xref: /openbmc/linux/net/wireless/reg.c (revision b9ccfda2)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/random.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61 
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...)			\
64 	printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68 
69 static struct regulatory_request core_request_world = {
70 	.initiator = NL80211_REGDOM_SET_BY_CORE,
71 	.alpha2[0] = '0',
72 	.alpha2[1] = '0',
73 	.intersect = false,
74 	.processed = true,
75 	.country_ie_env = ENVIRON_ANY,
76 };
77 
78 /* Receipt of information from last regulatory request */
79 static struct regulatory_request *last_request = &core_request_world;
80 
81 /* To trigger userspace events */
82 static struct platform_device *reg_pdev;
83 
84 static struct device_type reg_device_type = {
85 	.uevent = reg_device_uevent,
86 };
87 
88 /*
89  * Central wireless core regulatory domains, we only need two,
90  * the current one and a world regulatory domain in case we have no
91  * information to give us an alpha2
92  */
93 const struct ieee80211_regdomain *cfg80211_regdomain;
94 
95 /*
96  * Protects static reg.c components:
97  *     - cfg80211_world_regdom
98  *     - cfg80211_regdom
99  *     - last_request
100  *     - reg_num_devs_support_basehint
101  */
102 static DEFINE_MUTEX(reg_mutex);
103 
104 /*
105  * Number of devices that registered to the core
106  * that support cellular base station regulatory hints
107  */
108 static int reg_num_devs_support_basehint;
109 
110 static inline void assert_reg_lock(void)
111 {
112 	lockdep_assert_held(&reg_mutex);
113 }
114 
115 /* Used to queue up regulatory hints */
116 static LIST_HEAD(reg_requests_list);
117 static spinlock_t reg_requests_lock;
118 
119 /* Used to queue up beacon hints for review */
120 static LIST_HEAD(reg_pending_beacons);
121 static spinlock_t reg_pending_beacons_lock;
122 
123 /* Used to keep track of processed beacon hints */
124 static LIST_HEAD(reg_beacon_list);
125 
126 struct reg_beacon {
127 	struct list_head list;
128 	struct ieee80211_channel chan;
129 };
130 
131 static void reg_todo(struct work_struct *work);
132 static DECLARE_WORK(reg_work, reg_todo);
133 
134 static void reg_timeout_work(struct work_struct *work);
135 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
136 
137 /* We keep a static world regulatory domain in case of the absence of CRDA */
138 static const struct ieee80211_regdomain world_regdom = {
139 	.n_reg_rules = 6,
140 	.alpha2 =  "00",
141 	.reg_rules = {
142 		/* IEEE 802.11b/g, channels 1..11 */
143 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
144 		/* IEEE 802.11b/g, channels 12..13. No HT40
145 		 * channel fits here. */
146 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
147 			NL80211_RRF_PASSIVE_SCAN |
148 			NL80211_RRF_NO_IBSS),
149 		/* IEEE 802.11 channel 14 - Only JP enables
150 		 * this and for 802.11b only */
151 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
152 			NL80211_RRF_PASSIVE_SCAN |
153 			NL80211_RRF_NO_IBSS |
154 			NL80211_RRF_NO_OFDM),
155 		/* IEEE 802.11a, channel 36..48 */
156 		REG_RULE(5180-10, 5240+10, 40, 6, 20,
157                         NL80211_RRF_PASSIVE_SCAN |
158                         NL80211_RRF_NO_IBSS),
159 
160 		/* NB: 5260 MHz - 5700 MHz requies DFS */
161 
162 		/* IEEE 802.11a, channel 149..165 */
163 		REG_RULE(5745-10, 5825+10, 40, 6, 20,
164 			NL80211_RRF_PASSIVE_SCAN |
165 			NL80211_RRF_NO_IBSS),
166 
167 		/* IEEE 802.11ad (60gHz), channels 1..3 */
168 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
169 	}
170 };
171 
172 static const struct ieee80211_regdomain *cfg80211_world_regdom =
173 	&world_regdom;
174 
175 static char *ieee80211_regdom = "00";
176 static char user_alpha2[2];
177 
178 module_param(ieee80211_regdom, charp, 0444);
179 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
180 
181 static void reset_regdomains(bool full_reset)
182 {
183 	/* avoid freeing static information or freeing something twice */
184 	if (cfg80211_regdomain == cfg80211_world_regdom)
185 		cfg80211_regdomain = NULL;
186 	if (cfg80211_world_regdom == &world_regdom)
187 		cfg80211_world_regdom = NULL;
188 	if (cfg80211_regdomain == &world_regdom)
189 		cfg80211_regdomain = NULL;
190 
191 	kfree(cfg80211_regdomain);
192 	kfree(cfg80211_world_regdom);
193 
194 	cfg80211_world_regdom = &world_regdom;
195 	cfg80211_regdomain = NULL;
196 
197 	if (!full_reset)
198 		return;
199 
200 	if (last_request != &core_request_world)
201 		kfree(last_request);
202 	last_request = &core_request_world;
203 }
204 
205 /*
206  * Dynamic world regulatory domain requested by the wireless
207  * core upon initialization
208  */
209 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
210 {
211 	BUG_ON(!last_request);
212 
213 	reset_regdomains(false);
214 
215 	cfg80211_world_regdom = rd;
216 	cfg80211_regdomain = rd;
217 }
218 
219 bool is_world_regdom(const char *alpha2)
220 {
221 	if (!alpha2)
222 		return false;
223 	if (alpha2[0] == '0' && alpha2[1] == '0')
224 		return true;
225 	return false;
226 }
227 
228 static bool is_alpha2_set(const char *alpha2)
229 {
230 	if (!alpha2)
231 		return false;
232 	if (alpha2[0] != 0 && alpha2[1] != 0)
233 		return true;
234 	return false;
235 }
236 
237 static bool is_unknown_alpha2(const char *alpha2)
238 {
239 	if (!alpha2)
240 		return false;
241 	/*
242 	 * Special case where regulatory domain was built by driver
243 	 * but a specific alpha2 cannot be determined
244 	 */
245 	if (alpha2[0] == '9' && alpha2[1] == '9')
246 		return true;
247 	return false;
248 }
249 
250 static bool is_intersected_alpha2(const char *alpha2)
251 {
252 	if (!alpha2)
253 		return false;
254 	/*
255 	 * Special case where regulatory domain is the
256 	 * result of an intersection between two regulatory domain
257 	 * structures
258 	 */
259 	if (alpha2[0] == '9' && alpha2[1] == '8')
260 		return true;
261 	return false;
262 }
263 
264 static bool is_an_alpha2(const char *alpha2)
265 {
266 	if (!alpha2)
267 		return false;
268 	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
269 		return true;
270 	return false;
271 }
272 
273 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
274 {
275 	if (!alpha2_x || !alpha2_y)
276 		return false;
277 	if (alpha2_x[0] == alpha2_y[0] &&
278 		alpha2_x[1] == alpha2_y[1])
279 		return true;
280 	return false;
281 }
282 
283 static bool regdom_changes(const char *alpha2)
284 {
285 	assert_cfg80211_lock();
286 
287 	if (!cfg80211_regdomain)
288 		return true;
289 	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
290 		return false;
291 	return true;
292 }
293 
294 /*
295  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
296  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
297  * has ever been issued.
298  */
299 static bool is_user_regdom_saved(void)
300 {
301 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
302 		return false;
303 
304 	/* This would indicate a mistake on the design */
305 	if (WARN((!is_world_regdom(user_alpha2) &&
306 		  !is_an_alpha2(user_alpha2)),
307 		 "Unexpected user alpha2: %c%c\n",
308 		 user_alpha2[0],
309 	         user_alpha2[1]))
310 		return false;
311 
312 	return true;
313 }
314 
315 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
316 			 const struct ieee80211_regdomain *src_regd)
317 {
318 	struct ieee80211_regdomain *regd;
319 	int size_of_regd = 0;
320 	unsigned int i;
321 
322 	size_of_regd = sizeof(struct ieee80211_regdomain) +
323 	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
324 
325 	regd = kzalloc(size_of_regd, GFP_KERNEL);
326 	if (!regd)
327 		return -ENOMEM;
328 
329 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
330 
331 	for (i = 0; i < src_regd->n_reg_rules; i++)
332 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
333 			sizeof(struct ieee80211_reg_rule));
334 
335 	*dst_regd = regd;
336 	return 0;
337 }
338 
339 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
340 struct reg_regdb_search_request {
341 	char alpha2[2];
342 	struct list_head list;
343 };
344 
345 static LIST_HEAD(reg_regdb_search_list);
346 static DEFINE_MUTEX(reg_regdb_search_mutex);
347 
348 static void reg_regdb_search(struct work_struct *work)
349 {
350 	struct reg_regdb_search_request *request;
351 	const struct ieee80211_regdomain *curdom, *regdom;
352 	int i, r;
353 
354 	mutex_lock(&reg_regdb_search_mutex);
355 	while (!list_empty(&reg_regdb_search_list)) {
356 		request = list_first_entry(&reg_regdb_search_list,
357 					   struct reg_regdb_search_request,
358 					   list);
359 		list_del(&request->list);
360 
361 		for (i=0; i<reg_regdb_size; i++) {
362 			curdom = reg_regdb[i];
363 
364 			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
365 				r = reg_copy_regd(&regdom, curdom);
366 				if (r)
367 					break;
368 				mutex_lock(&cfg80211_mutex);
369 				set_regdom(regdom);
370 				mutex_unlock(&cfg80211_mutex);
371 				break;
372 			}
373 		}
374 
375 		kfree(request);
376 	}
377 	mutex_unlock(&reg_regdb_search_mutex);
378 }
379 
380 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
381 
382 static void reg_regdb_query(const char *alpha2)
383 {
384 	struct reg_regdb_search_request *request;
385 
386 	if (!alpha2)
387 		return;
388 
389 	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
390 	if (!request)
391 		return;
392 
393 	memcpy(request->alpha2, alpha2, 2);
394 
395 	mutex_lock(&reg_regdb_search_mutex);
396 	list_add_tail(&request->list, &reg_regdb_search_list);
397 	mutex_unlock(&reg_regdb_search_mutex);
398 
399 	schedule_work(&reg_regdb_work);
400 }
401 
402 /* Feel free to add any other sanity checks here */
403 static void reg_regdb_size_check(void)
404 {
405 	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
406 	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
407 }
408 #else
409 static inline void reg_regdb_size_check(void) {}
410 static inline void reg_regdb_query(const char *alpha2) {}
411 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
412 
413 /*
414  * This lets us keep regulatory code which is updated on a regulatory
415  * basis in userspace. Country information is filled in by
416  * reg_device_uevent
417  */
418 static int call_crda(const char *alpha2)
419 {
420 	if (!is_world_regdom((char *) alpha2))
421 		pr_info("Calling CRDA for country: %c%c\n",
422 			alpha2[0], alpha2[1]);
423 	else
424 		pr_info("Calling CRDA to update world regulatory domain\n");
425 
426 	/* query internal regulatory database (if it exists) */
427 	reg_regdb_query(alpha2);
428 
429 	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
430 }
431 
432 /* Used by nl80211 before kmalloc'ing our regulatory domain */
433 bool reg_is_valid_request(const char *alpha2)
434 {
435 	assert_cfg80211_lock();
436 
437 	if (!last_request)
438 		return false;
439 
440 	return alpha2_equal(last_request->alpha2, alpha2);
441 }
442 
443 /* Sanity check on a regulatory rule */
444 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
445 {
446 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
447 	u32 freq_diff;
448 
449 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
450 		return false;
451 
452 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
453 		return false;
454 
455 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
456 
457 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
458 			freq_range->max_bandwidth_khz > freq_diff)
459 		return false;
460 
461 	return true;
462 }
463 
464 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
465 {
466 	const struct ieee80211_reg_rule *reg_rule = NULL;
467 	unsigned int i;
468 
469 	if (!rd->n_reg_rules)
470 		return false;
471 
472 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
473 		return false;
474 
475 	for (i = 0; i < rd->n_reg_rules; i++) {
476 		reg_rule = &rd->reg_rules[i];
477 		if (!is_valid_reg_rule(reg_rule))
478 			return false;
479 	}
480 
481 	return true;
482 }
483 
484 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
485 			    u32 center_freq_khz,
486 			    u32 bw_khz)
487 {
488 	u32 start_freq_khz, end_freq_khz;
489 
490 	start_freq_khz = center_freq_khz - (bw_khz/2);
491 	end_freq_khz = center_freq_khz + (bw_khz/2);
492 
493 	if (start_freq_khz >= freq_range->start_freq_khz &&
494 	    end_freq_khz <= freq_range->end_freq_khz)
495 		return true;
496 
497 	return false;
498 }
499 
500 /**
501  * freq_in_rule_band - tells us if a frequency is in a frequency band
502  * @freq_range: frequency rule we want to query
503  * @freq_khz: frequency we are inquiring about
504  *
505  * This lets us know if a specific frequency rule is or is not relevant to
506  * a specific frequency's band. Bands are device specific and artificial
507  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
508  * safe for now to assume that a frequency rule should not be part of a
509  * frequency's band if the start freq or end freq are off by more than 2 GHz.
510  * This resolution can be lowered and should be considered as we add
511  * regulatory rule support for other "bands".
512  **/
513 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
514 	u32 freq_khz)
515 {
516 #define ONE_GHZ_IN_KHZ	1000000
517 	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
518 		return true;
519 	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
520 		return true;
521 	return false;
522 #undef ONE_GHZ_IN_KHZ
523 }
524 
525 /*
526  * Helper for regdom_intersect(), this does the real
527  * mathematical intersection fun
528  */
529 static int reg_rules_intersect(
530 	const struct ieee80211_reg_rule *rule1,
531 	const struct ieee80211_reg_rule *rule2,
532 	struct ieee80211_reg_rule *intersected_rule)
533 {
534 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
535 	struct ieee80211_freq_range *freq_range;
536 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
537 	struct ieee80211_power_rule *power_rule;
538 	u32 freq_diff;
539 
540 	freq_range1 = &rule1->freq_range;
541 	freq_range2 = &rule2->freq_range;
542 	freq_range = &intersected_rule->freq_range;
543 
544 	power_rule1 = &rule1->power_rule;
545 	power_rule2 = &rule2->power_rule;
546 	power_rule = &intersected_rule->power_rule;
547 
548 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
549 		freq_range2->start_freq_khz);
550 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
551 		freq_range2->end_freq_khz);
552 	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
553 		freq_range2->max_bandwidth_khz);
554 
555 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
556 	if (freq_range->max_bandwidth_khz > freq_diff)
557 		freq_range->max_bandwidth_khz = freq_diff;
558 
559 	power_rule->max_eirp = min(power_rule1->max_eirp,
560 		power_rule2->max_eirp);
561 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
562 		power_rule2->max_antenna_gain);
563 
564 	intersected_rule->flags = (rule1->flags | rule2->flags);
565 
566 	if (!is_valid_reg_rule(intersected_rule))
567 		return -EINVAL;
568 
569 	return 0;
570 }
571 
572 /**
573  * regdom_intersect - do the intersection between two regulatory domains
574  * @rd1: first regulatory domain
575  * @rd2: second regulatory domain
576  *
577  * Use this function to get the intersection between two regulatory domains.
578  * Once completed we will mark the alpha2 for the rd as intersected, "98",
579  * as no one single alpha2 can represent this regulatory domain.
580  *
581  * Returns a pointer to the regulatory domain structure which will hold the
582  * resulting intersection of rules between rd1 and rd2. We will
583  * kzalloc() this structure for you.
584  */
585 static struct ieee80211_regdomain *regdom_intersect(
586 	const struct ieee80211_regdomain *rd1,
587 	const struct ieee80211_regdomain *rd2)
588 {
589 	int r, size_of_regd;
590 	unsigned int x, y;
591 	unsigned int num_rules = 0, rule_idx = 0;
592 	const struct ieee80211_reg_rule *rule1, *rule2;
593 	struct ieee80211_reg_rule *intersected_rule;
594 	struct ieee80211_regdomain *rd;
595 	/* This is just a dummy holder to help us count */
596 	struct ieee80211_reg_rule irule;
597 
598 	/* Uses the stack temporarily for counter arithmetic */
599 	intersected_rule = &irule;
600 
601 	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
602 
603 	if (!rd1 || !rd2)
604 		return NULL;
605 
606 	/*
607 	 * First we get a count of the rules we'll need, then we actually
608 	 * build them. This is to so we can malloc() and free() a
609 	 * regdomain once. The reason we use reg_rules_intersect() here
610 	 * is it will return -EINVAL if the rule computed makes no sense.
611 	 * All rules that do check out OK are valid.
612 	 */
613 
614 	for (x = 0; x < rd1->n_reg_rules; x++) {
615 		rule1 = &rd1->reg_rules[x];
616 		for (y = 0; y < rd2->n_reg_rules; y++) {
617 			rule2 = &rd2->reg_rules[y];
618 			if (!reg_rules_intersect(rule1, rule2,
619 					intersected_rule))
620 				num_rules++;
621 			memset(intersected_rule, 0,
622 					sizeof(struct ieee80211_reg_rule));
623 		}
624 	}
625 
626 	if (!num_rules)
627 		return NULL;
628 
629 	size_of_regd = sizeof(struct ieee80211_regdomain) +
630 		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
631 
632 	rd = kzalloc(size_of_regd, GFP_KERNEL);
633 	if (!rd)
634 		return NULL;
635 
636 	for (x = 0; x < rd1->n_reg_rules; x++) {
637 		rule1 = &rd1->reg_rules[x];
638 		for (y = 0; y < rd2->n_reg_rules; y++) {
639 			rule2 = &rd2->reg_rules[y];
640 			/*
641 			 * This time around instead of using the stack lets
642 			 * write to the target rule directly saving ourselves
643 			 * a memcpy()
644 			 */
645 			intersected_rule = &rd->reg_rules[rule_idx];
646 			r = reg_rules_intersect(rule1, rule2,
647 				intersected_rule);
648 			/*
649 			 * No need to memset here the intersected rule here as
650 			 * we're not using the stack anymore
651 			 */
652 			if (r)
653 				continue;
654 			rule_idx++;
655 		}
656 	}
657 
658 	if (rule_idx != num_rules) {
659 		kfree(rd);
660 		return NULL;
661 	}
662 
663 	rd->n_reg_rules = num_rules;
664 	rd->alpha2[0] = '9';
665 	rd->alpha2[1] = '8';
666 
667 	return rd;
668 }
669 
670 /*
671  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
672  * want to just have the channel structure use these
673  */
674 static u32 map_regdom_flags(u32 rd_flags)
675 {
676 	u32 channel_flags = 0;
677 	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
678 		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
679 	if (rd_flags & NL80211_RRF_NO_IBSS)
680 		channel_flags |= IEEE80211_CHAN_NO_IBSS;
681 	if (rd_flags & NL80211_RRF_DFS)
682 		channel_flags |= IEEE80211_CHAN_RADAR;
683 	return channel_flags;
684 }
685 
686 static int freq_reg_info_regd(struct wiphy *wiphy,
687 			      u32 center_freq,
688 			      u32 desired_bw_khz,
689 			      const struct ieee80211_reg_rule **reg_rule,
690 			      const struct ieee80211_regdomain *custom_regd)
691 {
692 	int i;
693 	bool band_rule_found = false;
694 	const struct ieee80211_regdomain *regd;
695 	bool bw_fits = false;
696 
697 	if (!desired_bw_khz)
698 		desired_bw_khz = MHZ_TO_KHZ(20);
699 
700 	regd = custom_regd ? custom_regd : cfg80211_regdomain;
701 
702 	/*
703 	 * Follow the driver's regulatory domain, if present, unless a country
704 	 * IE has been processed or a user wants to help complaince further
705 	 */
706 	if (!custom_regd &&
707 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
708 	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
709 	    wiphy->regd)
710 		regd = wiphy->regd;
711 
712 	if (!regd)
713 		return -EINVAL;
714 
715 	for (i = 0; i < regd->n_reg_rules; i++) {
716 		const struct ieee80211_reg_rule *rr;
717 		const struct ieee80211_freq_range *fr = NULL;
718 
719 		rr = &regd->reg_rules[i];
720 		fr = &rr->freq_range;
721 
722 		/*
723 		 * We only need to know if one frequency rule was
724 		 * was in center_freq's band, that's enough, so lets
725 		 * not overwrite it once found
726 		 */
727 		if (!band_rule_found)
728 			band_rule_found = freq_in_rule_band(fr, center_freq);
729 
730 		bw_fits = reg_does_bw_fit(fr,
731 					  center_freq,
732 					  desired_bw_khz);
733 
734 		if (band_rule_found && bw_fits) {
735 			*reg_rule = rr;
736 			return 0;
737 		}
738 	}
739 
740 	if (!band_rule_found)
741 		return -ERANGE;
742 
743 	return -EINVAL;
744 }
745 
746 int freq_reg_info(struct wiphy *wiphy,
747 		  u32 center_freq,
748 		  u32 desired_bw_khz,
749 		  const struct ieee80211_reg_rule **reg_rule)
750 {
751 	assert_cfg80211_lock();
752 	return freq_reg_info_regd(wiphy,
753 				  center_freq,
754 				  desired_bw_khz,
755 				  reg_rule,
756 				  NULL);
757 }
758 EXPORT_SYMBOL(freq_reg_info);
759 
760 #ifdef CONFIG_CFG80211_REG_DEBUG
761 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
762 {
763 	switch (initiator) {
764 	case NL80211_REGDOM_SET_BY_CORE:
765 		return "Set by core";
766 	case NL80211_REGDOM_SET_BY_USER:
767 		return "Set by user";
768 	case NL80211_REGDOM_SET_BY_DRIVER:
769 		return "Set by driver";
770 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
771 		return "Set by country IE";
772 	default:
773 		WARN_ON(1);
774 		return "Set by bug";
775 	}
776 }
777 
778 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
779 				    u32 desired_bw_khz,
780 				    const struct ieee80211_reg_rule *reg_rule)
781 {
782 	const struct ieee80211_power_rule *power_rule;
783 	const struct ieee80211_freq_range *freq_range;
784 	char max_antenna_gain[32];
785 
786 	power_rule = &reg_rule->power_rule;
787 	freq_range = &reg_rule->freq_range;
788 
789 	if (!power_rule->max_antenna_gain)
790 		snprintf(max_antenna_gain, 32, "N/A");
791 	else
792 		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
793 
794 	REG_DBG_PRINT("Updating information on frequency %d MHz "
795 		      "for a %d MHz width channel with regulatory rule:\n",
796 		      chan->center_freq,
797 		      KHZ_TO_MHZ(desired_bw_khz));
798 
799 	REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
800 		      freq_range->start_freq_khz,
801 		      freq_range->end_freq_khz,
802 		      freq_range->max_bandwidth_khz,
803 		      max_antenna_gain,
804 		      power_rule->max_eirp);
805 }
806 #else
807 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
808 				    u32 desired_bw_khz,
809 				    const struct ieee80211_reg_rule *reg_rule)
810 {
811 	return;
812 }
813 #endif
814 
815 /*
816  * Note that right now we assume the desired channel bandwidth
817  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
818  * per channel, the primary and the extension channel). To support
819  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
820  * new ieee80211_channel.target_bw and re run the regulatory check
821  * on the wiphy with the target_bw specified. Then we can simply use
822  * that below for the desired_bw_khz below.
823  */
824 static void handle_channel(struct wiphy *wiphy,
825 			   enum nl80211_reg_initiator initiator,
826 			   enum ieee80211_band band,
827 			   unsigned int chan_idx)
828 {
829 	int r;
830 	u32 flags, bw_flags = 0;
831 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
832 	const struct ieee80211_reg_rule *reg_rule = NULL;
833 	const struct ieee80211_power_rule *power_rule = NULL;
834 	const struct ieee80211_freq_range *freq_range = NULL;
835 	struct ieee80211_supported_band *sband;
836 	struct ieee80211_channel *chan;
837 	struct wiphy *request_wiphy = NULL;
838 
839 	assert_cfg80211_lock();
840 
841 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
842 
843 	sband = wiphy->bands[band];
844 	BUG_ON(chan_idx >= sband->n_channels);
845 	chan = &sband->channels[chan_idx];
846 
847 	flags = chan->orig_flags;
848 
849 	r = freq_reg_info(wiphy,
850 			  MHZ_TO_KHZ(chan->center_freq),
851 			  desired_bw_khz,
852 			  &reg_rule);
853 
854 	if (r) {
855 		/*
856 		 * We will disable all channels that do not match our
857 		 * received regulatory rule unless the hint is coming
858 		 * from a Country IE and the Country IE had no information
859 		 * about a band. The IEEE 802.11 spec allows for an AP
860 		 * to send only a subset of the regulatory rules allowed,
861 		 * so an AP in the US that only supports 2.4 GHz may only send
862 		 * a country IE with information for the 2.4 GHz band
863 		 * while 5 GHz is still supported.
864 		 */
865 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
866 		    r == -ERANGE)
867 			return;
868 
869 		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
870 		chan->flags = IEEE80211_CHAN_DISABLED;
871 		return;
872 	}
873 
874 	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
875 
876 	power_rule = &reg_rule->power_rule;
877 	freq_range = &reg_rule->freq_range;
878 
879 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
880 		bw_flags = IEEE80211_CHAN_NO_HT40;
881 
882 	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
883 	    request_wiphy && request_wiphy == wiphy &&
884 	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
885 		/*
886 		 * This guarantees the driver's requested regulatory domain
887 		 * will always be used as a base for further regulatory
888 		 * settings
889 		 */
890 		chan->flags = chan->orig_flags =
891 			map_regdom_flags(reg_rule->flags) | bw_flags;
892 		chan->max_antenna_gain = chan->orig_mag =
893 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
894 		chan->max_power = chan->orig_mpwr =
895 			(int) MBM_TO_DBM(power_rule->max_eirp);
896 		return;
897 	}
898 
899 	chan->beacon_found = false;
900 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
901 	chan->max_antenna_gain = min(chan->orig_mag,
902 		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
903 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
904 	chan->max_power = min(chan->max_power, chan->max_reg_power);
905 }
906 
907 static void handle_band(struct wiphy *wiphy,
908 			enum ieee80211_band band,
909 			enum nl80211_reg_initiator initiator)
910 {
911 	unsigned int i;
912 	struct ieee80211_supported_band *sband;
913 
914 	BUG_ON(!wiphy->bands[band]);
915 	sband = wiphy->bands[band];
916 
917 	for (i = 0; i < sband->n_channels; i++)
918 		handle_channel(wiphy, initiator, band, i);
919 }
920 
921 static bool reg_request_cell_base(struct regulatory_request *request)
922 {
923 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
924 		return false;
925 	if (request->user_reg_hint_type != NL80211_USER_REG_HINT_CELL_BASE)
926 		return false;
927 	return true;
928 }
929 
930 bool reg_last_request_cell_base(void)
931 {
932 	bool val;
933 	assert_cfg80211_lock();
934 
935 	mutex_lock(&reg_mutex);
936 	val = reg_request_cell_base(last_request);
937 	mutex_unlock(&reg_mutex);
938 	return val;
939 }
940 
941 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
942 
943 /* Core specific check */
944 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
945 {
946 	if (!reg_num_devs_support_basehint)
947 		return -EOPNOTSUPP;
948 
949 	if (reg_request_cell_base(last_request)) {
950 		if (!regdom_changes(pending_request->alpha2))
951 			return -EALREADY;
952 		return 0;
953 	}
954 	return 0;
955 }
956 
957 /* Device specific check */
958 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
959 {
960 	if (!(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS))
961 		return true;
962 	return false;
963 }
964 #else
965 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
966 {
967 	return -EOPNOTSUPP;
968 }
969 static int reg_dev_ignore_cell_hint(struct wiphy *wiphy)
970 {
971 	return true;
972 }
973 #endif
974 
975 
976 static bool ignore_reg_update(struct wiphy *wiphy,
977 			      enum nl80211_reg_initiator initiator)
978 {
979 	if (!last_request) {
980 		REG_DBG_PRINT("Ignoring regulatory request %s since "
981 			      "last_request is not set\n",
982 			      reg_initiator_name(initiator));
983 		return true;
984 	}
985 
986 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
987 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
988 		REG_DBG_PRINT("Ignoring regulatory request %s "
989 			      "since the driver uses its own custom "
990 			      "regulatory domain\n",
991 			      reg_initiator_name(initiator));
992 		return true;
993 	}
994 
995 	/*
996 	 * wiphy->regd will be set once the device has its own
997 	 * desired regulatory domain set
998 	 */
999 	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1000 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1001 	    !is_world_regdom(last_request->alpha2)) {
1002 		REG_DBG_PRINT("Ignoring regulatory request %s "
1003 			      "since the driver requires its own regulatory "
1004 			      "domain to be set first\n",
1005 			      reg_initiator_name(initiator));
1006 		return true;
1007 	}
1008 
1009 	if (reg_request_cell_base(last_request))
1010 		return reg_dev_ignore_cell_hint(wiphy);
1011 
1012 	return false;
1013 }
1014 
1015 static void handle_reg_beacon(struct wiphy *wiphy,
1016 			      unsigned int chan_idx,
1017 			      struct reg_beacon *reg_beacon)
1018 {
1019 	struct ieee80211_supported_band *sband;
1020 	struct ieee80211_channel *chan;
1021 	bool channel_changed = false;
1022 	struct ieee80211_channel chan_before;
1023 
1024 	assert_cfg80211_lock();
1025 
1026 	sband = wiphy->bands[reg_beacon->chan.band];
1027 	chan = &sband->channels[chan_idx];
1028 
1029 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1030 		return;
1031 
1032 	if (chan->beacon_found)
1033 		return;
1034 
1035 	chan->beacon_found = true;
1036 
1037 	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1038 		return;
1039 
1040 	chan_before.center_freq = chan->center_freq;
1041 	chan_before.flags = chan->flags;
1042 
1043 	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1044 		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1045 		channel_changed = true;
1046 	}
1047 
1048 	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1049 		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1050 		channel_changed = true;
1051 	}
1052 
1053 	if (channel_changed)
1054 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1055 }
1056 
1057 /*
1058  * Called when a scan on a wiphy finds a beacon on
1059  * new channel
1060  */
1061 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1062 				    struct reg_beacon *reg_beacon)
1063 {
1064 	unsigned int i;
1065 	struct ieee80211_supported_band *sband;
1066 
1067 	assert_cfg80211_lock();
1068 
1069 	if (!wiphy->bands[reg_beacon->chan.band])
1070 		return;
1071 
1072 	sband = wiphy->bands[reg_beacon->chan.band];
1073 
1074 	for (i = 0; i < sband->n_channels; i++)
1075 		handle_reg_beacon(wiphy, i, reg_beacon);
1076 }
1077 
1078 /*
1079  * Called upon reg changes or a new wiphy is added
1080  */
1081 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1082 {
1083 	unsigned int i;
1084 	struct ieee80211_supported_band *sband;
1085 	struct reg_beacon *reg_beacon;
1086 
1087 	assert_cfg80211_lock();
1088 
1089 	if (list_empty(&reg_beacon_list))
1090 		return;
1091 
1092 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1093 		if (!wiphy->bands[reg_beacon->chan.band])
1094 			continue;
1095 		sband = wiphy->bands[reg_beacon->chan.band];
1096 		for (i = 0; i < sband->n_channels; i++)
1097 			handle_reg_beacon(wiphy, i, reg_beacon);
1098 	}
1099 }
1100 
1101 static bool reg_is_world_roaming(struct wiphy *wiphy)
1102 {
1103 	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1104 	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1105 		return true;
1106 	if (last_request &&
1107 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1108 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1109 		return true;
1110 	return false;
1111 }
1112 
1113 /* Reap the advantages of previously found beacons */
1114 static void reg_process_beacons(struct wiphy *wiphy)
1115 {
1116 	/*
1117 	 * Means we are just firing up cfg80211, so no beacons would
1118 	 * have been processed yet.
1119 	 */
1120 	if (!last_request)
1121 		return;
1122 	if (!reg_is_world_roaming(wiphy))
1123 		return;
1124 	wiphy_update_beacon_reg(wiphy);
1125 }
1126 
1127 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1128 {
1129 	if (!chan)
1130 		return true;
1131 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1132 		return true;
1133 	/* This would happen when regulatory rules disallow HT40 completely */
1134 	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1135 		return true;
1136 	return false;
1137 }
1138 
1139 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1140 					 enum ieee80211_band band,
1141 					 unsigned int chan_idx)
1142 {
1143 	struct ieee80211_supported_band *sband;
1144 	struct ieee80211_channel *channel;
1145 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1146 	unsigned int i;
1147 
1148 	assert_cfg80211_lock();
1149 
1150 	sband = wiphy->bands[band];
1151 	BUG_ON(chan_idx >= sband->n_channels);
1152 	channel = &sband->channels[chan_idx];
1153 
1154 	if (is_ht40_not_allowed(channel)) {
1155 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1156 		return;
1157 	}
1158 
1159 	/*
1160 	 * We need to ensure the extension channels exist to
1161 	 * be able to use HT40- or HT40+, this finds them (or not)
1162 	 */
1163 	for (i = 0; i < sband->n_channels; i++) {
1164 		struct ieee80211_channel *c = &sband->channels[i];
1165 		if (c->center_freq == (channel->center_freq - 20))
1166 			channel_before = c;
1167 		if (c->center_freq == (channel->center_freq + 20))
1168 			channel_after = c;
1169 	}
1170 
1171 	/*
1172 	 * Please note that this assumes target bandwidth is 20 MHz,
1173 	 * if that ever changes we also need to change the below logic
1174 	 * to include that as well.
1175 	 */
1176 	if (is_ht40_not_allowed(channel_before))
1177 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1178 	else
1179 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1180 
1181 	if (is_ht40_not_allowed(channel_after))
1182 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1183 	else
1184 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1185 }
1186 
1187 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1188 				      enum ieee80211_band band)
1189 {
1190 	unsigned int i;
1191 	struct ieee80211_supported_band *sband;
1192 
1193 	BUG_ON(!wiphy->bands[band]);
1194 	sband = wiphy->bands[band];
1195 
1196 	for (i = 0; i < sband->n_channels; i++)
1197 		reg_process_ht_flags_channel(wiphy, band, i);
1198 }
1199 
1200 static void reg_process_ht_flags(struct wiphy *wiphy)
1201 {
1202 	enum ieee80211_band band;
1203 
1204 	if (!wiphy)
1205 		return;
1206 
1207 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1208 		if (wiphy->bands[band])
1209 			reg_process_ht_flags_band(wiphy, band);
1210 	}
1211 
1212 }
1213 
1214 static void wiphy_update_regulatory(struct wiphy *wiphy,
1215 				    enum nl80211_reg_initiator initiator)
1216 {
1217 	enum ieee80211_band band;
1218 
1219 	assert_reg_lock();
1220 
1221 	if (ignore_reg_update(wiphy, initiator))
1222 		return;
1223 
1224 	last_request->dfs_region = cfg80211_regdomain->dfs_region;
1225 
1226 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1227 		if (wiphy->bands[band])
1228 			handle_band(wiphy, band, initiator);
1229 	}
1230 
1231 	reg_process_beacons(wiphy);
1232 	reg_process_ht_flags(wiphy);
1233 	if (wiphy->reg_notifier)
1234 		wiphy->reg_notifier(wiphy, last_request);
1235 }
1236 
1237 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1238 {
1239 	struct cfg80211_registered_device *rdev;
1240 	struct wiphy *wiphy;
1241 
1242 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1243 		wiphy = &rdev->wiphy;
1244 		wiphy_update_regulatory(wiphy, initiator);
1245 		/*
1246 		 * Regulatory updates set by CORE are ignored for custom
1247 		 * regulatory cards. Let us notify the changes to the driver,
1248 		 * as some drivers used this to restore its orig_* reg domain.
1249 		 */
1250 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1251 		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1252 		    wiphy->reg_notifier)
1253 			wiphy->reg_notifier(wiphy, last_request);
1254 	}
1255 }
1256 
1257 static void handle_channel_custom(struct wiphy *wiphy,
1258 				  enum ieee80211_band band,
1259 				  unsigned int chan_idx,
1260 				  const struct ieee80211_regdomain *regd)
1261 {
1262 	int r;
1263 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
1264 	u32 bw_flags = 0;
1265 	const struct ieee80211_reg_rule *reg_rule = NULL;
1266 	const struct ieee80211_power_rule *power_rule = NULL;
1267 	const struct ieee80211_freq_range *freq_range = NULL;
1268 	struct ieee80211_supported_band *sband;
1269 	struct ieee80211_channel *chan;
1270 
1271 	assert_reg_lock();
1272 
1273 	sband = wiphy->bands[band];
1274 	BUG_ON(chan_idx >= sband->n_channels);
1275 	chan = &sband->channels[chan_idx];
1276 
1277 	r = freq_reg_info_regd(wiphy,
1278 			       MHZ_TO_KHZ(chan->center_freq),
1279 			       desired_bw_khz,
1280 			       &reg_rule,
1281 			       regd);
1282 
1283 	if (r) {
1284 		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1285 			      "regd has no rule that fits a %d MHz "
1286 			      "wide channel\n",
1287 			      chan->center_freq,
1288 			      KHZ_TO_MHZ(desired_bw_khz));
1289 		chan->flags = IEEE80211_CHAN_DISABLED;
1290 		return;
1291 	}
1292 
1293 	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1294 
1295 	power_rule = &reg_rule->power_rule;
1296 	freq_range = &reg_rule->freq_range;
1297 
1298 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1299 		bw_flags = IEEE80211_CHAN_NO_HT40;
1300 
1301 	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1302 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1303 	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1304 }
1305 
1306 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1307 			       const struct ieee80211_regdomain *regd)
1308 {
1309 	unsigned int i;
1310 	struct ieee80211_supported_band *sband;
1311 
1312 	BUG_ON(!wiphy->bands[band]);
1313 	sband = wiphy->bands[band];
1314 
1315 	for (i = 0; i < sband->n_channels; i++)
1316 		handle_channel_custom(wiphy, band, i, regd);
1317 }
1318 
1319 /* Used by drivers prior to wiphy registration */
1320 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1321 				   const struct ieee80211_regdomain *regd)
1322 {
1323 	enum ieee80211_band band;
1324 	unsigned int bands_set = 0;
1325 
1326 	mutex_lock(&reg_mutex);
1327 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1328 		if (!wiphy->bands[band])
1329 			continue;
1330 		handle_band_custom(wiphy, band, regd);
1331 		bands_set++;
1332 	}
1333 	mutex_unlock(&reg_mutex);
1334 
1335 	/*
1336 	 * no point in calling this if it won't have any effect
1337 	 * on your device's supportd bands.
1338 	 */
1339 	WARN_ON(!bands_set);
1340 }
1341 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1342 
1343 /*
1344  * Return value which can be used by ignore_request() to indicate
1345  * it has been determined we should intersect two regulatory domains
1346  */
1347 #define REG_INTERSECT	1
1348 
1349 /* This has the logic which determines when a new request
1350  * should be ignored. */
1351 static int ignore_request(struct wiphy *wiphy,
1352 			  struct regulatory_request *pending_request)
1353 {
1354 	struct wiphy *last_wiphy = NULL;
1355 
1356 	assert_cfg80211_lock();
1357 
1358 	/* All initial requests are respected */
1359 	if (!last_request)
1360 		return 0;
1361 
1362 	switch (pending_request->initiator) {
1363 	case NL80211_REGDOM_SET_BY_CORE:
1364 		return 0;
1365 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1366 
1367 		if (reg_request_cell_base(last_request)) {
1368 			/* Trust a Cell base station over the AP's country IE */
1369 			if (regdom_changes(pending_request->alpha2))
1370 				return -EOPNOTSUPP;
1371 			return -EALREADY;
1372 		}
1373 
1374 		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1375 
1376 		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1377 			return -EINVAL;
1378 		if (last_request->initiator ==
1379 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1380 			if (last_wiphy != wiphy) {
1381 				/*
1382 				 * Two cards with two APs claiming different
1383 				 * Country IE alpha2s. We could
1384 				 * intersect them, but that seems unlikely
1385 				 * to be correct. Reject second one for now.
1386 				 */
1387 				if (regdom_changes(pending_request->alpha2))
1388 					return -EOPNOTSUPP;
1389 				return -EALREADY;
1390 			}
1391 			/*
1392 			 * Two consecutive Country IE hints on the same wiphy.
1393 			 * This should be picked up early by the driver/stack
1394 			 */
1395 			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1396 				return 0;
1397 			return -EALREADY;
1398 		}
1399 		return 0;
1400 	case NL80211_REGDOM_SET_BY_DRIVER:
1401 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1402 			if (regdom_changes(pending_request->alpha2))
1403 				return 0;
1404 			return -EALREADY;
1405 		}
1406 
1407 		/*
1408 		 * This would happen if you unplug and plug your card
1409 		 * back in or if you add a new device for which the previously
1410 		 * loaded card also agrees on the regulatory domain.
1411 		 */
1412 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1413 		    !regdom_changes(pending_request->alpha2))
1414 			return -EALREADY;
1415 
1416 		return REG_INTERSECT;
1417 	case NL80211_REGDOM_SET_BY_USER:
1418 		if (reg_request_cell_base(pending_request))
1419 			return reg_ignore_cell_hint(pending_request);
1420 
1421 		if (reg_request_cell_base(last_request))
1422 			return -EOPNOTSUPP;
1423 
1424 		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1425 			return REG_INTERSECT;
1426 		/*
1427 		 * If the user knows better the user should set the regdom
1428 		 * to their country before the IE is picked up
1429 		 */
1430 		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1431 			  last_request->intersect)
1432 			return -EOPNOTSUPP;
1433 		/*
1434 		 * Process user requests only after previous user/driver/core
1435 		 * requests have been processed
1436 		 */
1437 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1438 		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1439 		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1440 			if (regdom_changes(last_request->alpha2))
1441 				return -EAGAIN;
1442 		}
1443 
1444 		if (!regdom_changes(pending_request->alpha2))
1445 			return -EALREADY;
1446 
1447 		return 0;
1448 	}
1449 
1450 	return -EINVAL;
1451 }
1452 
1453 static void reg_set_request_processed(void)
1454 {
1455 	bool need_more_processing = false;
1456 
1457 	last_request->processed = true;
1458 
1459 	spin_lock(&reg_requests_lock);
1460 	if (!list_empty(&reg_requests_list))
1461 		need_more_processing = true;
1462 	spin_unlock(&reg_requests_lock);
1463 
1464 	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1465 		cancel_delayed_work(&reg_timeout);
1466 
1467 	if (need_more_processing)
1468 		schedule_work(&reg_work);
1469 }
1470 
1471 /**
1472  * __regulatory_hint - hint to the wireless core a regulatory domain
1473  * @wiphy: if the hint comes from country information from an AP, this
1474  *	is required to be set to the wiphy that received the information
1475  * @pending_request: the regulatory request currently being processed
1476  *
1477  * The Wireless subsystem can use this function to hint to the wireless core
1478  * what it believes should be the current regulatory domain.
1479  *
1480  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1481  * already been set or other standard error codes.
1482  *
1483  * Caller must hold &cfg80211_mutex and &reg_mutex
1484  */
1485 static int __regulatory_hint(struct wiphy *wiphy,
1486 			     struct regulatory_request *pending_request)
1487 {
1488 	bool intersect = false;
1489 	int r = 0;
1490 
1491 	assert_cfg80211_lock();
1492 
1493 	r = ignore_request(wiphy, pending_request);
1494 
1495 	if (r == REG_INTERSECT) {
1496 		if (pending_request->initiator ==
1497 		    NL80211_REGDOM_SET_BY_DRIVER) {
1498 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1499 			if (r) {
1500 				kfree(pending_request);
1501 				return r;
1502 			}
1503 		}
1504 		intersect = true;
1505 	} else if (r) {
1506 		/*
1507 		 * If the regulatory domain being requested by the
1508 		 * driver has already been set just copy it to the
1509 		 * wiphy
1510 		 */
1511 		if (r == -EALREADY &&
1512 		    pending_request->initiator ==
1513 		    NL80211_REGDOM_SET_BY_DRIVER) {
1514 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1515 			if (r) {
1516 				kfree(pending_request);
1517 				return r;
1518 			}
1519 			r = -EALREADY;
1520 			goto new_request;
1521 		}
1522 		kfree(pending_request);
1523 		return r;
1524 	}
1525 
1526 new_request:
1527 	if (last_request != &core_request_world)
1528 		kfree(last_request);
1529 
1530 	last_request = pending_request;
1531 	last_request->intersect = intersect;
1532 
1533 	pending_request = NULL;
1534 
1535 	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1536 		user_alpha2[0] = last_request->alpha2[0];
1537 		user_alpha2[1] = last_request->alpha2[1];
1538 	}
1539 
1540 	/* When r == REG_INTERSECT we do need to call CRDA */
1541 	if (r < 0) {
1542 		/*
1543 		 * Since CRDA will not be called in this case as we already
1544 		 * have applied the requested regulatory domain before we just
1545 		 * inform userspace we have processed the request
1546 		 */
1547 		if (r == -EALREADY) {
1548 			nl80211_send_reg_change_event(last_request);
1549 			reg_set_request_processed();
1550 		}
1551 		return r;
1552 	}
1553 
1554 	return call_crda(last_request->alpha2);
1555 }
1556 
1557 /* This processes *all* regulatory hints */
1558 static void reg_process_hint(struct regulatory_request *reg_request,
1559 			     enum nl80211_reg_initiator reg_initiator)
1560 {
1561 	int r = 0;
1562 	struct wiphy *wiphy = NULL;
1563 
1564 	BUG_ON(!reg_request->alpha2);
1565 
1566 	if (wiphy_idx_valid(reg_request->wiphy_idx))
1567 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1568 
1569 	if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1570 	    !wiphy) {
1571 		kfree(reg_request);
1572 		return;
1573 	}
1574 
1575 	r = __regulatory_hint(wiphy, reg_request);
1576 	/* This is required so that the orig_* parameters are saved */
1577 	if (r == -EALREADY && wiphy &&
1578 	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1579 		wiphy_update_regulatory(wiphy, reg_initiator);
1580 		return;
1581 	}
1582 
1583 	/*
1584 	 * We only time out user hints, given that they should be the only
1585 	 * source of bogus requests.
1586 	 */
1587 	if (r != -EALREADY &&
1588 	    reg_initiator == NL80211_REGDOM_SET_BY_USER)
1589 		schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1590 }
1591 
1592 /*
1593  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1594  * Regulatory hints come on a first come first serve basis and we
1595  * must process each one atomically.
1596  */
1597 static void reg_process_pending_hints(void)
1598 {
1599 	struct regulatory_request *reg_request;
1600 
1601 	mutex_lock(&cfg80211_mutex);
1602 	mutex_lock(&reg_mutex);
1603 
1604 	/* When last_request->processed becomes true this will be rescheduled */
1605 	if (last_request && !last_request->processed) {
1606 		REG_DBG_PRINT("Pending regulatory request, waiting "
1607 			      "for it to be processed...\n");
1608 		goto out;
1609 	}
1610 
1611 	spin_lock(&reg_requests_lock);
1612 
1613 	if (list_empty(&reg_requests_list)) {
1614 		spin_unlock(&reg_requests_lock);
1615 		goto out;
1616 	}
1617 
1618 	reg_request = list_first_entry(&reg_requests_list,
1619 				       struct regulatory_request,
1620 				       list);
1621 	list_del_init(&reg_request->list);
1622 
1623 	spin_unlock(&reg_requests_lock);
1624 
1625 	reg_process_hint(reg_request, reg_request->initiator);
1626 
1627 out:
1628 	mutex_unlock(&reg_mutex);
1629 	mutex_unlock(&cfg80211_mutex);
1630 }
1631 
1632 /* Processes beacon hints -- this has nothing to do with country IEs */
1633 static void reg_process_pending_beacon_hints(void)
1634 {
1635 	struct cfg80211_registered_device *rdev;
1636 	struct reg_beacon *pending_beacon, *tmp;
1637 
1638 	/*
1639 	 * No need to hold the reg_mutex here as we just touch wiphys
1640 	 * and do not read or access regulatory variables.
1641 	 */
1642 	mutex_lock(&cfg80211_mutex);
1643 
1644 	/* This goes through the _pending_ beacon list */
1645 	spin_lock_bh(&reg_pending_beacons_lock);
1646 
1647 	if (list_empty(&reg_pending_beacons)) {
1648 		spin_unlock_bh(&reg_pending_beacons_lock);
1649 		goto out;
1650 	}
1651 
1652 	list_for_each_entry_safe(pending_beacon, tmp,
1653 				 &reg_pending_beacons, list) {
1654 
1655 		list_del_init(&pending_beacon->list);
1656 
1657 		/* Applies the beacon hint to current wiphys */
1658 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1659 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1660 
1661 		/* Remembers the beacon hint for new wiphys or reg changes */
1662 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
1663 	}
1664 
1665 	spin_unlock_bh(&reg_pending_beacons_lock);
1666 out:
1667 	mutex_unlock(&cfg80211_mutex);
1668 }
1669 
1670 static void reg_todo(struct work_struct *work)
1671 {
1672 	reg_process_pending_hints();
1673 	reg_process_pending_beacon_hints();
1674 }
1675 
1676 static void queue_regulatory_request(struct regulatory_request *request)
1677 {
1678 	if (isalpha(request->alpha2[0]))
1679 		request->alpha2[0] = toupper(request->alpha2[0]);
1680 	if (isalpha(request->alpha2[1]))
1681 		request->alpha2[1] = toupper(request->alpha2[1]);
1682 
1683 	spin_lock(&reg_requests_lock);
1684 	list_add_tail(&request->list, &reg_requests_list);
1685 	spin_unlock(&reg_requests_lock);
1686 
1687 	schedule_work(&reg_work);
1688 }
1689 
1690 /*
1691  * Core regulatory hint -- happens during cfg80211_init()
1692  * and when we restore regulatory settings.
1693  */
1694 static int regulatory_hint_core(const char *alpha2)
1695 {
1696 	struct regulatory_request *request;
1697 
1698 	request = kzalloc(sizeof(struct regulatory_request),
1699 			  GFP_KERNEL);
1700 	if (!request)
1701 		return -ENOMEM;
1702 
1703 	request->alpha2[0] = alpha2[0];
1704 	request->alpha2[1] = alpha2[1];
1705 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1706 
1707 	queue_regulatory_request(request);
1708 
1709 	return 0;
1710 }
1711 
1712 /* User hints */
1713 int regulatory_hint_user(const char *alpha2,
1714 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
1715 {
1716 	struct regulatory_request *request;
1717 
1718 	BUG_ON(!alpha2);
1719 
1720 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1721 	if (!request)
1722 		return -ENOMEM;
1723 
1724 	request->wiphy_idx = WIPHY_IDX_STALE;
1725 	request->alpha2[0] = alpha2[0];
1726 	request->alpha2[1] = alpha2[1];
1727 	request->initiator = NL80211_REGDOM_SET_BY_USER;
1728 	request->user_reg_hint_type = user_reg_hint_type;
1729 
1730 	queue_regulatory_request(request);
1731 
1732 	return 0;
1733 }
1734 
1735 /* Driver hints */
1736 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1737 {
1738 	struct regulatory_request *request;
1739 
1740 	BUG_ON(!alpha2);
1741 	BUG_ON(!wiphy);
1742 
1743 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1744 	if (!request)
1745 		return -ENOMEM;
1746 
1747 	request->wiphy_idx = get_wiphy_idx(wiphy);
1748 
1749 	/* Must have registered wiphy first */
1750 	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1751 
1752 	request->alpha2[0] = alpha2[0];
1753 	request->alpha2[1] = alpha2[1];
1754 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1755 
1756 	queue_regulatory_request(request);
1757 
1758 	return 0;
1759 }
1760 EXPORT_SYMBOL(regulatory_hint);
1761 
1762 /*
1763  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1764  * therefore cannot iterate over the rdev list here.
1765  */
1766 void regulatory_hint_11d(struct wiphy *wiphy,
1767 			 enum ieee80211_band band,
1768 			 u8 *country_ie,
1769 			 u8 country_ie_len)
1770 {
1771 	char alpha2[2];
1772 	enum environment_cap env = ENVIRON_ANY;
1773 	struct regulatory_request *request;
1774 
1775 	mutex_lock(&reg_mutex);
1776 
1777 	if (unlikely(!last_request))
1778 		goto out;
1779 
1780 	/* IE len must be evenly divisible by 2 */
1781 	if (country_ie_len & 0x01)
1782 		goto out;
1783 
1784 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1785 		goto out;
1786 
1787 	alpha2[0] = country_ie[0];
1788 	alpha2[1] = country_ie[1];
1789 
1790 	if (country_ie[2] == 'I')
1791 		env = ENVIRON_INDOOR;
1792 	else if (country_ie[2] == 'O')
1793 		env = ENVIRON_OUTDOOR;
1794 
1795 	/*
1796 	 * We will run this only upon a successful connection on cfg80211.
1797 	 * We leave conflict resolution to the workqueue, where can hold
1798 	 * cfg80211_mutex.
1799 	 */
1800 	if (likely(last_request->initiator ==
1801 	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1802 	    wiphy_idx_valid(last_request->wiphy_idx)))
1803 		goto out;
1804 
1805 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1806 	if (!request)
1807 		goto out;
1808 
1809 	request->wiphy_idx = get_wiphy_idx(wiphy);
1810 	request->alpha2[0] = alpha2[0];
1811 	request->alpha2[1] = alpha2[1];
1812 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1813 	request->country_ie_env = env;
1814 
1815 	mutex_unlock(&reg_mutex);
1816 
1817 	queue_regulatory_request(request);
1818 
1819 	return;
1820 
1821 out:
1822 	mutex_unlock(&reg_mutex);
1823 }
1824 
1825 static void restore_alpha2(char *alpha2, bool reset_user)
1826 {
1827 	/* indicates there is no alpha2 to consider for restoration */
1828 	alpha2[0] = '9';
1829 	alpha2[1] = '7';
1830 
1831 	/* The user setting has precedence over the module parameter */
1832 	if (is_user_regdom_saved()) {
1833 		/* Unless we're asked to ignore it and reset it */
1834 		if (reset_user) {
1835 			REG_DBG_PRINT("Restoring regulatory settings "
1836 			       "including user preference\n");
1837 			user_alpha2[0] = '9';
1838 			user_alpha2[1] = '7';
1839 
1840 			/*
1841 			 * If we're ignoring user settings, we still need to
1842 			 * check the module parameter to ensure we put things
1843 			 * back as they were for a full restore.
1844 			 */
1845 			if (!is_world_regdom(ieee80211_regdom)) {
1846 				REG_DBG_PRINT("Keeping preference on "
1847 				       "module parameter ieee80211_regdom: %c%c\n",
1848 				       ieee80211_regdom[0],
1849 				       ieee80211_regdom[1]);
1850 				alpha2[0] = ieee80211_regdom[0];
1851 				alpha2[1] = ieee80211_regdom[1];
1852 			}
1853 		} else {
1854 			REG_DBG_PRINT("Restoring regulatory settings "
1855 			       "while preserving user preference for: %c%c\n",
1856 			       user_alpha2[0],
1857 			       user_alpha2[1]);
1858 			alpha2[0] = user_alpha2[0];
1859 			alpha2[1] = user_alpha2[1];
1860 		}
1861 	} else if (!is_world_regdom(ieee80211_regdom)) {
1862 		REG_DBG_PRINT("Keeping preference on "
1863 		       "module parameter ieee80211_regdom: %c%c\n",
1864 		       ieee80211_regdom[0],
1865 		       ieee80211_regdom[1]);
1866 		alpha2[0] = ieee80211_regdom[0];
1867 		alpha2[1] = ieee80211_regdom[1];
1868 	} else
1869 		REG_DBG_PRINT("Restoring regulatory settings\n");
1870 }
1871 
1872 static void restore_custom_reg_settings(struct wiphy *wiphy)
1873 {
1874 	struct ieee80211_supported_band *sband;
1875 	enum ieee80211_band band;
1876 	struct ieee80211_channel *chan;
1877 	int i;
1878 
1879 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1880 		sband = wiphy->bands[band];
1881 		if (!sband)
1882 			continue;
1883 		for (i = 0; i < sband->n_channels; i++) {
1884 			chan = &sband->channels[i];
1885 			chan->flags = chan->orig_flags;
1886 			chan->max_antenna_gain = chan->orig_mag;
1887 			chan->max_power = chan->orig_mpwr;
1888 		}
1889 	}
1890 }
1891 
1892 /*
1893  * Restoring regulatory settings involves ingoring any
1894  * possibly stale country IE information and user regulatory
1895  * settings if so desired, this includes any beacon hints
1896  * learned as we could have traveled outside to another country
1897  * after disconnection. To restore regulatory settings we do
1898  * exactly what we did at bootup:
1899  *
1900  *   - send a core regulatory hint
1901  *   - send a user regulatory hint if applicable
1902  *
1903  * Device drivers that send a regulatory hint for a specific country
1904  * keep their own regulatory domain on wiphy->regd so that does does
1905  * not need to be remembered.
1906  */
1907 static void restore_regulatory_settings(bool reset_user)
1908 {
1909 	char alpha2[2];
1910 	char world_alpha2[2];
1911 	struct reg_beacon *reg_beacon, *btmp;
1912 	struct regulatory_request *reg_request, *tmp;
1913 	LIST_HEAD(tmp_reg_req_list);
1914 	struct cfg80211_registered_device *rdev;
1915 
1916 	mutex_lock(&cfg80211_mutex);
1917 	mutex_lock(&reg_mutex);
1918 
1919 	reset_regdomains(true);
1920 	restore_alpha2(alpha2, reset_user);
1921 
1922 	/*
1923 	 * If there's any pending requests we simply
1924 	 * stash them to a temporary pending queue and
1925 	 * add then after we've restored regulatory
1926 	 * settings.
1927 	 */
1928 	spin_lock(&reg_requests_lock);
1929 	if (!list_empty(&reg_requests_list)) {
1930 		list_for_each_entry_safe(reg_request, tmp,
1931 					 &reg_requests_list, list) {
1932 			if (reg_request->initiator !=
1933 			    NL80211_REGDOM_SET_BY_USER)
1934 				continue;
1935 			list_del(&reg_request->list);
1936 			list_add_tail(&reg_request->list, &tmp_reg_req_list);
1937 		}
1938 	}
1939 	spin_unlock(&reg_requests_lock);
1940 
1941 	/* Clear beacon hints */
1942 	spin_lock_bh(&reg_pending_beacons_lock);
1943 	if (!list_empty(&reg_pending_beacons)) {
1944 		list_for_each_entry_safe(reg_beacon, btmp,
1945 					 &reg_pending_beacons, list) {
1946 			list_del(&reg_beacon->list);
1947 			kfree(reg_beacon);
1948 		}
1949 	}
1950 	spin_unlock_bh(&reg_pending_beacons_lock);
1951 
1952 	if (!list_empty(&reg_beacon_list)) {
1953 		list_for_each_entry_safe(reg_beacon, btmp,
1954 					 &reg_beacon_list, list) {
1955 			list_del(&reg_beacon->list);
1956 			kfree(reg_beacon);
1957 		}
1958 	}
1959 
1960 	/* First restore to the basic regulatory settings */
1961 	cfg80211_regdomain = cfg80211_world_regdom;
1962 	world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1963 	world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1964 
1965 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1966 		if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1967 			restore_custom_reg_settings(&rdev->wiphy);
1968 	}
1969 
1970 	mutex_unlock(&reg_mutex);
1971 	mutex_unlock(&cfg80211_mutex);
1972 
1973 	regulatory_hint_core(world_alpha2);
1974 
1975 	/*
1976 	 * This restores the ieee80211_regdom module parameter
1977 	 * preference or the last user requested regulatory
1978 	 * settings, user regulatory settings takes precedence.
1979 	 */
1980 	if (is_an_alpha2(alpha2))
1981 		regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1982 
1983 	if (list_empty(&tmp_reg_req_list))
1984 		return;
1985 
1986 	mutex_lock(&cfg80211_mutex);
1987 	mutex_lock(&reg_mutex);
1988 
1989 	spin_lock(&reg_requests_lock);
1990 	list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1991 		REG_DBG_PRINT("Adding request for country %c%c back "
1992 			      "into the queue\n",
1993 			      reg_request->alpha2[0],
1994 			      reg_request->alpha2[1]);
1995 		list_del(&reg_request->list);
1996 		list_add_tail(&reg_request->list, &reg_requests_list);
1997 	}
1998 	spin_unlock(&reg_requests_lock);
1999 
2000 	mutex_unlock(&reg_mutex);
2001 	mutex_unlock(&cfg80211_mutex);
2002 
2003 	REG_DBG_PRINT("Kicking the queue\n");
2004 
2005 	schedule_work(&reg_work);
2006 }
2007 
2008 void regulatory_hint_disconnect(void)
2009 {
2010 	REG_DBG_PRINT("All devices are disconnected, going to "
2011 		      "restore regulatory settings\n");
2012 	restore_regulatory_settings(false);
2013 }
2014 
2015 static bool freq_is_chan_12_13_14(u16 freq)
2016 {
2017 	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2018 	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2019 	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2020 		return true;
2021 	return false;
2022 }
2023 
2024 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2025 				 struct ieee80211_channel *beacon_chan,
2026 				 gfp_t gfp)
2027 {
2028 	struct reg_beacon *reg_beacon;
2029 
2030 	if (likely((beacon_chan->beacon_found ||
2031 	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
2032 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2033 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
2034 		return 0;
2035 
2036 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2037 	if (!reg_beacon)
2038 		return -ENOMEM;
2039 
2040 	REG_DBG_PRINT("Found new beacon on "
2041 		      "frequency: %d MHz (Ch %d) on %s\n",
2042 		      beacon_chan->center_freq,
2043 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
2044 		      wiphy_name(wiphy));
2045 
2046 	memcpy(&reg_beacon->chan, beacon_chan,
2047 		sizeof(struct ieee80211_channel));
2048 
2049 
2050 	/*
2051 	 * Since we can be called from BH or and non-BH context
2052 	 * we must use spin_lock_bh()
2053 	 */
2054 	spin_lock_bh(&reg_pending_beacons_lock);
2055 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2056 	spin_unlock_bh(&reg_pending_beacons_lock);
2057 
2058 	schedule_work(&reg_work);
2059 
2060 	return 0;
2061 }
2062 
2063 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2064 {
2065 	unsigned int i;
2066 	const struct ieee80211_reg_rule *reg_rule = NULL;
2067 	const struct ieee80211_freq_range *freq_range = NULL;
2068 	const struct ieee80211_power_rule *power_rule = NULL;
2069 
2070 	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2071 
2072 	for (i = 0; i < rd->n_reg_rules; i++) {
2073 		reg_rule = &rd->reg_rules[i];
2074 		freq_range = &reg_rule->freq_range;
2075 		power_rule = &reg_rule->power_rule;
2076 
2077 		/*
2078 		 * There may not be documentation for max antenna gain
2079 		 * in certain regions
2080 		 */
2081 		if (power_rule->max_antenna_gain)
2082 			pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2083 				freq_range->start_freq_khz,
2084 				freq_range->end_freq_khz,
2085 				freq_range->max_bandwidth_khz,
2086 				power_rule->max_antenna_gain,
2087 				power_rule->max_eirp);
2088 		else
2089 			pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2090 				freq_range->start_freq_khz,
2091 				freq_range->end_freq_khz,
2092 				freq_range->max_bandwidth_khz,
2093 				power_rule->max_eirp);
2094 	}
2095 }
2096 
2097 bool reg_supported_dfs_region(u8 dfs_region)
2098 {
2099 	switch (dfs_region) {
2100 	case NL80211_DFS_UNSET:
2101 	case NL80211_DFS_FCC:
2102 	case NL80211_DFS_ETSI:
2103 	case NL80211_DFS_JP:
2104 		return true;
2105 	default:
2106 		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2107 			      dfs_region);
2108 		return false;
2109 	}
2110 }
2111 
2112 static void print_dfs_region(u8 dfs_region)
2113 {
2114 	if (!dfs_region)
2115 		return;
2116 
2117 	switch (dfs_region) {
2118 	case NL80211_DFS_FCC:
2119 		pr_info(" DFS Master region FCC");
2120 		break;
2121 	case NL80211_DFS_ETSI:
2122 		pr_info(" DFS Master region ETSI");
2123 		break;
2124 	case NL80211_DFS_JP:
2125 		pr_info(" DFS Master region JP");
2126 		break;
2127 	default:
2128 		pr_info(" DFS Master region Uknown");
2129 		break;
2130 	}
2131 }
2132 
2133 static void print_regdomain(const struct ieee80211_regdomain *rd)
2134 {
2135 
2136 	if (is_intersected_alpha2(rd->alpha2)) {
2137 
2138 		if (last_request->initiator ==
2139 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2140 			struct cfg80211_registered_device *rdev;
2141 			rdev = cfg80211_rdev_by_wiphy_idx(
2142 				last_request->wiphy_idx);
2143 			if (rdev) {
2144 				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2145 					rdev->country_ie_alpha2[0],
2146 					rdev->country_ie_alpha2[1]);
2147 			} else
2148 				pr_info("Current regulatory domain intersected:\n");
2149 		} else
2150 			pr_info("Current regulatory domain intersected:\n");
2151 	} else if (is_world_regdom(rd->alpha2))
2152 		pr_info("World regulatory domain updated:\n");
2153 	else {
2154 		if (is_unknown_alpha2(rd->alpha2))
2155 			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2156 		else {
2157 			if (reg_request_cell_base(last_request))
2158 				pr_info("Regulatory domain changed "
2159 					"to country: %c%c by Cell Station\n",
2160 					rd->alpha2[0], rd->alpha2[1]);
2161 			else
2162 				pr_info("Regulatory domain changed "
2163 					"to country: %c%c\n",
2164 					rd->alpha2[0], rd->alpha2[1]);
2165 		}
2166 	}
2167 	print_dfs_region(rd->dfs_region);
2168 	print_rd_rules(rd);
2169 }
2170 
2171 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2172 {
2173 	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2174 	print_rd_rules(rd);
2175 }
2176 
2177 /* Takes ownership of rd only if it doesn't fail */
2178 static int __set_regdom(const struct ieee80211_regdomain *rd)
2179 {
2180 	const struct ieee80211_regdomain *intersected_rd = NULL;
2181 	struct cfg80211_registered_device *rdev = NULL;
2182 	struct wiphy *request_wiphy;
2183 	/* Some basic sanity checks first */
2184 
2185 	if (is_world_regdom(rd->alpha2)) {
2186 		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2187 			return -EINVAL;
2188 		update_world_regdomain(rd);
2189 		return 0;
2190 	}
2191 
2192 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2193 			!is_unknown_alpha2(rd->alpha2))
2194 		return -EINVAL;
2195 
2196 	if (!last_request)
2197 		return -EINVAL;
2198 
2199 	/*
2200 	 * Lets only bother proceeding on the same alpha2 if the current
2201 	 * rd is non static (it means CRDA was present and was used last)
2202 	 * and the pending request came in from a country IE
2203 	 */
2204 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2205 		/*
2206 		 * If someone else asked us to change the rd lets only bother
2207 		 * checking if the alpha2 changes if CRDA was already called
2208 		 */
2209 		if (!regdom_changes(rd->alpha2))
2210 			return -EALREADY;
2211 	}
2212 
2213 	/*
2214 	 * Now lets set the regulatory domain, update all driver channels
2215 	 * and finally inform them of what we have done, in case they want
2216 	 * to review or adjust their own settings based on their own
2217 	 * internal EEPROM data
2218 	 */
2219 
2220 	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2221 		return -EINVAL;
2222 
2223 	if (!is_valid_rd(rd)) {
2224 		pr_err("Invalid regulatory domain detected:\n");
2225 		print_regdomain_info(rd);
2226 		return -EINVAL;
2227 	}
2228 
2229 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2230 	if (!request_wiphy &&
2231 	    (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2232 	     last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2233 		schedule_delayed_work(&reg_timeout, 0);
2234 		return -ENODEV;
2235 	}
2236 
2237 	if (!last_request->intersect) {
2238 		int r;
2239 
2240 		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2241 			reset_regdomains(false);
2242 			cfg80211_regdomain = rd;
2243 			return 0;
2244 		}
2245 
2246 		/*
2247 		 * For a driver hint, lets copy the regulatory domain the
2248 		 * driver wanted to the wiphy to deal with conflicts
2249 		 */
2250 
2251 		/*
2252 		 * Userspace could have sent two replies with only
2253 		 * one kernel request.
2254 		 */
2255 		if (request_wiphy->regd)
2256 			return -EALREADY;
2257 
2258 		r = reg_copy_regd(&request_wiphy->regd, rd);
2259 		if (r)
2260 			return r;
2261 
2262 		reset_regdomains(false);
2263 		cfg80211_regdomain = rd;
2264 		return 0;
2265 	}
2266 
2267 	/* Intersection requires a bit more work */
2268 
2269 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2270 
2271 		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2272 		if (!intersected_rd)
2273 			return -EINVAL;
2274 
2275 		/*
2276 		 * We can trash what CRDA provided now.
2277 		 * However if a driver requested this specific regulatory
2278 		 * domain we keep it for its private use
2279 		 */
2280 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2281 			request_wiphy->regd = rd;
2282 		else
2283 			kfree(rd);
2284 
2285 		rd = NULL;
2286 
2287 		reset_regdomains(false);
2288 		cfg80211_regdomain = intersected_rd;
2289 
2290 		return 0;
2291 	}
2292 
2293 	if (!intersected_rd)
2294 		return -EINVAL;
2295 
2296 	rdev = wiphy_to_dev(request_wiphy);
2297 
2298 	rdev->country_ie_alpha2[0] = rd->alpha2[0];
2299 	rdev->country_ie_alpha2[1] = rd->alpha2[1];
2300 	rdev->env = last_request->country_ie_env;
2301 
2302 	BUG_ON(intersected_rd == rd);
2303 
2304 	kfree(rd);
2305 	rd = NULL;
2306 
2307 	reset_regdomains(false);
2308 	cfg80211_regdomain = intersected_rd;
2309 
2310 	return 0;
2311 }
2312 
2313 
2314 /*
2315  * Use this call to set the current regulatory domain. Conflicts with
2316  * multiple drivers can be ironed out later. Caller must've already
2317  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2318  */
2319 int set_regdom(const struct ieee80211_regdomain *rd)
2320 {
2321 	int r;
2322 
2323 	assert_cfg80211_lock();
2324 
2325 	mutex_lock(&reg_mutex);
2326 
2327 	/* Note that this doesn't update the wiphys, this is done below */
2328 	r = __set_regdom(rd);
2329 	if (r) {
2330 		if (r == -EALREADY)
2331 			reg_set_request_processed();
2332 
2333 		kfree(rd);
2334 		mutex_unlock(&reg_mutex);
2335 		return r;
2336 	}
2337 
2338 	/* This would make this whole thing pointless */
2339 	if (!last_request->intersect)
2340 		BUG_ON(rd != cfg80211_regdomain);
2341 
2342 	/* update all wiphys now with the new established regulatory domain */
2343 	update_all_wiphy_regulatory(last_request->initiator);
2344 
2345 	print_regdomain(cfg80211_regdomain);
2346 
2347 	nl80211_send_reg_change_event(last_request);
2348 
2349 	reg_set_request_processed();
2350 
2351 	mutex_unlock(&reg_mutex);
2352 
2353 	return r;
2354 }
2355 
2356 #ifdef CONFIG_HOTPLUG
2357 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2358 {
2359 	if (last_request && !last_request->processed) {
2360 		if (add_uevent_var(env, "COUNTRY=%c%c",
2361 				   last_request->alpha2[0],
2362 				   last_request->alpha2[1]))
2363 			return -ENOMEM;
2364 	}
2365 
2366 	return 0;
2367 }
2368 #else
2369 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2370 {
2371 	return -ENODEV;
2372 }
2373 #endif /* CONFIG_HOTPLUG */
2374 
2375 void wiphy_regulatory_register(struct wiphy *wiphy)
2376 {
2377 	assert_cfg80211_lock();
2378 
2379 	mutex_lock(&reg_mutex);
2380 
2381 	if (!reg_dev_ignore_cell_hint(wiphy))
2382 		reg_num_devs_support_basehint++;
2383 
2384 	wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2385 
2386 	mutex_unlock(&reg_mutex);
2387 }
2388 
2389 /* Caller must hold cfg80211_mutex */
2390 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2391 {
2392 	struct wiphy *request_wiphy = NULL;
2393 
2394 	assert_cfg80211_lock();
2395 
2396 	mutex_lock(&reg_mutex);
2397 
2398 	if (!reg_dev_ignore_cell_hint(wiphy))
2399 		reg_num_devs_support_basehint--;
2400 
2401 	kfree(wiphy->regd);
2402 
2403 	if (last_request)
2404 		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2405 
2406 	if (!request_wiphy || request_wiphy != wiphy)
2407 		goto out;
2408 
2409 	last_request->wiphy_idx = WIPHY_IDX_STALE;
2410 	last_request->country_ie_env = ENVIRON_ANY;
2411 out:
2412 	mutex_unlock(&reg_mutex);
2413 }
2414 
2415 static void reg_timeout_work(struct work_struct *work)
2416 {
2417 	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2418 		      "restoring regulatory settings\n");
2419 	restore_regulatory_settings(true);
2420 }
2421 
2422 int __init regulatory_init(void)
2423 {
2424 	int err = 0;
2425 
2426 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2427 	if (IS_ERR(reg_pdev))
2428 		return PTR_ERR(reg_pdev);
2429 
2430 	reg_pdev->dev.type = &reg_device_type;
2431 
2432 	spin_lock_init(&reg_requests_lock);
2433 	spin_lock_init(&reg_pending_beacons_lock);
2434 
2435 	reg_regdb_size_check();
2436 
2437 	cfg80211_regdomain = cfg80211_world_regdom;
2438 
2439 	user_alpha2[0] = '9';
2440 	user_alpha2[1] = '7';
2441 
2442 	/* We always try to get an update for the static regdomain */
2443 	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2444 	if (err) {
2445 		if (err == -ENOMEM)
2446 			return err;
2447 		/*
2448 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
2449 		 * memory which is handled and propagated appropriately above
2450 		 * but it can also fail during a netlink_broadcast() or during
2451 		 * early boot for call_usermodehelper(). For now treat these
2452 		 * errors as non-fatal.
2453 		 */
2454 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2455 #ifdef CONFIG_CFG80211_REG_DEBUG
2456 		/* We want to find out exactly why when debugging */
2457 		WARN_ON(err);
2458 #endif
2459 	}
2460 
2461 	/*
2462 	 * Finally, if the user set the module parameter treat it
2463 	 * as a user hint.
2464 	 */
2465 	if (!is_world_regdom(ieee80211_regdom))
2466 		regulatory_hint_user(ieee80211_regdom,
2467 				     NL80211_USER_REG_HINT_USER);
2468 
2469 	return 0;
2470 }
2471 
2472 void /* __init_or_exit */ regulatory_exit(void)
2473 {
2474 	struct regulatory_request *reg_request, *tmp;
2475 	struct reg_beacon *reg_beacon, *btmp;
2476 
2477 	cancel_work_sync(&reg_work);
2478 	cancel_delayed_work_sync(&reg_timeout);
2479 
2480 	mutex_lock(&cfg80211_mutex);
2481 	mutex_lock(&reg_mutex);
2482 
2483 	reset_regdomains(true);
2484 
2485 	dev_set_uevent_suppress(&reg_pdev->dev, true);
2486 
2487 	platform_device_unregister(reg_pdev);
2488 
2489 	spin_lock_bh(&reg_pending_beacons_lock);
2490 	if (!list_empty(&reg_pending_beacons)) {
2491 		list_for_each_entry_safe(reg_beacon, btmp,
2492 					 &reg_pending_beacons, list) {
2493 			list_del(&reg_beacon->list);
2494 			kfree(reg_beacon);
2495 		}
2496 	}
2497 	spin_unlock_bh(&reg_pending_beacons_lock);
2498 
2499 	if (!list_empty(&reg_beacon_list)) {
2500 		list_for_each_entry_safe(reg_beacon, btmp,
2501 					 &reg_beacon_list, list) {
2502 			list_del(&reg_beacon->list);
2503 			kfree(reg_beacon);
2504 		}
2505 	}
2506 
2507 	spin_lock(&reg_requests_lock);
2508 	if (!list_empty(&reg_requests_list)) {
2509 		list_for_each_entry_safe(reg_request, tmp,
2510 					 &reg_requests_list, list) {
2511 			list_del(&reg_request->list);
2512 			kfree(reg_request);
2513 		}
2514 	}
2515 	spin_unlock(&reg_requests_lock);
2516 
2517 	mutex_unlock(&reg_mutex);
2518 	mutex_unlock(&cfg80211_mutex);
2519 }
2520