xref: /openbmc/linux/net/wireless/reg.c (revision b595076a)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/random.h>
39 #include <linux/ctype.h>
40 #include <linux/nl80211.h>
41 #include <linux/platform_device.h>
42 #include <net/cfg80211.h>
43 #include "core.h"
44 #include "reg.h"
45 #include "regdb.h"
46 #include "nl80211.h"
47 
48 #ifdef CONFIG_CFG80211_REG_DEBUG
49 #define REG_DBG_PRINT(format, args...) \
50 	do { \
51 		printk(KERN_DEBUG format , ## args); \
52 	} while (0)
53 #else
54 #define REG_DBG_PRINT(args...)
55 #endif
56 
57 /* Receipt of information from last regulatory request */
58 static struct regulatory_request *last_request;
59 
60 /* To trigger userspace events */
61 static struct platform_device *reg_pdev;
62 
63 /*
64  * Central wireless core regulatory domains, we only need two,
65  * the current one and a world regulatory domain in case we have no
66  * information to give us an alpha2
67  */
68 const struct ieee80211_regdomain *cfg80211_regdomain;
69 
70 /*
71  * Protects static reg.c components:
72  *     - cfg80211_world_regdom
73  *     - cfg80211_regdom
74  *     - last_request
75  */
76 static DEFINE_MUTEX(reg_mutex);
77 
78 static inline void assert_reg_lock(void)
79 {
80 	lockdep_assert_held(&reg_mutex);
81 }
82 
83 /* Used to queue up regulatory hints */
84 static LIST_HEAD(reg_requests_list);
85 static spinlock_t reg_requests_lock;
86 
87 /* Used to queue up beacon hints for review */
88 static LIST_HEAD(reg_pending_beacons);
89 static spinlock_t reg_pending_beacons_lock;
90 
91 /* Used to keep track of processed beacon hints */
92 static LIST_HEAD(reg_beacon_list);
93 
94 struct reg_beacon {
95 	struct list_head list;
96 	struct ieee80211_channel chan;
97 };
98 
99 /* We keep a static world regulatory domain in case of the absence of CRDA */
100 static const struct ieee80211_regdomain world_regdom = {
101 	.n_reg_rules = 5,
102 	.alpha2 =  "00",
103 	.reg_rules = {
104 		/* IEEE 802.11b/g, channels 1..11 */
105 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
106 		/* IEEE 802.11b/g, channels 12..13. No HT40
107 		 * channel fits here. */
108 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
109 			NL80211_RRF_PASSIVE_SCAN |
110 			NL80211_RRF_NO_IBSS),
111 		/* IEEE 802.11 channel 14 - Only JP enables
112 		 * this and for 802.11b only */
113 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
114 			NL80211_RRF_PASSIVE_SCAN |
115 			NL80211_RRF_NO_IBSS |
116 			NL80211_RRF_NO_OFDM),
117 		/* IEEE 802.11a, channel 36..48 */
118 		REG_RULE(5180-10, 5240+10, 40, 6, 20,
119                         NL80211_RRF_PASSIVE_SCAN |
120                         NL80211_RRF_NO_IBSS),
121 
122 		/* NB: 5260 MHz - 5700 MHz requies DFS */
123 
124 		/* IEEE 802.11a, channel 149..165 */
125 		REG_RULE(5745-10, 5825+10, 40, 6, 20,
126 			NL80211_RRF_PASSIVE_SCAN |
127 			NL80211_RRF_NO_IBSS),
128 	}
129 };
130 
131 static const struct ieee80211_regdomain *cfg80211_world_regdom =
132 	&world_regdom;
133 
134 static char *ieee80211_regdom = "00";
135 static char user_alpha2[2];
136 
137 module_param(ieee80211_regdom, charp, 0444);
138 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
139 
140 static void reset_regdomains(void)
141 {
142 	/* avoid freeing static information or freeing something twice */
143 	if (cfg80211_regdomain == cfg80211_world_regdom)
144 		cfg80211_regdomain = NULL;
145 	if (cfg80211_world_regdom == &world_regdom)
146 		cfg80211_world_regdom = NULL;
147 	if (cfg80211_regdomain == &world_regdom)
148 		cfg80211_regdomain = NULL;
149 
150 	kfree(cfg80211_regdomain);
151 	kfree(cfg80211_world_regdom);
152 
153 	cfg80211_world_regdom = &world_regdom;
154 	cfg80211_regdomain = NULL;
155 }
156 
157 /*
158  * Dynamic world regulatory domain requested by the wireless
159  * core upon initialization
160  */
161 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
162 {
163 	BUG_ON(!last_request);
164 
165 	reset_regdomains();
166 
167 	cfg80211_world_regdom = rd;
168 	cfg80211_regdomain = rd;
169 }
170 
171 bool is_world_regdom(const char *alpha2)
172 {
173 	if (!alpha2)
174 		return false;
175 	if (alpha2[0] == '0' && alpha2[1] == '0')
176 		return true;
177 	return false;
178 }
179 
180 static bool is_alpha2_set(const char *alpha2)
181 {
182 	if (!alpha2)
183 		return false;
184 	if (alpha2[0] != 0 && alpha2[1] != 0)
185 		return true;
186 	return false;
187 }
188 
189 static bool is_unknown_alpha2(const char *alpha2)
190 {
191 	if (!alpha2)
192 		return false;
193 	/*
194 	 * Special case where regulatory domain was built by driver
195 	 * but a specific alpha2 cannot be determined
196 	 */
197 	if (alpha2[0] == '9' && alpha2[1] == '9')
198 		return true;
199 	return false;
200 }
201 
202 static bool is_intersected_alpha2(const char *alpha2)
203 {
204 	if (!alpha2)
205 		return false;
206 	/*
207 	 * Special case where regulatory domain is the
208 	 * result of an intersection between two regulatory domain
209 	 * structures
210 	 */
211 	if (alpha2[0] == '9' && alpha2[1] == '8')
212 		return true;
213 	return false;
214 }
215 
216 static bool is_an_alpha2(const char *alpha2)
217 {
218 	if (!alpha2)
219 		return false;
220 	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
221 		return true;
222 	return false;
223 }
224 
225 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
226 {
227 	if (!alpha2_x || !alpha2_y)
228 		return false;
229 	if (alpha2_x[0] == alpha2_y[0] &&
230 		alpha2_x[1] == alpha2_y[1])
231 		return true;
232 	return false;
233 }
234 
235 static bool regdom_changes(const char *alpha2)
236 {
237 	assert_cfg80211_lock();
238 
239 	if (!cfg80211_regdomain)
240 		return true;
241 	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
242 		return false;
243 	return true;
244 }
245 
246 /*
247  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
248  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
249  * has ever been issued.
250  */
251 static bool is_user_regdom_saved(void)
252 {
253 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
254 		return false;
255 
256 	/* This would indicate a mistake on the design */
257 	if (WARN((!is_world_regdom(user_alpha2) &&
258 		  !is_an_alpha2(user_alpha2)),
259 		 "Unexpected user alpha2: %c%c\n",
260 		 user_alpha2[0],
261 	         user_alpha2[1]))
262 		return false;
263 
264 	return true;
265 }
266 
267 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
268 			 const struct ieee80211_regdomain *src_regd)
269 {
270 	struct ieee80211_regdomain *regd;
271 	int size_of_regd = 0;
272 	unsigned int i;
273 
274 	size_of_regd = sizeof(struct ieee80211_regdomain) +
275 	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
276 
277 	regd = kzalloc(size_of_regd, GFP_KERNEL);
278 	if (!regd)
279 		return -ENOMEM;
280 
281 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
282 
283 	for (i = 0; i < src_regd->n_reg_rules; i++)
284 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
285 			sizeof(struct ieee80211_reg_rule));
286 
287 	*dst_regd = regd;
288 	return 0;
289 }
290 
291 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
292 struct reg_regdb_search_request {
293 	char alpha2[2];
294 	struct list_head list;
295 };
296 
297 static LIST_HEAD(reg_regdb_search_list);
298 static DEFINE_MUTEX(reg_regdb_search_mutex);
299 
300 static void reg_regdb_search(struct work_struct *work)
301 {
302 	struct reg_regdb_search_request *request;
303 	const struct ieee80211_regdomain *curdom, *regdom;
304 	int i, r;
305 
306 	mutex_lock(&reg_regdb_search_mutex);
307 	while (!list_empty(&reg_regdb_search_list)) {
308 		request = list_first_entry(&reg_regdb_search_list,
309 					   struct reg_regdb_search_request,
310 					   list);
311 		list_del(&request->list);
312 
313 		for (i=0; i<reg_regdb_size; i++) {
314 			curdom = reg_regdb[i];
315 
316 			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
317 				r = reg_copy_regd(&regdom, curdom);
318 				if (r)
319 					break;
320 				mutex_lock(&cfg80211_mutex);
321 				set_regdom(regdom);
322 				mutex_unlock(&cfg80211_mutex);
323 				break;
324 			}
325 		}
326 
327 		kfree(request);
328 	}
329 	mutex_unlock(&reg_regdb_search_mutex);
330 }
331 
332 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
333 
334 static void reg_regdb_query(const char *alpha2)
335 {
336 	struct reg_regdb_search_request *request;
337 
338 	if (!alpha2)
339 		return;
340 
341 	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
342 	if (!request)
343 		return;
344 
345 	memcpy(request->alpha2, alpha2, 2);
346 
347 	mutex_lock(&reg_regdb_search_mutex);
348 	list_add_tail(&request->list, &reg_regdb_search_list);
349 	mutex_unlock(&reg_regdb_search_mutex);
350 
351 	schedule_work(&reg_regdb_work);
352 }
353 #else
354 static inline void reg_regdb_query(const char *alpha2) {}
355 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
356 
357 /*
358  * This lets us keep regulatory code which is updated on a regulatory
359  * basis in userspace.
360  */
361 static int call_crda(const char *alpha2)
362 {
363 	char country_env[9 + 2] = "COUNTRY=";
364 	char *envp[] = {
365 		country_env,
366 		NULL
367 	};
368 
369 	if (!is_world_regdom((char *) alpha2))
370 		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
371 			alpha2[0], alpha2[1]);
372 	else
373 		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
374 			"regulatory domain\n");
375 
376 	/* query internal regulatory database (if it exists) */
377 	reg_regdb_query(alpha2);
378 
379 	country_env[8] = alpha2[0];
380 	country_env[9] = alpha2[1];
381 
382 	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
383 }
384 
385 /* Used by nl80211 before kmalloc'ing our regulatory domain */
386 bool reg_is_valid_request(const char *alpha2)
387 {
388 	assert_cfg80211_lock();
389 
390 	if (!last_request)
391 		return false;
392 
393 	return alpha2_equal(last_request->alpha2, alpha2);
394 }
395 
396 /* Sanity check on a regulatory rule */
397 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
398 {
399 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
400 	u32 freq_diff;
401 
402 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
403 		return false;
404 
405 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
406 		return false;
407 
408 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
409 
410 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
411 			freq_range->max_bandwidth_khz > freq_diff)
412 		return false;
413 
414 	return true;
415 }
416 
417 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
418 {
419 	const struct ieee80211_reg_rule *reg_rule = NULL;
420 	unsigned int i;
421 
422 	if (!rd->n_reg_rules)
423 		return false;
424 
425 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
426 		return false;
427 
428 	for (i = 0; i < rd->n_reg_rules; i++) {
429 		reg_rule = &rd->reg_rules[i];
430 		if (!is_valid_reg_rule(reg_rule))
431 			return false;
432 	}
433 
434 	return true;
435 }
436 
437 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
438 			    u32 center_freq_khz,
439 			    u32 bw_khz)
440 {
441 	u32 start_freq_khz, end_freq_khz;
442 
443 	start_freq_khz = center_freq_khz - (bw_khz/2);
444 	end_freq_khz = center_freq_khz + (bw_khz/2);
445 
446 	if (start_freq_khz >= freq_range->start_freq_khz &&
447 	    end_freq_khz <= freq_range->end_freq_khz)
448 		return true;
449 
450 	return false;
451 }
452 
453 /**
454  * freq_in_rule_band - tells us if a frequency is in a frequency band
455  * @freq_range: frequency rule we want to query
456  * @freq_khz: frequency we are inquiring about
457  *
458  * This lets us know if a specific frequency rule is or is not relevant to
459  * a specific frequency's band. Bands are device specific and artificial
460  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
461  * safe for now to assume that a frequency rule should not be part of a
462  * frequency's band if the start freq or end freq are off by more than 2 GHz.
463  * This resolution can be lowered and should be considered as we add
464  * regulatory rule support for other "bands".
465  **/
466 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
467 	u32 freq_khz)
468 {
469 #define ONE_GHZ_IN_KHZ	1000000
470 	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
471 		return true;
472 	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
473 		return true;
474 	return false;
475 #undef ONE_GHZ_IN_KHZ
476 }
477 
478 /*
479  * Helper for regdom_intersect(), this does the real
480  * mathematical intersection fun
481  */
482 static int reg_rules_intersect(
483 	const struct ieee80211_reg_rule *rule1,
484 	const struct ieee80211_reg_rule *rule2,
485 	struct ieee80211_reg_rule *intersected_rule)
486 {
487 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
488 	struct ieee80211_freq_range *freq_range;
489 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
490 	struct ieee80211_power_rule *power_rule;
491 	u32 freq_diff;
492 
493 	freq_range1 = &rule1->freq_range;
494 	freq_range2 = &rule2->freq_range;
495 	freq_range = &intersected_rule->freq_range;
496 
497 	power_rule1 = &rule1->power_rule;
498 	power_rule2 = &rule2->power_rule;
499 	power_rule = &intersected_rule->power_rule;
500 
501 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
502 		freq_range2->start_freq_khz);
503 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
504 		freq_range2->end_freq_khz);
505 	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
506 		freq_range2->max_bandwidth_khz);
507 
508 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
509 	if (freq_range->max_bandwidth_khz > freq_diff)
510 		freq_range->max_bandwidth_khz = freq_diff;
511 
512 	power_rule->max_eirp = min(power_rule1->max_eirp,
513 		power_rule2->max_eirp);
514 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
515 		power_rule2->max_antenna_gain);
516 
517 	intersected_rule->flags = (rule1->flags | rule2->flags);
518 
519 	if (!is_valid_reg_rule(intersected_rule))
520 		return -EINVAL;
521 
522 	return 0;
523 }
524 
525 /**
526  * regdom_intersect - do the intersection between two regulatory domains
527  * @rd1: first regulatory domain
528  * @rd2: second regulatory domain
529  *
530  * Use this function to get the intersection between two regulatory domains.
531  * Once completed we will mark the alpha2 for the rd as intersected, "98",
532  * as no one single alpha2 can represent this regulatory domain.
533  *
534  * Returns a pointer to the regulatory domain structure which will hold the
535  * resulting intersection of rules between rd1 and rd2. We will
536  * kzalloc() this structure for you.
537  */
538 static struct ieee80211_regdomain *regdom_intersect(
539 	const struct ieee80211_regdomain *rd1,
540 	const struct ieee80211_regdomain *rd2)
541 {
542 	int r, size_of_regd;
543 	unsigned int x, y;
544 	unsigned int num_rules = 0, rule_idx = 0;
545 	const struct ieee80211_reg_rule *rule1, *rule2;
546 	struct ieee80211_reg_rule *intersected_rule;
547 	struct ieee80211_regdomain *rd;
548 	/* This is just a dummy holder to help us count */
549 	struct ieee80211_reg_rule irule;
550 
551 	/* Uses the stack temporarily for counter arithmetic */
552 	intersected_rule = &irule;
553 
554 	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
555 
556 	if (!rd1 || !rd2)
557 		return NULL;
558 
559 	/*
560 	 * First we get a count of the rules we'll need, then we actually
561 	 * build them. This is to so we can malloc() and free() a
562 	 * regdomain once. The reason we use reg_rules_intersect() here
563 	 * is it will return -EINVAL if the rule computed makes no sense.
564 	 * All rules that do check out OK are valid.
565 	 */
566 
567 	for (x = 0; x < rd1->n_reg_rules; x++) {
568 		rule1 = &rd1->reg_rules[x];
569 		for (y = 0; y < rd2->n_reg_rules; y++) {
570 			rule2 = &rd2->reg_rules[y];
571 			if (!reg_rules_intersect(rule1, rule2,
572 					intersected_rule))
573 				num_rules++;
574 			memset(intersected_rule, 0,
575 					sizeof(struct ieee80211_reg_rule));
576 		}
577 	}
578 
579 	if (!num_rules)
580 		return NULL;
581 
582 	size_of_regd = sizeof(struct ieee80211_regdomain) +
583 		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
584 
585 	rd = kzalloc(size_of_regd, GFP_KERNEL);
586 	if (!rd)
587 		return NULL;
588 
589 	for (x = 0; x < rd1->n_reg_rules; x++) {
590 		rule1 = &rd1->reg_rules[x];
591 		for (y = 0; y < rd2->n_reg_rules; y++) {
592 			rule2 = &rd2->reg_rules[y];
593 			/*
594 			 * This time around instead of using the stack lets
595 			 * write to the target rule directly saving ourselves
596 			 * a memcpy()
597 			 */
598 			intersected_rule = &rd->reg_rules[rule_idx];
599 			r = reg_rules_intersect(rule1, rule2,
600 				intersected_rule);
601 			/*
602 			 * No need to memset here the intersected rule here as
603 			 * we're not using the stack anymore
604 			 */
605 			if (r)
606 				continue;
607 			rule_idx++;
608 		}
609 	}
610 
611 	if (rule_idx != num_rules) {
612 		kfree(rd);
613 		return NULL;
614 	}
615 
616 	rd->n_reg_rules = num_rules;
617 	rd->alpha2[0] = '9';
618 	rd->alpha2[1] = '8';
619 
620 	return rd;
621 }
622 
623 /*
624  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
625  * want to just have the channel structure use these
626  */
627 static u32 map_regdom_flags(u32 rd_flags)
628 {
629 	u32 channel_flags = 0;
630 	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
631 		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
632 	if (rd_flags & NL80211_RRF_NO_IBSS)
633 		channel_flags |= IEEE80211_CHAN_NO_IBSS;
634 	if (rd_flags & NL80211_RRF_DFS)
635 		channel_flags |= IEEE80211_CHAN_RADAR;
636 	return channel_flags;
637 }
638 
639 static int freq_reg_info_regd(struct wiphy *wiphy,
640 			      u32 center_freq,
641 			      u32 desired_bw_khz,
642 			      const struct ieee80211_reg_rule **reg_rule,
643 			      const struct ieee80211_regdomain *custom_regd)
644 {
645 	int i;
646 	bool band_rule_found = false;
647 	const struct ieee80211_regdomain *regd;
648 	bool bw_fits = false;
649 
650 	if (!desired_bw_khz)
651 		desired_bw_khz = MHZ_TO_KHZ(20);
652 
653 	regd = custom_regd ? custom_regd : cfg80211_regdomain;
654 
655 	/*
656 	 * Follow the driver's regulatory domain, if present, unless a country
657 	 * IE has been processed or a user wants to help complaince further
658 	 */
659 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
660 	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
661 	    wiphy->regd)
662 		regd = wiphy->regd;
663 
664 	if (!regd)
665 		return -EINVAL;
666 
667 	for (i = 0; i < regd->n_reg_rules; i++) {
668 		const struct ieee80211_reg_rule *rr;
669 		const struct ieee80211_freq_range *fr = NULL;
670 		const struct ieee80211_power_rule *pr = NULL;
671 
672 		rr = &regd->reg_rules[i];
673 		fr = &rr->freq_range;
674 		pr = &rr->power_rule;
675 
676 		/*
677 		 * We only need to know if one frequency rule was
678 		 * was in center_freq's band, that's enough, so lets
679 		 * not overwrite it once found
680 		 */
681 		if (!band_rule_found)
682 			band_rule_found = freq_in_rule_band(fr, center_freq);
683 
684 		bw_fits = reg_does_bw_fit(fr,
685 					  center_freq,
686 					  desired_bw_khz);
687 
688 		if (band_rule_found && bw_fits) {
689 			*reg_rule = rr;
690 			return 0;
691 		}
692 	}
693 
694 	if (!band_rule_found)
695 		return -ERANGE;
696 
697 	return -EINVAL;
698 }
699 
700 int freq_reg_info(struct wiphy *wiphy,
701 		  u32 center_freq,
702 		  u32 desired_bw_khz,
703 		  const struct ieee80211_reg_rule **reg_rule)
704 {
705 	assert_cfg80211_lock();
706 	return freq_reg_info_regd(wiphy,
707 				  center_freq,
708 				  desired_bw_khz,
709 				  reg_rule,
710 				  NULL);
711 }
712 EXPORT_SYMBOL(freq_reg_info);
713 
714 /*
715  * Note that right now we assume the desired channel bandwidth
716  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
717  * per channel, the primary and the extension channel). To support
718  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
719  * new ieee80211_channel.target_bw and re run the regulatory check
720  * on the wiphy with the target_bw specified. Then we can simply use
721  * that below for the desired_bw_khz below.
722  */
723 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
724 			   unsigned int chan_idx)
725 {
726 	int r;
727 	u32 flags, bw_flags = 0;
728 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
729 	const struct ieee80211_reg_rule *reg_rule = NULL;
730 	const struct ieee80211_power_rule *power_rule = NULL;
731 	const struct ieee80211_freq_range *freq_range = NULL;
732 	struct ieee80211_supported_band *sband;
733 	struct ieee80211_channel *chan;
734 	struct wiphy *request_wiphy = NULL;
735 
736 	assert_cfg80211_lock();
737 
738 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
739 
740 	sband = wiphy->bands[band];
741 	BUG_ON(chan_idx >= sband->n_channels);
742 	chan = &sband->channels[chan_idx];
743 
744 	flags = chan->orig_flags;
745 
746 	r = freq_reg_info(wiphy,
747 			  MHZ_TO_KHZ(chan->center_freq),
748 			  desired_bw_khz,
749 			  &reg_rule);
750 
751 	if (r)
752 		return;
753 
754 	power_rule = &reg_rule->power_rule;
755 	freq_range = &reg_rule->freq_range;
756 
757 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
758 		bw_flags = IEEE80211_CHAN_NO_HT40;
759 
760 	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
761 	    request_wiphy && request_wiphy == wiphy &&
762 	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
763 		/*
764 		 * This gaurantees the driver's requested regulatory domain
765 		 * will always be used as a base for further regulatory
766 		 * settings
767 		 */
768 		chan->flags = chan->orig_flags =
769 			map_regdom_flags(reg_rule->flags) | bw_flags;
770 		chan->max_antenna_gain = chan->orig_mag =
771 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
772 		chan->max_power = chan->orig_mpwr =
773 			(int) MBM_TO_DBM(power_rule->max_eirp);
774 		return;
775 	}
776 
777 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
778 	chan->max_antenna_gain = min(chan->orig_mag,
779 		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
780 	if (chan->orig_mpwr)
781 		chan->max_power = min(chan->orig_mpwr,
782 			(int) MBM_TO_DBM(power_rule->max_eirp));
783 	else
784 		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
785 }
786 
787 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
788 {
789 	unsigned int i;
790 	struct ieee80211_supported_band *sband;
791 
792 	BUG_ON(!wiphy->bands[band]);
793 	sband = wiphy->bands[band];
794 
795 	for (i = 0; i < sband->n_channels; i++)
796 		handle_channel(wiphy, band, i);
797 }
798 
799 static bool ignore_reg_update(struct wiphy *wiphy,
800 			      enum nl80211_reg_initiator initiator)
801 {
802 	if (!last_request)
803 		return true;
804 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
805 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
806 		return true;
807 	/*
808 	 * wiphy->regd will be set once the device has its own
809 	 * desired regulatory domain set
810 	 */
811 	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
812 	    !is_world_regdom(last_request->alpha2))
813 		return true;
814 	return false;
815 }
816 
817 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
818 {
819 	struct cfg80211_registered_device *rdev;
820 
821 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
822 		wiphy_update_regulatory(&rdev->wiphy, initiator);
823 }
824 
825 static void handle_reg_beacon(struct wiphy *wiphy,
826 			      unsigned int chan_idx,
827 			      struct reg_beacon *reg_beacon)
828 {
829 	struct ieee80211_supported_band *sband;
830 	struct ieee80211_channel *chan;
831 	bool channel_changed = false;
832 	struct ieee80211_channel chan_before;
833 
834 	assert_cfg80211_lock();
835 
836 	sband = wiphy->bands[reg_beacon->chan.band];
837 	chan = &sband->channels[chan_idx];
838 
839 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
840 		return;
841 
842 	if (chan->beacon_found)
843 		return;
844 
845 	chan->beacon_found = true;
846 
847 	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
848 		return;
849 
850 	chan_before.center_freq = chan->center_freq;
851 	chan_before.flags = chan->flags;
852 
853 	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
854 		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
855 		channel_changed = true;
856 	}
857 
858 	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
859 		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
860 		channel_changed = true;
861 	}
862 
863 	if (channel_changed)
864 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
865 }
866 
867 /*
868  * Called when a scan on a wiphy finds a beacon on
869  * new channel
870  */
871 static void wiphy_update_new_beacon(struct wiphy *wiphy,
872 				    struct reg_beacon *reg_beacon)
873 {
874 	unsigned int i;
875 	struct ieee80211_supported_band *sband;
876 
877 	assert_cfg80211_lock();
878 
879 	if (!wiphy->bands[reg_beacon->chan.band])
880 		return;
881 
882 	sband = wiphy->bands[reg_beacon->chan.band];
883 
884 	for (i = 0; i < sband->n_channels; i++)
885 		handle_reg_beacon(wiphy, i, reg_beacon);
886 }
887 
888 /*
889  * Called upon reg changes or a new wiphy is added
890  */
891 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
892 {
893 	unsigned int i;
894 	struct ieee80211_supported_band *sband;
895 	struct reg_beacon *reg_beacon;
896 
897 	assert_cfg80211_lock();
898 
899 	if (list_empty(&reg_beacon_list))
900 		return;
901 
902 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
903 		if (!wiphy->bands[reg_beacon->chan.band])
904 			continue;
905 		sband = wiphy->bands[reg_beacon->chan.band];
906 		for (i = 0; i < sband->n_channels; i++)
907 			handle_reg_beacon(wiphy, i, reg_beacon);
908 	}
909 }
910 
911 static bool reg_is_world_roaming(struct wiphy *wiphy)
912 {
913 	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
914 	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
915 		return true;
916 	if (last_request &&
917 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
918 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
919 		return true;
920 	return false;
921 }
922 
923 /* Reap the advantages of previously found beacons */
924 static void reg_process_beacons(struct wiphy *wiphy)
925 {
926 	/*
927 	 * Means we are just firing up cfg80211, so no beacons would
928 	 * have been processed yet.
929 	 */
930 	if (!last_request)
931 		return;
932 	if (!reg_is_world_roaming(wiphy))
933 		return;
934 	wiphy_update_beacon_reg(wiphy);
935 }
936 
937 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
938 {
939 	if (!chan)
940 		return true;
941 	if (chan->flags & IEEE80211_CHAN_DISABLED)
942 		return true;
943 	/* This would happen when regulatory rules disallow HT40 completely */
944 	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
945 		return true;
946 	return false;
947 }
948 
949 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
950 					 enum ieee80211_band band,
951 					 unsigned int chan_idx)
952 {
953 	struct ieee80211_supported_band *sband;
954 	struct ieee80211_channel *channel;
955 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
956 	unsigned int i;
957 
958 	assert_cfg80211_lock();
959 
960 	sband = wiphy->bands[band];
961 	BUG_ON(chan_idx >= sband->n_channels);
962 	channel = &sband->channels[chan_idx];
963 
964 	if (is_ht40_not_allowed(channel)) {
965 		channel->flags |= IEEE80211_CHAN_NO_HT40;
966 		return;
967 	}
968 
969 	/*
970 	 * We need to ensure the extension channels exist to
971 	 * be able to use HT40- or HT40+, this finds them (or not)
972 	 */
973 	for (i = 0; i < sband->n_channels; i++) {
974 		struct ieee80211_channel *c = &sband->channels[i];
975 		if (c->center_freq == (channel->center_freq - 20))
976 			channel_before = c;
977 		if (c->center_freq == (channel->center_freq + 20))
978 			channel_after = c;
979 	}
980 
981 	/*
982 	 * Please note that this assumes target bandwidth is 20 MHz,
983 	 * if that ever changes we also need to change the below logic
984 	 * to include that as well.
985 	 */
986 	if (is_ht40_not_allowed(channel_before))
987 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
988 	else
989 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
990 
991 	if (is_ht40_not_allowed(channel_after))
992 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
993 	else
994 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
995 }
996 
997 static void reg_process_ht_flags_band(struct wiphy *wiphy,
998 				      enum ieee80211_band band)
999 {
1000 	unsigned int i;
1001 	struct ieee80211_supported_band *sband;
1002 
1003 	BUG_ON(!wiphy->bands[band]);
1004 	sband = wiphy->bands[band];
1005 
1006 	for (i = 0; i < sband->n_channels; i++)
1007 		reg_process_ht_flags_channel(wiphy, band, i);
1008 }
1009 
1010 static void reg_process_ht_flags(struct wiphy *wiphy)
1011 {
1012 	enum ieee80211_band band;
1013 
1014 	if (!wiphy)
1015 		return;
1016 
1017 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1018 		if (wiphy->bands[band])
1019 			reg_process_ht_flags_band(wiphy, band);
1020 	}
1021 
1022 }
1023 
1024 void wiphy_update_regulatory(struct wiphy *wiphy,
1025 			     enum nl80211_reg_initiator initiator)
1026 {
1027 	enum ieee80211_band band;
1028 
1029 	if (ignore_reg_update(wiphy, initiator))
1030 		goto out;
1031 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1032 		if (wiphy->bands[band])
1033 			handle_band(wiphy, band);
1034 	}
1035 out:
1036 	reg_process_beacons(wiphy);
1037 	reg_process_ht_flags(wiphy);
1038 	if (wiphy->reg_notifier)
1039 		wiphy->reg_notifier(wiphy, last_request);
1040 }
1041 
1042 static void handle_channel_custom(struct wiphy *wiphy,
1043 				  enum ieee80211_band band,
1044 				  unsigned int chan_idx,
1045 				  const struct ieee80211_regdomain *regd)
1046 {
1047 	int r;
1048 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
1049 	u32 bw_flags = 0;
1050 	const struct ieee80211_reg_rule *reg_rule = NULL;
1051 	const struct ieee80211_power_rule *power_rule = NULL;
1052 	const struct ieee80211_freq_range *freq_range = NULL;
1053 	struct ieee80211_supported_band *sband;
1054 	struct ieee80211_channel *chan;
1055 
1056 	assert_reg_lock();
1057 
1058 	sband = wiphy->bands[band];
1059 	BUG_ON(chan_idx >= sband->n_channels);
1060 	chan = &sband->channels[chan_idx];
1061 
1062 	r = freq_reg_info_regd(wiphy,
1063 			       MHZ_TO_KHZ(chan->center_freq),
1064 			       desired_bw_khz,
1065 			       &reg_rule,
1066 			       regd);
1067 
1068 	if (r) {
1069 		chan->flags = IEEE80211_CHAN_DISABLED;
1070 		return;
1071 	}
1072 
1073 	power_rule = &reg_rule->power_rule;
1074 	freq_range = &reg_rule->freq_range;
1075 
1076 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1077 		bw_flags = IEEE80211_CHAN_NO_HT40;
1078 
1079 	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1080 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1081 	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1082 }
1083 
1084 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1085 			       const struct ieee80211_regdomain *regd)
1086 {
1087 	unsigned int i;
1088 	struct ieee80211_supported_band *sband;
1089 
1090 	BUG_ON(!wiphy->bands[band]);
1091 	sband = wiphy->bands[band];
1092 
1093 	for (i = 0; i < sband->n_channels; i++)
1094 		handle_channel_custom(wiphy, band, i, regd);
1095 }
1096 
1097 /* Used by drivers prior to wiphy registration */
1098 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1099 				   const struct ieee80211_regdomain *regd)
1100 {
1101 	enum ieee80211_band band;
1102 	unsigned int bands_set = 0;
1103 
1104 	mutex_lock(&reg_mutex);
1105 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1106 		if (!wiphy->bands[band])
1107 			continue;
1108 		handle_band_custom(wiphy, band, regd);
1109 		bands_set++;
1110 	}
1111 	mutex_unlock(&reg_mutex);
1112 
1113 	/*
1114 	 * no point in calling this if it won't have any effect
1115 	 * on your device's supportd bands.
1116 	 */
1117 	WARN_ON(!bands_set);
1118 }
1119 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1120 
1121 /*
1122  * Return value which can be used by ignore_request() to indicate
1123  * it has been determined we should intersect two regulatory domains
1124  */
1125 #define REG_INTERSECT	1
1126 
1127 /* This has the logic which determines when a new request
1128  * should be ignored. */
1129 static int ignore_request(struct wiphy *wiphy,
1130 			  struct regulatory_request *pending_request)
1131 {
1132 	struct wiphy *last_wiphy = NULL;
1133 
1134 	assert_cfg80211_lock();
1135 
1136 	/* All initial requests are respected */
1137 	if (!last_request)
1138 		return 0;
1139 
1140 	switch (pending_request->initiator) {
1141 	case NL80211_REGDOM_SET_BY_CORE:
1142 		return 0;
1143 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1144 
1145 		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1146 
1147 		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1148 			return -EINVAL;
1149 		if (last_request->initiator ==
1150 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1151 			if (last_wiphy != wiphy) {
1152 				/*
1153 				 * Two cards with two APs claiming different
1154 				 * Country IE alpha2s. We could
1155 				 * intersect them, but that seems unlikely
1156 				 * to be correct. Reject second one for now.
1157 				 */
1158 				if (regdom_changes(pending_request->alpha2))
1159 					return -EOPNOTSUPP;
1160 				return -EALREADY;
1161 			}
1162 			/*
1163 			 * Two consecutive Country IE hints on the same wiphy.
1164 			 * This should be picked up early by the driver/stack
1165 			 */
1166 			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1167 				return 0;
1168 			return -EALREADY;
1169 		}
1170 		return 0;
1171 	case NL80211_REGDOM_SET_BY_DRIVER:
1172 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1173 			if (regdom_changes(pending_request->alpha2))
1174 				return 0;
1175 			return -EALREADY;
1176 		}
1177 
1178 		/*
1179 		 * This would happen if you unplug and plug your card
1180 		 * back in or if you add a new device for which the previously
1181 		 * loaded card also agrees on the regulatory domain.
1182 		 */
1183 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1184 		    !regdom_changes(pending_request->alpha2))
1185 			return -EALREADY;
1186 
1187 		return REG_INTERSECT;
1188 	case NL80211_REGDOM_SET_BY_USER:
1189 		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1190 			return REG_INTERSECT;
1191 		/*
1192 		 * If the user knows better the user should set the regdom
1193 		 * to their country before the IE is picked up
1194 		 */
1195 		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1196 			  last_request->intersect)
1197 			return -EOPNOTSUPP;
1198 		/*
1199 		 * Process user requests only after previous user/driver/core
1200 		 * requests have been processed
1201 		 */
1202 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1203 		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1204 		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1205 			if (regdom_changes(last_request->alpha2))
1206 				return -EAGAIN;
1207 		}
1208 
1209 		if (!regdom_changes(pending_request->alpha2))
1210 			return -EALREADY;
1211 
1212 		return 0;
1213 	}
1214 
1215 	return -EINVAL;
1216 }
1217 
1218 /**
1219  * __regulatory_hint - hint to the wireless core a regulatory domain
1220  * @wiphy: if the hint comes from country information from an AP, this
1221  *	is required to be set to the wiphy that received the information
1222  * @pending_request: the regulatory request currently being processed
1223  *
1224  * The Wireless subsystem can use this function to hint to the wireless core
1225  * what it believes should be the current regulatory domain.
1226  *
1227  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1228  * already been set or other standard error codes.
1229  *
1230  * Caller must hold &cfg80211_mutex and &reg_mutex
1231  */
1232 static int __regulatory_hint(struct wiphy *wiphy,
1233 			     struct regulatory_request *pending_request)
1234 {
1235 	bool intersect = false;
1236 	int r = 0;
1237 
1238 	assert_cfg80211_lock();
1239 
1240 	r = ignore_request(wiphy, pending_request);
1241 
1242 	if (r == REG_INTERSECT) {
1243 		if (pending_request->initiator ==
1244 		    NL80211_REGDOM_SET_BY_DRIVER) {
1245 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1246 			if (r) {
1247 				kfree(pending_request);
1248 				return r;
1249 			}
1250 		}
1251 		intersect = true;
1252 	} else if (r) {
1253 		/*
1254 		 * If the regulatory domain being requested by the
1255 		 * driver has already been set just copy it to the
1256 		 * wiphy
1257 		 */
1258 		if (r == -EALREADY &&
1259 		    pending_request->initiator ==
1260 		    NL80211_REGDOM_SET_BY_DRIVER) {
1261 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1262 			if (r) {
1263 				kfree(pending_request);
1264 				return r;
1265 			}
1266 			r = -EALREADY;
1267 			goto new_request;
1268 		}
1269 		kfree(pending_request);
1270 		return r;
1271 	}
1272 
1273 new_request:
1274 	kfree(last_request);
1275 
1276 	last_request = pending_request;
1277 	last_request->intersect = intersect;
1278 
1279 	pending_request = NULL;
1280 
1281 	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1282 		user_alpha2[0] = last_request->alpha2[0];
1283 		user_alpha2[1] = last_request->alpha2[1];
1284 	}
1285 
1286 	/* When r == REG_INTERSECT we do need to call CRDA */
1287 	if (r < 0) {
1288 		/*
1289 		 * Since CRDA will not be called in this case as we already
1290 		 * have applied the requested regulatory domain before we just
1291 		 * inform userspace we have processed the request
1292 		 */
1293 		if (r == -EALREADY)
1294 			nl80211_send_reg_change_event(last_request);
1295 		return r;
1296 	}
1297 
1298 	return call_crda(last_request->alpha2);
1299 }
1300 
1301 /* This processes *all* regulatory hints */
1302 static void reg_process_hint(struct regulatory_request *reg_request)
1303 {
1304 	int r = 0;
1305 	struct wiphy *wiphy = NULL;
1306 	enum nl80211_reg_initiator initiator = reg_request->initiator;
1307 
1308 	BUG_ON(!reg_request->alpha2);
1309 
1310 	mutex_lock(&cfg80211_mutex);
1311 	mutex_lock(&reg_mutex);
1312 
1313 	if (wiphy_idx_valid(reg_request->wiphy_idx))
1314 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1315 
1316 	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1317 	    !wiphy) {
1318 		kfree(reg_request);
1319 		goto out;
1320 	}
1321 
1322 	r = __regulatory_hint(wiphy, reg_request);
1323 	/* This is required so that the orig_* parameters are saved */
1324 	if (r == -EALREADY && wiphy &&
1325 	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1326 		wiphy_update_regulatory(wiphy, initiator);
1327 out:
1328 	mutex_unlock(&reg_mutex);
1329 	mutex_unlock(&cfg80211_mutex);
1330 }
1331 
1332 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1333 static void reg_process_pending_hints(void)
1334 	{
1335 	struct regulatory_request *reg_request;
1336 
1337 	spin_lock(&reg_requests_lock);
1338 	while (!list_empty(&reg_requests_list)) {
1339 		reg_request = list_first_entry(&reg_requests_list,
1340 					       struct regulatory_request,
1341 					       list);
1342 		list_del_init(&reg_request->list);
1343 
1344 		spin_unlock(&reg_requests_lock);
1345 		reg_process_hint(reg_request);
1346 		spin_lock(&reg_requests_lock);
1347 	}
1348 	spin_unlock(&reg_requests_lock);
1349 }
1350 
1351 /* Processes beacon hints -- this has nothing to do with country IEs */
1352 static void reg_process_pending_beacon_hints(void)
1353 {
1354 	struct cfg80211_registered_device *rdev;
1355 	struct reg_beacon *pending_beacon, *tmp;
1356 
1357 	/*
1358 	 * No need to hold the reg_mutex here as we just touch wiphys
1359 	 * and do not read or access regulatory variables.
1360 	 */
1361 	mutex_lock(&cfg80211_mutex);
1362 
1363 	/* This goes through the _pending_ beacon list */
1364 	spin_lock_bh(&reg_pending_beacons_lock);
1365 
1366 	if (list_empty(&reg_pending_beacons)) {
1367 		spin_unlock_bh(&reg_pending_beacons_lock);
1368 		goto out;
1369 	}
1370 
1371 	list_for_each_entry_safe(pending_beacon, tmp,
1372 				 &reg_pending_beacons, list) {
1373 
1374 		list_del_init(&pending_beacon->list);
1375 
1376 		/* Applies the beacon hint to current wiphys */
1377 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1378 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1379 
1380 		/* Remembers the beacon hint for new wiphys or reg changes */
1381 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
1382 	}
1383 
1384 	spin_unlock_bh(&reg_pending_beacons_lock);
1385 out:
1386 	mutex_unlock(&cfg80211_mutex);
1387 }
1388 
1389 static void reg_todo(struct work_struct *work)
1390 {
1391 	reg_process_pending_hints();
1392 	reg_process_pending_beacon_hints();
1393 }
1394 
1395 static DECLARE_WORK(reg_work, reg_todo);
1396 
1397 static void queue_regulatory_request(struct regulatory_request *request)
1398 {
1399 	if (isalpha(request->alpha2[0]))
1400 		request->alpha2[0] = toupper(request->alpha2[0]);
1401 	if (isalpha(request->alpha2[1]))
1402 		request->alpha2[1] = toupper(request->alpha2[1]);
1403 
1404 	spin_lock(&reg_requests_lock);
1405 	list_add_tail(&request->list, &reg_requests_list);
1406 	spin_unlock(&reg_requests_lock);
1407 
1408 	schedule_work(&reg_work);
1409 }
1410 
1411 /*
1412  * Core regulatory hint -- happens during cfg80211_init()
1413  * and when we restore regulatory settings.
1414  */
1415 static int regulatory_hint_core(const char *alpha2)
1416 {
1417 	struct regulatory_request *request;
1418 
1419 	kfree(last_request);
1420 	last_request = NULL;
1421 
1422 	request = kzalloc(sizeof(struct regulatory_request),
1423 			  GFP_KERNEL);
1424 	if (!request)
1425 		return -ENOMEM;
1426 
1427 	request->alpha2[0] = alpha2[0];
1428 	request->alpha2[1] = alpha2[1];
1429 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1430 
1431 	/*
1432 	 * This ensures last_request is populated once modules
1433 	 * come swinging in and calling regulatory hints and
1434 	 * wiphy_apply_custom_regulatory().
1435 	 */
1436 	reg_process_hint(request);
1437 
1438 	return 0;
1439 }
1440 
1441 /* User hints */
1442 int regulatory_hint_user(const char *alpha2)
1443 {
1444 	struct regulatory_request *request;
1445 
1446 	BUG_ON(!alpha2);
1447 
1448 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1449 	if (!request)
1450 		return -ENOMEM;
1451 
1452 	request->wiphy_idx = WIPHY_IDX_STALE;
1453 	request->alpha2[0] = alpha2[0];
1454 	request->alpha2[1] = alpha2[1];
1455 	request->initiator = NL80211_REGDOM_SET_BY_USER;
1456 
1457 	queue_regulatory_request(request);
1458 
1459 	return 0;
1460 }
1461 
1462 /* Driver hints */
1463 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1464 {
1465 	struct regulatory_request *request;
1466 
1467 	BUG_ON(!alpha2);
1468 	BUG_ON(!wiphy);
1469 
1470 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1471 	if (!request)
1472 		return -ENOMEM;
1473 
1474 	request->wiphy_idx = get_wiphy_idx(wiphy);
1475 
1476 	/* Must have registered wiphy first */
1477 	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1478 
1479 	request->alpha2[0] = alpha2[0];
1480 	request->alpha2[1] = alpha2[1];
1481 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1482 
1483 	queue_regulatory_request(request);
1484 
1485 	return 0;
1486 }
1487 EXPORT_SYMBOL(regulatory_hint);
1488 
1489 /*
1490  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1491  * therefore cannot iterate over the rdev list here.
1492  */
1493 void regulatory_hint_11d(struct wiphy *wiphy,
1494 			 enum ieee80211_band band,
1495 			 u8 *country_ie,
1496 			 u8 country_ie_len)
1497 {
1498 	char alpha2[2];
1499 	enum environment_cap env = ENVIRON_ANY;
1500 	struct regulatory_request *request;
1501 
1502 	mutex_lock(&reg_mutex);
1503 
1504 	if (unlikely(!last_request))
1505 		goto out;
1506 
1507 	/* IE len must be evenly divisible by 2 */
1508 	if (country_ie_len & 0x01)
1509 		goto out;
1510 
1511 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1512 		goto out;
1513 
1514 	alpha2[0] = country_ie[0];
1515 	alpha2[1] = country_ie[1];
1516 
1517 	if (country_ie[2] == 'I')
1518 		env = ENVIRON_INDOOR;
1519 	else if (country_ie[2] == 'O')
1520 		env = ENVIRON_OUTDOOR;
1521 
1522 	/*
1523 	 * We will run this only upon a successful connection on cfg80211.
1524 	 * We leave conflict resolution to the workqueue, where can hold
1525 	 * cfg80211_mutex.
1526 	 */
1527 	if (likely(last_request->initiator ==
1528 	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1529 	    wiphy_idx_valid(last_request->wiphy_idx)))
1530 		goto out;
1531 
1532 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1533 	if (!request)
1534 		goto out;
1535 
1536 	request->wiphy_idx = get_wiphy_idx(wiphy);
1537 	request->alpha2[0] = alpha2[0];
1538 	request->alpha2[1] = alpha2[1];
1539 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1540 	request->country_ie_env = env;
1541 
1542 	mutex_unlock(&reg_mutex);
1543 
1544 	queue_regulatory_request(request);
1545 
1546 	return;
1547 
1548 out:
1549 	mutex_unlock(&reg_mutex);
1550 }
1551 
1552 static void restore_alpha2(char *alpha2, bool reset_user)
1553 {
1554 	/* indicates there is no alpha2 to consider for restoration */
1555 	alpha2[0] = '9';
1556 	alpha2[1] = '7';
1557 
1558 	/* The user setting has precedence over the module parameter */
1559 	if (is_user_regdom_saved()) {
1560 		/* Unless we're asked to ignore it and reset it */
1561 		if (reset_user) {
1562 			REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1563 			       "including user preference\n");
1564 			user_alpha2[0] = '9';
1565 			user_alpha2[1] = '7';
1566 
1567 			/*
1568 			 * If we're ignoring user settings, we still need to
1569 			 * check the module parameter to ensure we put things
1570 			 * back as they were for a full restore.
1571 			 */
1572 			if (!is_world_regdom(ieee80211_regdom)) {
1573 				REG_DBG_PRINT("cfg80211: Keeping preference on "
1574 				       "module parameter ieee80211_regdom: %c%c\n",
1575 				       ieee80211_regdom[0],
1576 				       ieee80211_regdom[1]);
1577 				alpha2[0] = ieee80211_regdom[0];
1578 				alpha2[1] = ieee80211_regdom[1];
1579 			}
1580 		} else {
1581 			REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1582 			       "while preserving user preference for: %c%c\n",
1583 			       user_alpha2[0],
1584 			       user_alpha2[1]);
1585 			alpha2[0] = user_alpha2[0];
1586 			alpha2[1] = user_alpha2[1];
1587 		}
1588 	} else if (!is_world_regdom(ieee80211_regdom)) {
1589 		REG_DBG_PRINT("cfg80211: Keeping preference on "
1590 		       "module parameter ieee80211_regdom: %c%c\n",
1591 		       ieee80211_regdom[0],
1592 		       ieee80211_regdom[1]);
1593 		alpha2[0] = ieee80211_regdom[0];
1594 		alpha2[1] = ieee80211_regdom[1];
1595 	} else
1596 		REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
1597 }
1598 
1599 /*
1600  * Restoring regulatory settings involves ingoring any
1601  * possibly stale country IE information and user regulatory
1602  * settings if so desired, this includes any beacon hints
1603  * learned as we could have traveled outside to another country
1604  * after disconnection. To restore regulatory settings we do
1605  * exactly what we did at bootup:
1606  *
1607  *   - send a core regulatory hint
1608  *   - send a user regulatory hint if applicable
1609  *
1610  * Device drivers that send a regulatory hint for a specific country
1611  * keep their own regulatory domain on wiphy->regd so that does does
1612  * not need to be remembered.
1613  */
1614 static void restore_regulatory_settings(bool reset_user)
1615 {
1616 	char alpha2[2];
1617 	struct reg_beacon *reg_beacon, *btmp;
1618 
1619 	mutex_lock(&cfg80211_mutex);
1620 	mutex_lock(&reg_mutex);
1621 
1622 	reset_regdomains();
1623 	restore_alpha2(alpha2, reset_user);
1624 
1625 	/* Clear beacon hints */
1626 	spin_lock_bh(&reg_pending_beacons_lock);
1627 	if (!list_empty(&reg_pending_beacons)) {
1628 		list_for_each_entry_safe(reg_beacon, btmp,
1629 					 &reg_pending_beacons, list) {
1630 			list_del(&reg_beacon->list);
1631 			kfree(reg_beacon);
1632 		}
1633 	}
1634 	spin_unlock_bh(&reg_pending_beacons_lock);
1635 
1636 	if (!list_empty(&reg_beacon_list)) {
1637 		list_for_each_entry_safe(reg_beacon, btmp,
1638 					 &reg_beacon_list, list) {
1639 			list_del(&reg_beacon->list);
1640 			kfree(reg_beacon);
1641 		}
1642 	}
1643 
1644 	/* First restore to the basic regulatory settings */
1645 	cfg80211_regdomain = cfg80211_world_regdom;
1646 
1647 	mutex_unlock(&reg_mutex);
1648 	mutex_unlock(&cfg80211_mutex);
1649 
1650 	regulatory_hint_core(cfg80211_regdomain->alpha2);
1651 
1652 	/*
1653 	 * This restores the ieee80211_regdom module parameter
1654 	 * preference or the last user requested regulatory
1655 	 * settings, user regulatory settings takes precedence.
1656 	 */
1657 	if (is_an_alpha2(alpha2))
1658 		regulatory_hint_user(user_alpha2);
1659 }
1660 
1661 
1662 void regulatory_hint_disconnect(void)
1663 {
1664 	REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
1665 		      "restore regulatory settings\n");
1666 	restore_regulatory_settings(false);
1667 }
1668 
1669 static bool freq_is_chan_12_13_14(u16 freq)
1670 {
1671 	if (freq == ieee80211_channel_to_frequency(12) ||
1672 	    freq == ieee80211_channel_to_frequency(13) ||
1673 	    freq == ieee80211_channel_to_frequency(14))
1674 		return true;
1675 	return false;
1676 }
1677 
1678 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1679 				 struct ieee80211_channel *beacon_chan,
1680 				 gfp_t gfp)
1681 {
1682 	struct reg_beacon *reg_beacon;
1683 
1684 	if (likely((beacon_chan->beacon_found ||
1685 	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1686 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1687 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1688 		return 0;
1689 
1690 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1691 	if (!reg_beacon)
1692 		return -ENOMEM;
1693 
1694 	REG_DBG_PRINT("cfg80211: Found new beacon on "
1695 		      "frequency: %d MHz (Ch %d) on %s\n",
1696 		      beacon_chan->center_freq,
1697 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
1698 		      wiphy_name(wiphy));
1699 
1700 	memcpy(&reg_beacon->chan, beacon_chan,
1701 		sizeof(struct ieee80211_channel));
1702 
1703 
1704 	/*
1705 	 * Since we can be called from BH or and non-BH context
1706 	 * we must use spin_lock_bh()
1707 	 */
1708 	spin_lock_bh(&reg_pending_beacons_lock);
1709 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1710 	spin_unlock_bh(&reg_pending_beacons_lock);
1711 
1712 	schedule_work(&reg_work);
1713 
1714 	return 0;
1715 }
1716 
1717 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1718 {
1719 	unsigned int i;
1720 	const struct ieee80211_reg_rule *reg_rule = NULL;
1721 	const struct ieee80211_freq_range *freq_range = NULL;
1722 	const struct ieee80211_power_rule *power_rule = NULL;
1723 
1724 	printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
1725 		"(max_antenna_gain, max_eirp)\n");
1726 
1727 	for (i = 0; i < rd->n_reg_rules; i++) {
1728 		reg_rule = &rd->reg_rules[i];
1729 		freq_range = &reg_rule->freq_range;
1730 		power_rule = &reg_rule->power_rule;
1731 
1732 		/*
1733 		 * There may not be documentation for max antenna gain
1734 		 * in certain regions
1735 		 */
1736 		if (power_rule->max_antenna_gain)
1737 			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1738 				"(%d mBi, %d mBm)\n",
1739 				freq_range->start_freq_khz,
1740 				freq_range->end_freq_khz,
1741 				freq_range->max_bandwidth_khz,
1742 				power_rule->max_antenna_gain,
1743 				power_rule->max_eirp);
1744 		else
1745 			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1746 				"(N/A, %d mBm)\n",
1747 				freq_range->start_freq_khz,
1748 				freq_range->end_freq_khz,
1749 				freq_range->max_bandwidth_khz,
1750 				power_rule->max_eirp);
1751 	}
1752 }
1753 
1754 static void print_regdomain(const struct ieee80211_regdomain *rd)
1755 {
1756 
1757 	if (is_intersected_alpha2(rd->alpha2)) {
1758 
1759 		if (last_request->initiator ==
1760 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1761 			struct cfg80211_registered_device *rdev;
1762 			rdev = cfg80211_rdev_by_wiphy_idx(
1763 				last_request->wiphy_idx);
1764 			if (rdev) {
1765 				printk(KERN_INFO "cfg80211: Current regulatory "
1766 					"domain updated by AP to: %c%c\n",
1767 					rdev->country_ie_alpha2[0],
1768 					rdev->country_ie_alpha2[1]);
1769 			} else
1770 				printk(KERN_INFO "cfg80211: Current regulatory "
1771 					"domain intersected:\n");
1772 		} else
1773 			printk(KERN_INFO "cfg80211: Current regulatory "
1774 				"domain intersected:\n");
1775 	} else if (is_world_regdom(rd->alpha2))
1776 		printk(KERN_INFO "cfg80211: World regulatory "
1777 			"domain updated:\n");
1778 	else {
1779 		if (is_unknown_alpha2(rd->alpha2))
1780 			printk(KERN_INFO "cfg80211: Regulatory domain "
1781 				"changed to driver built-in settings "
1782 				"(unknown country)\n");
1783 		else
1784 			printk(KERN_INFO "cfg80211: Regulatory domain "
1785 				"changed to country: %c%c\n",
1786 				rd->alpha2[0], rd->alpha2[1]);
1787 	}
1788 	print_rd_rules(rd);
1789 }
1790 
1791 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1792 {
1793 	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1794 		rd->alpha2[0], rd->alpha2[1]);
1795 	print_rd_rules(rd);
1796 }
1797 
1798 /* Takes ownership of rd only if it doesn't fail */
1799 static int __set_regdom(const struct ieee80211_regdomain *rd)
1800 {
1801 	const struct ieee80211_regdomain *intersected_rd = NULL;
1802 	struct cfg80211_registered_device *rdev = NULL;
1803 	struct wiphy *request_wiphy;
1804 	/* Some basic sanity checks first */
1805 
1806 	if (is_world_regdom(rd->alpha2)) {
1807 		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1808 			return -EINVAL;
1809 		update_world_regdomain(rd);
1810 		return 0;
1811 	}
1812 
1813 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1814 			!is_unknown_alpha2(rd->alpha2))
1815 		return -EINVAL;
1816 
1817 	if (!last_request)
1818 		return -EINVAL;
1819 
1820 	/*
1821 	 * Lets only bother proceeding on the same alpha2 if the current
1822 	 * rd is non static (it means CRDA was present and was used last)
1823 	 * and the pending request came in from a country IE
1824 	 */
1825 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1826 		/*
1827 		 * If someone else asked us to change the rd lets only bother
1828 		 * checking if the alpha2 changes if CRDA was already called
1829 		 */
1830 		if (!regdom_changes(rd->alpha2))
1831 			return -EINVAL;
1832 	}
1833 
1834 	/*
1835 	 * Now lets set the regulatory domain, update all driver channels
1836 	 * and finally inform them of what we have done, in case they want
1837 	 * to review or adjust their own settings based on their own
1838 	 * internal EEPROM data
1839 	 */
1840 
1841 	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1842 		return -EINVAL;
1843 
1844 	if (!is_valid_rd(rd)) {
1845 		printk(KERN_ERR "cfg80211: Invalid "
1846 			"regulatory domain detected:\n");
1847 		print_regdomain_info(rd);
1848 		return -EINVAL;
1849 	}
1850 
1851 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1852 
1853 	if (!last_request->intersect) {
1854 		int r;
1855 
1856 		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1857 			reset_regdomains();
1858 			cfg80211_regdomain = rd;
1859 			return 0;
1860 		}
1861 
1862 		/*
1863 		 * For a driver hint, lets copy the regulatory domain the
1864 		 * driver wanted to the wiphy to deal with conflicts
1865 		 */
1866 
1867 		/*
1868 		 * Userspace could have sent two replies with only
1869 		 * one kernel request.
1870 		 */
1871 		if (request_wiphy->regd)
1872 			return -EALREADY;
1873 
1874 		r = reg_copy_regd(&request_wiphy->regd, rd);
1875 		if (r)
1876 			return r;
1877 
1878 		reset_regdomains();
1879 		cfg80211_regdomain = rd;
1880 		return 0;
1881 	}
1882 
1883 	/* Intersection requires a bit more work */
1884 
1885 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1886 
1887 		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1888 		if (!intersected_rd)
1889 			return -EINVAL;
1890 
1891 		/*
1892 		 * We can trash what CRDA provided now.
1893 		 * However if a driver requested this specific regulatory
1894 		 * domain we keep it for its private use
1895 		 */
1896 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
1897 			request_wiphy->regd = rd;
1898 		else
1899 			kfree(rd);
1900 
1901 		rd = NULL;
1902 
1903 		reset_regdomains();
1904 		cfg80211_regdomain = intersected_rd;
1905 
1906 		return 0;
1907 	}
1908 
1909 	if (!intersected_rd)
1910 		return -EINVAL;
1911 
1912 	rdev = wiphy_to_dev(request_wiphy);
1913 
1914 	rdev->country_ie_alpha2[0] = rd->alpha2[0];
1915 	rdev->country_ie_alpha2[1] = rd->alpha2[1];
1916 	rdev->env = last_request->country_ie_env;
1917 
1918 	BUG_ON(intersected_rd == rd);
1919 
1920 	kfree(rd);
1921 	rd = NULL;
1922 
1923 	reset_regdomains();
1924 	cfg80211_regdomain = intersected_rd;
1925 
1926 	return 0;
1927 }
1928 
1929 
1930 /*
1931  * Use this call to set the current regulatory domain. Conflicts with
1932  * multiple drivers can be ironed out later. Caller must've already
1933  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
1934  */
1935 int set_regdom(const struct ieee80211_regdomain *rd)
1936 {
1937 	int r;
1938 
1939 	assert_cfg80211_lock();
1940 
1941 	mutex_lock(&reg_mutex);
1942 
1943 	/* Note that this doesn't update the wiphys, this is done below */
1944 	r = __set_regdom(rd);
1945 	if (r) {
1946 		kfree(rd);
1947 		mutex_unlock(&reg_mutex);
1948 		return r;
1949 	}
1950 
1951 	/* This would make this whole thing pointless */
1952 	if (!last_request->intersect)
1953 		BUG_ON(rd != cfg80211_regdomain);
1954 
1955 	/* update all wiphys now with the new established regulatory domain */
1956 	update_all_wiphy_regulatory(last_request->initiator);
1957 
1958 	print_regdomain(cfg80211_regdomain);
1959 
1960 	nl80211_send_reg_change_event(last_request);
1961 
1962 	mutex_unlock(&reg_mutex);
1963 
1964 	return r;
1965 }
1966 
1967 /* Caller must hold cfg80211_mutex */
1968 void reg_device_remove(struct wiphy *wiphy)
1969 {
1970 	struct wiphy *request_wiphy = NULL;
1971 
1972 	assert_cfg80211_lock();
1973 
1974 	mutex_lock(&reg_mutex);
1975 
1976 	kfree(wiphy->regd);
1977 
1978 	if (last_request)
1979 		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1980 
1981 	if (!request_wiphy || request_wiphy != wiphy)
1982 		goto out;
1983 
1984 	last_request->wiphy_idx = WIPHY_IDX_STALE;
1985 	last_request->country_ie_env = ENVIRON_ANY;
1986 out:
1987 	mutex_unlock(&reg_mutex);
1988 }
1989 
1990 int __init regulatory_init(void)
1991 {
1992 	int err = 0;
1993 
1994 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
1995 	if (IS_ERR(reg_pdev))
1996 		return PTR_ERR(reg_pdev);
1997 
1998 	spin_lock_init(&reg_requests_lock);
1999 	spin_lock_init(&reg_pending_beacons_lock);
2000 
2001 	cfg80211_regdomain = cfg80211_world_regdom;
2002 
2003 	user_alpha2[0] = '9';
2004 	user_alpha2[1] = '7';
2005 
2006 	/* We always try to get an update for the static regdomain */
2007 	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2008 	if (err) {
2009 		if (err == -ENOMEM)
2010 			return err;
2011 		/*
2012 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
2013 		 * memory which is handled and propagated appropriately above
2014 		 * but it can also fail during a netlink_broadcast() or during
2015 		 * early boot for call_usermodehelper(). For now treat these
2016 		 * errors as non-fatal.
2017 		 */
2018 		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2019 			"to call CRDA during init");
2020 #ifdef CONFIG_CFG80211_REG_DEBUG
2021 		/* We want to find out exactly why when debugging */
2022 		WARN_ON(err);
2023 #endif
2024 	}
2025 
2026 	/*
2027 	 * Finally, if the user set the module parameter treat it
2028 	 * as a user hint.
2029 	 */
2030 	if (!is_world_regdom(ieee80211_regdom))
2031 		regulatory_hint_user(ieee80211_regdom);
2032 
2033 	return 0;
2034 }
2035 
2036 void /* __init_or_exit */ regulatory_exit(void)
2037 {
2038 	struct regulatory_request *reg_request, *tmp;
2039 	struct reg_beacon *reg_beacon, *btmp;
2040 
2041 	cancel_work_sync(&reg_work);
2042 
2043 	mutex_lock(&cfg80211_mutex);
2044 	mutex_lock(&reg_mutex);
2045 
2046 	reset_regdomains();
2047 
2048 	kfree(last_request);
2049 
2050 	platform_device_unregister(reg_pdev);
2051 
2052 	spin_lock_bh(&reg_pending_beacons_lock);
2053 	if (!list_empty(&reg_pending_beacons)) {
2054 		list_for_each_entry_safe(reg_beacon, btmp,
2055 					 &reg_pending_beacons, list) {
2056 			list_del(&reg_beacon->list);
2057 			kfree(reg_beacon);
2058 		}
2059 	}
2060 	spin_unlock_bh(&reg_pending_beacons_lock);
2061 
2062 	if (!list_empty(&reg_beacon_list)) {
2063 		list_for_each_entry_safe(reg_beacon, btmp,
2064 					 &reg_beacon_list, list) {
2065 			list_del(&reg_beacon->list);
2066 			kfree(reg_beacon);
2067 		}
2068 	}
2069 
2070 	spin_lock(&reg_requests_lock);
2071 	if (!list_empty(&reg_requests_list)) {
2072 		list_for_each_entry_safe(reg_request, tmp,
2073 					 &reg_requests_list, list) {
2074 			list_del(&reg_request->list);
2075 			kfree(reg_request);
2076 		}
2077 	}
2078 	spin_unlock(&reg_requests_lock);
2079 
2080 	mutex_unlock(&reg_mutex);
2081 	mutex_unlock(&cfg80211_mutex);
2082 }
2083