xref: /openbmc/linux/net/wireless/reg.c (revision ba61bb17)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user);
135 
136 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
137 {
138 	return rcu_dereference_rtnl(cfg80211_regdomain);
139 }
140 
141 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
142 {
143 	return rcu_dereference_rtnl(wiphy->regd);
144 }
145 
146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
147 {
148 	switch (dfs_region) {
149 	case NL80211_DFS_UNSET:
150 		return "unset";
151 	case NL80211_DFS_FCC:
152 		return "FCC";
153 	case NL80211_DFS_ETSI:
154 		return "ETSI";
155 	case NL80211_DFS_JP:
156 		return "JP";
157 	}
158 	return "Unknown";
159 }
160 
161 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
162 {
163 	const struct ieee80211_regdomain *regd = NULL;
164 	const struct ieee80211_regdomain *wiphy_regd = NULL;
165 
166 	regd = get_cfg80211_regdom();
167 	if (!wiphy)
168 		goto out;
169 
170 	wiphy_regd = get_wiphy_regdom(wiphy);
171 	if (!wiphy_regd)
172 		goto out;
173 
174 	if (wiphy_regd->dfs_region == regd->dfs_region)
175 		goto out;
176 
177 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
178 		 dev_name(&wiphy->dev),
179 		 reg_dfs_region_str(wiphy_regd->dfs_region),
180 		 reg_dfs_region_str(regd->dfs_region));
181 
182 out:
183 	return regd->dfs_region;
184 }
185 
186 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
187 {
188 	if (!r)
189 		return;
190 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
191 }
192 
193 static struct regulatory_request *get_last_request(void)
194 {
195 	return rcu_dereference_rtnl(last_request);
196 }
197 
198 /* Used to queue up regulatory hints */
199 static LIST_HEAD(reg_requests_list);
200 static spinlock_t reg_requests_lock;
201 
202 /* Used to queue up beacon hints for review */
203 static LIST_HEAD(reg_pending_beacons);
204 static spinlock_t reg_pending_beacons_lock;
205 
206 /* Used to keep track of processed beacon hints */
207 static LIST_HEAD(reg_beacon_list);
208 
209 struct reg_beacon {
210 	struct list_head list;
211 	struct ieee80211_channel chan;
212 };
213 
214 static void reg_check_chans_work(struct work_struct *work);
215 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
216 
217 static void reg_todo(struct work_struct *work);
218 static DECLARE_WORK(reg_work, reg_todo);
219 
220 /* We keep a static world regulatory domain in case of the absence of CRDA */
221 static const struct ieee80211_regdomain world_regdom = {
222 	.n_reg_rules = 8,
223 	.alpha2 =  "00",
224 	.reg_rules = {
225 		/* IEEE 802.11b/g, channels 1..11 */
226 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
227 		/* IEEE 802.11b/g, channels 12..13. */
228 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
229 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
230 		/* IEEE 802.11 channel 14 - Only JP enables
231 		 * this and for 802.11b only */
232 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
233 			NL80211_RRF_NO_IR |
234 			NL80211_RRF_NO_OFDM),
235 		/* IEEE 802.11a, channel 36..48 */
236 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
237                         NL80211_RRF_NO_IR |
238                         NL80211_RRF_AUTO_BW),
239 
240 		/* IEEE 802.11a, channel 52..64 - DFS required */
241 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
242 			NL80211_RRF_NO_IR |
243 			NL80211_RRF_AUTO_BW |
244 			NL80211_RRF_DFS),
245 
246 		/* IEEE 802.11a, channel 100..144 - DFS required */
247 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
248 			NL80211_RRF_NO_IR |
249 			NL80211_RRF_DFS),
250 
251 		/* IEEE 802.11a, channel 149..165 */
252 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
253 			NL80211_RRF_NO_IR),
254 
255 		/* IEEE 802.11ad (60GHz), channels 1..3 */
256 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
257 	}
258 };
259 
260 /* protected by RTNL */
261 static const struct ieee80211_regdomain *cfg80211_world_regdom =
262 	&world_regdom;
263 
264 static char *ieee80211_regdom = "00";
265 static char user_alpha2[2];
266 
267 module_param(ieee80211_regdom, charp, 0444);
268 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
269 
270 static void reg_free_request(struct regulatory_request *request)
271 {
272 	if (request == &core_request_world)
273 		return;
274 
275 	if (request != get_last_request())
276 		kfree(request);
277 }
278 
279 static void reg_free_last_request(void)
280 {
281 	struct regulatory_request *lr = get_last_request();
282 
283 	if (lr != &core_request_world && lr)
284 		kfree_rcu(lr, rcu_head);
285 }
286 
287 static void reg_update_last_request(struct regulatory_request *request)
288 {
289 	struct regulatory_request *lr;
290 
291 	lr = get_last_request();
292 	if (lr == request)
293 		return;
294 
295 	reg_free_last_request();
296 	rcu_assign_pointer(last_request, request);
297 }
298 
299 static void reset_regdomains(bool full_reset,
300 			     const struct ieee80211_regdomain *new_regdom)
301 {
302 	const struct ieee80211_regdomain *r;
303 
304 	ASSERT_RTNL();
305 
306 	r = get_cfg80211_regdom();
307 
308 	/* avoid freeing static information or freeing something twice */
309 	if (r == cfg80211_world_regdom)
310 		r = NULL;
311 	if (cfg80211_world_regdom == &world_regdom)
312 		cfg80211_world_regdom = NULL;
313 	if (r == &world_regdom)
314 		r = NULL;
315 
316 	rcu_free_regdom(r);
317 	rcu_free_regdom(cfg80211_world_regdom);
318 
319 	cfg80211_world_regdom = &world_regdom;
320 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
321 
322 	if (!full_reset)
323 		return;
324 
325 	reg_update_last_request(&core_request_world);
326 }
327 
328 /*
329  * Dynamic world regulatory domain requested by the wireless
330  * core upon initialization
331  */
332 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
333 {
334 	struct regulatory_request *lr;
335 
336 	lr = get_last_request();
337 
338 	WARN_ON(!lr);
339 
340 	reset_regdomains(false, rd);
341 
342 	cfg80211_world_regdom = rd;
343 }
344 
345 bool is_world_regdom(const char *alpha2)
346 {
347 	if (!alpha2)
348 		return false;
349 	return alpha2[0] == '0' && alpha2[1] == '0';
350 }
351 
352 static bool is_alpha2_set(const char *alpha2)
353 {
354 	if (!alpha2)
355 		return false;
356 	return alpha2[0] && alpha2[1];
357 }
358 
359 static bool is_unknown_alpha2(const char *alpha2)
360 {
361 	if (!alpha2)
362 		return false;
363 	/*
364 	 * Special case where regulatory domain was built by driver
365 	 * but a specific alpha2 cannot be determined
366 	 */
367 	return alpha2[0] == '9' && alpha2[1] == '9';
368 }
369 
370 static bool is_intersected_alpha2(const char *alpha2)
371 {
372 	if (!alpha2)
373 		return false;
374 	/*
375 	 * Special case where regulatory domain is the
376 	 * result of an intersection between two regulatory domain
377 	 * structures
378 	 */
379 	return alpha2[0] == '9' && alpha2[1] == '8';
380 }
381 
382 static bool is_an_alpha2(const char *alpha2)
383 {
384 	if (!alpha2)
385 		return false;
386 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
387 }
388 
389 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
390 {
391 	if (!alpha2_x || !alpha2_y)
392 		return false;
393 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
394 }
395 
396 static bool regdom_changes(const char *alpha2)
397 {
398 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
399 
400 	if (!r)
401 		return true;
402 	return !alpha2_equal(r->alpha2, alpha2);
403 }
404 
405 /*
406  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
407  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
408  * has ever been issued.
409  */
410 static bool is_user_regdom_saved(void)
411 {
412 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
413 		return false;
414 
415 	/* This would indicate a mistake on the design */
416 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
417 		 "Unexpected user alpha2: %c%c\n",
418 		 user_alpha2[0], user_alpha2[1]))
419 		return false;
420 
421 	return true;
422 }
423 
424 static const struct ieee80211_regdomain *
425 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
426 {
427 	struct ieee80211_regdomain *regd;
428 	int size_of_regd, size_of_wmms;
429 	unsigned int i;
430 	struct ieee80211_wmm_rule *d_wmm, *s_wmm;
431 
432 	size_of_regd =
433 		sizeof(struct ieee80211_regdomain) +
434 		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
435 	size_of_wmms = src_regd->n_wmm_rules *
436 		sizeof(struct ieee80211_wmm_rule);
437 
438 	regd = kzalloc(size_of_regd + size_of_wmms, GFP_KERNEL);
439 	if (!regd)
440 		return ERR_PTR(-ENOMEM);
441 
442 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
443 
444 	d_wmm = (struct ieee80211_wmm_rule *)((u8 *)regd + size_of_regd);
445 	s_wmm = (struct ieee80211_wmm_rule *)((u8 *)src_regd + size_of_regd);
446 	memcpy(d_wmm, s_wmm, size_of_wmms);
447 
448 	for (i = 0; i < src_regd->n_reg_rules; i++) {
449 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
450 		       sizeof(struct ieee80211_reg_rule));
451 		if (!src_regd->reg_rules[i].wmm_rule)
452 			continue;
453 
454 		regd->reg_rules[i].wmm_rule = d_wmm +
455 			(src_regd->reg_rules[i].wmm_rule - s_wmm) /
456 			sizeof(struct ieee80211_wmm_rule);
457 	}
458 	return regd;
459 }
460 
461 struct reg_regdb_apply_request {
462 	struct list_head list;
463 	const struct ieee80211_regdomain *regdom;
464 };
465 
466 static LIST_HEAD(reg_regdb_apply_list);
467 static DEFINE_MUTEX(reg_regdb_apply_mutex);
468 
469 static void reg_regdb_apply(struct work_struct *work)
470 {
471 	struct reg_regdb_apply_request *request;
472 
473 	rtnl_lock();
474 
475 	mutex_lock(&reg_regdb_apply_mutex);
476 	while (!list_empty(&reg_regdb_apply_list)) {
477 		request = list_first_entry(&reg_regdb_apply_list,
478 					   struct reg_regdb_apply_request,
479 					   list);
480 		list_del(&request->list);
481 
482 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
483 		kfree(request);
484 	}
485 	mutex_unlock(&reg_regdb_apply_mutex);
486 
487 	rtnl_unlock();
488 }
489 
490 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
491 
492 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
493 {
494 	struct reg_regdb_apply_request *request;
495 
496 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
497 	if (!request) {
498 		kfree(regdom);
499 		return -ENOMEM;
500 	}
501 
502 	request->regdom = regdom;
503 
504 	mutex_lock(&reg_regdb_apply_mutex);
505 	list_add_tail(&request->list, &reg_regdb_apply_list);
506 	mutex_unlock(&reg_regdb_apply_mutex);
507 
508 	schedule_work(&reg_regdb_work);
509 	return 0;
510 }
511 
512 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
513 /* Max number of consecutive attempts to communicate with CRDA  */
514 #define REG_MAX_CRDA_TIMEOUTS 10
515 
516 static u32 reg_crda_timeouts;
517 
518 static void crda_timeout_work(struct work_struct *work);
519 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
520 
521 static void crda_timeout_work(struct work_struct *work)
522 {
523 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
524 	rtnl_lock();
525 	reg_crda_timeouts++;
526 	restore_regulatory_settings(true);
527 	rtnl_unlock();
528 }
529 
530 static void cancel_crda_timeout(void)
531 {
532 	cancel_delayed_work(&crda_timeout);
533 }
534 
535 static void cancel_crda_timeout_sync(void)
536 {
537 	cancel_delayed_work_sync(&crda_timeout);
538 }
539 
540 static void reset_crda_timeouts(void)
541 {
542 	reg_crda_timeouts = 0;
543 }
544 
545 /*
546  * This lets us keep regulatory code which is updated on a regulatory
547  * basis in userspace.
548  */
549 static int call_crda(const char *alpha2)
550 {
551 	char country[12];
552 	char *env[] = { country, NULL };
553 	int ret;
554 
555 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
556 		 alpha2[0], alpha2[1]);
557 
558 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
559 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
560 		return -EINVAL;
561 	}
562 
563 	if (!is_world_regdom((char *) alpha2))
564 		pr_debug("Calling CRDA for country: %c%c\n",
565 			 alpha2[0], alpha2[1]);
566 	else
567 		pr_debug("Calling CRDA to update world regulatory domain\n");
568 
569 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
570 	if (ret)
571 		return ret;
572 
573 	queue_delayed_work(system_power_efficient_wq,
574 			   &crda_timeout, msecs_to_jiffies(3142));
575 	return 0;
576 }
577 #else
578 static inline void cancel_crda_timeout(void) {}
579 static inline void cancel_crda_timeout_sync(void) {}
580 static inline void reset_crda_timeouts(void) {}
581 static inline int call_crda(const char *alpha2)
582 {
583 	return -ENODATA;
584 }
585 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
586 
587 /* code to directly load a firmware database through request_firmware */
588 static const struct fwdb_header *regdb;
589 
590 struct fwdb_country {
591 	u8 alpha2[2];
592 	__be16 coll_ptr;
593 	/* this struct cannot be extended */
594 } __packed __aligned(4);
595 
596 struct fwdb_collection {
597 	u8 len;
598 	u8 n_rules;
599 	u8 dfs_region;
600 	/* no optional data yet */
601 	/* aligned to 2, then followed by __be16 array of rule pointers */
602 } __packed __aligned(4);
603 
604 enum fwdb_flags {
605 	FWDB_FLAG_NO_OFDM	= BIT(0),
606 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
607 	FWDB_FLAG_DFS		= BIT(2),
608 	FWDB_FLAG_NO_IR		= BIT(3),
609 	FWDB_FLAG_AUTO_BW	= BIT(4),
610 };
611 
612 struct fwdb_wmm_ac {
613 	u8 ecw;
614 	u8 aifsn;
615 	__be16 cot;
616 } __packed;
617 
618 struct fwdb_wmm_rule {
619 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
620 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
621 } __packed;
622 
623 struct fwdb_rule {
624 	u8 len;
625 	u8 flags;
626 	__be16 max_eirp;
627 	__be32 start, end, max_bw;
628 	/* start of optional data */
629 	__be16 cac_timeout;
630 	__be16 wmm_ptr;
631 } __packed __aligned(4);
632 
633 #define FWDB_MAGIC 0x52474442
634 #define FWDB_VERSION 20
635 
636 struct fwdb_header {
637 	__be32 magic;
638 	__be32 version;
639 	struct fwdb_country country[];
640 } __packed __aligned(4);
641 
642 static int ecw2cw(int ecw)
643 {
644 	return (1 << ecw) - 1;
645 }
646 
647 static bool valid_wmm(struct fwdb_wmm_rule *rule)
648 {
649 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
650 	int i;
651 
652 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
653 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
654 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
655 		u8 aifsn = ac[i].aifsn;
656 
657 		if (cw_min >= cw_max)
658 			return false;
659 
660 		if (aifsn < 1)
661 			return false;
662 	}
663 
664 	return true;
665 }
666 
667 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
668 {
669 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
670 
671 	if ((u8 *)rule + sizeof(rule->len) > data + size)
672 		return false;
673 
674 	/* mandatory fields */
675 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
676 		return false;
677 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
678 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
679 		struct fwdb_wmm_rule *wmm;
680 
681 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
682 			return false;
683 
684 		wmm = (void *)(data + wmm_ptr);
685 
686 		if (!valid_wmm(wmm))
687 			return false;
688 	}
689 	return true;
690 }
691 
692 static bool valid_country(const u8 *data, unsigned int size,
693 			  const struct fwdb_country *country)
694 {
695 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
696 	struct fwdb_collection *coll = (void *)(data + ptr);
697 	__be16 *rules_ptr;
698 	unsigned int i;
699 
700 	/* make sure we can read len/n_rules */
701 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
702 		return false;
703 
704 	/* make sure base struct and all rules fit */
705 	if ((u8 *)coll + ALIGN(coll->len, 2) +
706 	    (coll->n_rules * 2) > data + size)
707 		return false;
708 
709 	/* mandatory fields must exist */
710 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
711 		return false;
712 
713 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
714 
715 	for (i = 0; i < coll->n_rules; i++) {
716 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
717 
718 		if (!valid_rule(data, size, rule_ptr))
719 			return false;
720 	}
721 
722 	return true;
723 }
724 
725 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
726 static struct key *builtin_regdb_keys;
727 
728 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
729 {
730 	const u8 *end = p + buflen;
731 	size_t plen;
732 	key_ref_t key;
733 
734 	while (p < end) {
735 		/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
736 		 * than 256 bytes in size.
737 		 */
738 		if (end - p < 4)
739 			goto dodgy_cert;
740 		if (p[0] != 0x30 &&
741 		    p[1] != 0x82)
742 			goto dodgy_cert;
743 		plen = (p[2] << 8) | p[3];
744 		plen += 4;
745 		if (plen > end - p)
746 			goto dodgy_cert;
747 
748 		key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
749 					   "asymmetric", NULL, p, plen,
750 					   ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
751 					    KEY_USR_VIEW | KEY_USR_READ),
752 					   KEY_ALLOC_NOT_IN_QUOTA |
753 					   KEY_ALLOC_BUILT_IN |
754 					   KEY_ALLOC_BYPASS_RESTRICTION);
755 		if (IS_ERR(key)) {
756 			pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
757 			       PTR_ERR(key));
758 		} else {
759 			pr_notice("Loaded X.509 cert '%s'\n",
760 				  key_ref_to_ptr(key)->description);
761 			key_ref_put(key);
762 		}
763 		p += plen;
764 	}
765 
766 	return;
767 
768 dodgy_cert:
769 	pr_err("Problem parsing in-kernel X.509 certificate list\n");
770 }
771 
772 static int __init load_builtin_regdb_keys(void)
773 {
774 	builtin_regdb_keys =
775 		keyring_alloc(".builtin_regdb_keys",
776 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
777 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
778 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
779 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
780 	if (IS_ERR(builtin_regdb_keys))
781 		return PTR_ERR(builtin_regdb_keys);
782 
783 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
784 
785 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
786 	load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
787 #endif
788 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
789 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
790 		load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
791 #endif
792 
793 	return 0;
794 }
795 
796 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
797 {
798 	const struct firmware *sig;
799 	bool result;
800 
801 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
802 		return false;
803 
804 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
805 					builtin_regdb_keys,
806 					VERIFYING_UNSPECIFIED_SIGNATURE,
807 					NULL, NULL) == 0;
808 
809 	release_firmware(sig);
810 
811 	return result;
812 }
813 
814 static void free_regdb_keyring(void)
815 {
816 	key_put(builtin_regdb_keys);
817 }
818 #else
819 static int load_builtin_regdb_keys(void)
820 {
821 	return 0;
822 }
823 
824 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
825 {
826 	return true;
827 }
828 
829 static void free_regdb_keyring(void)
830 {
831 }
832 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
833 
834 static bool valid_regdb(const u8 *data, unsigned int size)
835 {
836 	const struct fwdb_header *hdr = (void *)data;
837 	const struct fwdb_country *country;
838 
839 	if (size < sizeof(*hdr))
840 		return false;
841 
842 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
843 		return false;
844 
845 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
846 		return false;
847 
848 	if (!regdb_has_valid_signature(data, size))
849 		return false;
850 
851 	country = &hdr->country[0];
852 	while ((u8 *)(country + 1) <= data + size) {
853 		if (!country->coll_ptr)
854 			break;
855 		if (!valid_country(data, size, country))
856 			return false;
857 		country++;
858 	}
859 
860 	return true;
861 }
862 
863 static void set_wmm_rule(struct ieee80211_wmm_rule *rule,
864 			 struct fwdb_wmm_rule *wmm)
865 {
866 	unsigned int i;
867 
868 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
869 		rule->client[i].cw_min =
870 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
871 		rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
872 		rule->client[i].aifsn =  wmm->client[i].aifsn;
873 		rule->client[i].cot = 1000 * be16_to_cpu(wmm->client[i].cot);
874 		rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
875 		rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
876 		rule->ap[i].aifsn = wmm->ap[i].aifsn;
877 		rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
878 	}
879 }
880 
881 static int __regdb_query_wmm(const struct fwdb_header *db,
882 			     const struct fwdb_country *country, int freq,
883 			     u32 *dbptr, struct ieee80211_wmm_rule *rule)
884 {
885 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
886 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
887 	int i;
888 
889 	for (i = 0; i < coll->n_rules; i++) {
890 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
891 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
892 		struct fwdb_rule *rrule = (void *)((u8 *)db + rule_ptr);
893 		struct fwdb_wmm_rule *wmm;
894 		unsigned int wmm_ptr;
895 
896 		if (rrule->len < offsetofend(struct fwdb_rule, wmm_ptr))
897 			continue;
898 
899 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rrule->start)) &&
900 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rrule->end))) {
901 			wmm_ptr = be16_to_cpu(rrule->wmm_ptr) << 2;
902 			wmm = (void *)((u8 *)db + wmm_ptr);
903 			set_wmm_rule(rule, wmm);
904 			if (dbptr)
905 				*dbptr = wmm_ptr;
906 			return 0;
907 		}
908 	}
909 
910 	return -ENODATA;
911 }
912 
913 int reg_query_regdb_wmm(char *alpha2, int freq, u32 *dbptr,
914 			struct ieee80211_wmm_rule *rule)
915 {
916 	const struct fwdb_header *hdr = regdb;
917 	const struct fwdb_country *country;
918 
919 	if (!regdb)
920 		return -ENODATA;
921 
922 	if (IS_ERR(regdb))
923 		return PTR_ERR(regdb);
924 
925 	country = &hdr->country[0];
926 	while (country->coll_ptr) {
927 		if (alpha2_equal(alpha2, country->alpha2))
928 			return __regdb_query_wmm(regdb, country, freq, dbptr,
929 						 rule);
930 
931 		country++;
932 	}
933 
934 	return -ENODATA;
935 }
936 EXPORT_SYMBOL(reg_query_regdb_wmm);
937 
938 struct wmm_ptrs {
939 	struct ieee80211_wmm_rule *rule;
940 	u32 ptr;
941 };
942 
943 static struct ieee80211_wmm_rule *find_wmm_ptr(struct wmm_ptrs *wmm_ptrs,
944 					       u32 wmm_ptr, int n_wmms)
945 {
946 	int i;
947 
948 	for (i = 0; i < n_wmms; i++) {
949 		if (wmm_ptrs[i].ptr == wmm_ptr)
950 			return wmm_ptrs[i].rule;
951 	}
952 	return NULL;
953 }
954 
955 static int regdb_query_country(const struct fwdb_header *db,
956 			       const struct fwdb_country *country)
957 {
958 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
959 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
960 	struct ieee80211_regdomain *regdom;
961 	struct ieee80211_regdomain *tmp_rd;
962 	unsigned int size_of_regd, i, n_wmms = 0;
963 	struct wmm_ptrs *wmm_ptrs;
964 
965 	size_of_regd = sizeof(struct ieee80211_regdomain) +
966 		coll->n_rules * sizeof(struct ieee80211_reg_rule);
967 
968 	regdom = kzalloc(size_of_regd, GFP_KERNEL);
969 	if (!regdom)
970 		return -ENOMEM;
971 
972 	wmm_ptrs = kcalloc(coll->n_rules, sizeof(*wmm_ptrs), GFP_KERNEL);
973 	if (!wmm_ptrs) {
974 		kfree(regdom);
975 		return -ENOMEM;
976 	}
977 
978 	regdom->n_reg_rules = coll->n_rules;
979 	regdom->alpha2[0] = country->alpha2[0];
980 	regdom->alpha2[1] = country->alpha2[1];
981 	regdom->dfs_region = coll->dfs_region;
982 
983 	for (i = 0; i < regdom->n_reg_rules; i++) {
984 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
985 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
986 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
987 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
988 
989 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
990 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
991 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
992 
993 		rrule->power_rule.max_antenna_gain = 0;
994 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
995 
996 		rrule->flags = 0;
997 		if (rule->flags & FWDB_FLAG_NO_OFDM)
998 			rrule->flags |= NL80211_RRF_NO_OFDM;
999 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
1000 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
1001 		if (rule->flags & FWDB_FLAG_DFS)
1002 			rrule->flags |= NL80211_RRF_DFS;
1003 		if (rule->flags & FWDB_FLAG_NO_IR)
1004 			rrule->flags |= NL80211_RRF_NO_IR;
1005 		if (rule->flags & FWDB_FLAG_AUTO_BW)
1006 			rrule->flags |= NL80211_RRF_AUTO_BW;
1007 
1008 		rrule->dfs_cac_ms = 0;
1009 
1010 		/* handle optional data */
1011 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1012 			rrule->dfs_cac_ms =
1013 				1000 * be16_to_cpu(rule->cac_timeout);
1014 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
1015 			u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
1016 			struct ieee80211_wmm_rule *wmm_pos =
1017 				find_wmm_ptr(wmm_ptrs, wmm_ptr, n_wmms);
1018 			struct fwdb_wmm_rule *wmm;
1019 			struct ieee80211_wmm_rule *wmm_rule;
1020 
1021 			if (wmm_pos) {
1022 				rrule->wmm_rule = wmm_pos;
1023 				continue;
1024 			}
1025 			wmm = (void *)((u8 *)db + wmm_ptr);
1026 			tmp_rd = krealloc(regdom, size_of_regd + (n_wmms + 1) *
1027 					  sizeof(struct ieee80211_wmm_rule),
1028 					  GFP_KERNEL);
1029 
1030 			if (!tmp_rd) {
1031 				kfree(regdom);
1032 				kfree(wmm_ptrs);
1033 				return -ENOMEM;
1034 			}
1035 			regdom = tmp_rd;
1036 
1037 			wmm_rule = (struct ieee80211_wmm_rule *)
1038 				((u8 *)regdom + size_of_regd + n_wmms *
1039 				sizeof(struct ieee80211_wmm_rule));
1040 
1041 			set_wmm_rule(wmm_rule, wmm);
1042 			wmm_ptrs[n_wmms].ptr = wmm_ptr;
1043 			wmm_ptrs[n_wmms++].rule = wmm_rule;
1044 		}
1045 	}
1046 	kfree(wmm_ptrs);
1047 
1048 	return reg_schedule_apply(regdom);
1049 }
1050 
1051 static int query_regdb(const char *alpha2)
1052 {
1053 	const struct fwdb_header *hdr = regdb;
1054 	const struct fwdb_country *country;
1055 
1056 	ASSERT_RTNL();
1057 
1058 	if (IS_ERR(regdb))
1059 		return PTR_ERR(regdb);
1060 
1061 	country = &hdr->country[0];
1062 	while (country->coll_ptr) {
1063 		if (alpha2_equal(alpha2, country->alpha2))
1064 			return regdb_query_country(regdb, country);
1065 		country++;
1066 	}
1067 
1068 	return -ENODATA;
1069 }
1070 
1071 static void regdb_fw_cb(const struct firmware *fw, void *context)
1072 {
1073 	int set_error = 0;
1074 	bool restore = true;
1075 	void *db;
1076 
1077 	if (!fw) {
1078 		pr_info("failed to load regulatory.db\n");
1079 		set_error = -ENODATA;
1080 	} else if (!valid_regdb(fw->data, fw->size)) {
1081 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1082 		set_error = -EINVAL;
1083 	}
1084 
1085 	rtnl_lock();
1086 	if (WARN_ON(regdb && !IS_ERR(regdb))) {
1087 		/* just restore and free new db */
1088 	} else if (set_error) {
1089 		regdb = ERR_PTR(set_error);
1090 	} else if (fw) {
1091 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1092 		if (db) {
1093 			regdb = db;
1094 			restore = context && query_regdb(context);
1095 		} else {
1096 			restore = true;
1097 		}
1098 	}
1099 
1100 	if (restore)
1101 		restore_regulatory_settings(true);
1102 
1103 	rtnl_unlock();
1104 
1105 	kfree(context);
1106 
1107 	release_firmware(fw);
1108 }
1109 
1110 static int query_regdb_file(const char *alpha2)
1111 {
1112 	ASSERT_RTNL();
1113 
1114 	if (regdb)
1115 		return query_regdb(alpha2);
1116 
1117 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1118 	if (!alpha2)
1119 		return -ENOMEM;
1120 
1121 	return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1122 				       &reg_pdev->dev, GFP_KERNEL,
1123 				       (void *)alpha2, regdb_fw_cb);
1124 }
1125 
1126 int reg_reload_regdb(void)
1127 {
1128 	const struct firmware *fw;
1129 	void *db;
1130 	int err;
1131 
1132 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1133 	if (err)
1134 		return err;
1135 
1136 	if (!valid_regdb(fw->data, fw->size)) {
1137 		err = -ENODATA;
1138 		goto out;
1139 	}
1140 
1141 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1142 	if (!db) {
1143 		err = -ENOMEM;
1144 		goto out;
1145 	}
1146 
1147 	rtnl_lock();
1148 	if (!IS_ERR_OR_NULL(regdb))
1149 		kfree(regdb);
1150 	regdb = db;
1151 	rtnl_unlock();
1152 
1153  out:
1154 	release_firmware(fw);
1155 	return err;
1156 }
1157 
1158 static bool reg_query_database(struct regulatory_request *request)
1159 {
1160 	if (query_regdb_file(request->alpha2) == 0)
1161 		return true;
1162 
1163 	if (call_crda(request->alpha2) == 0)
1164 		return true;
1165 
1166 	return false;
1167 }
1168 
1169 bool reg_is_valid_request(const char *alpha2)
1170 {
1171 	struct regulatory_request *lr = get_last_request();
1172 
1173 	if (!lr || lr->processed)
1174 		return false;
1175 
1176 	return alpha2_equal(lr->alpha2, alpha2);
1177 }
1178 
1179 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1180 {
1181 	struct regulatory_request *lr = get_last_request();
1182 
1183 	/*
1184 	 * Follow the driver's regulatory domain, if present, unless a country
1185 	 * IE has been processed or a user wants to help complaince further
1186 	 */
1187 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1188 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1189 	    wiphy->regd)
1190 		return get_wiphy_regdom(wiphy);
1191 
1192 	return get_cfg80211_regdom();
1193 }
1194 
1195 static unsigned int
1196 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1197 				 const struct ieee80211_reg_rule *rule)
1198 {
1199 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1200 	const struct ieee80211_freq_range *freq_range_tmp;
1201 	const struct ieee80211_reg_rule *tmp;
1202 	u32 start_freq, end_freq, idx, no;
1203 
1204 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1205 		if (rule == &rd->reg_rules[idx])
1206 			break;
1207 
1208 	if (idx == rd->n_reg_rules)
1209 		return 0;
1210 
1211 	/* get start_freq */
1212 	no = idx;
1213 
1214 	while (no) {
1215 		tmp = &rd->reg_rules[--no];
1216 		freq_range_tmp = &tmp->freq_range;
1217 
1218 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1219 			break;
1220 
1221 		freq_range = freq_range_tmp;
1222 	}
1223 
1224 	start_freq = freq_range->start_freq_khz;
1225 
1226 	/* get end_freq */
1227 	freq_range = &rule->freq_range;
1228 	no = idx;
1229 
1230 	while (no < rd->n_reg_rules - 1) {
1231 		tmp = &rd->reg_rules[++no];
1232 		freq_range_tmp = &tmp->freq_range;
1233 
1234 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1235 			break;
1236 
1237 		freq_range = freq_range_tmp;
1238 	}
1239 
1240 	end_freq = freq_range->end_freq_khz;
1241 
1242 	return end_freq - start_freq;
1243 }
1244 
1245 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1246 				   const struct ieee80211_reg_rule *rule)
1247 {
1248 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1249 
1250 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1251 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1252 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1253 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1254 
1255 	/*
1256 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1257 	 * are not allowed.
1258 	 */
1259 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1260 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1261 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1262 
1263 	return bw;
1264 }
1265 
1266 /* Sanity check on a regulatory rule */
1267 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1268 {
1269 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1270 	u32 freq_diff;
1271 
1272 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1273 		return false;
1274 
1275 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1276 		return false;
1277 
1278 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1279 
1280 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1281 	    freq_range->max_bandwidth_khz > freq_diff)
1282 		return false;
1283 
1284 	return true;
1285 }
1286 
1287 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1288 {
1289 	const struct ieee80211_reg_rule *reg_rule = NULL;
1290 	unsigned int i;
1291 
1292 	if (!rd->n_reg_rules)
1293 		return false;
1294 
1295 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1296 		return false;
1297 
1298 	for (i = 0; i < rd->n_reg_rules; i++) {
1299 		reg_rule = &rd->reg_rules[i];
1300 		if (!is_valid_reg_rule(reg_rule))
1301 			return false;
1302 	}
1303 
1304 	return true;
1305 }
1306 
1307 /**
1308  * freq_in_rule_band - tells us if a frequency is in a frequency band
1309  * @freq_range: frequency rule we want to query
1310  * @freq_khz: frequency we are inquiring about
1311  *
1312  * This lets us know if a specific frequency rule is or is not relevant to
1313  * a specific frequency's band. Bands are device specific and artificial
1314  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1315  * however it is safe for now to assume that a frequency rule should not be
1316  * part of a frequency's band if the start freq or end freq are off by more
1317  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
1318  * 60 GHz band.
1319  * This resolution can be lowered and should be considered as we add
1320  * regulatory rule support for other "bands".
1321  **/
1322 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1323 			      u32 freq_khz)
1324 {
1325 #define ONE_GHZ_IN_KHZ	1000000
1326 	/*
1327 	 * From 802.11ad: directional multi-gigabit (DMG):
1328 	 * Pertaining to operation in a frequency band containing a channel
1329 	 * with the Channel starting frequency above 45 GHz.
1330 	 */
1331 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1332 			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1333 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1334 		return true;
1335 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1336 		return true;
1337 	return false;
1338 #undef ONE_GHZ_IN_KHZ
1339 }
1340 
1341 /*
1342  * Later on we can perhaps use the more restrictive DFS
1343  * region but we don't have information for that yet so
1344  * for now simply disallow conflicts.
1345  */
1346 static enum nl80211_dfs_regions
1347 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1348 			 const enum nl80211_dfs_regions dfs_region2)
1349 {
1350 	if (dfs_region1 != dfs_region2)
1351 		return NL80211_DFS_UNSET;
1352 	return dfs_region1;
1353 }
1354 
1355 /*
1356  * Helper for regdom_intersect(), this does the real
1357  * mathematical intersection fun
1358  */
1359 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1360 			       const struct ieee80211_regdomain *rd2,
1361 			       const struct ieee80211_reg_rule *rule1,
1362 			       const struct ieee80211_reg_rule *rule2,
1363 			       struct ieee80211_reg_rule *intersected_rule)
1364 {
1365 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1366 	struct ieee80211_freq_range *freq_range;
1367 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1368 	struct ieee80211_power_rule *power_rule;
1369 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1370 
1371 	freq_range1 = &rule1->freq_range;
1372 	freq_range2 = &rule2->freq_range;
1373 	freq_range = &intersected_rule->freq_range;
1374 
1375 	power_rule1 = &rule1->power_rule;
1376 	power_rule2 = &rule2->power_rule;
1377 	power_rule = &intersected_rule->power_rule;
1378 
1379 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1380 					 freq_range2->start_freq_khz);
1381 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1382 				       freq_range2->end_freq_khz);
1383 
1384 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1385 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1386 
1387 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1388 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1389 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1390 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1391 
1392 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1393 
1394 	intersected_rule->flags = rule1->flags | rule2->flags;
1395 
1396 	/*
1397 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1398 	 * set AUTO_BW in intersected rule also. Next we will
1399 	 * calculate BW correctly in handle_channel function.
1400 	 * In other case remove AUTO_BW flag while we calculate
1401 	 * maximum bandwidth correctly and auto calculation is
1402 	 * not required.
1403 	 */
1404 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1405 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1406 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1407 	else
1408 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1409 
1410 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1411 	if (freq_range->max_bandwidth_khz > freq_diff)
1412 		freq_range->max_bandwidth_khz = freq_diff;
1413 
1414 	power_rule->max_eirp = min(power_rule1->max_eirp,
1415 		power_rule2->max_eirp);
1416 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1417 		power_rule2->max_antenna_gain);
1418 
1419 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1420 					   rule2->dfs_cac_ms);
1421 
1422 	if (!is_valid_reg_rule(intersected_rule))
1423 		return -EINVAL;
1424 
1425 	return 0;
1426 }
1427 
1428 /* check whether old rule contains new rule */
1429 static bool rule_contains(struct ieee80211_reg_rule *r1,
1430 			  struct ieee80211_reg_rule *r2)
1431 {
1432 	/* for simplicity, currently consider only same flags */
1433 	if (r1->flags != r2->flags)
1434 		return false;
1435 
1436 	/* verify r1 is more restrictive */
1437 	if ((r1->power_rule.max_antenna_gain >
1438 	     r2->power_rule.max_antenna_gain) ||
1439 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1440 		return false;
1441 
1442 	/* make sure r2's range is contained within r1 */
1443 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1444 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1445 		return false;
1446 
1447 	/* and finally verify that r1.max_bw >= r2.max_bw */
1448 	if (r1->freq_range.max_bandwidth_khz <
1449 	    r2->freq_range.max_bandwidth_khz)
1450 		return false;
1451 
1452 	return true;
1453 }
1454 
1455 /* add or extend current rules. do nothing if rule is already contained */
1456 static void add_rule(struct ieee80211_reg_rule *rule,
1457 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1458 {
1459 	struct ieee80211_reg_rule *tmp_rule;
1460 	int i;
1461 
1462 	for (i = 0; i < *n_rules; i++) {
1463 		tmp_rule = &reg_rules[i];
1464 		/* rule is already contained - do nothing */
1465 		if (rule_contains(tmp_rule, rule))
1466 			return;
1467 
1468 		/* extend rule if possible */
1469 		if (rule_contains(rule, tmp_rule)) {
1470 			memcpy(tmp_rule, rule, sizeof(*rule));
1471 			return;
1472 		}
1473 	}
1474 
1475 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1476 	(*n_rules)++;
1477 }
1478 
1479 /**
1480  * regdom_intersect - do the intersection between two regulatory domains
1481  * @rd1: first regulatory domain
1482  * @rd2: second regulatory domain
1483  *
1484  * Use this function to get the intersection between two regulatory domains.
1485  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1486  * as no one single alpha2 can represent this regulatory domain.
1487  *
1488  * Returns a pointer to the regulatory domain structure which will hold the
1489  * resulting intersection of rules between rd1 and rd2. We will
1490  * kzalloc() this structure for you.
1491  */
1492 static struct ieee80211_regdomain *
1493 regdom_intersect(const struct ieee80211_regdomain *rd1,
1494 		 const struct ieee80211_regdomain *rd2)
1495 {
1496 	int r, size_of_regd;
1497 	unsigned int x, y;
1498 	unsigned int num_rules = 0;
1499 	const struct ieee80211_reg_rule *rule1, *rule2;
1500 	struct ieee80211_reg_rule intersected_rule;
1501 	struct ieee80211_regdomain *rd;
1502 
1503 	if (!rd1 || !rd2)
1504 		return NULL;
1505 
1506 	/*
1507 	 * First we get a count of the rules we'll need, then we actually
1508 	 * build them. This is to so we can malloc() and free() a
1509 	 * regdomain once. The reason we use reg_rules_intersect() here
1510 	 * is it will return -EINVAL if the rule computed makes no sense.
1511 	 * All rules that do check out OK are valid.
1512 	 */
1513 
1514 	for (x = 0; x < rd1->n_reg_rules; x++) {
1515 		rule1 = &rd1->reg_rules[x];
1516 		for (y = 0; y < rd2->n_reg_rules; y++) {
1517 			rule2 = &rd2->reg_rules[y];
1518 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1519 						 &intersected_rule))
1520 				num_rules++;
1521 		}
1522 	}
1523 
1524 	if (!num_rules)
1525 		return NULL;
1526 
1527 	size_of_regd = sizeof(struct ieee80211_regdomain) +
1528 		       num_rules * sizeof(struct ieee80211_reg_rule);
1529 
1530 	rd = kzalloc(size_of_regd, GFP_KERNEL);
1531 	if (!rd)
1532 		return NULL;
1533 
1534 	for (x = 0; x < rd1->n_reg_rules; x++) {
1535 		rule1 = &rd1->reg_rules[x];
1536 		for (y = 0; y < rd2->n_reg_rules; y++) {
1537 			rule2 = &rd2->reg_rules[y];
1538 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1539 						&intersected_rule);
1540 			/*
1541 			 * No need to memset here the intersected rule here as
1542 			 * we're not using the stack anymore
1543 			 */
1544 			if (r)
1545 				continue;
1546 
1547 			add_rule(&intersected_rule, rd->reg_rules,
1548 				 &rd->n_reg_rules);
1549 		}
1550 	}
1551 
1552 	rd->alpha2[0] = '9';
1553 	rd->alpha2[1] = '8';
1554 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1555 						  rd2->dfs_region);
1556 
1557 	return rd;
1558 }
1559 
1560 /*
1561  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1562  * want to just have the channel structure use these
1563  */
1564 static u32 map_regdom_flags(u32 rd_flags)
1565 {
1566 	u32 channel_flags = 0;
1567 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1568 		channel_flags |= IEEE80211_CHAN_NO_IR;
1569 	if (rd_flags & NL80211_RRF_DFS)
1570 		channel_flags |= IEEE80211_CHAN_RADAR;
1571 	if (rd_flags & NL80211_RRF_NO_OFDM)
1572 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1573 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1574 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1575 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1576 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1577 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1578 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1579 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1580 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1581 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1582 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1583 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1584 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1585 	return channel_flags;
1586 }
1587 
1588 static const struct ieee80211_reg_rule *
1589 freq_reg_info_regd(u32 center_freq,
1590 		   const struct ieee80211_regdomain *regd, u32 bw)
1591 {
1592 	int i;
1593 	bool band_rule_found = false;
1594 	bool bw_fits = false;
1595 
1596 	if (!regd)
1597 		return ERR_PTR(-EINVAL);
1598 
1599 	for (i = 0; i < regd->n_reg_rules; i++) {
1600 		const struct ieee80211_reg_rule *rr;
1601 		const struct ieee80211_freq_range *fr = NULL;
1602 
1603 		rr = &regd->reg_rules[i];
1604 		fr = &rr->freq_range;
1605 
1606 		/*
1607 		 * We only need to know if one frequency rule was
1608 		 * was in center_freq's band, that's enough, so lets
1609 		 * not overwrite it once found
1610 		 */
1611 		if (!band_rule_found)
1612 			band_rule_found = freq_in_rule_band(fr, center_freq);
1613 
1614 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1615 
1616 		if (band_rule_found && bw_fits)
1617 			return rr;
1618 	}
1619 
1620 	if (!band_rule_found)
1621 		return ERR_PTR(-ERANGE);
1622 
1623 	return ERR_PTR(-EINVAL);
1624 }
1625 
1626 static const struct ieee80211_reg_rule *
1627 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1628 {
1629 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1630 	const struct ieee80211_reg_rule *reg_rule = NULL;
1631 	u32 bw;
1632 
1633 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1634 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1635 		if (!IS_ERR(reg_rule))
1636 			return reg_rule;
1637 	}
1638 
1639 	return reg_rule;
1640 }
1641 
1642 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1643 					       u32 center_freq)
1644 {
1645 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1646 }
1647 EXPORT_SYMBOL(freq_reg_info);
1648 
1649 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1650 {
1651 	switch (initiator) {
1652 	case NL80211_REGDOM_SET_BY_CORE:
1653 		return "core";
1654 	case NL80211_REGDOM_SET_BY_USER:
1655 		return "user";
1656 	case NL80211_REGDOM_SET_BY_DRIVER:
1657 		return "driver";
1658 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1659 		return "country element";
1660 	default:
1661 		WARN_ON(1);
1662 		return "bug";
1663 	}
1664 }
1665 EXPORT_SYMBOL(reg_initiator_name);
1666 
1667 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1668 					  const struct ieee80211_reg_rule *reg_rule,
1669 					  const struct ieee80211_channel *chan)
1670 {
1671 	const struct ieee80211_freq_range *freq_range = NULL;
1672 	u32 max_bandwidth_khz, bw_flags = 0;
1673 
1674 	freq_range = &reg_rule->freq_range;
1675 
1676 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1677 	/* Check if auto calculation requested */
1678 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1679 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1680 
1681 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1682 	if (!cfg80211_does_bw_fit_range(freq_range,
1683 					MHZ_TO_KHZ(chan->center_freq),
1684 					MHZ_TO_KHZ(10)))
1685 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1686 	if (!cfg80211_does_bw_fit_range(freq_range,
1687 					MHZ_TO_KHZ(chan->center_freq),
1688 					MHZ_TO_KHZ(20)))
1689 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1690 
1691 	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1692 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1693 	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1694 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1695 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1696 		bw_flags |= IEEE80211_CHAN_NO_HT40;
1697 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1698 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1699 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1700 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1701 	return bw_flags;
1702 }
1703 
1704 /*
1705  * Note that right now we assume the desired channel bandwidth
1706  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1707  * per channel, the primary and the extension channel).
1708  */
1709 static void handle_channel(struct wiphy *wiphy,
1710 			   enum nl80211_reg_initiator initiator,
1711 			   struct ieee80211_channel *chan)
1712 {
1713 	u32 flags, bw_flags = 0;
1714 	const struct ieee80211_reg_rule *reg_rule = NULL;
1715 	const struct ieee80211_power_rule *power_rule = NULL;
1716 	struct wiphy *request_wiphy = NULL;
1717 	struct regulatory_request *lr = get_last_request();
1718 	const struct ieee80211_regdomain *regd;
1719 
1720 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1721 
1722 	flags = chan->orig_flags;
1723 
1724 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1725 	if (IS_ERR(reg_rule)) {
1726 		/*
1727 		 * We will disable all channels that do not match our
1728 		 * received regulatory rule unless the hint is coming
1729 		 * from a Country IE and the Country IE had no information
1730 		 * about a band. The IEEE 802.11 spec allows for an AP
1731 		 * to send only a subset of the regulatory rules allowed,
1732 		 * so an AP in the US that only supports 2.4 GHz may only send
1733 		 * a country IE with information for the 2.4 GHz band
1734 		 * while 5 GHz is still supported.
1735 		 */
1736 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1737 		    PTR_ERR(reg_rule) == -ERANGE)
1738 			return;
1739 
1740 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1741 		    request_wiphy && request_wiphy == wiphy &&
1742 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1743 			pr_debug("Disabling freq %d MHz for good\n",
1744 				 chan->center_freq);
1745 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1746 			chan->flags = chan->orig_flags;
1747 		} else {
1748 			pr_debug("Disabling freq %d MHz\n",
1749 				 chan->center_freq);
1750 			chan->flags |= IEEE80211_CHAN_DISABLED;
1751 		}
1752 		return;
1753 	}
1754 
1755 	regd = reg_get_regdomain(wiphy);
1756 
1757 	power_rule = &reg_rule->power_rule;
1758 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1759 
1760 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1761 	    request_wiphy && request_wiphy == wiphy &&
1762 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1763 		/*
1764 		 * This guarantees the driver's requested regulatory domain
1765 		 * will always be used as a base for further regulatory
1766 		 * settings
1767 		 */
1768 		chan->flags = chan->orig_flags =
1769 			map_regdom_flags(reg_rule->flags) | bw_flags;
1770 		chan->max_antenna_gain = chan->orig_mag =
1771 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1772 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1773 			(int) MBM_TO_DBM(power_rule->max_eirp);
1774 
1775 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1776 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1777 			if (reg_rule->dfs_cac_ms)
1778 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1779 		}
1780 
1781 		return;
1782 	}
1783 
1784 	chan->dfs_state = NL80211_DFS_USABLE;
1785 	chan->dfs_state_entered = jiffies;
1786 
1787 	chan->beacon_found = false;
1788 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1789 	chan->max_antenna_gain =
1790 		min_t(int, chan->orig_mag,
1791 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1792 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1793 
1794 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1795 		if (reg_rule->dfs_cac_ms)
1796 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1797 		else
1798 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1799 	}
1800 
1801 	if (chan->orig_mpwr) {
1802 		/*
1803 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1804 		 * will always follow the passed country IE power settings.
1805 		 */
1806 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1807 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1808 			chan->max_power = chan->max_reg_power;
1809 		else
1810 			chan->max_power = min(chan->orig_mpwr,
1811 					      chan->max_reg_power);
1812 	} else
1813 		chan->max_power = chan->max_reg_power;
1814 }
1815 
1816 static void handle_band(struct wiphy *wiphy,
1817 			enum nl80211_reg_initiator initiator,
1818 			struct ieee80211_supported_band *sband)
1819 {
1820 	unsigned int i;
1821 
1822 	if (!sband)
1823 		return;
1824 
1825 	for (i = 0; i < sband->n_channels; i++)
1826 		handle_channel(wiphy, initiator, &sband->channels[i]);
1827 }
1828 
1829 static bool reg_request_cell_base(struct regulatory_request *request)
1830 {
1831 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1832 		return false;
1833 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1834 }
1835 
1836 bool reg_last_request_cell_base(void)
1837 {
1838 	return reg_request_cell_base(get_last_request());
1839 }
1840 
1841 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1842 /* Core specific check */
1843 static enum reg_request_treatment
1844 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1845 {
1846 	struct regulatory_request *lr = get_last_request();
1847 
1848 	if (!reg_num_devs_support_basehint)
1849 		return REG_REQ_IGNORE;
1850 
1851 	if (reg_request_cell_base(lr) &&
1852 	    !regdom_changes(pending_request->alpha2))
1853 		return REG_REQ_ALREADY_SET;
1854 
1855 	return REG_REQ_OK;
1856 }
1857 
1858 /* Device specific check */
1859 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1860 {
1861 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1862 }
1863 #else
1864 static enum reg_request_treatment
1865 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1866 {
1867 	return REG_REQ_IGNORE;
1868 }
1869 
1870 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1871 {
1872 	return true;
1873 }
1874 #endif
1875 
1876 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1877 {
1878 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1879 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1880 		return true;
1881 	return false;
1882 }
1883 
1884 static bool ignore_reg_update(struct wiphy *wiphy,
1885 			      enum nl80211_reg_initiator initiator)
1886 {
1887 	struct regulatory_request *lr = get_last_request();
1888 
1889 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1890 		return true;
1891 
1892 	if (!lr) {
1893 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1894 			 reg_initiator_name(initiator));
1895 		return true;
1896 	}
1897 
1898 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1899 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1900 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1901 			 reg_initiator_name(initiator));
1902 		return true;
1903 	}
1904 
1905 	/*
1906 	 * wiphy->regd will be set once the device has its own
1907 	 * desired regulatory domain set
1908 	 */
1909 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1910 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1911 	    !is_world_regdom(lr->alpha2)) {
1912 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1913 			 reg_initiator_name(initiator));
1914 		return true;
1915 	}
1916 
1917 	if (reg_request_cell_base(lr))
1918 		return reg_dev_ignore_cell_hint(wiphy);
1919 
1920 	return false;
1921 }
1922 
1923 static bool reg_is_world_roaming(struct wiphy *wiphy)
1924 {
1925 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1926 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1927 	struct regulatory_request *lr = get_last_request();
1928 
1929 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1930 		return true;
1931 
1932 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1933 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1934 		return true;
1935 
1936 	return false;
1937 }
1938 
1939 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1940 			      struct reg_beacon *reg_beacon)
1941 {
1942 	struct ieee80211_supported_band *sband;
1943 	struct ieee80211_channel *chan;
1944 	bool channel_changed = false;
1945 	struct ieee80211_channel chan_before;
1946 
1947 	sband = wiphy->bands[reg_beacon->chan.band];
1948 	chan = &sband->channels[chan_idx];
1949 
1950 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1951 		return;
1952 
1953 	if (chan->beacon_found)
1954 		return;
1955 
1956 	chan->beacon_found = true;
1957 
1958 	if (!reg_is_world_roaming(wiphy))
1959 		return;
1960 
1961 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1962 		return;
1963 
1964 	chan_before = *chan;
1965 
1966 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1967 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1968 		channel_changed = true;
1969 	}
1970 
1971 	if (channel_changed)
1972 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1973 }
1974 
1975 /*
1976  * Called when a scan on a wiphy finds a beacon on
1977  * new channel
1978  */
1979 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1980 				    struct reg_beacon *reg_beacon)
1981 {
1982 	unsigned int i;
1983 	struct ieee80211_supported_band *sband;
1984 
1985 	if (!wiphy->bands[reg_beacon->chan.band])
1986 		return;
1987 
1988 	sband = wiphy->bands[reg_beacon->chan.band];
1989 
1990 	for (i = 0; i < sband->n_channels; i++)
1991 		handle_reg_beacon(wiphy, i, reg_beacon);
1992 }
1993 
1994 /*
1995  * Called upon reg changes or a new wiphy is added
1996  */
1997 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1998 {
1999 	unsigned int i;
2000 	struct ieee80211_supported_band *sband;
2001 	struct reg_beacon *reg_beacon;
2002 
2003 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2004 		if (!wiphy->bands[reg_beacon->chan.band])
2005 			continue;
2006 		sband = wiphy->bands[reg_beacon->chan.band];
2007 		for (i = 0; i < sband->n_channels; i++)
2008 			handle_reg_beacon(wiphy, i, reg_beacon);
2009 	}
2010 }
2011 
2012 /* Reap the advantages of previously found beacons */
2013 static void reg_process_beacons(struct wiphy *wiphy)
2014 {
2015 	/*
2016 	 * Means we are just firing up cfg80211, so no beacons would
2017 	 * have been processed yet.
2018 	 */
2019 	if (!last_request)
2020 		return;
2021 	wiphy_update_beacon_reg(wiphy);
2022 }
2023 
2024 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2025 {
2026 	if (!chan)
2027 		return false;
2028 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2029 		return false;
2030 	/* This would happen when regulatory rules disallow HT40 completely */
2031 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2032 		return false;
2033 	return true;
2034 }
2035 
2036 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2037 					 struct ieee80211_channel *channel)
2038 {
2039 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2040 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2041 	const struct ieee80211_regdomain *regd;
2042 	unsigned int i;
2043 	u32 flags;
2044 
2045 	if (!is_ht40_allowed(channel)) {
2046 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2047 		return;
2048 	}
2049 
2050 	/*
2051 	 * We need to ensure the extension channels exist to
2052 	 * be able to use HT40- or HT40+, this finds them (or not)
2053 	 */
2054 	for (i = 0; i < sband->n_channels; i++) {
2055 		struct ieee80211_channel *c = &sband->channels[i];
2056 
2057 		if (c->center_freq == (channel->center_freq - 20))
2058 			channel_before = c;
2059 		if (c->center_freq == (channel->center_freq + 20))
2060 			channel_after = c;
2061 	}
2062 
2063 	flags = 0;
2064 	regd = get_wiphy_regdom(wiphy);
2065 	if (regd) {
2066 		const struct ieee80211_reg_rule *reg_rule =
2067 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2068 					   regd, MHZ_TO_KHZ(20));
2069 
2070 		if (!IS_ERR(reg_rule))
2071 			flags = reg_rule->flags;
2072 	}
2073 
2074 	/*
2075 	 * Please note that this assumes target bandwidth is 20 MHz,
2076 	 * if that ever changes we also need to change the below logic
2077 	 * to include that as well.
2078 	 */
2079 	if (!is_ht40_allowed(channel_before) ||
2080 	    flags & NL80211_RRF_NO_HT40MINUS)
2081 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2082 	else
2083 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2084 
2085 	if (!is_ht40_allowed(channel_after) ||
2086 	    flags & NL80211_RRF_NO_HT40PLUS)
2087 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2088 	else
2089 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2090 }
2091 
2092 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2093 				      struct ieee80211_supported_band *sband)
2094 {
2095 	unsigned int i;
2096 
2097 	if (!sband)
2098 		return;
2099 
2100 	for (i = 0; i < sband->n_channels; i++)
2101 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2102 }
2103 
2104 static void reg_process_ht_flags(struct wiphy *wiphy)
2105 {
2106 	enum nl80211_band band;
2107 
2108 	if (!wiphy)
2109 		return;
2110 
2111 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2112 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2113 }
2114 
2115 static void reg_call_notifier(struct wiphy *wiphy,
2116 			      struct regulatory_request *request)
2117 {
2118 	if (wiphy->reg_notifier)
2119 		wiphy->reg_notifier(wiphy, request);
2120 }
2121 
2122 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2123 {
2124 	struct cfg80211_chan_def chandef;
2125 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2126 	enum nl80211_iftype iftype;
2127 
2128 	wdev_lock(wdev);
2129 	iftype = wdev->iftype;
2130 
2131 	/* make sure the interface is active */
2132 	if (!wdev->netdev || !netif_running(wdev->netdev))
2133 		goto wdev_inactive_unlock;
2134 
2135 	switch (iftype) {
2136 	case NL80211_IFTYPE_AP:
2137 	case NL80211_IFTYPE_P2P_GO:
2138 		if (!wdev->beacon_interval)
2139 			goto wdev_inactive_unlock;
2140 		chandef = wdev->chandef;
2141 		break;
2142 	case NL80211_IFTYPE_ADHOC:
2143 		if (!wdev->ssid_len)
2144 			goto wdev_inactive_unlock;
2145 		chandef = wdev->chandef;
2146 		break;
2147 	case NL80211_IFTYPE_STATION:
2148 	case NL80211_IFTYPE_P2P_CLIENT:
2149 		if (!wdev->current_bss ||
2150 		    !wdev->current_bss->pub.channel)
2151 			goto wdev_inactive_unlock;
2152 
2153 		if (!rdev->ops->get_channel ||
2154 		    rdev_get_channel(rdev, wdev, &chandef))
2155 			cfg80211_chandef_create(&chandef,
2156 						wdev->current_bss->pub.channel,
2157 						NL80211_CHAN_NO_HT);
2158 		break;
2159 	case NL80211_IFTYPE_MONITOR:
2160 	case NL80211_IFTYPE_AP_VLAN:
2161 	case NL80211_IFTYPE_P2P_DEVICE:
2162 		/* no enforcement required */
2163 		break;
2164 	default:
2165 		/* others not implemented for now */
2166 		WARN_ON(1);
2167 		break;
2168 	}
2169 
2170 	wdev_unlock(wdev);
2171 
2172 	switch (iftype) {
2173 	case NL80211_IFTYPE_AP:
2174 	case NL80211_IFTYPE_P2P_GO:
2175 	case NL80211_IFTYPE_ADHOC:
2176 		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2177 	case NL80211_IFTYPE_STATION:
2178 	case NL80211_IFTYPE_P2P_CLIENT:
2179 		return cfg80211_chandef_usable(wiphy, &chandef,
2180 					       IEEE80211_CHAN_DISABLED);
2181 	default:
2182 		break;
2183 	}
2184 
2185 	return true;
2186 
2187 wdev_inactive_unlock:
2188 	wdev_unlock(wdev);
2189 	return true;
2190 }
2191 
2192 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2193 {
2194 	struct wireless_dev *wdev;
2195 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2196 
2197 	ASSERT_RTNL();
2198 
2199 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2200 		if (!reg_wdev_chan_valid(wiphy, wdev))
2201 			cfg80211_leave(rdev, wdev);
2202 }
2203 
2204 static void reg_check_chans_work(struct work_struct *work)
2205 {
2206 	struct cfg80211_registered_device *rdev;
2207 
2208 	pr_debug("Verifying active interfaces after reg change\n");
2209 	rtnl_lock();
2210 
2211 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2212 		if (!(rdev->wiphy.regulatory_flags &
2213 		      REGULATORY_IGNORE_STALE_KICKOFF))
2214 			reg_leave_invalid_chans(&rdev->wiphy);
2215 
2216 	rtnl_unlock();
2217 }
2218 
2219 static void reg_check_channels(void)
2220 {
2221 	/*
2222 	 * Give usermode a chance to do something nicer (move to another
2223 	 * channel, orderly disconnection), before forcing a disconnection.
2224 	 */
2225 	mod_delayed_work(system_power_efficient_wq,
2226 			 &reg_check_chans,
2227 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2228 }
2229 
2230 static void wiphy_update_regulatory(struct wiphy *wiphy,
2231 				    enum nl80211_reg_initiator initiator)
2232 {
2233 	enum nl80211_band band;
2234 	struct regulatory_request *lr = get_last_request();
2235 
2236 	if (ignore_reg_update(wiphy, initiator)) {
2237 		/*
2238 		 * Regulatory updates set by CORE are ignored for custom
2239 		 * regulatory cards. Let us notify the changes to the driver,
2240 		 * as some drivers used this to restore its orig_* reg domain.
2241 		 */
2242 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2243 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2244 			reg_call_notifier(wiphy, lr);
2245 		return;
2246 	}
2247 
2248 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2249 
2250 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2251 		handle_band(wiphy, initiator, wiphy->bands[band]);
2252 
2253 	reg_process_beacons(wiphy);
2254 	reg_process_ht_flags(wiphy);
2255 	reg_call_notifier(wiphy, lr);
2256 }
2257 
2258 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2259 {
2260 	struct cfg80211_registered_device *rdev;
2261 	struct wiphy *wiphy;
2262 
2263 	ASSERT_RTNL();
2264 
2265 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2266 		wiphy = &rdev->wiphy;
2267 		wiphy_update_regulatory(wiphy, initiator);
2268 	}
2269 
2270 	reg_check_channels();
2271 }
2272 
2273 static void handle_channel_custom(struct wiphy *wiphy,
2274 				  struct ieee80211_channel *chan,
2275 				  const struct ieee80211_regdomain *regd)
2276 {
2277 	u32 bw_flags = 0;
2278 	const struct ieee80211_reg_rule *reg_rule = NULL;
2279 	const struct ieee80211_power_rule *power_rule = NULL;
2280 	u32 bw;
2281 
2282 	for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2283 		reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2284 					      regd, bw);
2285 		if (!IS_ERR(reg_rule))
2286 			break;
2287 	}
2288 
2289 	if (IS_ERR(reg_rule)) {
2290 		pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2291 			 chan->center_freq);
2292 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2293 			chan->flags |= IEEE80211_CHAN_DISABLED;
2294 		} else {
2295 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2296 			chan->flags = chan->orig_flags;
2297 		}
2298 		return;
2299 	}
2300 
2301 	power_rule = &reg_rule->power_rule;
2302 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2303 
2304 	chan->dfs_state_entered = jiffies;
2305 	chan->dfs_state = NL80211_DFS_USABLE;
2306 
2307 	chan->beacon_found = false;
2308 
2309 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2310 		chan->flags = chan->orig_flags | bw_flags |
2311 			      map_regdom_flags(reg_rule->flags);
2312 	else
2313 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2314 
2315 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2316 	chan->max_reg_power = chan->max_power =
2317 		(int) MBM_TO_DBM(power_rule->max_eirp);
2318 
2319 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2320 		if (reg_rule->dfs_cac_ms)
2321 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2322 		else
2323 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2324 	}
2325 
2326 	chan->max_power = chan->max_reg_power;
2327 }
2328 
2329 static void handle_band_custom(struct wiphy *wiphy,
2330 			       struct ieee80211_supported_band *sband,
2331 			       const struct ieee80211_regdomain *regd)
2332 {
2333 	unsigned int i;
2334 
2335 	if (!sband)
2336 		return;
2337 
2338 	for (i = 0; i < sband->n_channels; i++)
2339 		handle_channel_custom(wiphy, &sband->channels[i], regd);
2340 }
2341 
2342 /* Used by drivers prior to wiphy registration */
2343 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2344 				   const struct ieee80211_regdomain *regd)
2345 {
2346 	enum nl80211_band band;
2347 	unsigned int bands_set = 0;
2348 
2349 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2350 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2351 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2352 
2353 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2354 		if (!wiphy->bands[band])
2355 			continue;
2356 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2357 		bands_set++;
2358 	}
2359 
2360 	/*
2361 	 * no point in calling this if it won't have any effect
2362 	 * on your device's supported bands.
2363 	 */
2364 	WARN_ON(!bands_set);
2365 }
2366 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2367 
2368 static void reg_set_request_processed(void)
2369 {
2370 	bool need_more_processing = false;
2371 	struct regulatory_request *lr = get_last_request();
2372 
2373 	lr->processed = true;
2374 
2375 	spin_lock(&reg_requests_lock);
2376 	if (!list_empty(&reg_requests_list))
2377 		need_more_processing = true;
2378 	spin_unlock(&reg_requests_lock);
2379 
2380 	cancel_crda_timeout();
2381 
2382 	if (need_more_processing)
2383 		schedule_work(&reg_work);
2384 }
2385 
2386 /**
2387  * reg_process_hint_core - process core regulatory requests
2388  * @pending_request: a pending core regulatory request
2389  *
2390  * The wireless subsystem can use this function to process
2391  * a regulatory request issued by the regulatory core.
2392  */
2393 static enum reg_request_treatment
2394 reg_process_hint_core(struct regulatory_request *core_request)
2395 {
2396 	if (reg_query_database(core_request)) {
2397 		core_request->intersect = false;
2398 		core_request->processed = false;
2399 		reg_update_last_request(core_request);
2400 		return REG_REQ_OK;
2401 	}
2402 
2403 	return REG_REQ_IGNORE;
2404 }
2405 
2406 static enum reg_request_treatment
2407 __reg_process_hint_user(struct regulatory_request *user_request)
2408 {
2409 	struct regulatory_request *lr = get_last_request();
2410 
2411 	if (reg_request_cell_base(user_request))
2412 		return reg_ignore_cell_hint(user_request);
2413 
2414 	if (reg_request_cell_base(lr))
2415 		return REG_REQ_IGNORE;
2416 
2417 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2418 		return REG_REQ_INTERSECT;
2419 	/*
2420 	 * If the user knows better the user should set the regdom
2421 	 * to their country before the IE is picked up
2422 	 */
2423 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2424 	    lr->intersect)
2425 		return REG_REQ_IGNORE;
2426 	/*
2427 	 * Process user requests only after previous user/driver/core
2428 	 * requests have been processed
2429 	 */
2430 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2431 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2432 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2433 	    regdom_changes(lr->alpha2))
2434 		return REG_REQ_IGNORE;
2435 
2436 	if (!regdom_changes(user_request->alpha2))
2437 		return REG_REQ_ALREADY_SET;
2438 
2439 	return REG_REQ_OK;
2440 }
2441 
2442 /**
2443  * reg_process_hint_user - process user regulatory requests
2444  * @user_request: a pending user regulatory request
2445  *
2446  * The wireless subsystem can use this function to process
2447  * a regulatory request initiated by userspace.
2448  */
2449 static enum reg_request_treatment
2450 reg_process_hint_user(struct regulatory_request *user_request)
2451 {
2452 	enum reg_request_treatment treatment;
2453 
2454 	treatment = __reg_process_hint_user(user_request);
2455 	if (treatment == REG_REQ_IGNORE ||
2456 	    treatment == REG_REQ_ALREADY_SET)
2457 		return REG_REQ_IGNORE;
2458 
2459 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2460 	user_request->processed = false;
2461 
2462 	if (reg_query_database(user_request)) {
2463 		reg_update_last_request(user_request);
2464 		user_alpha2[0] = user_request->alpha2[0];
2465 		user_alpha2[1] = user_request->alpha2[1];
2466 		return REG_REQ_OK;
2467 	}
2468 
2469 	return REG_REQ_IGNORE;
2470 }
2471 
2472 static enum reg_request_treatment
2473 __reg_process_hint_driver(struct regulatory_request *driver_request)
2474 {
2475 	struct regulatory_request *lr = get_last_request();
2476 
2477 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2478 		if (regdom_changes(driver_request->alpha2))
2479 			return REG_REQ_OK;
2480 		return REG_REQ_ALREADY_SET;
2481 	}
2482 
2483 	/*
2484 	 * This would happen if you unplug and plug your card
2485 	 * back in or if you add a new device for which the previously
2486 	 * loaded card also agrees on the regulatory domain.
2487 	 */
2488 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2489 	    !regdom_changes(driver_request->alpha2))
2490 		return REG_REQ_ALREADY_SET;
2491 
2492 	return REG_REQ_INTERSECT;
2493 }
2494 
2495 /**
2496  * reg_process_hint_driver - process driver regulatory requests
2497  * @driver_request: a pending driver regulatory request
2498  *
2499  * The wireless subsystem can use this function to process
2500  * a regulatory request issued by an 802.11 driver.
2501  *
2502  * Returns one of the different reg request treatment values.
2503  */
2504 static enum reg_request_treatment
2505 reg_process_hint_driver(struct wiphy *wiphy,
2506 			struct regulatory_request *driver_request)
2507 {
2508 	const struct ieee80211_regdomain *regd, *tmp;
2509 	enum reg_request_treatment treatment;
2510 
2511 	treatment = __reg_process_hint_driver(driver_request);
2512 
2513 	switch (treatment) {
2514 	case REG_REQ_OK:
2515 		break;
2516 	case REG_REQ_IGNORE:
2517 		return REG_REQ_IGNORE;
2518 	case REG_REQ_INTERSECT:
2519 	case REG_REQ_ALREADY_SET:
2520 		regd = reg_copy_regd(get_cfg80211_regdom());
2521 		if (IS_ERR(regd))
2522 			return REG_REQ_IGNORE;
2523 
2524 		tmp = get_wiphy_regdom(wiphy);
2525 		rcu_assign_pointer(wiphy->regd, regd);
2526 		rcu_free_regdom(tmp);
2527 	}
2528 
2529 
2530 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2531 	driver_request->processed = false;
2532 
2533 	/*
2534 	 * Since CRDA will not be called in this case as we already
2535 	 * have applied the requested regulatory domain before we just
2536 	 * inform userspace we have processed the request
2537 	 */
2538 	if (treatment == REG_REQ_ALREADY_SET) {
2539 		nl80211_send_reg_change_event(driver_request);
2540 		reg_update_last_request(driver_request);
2541 		reg_set_request_processed();
2542 		return REG_REQ_ALREADY_SET;
2543 	}
2544 
2545 	if (reg_query_database(driver_request)) {
2546 		reg_update_last_request(driver_request);
2547 		return REG_REQ_OK;
2548 	}
2549 
2550 	return REG_REQ_IGNORE;
2551 }
2552 
2553 static enum reg_request_treatment
2554 __reg_process_hint_country_ie(struct wiphy *wiphy,
2555 			      struct regulatory_request *country_ie_request)
2556 {
2557 	struct wiphy *last_wiphy = NULL;
2558 	struct regulatory_request *lr = get_last_request();
2559 
2560 	if (reg_request_cell_base(lr)) {
2561 		/* Trust a Cell base station over the AP's country IE */
2562 		if (regdom_changes(country_ie_request->alpha2))
2563 			return REG_REQ_IGNORE;
2564 		return REG_REQ_ALREADY_SET;
2565 	} else {
2566 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2567 			return REG_REQ_IGNORE;
2568 	}
2569 
2570 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2571 		return -EINVAL;
2572 
2573 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2574 		return REG_REQ_OK;
2575 
2576 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2577 
2578 	if (last_wiphy != wiphy) {
2579 		/*
2580 		 * Two cards with two APs claiming different
2581 		 * Country IE alpha2s. We could
2582 		 * intersect them, but that seems unlikely
2583 		 * to be correct. Reject second one for now.
2584 		 */
2585 		if (regdom_changes(country_ie_request->alpha2))
2586 			return REG_REQ_IGNORE;
2587 		return REG_REQ_ALREADY_SET;
2588 	}
2589 
2590 	if (regdom_changes(country_ie_request->alpha2))
2591 		return REG_REQ_OK;
2592 	return REG_REQ_ALREADY_SET;
2593 }
2594 
2595 /**
2596  * reg_process_hint_country_ie - process regulatory requests from country IEs
2597  * @country_ie_request: a regulatory request from a country IE
2598  *
2599  * The wireless subsystem can use this function to process
2600  * a regulatory request issued by a country Information Element.
2601  *
2602  * Returns one of the different reg request treatment values.
2603  */
2604 static enum reg_request_treatment
2605 reg_process_hint_country_ie(struct wiphy *wiphy,
2606 			    struct regulatory_request *country_ie_request)
2607 {
2608 	enum reg_request_treatment treatment;
2609 
2610 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2611 
2612 	switch (treatment) {
2613 	case REG_REQ_OK:
2614 		break;
2615 	case REG_REQ_IGNORE:
2616 		return REG_REQ_IGNORE;
2617 	case REG_REQ_ALREADY_SET:
2618 		reg_free_request(country_ie_request);
2619 		return REG_REQ_ALREADY_SET;
2620 	case REG_REQ_INTERSECT:
2621 		/*
2622 		 * This doesn't happen yet, not sure we
2623 		 * ever want to support it for this case.
2624 		 */
2625 		WARN_ONCE(1, "Unexpected intersection for country elements");
2626 		return REG_REQ_IGNORE;
2627 	}
2628 
2629 	country_ie_request->intersect = false;
2630 	country_ie_request->processed = false;
2631 
2632 	if (reg_query_database(country_ie_request)) {
2633 		reg_update_last_request(country_ie_request);
2634 		return REG_REQ_OK;
2635 	}
2636 
2637 	return REG_REQ_IGNORE;
2638 }
2639 
2640 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2641 {
2642 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2643 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2644 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2645 	bool dfs_domain_same;
2646 
2647 	rcu_read_lock();
2648 
2649 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2650 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2651 	if (!wiphy1_regd)
2652 		wiphy1_regd = cfg80211_regd;
2653 
2654 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2655 	if (!wiphy2_regd)
2656 		wiphy2_regd = cfg80211_regd;
2657 
2658 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2659 
2660 	rcu_read_unlock();
2661 
2662 	return dfs_domain_same;
2663 }
2664 
2665 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2666 				    struct ieee80211_channel *src_chan)
2667 {
2668 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2669 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2670 		return;
2671 
2672 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2673 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2674 		return;
2675 
2676 	if (src_chan->center_freq == dst_chan->center_freq &&
2677 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2678 		dst_chan->dfs_state = src_chan->dfs_state;
2679 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2680 	}
2681 }
2682 
2683 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2684 				       struct wiphy *src_wiphy)
2685 {
2686 	struct ieee80211_supported_band *src_sband, *dst_sband;
2687 	struct ieee80211_channel *src_chan, *dst_chan;
2688 	int i, j, band;
2689 
2690 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2691 		return;
2692 
2693 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2694 		dst_sband = dst_wiphy->bands[band];
2695 		src_sband = src_wiphy->bands[band];
2696 		if (!dst_sband || !src_sband)
2697 			continue;
2698 
2699 		for (i = 0; i < dst_sband->n_channels; i++) {
2700 			dst_chan = &dst_sband->channels[i];
2701 			for (j = 0; j < src_sband->n_channels; j++) {
2702 				src_chan = &src_sband->channels[j];
2703 				reg_copy_dfs_chan_state(dst_chan, src_chan);
2704 			}
2705 		}
2706 	}
2707 }
2708 
2709 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2710 {
2711 	struct cfg80211_registered_device *rdev;
2712 
2713 	ASSERT_RTNL();
2714 
2715 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2716 		if (wiphy == &rdev->wiphy)
2717 			continue;
2718 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2719 	}
2720 }
2721 
2722 /* This processes *all* regulatory hints */
2723 static void reg_process_hint(struct regulatory_request *reg_request)
2724 {
2725 	struct wiphy *wiphy = NULL;
2726 	enum reg_request_treatment treatment;
2727 
2728 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2729 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2730 
2731 	switch (reg_request->initiator) {
2732 	case NL80211_REGDOM_SET_BY_CORE:
2733 		treatment = reg_process_hint_core(reg_request);
2734 		break;
2735 	case NL80211_REGDOM_SET_BY_USER:
2736 		treatment = reg_process_hint_user(reg_request);
2737 		break;
2738 	case NL80211_REGDOM_SET_BY_DRIVER:
2739 		if (!wiphy)
2740 			goto out_free;
2741 		treatment = reg_process_hint_driver(wiphy, reg_request);
2742 		break;
2743 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2744 		if (!wiphy)
2745 			goto out_free;
2746 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2747 		break;
2748 	default:
2749 		WARN(1, "invalid initiator %d\n", reg_request->initiator);
2750 		goto out_free;
2751 	}
2752 
2753 	if (treatment == REG_REQ_IGNORE)
2754 		goto out_free;
2755 
2756 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2757 	     "unexpected treatment value %d\n", treatment);
2758 
2759 	/* This is required so that the orig_* parameters are saved.
2760 	 * NOTE: treatment must be set for any case that reaches here!
2761 	 */
2762 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2763 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2764 		wiphy_update_regulatory(wiphy, reg_request->initiator);
2765 		wiphy_all_share_dfs_chan_state(wiphy);
2766 		reg_check_channels();
2767 	}
2768 
2769 	return;
2770 
2771 out_free:
2772 	reg_free_request(reg_request);
2773 }
2774 
2775 static void notify_self_managed_wiphys(struct regulatory_request *request)
2776 {
2777 	struct cfg80211_registered_device *rdev;
2778 	struct wiphy *wiphy;
2779 
2780 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2781 		wiphy = &rdev->wiphy;
2782 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2783 		    request->initiator == NL80211_REGDOM_SET_BY_USER &&
2784 		    request->user_reg_hint_type ==
2785 				NL80211_USER_REG_HINT_CELL_BASE)
2786 			reg_call_notifier(wiphy, request);
2787 	}
2788 }
2789 
2790 static bool reg_only_self_managed_wiphys(void)
2791 {
2792 	struct cfg80211_registered_device *rdev;
2793 	struct wiphy *wiphy;
2794 	bool self_managed_found = false;
2795 
2796 	ASSERT_RTNL();
2797 
2798 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2799 		wiphy = &rdev->wiphy;
2800 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2801 			self_managed_found = true;
2802 		else
2803 			return false;
2804 	}
2805 
2806 	/* make sure at least one self-managed wiphy exists */
2807 	return self_managed_found;
2808 }
2809 
2810 /*
2811  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2812  * Regulatory hints come on a first come first serve basis and we
2813  * must process each one atomically.
2814  */
2815 static void reg_process_pending_hints(void)
2816 {
2817 	struct regulatory_request *reg_request, *lr;
2818 
2819 	lr = get_last_request();
2820 
2821 	/* When last_request->processed becomes true this will be rescheduled */
2822 	if (lr && !lr->processed) {
2823 		reg_process_hint(lr);
2824 		return;
2825 	}
2826 
2827 	spin_lock(&reg_requests_lock);
2828 
2829 	if (list_empty(&reg_requests_list)) {
2830 		spin_unlock(&reg_requests_lock);
2831 		return;
2832 	}
2833 
2834 	reg_request = list_first_entry(&reg_requests_list,
2835 				       struct regulatory_request,
2836 				       list);
2837 	list_del_init(&reg_request->list);
2838 
2839 	spin_unlock(&reg_requests_lock);
2840 
2841 	notify_self_managed_wiphys(reg_request);
2842 	if (reg_only_self_managed_wiphys()) {
2843 		reg_free_request(reg_request);
2844 		return;
2845 	}
2846 
2847 	reg_process_hint(reg_request);
2848 
2849 	lr = get_last_request();
2850 
2851 	spin_lock(&reg_requests_lock);
2852 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
2853 		schedule_work(&reg_work);
2854 	spin_unlock(&reg_requests_lock);
2855 }
2856 
2857 /* Processes beacon hints -- this has nothing to do with country IEs */
2858 static void reg_process_pending_beacon_hints(void)
2859 {
2860 	struct cfg80211_registered_device *rdev;
2861 	struct reg_beacon *pending_beacon, *tmp;
2862 
2863 	/* This goes through the _pending_ beacon list */
2864 	spin_lock_bh(&reg_pending_beacons_lock);
2865 
2866 	list_for_each_entry_safe(pending_beacon, tmp,
2867 				 &reg_pending_beacons, list) {
2868 		list_del_init(&pending_beacon->list);
2869 
2870 		/* Applies the beacon hint to current wiphys */
2871 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2872 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2873 
2874 		/* Remembers the beacon hint for new wiphys or reg changes */
2875 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2876 	}
2877 
2878 	spin_unlock_bh(&reg_pending_beacons_lock);
2879 }
2880 
2881 static void reg_process_self_managed_hints(void)
2882 {
2883 	struct cfg80211_registered_device *rdev;
2884 	struct wiphy *wiphy;
2885 	const struct ieee80211_regdomain *tmp;
2886 	const struct ieee80211_regdomain *regd;
2887 	enum nl80211_band band;
2888 	struct regulatory_request request = {};
2889 
2890 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2891 		wiphy = &rdev->wiphy;
2892 
2893 		spin_lock(&reg_requests_lock);
2894 		regd = rdev->requested_regd;
2895 		rdev->requested_regd = NULL;
2896 		spin_unlock(&reg_requests_lock);
2897 
2898 		if (regd == NULL)
2899 			continue;
2900 
2901 		tmp = get_wiphy_regdom(wiphy);
2902 		rcu_assign_pointer(wiphy->regd, regd);
2903 		rcu_free_regdom(tmp);
2904 
2905 		for (band = 0; band < NUM_NL80211_BANDS; band++)
2906 			handle_band_custom(wiphy, wiphy->bands[band], regd);
2907 
2908 		reg_process_ht_flags(wiphy);
2909 
2910 		request.wiphy_idx = get_wiphy_idx(wiphy);
2911 		request.alpha2[0] = regd->alpha2[0];
2912 		request.alpha2[1] = regd->alpha2[1];
2913 		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2914 
2915 		nl80211_send_wiphy_reg_change_event(&request);
2916 	}
2917 
2918 	reg_check_channels();
2919 }
2920 
2921 static void reg_todo(struct work_struct *work)
2922 {
2923 	rtnl_lock();
2924 	reg_process_pending_hints();
2925 	reg_process_pending_beacon_hints();
2926 	reg_process_self_managed_hints();
2927 	rtnl_unlock();
2928 }
2929 
2930 static void queue_regulatory_request(struct regulatory_request *request)
2931 {
2932 	request->alpha2[0] = toupper(request->alpha2[0]);
2933 	request->alpha2[1] = toupper(request->alpha2[1]);
2934 
2935 	spin_lock(&reg_requests_lock);
2936 	list_add_tail(&request->list, &reg_requests_list);
2937 	spin_unlock(&reg_requests_lock);
2938 
2939 	schedule_work(&reg_work);
2940 }
2941 
2942 /*
2943  * Core regulatory hint -- happens during cfg80211_init()
2944  * and when we restore regulatory settings.
2945  */
2946 static int regulatory_hint_core(const char *alpha2)
2947 {
2948 	struct regulatory_request *request;
2949 
2950 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2951 	if (!request)
2952 		return -ENOMEM;
2953 
2954 	request->alpha2[0] = alpha2[0];
2955 	request->alpha2[1] = alpha2[1];
2956 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2957 
2958 	queue_regulatory_request(request);
2959 
2960 	return 0;
2961 }
2962 
2963 /* User hints */
2964 int regulatory_hint_user(const char *alpha2,
2965 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2966 {
2967 	struct regulatory_request *request;
2968 
2969 	if (WARN_ON(!alpha2))
2970 		return -EINVAL;
2971 
2972 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2973 	if (!request)
2974 		return -ENOMEM;
2975 
2976 	request->wiphy_idx = WIPHY_IDX_INVALID;
2977 	request->alpha2[0] = alpha2[0];
2978 	request->alpha2[1] = alpha2[1];
2979 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2980 	request->user_reg_hint_type = user_reg_hint_type;
2981 
2982 	/* Allow calling CRDA again */
2983 	reset_crda_timeouts();
2984 
2985 	queue_regulatory_request(request);
2986 
2987 	return 0;
2988 }
2989 
2990 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2991 {
2992 	spin_lock(&reg_indoor_lock);
2993 
2994 	/* It is possible that more than one user space process is trying to
2995 	 * configure the indoor setting. To handle such cases, clear the indoor
2996 	 * setting in case that some process does not think that the device
2997 	 * is operating in an indoor environment. In addition, if a user space
2998 	 * process indicates that it is controlling the indoor setting, save its
2999 	 * portid, i.e., make it the owner.
3000 	 */
3001 	reg_is_indoor = is_indoor;
3002 	if (reg_is_indoor) {
3003 		if (!reg_is_indoor_portid)
3004 			reg_is_indoor_portid = portid;
3005 	} else {
3006 		reg_is_indoor_portid = 0;
3007 	}
3008 
3009 	spin_unlock(&reg_indoor_lock);
3010 
3011 	if (!is_indoor)
3012 		reg_check_channels();
3013 
3014 	return 0;
3015 }
3016 
3017 void regulatory_netlink_notify(u32 portid)
3018 {
3019 	spin_lock(&reg_indoor_lock);
3020 
3021 	if (reg_is_indoor_portid != portid) {
3022 		spin_unlock(&reg_indoor_lock);
3023 		return;
3024 	}
3025 
3026 	reg_is_indoor = false;
3027 	reg_is_indoor_portid = 0;
3028 
3029 	spin_unlock(&reg_indoor_lock);
3030 
3031 	reg_check_channels();
3032 }
3033 
3034 /* Driver hints */
3035 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3036 {
3037 	struct regulatory_request *request;
3038 
3039 	if (WARN_ON(!alpha2 || !wiphy))
3040 		return -EINVAL;
3041 
3042 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3043 
3044 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3045 	if (!request)
3046 		return -ENOMEM;
3047 
3048 	request->wiphy_idx = get_wiphy_idx(wiphy);
3049 
3050 	request->alpha2[0] = alpha2[0];
3051 	request->alpha2[1] = alpha2[1];
3052 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3053 
3054 	/* Allow calling CRDA again */
3055 	reset_crda_timeouts();
3056 
3057 	queue_regulatory_request(request);
3058 
3059 	return 0;
3060 }
3061 EXPORT_SYMBOL(regulatory_hint);
3062 
3063 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3064 				const u8 *country_ie, u8 country_ie_len)
3065 {
3066 	char alpha2[2];
3067 	enum environment_cap env = ENVIRON_ANY;
3068 	struct regulatory_request *request = NULL, *lr;
3069 
3070 	/* IE len must be evenly divisible by 2 */
3071 	if (country_ie_len & 0x01)
3072 		return;
3073 
3074 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3075 		return;
3076 
3077 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3078 	if (!request)
3079 		return;
3080 
3081 	alpha2[0] = country_ie[0];
3082 	alpha2[1] = country_ie[1];
3083 
3084 	if (country_ie[2] == 'I')
3085 		env = ENVIRON_INDOOR;
3086 	else if (country_ie[2] == 'O')
3087 		env = ENVIRON_OUTDOOR;
3088 
3089 	rcu_read_lock();
3090 	lr = get_last_request();
3091 
3092 	if (unlikely(!lr))
3093 		goto out;
3094 
3095 	/*
3096 	 * We will run this only upon a successful connection on cfg80211.
3097 	 * We leave conflict resolution to the workqueue, where can hold
3098 	 * the RTNL.
3099 	 */
3100 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3101 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3102 		goto out;
3103 
3104 	request->wiphy_idx = get_wiphy_idx(wiphy);
3105 	request->alpha2[0] = alpha2[0];
3106 	request->alpha2[1] = alpha2[1];
3107 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3108 	request->country_ie_env = env;
3109 
3110 	/* Allow calling CRDA again */
3111 	reset_crda_timeouts();
3112 
3113 	queue_regulatory_request(request);
3114 	request = NULL;
3115 out:
3116 	kfree(request);
3117 	rcu_read_unlock();
3118 }
3119 
3120 static void restore_alpha2(char *alpha2, bool reset_user)
3121 {
3122 	/* indicates there is no alpha2 to consider for restoration */
3123 	alpha2[0] = '9';
3124 	alpha2[1] = '7';
3125 
3126 	/* The user setting has precedence over the module parameter */
3127 	if (is_user_regdom_saved()) {
3128 		/* Unless we're asked to ignore it and reset it */
3129 		if (reset_user) {
3130 			pr_debug("Restoring regulatory settings including user preference\n");
3131 			user_alpha2[0] = '9';
3132 			user_alpha2[1] = '7';
3133 
3134 			/*
3135 			 * If we're ignoring user settings, we still need to
3136 			 * check the module parameter to ensure we put things
3137 			 * back as they were for a full restore.
3138 			 */
3139 			if (!is_world_regdom(ieee80211_regdom)) {
3140 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3141 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3142 				alpha2[0] = ieee80211_regdom[0];
3143 				alpha2[1] = ieee80211_regdom[1];
3144 			}
3145 		} else {
3146 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3147 				 user_alpha2[0], user_alpha2[1]);
3148 			alpha2[0] = user_alpha2[0];
3149 			alpha2[1] = user_alpha2[1];
3150 		}
3151 	} else if (!is_world_regdom(ieee80211_regdom)) {
3152 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3153 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3154 		alpha2[0] = ieee80211_regdom[0];
3155 		alpha2[1] = ieee80211_regdom[1];
3156 	} else
3157 		pr_debug("Restoring regulatory settings\n");
3158 }
3159 
3160 static void restore_custom_reg_settings(struct wiphy *wiphy)
3161 {
3162 	struct ieee80211_supported_band *sband;
3163 	enum nl80211_band band;
3164 	struct ieee80211_channel *chan;
3165 	int i;
3166 
3167 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3168 		sband = wiphy->bands[band];
3169 		if (!sband)
3170 			continue;
3171 		for (i = 0; i < sband->n_channels; i++) {
3172 			chan = &sband->channels[i];
3173 			chan->flags = chan->orig_flags;
3174 			chan->max_antenna_gain = chan->orig_mag;
3175 			chan->max_power = chan->orig_mpwr;
3176 			chan->beacon_found = false;
3177 		}
3178 	}
3179 }
3180 
3181 /*
3182  * Restoring regulatory settings involves ingoring any
3183  * possibly stale country IE information and user regulatory
3184  * settings if so desired, this includes any beacon hints
3185  * learned as we could have traveled outside to another country
3186  * after disconnection. To restore regulatory settings we do
3187  * exactly what we did at bootup:
3188  *
3189  *   - send a core regulatory hint
3190  *   - send a user regulatory hint if applicable
3191  *
3192  * Device drivers that send a regulatory hint for a specific country
3193  * keep their own regulatory domain on wiphy->regd so that does does
3194  * not need to be remembered.
3195  */
3196 static void restore_regulatory_settings(bool reset_user)
3197 {
3198 	char alpha2[2];
3199 	char world_alpha2[2];
3200 	struct reg_beacon *reg_beacon, *btmp;
3201 	LIST_HEAD(tmp_reg_req_list);
3202 	struct cfg80211_registered_device *rdev;
3203 
3204 	ASSERT_RTNL();
3205 
3206 	/*
3207 	 * Clear the indoor setting in case that it is not controlled by user
3208 	 * space, as otherwise there is no guarantee that the device is still
3209 	 * operating in an indoor environment.
3210 	 */
3211 	spin_lock(&reg_indoor_lock);
3212 	if (reg_is_indoor && !reg_is_indoor_portid) {
3213 		reg_is_indoor = false;
3214 		reg_check_channels();
3215 	}
3216 	spin_unlock(&reg_indoor_lock);
3217 
3218 	reset_regdomains(true, &world_regdom);
3219 	restore_alpha2(alpha2, reset_user);
3220 
3221 	/*
3222 	 * If there's any pending requests we simply
3223 	 * stash them to a temporary pending queue and
3224 	 * add then after we've restored regulatory
3225 	 * settings.
3226 	 */
3227 	spin_lock(&reg_requests_lock);
3228 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3229 	spin_unlock(&reg_requests_lock);
3230 
3231 	/* Clear beacon hints */
3232 	spin_lock_bh(&reg_pending_beacons_lock);
3233 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3234 		list_del(&reg_beacon->list);
3235 		kfree(reg_beacon);
3236 	}
3237 	spin_unlock_bh(&reg_pending_beacons_lock);
3238 
3239 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3240 		list_del(&reg_beacon->list);
3241 		kfree(reg_beacon);
3242 	}
3243 
3244 	/* First restore to the basic regulatory settings */
3245 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3246 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3247 
3248 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3249 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3250 			continue;
3251 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3252 			restore_custom_reg_settings(&rdev->wiphy);
3253 	}
3254 
3255 	regulatory_hint_core(world_alpha2);
3256 
3257 	/*
3258 	 * This restores the ieee80211_regdom module parameter
3259 	 * preference or the last user requested regulatory
3260 	 * settings, user regulatory settings takes precedence.
3261 	 */
3262 	if (is_an_alpha2(alpha2))
3263 		regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3264 
3265 	spin_lock(&reg_requests_lock);
3266 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3267 	spin_unlock(&reg_requests_lock);
3268 
3269 	pr_debug("Kicking the queue\n");
3270 
3271 	schedule_work(&reg_work);
3272 }
3273 
3274 void regulatory_hint_disconnect(void)
3275 {
3276 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3277 	restore_regulatory_settings(false);
3278 }
3279 
3280 static bool freq_is_chan_12_13_14(u16 freq)
3281 {
3282 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3283 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3284 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3285 		return true;
3286 	return false;
3287 }
3288 
3289 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3290 {
3291 	struct reg_beacon *pending_beacon;
3292 
3293 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3294 		if (beacon_chan->center_freq ==
3295 		    pending_beacon->chan.center_freq)
3296 			return true;
3297 	return false;
3298 }
3299 
3300 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3301 				 struct ieee80211_channel *beacon_chan,
3302 				 gfp_t gfp)
3303 {
3304 	struct reg_beacon *reg_beacon;
3305 	bool processing;
3306 
3307 	if (beacon_chan->beacon_found ||
3308 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3309 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3310 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3311 		return 0;
3312 
3313 	spin_lock_bh(&reg_pending_beacons_lock);
3314 	processing = pending_reg_beacon(beacon_chan);
3315 	spin_unlock_bh(&reg_pending_beacons_lock);
3316 
3317 	if (processing)
3318 		return 0;
3319 
3320 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3321 	if (!reg_beacon)
3322 		return -ENOMEM;
3323 
3324 	pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3325 		 beacon_chan->center_freq,
3326 		 ieee80211_frequency_to_channel(beacon_chan->center_freq),
3327 		 wiphy_name(wiphy));
3328 
3329 	memcpy(&reg_beacon->chan, beacon_chan,
3330 	       sizeof(struct ieee80211_channel));
3331 
3332 	/*
3333 	 * Since we can be called from BH or and non-BH context
3334 	 * we must use spin_lock_bh()
3335 	 */
3336 	spin_lock_bh(&reg_pending_beacons_lock);
3337 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3338 	spin_unlock_bh(&reg_pending_beacons_lock);
3339 
3340 	schedule_work(&reg_work);
3341 
3342 	return 0;
3343 }
3344 
3345 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3346 {
3347 	unsigned int i;
3348 	const struct ieee80211_reg_rule *reg_rule = NULL;
3349 	const struct ieee80211_freq_range *freq_range = NULL;
3350 	const struct ieee80211_power_rule *power_rule = NULL;
3351 	char bw[32], cac_time[32];
3352 
3353 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3354 
3355 	for (i = 0; i < rd->n_reg_rules; i++) {
3356 		reg_rule = &rd->reg_rules[i];
3357 		freq_range = &reg_rule->freq_range;
3358 		power_rule = &reg_rule->power_rule;
3359 
3360 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3361 			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3362 				 freq_range->max_bandwidth_khz,
3363 				 reg_get_max_bandwidth(rd, reg_rule));
3364 		else
3365 			snprintf(bw, sizeof(bw), "%d KHz",
3366 				 freq_range->max_bandwidth_khz);
3367 
3368 		if (reg_rule->flags & NL80211_RRF_DFS)
3369 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3370 				  reg_rule->dfs_cac_ms/1000);
3371 		else
3372 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3373 
3374 
3375 		/*
3376 		 * There may not be documentation for max antenna gain
3377 		 * in certain regions
3378 		 */
3379 		if (power_rule->max_antenna_gain)
3380 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3381 				freq_range->start_freq_khz,
3382 				freq_range->end_freq_khz,
3383 				bw,
3384 				power_rule->max_antenna_gain,
3385 				power_rule->max_eirp,
3386 				cac_time);
3387 		else
3388 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3389 				freq_range->start_freq_khz,
3390 				freq_range->end_freq_khz,
3391 				bw,
3392 				power_rule->max_eirp,
3393 				cac_time);
3394 	}
3395 }
3396 
3397 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3398 {
3399 	switch (dfs_region) {
3400 	case NL80211_DFS_UNSET:
3401 	case NL80211_DFS_FCC:
3402 	case NL80211_DFS_ETSI:
3403 	case NL80211_DFS_JP:
3404 		return true;
3405 	default:
3406 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3407 		return false;
3408 	}
3409 }
3410 
3411 static void print_regdomain(const struct ieee80211_regdomain *rd)
3412 {
3413 	struct regulatory_request *lr = get_last_request();
3414 
3415 	if (is_intersected_alpha2(rd->alpha2)) {
3416 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3417 			struct cfg80211_registered_device *rdev;
3418 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3419 			if (rdev) {
3420 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3421 					rdev->country_ie_alpha2[0],
3422 					rdev->country_ie_alpha2[1]);
3423 			} else
3424 				pr_debug("Current regulatory domain intersected:\n");
3425 		} else
3426 			pr_debug("Current regulatory domain intersected:\n");
3427 	} else if (is_world_regdom(rd->alpha2)) {
3428 		pr_debug("World regulatory domain updated:\n");
3429 	} else {
3430 		if (is_unknown_alpha2(rd->alpha2))
3431 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3432 		else {
3433 			if (reg_request_cell_base(lr))
3434 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3435 					rd->alpha2[0], rd->alpha2[1]);
3436 			else
3437 				pr_debug("Regulatory domain changed to country: %c%c\n",
3438 					rd->alpha2[0], rd->alpha2[1]);
3439 		}
3440 	}
3441 
3442 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3443 	print_rd_rules(rd);
3444 }
3445 
3446 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3447 {
3448 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3449 	print_rd_rules(rd);
3450 }
3451 
3452 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3453 {
3454 	if (!is_world_regdom(rd->alpha2))
3455 		return -EINVAL;
3456 	update_world_regdomain(rd);
3457 	return 0;
3458 }
3459 
3460 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3461 			   struct regulatory_request *user_request)
3462 {
3463 	const struct ieee80211_regdomain *intersected_rd = NULL;
3464 
3465 	if (!regdom_changes(rd->alpha2))
3466 		return -EALREADY;
3467 
3468 	if (!is_valid_rd(rd)) {
3469 		pr_err("Invalid regulatory domain detected: %c%c\n",
3470 		       rd->alpha2[0], rd->alpha2[1]);
3471 		print_regdomain_info(rd);
3472 		return -EINVAL;
3473 	}
3474 
3475 	if (!user_request->intersect) {
3476 		reset_regdomains(false, rd);
3477 		return 0;
3478 	}
3479 
3480 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3481 	if (!intersected_rd)
3482 		return -EINVAL;
3483 
3484 	kfree(rd);
3485 	rd = NULL;
3486 	reset_regdomains(false, intersected_rd);
3487 
3488 	return 0;
3489 }
3490 
3491 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3492 			     struct regulatory_request *driver_request)
3493 {
3494 	const struct ieee80211_regdomain *regd;
3495 	const struct ieee80211_regdomain *intersected_rd = NULL;
3496 	const struct ieee80211_regdomain *tmp;
3497 	struct wiphy *request_wiphy;
3498 
3499 	if (is_world_regdom(rd->alpha2))
3500 		return -EINVAL;
3501 
3502 	if (!regdom_changes(rd->alpha2))
3503 		return -EALREADY;
3504 
3505 	if (!is_valid_rd(rd)) {
3506 		pr_err("Invalid regulatory domain detected: %c%c\n",
3507 		       rd->alpha2[0], rd->alpha2[1]);
3508 		print_regdomain_info(rd);
3509 		return -EINVAL;
3510 	}
3511 
3512 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3513 	if (!request_wiphy)
3514 		return -ENODEV;
3515 
3516 	if (!driver_request->intersect) {
3517 		if (request_wiphy->regd)
3518 			return -EALREADY;
3519 
3520 		regd = reg_copy_regd(rd);
3521 		if (IS_ERR(regd))
3522 			return PTR_ERR(regd);
3523 
3524 		rcu_assign_pointer(request_wiphy->regd, regd);
3525 		reset_regdomains(false, rd);
3526 		return 0;
3527 	}
3528 
3529 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3530 	if (!intersected_rd)
3531 		return -EINVAL;
3532 
3533 	/*
3534 	 * We can trash what CRDA provided now.
3535 	 * However if a driver requested this specific regulatory
3536 	 * domain we keep it for its private use
3537 	 */
3538 	tmp = get_wiphy_regdom(request_wiphy);
3539 	rcu_assign_pointer(request_wiphy->regd, rd);
3540 	rcu_free_regdom(tmp);
3541 
3542 	rd = NULL;
3543 
3544 	reset_regdomains(false, intersected_rd);
3545 
3546 	return 0;
3547 }
3548 
3549 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3550 				 struct regulatory_request *country_ie_request)
3551 {
3552 	struct wiphy *request_wiphy;
3553 
3554 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3555 	    !is_unknown_alpha2(rd->alpha2))
3556 		return -EINVAL;
3557 
3558 	/*
3559 	 * Lets only bother proceeding on the same alpha2 if the current
3560 	 * rd is non static (it means CRDA was present and was used last)
3561 	 * and the pending request came in from a country IE
3562 	 */
3563 
3564 	if (!is_valid_rd(rd)) {
3565 		pr_err("Invalid regulatory domain detected: %c%c\n",
3566 		       rd->alpha2[0], rd->alpha2[1]);
3567 		print_regdomain_info(rd);
3568 		return -EINVAL;
3569 	}
3570 
3571 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3572 	if (!request_wiphy)
3573 		return -ENODEV;
3574 
3575 	if (country_ie_request->intersect)
3576 		return -EINVAL;
3577 
3578 	reset_regdomains(false, rd);
3579 	return 0;
3580 }
3581 
3582 /*
3583  * Use this call to set the current regulatory domain. Conflicts with
3584  * multiple drivers can be ironed out later. Caller must've already
3585  * kmalloc'd the rd structure.
3586  */
3587 int set_regdom(const struct ieee80211_regdomain *rd,
3588 	       enum ieee80211_regd_source regd_src)
3589 {
3590 	struct regulatory_request *lr;
3591 	bool user_reset = false;
3592 	int r;
3593 
3594 	if (!reg_is_valid_request(rd->alpha2)) {
3595 		kfree(rd);
3596 		return -EINVAL;
3597 	}
3598 
3599 	if (regd_src == REGD_SOURCE_CRDA)
3600 		reset_crda_timeouts();
3601 
3602 	lr = get_last_request();
3603 
3604 	/* Note that this doesn't update the wiphys, this is done below */
3605 	switch (lr->initiator) {
3606 	case NL80211_REGDOM_SET_BY_CORE:
3607 		r = reg_set_rd_core(rd);
3608 		break;
3609 	case NL80211_REGDOM_SET_BY_USER:
3610 		r = reg_set_rd_user(rd, lr);
3611 		user_reset = true;
3612 		break;
3613 	case NL80211_REGDOM_SET_BY_DRIVER:
3614 		r = reg_set_rd_driver(rd, lr);
3615 		break;
3616 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3617 		r = reg_set_rd_country_ie(rd, lr);
3618 		break;
3619 	default:
3620 		WARN(1, "invalid initiator %d\n", lr->initiator);
3621 		kfree(rd);
3622 		return -EINVAL;
3623 	}
3624 
3625 	if (r) {
3626 		switch (r) {
3627 		case -EALREADY:
3628 			reg_set_request_processed();
3629 			break;
3630 		default:
3631 			/* Back to world regulatory in case of errors */
3632 			restore_regulatory_settings(user_reset);
3633 		}
3634 
3635 		kfree(rd);
3636 		return r;
3637 	}
3638 
3639 	/* This would make this whole thing pointless */
3640 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3641 		return -EINVAL;
3642 
3643 	/* update all wiphys now with the new established regulatory domain */
3644 	update_all_wiphy_regulatory(lr->initiator);
3645 
3646 	print_regdomain(get_cfg80211_regdom());
3647 
3648 	nl80211_send_reg_change_event(lr);
3649 
3650 	reg_set_request_processed();
3651 
3652 	return 0;
3653 }
3654 
3655 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3656 				       struct ieee80211_regdomain *rd)
3657 {
3658 	const struct ieee80211_regdomain *regd;
3659 	const struct ieee80211_regdomain *prev_regd;
3660 	struct cfg80211_registered_device *rdev;
3661 
3662 	if (WARN_ON(!wiphy || !rd))
3663 		return -EINVAL;
3664 
3665 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3666 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3667 		return -EPERM;
3668 
3669 	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3670 		print_regdomain_info(rd);
3671 		return -EINVAL;
3672 	}
3673 
3674 	regd = reg_copy_regd(rd);
3675 	if (IS_ERR(regd))
3676 		return PTR_ERR(regd);
3677 
3678 	rdev = wiphy_to_rdev(wiphy);
3679 
3680 	spin_lock(&reg_requests_lock);
3681 	prev_regd = rdev->requested_regd;
3682 	rdev->requested_regd = regd;
3683 	spin_unlock(&reg_requests_lock);
3684 
3685 	kfree(prev_regd);
3686 	return 0;
3687 }
3688 
3689 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3690 			      struct ieee80211_regdomain *rd)
3691 {
3692 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3693 
3694 	if (ret)
3695 		return ret;
3696 
3697 	schedule_work(&reg_work);
3698 	return 0;
3699 }
3700 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3701 
3702 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3703 					struct ieee80211_regdomain *rd)
3704 {
3705 	int ret;
3706 
3707 	ASSERT_RTNL();
3708 
3709 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3710 	if (ret)
3711 		return ret;
3712 
3713 	/* process the request immediately */
3714 	reg_process_self_managed_hints();
3715 	return 0;
3716 }
3717 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3718 
3719 void wiphy_regulatory_register(struct wiphy *wiphy)
3720 {
3721 	struct regulatory_request *lr = get_last_request();
3722 
3723 	/* self-managed devices ignore beacon hints and country IE */
3724 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3725 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3726 					   REGULATORY_COUNTRY_IE_IGNORE;
3727 
3728 		/*
3729 		 * The last request may have been received before this
3730 		 * registration call. Call the driver notifier if
3731 		 * initiator is USER and user type is CELL_BASE.
3732 		 */
3733 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
3734 		    lr->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE)
3735 			reg_call_notifier(wiphy, lr);
3736 	}
3737 
3738 	if (!reg_dev_ignore_cell_hint(wiphy))
3739 		reg_num_devs_support_basehint++;
3740 
3741 	wiphy_update_regulatory(wiphy, lr->initiator);
3742 	wiphy_all_share_dfs_chan_state(wiphy);
3743 }
3744 
3745 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3746 {
3747 	struct wiphy *request_wiphy = NULL;
3748 	struct regulatory_request *lr;
3749 
3750 	lr = get_last_request();
3751 
3752 	if (!reg_dev_ignore_cell_hint(wiphy))
3753 		reg_num_devs_support_basehint--;
3754 
3755 	rcu_free_regdom(get_wiphy_regdom(wiphy));
3756 	RCU_INIT_POINTER(wiphy->regd, NULL);
3757 
3758 	if (lr)
3759 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3760 
3761 	if (!request_wiphy || request_wiphy != wiphy)
3762 		return;
3763 
3764 	lr->wiphy_idx = WIPHY_IDX_INVALID;
3765 	lr->country_ie_env = ENVIRON_ANY;
3766 }
3767 
3768 /*
3769  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3770  * UNII band definitions
3771  */
3772 int cfg80211_get_unii(int freq)
3773 {
3774 	/* UNII-1 */
3775 	if (freq >= 5150 && freq <= 5250)
3776 		return 0;
3777 
3778 	/* UNII-2A */
3779 	if (freq > 5250 && freq <= 5350)
3780 		return 1;
3781 
3782 	/* UNII-2B */
3783 	if (freq > 5350 && freq <= 5470)
3784 		return 2;
3785 
3786 	/* UNII-2C */
3787 	if (freq > 5470 && freq <= 5725)
3788 		return 3;
3789 
3790 	/* UNII-3 */
3791 	if (freq > 5725 && freq <= 5825)
3792 		return 4;
3793 
3794 	return -EINVAL;
3795 }
3796 
3797 bool regulatory_indoor_allowed(void)
3798 {
3799 	return reg_is_indoor;
3800 }
3801 
3802 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3803 {
3804 	const struct ieee80211_regdomain *regd = NULL;
3805 	const struct ieee80211_regdomain *wiphy_regd = NULL;
3806 	bool pre_cac_allowed = false;
3807 
3808 	rcu_read_lock();
3809 
3810 	regd = rcu_dereference(cfg80211_regdomain);
3811 	wiphy_regd = rcu_dereference(wiphy->regd);
3812 	if (!wiphy_regd) {
3813 		if (regd->dfs_region == NL80211_DFS_ETSI)
3814 			pre_cac_allowed = true;
3815 
3816 		rcu_read_unlock();
3817 
3818 		return pre_cac_allowed;
3819 	}
3820 
3821 	if (regd->dfs_region == wiphy_regd->dfs_region &&
3822 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3823 		pre_cac_allowed = true;
3824 
3825 	rcu_read_unlock();
3826 
3827 	return pre_cac_allowed;
3828 }
3829 
3830 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3831 				    struct cfg80211_chan_def *chandef,
3832 				    enum nl80211_dfs_state dfs_state,
3833 				    enum nl80211_radar_event event)
3834 {
3835 	struct cfg80211_registered_device *rdev;
3836 
3837 	ASSERT_RTNL();
3838 
3839 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3840 		return;
3841 
3842 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3843 		if (wiphy == &rdev->wiphy)
3844 			continue;
3845 
3846 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3847 			continue;
3848 
3849 		if (!ieee80211_get_channel(&rdev->wiphy,
3850 					   chandef->chan->center_freq))
3851 			continue;
3852 
3853 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3854 
3855 		if (event == NL80211_RADAR_DETECTED ||
3856 		    event == NL80211_RADAR_CAC_FINISHED)
3857 			cfg80211_sched_dfs_chan_update(rdev);
3858 
3859 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3860 	}
3861 }
3862 
3863 static int __init regulatory_init_db(void)
3864 {
3865 	int err;
3866 
3867 	err = load_builtin_regdb_keys();
3868 	if (err)
3869 		return err;
3870 
3871 	/* We always try to get an update for the static regdomain */
3872 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3873 	if (err) {
3874 		if (err == -ENOMEM) {
3875 			platform_device_unregister(reg_pdev);
3876 			return err;
3877 		}
3878 		/*
3879 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
3880 		 * memory which is handled and propagated appropriately above
3881 		 * but it can also fail during a netlink_broadcast() or during
3882 		 * early boot for call_usermodehelper(). For now treat these
3883 		 * errors as non-fatal.
3884 		 */
3885 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3886 	}
3887 
3888 	/*
3889 	 * Finally, if the user set the module parameter treat it
3890 	 * as a user hint.
3891 	 */
3892 	if (!is_world_regdom(ieee80211_regdom))
3893 		regulatory_hint_user(ieee80211_regdom,
3894 				     NL80211_USER_REG_HINT_USER);
3895 
3896 	return 0;
3897 }
3898 #ifndef MODULE
3899 late_initcall(regulatory_init_db);
3900 #endif
3901 
3902 int __init regulatory_init(void)
3903 {
3904 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3905 	if (IS_ERR(reg_pdev))
3906 		return PTR_ERR(reg_pdev);
3907 
3908 	spin_lock_init(&reg_requests_lock);
3909 	spin_lock_init(&reg_pending_beacons_lock);
3910 	spin_lock_init(&reg_indoor_lock);
3911 
3912 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3913 
3914 	user_alpha2[0] = '9';
3915 	user_alpha2[1] = '7';
3916 
3917 #ifdef MODULE
3918 	return regulatory_init_db();
3919 #else
3920 	return 0;
3921 #endif
3922 }
3923 
3924 void regulatory_exit(void)
3925 {
3926 	struct regulatory_request *reg_request, *tmp;
3927 	struct reg_beacon *reg_beacon, *btmp;
3928 
3929 	cancel_work_sync(&reg_work);
3930 	cancel_crda_timeout_sync();
3931 	cancel_delayed_work_sync(&reg_check_chans);
3932 
3933 	/* Lock to suppress warnings */
3934 	rtnl_lock();
3935 	reset_regdomains(true, NULL);
3936 	rtnl_unlock();
3937 
3938 	dev_set_uevent_suppress(&reg_pdev->dev, true);
3939 
3940 	platform_device_unregister(reg_pdev);
3941 
3942 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3943 		list_del(&reg_beacon->list);
3944 		kfree(reg_beacon);
3945 	}
3946 
3947 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3948 		list_del(&reg_beacon->list);
3949 		kfree(reg_beacon);
3950 	}
3951 
3952 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3953 		list_del(&reg_request->list);
3954 		kfree(reg_request);
3955 	}
3956 
3957 	if (!IS_ERR_OR_NULL(regdb))
3958 		kfree(regdb);
3959 
3960 	free_regdb_keyring();
3961 }
3962