1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 21 /** 22 * DOC: Wireless regulatory infrastructure 23 * 24 * The usual implementation is for a driver to read a device EEPROM to 25 * determine which regulatory domain it should be operating under, then 26 * looking up the allowable channels in a driver-local table and finally 27 * registering those channels in the wiphy structure. 28 * 29 * Another set of compliance enforcement is for drivers to use their 30 * own compliance limits which can be stored on the EEPROM. The host 31 * driver or firmware may ensure these are used. 32 * 33 * In addition to all this we provide an extra layer of regulatory 34 * conformance. For drivers which do not have any regulatory 35 * information CRDA provides the complete regulatory solution. 36 * For others it provides a community effort on further restrictions 37 * to enhance compliance. 38 * 39 * Note: When number of rules --> infinity we will not be able to 40 * index on alpha2 any more, instead we'll probably have to 41 * rely on some SHA1 checksum of the regdomain for example. 42 * 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/kernel.h> 48 #include <linux/export.h> 49 #include <linux/slab.h> 50 #include <linux/list.h> 51 #include <linux/random.h> 52 #include <linux/ctype.h> 53 #include <linux/nl80211.h> 54 #include <linux/platform_device.h> 55 #include <linux/moduleparam.h> 56 #include <net/cfg80211.h> 57 #include "core.h" 58 #include "reg.h" 59 #include "regdb.h" 60 #include "nl80211.h" 61 62 #ifdef CONFIG_CFG80211_REG_DEBUG 63 #define REG_DBG_PRINT(format, args...) \ 64 printk(KERN_DEBUG pr_fmt(format), ##args) 65 #else 66 #define REG_DBG_PRINT(args...) 67 #endif 68 69 static struct regulatory_request core_request_world = { 70 .initiator = NL80211_REGDOM_SET_BY_CORE, 71 .alpha2[0] = '0', 72 .alpha2[1] = '0', 73 .intersect = false, 74 .processed = true, 75 .country_ie_env = ENVIRON_ANY, 76 }; 77 78 /* Receipt of information from last regulatory request */ 79 static struct regulatory_request *last_request = &core_request_world; 80 81 /* To trigger userspace events */ 82 static struct platform_device *reg_pdev; 83 84 static struct device_type reg_device_type = { 85 .uevent = reg_device_uevent, 86 }; 87 88 /* 89 * Central wireless core regulatory domains, we only need two, 90 * the current one and a world regulatory domain in case we have no 91 * information to give us an alpha2 92 */ 93 const struct ieee80211_regdomain *cfg80211_regdomain; 94 95 /* 96 * Protects static reg.c components: 97 * - cfg80211_world_regdom 98 * - cfg80211_regdom 99 * - last_request 100 * - reg_num_devs_support_basehint 101 */ 102 static DEFINE_MUTEX(reg_mutex); 103 104 /* 105 * Number of devices that registered to the core 106 * that support cellular base station regulatory hints 107 */ 108 static int reg_num_devs_support_basehint; 109 110 static inline void assert_reg_lock(void) 111 { 112 lockdep_assert_held(®_mutex); 113 } 114 115 /* Used to queue up regulatory hints */ 116 static LIST_HEAD(reg_requests_list); 117 static spinlock_t reg_requests_lock; 118 119 /* Used to queue up beacon hints for review */ 120 static LIST_HEAD(reg_pending_beacons); 121 static spinlock_t reg_pending_beacons_lock; 122 123 /* Used to keep track of processed beacon hints */ 124 static LIST_HEAD(reg_beacon_list); 125 126 struct reg_beacon { 127 struct list_head list; 128 struct ieee80211_channel chan; 129 }; 130 131 static void reg_todo(struct work_struct *work); 132 static DECLARE_WORK(reg_work, reg_todo); 133 134 static void reg_timeout_work(struct work_struct *work); 135 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work); 136 137 /* We keep a static world regulatory domain in case of the absence of CRDA */ 138 static const struct ieee80211_regdomain world_regdom = { 139 .n_reg_rules = 6, 140 .alpha2 = "00", 141 .reg_rules = { 142 /* IEEE 802.11b/g, channels 1..11 */ 143 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 144 /* IEEE 802.11b/g, channels 12..13. No HT40 145 * channel fits here. */ 146 REG_RULE(2467-10, 2472+10, 20, 6, 20, 147 NL80211_RRF_PASSIVE_SCAN | 148 NL80211_RRF_NO_IBSS), 149 /* IEEE 802.11 channel 14 - Only JP enables 150 * this and for 802.11b only */ 151 REG_RULE(2484-10, 2484+10, 20, 6, 20, 152 NL80211_RRF_PASSIVE_SCAN | 153 NL80211_RRF_NO_IBSS | 154 NL80211_RRF_NO_OFDM), 155 /* IEEE 802.11a, channel 36..48 */ 156 REG_RULE(5180-10, 5240+10, 40, 6, 20, 157 NL80211_RRF_PASSIVE_SCAN | 158 NL80211_RRF_NO_IBSS), 159 160 /* NB: 5260 MHz - 5700 MHz requies DFS */ 161 162 /* IEEE 802.11a, channel 149..165 */ 163 REG_RULE(5745-10, 5825+10, 40, 6, 20, 164 NL80211_RRF_PASSIVE_SCAN | 165 NL80211_RRF_NO_IBSS), 166 167 /* IEEE 802.11ad (60gHz), channels 1..3 */ 168 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 169 } 170 }; 171 172 static const struct ieee80211_regdomain *cfg80211_world_regdom = 173 &world_regdom; 174 175 static char *ieee80211_regdom = "00"; 176 static char user_alpha2[2]; 177 178 module_param(ieee80211_regdom, charp, 0444); 179 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 180 181 static void reset_regdomains(bool full_reset) 182 { 183 /* avoid freeing static information or freeing something twice */ 184 if (cfg80211_regdomain == cfg80211_world_regdom) 185 cfg80211_regdomain = NULL; 186 if (cfg80211_world_regdom == &world_regdom) 187 cfg80211_world_regdom = NULL; 188 if (cfg80211_regdomain == &world_regdom) 189 cfg80211_regdomain = NULL; 190 191 kfree(cfg80211_regdomain); 192 kfree(cfg80211_world_regdom); 193 194 cfg80211_world_regdom = &world_regdom; 195 cfg80211_regdomain = NULL; 196 197 if (!full_reset) 198 return; 199 200 if (last_request != &core_request_world) 201 kfree(last_request); 202 last_request = &core_request_world; 203 } 204 205 /* 206 * Dynamic world regulatory domain requested by the wireless 207 * core upon initialization 208 */ 209 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 210 { 211 BUG_ON(!last_request); 212 213 reset_regdomains(false); 214 215 cfg80211_world_regdom = rd; 216 cfg80211_regdomain = rd; 217 } 218 219 bool is_world_regdom(const char *alpha2) 220 { 221 if (!alpha2) 222 return false; 223 if (alpha2[0] == '0' && alpha2[1] == '0') 224 return true; 225 return false; 226 } 227 228 static bool is_alpha2_set(const char *alpha2) 229 { 230 if (!alpha2) 231 return false; 232 if (alpha2[0] != 0 && alpha2[1] != 0) 233 return true; 234 return false; 235 } 236 237 static bool is_unknown_alpha2(const char *alpha2) 238 { 239 if (!alpha2) 240 return false; 241 /* 242 * Special case where regulatory domain was built by driver 243 * but a specific alpha2 cannot be determined 244 */ 245 if (alpha2[0] == '9' && alpha2[1] == '9') 246 return true; 247 return false; 248 } 249 250 static bool is_intersected_alpha2(const char *alpha2) 251 { 252 if (!alpha2) 253 return false; 254 /* 255 * Special case where regulatory domain is the 256 * result of an intersection between two regulatory domain 257 * structures 258 */ 259 if (alpha2[0] == '9' && alpha2[1] == '8') 260 return true; 261 return false; 262 } 263 264 static bool is_an_alpha2(const char *alpha2) 265 { 266 if (!alpha2) 267 return false; 268 if (isalpha(alpha2[0]) && isalpha(alpha2[1])) 269 return true; 270 return false; 271 } 272 273 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 274 { 275 if (!alpha2_x || !alpha2_y) 276 return false; 277 if (alpha2_x[0] == alpha2_y[0] && 278 alpha2_x[1] == alpha2_y[1]) 279 return true; 280 return false; 281 } 282 283 static bool regdom_changes(const char *alpha2) 284 { 285 assert_cfg80211_lock(); 286 287 if (!cfg80211_regdomain) 288 return true; 289 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2)) 290 return false; 291 return true; 292 } 293 294 /* 295 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 296 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 297 * has ever been issued. 298 */ 299 static bool is_user_regdom_saved(void) 300 { 301 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 302 return false; 303 304 /* This would indicate a mistake on the design */ 305 if (WARN((!is_world_regdom(user_alpha2) && 306 !is_an_alpha2(user_alpha2)), 307 "Unexpected user alpha2: %c%c\n", 308 user_alpha2[0], 309 user_alpha2[1])) 310 return false; 311 312 return true; 313 } 314 315 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd, 316 const struct ieee80211_regdomain *src_regd) 317 { 318 struct ieee80211_regdomain *regd; 319 int size_of_regd = 0; 320 unsigned int i; 321 322 size_of_regd = sizeof(struct ieee80211_regdomain) + 323 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule)); 324 325 regd = kzalloc(size_of_regd, GFP_KERNEL); 326 if (!regd) 327 return -ENOMEM; 328 329 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 330 331 for (i = 0; i < src_regd->n_reg_rules; i++) 332 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 333 sizeof(struct ieee80211_reg_rule)); 334 335 *dst_regd = regd; 336 return 0; 337 } 338 339 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 340 struct reg_regdb_search_request { 341 char alpha2[2]; 342 struct list_head list; 343 }; 344 345 static LIST_HEAD(reg_regdb_search_list); 346 static DEFINE_MUTEX(reg_regdb_search_mutex); 347 348 static void reg_regdb_search(struct work_struct *work) 349 { 350 struct reg_regdb_search_request *request; 351 const struct ieee80211_regdomain *curdom, *regdom; 352 int i, r; 353 354 mutex_lock(®_regdb_search_mutex); 355 while (!list_empty(®_regdb_search_list)) { 356 request = list_first_entry(®_regdb_search_list, 357 struct reg_regdb_search_request, 358 list); 359 list_del(&request->list); 360 361 for (i=0; i<reg_regdb_size; i++) { 362 curdom = reg_regdb[i]; 363 364 if (!memcmp(request->alpha2, curdom->alpha2, 2)) { 365 r = reg_copy_regd(®dom, curdom); 366 if (r) 367 break; 368 mutex_lock(&cfg80211_mutex); 369 set_regdom(regdom); 370 mutex_unlock(&cfg80211_mutex); 371 break; 372 } 373 } 374 375 kfree(request); 376 } 377 mutex_unlock(®_regdb_search_mutex); 378 } 379 380 static DECLARE_WORK(reg_regdb_work, reg_regdb_search); 381 382 static void reg_regdb_query(const char *alpha2) 383 { 384 struct reg_regdb_search_request *request; 385 386 if (!alpha2) 387 return; 388 389 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL); 390 if (!request) 391 return; 392 393 memcpy(request->alpha2, alpha2, 2); 394 395 mutex_lock(®_regdb_search_mutex); 396 list_add_tail(&request->list, ®_regdb_search_list); 397 mutex_unlock(®_regdb_search_mutex); 398 399 schedule_work(®_regdb_work); 400 } 401 402 /* Feel free to add any other sanity checks here */ 403 static void reg_regdb_size_check(void) 404 { 405 /* We should ideally BUILD_BUG_ON() but then random builds would fail */ 406 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it..."); 407 } 408 #else 409 static inline void reg_regdb_size_check(void) {} 410 static inline void reg_regdb_query(const char *alpha2) {} 411 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 412 413 /* 414 * This lets us keep regulatory code which is updated on a regulatory 415 * basis in userspace. Country information is filled in by 416 * reg_device_uevent 417 */ 418 static int call_crda(const char *alpha2) 419 { 420 if (!is_world_regdom((char *) alpha2)) 421 pr_info("Calling CRDA for country: %c%c\n", 422 alpha2[0], alpha2[1]); 423 else 424 pr_info("Calling CRDA to update world regulatory domain\n"); 425 426 /* query internal regulatory database (if it exists) */ 427 reg_regdb_query(alpha2); 428 429 return kobject_uevent(®_pdev->dev.kobj, KOBJ_CHANGE); 430 } 431 432 /* Used by nl80211 before kmalloc'ing our regulatory domain */ 433 bool reg_is_valid_request(const char *alpha2) 434 { 435 assert_cfg80211_lock(); 436 437 if (!last_request) 438 return false; 439 440 return alpha2_equal(last_request->alpha2, alpha2); 441 } 442 443 /* Sanity check on a regulatory rule */ 444 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 445 { 446 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 447 u32 freq_diff; 448 449 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 450 return false; 451 452 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 453 return false; 454 455 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 456 457 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 458 freq_range->max_bandwidth_khz > freq_diff) 459 return false; 460 461 return true; 462 } 463 464 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 465 { 466 const struct ieee80211_reg_rule *reg_rule = NULL; 467 unsigned int i; 468 469 if (!rd->n_reg_rules) 470 return false; 471 472 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 473 return false; 474 475 for (i = 0; i < rd->n_reg_rules; i++) { 476 reg_rule = &rd->reg_rules[i]; 477 if (!is_valid_reg_rule(reg_rule)) 478 return false; 479 } 480 481 return true; 482 } 483 484 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 485 u32 center_freq_khz, 486 u32 bw_khz) 487 { 488 u32 start_freq_khz, end_freq_khz; 489 490 start_freq_khz = center_freq_khz - (bw_khz/2); 491 end_freq_khz = center_freq_khz + (bw_khz/2); 492 493 if (start_freq_khz >= freq_range->start_freq_khz && 494 end_freq_khz <= freq_range->end_freq_khz) 495 return true; 496 497 return false; 498 } 499 500 /** 501 * freq_in_rule_band - tells us if a frequency is in a frequency band 502 * @freq_range: frequency rule we want to query 503 * @freq_khz: frequency we are inquiring about 504 * 505 * This lets us know if a specific frequency rule is or is not relevant to 506 * a specific frequency's band. Bands are device specific and artificial 507 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is 508 * safe for now to assume that a frequency rule should not be part of a 509 * frequency's band if the start freq or end freq are off by more than 2 GHz. 510 * This resolution can be lowered and should be considered as we add 511 * regulatory rule support for other "bands". 512 **/ 513 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 514 u32 freq_khz) 515 { 516 #define ONE_GHZ_IN_KHZ 1000000 517 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) 518 return true; 519 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) 520 return true; 521 return false; 522 #undef ONE_GHZ_IN_KHZ 523 } 524 525 /* 526 * Helper for regdom_intersect(), this does the real 527 * mathematical intersection fun 528 */ 529 static int reg_rules_intersect( 530 const struct ieee80211_reg_rule *rule1, 531 const struct ieee80211_reg_rule *rule2, 532 struct ieee80211_reg_rule *intersected_rule) 533 { 534 const struct ieee80211_freq_range *freq_range1, *freq_range2; 535 struct ieee80211_freq_range *freq_range; 536 const struct ieee80211_power_rule *power_rule1, *power_rule2; 537 struct ieee80211_power_rule *power_rule; 538 u32 freq_diff; 539 540 freq_range1 = &rule1->freq_range; 541 freq_range2 = &rule2->freq_range; 542 freq_range = &intersected_rule->freq_range; 543 544 power_rule1 = &rule1->power_rule; 545 power_rule2 = &rule2->power_rule; 546 power_rule = &intersected_rule->power_rule; 547 548 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 549 freq_range2->start_freq_khz); 550 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 551 freq_range2->end_freq_khz); 552 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz, 553 freq_range2->max_bandwidth_khz); 554 555 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 556 if (freq_range->max_bandwidth_khz > freq_diff) 557 freq_range->max_bandwidth_khz = freq_diff; 558 559 power_rule->max_eirp = min(power_rule1->max_eirp, 560 power_rule2->max_eirp); 561 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 562 power_rule2->max_antenna_gain); 563 564 intersected_rule->flags = (rule1->flags | rule2->flags); 565 566 if (!is_valid_reg_rule(intersected_rule)) 567 return -EINVAL; 568 569 return 0; 570 } 571 572 /** 573 * regdom_intersect - do the intersection between two regulatory domains 574 * @rd1: first regulatory domain 575 * @rd2: second regulatory domain 576 * 577 * Use this function to get the intersection between two regulatory domains. 578 * Once completed we will mark the alpha2 for the rd as intersected, "98", 579 * as no one single alpha2 can represent this regulatory domain. 580 * 581 * Returns a pointer to the regulatory domain structure which will hold the 582 * resulting intersection of rules between rd1 and rd2. We will 583 * kzalloc() this structure for you. 584 */ 585 static struct ieee80211_regdomain *regdom_intersect( 586 const struct ieee80211_regdomain *rd1, 587 const struct ieee80211_regdomain *rd2) 588 { 589 int r, size_of_regd; 590 unsigned int x, y; 591 unsigned int num_rules = 0, rule_idx = 0; 592 const struct ieee80211_reg_rule *rule1, *rule2; 593 struct ieee80211_reg_rule *intersected_rule; 594 struct ieee80211_regdomain *rd; 595 /* This is just a dummy holder to help us count */ 596 struct ieee80211_reg_rule irule; 597 598 /* Uses the stack temporarily for counter arithmetic */ 599 intersected_rule = &irule; 600 601 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule)); 602 603 if (!rd1 || !rd2) 604 return NULL; 605 606 /* 607 * First we get a count of the rules we'll need, then we actually 608 * build them. This is to so we can malloc() and free() a 609 * regdomain once. The reason we use reg_rules_intersect() here 610 * is it will return -EINVAL if the rule computed makes no sense. 611 * All rules that do check out OK are valid. 612 */ 613 614 for (x = 0; x < rd1->n_reg_rules; x++) { 615 rule1 = &rd1->reg_rules[x]; 616 for (y = 0; y < rd2->n_reg_rules; y++) { 617 rule2 = &rd2->reg_rules[y]; 618 if (!reg_rules_intersect(rule1, rule2, 619 intersected_rule)) 620 num_rules++; 621 memset(intersected_rule, 0, 622 sizeof(struct ieee80211_reg_rule)); 623 } 624 } 625 626 if (!num_rules) 627 return NULL; 628 629 size_of_regd = sizeof(struct ieee80211_regdomain) + 630 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule)); 631 632 rd = kzalloc(size_of_regd, GFP_KERNEL); 633 if (!rd) 634 return NULL; 635 636 for (x = 0; x < rd1->n_reg_rules; x++) { 637 rule1 = &rd1->reg_rules[x]; 638 for (y = 0; y < rd2->n_reg_rules; y++) { 639 rule2 = &rd2->reg_rules[y]; 640 /* 641 * This time around instead of using the stack lets 642 * write to the target rule directly saving ourselves 643 * a memcpy() 644 */ 645 intersected_rule = &rd->reg_rules[rule_idx]; 646 r = reg_rules_intersect(rule1, rule2, 647 intersected_rule); 648 /* 649 * No need to memset here the intersected rule here as 650 * we're not using the stack anymore 651 */ 652 if (r) 653 continue; 654 rule_idx++; 655 } 656 } 657 658 if (rule_idx != num_rules) { 659 kfree(rd); 660 return NULL; 661 } 662 663 rd->n_reg_rules = num_rules; 664 rd->alpha2[0] = '9'; 665 rd->alpha2[1] = '8'; 666 667 return rd; 668 } 669 670 /* 671 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 672 * want to just have the channel structure use these 673 */ 674 static u32 map_regdom_flags(u32 rd_flags) 675 { 676 u32 channel_flags = 0; 677 if (rd_flags & NL80211_RRF_PASSIVE_SCAN) 678 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN; 679 if (rd_flags & NL80211_RRF_NO_IBSS) 680 channel_flags |= IEEE80211_CHAN_NO_IBSS; 681 if (rd_flags & NL80211_RRF_DFS) 682 channel_flags |= IEEE80211_CHAN_RADAR; 683 return channel_flags; 684 } 685 686 static int freq_reg_info_regd(struct wiphy *wiphy, 687 u32 center_freq, 688 u32 desired_bw_khz, 689 const struct ieee80211_reg_rule **reg_rule, 690 const struct ieee80211_regdomain *custom_regd) 691 { 692 int i; 693 bool band_rule_found = false; 694 const struct ieee80211_regdomain *regd; 695 bool bw_fits = false; 696 697 if (!desired_bw_khz) 698 desired_bw_khz = MHZ_TO_KHZ(20); 699 700 regd = custom_regd ? custom_regd : cfg80211_regdomain; 701 702 /* 703 * Follow the driver's regulatory domain, if present, unless a country 704 * IE has been processed or a user wants to help complaince further 705 */ 706 if (!custom_regd && 707 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 708 last_request->initiator != NL80211_REGDOM_SET_BY_USER && 709 wiphy->regd) 710 regd = wiphy->regd; 711 712 if (!regd) 713 return -EINVAL; 714 715 for (i = 0; i < regd->n_reg_rules; i++) { 716 const struct ieee80211_reg_rule *rr; 717 const struct ieee80211_freq_range *fr = NULL; 718 719 rr = ®d->reg_rules[i]; 720 fr = &rr->freq_range; 721 722 /* 723 * We only need to know if one frequency rule was 724 * was in center_freq's band, that's enough, so lets 725 * not overwrite it once found 726 */ 727 if (!band_rule_found) 728 band_rule_found = freq_in_rule_band(fr, center_freq); 729 730 bw_fits = reg_does_bw_fit(fr, 731 center_freq, 732 desired_bw_khz); 733 734 if (band_rule_found && bw_fits) { 735 *reg_rule = rr; 736 return 0; 737 } 738 } 739 740 if (!band_rule_found) 741 return -ERANGE; 742 743 return -EINVAL; 744 } 745 746 int freq_reg_info(struct wiphy *wiphy, 747 u32 center_freq, 748 u32 desired_bw_khz, 749 const struct ieee80211_reg_rule **reg_rule) 750 { 751 assert_cfg80211_lock(); 752 return freq_reg_info_regd(wiphy, 753 center_freq, 754 desired_bw_khz, 755 reg_rule, 756 NULL); 757 } 758 EXPORT_SYMBOL(freq_reg_info); 759 760 #ifdef CONFIG_CFG80211_REG_DEBUG 761 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 762 { 763 switch (initiator) { 764 case NL80211_REGDOM_SET_BY_CORE: 765 return "Set by core"; 766 case NL80211_REGDOM_SET_BY_USER: 767 return "Set by user"; 768 case NL80211_REGDOM_SET_BY_DRIVER: 769 return "Set by driver"; 770 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 771 return "Set by country IE"; 772 default: 773 WARN_ON(1); 774 return "Set by bug"; 775 } 776 } 777 778 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 779 u32 desired_bw_khz, 780 const struct ieee80211_reg_rule *reg_rule) 781 { 782 const struct ieee80211_power_rule *power_rule; 783 const struct ieee80211_freq_range *freq_range; 784 char max_antenna_gain[32]; 785 786 power_rule = ®_rule->power_rule; 787 freq_range = ®_rule->freq_range; 788 789 if (!power_rule->max_antenna_gain) 790 snprintf(max_antenna_gain, 32, "N/A"); 791 else 792 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain); 793 794 REG_DBG_PRINT("Updating information on frequency %d MHz " 795 "for a %d MHz width channel with regulatory rule:\n", 796 chan->center_freq, 797 KHZ_TO_MHZ(desired_bw_khz)); 798 799 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n", 800 freq_range->start_freq_khz, 801 freq_range->end_freq_khz, 802 freq_range->max_bandwidth_khz, 803 max_antenna_gain, 804 power_rule->max_eirp); 805 } 806 #else 807 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 808 u32 desired_bw_khz, 809 const struct ieee80211_reg_rule *reg_rule) 810 { 811 return; 812 } 813 #endif 814 815 /* 816 * Note that right now we assume the desired channel bandwidth 817 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 818 * per channel, the primary and the extension channel). To support 819 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a 820 * new ieee80211_channel.target_bw and re run the regulatory check 821 * on the wiphy with the target_bw specified. Then we can simply use 822 * that below for the desired_bw_khz below. 823 */ 824 static void handle_channel(struct wiphy *wiphy, 825 enum nl80211_reg_initiator initiator, 826 enum ieee80211_band band, 827 unsigned int chan_idx) 828 { 829 int r; 830 u32 flags, bw_flags = 0; 831 u32 desired_bw_khz = MHZ_TO_KHZ(20); 832 const struct ieee80211_reg_rule *reg_rule = NULL; 833 const struct ieee80211_power_rule *power_rule = NULL; 834 const struct ieee80211_freq_range *freq_range = NULL; 835 struct ieee80211_supported_band *sband; 836 struct ieee80211_channel *chan; 837 struct wiphy *request_wiphy = NULL; 838 839 assert_cfg80211_lock(); 840 841 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 842 843 sband = wiphy->bands[band]; 844 BUG_ON(chan_idx >= sband->n_channels); 845 chan = &sband->channels[chan_idx]; 846 847 flags = chan->orig_flags; 848 849 r = freq_reg_info(wiphy, 850 MHZ_TO_KHZ(chan->center_freq), 851 desired_bw_khz, 852 ®_rule); 853 854 if (r) { 855 /* 856 * We will disable all channels that do not match our 857 * received regulatory rule unless the hint is coming 858 * from a Country IE and the Country IE had no information 859 * about a band. The IEEE 802.11 spec allows for an AP 860 * to send only a subset of the regulatory rules allowed, 861 * so an AP in the US that only supports 2.4 GHz may only send 862 * a country IE with information for the 2.4 GHz band 863 * while 5 GHz is still supported. 864 */ 865 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 866 r == -ERANGE) 867 return; 868 869 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq); 870 chan->flags = IEEE80211_CHAN_DISABLED; 871 return; 872 } 873 874 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule); 875 876 power_rule = ®_rule->power_rule; 877 freq_range = ®_rule->freq_range; 878 879 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 880 bw_flags = IEEE80211_CHAN_NO_HT40; 881 882 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 883 request_wiphy && request_wiphy == wiphy && 884 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { 885 /* 886 * This guarantees the driver's requested regulatory domain 887 * will always be used as a base for further regulatory 888 * settings 889 */ 890 chan->flags = chan->orig_flags = 891 map_regdom_flags(reg_rule->flags) | bw_flags; 892 chan->max_antenna_gain = chan->orig_mag = 893 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 894 chan->max_power = chan->orig_mpwr = 895 (int) MBM_TO_DBM(power_rule->max_eirp); 896 return; 897 } 898 899 chan->beacon_found = false; 900 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 901 chan->max_antenna_gain = min(chan->orig_mag, 902 (int) MBI_TO_DBI(power_rule->max_antenna_gain)); 903 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 904 chan->max_power = min(chan->max_power, chan->max_reg_power); 905 } 906 907 static void handle_band(struct wiphy *wiphy, 908 enum ieee80211_band band, 909 enum nl80211_reg_initiator initiator) 910 { 911 unsigned int i; 912 struct ieee80211_supported_band *sband; 913 914 BUG_ON(!wiphy->bands[band]); 915 sband = wiphy->bands[band]; 916 917 for (i = 0; i < sband->n_channels; i++) 918 handle_channel(wiphy, initiator, band, i); 919 } 920 921 static bool reg_request_cell_base(struct regulatory_request *request) 922 { 923 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 924 return false; 925 if (request->user_reg_hint_type != NL80211_USER_REG_HINT_CELL_BASE) 926 return false; 927 return true; 928 } 929 930 bool reg_last_request_cell_base(void) 931 { 932 bool val; 933 assert_cfg80211_lock(); 934 935 mutex_lock(®_mutex); 936 val = reg_request_cell_base(last_request); 937 mutex_unlock(®_mutex); 938 return val; 939 } 940 941 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS 942 943 /* Core specific check */ 944 static int reg_ignore_cell_hint(struct regulatory_request *pending_request) 945 { 946 if (!reg_num_devs_support_basehint) 947 return -EOPNOTSUPP; 948 949 if (reg_request_cell_base(last_request)) { 950 if (!regdom_changes(pending_request->alpha2)) 951 return -EALREADY; 952 return 0; 953 } 954 return 0; 955 } 956 957 /* Device specific check */ 958 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 959 { 960 if (!(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS)) 961 return true; 962 return false; 963 } 964 #else 965 static int reg_ignore_cell_hint(struct regulatory_request *pending_request) 966 { 967 return -EOPNOTSUPP; 968 } 969 static int reg_dev_ignore_cell_hint(struct wiphy *wiphy) 970 { 971 return true; 972 } 973 #endif 974 975 976 static bool ignore_reg_update(struct wiphy *wiphy, 977 enum nl80211_reg_initiator initiator) 978 { 979 if (!last_request) { 980 REG_DBG_PRINT("Ignoring regulatory request %s since " 981 "last_request is not set\n", 982 reg_initiator_name(initiator)); 983 return true; 984 } 985 986 if (initiator == NL80211_REGDOM_SET_BY_CORE && 987 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) { 988 REG_DBG_PRINT("Ignoring regulatory request %s " 989 "since the driver uses its own custom " 990 "regulatory domain\n", 991 reg_initiator_name(initiator)); 992 return true; 993 } 994 995 /* 996 * wiphy->regd will be set once the device has its own 997 * desired regulatory domain set 998 */ 999 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd && 1000 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1001 !is_world_regdom(last_request->alpha2)) { 1002 REG_DBG_PRINT("Ignoring regulatory request %s " 1003 "since the driver requires its own regulatory " 1004 "domain to be set first\n", 1005 reg_initiator_name(initiator)); 1006 return true; 1007 } 1008 1009 if (reg_request_cell_base(last_request)) 1010 return reg_dev_ignore_cell_hint(wiphy); 1011 1012 return false; 1013 } 1014 1015 static void handle_reg_beacon(struct wiphy *wiphy, 1016 unsigned int chan_idx, 1017 struct reg_beacon *reg_beacon) 1018 { 1019 struct ieee80211_supported_band *sband; 1020 struct ieee80211_channel *chan; 1021 bool channel_changed = false; 1022 struct ieee80211_channel chan_before; 1023 1024 assert_cfg80211_lock(); 1025 1026 sband = wiphy->bands[reg_beacon->chan.band]; 1027 chan = &sband->channels[chan_idx]; 1028 1029 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1030 return; 1031 1032 if (chan->beacon_found) 1033 return; 1034 1035 chan->beacon_found = true; 1036 1037 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS) 1038 return; 1039 1040 chan_before.center_freq = chan->center_freq; 1041 chan_before.flags = chan->flags; 1042 1043 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) { 1044 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN; 1045 channel_changed = true; 1046 } 1047 1048 if (chan->flags & IEEE80211_CHAN_NO_IBSS) { 1049 chan->flags &= ~IEEE80211_CHAN_NO_IBSS; 1050 channel_changed = true; 1051 } 1052 1053 if (channel_changed) 1054 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1055 } 1056 1057 /* 1058 * Called when a scan on a wiphy finds a beacon on 1059 * new channel 1060 */ 1061 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1062 struct reg_beacon *reg_beacon) 1063 { 1064 unsigned int i; 1065 struct ieee80211_supported_band *sband; 1066 1067 assert_cfg80211_lock(); 1068 1069 if (!wiphy->bands[reg_beacon->chan.band]) 1070 return; 1071 1072 sband = wiphy->bands[reg_beacon->chan.band]; 1073 1074 for (i = 0; i < sband->n_channels; i++) 1075 handle_reg_beacon(wiphy, i, reg_beacon); 1076 } 1077 1078 /* 1079 * Called upon reg changes or a new wiphy is added 1080 */ 1081 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1082 { 1083 unsigned int i; 1084 struct ieee80211_supported_band *sband; 1085 struct reg_beacon *reg_beacon; 1086 1087 assert_cfg80211_lock(); 1088 1089 if (list_empty(®_beacon_list)) 1090 return; 1091 1092 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1093 if (!wiphy->bands[reg_beacon->chan.band]) 1094 continue; 1095 sband = wiphy->bands[reg_beacon->chan.band]; 1096 for (i = 0; i < sband->n_channels; i++) 1097 handle_reg_beacon(wiphy, i, reg_beacon); 1098 } 1099 } 1100 1101 static bool reg_is_world_roaming(struct wiphy *wiphy) 1102 { 1103 if (is_world_regdom(cfg80211_regdomain->alpha2) || 1104 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2))) 1105 return true; 1106 if (last_request && 1107 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1108 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) 1109 return true; 1110 return false; 1111 } 1112 1113 /* Reap the advantages of previously found beacons */ 1114 static void reg_process_beacons(struct wiphy *wiphy) 1115 { 1116 /* 1117 * Means we are just firing up cfg80211, so no beacons would 1118 * have been processed yet. 1119 */ 1120 if (!last_request) 1121 return; 1122 if (!reg_is_world_roaming(wiphy)) 1123 return; 1124 wiphy_update_beacon_reg(wiphy); 1125 } 1126 1127 static bool is_ht40_not_allowed(struct ieee80211_channel *chan) 1128 { 1129 if (!chan) 1130 return true; 1131 if (chan->flags & IEEE80211_CHAN_DISABLED) 1132 return true; 1133 /* This would happen when regulatory rules disallow HT40 completely */ 1134 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40))) 1135 return true; 1136 return false; 1137 } 1138 1139 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1140 enum ieee80211_band band, 1141 unsigned int chan_idx) 1142 { 1143 struct ieee80211_supported_band *sband; 1144 struct ieee80211_channel *channel; 1145 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1146 unsigned int i; 1147 1148 assert_cfg80211_lock(); 1149 1150 sband = wiphy->bands[band]; 1151 BUG_ON(chan_idx >= sband->n_channels); 1152 channel = &sband->channels[chan_idx]; 1153 1154 if (is_ht40_not_allowed(channel)) { 1155 channel->flags |= IEEE80211_CHAN_NO_HT40; 1156 return; 1157 } 1158 1159 /* 1160 * We need to ensure the extension channels exist to 1161 * be able to use HT40- or HT40+, this finds them (or not) 1162 */ 1163 for (i = 0; i < sband->n_channels; i++) { 1164 struct ieee80211_channel *c = &sband->channels[i]; 1165 if (c->center_freq == (channel->center_freq - 20)) 1166 channel_before = c; 1167 if (c->center_freq == (channel->center_freq + 20)) 1168 channel_after = c; 1169 } 1170 1171 /* 1172 * Please note that this assumes target bandwidth is 20 MHz, 1173 * if that ever changes we also need to change the below logic 1174 * to include that as well. 1175 */ 1176 if (is_ht40_not_allowed(channel_before)) 1177 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1178 else 1179 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1180 1181 if (is_ht40_not_allowed(channel_after)) 1182 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1183 else 1184 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1185 } 1186 1187 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1188 enum ieee80211_band band) 1189 { 1190 unsigned int i; 1191 struct ieee80211_supported_band *sband; 1192 1193 BUG_ON(!wiphy->bands[band]); 1194 sband = wiphy->bands[band]; 1195 1196 for (i = 0; i < sband->n_channels; i++) 1197 reg_process_ht_flags_channel(wiphy, band, i); 1198 } 1199 1200 static void reg_process_ht_flags(struct wiphy *wiphy) 1201 { 1202 enum ieee80211_band band; 1203 1204 if (!wiphy) 1205 return; 1206 1207 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1208 if (wiphy->bands[band]) 1209 reg_process_ht_flags_band(wiphy, band); 1210 } 1211 1212 } 1213 1214 static void wiphy_update_regulatory(struct wiphy *wiphy, 1215 enum nl80211_reg_initiator initiator) 1216 { 1217 enum ieee80211_band band; 1218 1219 assert_reg_lock(); 1220 1221 if (ignore_reg_update(wiphy, initiator)) 1222 return; 1223 1224 last_request->dfs_region = cfg80211_regdomain->dfs_region; 1225 1226 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1227 if (wiphy->bands[band]) 1228 handle_band(wiphy, band, initiator); 1229 } 1230 1231 reg_process_beacons(wiphy); 1232 reg_process_ht_flags(wiphy); 1233 if (wiphy->reg_notifier) 1234 wiphy->reg_notifier(wiphy, last_request); 1235 } 1236 1237 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 1238 { 1239 struct cfg80211_registered_device *rdev; 1240 struct wiphy *wiphy; 1241 1242 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1243 wiphy = &rdev->wiphy; 1244 wiphy_update_regulatory(wiphy, initiator); 1245 /* 1246 * Regulatory updates set by CORE are ignored for custom 1247 * regulatory cards. Let us notify the changes to the driver, 1248 * as some drivers used this to restore its orig_* reg domain. 1249 */ 1250 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1251 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY && 1252 wiphy->reg_notifier) 1253 wiphy->reg_notifier(wiphy, last_request); 1254 } 1255 } 1256 1257 static void handle_channel_custom(struct wiphy *wiphy, 1258 enum ieee80211_band band, 1259 unsigned int chan_idx, 1260 const struct ieee80211_regdomain *regd) 1261 { 1262 int r; 1263 u32 desired_bw_khz = MHZ_TO_KHZ(20); 1264 u32 bw_flags = 0; 1265 const struct ieee80211_reg_rule *reg_rule = NULL; 1266 const struct ieee80211_power_rule *power_rule = NULL; 1267 const struct ieee80211_freq_range *freq_range = NULL; 1268 struct ieee80211_supported_band *sband; 1269 struct ieee80211_channel *chan; 1270 1271 assert_reg_lock(); 1272 1273 sband = wiphy->bands[band]; 1274 BUG_ON(chan_idx >= sband->n_channels); 1275 chan = &sband->channels[chan_idx]; 1276 1277 r = freq_reg_info_regd(wiphy, 1278 MHZ_TO_KHZ(chan->center_freq), 1279 desired_bw_khz, 1280 ®_rule, 1281 regd); 1282 1283 if (r) { 1284 REG_DBG_PRINT("Disabling freq %d MHz as custom " 1285 "regd has no rule that fits a %d MHz " 1286 "wide channel\n", 1287 chan->center_freq, 1288 KHZ_TO_MHZ(desired_bw_khz)); 1289 chan->flags = IEEE80211_CHAN_DISABLED; 1290 return; 1291 } 1292 1293 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule); 1294 1295 power_rule = ®_rule->power_rule; 1296 freq_range = ®_rule->freq_range; 1297 1298 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 1299 bw_flags = IEEE80211_CHAN_NO_HT40; 1300 1301 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1302 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1303 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1304 } 1305 1306 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band, 1307 const struct ieee80211_regdomain *regd) 1308 { 1309 unsigned int i; 1310 struct ieee80211_supported_band *sband; 1311 1312 BUG_ON(!wiphy->bands[band]); 1313 sband = wiphy->bands[band]; 1314 1315 for (i = 0; i < sband->n_channels; i++) 1316 handle_channel_custom(wiphy, band, i, regd); 1317 } 1318 1319 /* Used by drivers prior to wiphy registration */ 1320 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1321 const struct ieee80211_regdomain *regd) 1322 { 1323 enum ieee80211_band band; 1324 unsigned int bands_set = 0; 1325 1326 mutex_lock(®_mutex); 1327 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1328 if (!wiphy->bands[band]) 1329 continue; 1330 handle_band_custom(wiphy, band, regd); 1331 bands_set++; 1332 } 1333 mutex_unlock(®_mutex); 1334 1335 /* 1336 * no point in calling this if it won't have any effect 1337 * on your device's supportd bands. 1338 */ 1339 WARN_ON(!bands_set); 1340 } 1341 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1342 1343 /* 1344 * Return value which can be used by ignore_request() to indicate 1345 * it has been determined we should intersect two regulatory domains 1346 */ 1347 #define REG_INTERSECT 1 1348 1349 /* This has the logic which determines when a new request 1350 * should be ignored. */ 1351 static int ignore_request(struct wiphy *wiphy, 1352 struct regulatory_request *pending_request) 1353 { 1354 struct wiphy *last_wiphy = NULL; 1355 1356 assert_cfg80211_lock(); 1357 1358 /* All initial requests are respected */ 1359 if (!last_request) 1360 return 0; 1361 1362 switch (pending_request->initiator) { 1363 case NL80211_REGDOM_SET_BY_CORE: 1364 return 0; 1365 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1366 1367 if (reg_request_cell_base(last_request)) { 1368 /* Trust a Cell base station over the AP's country IE */ 1369 if (regdom_changes(pending_request->alpha2)) 1370 return -EOPNOTSUPP; 1371 return -EALREADY; 1372 } 1373 1374 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 1375 1376 if (unlikely(!is_an_alpha2(pending_request->alpha2))) 1377 return -EINVAL; 1378 if (last_request->initiator == 1379 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1380 if (last_wiphy != wiphy) { 1381 /* 1382 * Two cards with two APs claiming different 1383 * Country IE alpha2s. We could 1384 * intersect them, but that seems unlikely 1385 * to be correct. Reject second one for now. 1386 */ 1387 if (regdom_changes(pending_request->alpha2)) 1388 return -EOPNOTSUPP; 1389 return -EALREADY; 1390 } 1391 /* 1392 * Two consecutive Country IE hints on the same wiphy. 1393 * This should be picked up early by the driver/stack 1394 */ 1395 if (WARN_ON(regdom_changes(pending_request->alpha2))) 1396 return 0; 1397 return -EALREADY; 1398 } 1399 return 0; 1400 case NL80211_REGDOM_SET_BY_DRIVER: 1401 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) { 1402 if (regdom_changes(pending_request->alpha2)) 1403 return 0; 1404 return -EALREADY; 1405 } 1406 1407 /* 1408 * This would happen if you unplug and plug your card 1409 * back in or if you add a new device for which the previously 1410 * loaded card also agrees on the regulatory domain. 1411 */ 1412 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1413 !regdom_changes(pending_request->alpha2)) 1414 return -EALREADY; 1415 1416 return REG_INTERSECT; 1417 case NL80211_REGDOM_SET_BY_USER: 1418 if (reg_request_cell_base(pending_request)) 1419 return reg_ignore_cell_hint(pending_request); 1420 1421 if (reg_request_cell_base(last_request)) 1422 return -EOPNOTSUPP; 1423 1424 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1425 return REG_INTERSECT; 1426 /* 1427 * If the user knows better the user should set the regdom 1428 * to their country before the IE is picked up 1429 */ 1430 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER && 1431 last_request->intersect) 1432 return -EOPNOTSUPP; 1433 /* 1434 * Process user requests only after previous user/driver/core 1435 * requests have been processed 1436 */ 1437 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE || 1438 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1439 last_request->initiator == NL80211_REGDOM_SET_BY_USER) { 1440 if (regdom_changes(last_request->alpha2)) 1441 return -EAGAIN; 1442 } 1443 1444 if (!regdom_changes(pending_request->alpha2)) 1445 return -EALREADY; 1446 1447 return 0; 1448 } 1449 1450 return -EINVAL; 1451 } 1452 1453 static void reg_set_request_processed(void) 1454 { 1455 bool need_more_processing = false; 1456 1457 last_request->processed = true; 1458 1459 spin_lock(®_requests_lock); 1460 if (!list_empty(®_requests_list)) 1461 need_more_processing = true; 1462 spin_unlock(®_requests_lock); 1463 1464 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) 1465 cancel_delayed_work(®_timeout); 1466 1467 if (need_more_processing) 1468 schedule_work(®_work); 1469 } 1470 1471 /** 1472 * __regulatory_hint - hint to the wireless core a regulatory domain 1473 * @wiphy: if the hint comes from country information from an AP, this 1474 * is required to be set to the wiphy that received the information 1475 * @pending_request: the regulatory request currently being processed 1476 * 1477 * The Wireless subsystem can use this function to hint to the wireless core 1478 * what it believes should be the current regulatory domain. 1479 * 1480 * Returns zero if all went fine, %-EALREADY if a regulatory domain had 1481 * already been set or other standard error codes. 1482 * 1483 * Caller must hold &cfg80211_mutex and ®_mutex 1484 */ 1485 static int __regulatory_hint(struct wiphy *wiphy, 1486 struct regulatory_request *pending_request) 1487 { 1488 bool intersect = false; 1489 int r = 0; 1490 1491 assert_cfg80211_lock(); 1492 1493 r = ignore_request(wiphy, pending_request); 1494 1495 if (r == REG_INTERSECT) { 1496 if (pending_request->initiator == 1497 NL80211_REGDOM_SET_BY_DRIVER) { 1498 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); 1499 if (r) { 1500 kfree(pending_request); 1501 return r; 1502 } 1503 } 1504 intersect = true; 1505 } else if (r) { 1506 /* 1507 * If the regulatory domain being requested by the 1508 * driver has already been set just copy it to the 1509 * wiphy 1510 */ 1511 if (r == -EALREADY && 1512 pending_request->initiator == 1513 NL80211_REGDOM_SET_BY_DRIVER) { 1514 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); 1515 if (r) { 1516 kfree(pending_request); 1517 return r; 1518 } 1519 r = -EALREADY; 1520 goto new_request; 1521 } 1522 kfree(pending_request); 1523 return r; 1524 } 1525 1526 new_request: 1527 if (last_request != &core_request_world) 1528 kfree(last_request); 1529 1530 last_request = pending_request; 1531 last_request->intersect = intersect; 1532 1533 pending_request = NULL; 1534 1535 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) { 1536 user_alpha2[0] = last_request->alpha2[0]; 1537 user_alpha2[1] = last_request->alpha2[1]; 1538 } 1539 1540 /* When r == REG_INTERSECT we do need to call CRDA */ 1541 if (r < 0) { 1542 /* 1543 * Since CRDA will not be called in this case as we already 1544 * have applied the requested regulatory domain before we just 1545 * inform userspace we have processed the request 1546 */ 1547 if (r == -EALREADY) { 1548 nl80211_send_reg_change_event(last_request); 1549 reg_set_request_processed(); 1550 } 1551 return r; 1552 } 1553 1554 return call_crda(last_request->alpha2); 1555 } 1556 1557 /* This processes *all* regulatory hints */ 1558 static void reg_process_hint(struct regulatory_request *reg_request, 1559 enum nl80211_reg_initiator reg_initiator) 1560 { 1561 int r = 0; 1562 struct wiphy *wiphy = NULL; 1563 1564 BUG_ON(!reg_request->alpha2); 1565 1566 if (wiphy_idx_valid(reg_request->wiphy_idx)) 1567 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 1568 1569 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && 1570 !wiphy) { 1571 kfree(reg_request); 1572 return; 1573 } 1574 1575 r = __regulatory_hint(wiphy, reg_request); 1576 /* This is required so that the orig_* parameters are saved */ 1577 if (r == -EALREADY && wiphy && 1578 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { 1579 wiphy_update_regulatory(wiphy, reg_initiator); 1580 return; 1581 } 1582 1583 /* 1584 * We only time out user hints, given that they should be the only 1585 * source of bogus requests. 1586 */ 1587 if (r != -EALREADY && 1588 reg_initiator == NL80211_REGDOM_SET_BY_USER) 1589 schedule_delayed_work(®_timeout, msecs_to_jiffies(3142)); 1590 } 1591 1592 /* 1593 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 1594 * Regulatory hints come on a first come first serve basis and we 1595 * must process each one atomically. 1596 */ 1597 static void reg_process_pending_hints(void) 1598 { 1599 struct regulatory_request *reg_request; 1600 1601 mutex_lock(&cfg80211_mutex); 1602 mutex_lock(®_mutex); 1603 1604 /* When last_request->processed becomes true this will be rescheduled */ 1605 if (last_request && !last_request->processed) { 1606 REG_DBG_PRINT("Pending regulatory request, waiting " 1607 "for it to be processed...\n"); 1608 goto out; 1609 } 1610 1611 spin_lock(®_requests_lock); 1612 1613 if (list_empty(®_requests_list)) { 1614 spin_unlock(®_requests_lock); 1615 goto out; 1616 } 1617 1618 reg_request = list_first_entry(®_requests_list, 1619 struct regulatory_request, 1620 list); 1621 list_del_init(®_request->list); 1622 1623 spin_unlock(®_requests_lock); 1624 1625 reg_process_hint(reg_request, reg_request->initiator); 1626 1627 out: 1628 mutex_unlock(®_mutex); 1629 mutex_unlock(&cfg80211_mutex); 1630 } 1631 1632 /* Processes beacon hints -- this has nothing to do with country IEs */ 1633 static void reg_process_pending_beacon_hints(void) 1634 { 1635 struct cfg80211_registered_device *rdev; 1636 struct reg_beacon *pending_beacon, *tmp; 1637 1638 /* 1639 * No need to hold the reg_mutex here as we just touch wiphys 1640 * and do not read or access regulatory variables. 1641 */ 1642 mutex_lock(&cfg80211_mutex); 1643 1644 /* This goes through the _pending_ beacon list */ 1645 spin_lock_bh(®_pending_beacons_lock); 1646 1647 if (list_empty(®_pending_beacons)) { 1648 spin_unlock_bh(®_pending_beacons_lock); 1649 goto out; 1650 } 1651 1652 list_for_each_entry_safe(pending_beacon, tmp, 1653 ®_pending_beacons, list) { 1654 1655 list_del_init(&pending_beacon->list); 1656 1657 /* Applies the beacon hint to current wiphys */ 1658 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1659 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 1660 1661 /* Remembers the beacon hint for new wiphys or reg changes */ 1662 list_add_tail(&pending_beacon->list, ®_beacon_list); 1663 } 1664 1665 spin_unlock_bh(®_pending_beacons_lock); 1666 out: 1667 mutex_unlock(&cfg80211_mutex); 1668 } 1669 1670 static void reg_todo(struct work_struct *work) 1671 { 1672 reg_process_pending_hints(); 1673 reg_process_pending_beacon_hints(); 1674 } 1675 1676 static void queue_regulatory_request(struct regulatory_request *request) 1677 { 1678 if (isalpha(request->alpha2[0])) 1679 request->alpha2[0] = toupper(request->alpha2[0]); 1680 if (isalpha(request->alpha2[1])) 1681 request->alpha2[1] = toupper(request->alpha2[1]); 1682 1683 spin_lock(®_requests_lock); 1684 list_add_tail(&request->list, ®_requests_list); 1685 spin_unlock(®_requests_lock); 1686 1687 schedule_work(®_work); 1688 } 1689 1690 /* 1691 * Core regulatory hint -- happens during cfg80211_init() 1692 * and when we restore regulatory settings. 1693 */ 1694 static int regulatory_hint_core(const char *alpha2) 1695 { 1696 struct regulatory_request *request; 1697 1698 request = kzalloc(sizeof(struct regulatory_request), 1699 GFP_KERNEL); 1700 if (!request) 1701 return -ENOMEM; 1702 1703 request->alpha2[0] = alpha2[0]; 1704 request->alpha2[1] = alpha2[1]; 1705 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1706 1707 queue_regulatory_request(request); 1708 1709 return 0; 1710 } 1711 1712 /* User hints */ 1713 int regulatory_hint_user(const char *alpha2, 1714 enum nl80211_user_reg_hint_type user_reg_hint_type) 1715 { 1716 struct regulatory_request *request; 1717 1718 BUG_ON(!alpha2); 1719 1720 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1721 if (!request) 1722 return -ENOMEM; 1723 1724 request->wiphy_idx = WIPHY_IDX_STALE; 1725 request->alpha2[0] = alpha2[0]; 1726 request->alpha2[1] = alpha2[1]; 1727 request->initiator = NL80211_REGDOM_SET_BY_USER; 1728 request->user_reg_hint_type = user_reg_hint_type; 1729 1730 queue_regulatory_request(request); 1731 1732 return 0; 1733 } 1734 1735 /* Driver hints */ 1736 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 1737 { 1738 struct regulatory_request *request; 1739 1740 BUG_ON(!alpha2); 1741 BUG_ON(!wiphy); 1742 1743 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1744 if (!request) 1745 return -ENOMEM; 1746 1747 request->wiphy_idx = get_wiphy_idx(wiphy); 1748 1749 /* Must have registered wiphy first */ 1750 BUG_ON(!wiphy_idx_valid(request->wiphy_idx)); 1751 1752 request->alpha2[0] = alpha2[0]; 1753 request->alpha2[1] = alpha2[1]; 1754 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 1755 1756 queue_regulatory_request(request); 1757 1758 return 0; 1759 } 1760 EXPORT_SYMBOL(regulatory_hint); 1761 1762 /* 1763 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and 1764 * therefore cannot iterate over the rdev list here. 1765 */ 1766 void regulatory_hint_11d(struct wiphy *wiphy, 1767 enum ieee80211_band band, 1768 u8 *country_ie, 1769 u8 country_ie_len) 1770 { 1771 char alpha2[2]; 1772 enum environment_cap env = ENVIRON_ANY; 1773 struct regulatory_request *request; 1774 1775 mutex_lock(®_mutex); 1776 1777 if (unlikely(!last_request)) 1778 goto out; 1779 1780 /* IE len must be evenly divisible by 2 */ 1781 if (country_ie_len & 0x01) 1782 goto out; 1783 1784 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 1785 goto out; 1786 1787 alpha2[0] = country_ie[0]; 1788 alpha2[1] = country_ie[1]; 1789 1790 if (country_ie[2] == 'I') 1791 env = ENVIRON_INDOOR; 1792 else if (country_ie[2] == 'O') 1793 env = ENVIRON_OUTDOOR; 1794 1795 /* 1796 * We will run this only upon a successful connection on cfg80211. 1797 * We leave conflict resolution to the workqueue, where can hold 1798 * cfg80211_mutex. 1799 */ 1800 if (likely(last_request->initiator == 1801 NL80211_REGDOM_SET_BY_COUNTRY_IE && 1802 wiphy_idx_valid(last_request->wiphy_idx))) 1803 goto out; 1804 1805 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1806 if (!request) 1807 goto out; 1808 1809 request->wiphy_idx = get_wiphy_idx(wiphy); 1810 request->alpha2[0] = alpha2[0]; 1811 request->alpha2[1] = alpha2[1]; 1812 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 1813 request->country_ie_env = env; 1814 1815 mutex_unlock(®_mutex); 1816 1817 queue_regulatory_request(request); 1818 1819 return; 1820 1821 out: 1822 mutex_unlock(®_mutex); 1823 } 1824 1825 static void restore_alpha2(char *alpha2, bool reset_user) 1826 { 1827 /* indicates there is no alpha2 to consider for restoration */ 1828 alpha2[0] = '9'; 1829 alpha2[1] = '7'; 1830 1831 /* The user setting has precedence over the module parameter */ 1832 if (is_user_regdom_saved()) { 1833 /* Unless we're asked to ignore it and reset it */ 1834 if (reset_user) { 1835 REG_DBG_PRINT("Restoring regulatory settings " 1836 "including user preference\n"); 1837 user_alpha2[0] = '9'; 1838 user_alpha2[1] = '7'; 1839 1840 /* 1841 * If we're ignoring user settings, we still need to 1842 * check the module parameter to ensure we put things 1843 * back as they were for a full restore. 1844 */ 1845 if (!is_world_regdom(ieee80211_regdom)) { 1846 REG_DBG_PRINT("Keeping preference on " 1847 "module parameter ieee80211_regdom: %c%c\n", 1848 ieee80211_regdom[0], 1849 ieee80211_regdom[1]); 1850 alpha2[0] = ieee80211_regdom[0]; 1851 alpha2[1] = ieee80211_regdom[1]; 1852 } 1853 } else { 1854 REG_DBG_PRINT("Restoring regulatory settings " 1855 "while preserving user preference for: %c%c\n", 1856 user_alpha2[0], 1857 user_alpha2[1]); 1858 alpha2[0] = user_alpha2[0]; 1859 alpha2[1] = user_alpha2[1]; 1860 } 1861 } else if (!is_world_regdom(ieee80211_regdom)) { 1862 REG_DBG_PRINT("Keeping preference on " 1863 "module parameter ieee80211_regdom: %c%c\n", 1864 ieee80211_regdom[0], 1865 ieee80211_regdom[1]); 1866 alpha2[0] = ieee80211_regdom[0]; 1867 alpha2[1] = ieee80211_regdom[1]; 1868 } else 1869 REG_DBG_PRINT("Restoring regulatory settings\n"); 1870 } 1871 1872 static void restore_custom_reg_settings(struct wiphy *wiphy) 1873 { 1874 struct ieee80211_supported_band *sband; 1875 enum ieee80211_band band; 1876 struct ieee80211_channel *chan; 1877 int i; 1878 1879 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1880 sband = wiphy->bands[band]; 1881 if (!sband) 1882 continue; 1883 for (i = 0; i < sband->n_channels; i++) { 1884 chan = &sband->channels[i]; 1885 chan->flags = chan->orig_flags; 1886 chan->max_antenna_gain = chan->orig_mag; 1887 chan->max_power = chan->orig_mpwr; 1888 } 1889 } 1890 } 1891 1892 /* 1893 * Restoring regulatory settings involves ingoring any 1894 * possibly stale country IE information and user regulatory 1895 * settings if so desired, this includes any beacon hints 1896 * learned as we could have traveled outside to another country 1897 * after disconnection. To restore regulatory settings we do 1898 * exactly what we did at bootup: 1899 * 1900 * - send a core regulatory hint 1901 * - send a user regulatory hint if applicable 1902 * 1903 * Device drivers that send a regulatory hint for a specific country 1904 * keep their own regulatory domain on wiphy->regd so that does does 1905 * not need to be remembered. 1906 */ 1907 static void restore_regulatory_settings(bool reset_user) 1908 { 1909 char alpha2[2]; 1910 char world_alpha2[2]; 1911 struct reg_beacon *reg_beacon, *btmp; 1912 struct regulatory_request *reg_request, *tmp; 1913 LIST_HEAD(tmp_reg_req_list); 1914 struct cfg80211_registered_device *rdev; 1915 1916 mutex_lock(&cfg80211_mutex); 1917 mutex_lock(®_mutex); 1918 1919 reset_regdomains(true); 1920 restore_alpha2(alpha2, reset_user); 1921 1922 /* 1923 * If there's any pending requests we simply 1924 * stash them to a temporary pending queue and 1925 * add then after we've restored regulatory 1926 * settings. 1927 */ 1928 spin_lock(®_requests_lock); 1929 if (!list_empty(®_requests_list)) { 1930 list_for_each_entry_safe(reg_request, tmp, 1931 ®_requests_list, list) { 1932 if (reg_request->initiator != 1933 NL80211_REGDOM_SET_BY_USER) 1934 continue; 1935 list_del(®_request->list); 1936 list_add_tail(®_request->list, &tmp_reg_req_list); 1937 } 1938 } 1939 spin_unlock(®_requests_lock); 1940 1941 /* Clear beacon hints */ 1942 spin_lock_bh(®_pending_beacons_lock); 1943 if (!list_empty(®_pending_beacons)) { 1944 list_for_each_entry_safe(reg_beacon, btmp, 1945 ®_pending_beacons, list) { 1946 list_del(®_beacon->list); 1947 kfree(reg_beacon); 1948 } 1949 } 1950 spin_unlock_bh(®_pending_beacons_lock); 1951 1952 if (!list_empty(®_beacon_list)) { 1953 list_for_each_entry_safe(reg_beacon, btmp, 1954 ®_beacon_list, list) { 1955 list_del(®_beacon->list); 1956 kfree(reg_beacon); 1957 } 1958 } 1959 1960 /* First restore to the basic regulatory settings */ 1961 cfg80211_regdomain = cfg80211_world_regdom; 1962 world_alpha2[0] = cfg80211_regdomain->alpha2[0]; 1963 world_alpha2[1] = cfg80211_regdomain->alpha2[1]; 1964 1965 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1966 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY) 1967 restore_custom_reg_settings(&rdev->wiphy); 1968 } 1969 1970 mutex_unlock(®_mutex); 1971 mutex_unlock(&cfg80211_mutex); 1972 1973 regulatory_hint_core(world_alpha2); 1974 1975 /* 1976 * This restores the ieee80211_regdom module parameter 1977 * preference or the last user requested regulatory 1978 * settings, user regulatory settings takes precedence. 1979 */ 1980 if (is_an_alpha2(alpha2)) 1981 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER); 1982 1983 if (list_empty(&tmp_reg_req_list)) 1984 return; 1985 1986 mutex_lock(&cfg80211_mutex); 1987 mutex_lock(®_mutex); 1988 1989 spin_lock(®_requests_lock); 1990 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) { 1991 REG_DBG_PRINT("Adding request for country %c%c back " 1992 "into the queue\n", 1993 reg_request->alpha2[0], 1994 reg_request->alpha2[1]); 1995 list_del(®_request->list); 1996 list_add_tail(®_request->list, ®_requests_list); 1997 } 1998 spin_unlock(®_requests_lock); 1999 2000 mutex_unlock(®_mutex); 2001 mutex_unlock(&cfg80211_mutex); 2002 2003 REG_DBG_PRINT("Kicking the queue\n"); 2004 2005 schedule_work(®_work); 2006 } 2007 2008 void regulatory_hint_disconnect(void) 2009 { 2010 REG_DBG_PRINT("All devices are disconnected, going to " 2011 "restore regulatory settings\n"); 2012 restore_regulatory_settings(false); 2013 } 2014 2015 static bool freq_is_chan_12_13_14(u16 freq) 2016 { 2017 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || 2018 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || 2019 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) 2020 return true; 2021 return false; 2022 } 2023 2024 int regulatory_hint_found_beacon(struct wiphy *wiphy, 2025 struct ieee80211_channel *beacon_chan, 2026 gfp_t gfp) 2027 { 2028 struct reg_beacon *reg_beacon; 2029 2030 if (likely((beacon_chan->beacon_found || 2031 (beacon_chan->flags & IEEE80211_CHAN_RADAR) || 2032 (beacon_chan->band == IEEE80211_BAND_2GHZ && 2033 !freq_is_chan_12_13_14(beacon_chan->center_freq))))) 2034 return 0; 2035 2036 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 2037 if (!reg_beacon) 2038 return -ENOMEM; 2039 2040 REG_DBG_PRINT("Found new beacon on " 2041 "frequency: %d MHz (Ch %d) on %s\n", 2042 beacon_chan->center_freq, 2043 ieee80211_frequency_to_channel(beacon_chan->center_freq), 2044 wiphy_name(wiphy)); 2045 2046 memcpy(®_beacon->chan, beacon_chan, 2047 sizeof(struct ieee80211_channel)); 2048 2049 2050 /* 2051 * Since we can be called from BH or and non-BH context 2052 * we must use spin_lock_bh() 2053 */ 2054 spin_lock_bh(®_pending_beacons_lock); 2055 list_add_tail(®_beacon->list, ®_pending_beacons); 2056 spin_unlock_bh(®_pending_beacons_lock); 2057 2058 schedule_work(®_work); 2059 2060 return 0; 2061 } 2062 2063 static void print_rd_rules(const struct ieee80211_regdomain *rd) 2064 { 2065 unsigned int i; 2066 const struct ieee80211_reg_rule *reg_rule = NULL; 2067 const struct ieee80211_freq_range *freq_range = NULL; 2068 const struct ieee80211_power_rule *power_rule = NULL; 2069 2070 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n"); 2071 2072 for (i = 0; i < rd->n_reg_rules; i++) { 2073 reg_rule = &rd->reg_rules[i]; 2074 freq_range = ®_rule->freq_range; 2075 power_rule = ®_rule->power_rule; 2076 2077 /* 2078 * There may not be documentation for max antenna gain 2079 * in certain regions 2080 */ 2081 if (power_rule->max_antenna_gain) 2082 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n", 2083 freq_range->start_freq_khz, 2084 freq_range->end_freq_khz, 2085 freq_range->max_bandwidth_khz, 2086 power_rule->max_antenna_gain, 2087 power_rule->max_eirp); 2088 else 2089 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n", 2090 freq_range->start_freq_khz, 2091 freq_range->end_freq_khz, 2092 freq_range->max_bandwidth_khz, 2093 power_rule->max_eirp); 2094 } 2095 } 2096 2097 bool reg_supported_dfs_region(u8 dfs_region) 2098 { 2099 switch (dfs_region) { 2100 case NL80211_DFS_UNSET: 2101 case NL80211_DFS_FCC: 2102 case NL80211_DFS_ETSI: 2103 case NL80211_DFS_JP: 2104 return true; 2105 default: 2106 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n", 2107 dfs_region); 2108 return false; 2109 } 2110 } 2111 2112 static void print_dfs_region(u8 dfs_region) 2113 { 2114 if (!dfs_region) 2115 return; 2116 2117 switch (dfs_region) { 2118 case NL80211_DFS_FCC: 2119 pr_info(" DFS Master region FCC"); 2120 break; 2121 case NL80211_DFS_ETSI: 2122 pr_info(" DFS Master region ETSI"); 2123 break; 2124 case NL80211_DFS_JP: 2125 pr_info(" DFS Master region JP"); 2126 break; 2127 default: 2128 pr_info(" DFS Master region Uknown"); 2129 break; 2130 } 2131 } 2132 2133 static void print_regdomain(const struct ieee80211_regdomain *rd) 2134 { 2135 2136 if (is_intersected_alpha2(rd->alpha2)) { 2137 2138 if (last_request->initiator == 2139 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2140 struct cfg80211_registered_device *rdev; 2141 rdev = cfg80211_rdev_by_wiphy_idx( 2142 last_request->wiphy_idx); 2143 if (rdev) { 2144 pr_info("Current regulatory domain updated by AP to: %c%c\n", 2145 rdev->country_ie_alpha2[0], 2146 rdev->country_ie_alpha2[1]); 2147 } else 2148 pr_info("Current regulatory domain intersected:\n"); 2149 } else 2150 pr_info("Current regulatory domain intersected:\n"); 2151 } else if (is_world_regdom(rd->alpha2)) 2152 pr_info("World regulatory domain updated:\n"); 2153 else { 2154 if (is_unknown_alpha2(rd->alpha2)) 2155 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); 2156 else { 2157 if (reg_request_cell_base(last_request)) 2158 pr_info("Regulatory domain changed " 2159 "to country: %c%c by Cell Station\n", 2160 rd->alpha2[0], rd->alpha2[1]); 2161 else 2162 pr_info("Regulatory domain changed " 2163 "to country: %c%c\n", 2164 rd->alpha2[0], rd->alpha2[1]); 2165 } 2166 } 2167 print_dfs_region(rd->dfs_region); 2168 print_rd_rules(rd); 2169 } 2170 2171 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 2172 { 2173 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 2174 print_rd_rules(rd); 2175 } 2176 2177 /* Takes ownership of rd only if it doesn't fail */ 2178 static int __set_regdom(const struct ieee80211_regdomain *rd) 2179 { 2180 const struct ieee80211_regdomain *intersected_rd = NULL; 2181 struct cfg80211_registered_device *rdev = NULL; 2182 struct wiphy *request_wiphy; 2183 /* Some basic sanity checks first */ 2184 2185 if (is_world_regdom(rd->alpha2)) { 2186 if (WARN_ON(!reg_is_valid_request(rd->alpha2))) 2187 return -EINVAL; 2188 update_world_regdomain(rd); 2189 return 0; 2190 } 2191 2192 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 2193 !is_unknown_alpha2(rd->alpha2)) 2194 return -EINVAL; 2195 2196 if (!last_request) 2197 return -EINVAL; 2198 2199 /* 2200 * Lets only bother proceeding on the same alpha2 if the current 2201 * rd is non static (it means CRDA was present and was used last) 2202 * and the pending request came in from a country IE 2203 */ 2204 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2205 /* 2206 * If someone else asked us to change the rd lets only bother 2207 * checking if the alpha2 changes if CRDA was already called 2208 */ 2209 if (!regdom_changes(rd->alpha2)) 2210 return -EALREADY; 2211 } 2212 2213 /* 2214 * Now lets set the regulatory domain, update all driver channels 2215 * and finally inform them of what we have done, in case they want 2216 * to review or adjust their own settings based on their own 2217 * internal EEPROM data 2218 */ 2219 2220 if (WARN_ON(!reg_is_valid_request(rd->alpha2))) 2221 return -EINVAL; 2222 2223 if (!is_valid_rd(rd)) { 2224 pr_err("Invalid regulatory domain detected:\n"); 2225 print_regdomain_info(rd); 2226 return -EINVAL; 2227 } 2228 2229 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 2230 if (!request_wiphy && 2231 (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2232 last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) { 2233 schedule_delayed_work(®_timeout, 0); 2234 return -ENODEV; 2235 } 2236 2237 if (!last_request->intersect) { 2238 int r; 2239 2240 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) { 2241 reset_regdomains(false); 2242 cfg80211_regdomain = rd; 2243 return 0; 2244 } 2245 2246 /* 2247 * For a driver hint, lets copy the regulatory domain the 2248 * driver wanted to the wiphy to deal with conflicts 2249 */ 2250 2251 /* 2252 * Userspace could have sent two replies with only 2253 * one kernel request. 2254 */ 2255 if (request_wiphy->regd) 2256 return -EALREADY; 2257 2258 r = reg_copy_regd(&request_wiphy->regd, rd); 2259 if (r) 2260 return r; 2261 2262 reset_regdomains(false); 2263 cfg80211_regdomain = rd; 2264 return 0; 2265 } 2266 2267 /* Intersection requires a bit more work */ 2268 2269 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2270 2271 intersected_rd = regdom_intersect(rd, cfg80211_regdomain); 2272 if (!intersected_rd) 2273 return -EINVAL; 2274 2275 /* 2276 * We can trash what CRDA provided now. 2277 * However if a driver requested this specific regulatory 2278 * domain we keep it for its private use 2279 */ 2280 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) 2281 request_wiphy->regd = rd; 2282 else 2283 kfree(rd); 2284 2285 rd = NULL; 2286 2287 reset_regdomains(false); 2288 cfg80211_regdomain = intersected_rd; 2289 2290 return 0; 2291 } 2292 2293 if (!intersected_rd) 2294 return -EINVAL; 2295 2296 rdev = wiphy_to_dev(request_wiphy); 2297 2298 rdev->country_ie_alpha2[0] = rd->alpha2[0]; 2299 rdev->country_ie_alpha2[1] = rd->alpha2[1]; 2300 rdev->env = last_request->country_ie_env; 2301 2302 BUG_ON(intersected_rd == rd); 2303 2304 kfree(rd); 2305 rd = NULL; 2306 2307 reset_regdomains(false); 2308 cfg80211_regdomain = intersected_rd; 2309 2310 return 0; 2311 } 2312 2313 2314 /* 2315 * Use this call to set the current regulatory domain. Conflicts with 2316 * multiple drivers can be ironed out later. Caller must've already 2317 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex 2318 */ 2319 int set_regdom(const struct ieee80211_regdomain *rd) 2320 { 2321 int r; 2322 2323 assert_cfg80211_lock(); 2324 2325 mutex_lock(®_mutex); 2326 2327 /* Note that this doesn't update the wiphys, this is done below */ 2328 r = __set_regdom(rd); 2329 if (r) { 2330 if (r == -EALREADY) 2331 reg_set_request_processed(); 2332 2333 kfree(rd); 2334 mutex_unlock(®_mutex); 2335 return r; 2336 } 2337 2338 /* This would make this whole thing pointless */ 2339 if (!last_request->intersect) 2340 BUG_ON(rd != cfg80211_regdomain); 2341 2342 /* update all wiphys now with the new established regulatory domain */ 2343 update_all_wiphy_regulatory(last_request->initiator); 2344 2345 print_regdomain(cfg80211_regdomain); 2346 2347 nl80211_send_reg_change_event(last_request); 2348 2349 reg_set_request_processed(); 2350 2351 mutex_unlock(®_mutex); 2352 2353 return r; 2354 } 2355 2356 #ifdef CONFIG_HOTPLUG 2357 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) 2358 { 2359 if (last_request && !last_request->processed) { 2360 if (add_uevent_var(env, "COUNTRY=%c%c", 2361 last_request->alpha2[0], 2362 last_request->alpha2[1])) 2363 return -ENOMEM; 2364 } 2365 2366 return 0; 2367 } 2368 #else 2369 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) 2370 { 2371 return -ENODEV; 2372 } 2373 #endif /* CONFIG_HOTPLUG */ 2374 2375 void wiphy_regulatory_register(struct wiphy *wiphy) 2376 { 2377 assert_cfg80211_lock(); 2378 2379 mutex_lock(®_mutex); 2380 2381 if (!reg_dev_ignore_cell_hint(wiphy)) 2382 reg_num_devs_support_basehint++; 2383 2384 wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE); 2385 2386 mutex_unlock(®_mutex); 2387 } 2388 2389 /* Caller must hold cfg80211_mutex */ 2390 void wiphy_regulatory_deregister(struct wiphy *wiphy) 2391 { 2392 struct wiphy *request_wiphy = NULL; 2393 2394 assert_cfg80211_lock(); 2395 2396 mutex_lock(®_mutex); 2397 2398 if (!reg_dev_ignore_cell_hint(wiphy)) 2399 reg_num_devs_support_basehint--; 2400 2401 kfree(wiphy->regd); 2402 2403 if (last_request) 2404 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 2405 2406 if (!request_wiphy || request_wiphy != wiphy) 2407 goto out; 2408 2409 last_request->wiphy_idx = WIPHY_IDX_STALE; 2410 last_request->country_ie_env = ENVIRON_ANY; 2411 out: 2412 mutex_unlock(®_mutex); 2413 } 2414 2415 static void reg_timeout_work(struct work_struct *work) 2416 { 2417 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, " 2418 "restoring regulatory settings\n"); 2419 restore_regulatory_settings(true); 2420 } 2421 2422 int __init regulatory_init(void) 2423 { 2424 int err = 0; 2425 2426 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 2427 if (IS_ERR(reg_pdev)) 2428 return PTR_ERR(reg_pdev); 2429 2430 reg_pdev->dev.type = ®_device_type; 2431 2432 spin_lock_init(®_requests_lock); 2433 spin_lock_init(®_pending_beacons_lock); 2434 2435 reg_regdb_size_check(); 2436 2437 cfg80211_regdomain = cfg80211_world_regdom; 2438 2439 user_alpha2[0] = '9'; 2440 user_alpha2[1] = '7'; 2441 2442 /* We always try to get an update for the static regdomain */ 2443 err = regulatory_hint_core(cfg80211_regdomain->alpha2); 2444 if (err) { 2445 if (err == -ENOMEM) 2446 return err; 2447 /* 2448 * N.B. kobject_uevent_env() can fail mainly for when we're out 2449 * memory which is handled and propagated appropriately above 2450 * but it can also fail during a netlink_broadcast() or during 2451 * early boot for call_usermodehelper(). For now treat these 2452 * errors as non-fatal. 2453 */ 2454 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 2455 #ifdef CONFIG_CFG80211_REG_DEBUG 2456 /* We want to find out exactly why when debugging */ 2457 WARN_ON(err); 2458 #endif 2459 } 2460 2461 /* 2462 * Finally, if the user set the module parameter treat it 2463 * as a user hint. 2464 */ 2465 if (!is_world_regdom(ieee80211_regdom)) 2466 regulatory_hint_user(ieee80211_regdom, 2467 NL80211_USER_REG_HINT_USER); 2468 2469 return 0; 2470 } 2471 2472 void /* __init_or_exit */ regulatory_exit(void) 2473 { 2474 struct regulatory_request *reg_request, *tmp; 2475 struct reg_beacon *reg_beacon, *btmp; 2476 2477 cancel_work_sync(®_work); 2478 cancel_delayed_work_sync(®_timeout); 2479 2480 mutex_lock(&cfg80211_mutex); 2481 mutex_lock(®_mutex); 2482 2483 reset_regdomains(true); 2484 2485 dev_set_uevent_suppress(®_pdev->dev, true); 2486 2487 platform_device_unregister(reg_pdev); 2488 2489 spin_lock_bh(®_pending_beacons_lock); 2490 if (!list_empty(®_pending_beacons)) { 2491 list_for_each_entry_safe(reg_beacon, btmp, 2492 ®_pending_beacons, list) { 2493 list_del(®_beacon->list); 2494 kfree(reg_beacon); 2495 } 2496 } 2497 spin_unlock_bh(®_pending_beacons_lock); 2498 2499 if (!list_empty(®_beacon_list)) { 2500 list_for_each_entry_safe(reg_beacon, btmp, 2501 ®_beacon_list, list) { 2502 list_del(®_beacon->list); 2503 kfree(reg_beacon); 2504 } 2505 } 2506 2507 spin_lock(®_requests_lock); 2508 if (!list_empty(®_requests_list)) { 2509 list_for_each_entry_safe(reg_request, tmp, 2510 ®_requests_list, list) { 2511 list_del(®_request->list); 2512 kfree(reg_request); 2513 } 2514 } 2515 spin_unlock(®_requests_lock); 2516 2517 mutex_unlock(®_mutex); 2518 mutex_unlock(&cfg80211_mutex); 2519 } 2520