_REGDOM_SET_BY_CORE: 1686 return "core"; 1687 case NL80211_REGDOM_SET_BY_USER: 1688 return "user"; 1689 case NL80211_REGDOM_SET_BY_DRIVER: 1690 return "driver"; 1691 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1692 return "country element"; 1693 default: 1694 WARN_ON(1); 1695 return "bug"; 1696 } 1697 } 1698 EXPORT_SYMBOL(reg_initiator_name); 1699 1700 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1701 const struct ieee80211_reg_rule *reg_rule, 1702 const struct ieee80211_channel *chan) 1703 { 1704 const struct ieee80211_freq_range *freq_range = NULL; 1705 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0; 1706 bool is_s1g = chan->band == NL80211_BAND_S1GHZ; 1707 1708 freq_range = ®_rule->freq_range; 1709 1710 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1711 center_freq_khz = ieee80211_channel_to_khz(chan); 1712 /* Check if auto calculation requested */ 1713 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1714 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1715 1716 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1717 if (!cfg80211_does_bw_fit_range(freq_range, 1718 center_freq_khz, 1719 MHZ_TO_KHZ(10))) 1720 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1721 if (!cfg80211_does_bw_fit_range(freq_range, 1722 center_freq_khz, 1723 MHZ_TO_KHZ(20))) 1724 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1725 1726 if (is_s1g) { 1727 /* S1G is strict about non overlapping channels. We can 1728 * calculate which bandwidth is allowed per channel by finding 1729 * the largest bandwidth which cleanly divides the freq_range. 1730 */ 1731 int edge_offset; 1732 int ch_bw = max_bandwidth_khz; 1733 1734 while (ch_bw) { 1735 edge_offset = (center_freq_khz - ch_bw / 2) - 1736 freq_range->start_freq_khz; 1737 if (edge_offset % ch_bw == 0) { 1738 switch (KHZ_TO_MHZ(ch_bw)) { 1739 case 1: 1740 bw_flags |= IEEE80211_CHAN_1MHZ; 1741 break; 1742 case 2: 1743 bw_flags |= IEEE80211_CHAN_2MHZ; 1744 break; 1745 case 4: 1746 bw_flags |= IEEE80211_CHAN_4MHZ; 1747 break; 1748 case 8: 1749 bw_flags |= IEEE80211_CHAN_8MHZ; 1750 break; 1751 case 16: 1752 bw_flags |= IEEE80211_CHAN_16MHZ; 1753 break; 1754 default: 1755 /* If we got here, no bandwidths fit on 1756 * this frequency, ie. band edge. 1757 */ 1758 bw_flags |= IEEE80211_CHAN_DISABLED; 1759 break; 1760 } 1761 break; 1762 } 1763 ch_bw /= 2; 1764 } 1765 } else { 1766 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1767 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1768 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1769 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1770 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1771 bw_flags |= IEEE80211_CHAN_NO_HT40; 1772 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1773 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1774 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1775 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1776 } 1777 return bw_flags; 1778 } 1779 1780 static void handle_channel_single_rule(struct wiphy *wiphy, 1781 enum nl80211_reg_initiator initiator, 1782 struct ieee80211_channel *chan, 1783 u32 flags, 1784 struct regulatory_request *lr, 1785 struct wiphy *request_wiphy, 1786 const struct ieee80211_reg_rule *reg_rule) 1787 { 1788 u32 bw_flags = 0; 1789 const struct ieee80211_power_rule *power_rule = NULL; 1790 const struct ieee80211_regdomain *regd; 1791 1792 regd = reg_get_regdomain(wiphy); 1793 1794 power_rule = ®_rule->power_rule; 1795 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1796 1797 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1798 request_wiphy && request_wiphy == wiphy && 1799 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1800 /* 1801 * This guarantees the driver's requested regulatory domain 1802 * will always be used as a base for further regulatory 1803 * settings 1804 */ 1805 chan->flags = chan->orig_flags = 1806 map_regdom_flags(reg_rule->flags) | bw_flags; 1807 chan->max_antenna_gain = chan->orig_mag = 1808 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1809 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1810 (int) MBM_TO_DBM(power_rule->max_eirp); 1811 1812 if (chan->flags & IEEE80211_CHAN_RADAR) { 1813 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1814 if (reg_rule->dfs_cac_ms) 1815 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1816 } 1817 1818 return; 1819 } 1820 1821 chan->dfs_state = NL80211_DFS_USABLE; 1822 chan->dfs_state_entered = jiffies; 1823 1824 chan->beacon_found = false; 1825 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1826 chan->max_antenna_gain = 1827 min_t(int, chan->orig_mag, 1828 MBI_TO_DBI(power_rule->max_antenna_gain)); 1829 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1830 1831 if (chan->flags & IEEE80211_CHAN_RADAR) { 1832 if (reg_rule->dfs_cac_ms) 1833 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1834 else 1835 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1836 } 1837 1838 if (chan->orig_mpwr) { 1839 /* 1840 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1841 * will always follow the passed country IE power settings. 1842 */ 1843 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1844 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1845 chan->max_power = chan->max_reg_power; 1846 else 1847 chan->max_power = min(chan->orig_mpwr, 1848 chan->max_reg_power); 1849 } else 1850 chan->max_power = chan->max_reg_power; 1851 } 1852 1853 static void handle_channel_adjacent_rules(struct wiphy *wiphy, 1854 enum nl80211_reg_initiator initiator, 1855 struct ieee80211_channel *chan, 1856 u32 flags, 1857 struct regulatory_request *lr, 1858 struct wiphy *request_wiphy, 1859 const struct ieee80211_reg_rule *rrule1, 1860 const struct ieee80211_reg_rule *rrule2, 1861 struct ieee80211_freq_range *comb_range) 1862 { 1863 u32 bw_flags1 = 0; 1864 u32 bw_flags2 = 0; 1865 const struct ieee80211_power_rule *power_rule1 = NULL; 1866 const struct ieee80211_power_rule *power_rule2 = NULL; 1867 const struct ieee80211_regdomain *regd; 1868 1869 regd = reg_get_regdomain(wiphy); 1870 1871 power_rule1 = &rrule1->power_rule; 1872 power_rule2 = &rrule2->power_rule; 1873 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan); 1874 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan); 1875 1876 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1877 request_wiphy && request_wiphy == wiphy && 1878 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1879 /* This guarantees the driver's requested regulatory domain 1880 * will always be used as a base for further regulatory 1881 * settings 1882 */ 1883 chan->flags = 1884 map_regdom_flags(rrule1->flags) | 1885 map_regdom_flags(rrule2->flags) | 1886 bw_flags1 | 1887 bw_flags2; 1888 chan->orig_flags = chan->flags; 1889 chan->max_antenna_gain = 1890 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain), 1891 MBI_TO_DBI(power_rule2->max_antenna_gain)); 1892 chan->orig_mag = chan->max_antenna_gain; 1893 chan->max_reg_power = 1894 min_t(int, MBM_TO_DBM(power_rule1->max_eirp), 1895 MBM_TO_DBM(power_rule2->max_eirp)); 1896 chan->max_power = chan->max_reg_power; 1897 chan->orig_mpwr = chan->max_reg_power; 1898 1899 if (chan->flags & IEEE80211_CHAN_RADAR) { 1900 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1901 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1902 chan->dfs_cac_ms = max_t(unsigned int, 1903 rrule1->dfs_cac_ms, 1904 rrule2->dfs_cac_ms); 1905 } 1906 1907 return; 1908 } 1909 1910 chan->dfs_state = NL80211_DFS_USABLE; 1911 chan->dfs_state_entered = jiffies; 1912 1913 chan->beacon_found = false; 1914 chan->flags = flags | bw_flags1 | bw_flags2 | 1915 map_regdom_flags(rrule1->flags) | 1916 map_regdom_flags(rrule2->flags); 1917 1918 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz 1919 * (otherwise no adj. rule case), recheck therefore 1920 */ 1921 if (cfg80211_does_bw_fit_range(comb_range, 1922 ieee80211_channel_to_khz(chan), 1923 MHZ_TO_KHZ(10))) 1924 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ; 1925 if (cfg80211_does_bw_fit_range(comb_range, 1926 ieee80211_channel_to_khz(chan), 1927 MHZ_TO_KHZ(20))) 1928 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ; 1929 1930 chan->max_antenna_gain = 1931 min_t(int, chan->orig_mag, 1932 min_t(int, 1933 MBI_TO_DBI(power_rule1->max_antenna_gain), 1934 MBI_TO_DBI(power_rule2->max_antenna_gain))); 1935 chan->max_reg_power = min_t(int, 1936 MBM_TO_DBM(power_rule1->max_eirp), 1937 MBM_TO_DBM(power_rule2->max_eirp)); 1938 1939 if (chan->flags & IEEE80211_CHAN_RADAR) { 1940 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1941 chan->dfs_cac_ms = max_t(unsigned int, 1942 rrule1->dfs_cac_ms, 1943 rrule2->dfs_cac_ms); 1944 else 1945 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1946 } 1947 1948 if (chan->orig_mpwr) { 1949 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1950 * will always follow the passed country IE power settings. 1951 */ 1952 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1953 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1954 chan->max_power = chan->max_reg_power; 1955 else 1956 chan->max_power = min(chan->orig_mpwr, 1957 chan->max_reg_power); 1958 } else { 1959 chan->max_power = chan->max_reg_power; 1960 } 1961 } 1962 1963 /* Note that right now we assume the desired channel bandwidth 1964 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1965 * per channel, the primary and the extension channel). 1966 */ 1967 static void handle_channel(struct wiphy *wiphy, 1968 enum nl80211_reg_initiator initiator, 1969 struct ieee80211_channel *chan) 1970 { 1971 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan); 1972 struct regulatory_request *lr = get_last_request(); 1973 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1974 const struct ieee80211_reg_rule *rrule = NULL; 1975 const struct ieee80211_reg_rule *rrule1 = NULL; 1976 const struct ieee80211_reg_rule *rrule2 = NULL; 1977 1978 u32 flags = chan->orig_flags; 1979 1980 rrule = freq_reg_info(wiphy, orig_chan_freq); 1981 if (IS_ERR(rrule)) { 1982 /* check for adjacent match, therefore get rules for 1983 * chan - 20 MHz and chan + 20 MHz and test 1984 * if reg rules are adjacent 1985 */ 1986 rrule1 = freq_reg_info(wiphy, 1987 orig_chan_freq - MHZ_TO_KHZ(20)); 1988 rrule2 = freq_reg_info(wiphy, 1989 orig_chan_freq + MHZ_TO_KHZ(20)); 1990 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) { 1991 struct ieee80211_freq_range comb_range; 1992 1993 if (rrule1->freq_range.end_freq_khz != 1994 rrule2->freq_range.start_freq_khz) 1995 goto disable_chan; 1996 1997 comb_range.start_freq_khz = 1998 rrule1->freq_range.start_freq_khz; 1999 comb_range.end_freq_khz = 2000 rrule2->freq_range.end_freq_khz; 2001 comb_range.max_bandwidth_khz = 2002 min_t(u32, 2003 rrule1->freq_range.max_bandwidth_khz, 2004 rrule2->freq_range.max_bandwidth_khz); 2005 2006 if (!cfg80211_does_bw_fit_range(&comb_range, 2007 orig_chan_freq, 2008 MHZ_TO_KHZ(20))) 2009 goto disable_chan; 2010 2011 handle_channel_adjacent_rules(wiphy, initiator, chan, 2012 flags, lr, request_wiphy, 2013 rrule1, rrule2, 2014 &comb_range); 2015 return; 2016 } 2017 2018 disable_chan: 2019 /* We will disable all channels that do not match our 2020 * received regulatory rule unless the hint is coming 2021 * from a Country IE and the Country IE had no information 2022 * about a band. The IEEE 802.11 spec allows for an AP 2023 * to send only a subset of the regulatory rules allowed, 2024 * so an AP in the US that only supports 2.4 GHz may only send 2025 * a country IE with information for the 2.4 GHz band 2026 * while 5 GHz is still supported. 2027 */ 2028 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2029 PTR_ERR(rrule) == -ERANGE) 2030 return; 2031 2032 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2033 request_wiphy && request_wiphy == wiphy && 2034 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2035 pr_debug("Disabling freq %d.%03d MHz for good\n", 2036 chan->center_freq, chan->freq_offset); 2037 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2038 chan->flags = chan->orig_flags; 2039 } else { 2040 pr_debug("Disabling freq %d.%03d MHz\n", 2041 chan->center_freq, chan->freq_offset); 2042 chan->flags |= IEEE80211_CHAN_DISABLED; 2043 } 2044 return; 2045 } 2046 2047 handle_channel_single_rule(wiphy, initiator, chan, flags, lr, 2048 request_wiphy, rrule); 2049 } 2050 2051 static void handle_band(struct wiphy *wiphy, 2052 enum nl80211_reg_initiator initiator, 2053 struct ieee80211_supported_band *sband) 2054 { 2055 unsigned int i; 2056 2057 if (!sband) 2058 return; 2059 2060 for (i = 0; i < sband->n_channels; i++) 2061 handle_channel(wiphy, initiator, &sband->channels[i]); 2062 } 2063 2064 static bool reg_request_cell_base(struct regulatory_request *request) 2065 { 2066 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 2067 return false; 2068 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 2069 } 2070 2071 bool reg_last_request_cell_base(void) 2072 { 2073 return reg_request_cell_base(get_last_request()); 2074 } 2075 2076 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 2077 /* Core specific check */ 2078 static enum reg_request_treatment 2079 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2080 { 2081 struct regulatory_request *lr = get_last_request(); 2082 2083 if (!reg_num_devs_support_basehint) 2084 return REG_REQ_IGNORE; 2085 2086 if (reg_request_cell_base(lr) && 2087 !regdom_changes(pending_request->alpha2)) 2088 return REG_REQ_ALREADY_SET; 2089 2090 return REG_REQ_OK; 2091 } 2092 2093 /* Device specific check */ 2094 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2095 { 2096 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 2097 } 2098 #else 2099 static enum reg_request_treatment 2100 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2101 { 2102 return REG_REQ_IGNORE; 2103 } 2104 2105 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2106 { 2107 return true; 2108 } 2109 #endif 2110 2111 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 2112 { 2113 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 2114 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 2115 return true; 2116 return false; 2117 } 2118 2119 static bool ignore_reg_update(struct wiphy *wiphy, 2120 enum nl80211_reg_initiator initiator) 2121 { 2122 struct regulatory_request *lr = get_last_request(); 2123 2124 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2125 return true; 2126 2127 if (!lr) { 2128 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 2129 reg_initiator_name(initiator)); 2130 return true; 2131 } 2132 2133 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2134 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 2135 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 2136 reg_initiator_name(initiator)); 2137 return true; 2138 } 2139 2140 /* 2141 * wiphy->regd will be set once the device has its own 2142 * desired regulatory domain set 2143 */ 2144 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 2145 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2146 !is_world_regdom(lr->alpha2)) { 2147 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 2148 reg_initiator_name(initiator)); 2149 return true; 2150 } 2151 2152 if (reg_request_cell_base(lr)) 2153 return reg_dev_ignore_cell_hint(wiphy); 2154 2155 return false; 2156 } 2157 2158 static bool reg_is_world_roaming(struct wiphy *wiphy) 2159 { 2160 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 2161 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 2162 struct regulatory_request *lr = get_last_request(); 2163 2164 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 2165 return true; 2166 2167 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2168 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2169 return true; 2170 2171 return false; 2172 } 2173 2174 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 2175 struct reg_beacon *reg_beacon) 2176 { 2177 struct ieee80211_supported_band *sband; 2178 struct ieee80211_channel *chan; 2179 bool channel_changed = false; 2180 struct ieee80211_channel chan_before; 2181 2182 sband = wiphy->bands[reg_beacon->chan.band]; 2183 chan = &sband->channels[chan_idx]; 2184 2185 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan))) 2186 return; 2187 2188 if (chan->beacon_found) 2189 return; 2190 2191 chan->beacon_found = true; 2192 2193 if (!reg_is_world_roaming(wiphy)) 2194 return; 2195 2196 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 2197 return; 2198 2199 chan_before = *chan; 2200 2201 if (chan->flags & IEEE80211_CHAN_NO_IR) { 2202 chan->flags &= ~IEEE80211_CHAN_NO_IR; 2203 channel_changed = true; 2204 } 2205 2206 if (channel_changed) 2207 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 2208 } 2209 2210 /* 2211 * Called when a scan on a wiphy finds a beacon on 2212 * new channel 2213 */ 2214 static void wiphy_update_new_beacon(struct wiphy *wiphy, 2215 struct reg_beacon *reg_beacon) 2216 { 2217 unsigned int i; 2218 struct ieee80211_supported_band *sband; 2219 2220 if (!wiphy->bands[reg_beacon->chan.band]) 2221 return; 2222 2223 sband = wiphy->bands[reg_beacon->chan.band]; 2224 2225 for (i = 0; i < sband->n_channels; i++) 2226 handle_reg_beacon(wiphy, i, reg_beacon); 2227 } 2228 2229 /* 2230 * Called upon reg changes or a new wiphy is added 2231 */ 2232 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 2233 { 2234 unsigned int i; 2235 struct ieee80211_supported_band *sband; 2236 struct reg_beacon *reg_beacon; 2237 2238 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 2239 if (!wiphy->bands[reg_beacon->chan.band]) 2240 continue; 2241 sband = wiphy->bands[reg_beacon->chan.band]; 2242 for (i = 0; i < sband->n_channels; i++) 2243 handle_reg_beacon(wiphy, i, reg_beacon); 2244 } 2245 } 2246 2247 /* Reap the advantages of previously found beacons */ 2248 static void reg_process_beacons(struct wiphy *wiphy) 2249 { 2250 /* 2251 * Means we are just firing up cfg80211, so no beacons would 2252 * have been processed yet. 2253 */ 2254 if (!last_request) 2255 return; 2256 wiphy_update_beacon_reg(wiphy); 2257 } 2258 2259 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2260 { 2261 if (!chan) 2262 return false; 2263 if (chan->flags & IEEE80211_CHAN_DISABLED) 2264 return false; 2265 /* This would happen when regulatory rules disallow HT40 completely */ 2266 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2267 return false; 2268 return true; 2269 } 2270 2271 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2272 struct ieee80211_channel *channel) 2273 { 2274 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2275 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2276 const struct ieee80211_regdomain *regd; 2277 unsigned int i; 2278 u32 flags; 2279 2280 if (!is_ht40_allowed(channel)) { 2281 channel->flags |= IEEE80211_CHAN_NO_HT40; 2282 return; 2283 } 2284 2285 /* 2286 * We need to ensure the extension channels exist to 2287 * be able to use HT40- or HT40+, this finds them (or not) 2288 */ 2289 for (i = 0; i < sband->n_channels; i++) { 2290 struct ieee80211_channel *c = &sband->channels[i]; 2291 2292 if (c->center_freq == (channel->center_freq - 20)) 2293 channel_before = c; 2294 if (c->center_freq == (channel->center_freq + 20)) 2295 channel_after = c; 2296 } 2297 2298 flags = 0; 2299 regd = get_wiphy_regdom(wiphy); 2300 if (regd) { 2301 const struct ieee80211_reg_rule *reg_rule = 2302 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2303 regd, MHZ_TO_KHZ(20)); 2304 2305 if (!IS_ERR(reg_rule)) 2306 flags = reg_rule->flags; 2307 } 2308 2309 /* 2310 * Please note that this assumes target bandwidth is 20 MHz, 2311 * if that ever changes we also need to change the below logic 2312 * to include that as well. 2313 */ 2314 if (!is_ht40_allowed(channel_before) || 2315 flags & NL80211_RRF_NO_HT40MINUS) 2316 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2317 else 2318 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2319 2320 if (!is_ht40_allowed(channel_after) || 2321 flags & NL80211_RRF_NO_HT40PLUS) 2322 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2323 else 2324 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2325 } 2326 2327 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2328 struct ieee80211_supported_band *sband) 2329 { 2330 unsigned int i; 2331 2332 if (!sband) 2333 return; 2334 2335 for (i = 0; i < sband->n_channels; i++) 2336 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2337 } 2338 2339 static void reg_process_ht_flags(struct wiphy *wiphy) 2340 { 2341 enum nl80211_band band; 2342 2343 if (!wiphy) 2344 return; 2345 2346 for (band = 0; band < NUM_NL80211_BANDS; band++) 2347 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2348 } 2349 2350 static void reg_call_notifier(struct wiphy *wiphy, 2351 struct regulatory_request *request) 2352 { 2353 if (wiphy->reg_notifier) 2354 wiphy->reg_notifier(wiphy, request); 2355 } 2356 2357 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2358 { 2359 struct cfg80211_chan_def chandef = {}; 2360 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2361 enum nl80211_iftype iftype; 2362 bool ret; 2363 2364 wdev_lock(wdev); 2365 iftype = wdev->iftype; 2366 2367 /* make sure the interface is active */ 2368 if (!wdev->netdev || !netif_running(wdev->netdev)) 2369 goto wdev_inactive_unlock; 2370 2371 switch (iftype) { 2372 case NL80211_IFTYPE_AP: 2373 case NL80211_IFTYPE_P2P_GO: 2374 case NL80211_IFTYPE_MESH_POINT: 2375 if (!wdev->beacon_interval) 2376 goto wdev_inactive_unlock; 2377 chandef = wdev->chandef; 2378 break; 2379 case NL80211_IFTYPE_ADHOC: 2380 if (!wdev->ssid_len) 2381 goto wdev_inactive_unlock; 2382 chandef = wdev->chandef; 2383 break; 2384 case NL80211_IFTYPE_STATION: 2385 case NL80211_IFTYPE_P2P_CLIENT: 2386 if (!wdev->current_bss || 2387 !wdev->current_bss->pub.channel) 2388 goto wdev_inactive_unlock; 2389 2390 if (!rdev->ops->get_channel || 2391 rdev_get_channel(rdev, wdev, &chandef)) 2392 cfg80211_chandef_create(&chandef, 2393 wdev->current_bss->pub.channel, 2394 NL80211_CHAN_NO_HT); 2395 break; 2396 case NL80211_IFTYPE_MONITOR: 2397 case NL80211_IFTYPE_AP_VLAN: 2398 case NL80211_IFTYPE_P2P_DEVICE: 2399 /* no enforcement required */ 2400 break; 2401 default: 2402 /* others not implemented for now */ 2403 WARN_ON(1); 2404 break; 2405 } 2406 2407 wdev_unlock(wdev); 2408 2409 switch (iftype) { 2410 case NL80211_IFTYPE_AP: 2411 case NL80211_IFTYPE_P2P_GO: 2412 case NL80211_IFTYPE_ADHOC: 2413 case NL80211_IFTYPE_MESH_POINT: 2414 wiphy_lock(wiphy); 2415 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 2416 wiphy_unlock(wiphy); 2417 2418 return ret; 2419 case NL80211_IFTYPE_STATION: 2420 case NL80211_IFTYPE_P2P_CLIENT: 2421 return cfg80211_chandef_usable(wiphy, &chandef, 2422 IEEE80211_CHAN_DISABLED); 2423 default: 2424 break; 2425 } 2426 2427 return true; 2428 2429 wdev_inactive_unlock: 2430 wdev_unlock(wdev); 2431 return true; 2432 } 2433 2434 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2435 { 2436 struct wireless_dev *wdev; 2437 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2438 2439 ASSERT_RTNL(); 2440 2441 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2442 if (!reg_wdev_chan_valid(wiphy, wdev)) 2443 cfg80211_leave(rdev, wdev); 2444 } 2445 2446 static void reg_check_chans_work(struct work_struct *work) 2447 { 2448 struct cfg80211_registered_device *rdev; 2449 2450 pr_debug("Verifying active interfaces after reg change\n"); 2451 rtnl_lock(); 2452 2453 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2454 if (!(rdev->wiphy.regulatory_flags & 2455 REGULATORY_IGNORE_STALE_KICKOFF)) 2456 reg_leave_invalid_chans(&rdev->wiphy); 2457 2458 rtnl_unlock(); 2459 } 2460 2461 static void reg_check_channels(void) 2462 { 2463 /* 2464 * Give usermode a chance to do something nicer (move to another 2465 * channel, orderly disconnection), before forcing a disconnection. 2466 */ 2467 mod_delayed_work(system_power_efficient_wq, 2468 ®_check_chans, 2469 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2470 } 2471 2472 static void wiphy_update_regulatory(struct wiphy *wiphy, 2473 enum nl80211_reg_initiator initiator) 2474 { 2475 enum nl80211_band band; 2476 struct regulatory_request *lr = get_last_request(); 2477 2478 if (ignore_reg_update(wiphy, initiator)) { 2479 /* 2480 * Regulatory updates set by CORE are ignored for custom 2481 * regulatory cards. Let us notify the changes to the driver, 2482 * as some drivers used this to restore its orig_* reg domain. 2483 */ 2484 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2485 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2486 !(wiphy->regulatory_flags & 2487 REGULATORY_WIPHY_SELF_MANAGED)) 2488 reg_call_notifier(wiphy, lr); 2489 return; 2490 } 2491 2492 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2493 2494 for (band = 0; band < NUM_NL80211_BANDS; band++) 2495 handle_band(wiphy, initiator, wiphy->bands[band]); 2496 2497 reg_process_beacons(wiphy); 2498 reg_process_ht_flags(wiphy); 2499 reg_call_notifier(wiphy, lr); 2500 } 2501 2502 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2503 { 2504 struct cfg80211_registered_device *rdev; 2505 struct wiphy *wiphy; 2506 2507 ASSERT_RTNL(); 2508 2509 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2510 wiphy = &rdev->wiphy; 2511 wiphy_update_regulatory(wiphy, initiator); 2512 } 2513 2514 reg_check_channels(); 2515 } 2516 2517 static void handle_channel_custom(struct wiphy *wiphy, 2518 struct ieee80211_channel *chan, 2519 const struct ieee80211_regdomain *regd, 2520 u32 min_bw) 2521 { 2522 u32 bw_flags = 0; 2523 const struct ieee80211_reg_rule *reg_rule = NULL; 2524 const struct ieee80211_power_rule *power_rule = NULL; 2525 u32 bw, center_freq_khz; 2526 2527 center_freq_khz = ieee80211_channel_to_khz(chan); 2528 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 2529 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw); 2530 if (!IS_ERR(reg_rule)) 2531 break; 2532 } 2533 2534 if (IS_ERR_OR_NULL(reg_rule)) { 2535 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n", 2536 chan->center_freq, chan->freq_offset); 2537 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2538 chan->flags |= IEEE80211_CHAN_DISABLED; 2539 } else { 2540 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2541 chan->flags = chan->orig_flags; 2542 } 2543 return; 2544 } 2545 2546 power_rule = ®_rule->power_rule; 2547 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2548 2549 chan->dfs_state_entered = jiffies; 2550 chan->dfs_state = NL80211_DFS_USABLE; 2551 2552 chan->beacon_found = false; 2553 2554 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2555 chan->flags = chan->orig_flags | bw_flags | 2556 map_regdom_flags(reg_rule->flags); 2557 else 2558 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2559 2560 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2561 chan->max_reg_power = chan->max_power = 2562 (int) MBM_TO_DBM(power_rule->max_eirp); 2563 2564 if (chan->flags & IEEE80211_CHAN_RADAR) { 2565 if (reg_rule->dfs_cac_ms) 2566 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2567 else 2568 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2569 } 2570 2571 chan->max_power = chan->max_reg_power; 2572 } 2573 2574 static void handle_band_custom(struct wiphy *wiphy, 2575 struct ieee80211_supported_band *sband, 2576 const struct ieee80211_regdomain *regd) 2577 { 2578 unsigned int i; 2579 2580 if (!sband) 2581 return; 2582 2583 /* 2584 * We currently assume that you always want at least 20 MHz, 2585 * otherwise channel 12 might get enabled if this rule is 2586 * compatible to US, which permits 2402 - 2472 MHz. 2587 */ 2588 for (i = 0; i < sband->n_channels; i++) 2589 handle_channel_custom(wiphy, &sband->channels[i], regd, 2590 MHZ_TO_KHZ(20)); 2591 } 2592 2593 /* Used by drivers prior to wiphy registration */ 2594 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2595 const struct ieee80211_regdomain *regd) 2596 { 2597 const struct ieee80211_regdomain *new_regd, *tmp; 2598 enum nl80211_band band; 2599 unsigned int bands_set = 0; 2600 2601 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2602 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2603 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2604 2605 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2606 if (!wiphy->bands[band]) 2607 continue; 2608 handle_band_custom(wiphy, wiphy->bands[band], regd); 2609 bands_set++; 2610 } 2611 2612 /* 2613 * no point in calling this if it won't have any effect 2614 * on your device's supported bands. 2615 */ 2616 WARN_ON(!bands_set); 2617 new_regd = reg_copy_regd(regd); 2618 if (IS_ERR(new_regd)) 2619 return; 2620 2621 rtnl_lock(); 2622 wiphy_lock(wiphy); 2623 2624 tmp = get_wiphy_regdom(wiphy); 2625 rcu_assign_pointer(wiphy->regd, new_regd); 2626 rcu_free_regdom(tmp); 2627 2628 wiphy_unlock(wiphy); 2629 rtnl_unlock(); 2630 } 2631 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2632 2633 static void reg_set_request_processed(void) 2634 { 2635 bool need_more_processing = false; 2636 struct regulatory_request *lr = get_last_request(); 2637 2638 lr->processed = true; 2639 2640 spin_lock(®_requests_lock); 2641 if (!list_empty(®_requests_list)) 2642 need_more_processing = true; 2643 spin_unlock(®_requests_lock); 2644 2645 cancel_crda_timeout(); 2646 2647 if (need_more_processing) 2648 schedule_work(®_work); 2649 } 2650 2651 /** 2652 * reg_process_hint_core - process core regulatory requests 2653 * @core_request: a pending core regulatory request 2654 * 2655 * The wireless subsystem can use this function to process 2656 * a regulatory request issued by the regulatory core. 2657 */ 2658 static enum reg_request_treatment 2659 reg_process_hint_core(struct regulatory_request *core_request) 2660 { 2661 if (reg_query_database(core_request)) { 2662 core_request->intersect = false; 2663 core_request->processed = false; 2664 reg_update_last_request(core_request); 2665 return REG_REQ_OK; 2666 } 2667 2668 return REG_REQ_IGNORE; 2669 } 2670 2671 static enum reg_request_treatment 2672 __reg_process_hint_user(struct regulatory_request *user_request) 2673 { 2674 struct regulatory_request *lr = get_last_request(); 2675 2676 if (reg_request_cell_base(user_request)) 2677 return reg_ignore_cell_hint(user_request); 2678 2679 if (reg_request_cell_base(lr)) 2680 return REG_REQ_IGNORE; 2681 2682 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2683 return REG_REQ_INTERSECT; 2684 /* 2685 * If the user knows better the user should set the regdom 2686 * to their country before the IE is picked up 2687 */ 2688 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2689 lr->intersect) 2690 return REG_REQ_IGNORE; 2691 /* 2692 * Process user requests only after previous user/driver/core 2693 * requests have been processed 2694 */ 2695 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2696 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2697 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2698 regdom_changes(lr->alpha2)) 2699 return REG_REQ_IGNORE; 2700 2701 if (!regdom_changes(user_request->alpha2)) 2702 return REG_REQ_ALREADY_SET; 2703 2704 return REG_REQ_OK; 2705 } 2706 2707 /** 2708 * reg_process_hint_user - process user regulatory requests 2709 * @user_request: a pending user regulatory request 2710 * 2711 * The wireless subsystem can use this function to process 2712 * a regulatory request initiated by userspace. 2713 */ 2714 static enum reg_request_treatment 2715 reg_process_hint_user(struct regulatory_request *user_request) 2716 { 2717 enum reg_request_treatment treatment; 2718 2719 treatment = __reg_process_hint_user(user_request); 2720 if (treatment == REG_REQ_IGNORE || 2721 treatment == REG_REQ_ALREADY_SET) 2722 return REG_REQ_IGNORE; 2723 2724 user_request->intersect = treatment == REG_REQ_INTERSECT; 2725 user_request->processed = false; 2726 2727 if (reg_query_database(user_request)) { 2728 reg_update_last_request(user_request); 2729 user_alpha2[0] = user_request->alpha2[0]; 2730 user_alpha2[1] = user_request->alpha2[1]; 2731 return REG_REQ_OK; 2732 } 2733 2734 return REG_REQ_IGNORE; 2735 } 2736 2737 static enum reg_request_treatment 2738 __reg_process_hint_driver(struct regulatory_request *driver_request) 2739 { 2740 struct regulatory_request *lr = get_last_request(); 2741 2742 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2743 if (regdom_changes(driver_request->alpha2)) 2744 return REG_REQ_OK; 2745 return REG_REQ_ALREADY_SET; 2746 } 2747 2748 /* 2749 * This would happen if you unplug and plug your card 2750 * back in or if you add a new device for which the previously 2751 * loaded card also agrees on the regulatory domain. 2752 */ 2753 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2754 !regdom_changes(driver_request->alpha2)) 2755 return REG_REQ_ALREADY_SET; 2756 2757 return REG_REQ_INTERSECT; 2758 } 2759 2760 /** 2761 * reg_process_hint_driver - process driver regulatory requests 2762 * @wiphy: the wireless device for the regulatory request 2763 * @driver_request: a pending driver regulatory request 2764 * 2765 * The wireless subsystem can use this function to process 2766 * a regulatory request issued by an 802.11 driver. 2767 * 2768 * Returns one of the different reg request treatment values. 2769 */ 2770 static enum reg_request_treatment 2771 reg_process_hint_driver(struct wiphy *wiphy, 2772 struct regulatory_request *driver_request) 2773 { 2774 const struct ieee80211_regdomain *regd, *tmp; 2775 enum reg_request_treatment treatment; 2776 2777 treatment = __reg_process_hint_driver(driver_request); 2778 2779 switch (treatment) { 2780 case REG_REQ_OK: 2781 break; 2782 case REG_REQ_IGNORE: 2783 return REG_REQ_IGNORE; 2784 case REG_REQ_INTERSECT: 2785 case REG_REQ_ALREADY_SET: 2786 regd = reg_copy_regd(get_cfg80211_regdom()); 2787 if (IS_ERR(regd)) 2788 return REG_REQ_IGNORE; 2789 2790 tmp = get_wiphy_regdom(wiphy); 2791 ASSERT_RTNL(); 2792 wiphy_lock(wiphy); 2793 rcu_assign_pointer(wiphy->regd, regd); 2794 wiphy_unlock(wiphy); 2795 rcu_free_regdom(tmp); 2796 } 2797 2798 2799 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2800 driver_request->processed = false; 2801 2802 /* 2803 * Since CRDA will not be called in this case as we already 2804 * have applied the requested regulatory domain before we just 2805 * inform userspace we have processed the request 2806 */ 2807 if (treatment == REG_REQ_ALREADY_SET) { 2808 nl80211_send_reg_change_event(driver_request); 2809 reg_update_last_request(driver_request); 2810 reg_set_request_processed(); 2811 return REG_REQ_ALREADY_SET; 2812 } 2813 2814 if (reg_query_database(driver_request)) { 2815 reg_update_last_request(driver_request); 2816 return REG_REQ_OK; 2817 } 2818 2819 return REG_REQ_IGNORE; 2820 } 2821 2822 static enum reg_request_treatment 2823 __reg_process_hint_country_ie(struct wiphy *wiphy, 2824 struct regulatory_request *country_ie_request) 2825 { 2826 struct wiphy *last_wiphy = NULL; 2827 struct regulatory_request *lr = get_last_request(); 2828 2829 if (reg_request_cell_base(lr)) { 2830 /* Trust a Cell base station over the AP's country IE */ 2831 if (regdom_changes(country_ie_request->alpha2)) 2832 return REG_REQ_IGNORE; 2833 return REG_REQ_ALREADY_SET; 2834 } else { 2835 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2836 return REG_REQ_IGNORE; 2837 } 2838 2839 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2840 return -EINVAL; 2841 2842 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2843 return REG_REQ_OK; 2844 2845 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2846 2847 if (last_wiphy != wiphy) { 2848 /* 2849 * Two cards with two APs claiming different 2850 * Country IE alpha2s. We could 2851 * intersect them, but that seems unlikely 2852 * to be correct. Reject second one for now. 2853 */ 2854 if (regdom_changes(country_ie_request->alpha2)) 2855 return REG_REQ_IGNORE; 2856 return REG_REQ_ALREADY_SET; 2857 } 2858 2859 if (regdom_changes(country_ie_request->alpha2)) 2860 return REG_REQ_OK; 2861 return REG_REQ_ALREADY_SET; 2862 } 2863 2864 /** 2865 * reg_process_hint_country_ie - process regulatory requests from country IEs 2866 * @wiphy: the wireless device for the regulatory request 2867 * @country_ie_request: a regulatory request from a country IE 2868 * 2869 * The wireless subsystem can use this function to process 2870 * a regulatory request issued by a country Information Element. 2871 * 2872 * Returns one of the different reg request treatment values. 2873 */ 2874 static enum reg_request_treatment 2875 reg_process_hint_country_ie(struct wiphy *wiphy, 2876 struct regulatory_request *country_ie_request) 2877 { 2878 enum reg_request_treatment treatment; 2879 2880 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2881 2882 switch (treatment) { 2883 case REG_REQ_OK: 2884 break; 2885 case REG_REQ_IGNORE: 2886 return REG_REQ_IGNORE; 2887 case REG_REQ_ALREADY_SET: 2888 reg_free_request(country_ie_request); 2889 return REG_REQ_ALREADY_SET; 2890 case REG_REQ_INTERSECT: 2891 /* 2892 * This doesn't happen yet, not sure we 2893 * ever want to support it for this case. 2894 */ 2895 WARN_ONCE(1, "Unexpected intersection for country elements"); 2896 return REG_REQ_IGNORE; 2897 } 2898 2899 country_ie_request->intersect = false; 2900 country_ie_request->processed = false; 2901 2902 if (reg_query_database(country_ie_request)) { 2903 reg_update_last_request(country_ie_request); 2904 return REG_REQ_OK; 2905 } 2906 2907 return REG_REQ_IGNORE; 2908 } 2909 2910 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2911 { 2912 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2913 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2914 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2915 bool dfs_domain_same; 2916 2917 rcu_read_lock(); 2918 2919 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2920 wiphy1_regd = rcu_dereference(wiphy1->regd); 2921 if (!wiphy1_regd) 2922 wiphy1_regd = cfg80211_regd; 2923 2924 wiphy2_regd = rcu_dereference(wiphy2->regd); 2925 if (!wiphy2_regd) 2926 wiphy2_regd = cfg80211_regd; 2927 2928 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2929 2930 rcu_read_unlock(); 2931 2932 return dfs_domain_same; 2933 } 2934 2935 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2936 struct ieee80211_channel *src_chan) 2937 { 2938 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2939 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2940 return; 2941 2942 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2943 src_chan->flags & IEEE80211_CHAN_DISABLED) 2944 return; 2945 2946 if (src_chan->center_freq == dst_chan->center_freq && 2947 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2948 dst_chan->dfs_state = src_chan->dfs_state; 2949 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2950 } 2951 } 2952 2953 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2954 struct wiphy *src_wiphy) 2955 { 2956 struct ieee80211_supported_band *src_sband, *dst_sband; 2957 struct ieee80211_channel *src_chan, *dst_chan; 2958 int i, j, band; 2959 2960 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2961 return; 2962 2963 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2964 dst_sband = dst_wiphy->bands[band]; 2965 src_sband = src_wiphy->bands[band]; 2966 if (!dst_sband || !src_sband) 2967 continue; 2968 2969 for (i = 0; i < dst_sband->n_channels; i++) { 2970 dst_chan = &dst_sband->channels[i]; 2971 for (j = 0; j < src_sband->n_channels; j++) { 2972 src_chan = &src_sband->channels[j]; 2973 reg_copy_dfs_chan_state(dst_chan, src_chan); 2974 } 2975 } 2976 } 2977 } 2978 2979 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2980 { 2981 struct cfg80211_registered_device *rdev; 2982 2983 ASSERT_RTNL(); 2984 2985 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2986 if (wiphy == &rdev->wiphy) 2987 continue; 2988 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2989 } 2990 } 2991 2992 /* This processes *all* regulatory hints */ 2993 static void reg_process_hint(struct regulatory_request *reg_request) 2994 { 2995 struct wiphy *wiphy = NULL; 2996 enum reg_request_treatment treatment; 2997 enum nl80211_reg_initiator initiator = reg_request->initiator; 2998 2999 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 3000 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 3001 3002 switch (initiator) { 3003 case NL80211_REGDOM_SET_BY_CORE: 3004 treatment = reg_process_hint_core(reg_request); 3005 break; 3006 case NL80211_REGDOM_SET_BY_USER: 3007 treatment = reg_process_hint_user(reg_request); 3008 break; 3009 case NL80211_REGDOM_SET_BY_DRIVER: 3010 if (!wiphy) 3011 goto out_free; 3012 treatment = reg_process_hint_driver(wiphy, reg_request); 3013 break; 3014 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3015 if (!wiphy) 3016 goto out_free; 3017 treatment = reg_process_hint_country_ie(wiphy, reg_request); 3018 break; 3019 default: 3020 WARN(1, "invalid initiator %d\n", initiator); 3021 goto out_free; 3022 } 3023 3024 if (treatment == REG_REQ_IGNORE) 3025 goto out_free; 3026 3027 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 3028 "unexpected treatment value %d\n", treatment); 3029 3030 /* This is required so that the orig_* parameters are saved. 3031 * NOTE: treatment must be set for any case that reaches here! 3032 */ 3033 if (treatment == REG_REQ_ALREADY_SET && wiphy && 3034 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 3035 wiphy_update_regulatory(wiphy, initiator); 3036 wiphy_all_share_dfs_chan_state(wiphy); 3037 reg_check_channels(); 3038 } 3039 3040 return; 3041 3042 out_free: 3043 reg_free_request(reg_request); 3044 } 3045 3046 static void notify_self_managed_wiphys(struct regulatory_request *request) 3047 { 3048 struct cfg80211_registered_device *rdev; 3049 struct wiphy *wiphy; 3050 3051 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3052 wiphy = &rdev->wiphy; 3053 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 3054 request->initiator == NL80211_REGDOM_SET_BY_USER) 3055 reg_call_notifier(wiphy, request); 3056 } 3057 } 3058 3059 /* 3060 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 3061 * Regulatory hints come on a first come first serve basis and we 3062 * must process each one atomically. 3063 */ 3064 static void reg_process_pending_hints(void) 3065 { 3066 struct regulatory_request *reg_request, *lr; 3067 3068 lr = get_last_request(); 3069 3070 /* When last_request->processed becomes true this will be rescheduled */ 3071 if (lr && !lr->processed) { 3072 pr_debug("Pending regulatory request, waiting for it to be processed...\n"); 3073 return; 3074 } 3075 3076 spin_lock(®_requests_lock); 3077 3078 if (list_empty(®_requests_list)) { 3079 spin_unlock(®_requests_lock); 3080 return; 3081 } 3082 3083 reg_request = list_first_entry(®_requests_list, 3084 struct regulatory_request, 3085 list); 3086 list_del_init(®_request->list); 3087 3088 spin_unlock(®_requests_lock); 3089 3090 notify_self_managed_wiphys(reg_request); 3091 3092 reg_process_hint(reg_request); 3093 3094 lr = get_last_request(); 3095 3096 spin_lock(®_requests_lock); 3097 if (!list_empty(®_requests_list) && lr && lr->processed) 3098 schedule_work(®_work); 3099 spin_unlock(®_requests_lock); 3100 } 3101 3102 /* Processes beacon hints -- this has nothing to do with country IEs */ 3103 static void reg_process_pending_beacon_hints(void) 3104 { 3105 struct cfg80211_registered_device *rdev; 3106 struct reg_beacon *pending_beacon, *tmp; 3107 3108 /* This goes through the _pending_ beacon list */ 3109 spin_lock_bh(®_pending_beacons_lock); 3110 3111 list_for_each_entry_safe(pending_beacon, tmp, 3112 ®_pending_beacons, list) { 3113 list_del_init(&pending_beacon->list); 3114 3115 /* Applies the beacon hint to current wiphys */ 3116 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 3117 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 3118 3119 /* Remembers the beacon hint for new wiphys or reg changes */ 3120 list_add_tail(&pending_beacon->list, ®_beacon_list); 3121 } 3122 3123 spin_unlock_bh(®_pending_beacons_lock); 3124 } 3125 3126 static void reg_process_self_managed_hint(struct wiphy *wiphy) 3127 { 3128 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3129 const struct ieee80211_regdomain *tmp; 3130 const struct ieee80211_regdomain *regd; 3131 enum nl80211_band band; 3132 struct regulatory_request request = {}; 3133 3134 ASSERT_RTNL(); 3135 lockdep_assert_wiphy(wiphy); 3136 3137 spin_lock(®_requests_lock); 3138 regd = rdev->requested_regd; 3139 rdev->requested_regd = NULL; 3140 spin_unlock(®_requests_lock); 3141 3142 if (!regd) 3143 return; 3144 3145 tmp = get_wiphy_regdom(wiphy); 3146 rcu_assign_pointer(wiphy->regd, regd); 3147 rcu_free_regdom(tmp); 3148 3149 for (band = 0; band < NUM_NL80211_BANDS; band++) 3150 handle_band_custom(wiphy, wiphy->bands[band], regd); 3151 3152 reg_process_ht_flags(wiphy); 3153 3154 request.wiphy_idx = get_wiphy_idx(wiphy); 3155 request.alpha2[0] = regd->alpha2[0]; 3156 request.alpha2[1] = regd->alpha2[1]; 3157 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 3158 3159 nl80211_send_wiphy_reg_change_event(&request); 3160 } 3161 3162 static void reg_process_self_managed_hints(void) 3163 { 3164 struct cfg80211_registered_device *rdev; 3165 3166 ASSERT_RTNL(); 3167 3168 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3169 wiphy_lock(&rdev->wiphy); 3170 reg_process_self_managed_hint(&rdev->wiphy); 3171 wiphy_unlock(&rdev->wiphy); 3172 } 3173 3174 reg_check_channels(); 3175 } 3176 3177 static void reg_todo(struct work_struct *work) 3178 { 3179 rtnl_lock(); 3180 reg_process_pending_hints(); 3181 reg_process_pending_beacon_hints(); 3182 reg_process_self_managed_hints(); 3183 rtnl_unlock(); 3184 } 3185 3186 static void queue_regulatory_request(struct regulatory_request *request) 3187 { 3188 request->alpha2[0] = toupper(request->alpha2[0]); 3189 request->alpha2[1] = toupper(request->alpha2[1]); 3190 3191 spin_lock(®_requests_lock); 3192 list_add_tail(&request->list, ®_requests_list); 3193 spin_unlock(®_requests_lock); 3194 3195 schedule_work(®_work); 3196 } 3197 3198 /* 3199 * Core regulatory hint -- happens during cfg80211_init() 3200 * and when we restore regulatory settings. 3201 */ 3202 static int regulatory_hint_core(const char *alpha2) 3203 { 3204 struct regulatory_request *request; 3205 3206 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3207 if (!request) 3208 return -ENOMEM; 3209 3210 request->alpha2[0] = alpha2[0]; 3211 request->alpha2[1] = alpha2[1]; 3212 request->initiator = NL80211_REGDOM_SET_BY_CORE; 3213 request->wiphy_idx = WIPHY_IDX_INVALID; 3214 3215 queue_regulatory_request(request); 3216 3217 return 0; 3218 } 3219 3220 /* User hints */ 3221 int regulatory_hint_user(const char *alpha2, 3222 enum nl80211_user_reg_hint_type user_reg_hint_type) 3223 { 3224 struct regulatory_request *request; 3225 3226 if (WARN_ON(!alpha2)) 3227 return -EINVAL; 3228 3229 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2)) 3230 return -EINVAL; 3231 3232 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3233 if (!request) 3234 return -ENOMEM; 3235 3236 request->wiphy_idx = WIPHY_IDX_INVALID; 3237 request->alpha2[0] = alpha2[0]; 3238 request->alpha2[1] = alpha2[1]; 3239 request->initiator = NL80211_REGDOM_SET_BY_USER; 3240 request->user_reg_hint_type = user_reg_hint_type; 3241 3242 /* Allow calling CRDA again */ 3243 reset_crda_timeouts(); 3244 3245 queue_regulatory_request(request); 3246 3247 return 0; 3248 } 3249 3250 int regulatory_hint_indoor(bool is_indoor, u32 portid) 3251 { 3252 spin_lock(®_indoor_lock); 3253 3254 /* It is possible that more than one user space process is trying to 3255 * configure the indoor setting. To handle such cases, clear the indoor 3256 * setting in case that some process does not think that the device 3257 * is operating in an indoor environment. In addition, if a user space 3258 * process indicates that it is controlling the indoor setting, save its 3259 * portid, i.e., make it the owner. 3260 */ 3261 reg_is_indoor = is_indoor; 3262 if (reg_is_indoor) { 3263 if (!reg_is_indoor_portid) 3264 reg_is_indoor_portid = portid; 3265 } else { 3266 reg_is_indoor_portid = 0; 3267 } 3268 3269 spin_unlock(®_indoor_lock); 3270 3271 if (!is_indoor) 3272 reg_check_channels(); 3273 3274 return 0; 3275 } 3276 3277 void regulatory_netlink_notify(u32 portid) 3278 { 3279 spin_lock(®_indoor_lock); 3280 3281 if (reg_is_indoor_portid != portid) { 3282 spin_unlock(®_indoor_lock); 3283 return; 3284 } 3285 3286 reg_is_indoor = false; 3287 reg_is_indoor_portid = 0; 3288 3289 spin_unlock(®_indoor_lock); 3290 3291 reg_check_channels(); 3292 } 3293 3294 /* Driver hints */ 3295 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3296 { 3297 struct regulatory_request *request; 3298 3299 if (WARN_ON(!alpha2 || !wiphy)) 3300 return -EINVAL; 3301 3302 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3303 3304 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3305 if (!request) 3306 return -ENOMEM; 3307 3308 request->wiphy_idx = get_wiphy_idx(wiphy); 3309 3310 request->alpha2[0] = alpha2[0]; 3311 request->alpha2[1] = alpha2[1]; 3312 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3313 3314 /* Allow calling CRDA again */ 3315 reset_crda_timeouts(); 3316 3317 queue_regulatory_request(request); 3318 3319 return 0; 3320 } 3321 EXPORT_SYMBOL(regulatory_hint); 3322 3323 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3324 const u8 *country_ie, u8 country_ie_len) 3325 { 3326 char alpha2[2]; 3327 enum environment_cap env = ENVIRON_ANY; 3328 struct regulatory_request *request = NULL, *lr; 3329 3330 /* IE len must be evenly divisible by 2 */ 3331 if (country_ie_len & 0x01) 3332 return; 3333 3334 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3335 return; 3336 3337 request = kzalloc(sizeof(*request), GFP_KERNEL); 3338 if (!request) 3339 return; 3340 3341 alpha2[0] = country_ie[0]; 3342 alpha2[1] = country_ie[1]; 3343 3344 if (country_ie[2] == 'I') 3345 env = ENVIRON_INDOOR; 3346 else if (country_ie[2] == 'O') 3347 env = ENVIRON_OUTDOOR; 3348 3349 rcu_read_lock(); 3350 lr = get_last_request(); 3351 3352 if (unlikely(!lr)) 3353 goto out; 3354 3355 /* 3356 * We will run this only upon a successful connection on cfg80211. 3357 * We leave conflict resolution to the workqueue, where can hold 3358 * the RTNL. 3359 */ 3360 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3361 lr->wiphy_idx != WIPHY_IDX_INVALID) 3362 goto out; 3363 3364 request->wiphy_idx = get_wiphy_idx(wiphy); 3365 request->alpha2[0] = alpha2[0]; 3366 request->alpha2[1] = alpha2[1]; 3367 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3368 request->country_ie_env = env; 3369 3370 /* Allow calling CRDA again */ 3371 reset_crda_timeouts(); 3372 3373 queue_regulatory_request(request); 3374 request = NULL; 3375 out: 3376 kfree(request); 3377 rcu_read_unlock(); 3378 } 3379 3380 static void restore_alpha2(char *alpha2, bool reset_user) 3381 { 3382 /* indicates there is no alpha2 to consider for restoration */ 3383 alpha2[0] = '9'; 3384 alpha2[1] = '7'; 3385 3386 /* The user setting has precedence over the module parameter */ 3387 if (is_user_regdom_saved()) { 3388 /* Unless we're asked to ignore it and reset it */ 3389 if (reset_user) { 3390 pr_debug("Restoring regulatory settings including user preference\n"); 3391 user_alpha2[0] = '9'; 3392 user_alpha2[1] = '7'; 3393 3394 /* 3395 * If we're ignoring user settings, we still need to 3396 * check the module parameter to ensure we put things 3397 * back as they were for a full restore. 3398 */ 3399 if (!is_world_regdom(ieee80211_regdom)) { 3400 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3401 ieee80211_regdom[0], ieee80211_regdom[1]); 3402 alpha2[0] = ieee80211_regdom[0]; 3403 alpha2[1] = ieee80211_regdom[1]; 3404 } 3405 } else { 3406 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3407 user_alpha2[0], user_alpha2[1]); 3408 alpha2[0] = user_alpha2[0]; 3409 alpha2[1] = user_alpha2[1]; 3410 } 3411 } else if (!is_world_regdom(ieee80211_regdom)) { 3412 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3413 ieee80211_regdom[0], ieee80211_regdom[1]); 3414 alpha2[0] = ieee80211_regdom[0]; 3415 alpha2[1] = ieee80211_regdom[1]; 3416 } else 3417 pr_debug("Restoring regulatory settings\n"); 3418 } 3419 3420 static void restore_custom_reg_settings(struct wiphy *wiphy) 3421 { 3422 struct ieee80211_supported_band *sband; 3423 enum nl80211_band band; 3424 struct ieee80211_channel *chan; 3425 int i; 3426 3427 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3428 sband = wiphy->bands[band]; 3429 if (!sband) 3430 continue; 3431 for (i = 0; i < sband->n_channels; i++) { 3432 chan = &sband->channels[i]; 3433 chan->flags = chan->orig_flags; 3434 chan->max_antenna_gain = chan->orig_mag; 3435 chan->max_power = chan->orig_mpwr; 3436 chan->beacon_found = false; 3437 } 3438 } 3439 } 3440 3441 /* 3442 * Restoring regulatory settings involves ignoring any 3443 * possibly stale country IE information and user regulatory 3444 * settings if so desired, this includes any beacon hints 3445 * learned as we could have traveled outside to another country 3446 * after disconnection. To restore regulatory settings we do 3447 * exactly what we did at bootup: 3448 * 3449 * - send a core regulatory hint 3450 * - send a user regulatory hint if applicable 3451 * 3452 * Device drivers that send a regulatory hint for a specific country 3453 * keep their own regulatory domain on wiphy->regd so that does 3454 * not need to be remembered. 3455 */ 3456 static void restore_regulatory_settings(bool reset_user, bool cached) 3457 { 3458 char alpha2[2]; 3459 char world_alpha2[2]; 3460 struct reg_beacon *reg_beacon, *btmp; 3461 LIST_HEAD(tmp_reg_req_list); 3462 struct cfg80211_registered_device *rdev; 3463 3464 ASSERT_RTNL(); 3465 3466 /* 3467 * Clear the indoor setting in case that it is not controlled by user 3468 * space, as otherwise there is no guarantee that the device is still 3469 * operating in an indoor environment. 3470 */ 3471 spin_lock(®_indoor_lock); 3472 if (reg_is_indoor && !reg_is_indoor_portid) { 3473 reg_is_indoor = false; 3474 reg_check_channels(); 3475 } 3476 spin_unlock(®_indoor_lock); 3477 3478 reset_regdomains(true, &world_regdom); 3479 restore_alpha2(alpha2, reset_user); 3480 3481 /* 3482 * If there's any pending requests we simply 3483 * stash them to a temporary pending queue and 3484 * add then after we've restored regulatory 3485 * settings. 3486 */ 3487 spin_lock(®_requests_lock); 3488 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3489 spin_unlock(®_requests_lock); 3490 3491 /* Clear beacon hints */ 3492 spin_lock_bh(®_pending_beacons_lock); 3493 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3494 list_del(®_beacon->list); 3495 kfree(reg_beacon); 3496 } 3497 spin_unlock_bh(®_pending_beacons_lock); 3498 3499 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3500 list_del(®_beacon->list); 3501 kfree(reg_beacon); 3502 } 3503 3504 /* First restore to the basic regulatory settings */ 3505 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3506 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3507 3508 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3509 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3510 continue; 3511 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3512 restore_custom_reg_settings(&rdev->wiphy); 3513 } 3514 3515 if (cached && (!is_an_alpha2(alpha2) || 3516 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3517 reset_regdomains(false, cfg80211_world_regdom); 3518 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3519 print_regdomain(get_cfg80211_regdom()); 3520 nl80211_send_reg_change_event(&core_request_world); 3521 reg_set_request_processed(); 3522 3523 if (is_an_alpha2(alpha2) && 3524 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3525 struct regulatory_request *ureq; 3526 3527 spin_lock(®_requests_lock); 3528 ureq = list_last_entry(®_requests_list, 3529 struct regulatory_request, 3530 list); 3531 list_del(&ureq->list); 3532 spin_unlock(®_requests_lock); 3533 3534 notify_self_managed_wiphys(ureq); 3535 reg_update_last_request(ureq); 3536 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3537 REGD_SOURCE_CACHED); 3538 } 3539 } else { 3540 regulatory_hint_core(world_alpha2); 3541 3542 /* 3543 * This restores the ieee80211_regdom module parameter 3544 * preference or the last user requested regulatory 3545 * settings, user regulatory settings takes precedence. 3546 */ 3547 if (is_an_alpha2(alpha2)) 3548 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3549 } 3550 3551 spin_lock(®_requests_lock); 3552 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3553 spin_unlock(®_requests_lock); 3554 3555 pr_debug("Kicking the queue\n"); 3556 3557 schedule_work(®_work); 3558 } 3559 3560 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3561 { 3562 struct cfg80211_registered_device *rdev; 3563 struct wireless_dev *wdev; 3564 3565 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3566 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3567 wdev_lock(wdev); 3568 if (!(wdev->wiphy->regulatory_flags & flag)) { 3569 wdev_unlock(wdev); 3570 return false; 3571 } 3572 wdev_unlock(wdev); 3573 } 3574 } 3575 3576 return true; 3577 } 3578 3579 void regulatory_hint_disconnect(void) 3580 { 3581 /* Restore of regulatory settings is not required when wiphy(s) 3582 * ignore IE from connected access point but clearance of beacon hints 3583 * is required when wiphy(s) supports beacon hints. 3584 */ 3585 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3586 struct reg_beacon *reg_beacon, *btmp; 3587 3588 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3589 return; 3590 3591 spin_lock_bh(®_pending_beacons_lock); 3592 list_for_each_entry_safe(reg_beacon, btmp, 3593 ®_pending_beacons, list) { 3594 list_del(®_beacon->list); 3595 kfree(reg_beacon); 3596 } 3597 spin_unlock_bh(®_pending_beacons_lock); 3598 3599 list_for_each_entry_safe(reg_beacon, btmp, 3600 ®_beacon_list, list) { 3601 list_del(®_beacon->list); 3602 kfree(reg_beacon); 3603 } 3604 3605 return; 3606 } 3607 3608 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3609 restore_regulatory_settings(false, true); 3610 } 3611 3612 static bool freq_is_chan_12_13_14(u32 freq) 3613 { 3614 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3615 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3616 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3617 return true; 3618 return false; 3619 } 3620 3621 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3622 { 3623 struct reg_beacon *pending_beacon; 3624 3625 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3626 if (ieee80211_channel_equal(beacon_chan, 3627 &pending_beacon->chan)) 3628 return true; 3629 return false; 3630 } 3631 3632 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3633 struct ieee80211_channel *beacon_chan, 3634 gfp_t gfp) 3635 { 3636 struct reg_beacon *reg_beacon; 3637 bool processing; 3638 3639 if (beacon_chan->beacon_found || 3640 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3641 (beacon_chan->band == NL80211_BAND_2GHZ && 3642 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3643 return 0; 3644 3645 spin_lock_bh(®_pending_beacons_lock); 3646 processing = pending_reg_beacon(beacon_chan); 3647 spin_unlock_bh(®_pending_beacons_lock); 3648 3649 if (processing) 3650 return 0; 3651 3652 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3653 if (!reg_beacon) 3654 return -ENOMEM; 3655 3656 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n", 3657 beacon_chan->center_freq, beacon_chan->freq_offset, 3658 ieee80211_freq_khz_to_channel( 3659 ieee80211_channel_to_khz(beacon_chan)), 3660 wiphy_name(wiphy)); 3661 3662 memcpy(®_beacon->chan, beacon_chan, 3663 sizeof(struct ieee80211_channel)); 3664 3665 /* 3666 * Since we can be called from BH or and non-BH context 3667 * we must use spin_lock_bh() 3668 */ 3669 spin_lock_bh(®_pending_beacons_lock); 3670 list_add_tail(®_beacon->list, ®_pending_beacons); 3671 spin_unlock_bh(®_pending_beacons_lock); 3672 3673 schedule_work(®_work); 3674 3675 return 0; 3676 } 3677 3678 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3679 { 3680 unsigned int i; 3681 const struct ieee80211_reg_rule *reg_rule = NULL; 3682 const struct ieee80211_freq_range *freq_range = NULL; 3683 const struct ieee80211_power_rule *power_rule = NULL; 3684 char bw[32], cac_time[32]; 3685 3686 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3687 3688 for (i = 0; i < rd->n_reg_rules; i++) { 3689 reg_rule = &rd->reg_rules[i]; 3690 freq_range = ®_rule->freq_range; 3691 power_rule = ®_rule->power_rule; 3692 3693 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3694 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO", 3695 freq_range->max_bandwidth_khz, 3696 reg_get_max_bandwidth(rd, reg_rule)); 3697 else 3698 snprintf(bw, sizeof(bw), "%d KHz", 3699 freq_range->max_bandwidth_khz); 3700 3701 if (reg_rule->flags & NL80211_RRF_DFS) 3702 scnprintf(cac_time, sizeof(cac_time), "%u s", 3703 reg_rule->dfs_cac_ms/1000); 3704 else 3705 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3706 3707 3708 /* 3709 * There may not be documentation for max antenna gain 3710 * in certain regions 3711 */ 3712 if (power_rule->max_antenna_gain) 3713 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3714 freq_range->start_freq_khz, 3715 freq_range->end_freq_khz, 3716 bw, 3717 power_rule->max_antenna_gain, 3718 power_rule->max_eirp, 3719 cac_time); 3720 else 3721 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3722 freq_range->start_freq_khz, 3723 freq_range->end_freq_khz, 3724 bw, 3725 power_rule->max_eirp, 3726 cac_time); 3727 } 3728 } 3729 3730 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3731 { 3732 switch (dfs_region) { 3733 case NL80211_DFS_UNSET: 3734 case NL80211_DFS_FCC: 3735 case NL80211_DFS_ETSI: 3736 case NL80211_DFS_JP: 3737 return true; 3738 default: 3739 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3740 return false; 3741 } 3742 } 3743 3744 static void print_regdomain(const struct ieee80211_regdomain *rd) 3745 { 3746 struct regulatory_request *lr = get_last_request(); 3747 3748 if (is_intersected_alpha2(rd->alpha2)) { 3749 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3750 struct cfg80211_registered_device *rdev; 3751 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3752 if (rdev) { 3753 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3754 rdev->country_ie_alpha2[0], 3755 rdev->country_ie_alpha2[1]); 3756 } else 3757 pr_debug("Current regulatory domain intersected:\n"); 3758 } else 3759 pr_debug("Current regulatory domain intersected:\n"); 3760 } else if (is_world_regdom(rd->alpha2)) { 3761 pr_debug("World regulatory domain updated:\n"); 3762 } else { 3763 if (is_unknown_alpha2(rd->alpha2)) 3764 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3765 else { 3766 if (reg_request_cell_base(lr)) 3767 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3768 rd->alpha2[0], rd->alpha2[1]); 3769 else 3770 pr_debug("Regulatory domain changed to country: %c%c\n", 3771 rd->alpha2[0], rd->alpha2[1]); 3772 } 3773 } 3774 3775 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3776 print_rd_rules(rd); 3777 } 3778 3779 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3780 { 3781 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3782 print_rd_rules(rd); 3783 } 3784 3785 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3786 { 3787 if (!is_world_regdom(rd->alpha2)) 3788 return -EINVAL; 3789 update_world_regdomain(rd); 3790 return 0; 3791 } 3792 3793 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3794 struct regulatory_request *user_request) 3795 { 3796 const struct ieee80211_regdomain *intersected_rd = NULL; 3797 3798 if (!regdom_changes(rd->alpha2)) 3799 return -EALREADY; 3800 3801 if (!is_valid_rd(rd)) { 3802 pr_err("Invalid regulatory domain detected: %c%c\n", 3803 rd->alpha2[0], rd->alpha2[1]); 3804 print_regdomain_info(rd); 3805 return -EINVAL; 3806 } 3807 3808 if (!user_request->intersect) { 3809 reset_regdomains(false, rd); 3810 return 0; 3811 } 3812 3813 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3814 if (!intersected_rd) 3815 return -EINVAL; 3816 3817 kfree(rd); 3818 rd = NULL; 3819 reset_regdomains(false, intersected_rd); 3820 3821 return 0; 3822 } 3823 3824 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3825 struct regulatory_request *driver_request) 3826 { 3827 const struct ieee80211_regdomain *regd; 3828 const struct ieee80211_regdomain *intersected_rd = NULL; 3829 const struct ieee80211_regdomain *tmp; 3830 struct wiphy *request_wiphy; 3831 3832 if (is_world_regdom(rd->alpha2)) 3833 return -EINVAL; 3834 3835 if (!regdom_changes(rd->alpha2)) 3836 return -EALREADY; 3837 3838 if (!is_valid_rd(rd)) { 3839 pr_err("Invalid regulatory domain detected: %c%c\n", 3840 rd->alpha2[0], rd->alpha2[1]); 3841 print_regdomain_info(rd); 3842 return -EINVAL; 3843 } 3844 3845 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3846 if (!request_wiphy) 3847 return -ENODEV; 3848 3849 if (!driver_request->intersect) { 3850 ASSERT_RTNL(); 3851 wiphy_lock(request_wiphy); 3852 if (request_wiphy->regd) { 3853 wiphy_unlock(request_wiphy); 3854 return -EALREADY; 3855 } 3856 3857 regd = reg_copy_regd(rd); 3858 if (IS_ERR(regd)) { 3859 wiphy_unlock(request_wiphy); 3860 return PTR_ERR(regd); 3861 } 3862 3863 rcu_assign_pointer(request_wiphy->regd, regd); 3864 wiphy_unlock(request_wiphy); 3865 reset_regdomains(false, rd); 3866 return 0; 3867 } 3868 3869 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3870 if (!intersected_rd) 3871 return -EINVAL; 3872 3873 /* 3874 * We can trash what CRDA provided now. 3875 * However if a driver requested this specific regulatory 3876 * domain we keep it for its private use 3877 */ 3878 tmp = get_wiphy_regdom(request_wiphy); 3879 rcu_assign_pointer(request_wiphy->regd, rd); 3880 rcu_free_regdom(tmp); 3881 3882 rd = NULL; 3883 3884 reset_regdomains(false, intersected_rd); 3885 3886 return 0; 3887 } 3888 3889 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3890 struct regulatory_request *country_ie_request) 3891 { 3892 struct wiphy *request_wiphy; 3893 3894 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3895 !is_unknown_alpha2(rd->alpha2)) 3896 return -EINVAL; 3897 3898 /* 3899 * Lets only bother proceeding on the same alpha2 if the current 3900 * rd is non static (it means CRDA was present and was used last) 3901 * and the pending request came in from a country IE 3902 */ 3903 3904 if (!is_valid_rd(rd)) { 3905 pr_err("Invalid regulatory domain detected: %c%c\n", 3906 rd->alpha2[0], rd->alpha2[1]); 3907 print_regdomain_info(rd); 3908 return -EINVAL; 3909 } 3910 3911 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3912 if (!request_wiphy) 3913 return -ENODEV; 3914 3915 if (country_ie_request->intersect) 3916 return -EINVAL; 3917 3918 reset_regdomains(false, rd); 3919 return 0; 3920 } 3921 3922 /* 3923 * Use this call to set the current regulatory domain. Conflicts with 3924 * multiple drivers can be ironed out later. Caller must've already 3925 * kmalloc'd the rd structure. 3926 */ 3927 int set_regdom(const struct ieee80211_regdomain *rd, 3928 enum ieee80211_regd_source regd_src) 3929 { 3930 struct regulatory_request *lr; 3931 bool user_reset = false; 3932 int r; 3933 3934 if (IS_ERR_OR_NULL(rd)) 3935 return -ENODATA; 3936 3937 if (!reg_is_valid_request(rd->alpha2)) { 3938 kfree(rd); 3939 return -EINVAL; 3940 } 3941 3942 if (regd_src == REGD_SOURCE_CRDA) 3943 reset_crda_timeouts(); 3944 3945 lr = get_last_request(); 3946 3947 /* Note that this doesn't update the wiphys, this is done below */ 3948 switch (lr->initiator) { 3949 case NL80211_REGDOM_SET_BY_CORE: 3950 r = reg_set_rd_core(rd); 3951 break; 3952 case NL80211_REGDOM_SET_BY_USER: 3953 cfg80211_save_user_regdom(rd); 3954 r = reg_set_rd_user(rd, lr); 3955 user_reset = true; 3956 break; 3957 case NL80211_REGDOM_SET_BY_DRIVER: 3958 r = reg_set_rd_driver(rd, lr); 3959 break; 3960 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3961 r = reg_set_rd_country_ie(rd, lr); 3962 break; 3963 default: 3964 WARN(1, "invalid initiator %d\n", lr->initiator); 3965 kfree(rd); 3966 return -EINVAL; 3967 } 3968 3969 if (r) { 3970 switch (r) { 3971 case -EALREADY: 3972 reg_set_request_processed(); 3973 break; 3974 default: 3975 /* Back to world regulatory in case of errors */ 3976 restore_regulatory_settings(user_reset, false); 3977 } 3978 3979 kfree(rd); 3980 return r; 3981 } 3982 3983 /* This would make this whole thing pointless */ 3984 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3985 return -EINVAL; 3986 3987 /* update all wiphys now with the new established regulatory domain */ 3988 update_all_wiphy_regulatory(lr->initiator); 3989 3990 print_regdomain(get_cfg80211_regdom()); 3991 3992 nl80211_send_reg_change_event(lr); 3993 3994 reg_set_request_processed(); 3995 3996 return 0; 3997 } 3998 3999 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 4000 struct ieee80211_regdomain *rd) 4001 { 4002 const struct ieee80211_regdomain *regd; 4003 const struct ieee80211_regdomain *prev_regd; 4004 struct cfg80211_registered_device *rdev; 4005 4006 if (WARN_ON(!wiphy || !rd)) 4007 return -EINVAL; 4008 4009 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 4010 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 4011 return -EPERM; 4012 4013 if (WARN(!is_valid_rd(rd), 4014 "Invalid regulatory domain detected: %c%c\n", 4015 rd->alpha2[0], rd->alpha2[1])) { 4016 print_regdomain_info(rd); 4017 return -EINVAL; 4018 } 4019 4020 regd = reg_copy_regd(rd); 4021 if (IS_ERR(regd)) 4022 return PTR_ERR(regd); 4023 4024 rdev = wiphy_to_rdev(wiphy); 4025 4026 spin_lock(®_requests_lock); 4027 prev_regd = rdev->requested_regd; 4028 rdev->requested_regd = regd; 4029 spin_unlock(®_requests_lock); 4030 4031 kfree(prev_regd); 4032 return 0; 4033 } 4034 4035 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 4036 struct ieee80211_regdomain *rd) 4037 { 4038 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 4039 4040 if (ret) 4041 return ret; 4042 4043 schedule_work(®_work); 4044 return 0; 4045 } 4046 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 4047 4048 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy, 4049 struct ieee80211_regdomain *rd) 4050 { 4051 int ret; 4052 4053 ASSERT_RTNL(); 4054 4055 ret = __regulatory_set_wiphy_regd(wiphy, rd); 4056 if (ret) 4057 return ret; 4058 4059 /* process the request immediately */ 4060 reg_process_self_managed_hint(wiphy); 4061 reg_check_channels(); 4062 return 0; 4063 } 4064 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync); 4065 4066 void wiphy_regulatory_register(struct wiphy *wiphy) 4067 { 4068 struct regulatory_request *lr = get_last_request(); 4069 4070 /* self-managed devices ignore beacon hints and country IE */ 4071 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 4072 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 4073 REGULATORY_COUNTRY_IE_IGNORE; 4074 4075 /* 4076 * The last request may have been received before this 4077 * registration call. Call the driver notifier if 4078 * initiator is USER. 4079 */ 4080 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 4081 reg_call_notifier(wiphy, lr); 4082 } 4083 4084 if (!reg_dev_ignore_cell_hint(wiphy)) 4085 reg_num_devs_support_basehint++; 4086 4087 wiphy_update_regulatory(wiphy, lr->initiator); 4088 wiphy_all_share_dfs_chan_state(wiphy); 4089 reg_process_self_managed_hints(); 4090 } 4091 4092 void wiphy_regulatory_deregister(struct wiphy *wiphy) 4093 { 4094 struct wiphy *request_wiphy = NULL; 4095 struct regulatory_request *lr; 4096 4097 lr = get_last_request(); 4098 4099 if (!reg_dev_ignore_cell_hint(wiphy)) 4100 reg_num_devs_support_basehint--; 4101 4102 rcu_free_regdom(get_wiphy_regdom(wiphy)); 4103 RCU_INIT_POINTER(wiphy->regd, NULL); 4104 4105 if (lr) 4106 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 4107 4108 if (!request_wiphy || request_wiphy != wiphy) 4109 return; 4110 4111 lr->wiphy_idx = WIPHY_IDX_INVALID; 4112 lr->country_ie_env = ENVIRON_ANY; 4113 } 4114 4115 /* 4116 * See FCC notices for UNII band definitions 4117 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii 4118 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0 4119 */ 4120 int cfg80211_get_unii(int freq) 4121 { 4122 /* UNII-1 */ 4123 if (freq >= 5150 && freq <= 5250) 4124 return 0; 4125 4126 /* UNII-2A */ 4127 if (freq > 5250 && freq <= 5350) 4128 return 1; 4129 4130 /* UNII-2B */ 4131 if (freq > 5350 && freq <= 5470) 4132 return 2; 4133 4134 /* UNII-2C */ 4135 if (freq > 5470 && freq <= 5725) 4136 return 3; 4137 4138 /* UNII-3 */ 4139 if (freq > 5725 && freq <= 5825) 4140 return 4; 4141 4142 /* UNII-5 */ 4143 if (freq > 5925 && freq <= 6425) 4144 return 5; 4145 4146 /* UNII-6 */ 4147 if (freq > 6425 && freq <= 6525) 4148 return 6; 4149 4150 /* UNII-7 */ 4151 if (freq > 6525 && freq <= 6875) 4152 return 7; 4153 4154 /* UNII-8 */ 4155 if (freq > 6875 && freq <= 7125) 4156 return 8; 4157 4158 return -EINVAL; 4159 } 4160 4161 bool regulatory_indoor_allowed(void) 4162 { 4163 return reg_is_indoor; 4164 } 4165 4166 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 4167 { 4168 const struct ieee80211_regdomain *regd = NULL; 4169 const struct ieee80211_regdomain *wiphy_regd = NULL; 4170 bool pre_cac_allowed = false; 4171 4172 rcu_read_lock(); 4173 4174 regd = rcu_dereference(cfg80211_regdomain); 4175 wiphy_regd = rcu_dereference(wiphy->regd); 4176 if (!wiphy_regd) { 4177 if (regd->dfs_region == NL80211_DFS_ETSI) 4178 pre_cac_allowed = true; 4179 4180 rcu_read_unlock(); 4181 4182 return pre_cac_allowed; 4183 } 4184 4185 if (regd->dfs_region == wiphy_regd->dfs_region && 4186 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 4187 pre_cac_allowed = true; 4188 4189 rcu_read_unlock(); 4190 4191 return pre_cac_allowed; 4192 } 4193 EXPORT_SYMBOL(regulatory_pre_cac_allowed); 4194 4195 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev) 4196 { 4197 struct wireless_dev *wdev; 4198 /* If we finished CAC or received radar, we should end any 4199 * CAC running on the same channels. 4200 * the check !cfg80211_chandef_dfs_usable contain 2 options: 4201 * either all channels are available - those the CAC_FINISHED 4202 * event has effected another wdev state, or there is a channel 4203 * in unavailable state in wdev chandef - those the RADAR_DETECTED 4204 * event has effected another wdev state. 4205 * In both cases we should end the CAC on the wdev. 4206 */ 4207 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 4208 if (wdev->cac_started && 4209 !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef)) 4210 rdev_end_cac(rdev, wdev->netdev); 4211 } 4212 } 4213 4214 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 4215 struct cfg80211_chan_def *chandef, 4216 enum nl80211_dfs_state dfs_state, 4217 enum nl80211_radar_event event) 4218 { 4219 struct cfg80211_registered_device *rdev; 4220 4221 ASSERT_RTNL(); 4222 4223 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 4224 return; 4225 4226 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 4227 if (wiphy == &rdev->wiphy) 4228 continue; 4229 4230 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 4231 continue; 4232 4233 if (!ieee80211_get_channel(&rdev->wiphy, 4234 chandef->chan->center_freq)) 4235 continue; 4236 4237 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 4238 4239 if (event == NL80211_RADAR_DETECTED || 4240 event == NL80211_RADAR_CAC_FINISHED) { 4241 cfg80211_sched_dfs_chan_update(rdev); 4242 cfg80211_check_and_end_cac(rdev); 4243 } 4244 4245 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 4246 } 4247 } 4248 4249 static int __init regulatory_init_db(void) 4250 { 4251 int err; 4252 4253 /* 4254 * It's possible that - due to other bugs/issues - cfg80211 4255 * never called regulatory_init() below, or that it failed; 4256 * in that case, don't try to do any further work here as 4257 * it's doomed to lead to crashes. 4258 */ 4259 if (IS_ERR_OR_NULL(reg_pdev)) 4260 return -EINVAL; 4261 4262 err = load_builtin_regdb_keys(); 4263 if (err) 4264 return err; 4265 4266 /* We always try to get an update for the static regdomain */ 4267 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 4268 if (err) { 4269 if (err == -ENOMEM) { 4270 platform_device_unregister(reg_pdev); 4271 return err; 4272 } 4273 /* 4274 * N.B. kobject_uevent_env() can fail mainly for when we're out 4275 * memory which is handled and propagated appropriately above 4276 * but it can also fail during a netlink_broadcast() or during 4277 * early boot for call_usermodehelper(). For now treat these 4278 * errors as non-fatal. 4279 */ 4280 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 4281 } 4282 4283 /* 4284 * Finally, if the user set the module parameter treat it 4285 * as a user hint. 4286 */ 4287 if (!is_world_regdom(ieee80211_regdom)) 4288 regulatory_hint_user(ieee80211_regdom, 4289 NL80211_USER_REG_HINT_USER); 4290 4291 return 0; 4292 } 4293 #ifndef MODULE 4294 late_initcall(regulatory_init_db); 4295 #endif 4296 4297 int __init regulatory_init(void) 4298 { 4299 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 4300 if (IS_ERR(reg_pdev)) 4301 return PTR_ERR(reg_pdev); 4302 4303 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 4304 4305 user_alpha2[0] = '9'; 4306 user_alpha2[1] = '7'; 4307 4308 #ifdef MODULE 4309 return regulatory_init_db(); 4310 #else 4311 return 0; 4312 #endif 4313 } 4314 4315 void regulatory_exit(void) 4316 { 4317 struct regulatory_request *reg_request, *tmp; 4318 struct reg_beacon *reg_beacon, *btmp; 4319 4320 cancel_work_sync(®_work); 4321 cancel_crda_timeout_sync(); 4322 cancel_delayed_work_sync(®_check_chans); 4323 4324 /* Lock to suppress warnings */ 4325 rtnl_lock(); 4326 reset_regdomains(true, NULL); 4327 rtnl_unlock(); 4328 4329 dev_set_uevent_suppress(®_pdev->dev, true); 4330 4331 platform_device_unregister(reg_pdev); 4332 4333 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 4334 list_del(®_beacon->list); 4335 kfree(reg_beacon); 4336 } 4337 4338 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 4339 list_del(®_beacon->list); 4340 kfree(reg_beacon); 4341 } 4342 4343 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4344 list_del(®_request->list); 4345 kfree(reg_request); 4346 } 4347 4348 if (!IS_ERR_OR_NULL(regdb)) 4349 kfree(regdb); 4350 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4351 kfree(cfg80211_user_regdom); 4352 4353 free_regdb_keyring(); 4354 } 4355