1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 21 /** 22 * DOC: Wireless regulatory infrastructure 23 * 24 * The usual implementation is for a driver to read a device EEPROM to 25 * determine which regulatory domain it should be operating under, then 26 * looking up the allowable channels in a driver-local table and finally 27 * registering those channels in the wiphy structure. 28 * 29 * Another set of compliance enforcement is for drivers to use their 30 * own compliance limits which can be stored on the EEPROM. The host 31 * driver or firmware may ensure these are used. 32 * 33 * In addition to all this we provide an extra layer of regulatory 34 * conformance. For drivers which do not have any regulatory 35 * information CRDA provides the complete regulatory solution. 36 * For others it provides a community effort on further restrictions 37 * to enhance compliance. 38 * 39 * Note: When number of rules --> infinity we will not be able to 40 * index on alpha2 any more, instead we'll probably have to 41 * rely on some SHA1 checksum of the regdomain for example. 42 * 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/kernel.h> 48 #include <linux/export.h> 49 #include <linux/slab.h> 50 #include <linux/list.h> 51 #include <linux/ctype.h> 52 #include <linux/nl80211.h> 53 #include <linux/platform_device.h> 54 #include <linux/moduleparam.h> 55 #include <net/cfg80211.h> 56 #include "core.h" 57 #include "reg.h" 58 #include "regdb.h" 59 #include "nl80211.h" 60 61 #ifdef CONFIG_CFG80211_REG_DEBUG 62 #define REG_DBG_PRINT(format, args...) \ 63 printk(KERN_DEBUG pr_fmt(format), ##args) 64 #else 65 #define REG_DBG_PRINT(args...) 66 #endif 67 68 enum reg_request_treatment { 69 REG_REQ_OK, 70 REG_REQ_IGNORE, 71 REG_REQ_INTERSECT, 72 REG_REQ_ALREADY_SET, 73 }; 74 75 static struct regulatory_request core_request_world = { 76 .initiator = NL80211_REGDOM_SET_BY_CORE, 77 .alpha2[0] = '0', 78 .alpha2[1] = '0', 79 .intersect = false, 80 .processed = true, 81 .country_ie_env = ENVIRON_ANY, 82 }; 83 84 /* 85 * Receipt of information from last regulatory request, 86 * protected by RTNL (and can be accessed with RCU protection) 87 */ 88 static struct regulatory_request __rcu *last_request = 89 (void __rcu *)&core_request_world; 90 91 /* To trigger userspace events */ 92 static struct platform_device *reg_pdev; 93 94 /* 95 * Central wireless core regulatory domains, we only need two, 96 * the current one and a world regulatory domain in case we have no 97 * information to give us an alpha2. 98 * (protected by RTNL, can be read under RCU) 99 */ 100 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 101 102 /* 103 * Number of devices that registered to the core 104 * that support cellular base station regulatory hints 105 * (protected by RTNL) 106 */ 107 static int reg_num_devs_support_basehint; 108 109 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 110 { 111 return rtnl_dereference(cfg80211_regdomain); 112 } 113 114 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 115 { 116 return rtnl_dereference(wiphy->regd); 117 } 118 119 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 120 { 121 switch (dfs_region) { 122 case NL80211_DFS_UNSET: 123 return "unset"; 124 case NL80211_DFS_FCC: 125 return "FCC"; 126 case NL80211_DFS_ETSI: 127 return "ETSI"; 128 case NL80211_DFS_JP: 129 return "JP"; 130 } 131 return "Unknown"; 132 } 133 134 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 135 { 136 const struct ieee80211_regdomain *regd = NULL; 137 const struct ieee80211_regdomain *wiphy_regd = NULL; 138 139 regd = get_cfg80211_regdom(); 140 if (!wiphy) 141 goto out; 142 143 wiphy_regd = get_wiphy_regdom(wiphy); 144 if (!wiphy_regd) 145 goto out; 146 147 if (wiphy_regd->dfs_region == regd->dfs_region) 148 goto out; 149 150 REG_DBG_PRINT("%s: device specific dfs_region " 151 "(%s) disagrees with cfg80211's " 152 "central dfs_region (%s)\n", 153 dev_name(&wiphy->dev), 154 reg_dfs_region_str(wiphy_regd->dfs_region), 155 reg_dfs_region_str(regd->dfs_region)); 156 157 out: 158 return regd->dfs_region; 159 } 160 161 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 162 { 163 if (!r) 164 return; 165 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 166 } 167 168 static struct regulatory_request *get_last_request(void) 169 { 170 return rcu_dereference_rtnl(last_request); 171 } 172 173 /* Used to queue up regulatory hints */ 174 static LIST_HEAD(reg_requests_list); 175 static spinlock_t reg_requests_lock; 176 177 /* Used to queue up beacon hints for review */ 178 static LIST_HEAD(reg_pending_beacons); 179 static spinlock_t reg_pending_beacons_lock; 180 181 /* Used to keep track of processed beacon hints */ 182 static LIST_HEAD(reg_beacon_list); 183 184 struct reg_beacon { 185 struct list_head list; 186 struct ieee80211_channel chan; 187 }; 188 189 static void reg_todo(struct work_struct *work); 190 static DECLARE_WORK(reg_work, reg_todo); 191 192 static void reg_timeout_work(struct work_struct *work); 193 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work); 194 195 /* We keep a static world regulatory domain in case of the absence of CRDA */ 196 static const struct ieee80211_regdomain world_regdom = { 197 .n_reg_rules = 6, 198 .alpha2 = "00", 199 .reg_rules = { 200 /* IEEE 802.11b/g, channels 1..11 */ 201 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 202 /* IEEE 802.11b/g, channels 12..13. */ 203 REG_RULE(2467-10, 2472+10, 40, 6, 20, 204 NL80211_RRF_NO_IR), 205 /* IEEE 802.11 channel 14 - Only JP enables 206 * this and for 802.11b only */ 207 REG_RULE(2484-10, 2484+10, 20, 6, 20, 208 NL80211_RRF_NO_IR | 209 NL80211_RRF_NO_OFDM), 210 /* IEEE 802.11a, channel 36..48 */ 211 REG_RULE(5180-10, 5240+10, 160, 6, 20, 212 NL80211_RRF_NO_IR), 213 214 /* IEEE 802.11a, channel 52..64 - DFS required */ 215 REG_RULE(5260-10, 5320+10, 160, 6, 20, 216 NL80211_RRF_NO_IR | 217 NL80211_RRF_DFS), 218 219 /* IEEE 802.11a, channel 100..144 - DFS required */ 220 REG_RULE(5500-10, 5720+10, 160, 6, 20, 221 NL80211_RRF_NO_IR | 222 NL80211_RRF_DFS), 223 224 /* IEEE 802.11a, channel 149..165 */ 225 REG_RULE(5745-10, 5825+10, 80, 6, 20, 226 NL80211_RRF_NO_IR), 227 228 /* IEEE 802.11ad (60gHz), channels 1..3 */ 229 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 230 } 231 }; 232 233 /* protected by RTNL */ 234 static const struct ieee80211_regdomain *cfg80211_world_regdom = 235 &world_regdom; 236 237 static char *ieee80211_regdom = "00"; 238 static char user_alpha2[2]; 239 240 module_param(ieee80211_regdom, charp, 0444); 241 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 242 243 static void reg_free_request(struct regulatory_request *lr) 244 { 245 if (lr != &core_request_world && lr) 246 kfree_rcu(lr, rcu_head); 247 } 248 249 static void reg_update_last_request(struct regulatory_request *request) 250 { 251 struct regulatory_request *lr; 252 253 lr = get_last_request(); 254 if (lr == request) 255 return; 256 257 reg_free_request(lr); 258 rcu_assign_pointer(last_request, request); 259 } 260 261 static void reset_regdomains(bool full_reset, 262 const struct ieee80211_regdomain *new_regdom) 263 { 264 const struct ieee80211_regdomain *r; 265 266 ASSERT_RTNL(); 267 268 r = get_cfg80211_regdom(); 269 270 /* avoid freeing static information or freeing something twice */ 271 if (r == cfg80211_world_regdom) 272 r = NULL; 273 if (cfg80211_world_regdom == &world_regdom) 274 cfg80211_world_regdom = NULL; 275 if (r == &world_regdom) 276 r = NULL; 277 278 rcu_free_regdom(r); 279 rcu_free_regdom(cfg80211_world_regdom); 280 281 cfg80211_world_regdom = &world_regdom; 282 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 283 284 if (!full_reset) 285 return; 286 287 reg_update_last_request(&core_request_world); 288 } 289 290 /* 291 * Dynamic world regulatory domain requested by the wireless 292 * core upon initialization 293 */ 294 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 295 { 296 struct regulatory_request *lr; 297 298 lr = get_last_request(); 299 300 WARN_ON(!lr); 301 302 reset_regdomains(false, rd); 303 304 cfg80211_world_regdom = rd; 305 } 306 307 bool is_world_regdom(const char *alpha2) 308 { 309 if (!alpha2) 310 return false; 311 return alpha2[0] == '0' && alpha2[1] == '0'; 312 } 313 314 static bool is_alpha2_set(const char *alpha2) 315 { 316 if (!alpha2) 317 return false; 318 return alpha2[0] && alpha2[1]; 319 } 320 321 static bool is_unknown_alpha2(const char *alpha2) 322 { 323 if (!alpha2) 324 return false; 325 /* 326 * Special case where regulatory domain was built by driver 327 * but a specific alpha2 cannot be determined 328 */ 329 return alpha2[0] == '9' && alpha2[1] == '9'; 330 } 331 332 static bool is_intersected_alpha2(const char *alpha2) 333 { 334 if (!alpha2) 335 return false; 336 /* 337 * Special case where regulatory domain is the 338 * result of an intersection between two regulatory domain 339 * structures 340 */ 341 return alpha2[0] == '9' && alpha2[1] == '8'; 342 } 343 344 static bool is_an_alpha2(const char *alpha2) 345 { 346 if (!alpha2) 347 return false; 348 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 349 } 350 351 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 352 { 353 if (!alpha2_x || !alpha2_y) 354 return false; 355 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 356 } 357 358 static bool regdom_changes(const char *alpha2) 359 { 360 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 361 362 if (!r) 363 return true; 364 return !alpha2_equal(r->alpha2, alpha2); 365 } 366 367 /* 368 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 369 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 370 * has ever been issued. 371 */ 372 static bool is_user_regdom_saved(void) 373 { 374 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 375 return false; 376 377 /* This would indicate a mistake on the design */ 378 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 379 "Unexpected user alpha2: %c%c\n", 380 user_alpha2[0], user_alpha2[1])) 381 return false; 382 383 return true; 384 } 385 386 static const struct ieee80211_regdomain * 387 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 388 { 389 struct ieee80211_regdomain *regd; 390 int size_of_regd; 391 unsigned int i; 392 393 size_of_regd = 394 sizeof(struct ieee80211_regdomain) + 395 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); 396 397 regd = kzalloc(size_of_regd, GFP_KERNEL); 398 if (!regd) 399 return ERR_PTR(-ENOMEM); 400 401 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 402 403 for (i = 0; i < src_regd->n_reg_rules; i++) 404 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 405 sizeof(struct ieee80211_reg_rule)); 406 407 return regd; 408 } 409 410 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 411 struct reg_regdb_search_request { 412 char alpha2[2]; 413 struct list_head list; 414 }; 415 416 static LIST_HEAD(reg_regdb_search_list); 417 static DEFINE_MUTEX(reg_regdb_search_mutex); 418 419 static void reg_regdb_search(struct work_struct *work) 420 { 421 struct reg_regdb_search_request *request; 422 const struct ieee80211_regdomain *curdom, *regdom = NULL; 423 int i; 424 425 rtnl_lock(); 426 427 mutex_lock(®_regdb_search_mutex); 428 while (!list_empty(®_regdb_search_list)) { 429 request = list_first_entry(®_regdb_search_list, 430 struct reg_regdb_search_request, 431 list); 432 list_del(&request->list); 433 434 for (i = 0; i < reg_regdb_size; i++) { 435 curdom = reg_regdb[i]; 436 437 if (alpha2_equal(request->alpha2, curdom->alpha2)) { 438 regdom = reg_copy_regd(curdom); 439 break; 440 } 441 } 442 443 kfree(request); 444 } 445 mutex_unlock(®_regdb_search_mutex); 446 447 if (!IS_ERR_OR_NULL(regdom)) 448 set_regdom(regdom); 449 450 rtnl_unlock(); 451 } 452 453 static DECLARE_WORK(reg_regdb_work, reg_regdb_search); 454 455 static void reg_regdb_query(const char *alpha2) 456 { 457 struct reg_regdb_search_request *request; 458 459 if (!alpha2) 460 return; 461 462 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL); 463 if (!request) 464 return; 465 466 memcpy(request->alpha2, alpha2, 2); 467 468 mutex_lock(®_regdb_search_mutex); 469 list_add_tail(&request->list, ®_regdb_search_list); 470 mutex_unlock(®_regdb_search_mutex); 471 472 schedule_work(®_regdb_work); 473 } 474 475 /* Feel free to add any other sanity checks here */ 476 static void reg_regdb_size_check(void) 477 { 478 /* We should ideally BUILD_BUG_ON() but then random builds would fail */ 479 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it..."); 480 } 481 #else 482 static inline void reg_regdb_size_check(void) {} 483 static inline void reg_regdb_query(const char *alpha2) {} 484 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 485 486 /* 487 * This lets us keep regulatory code which is updated on a regulatory 488 * basis in userspace. 489 */ 490 static int call_crda(const char *alpha2) 491 { 492 char country[12]; 493 char *env[] = { country, NULL }; 494 495 snprintf(country, sizeof(country), "COUNTRY=%c%c", 496 alpha2[0], alpha2[1]); 497 498 if (!is_world_regdom((char *) alpha2)) 499 pr_info("Calling CRDA for country: %c%c\n", 500 alpha2[0], alpha2[1]); 501 else 502 pr_info("Calling CRDA to update world regulatory domain\n"); 503 504 /* query internal regulatory database (if it exists) */ 505 reg_regdb_query(alpha2); 506 507 return kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 508 } 509 510 static enum reg_request_treatment 511 reg_call_crda(struct regulatory_request *request) 512 { 513 if (call_crda(request->alpha2)) 514 return REG_REQ_IGNORE; 515 return REG_REQ_OK; 516 } 517 518 bool reg_is_valid_request(const char *alpha2) 519 { 520 struct regulatory_request *lr = get_last_request(); 521 522 if (!lr || lr->processed) 523 return false; 524 525 return alpha2_equal(lr->alpha2, alpha2); 526 } 527 528 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 529 { 530 struct regulatory_request *lr = get_last_request(); 531 532 /* 533 * Follow the driver's regulatory domain, if present, unless a country 534 * IE has been processed or a user wants to help complaince further 535 */ 536 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 537 lr->initiator != NL80211_REGDOM_SET_BY_USER && 538 wiphy->regd) 539 return get_wiphy_regdom(wiphy); 540 541 return get_cfg80211_regdom(); 542 } 543 544 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 545 const struct ieee80211_reg_rule *rule) 546 { 547 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 548 const struct ieee80211_freq_range *freq_range_tmp; 549 const struct ieee80211_reg_rule *tmp; 550 u32 start_freq, end_freq, idx, no; 551 552 for (idx = 0; idx < rd->n_reg_rules; idx++) 553 if (rule == &rd->reg_rules[idx]) 554 break; 555 556 if (idx == rd->n_reg_rules) 557 return 0; 558 559 /* get start_freq */ 560 no = idx; 561 562 while (no) { 563 tmp = &rd->reg_rules[--no]; 564 freq_range_tmp = &tmp->freq_range; 565 566 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 567 break; 568 569 freq_range = freq_range_tmp; 570 } 571 572 start_freq = freq_range->start_freq_khz; 573 574 /* get end_freq */ 575 freq_range = &rule->freq_range; 576 no = idx; 577 578 while (no < rd->n_reg_rules - 1) { 579 tmp = &rd->reg_rules[++no]; 580 freq_range_tmp = &tmp->freq_range; 581 582 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 583 break; 584 585 freq_range = freq_range_tmp; 586 } 587 588 end_freq = freq_range->end_freq_khz; 589 590 return end_freq - start_freq; 591 } 592 593 /* Sanity check on a regulatory rule */ 594 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 595 { 596 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 597 u32 freq_diff; 598 599 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 600 return false; 601 602 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 603 return false; 604 605 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 606 607 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 608 freq_range->max_bandwidth_khz > freq_diff) 609 return false; 610 611 return true; 612 } 613 614 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 615 { 616 const struct ieee80211_reg_rule *reg_rule = NULL; 617 unsigned int i; 618 619 if (!rd->n_reg_rules) 620 return false; 621 622 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 623 return false; 624 625 for (i = 0; i < rd->n_reg_rules; i++) { 626 reg_rule = &rd->reg_rules[i]; 627 if (!is_valid_reg_rule(reg_rule)) 628 return false; 629 } 630 631 return true; 632 } 633 634 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 635 u32 center_freq_khz, u32 bw_khz) 636 { 637 u32 start_freq_khz, end_freq_khz; 638 639 start_freq_khz = center_freq_khz - (bw_khz/2); 640 end_freq_khz = center_freq_khz + (bw_khz/2); 641 642 if (start_freq_khz >= freq_range->start_freq_khz && 643 end_freq_khz <= freq_range->end_freq_khz) 644 return true; 645 646 return false; 647 } 648 649 /** 650 * freq_in_rule_band - tells us if a frequency is in a frequency band 651 * @freq_range: frequency rule we want to query 652 * @freq_khz: frequency we are inquiring about 653 * 654 * This lets us know if a specific frequency rule is or is not relevant to 655 * a specific frequency's band. Bands are device specific and artificial 656 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 657 * however it is safe for now to assume that a frequency rule should not be 658 * part of a frequency's band if the start freq or end freq are off by more 659 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the 660 * 60 GHz band. 661 * This resolution can be lowered and should be considered as we add 662 * regulatory rule support for other "bands". 663 **/ 664 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 665 u32 freq_khz) 666 { 667 #define ONE_GHZ_IN_KHZ 1000000 668 /* 669 * From 802.11ad: directional multi-gigabit (DMG): 670 * Pertaining to operation in a frequency band containing a channel 671 * with the Channel starting frequency above 45 GHz. 672 */ 673 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 674 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 675 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 676 return true; 677 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 678 return true; 679 return false; 680 #undef ONE_GHZ_IN_KHZ 681 } 682 683 /* 684 * Later on we can perhaps use the more restrictive DFS 685 * region but we don't have information for that yet so 686 * for now simply disallow conflicts. 687 */ 688 static enum nl80211_dfs_regions 689 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 690 const enum nl80211_dfs_regions dfs_region2) 691 { 692 if (dfs_region1 != dfs_region2) 693 return NL80211_DFS_UNSET; 694 return dfs_region1; 695 } 696 697 /* 698 * Helper for regdom_intersect(), this does the real 699 * mathematical intersection fun 700 */ 701 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 702 const struct ieee80211_regdomain *rd2, 703 const struct ieee80211_reg_rule *rule1, 704 const struct ieee80211_reg_rule *rule2, 705 struct ieee80211_reg_rule *intersected_rule) 706 { 707 const struct ieee80211_freq_range *freq_range1, *freq_range2; 708 struct ieee80211_freq_range *freq_range; 709 const struct ieee80211_power_rule *power_rule1, *power_rule2; 710 struct ieee80211_power_rule *power_rule; 711 u32 freq_diff, max_bandwidth1, max_bandwidth2; 712 713 freq_range1 = &rule1->freq_range; 714 freq_range2 = &rule2->freq_range; 715 freq_range = &intersected_rule->freq_range; 716 717 power_rule1 = &rule1->power_rule; 718 power_rule2 = &rule2->power_rule; 719 power_rule = &intersected_rule->power_rule; 720 721 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 722 freq_range2->start_freq_khz); 723 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 724 freq_range2->end_freq_khz); 725 726 max_bandwidth1 = freq_range1->max_bandwidth_khz; 727 max_bandwidth2 = freq_range2->max_bandwidth_khz; 728 729 if (rule1->flags & NL80211_RRF_AUTO_BW) 730 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 731 if (rule2->flags & NL80211_RRF_AUTO_BW) 732 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 733 734 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 735 736 intersected_rule->flags = rule1->flags | rule2->flags; 737 738 /* 739 * In case NL80211_RRF_AUTO_BW requested for both rules 740 * set AUTO_BW in intersected rule also. Next we will 741 * calculate BW correctly in handle_channel function. 742 * In other case remove AUTO_BW flag while we calculate 743 * maximum bandwidth correctly and auto calculation is 744 * not required. 745 */ 746 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 747 (rule2->flags & NL80211_RRF_AUTO_BW)) 748 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 749 else 750 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 751 752 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 753 if (freq_range->max_bandwidth_khz > freq_diff) 754 freq_range->max_bandwidth_khz = freq_diff; 755 756 power_rule->max_eirp = min(power_rule1->max_eirp, 757 power_rule2->max_eirp); 758 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 759 power_rule2->max_antenna_gain); 760 761 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 762 rule2->dfs_cac_ms); 763 764 if (!is_valid_reg_rule(intersected_rule)) 765 return -EINVAL; 766 767 return 0; 768 } 769 770 /** 771 * regdom_intersect - do the intersection between two regulatory domains 772 * @rd1: first regulatory domain 773 * @rd2: second regulatory domain 774 * 775 * Use this function to get the intersection between two regulatory domains. 776 * Once completed we will mark the alpha2 for the rd as intersected, "98", 777 * as no one single alpha2 can represent this regulatory domain. 778 * 779 * Returns a pointer to the regulatory domain structure which will hold the 780 * resulting intersection of rules between rd1 and rd2. We will 781 * kzalloc() this structure for you. 782 */ 783 static struct ieee80211_regdomain * 784 regdom_intersect(const struct ieee80211_regdomain *rd1, 785 const struct ieee80211_regdomain *rd2) 786 { 787 int r, size_of_regd; 788 unsigned int x, y; 789 unsigned int num_rules = 0, rule_idx = 0; 790 const struct ieee80211_reg_rule *rule1, *rule2; 791 struct ieee80211_reg_rule *intersected_rule; 792 struct ieee80211_regdomain *rd; 793 /* This is just a dummy holder to help us count */ 794 struct ieee80211_reg_rule dummy_rule; 795 796 if (!rd1 || !rd2) 797 return NULL; 798 799 /* 800 * First we get a count of the rules we'll need, then we actually 801 * build them. This is to so we can malloc() and free() a 802 * regdomain once. The reason we use reg_rules_intersect() here 803 * is it will return -EINVAL if the rule computed makes no sense. 804 * All rules that do check out OK are valid. 805 */ 806 807 for (x = 0; x < rd1->n_reg_rules; x++) { 808 rule1 = &rd1->reg_rules[x]; 809 for (y = 0; y < rd2->n_reg_rules; y++) { 810 rule2 = &rd2->reg_rules[y]; 811 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 812 &dummy_rule)) 813 num_rules++; 814 } 815 } 816 817 if (!num_rules) 818 return NULL; 819 820 size_of_regd = sizeof(struct ieee80211_regdomain) + 821 num_rules * sizeof(struct ieee80211_reg_rule); 822 823 rd = kzalloc(size_of_regd, GFP_KERNEL); 824 if (!rd) 825 return NULL; 826 827 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) { 828 rule1 = &rd1->reg_rules[x]; 829 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) { 830 rule2 = &rd2->reg_rules[y]; 831 /* 832 * This time around instead of using the stack lets 833 * write to the target rule directly saving ourselves 834 * a memcpy() 835 */ 836 intersected_rule = &rd->reg_rules[rule_idx]; 837 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 838 intersected_rule); 839 /* 840 * No need to memset here the intersected rule here as 841 * we're not using the stack anymore 842 */ 843 if (r) 844 continue; 845 rule_idx++; 846 } 847 } 848 849 if (rule_idx != num_rules) { 850 kfree(rd); 851 return NULL; 852 } 853 854 rd->n_reg_rules = num_rules; 855 rd->alpha2[0] = '9'; 856 rd->alpha2[1] = '8'; 857 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 858 rd2->dfs_region); 859 860 return rd; 861 } 862 863 /* 864 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 865 * want to just have the channel structure use these 866 */ 867 static u32 map_regdom_flags(u32 rd_flags) 868 { 869 u32 channel_flags = 0; 870 if (rd_flags & NL80211_RRF_NO_IR_ALL) 871 channel_flags |= IEEE80211_CHAN_NO_IR; 872 if (rd_flags & NL80211_RRF_DFS) 873 channel_flags |= IEEE80211_CHAN_RADAR; 874 if (rd_flags & NL80211_RRF_NO_OFDM) 875 channel_flags |= IEEE80211_CHAN_NO_OFDM; 876 return channel_flags; 877 } 878 879 static const struct ieee80211_reg_rule * 880 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq, 881 const struct ieee80211_regdomain *regd) 882 { 883 int i; 884 bool band_rule_found = false; 885 bool bw_fits = false; 886 887 if (!regd) 888 return ERR_PTR(-EINVAL); 889 890 for (i = 0; i < regd->n_reg_rules; i++) { 891 const struct ieee80211_reg_rule *rr; 892 const struct ieee80211_freq_range *fr = NULL; 893 894 rr = ®d->reg_rules[i]; 895 fr = &rr->freq_range; 896 897 /* 898 * We only need to know if one frequency rule was 899 * was in center_freq's band, that's enough, so lets 900 * not overwrite it once found 901 */ 902 if (!band_rule_found) 903 band_rule_found = freq_in_rule_band(fr, center_freq); 904 905 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20)); 906 907 if (band_rule_found && bw_fits) 908 return rr; 909 } 910 911 if (!band_rule_found) 912 return ERR_PTR(-ERANGE); 913 914 return ERR_PTR(-EINVAL); 915 } 916 917 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 918 u32 center_freq) 919 { 920 const struct ieee80211_regdomain *regd; 921 922 regd = reg_get_regdomain(wiphy); 923 924 return freq_reg_info_regd(wiphy, center_freq, regd); 925 } 926 EXPORT_SYMBOL(freq_reg_info); 927 928 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 929 { 930 switch (initiator) { 931 case NL80211_REGDOM_SET_BY_CORE: 932 return "core"; 933 case NL80211_REGDOM_SET_BY_USER: 934 return "user"; 935 case NL80211_REGDOM_SET_BY_DRIVER: 936 return "driver"; 937 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 938 return "country IE"; 939 default: 940 WARN_ON(1); 941 return "bug"; 942 } 943 } 944 EXPORT_SYMBOL(reg_initiator_name); 945 946 #ifdef CONFIG_CFG80211_REG_DEBUG 947 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd, 948 struct ieee80211_channel *chan, 949 const struct ieee80211_reg_rule *reg_rule) 950 { 951 const struct ieee80211_power_rule *power_rule; 952 const struct ieee80211_freq_range *freq_range; 953 char max_antenna_gain[32], bw[32]; 954 955 power_rule = ®_rule->power_rule; 956 freq_range = ®_rule->freq_range; 957 958 if (!power_rule->max_antenna_gain) 959 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A"); 960 else 961 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d", 962 power_rule->max_antenna_gain); 963 964 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 965 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 966 freq_range->max_bandwidth_khz, 967 reg_get_max_bandwidth(regd, reg_rule)); 968 else 969 snprintf(bw, sizeof(bw), "%d KHz", 970 freq_range->max_bandwidth_khz); 971 972 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n", 973 chan->center_freq); 974 975 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n", 976 freq_range->start_freq_khz, freq_range->end_freq_khz, 977 bw, max_antenna_gain, 978 power_rule->max_eirp); 979 } 980 #else 981 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd, 982 struct ieee80211_channel *chan, 983 const struct ieee80211_reg_rule *reg_rule) 984 { 985 return; 986 } 987 #endif 988 989 /* 990 * Note that right now we assume the desired channel bandwidth 991 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 992 * per channel, the primary and the extension channel). 993 */ 994 static void handle_channel(struct wiphy *wiphy, 995 enum nl80211_reg_initiator initiator, 996 struct ieee80211_channel *chan) 997 { 998 u32 flags, bw_flags = 0; 999 const struct ieee80211_reg_rule *reg_rule = NULL; 1000 const struct ieee80211_power_rule *power_rule = NULL; 1001 const struct ieee80211_freq_range *freq_range = NULL; 1002 struct wiphy *request_wiphy = NULL; 1003 struct regulatory_request *lr = get_last_request(); 1004 const struct ieee80211_regdomain *regd; 1005 u32 max_bandwidth_khz; 1006 1007 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1008 1009 flags = chan->orig_flags; 1010 1011 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 1012 if (IS_ERR(reg_rule)) { 1013 /* 1014 * We will disable all channels that do not match our 1015 * received regulatory rule unless the hint is coming 1016 * from a Country IE and the Country IE had no information 1017 * about a band. The IEEE 802.11 spec allows for an AP 1018 * to send only a subset of the regulatory rules allowed, 1019 * so an AP in the US that only supports 2.4 GHz may only send 1020 * a country IE with information for the 2.4 GHz band 1021 * while 5 GHz is still supported. 1022 */ 1023 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1024 PTR_ERR(reg_rule) == -ERANGE) 1025 return; 1026 1027 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1028 request_wiphy && request_wiphy == wiphy && 1029 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1030 REG_DBG_PRINT("Disabling freq %d MHz for good\n", 1031 chan->center_freq); 1032 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1033 chan->flags = chan->orig_flags; 1034 } else { 1035 REG_DBG_PRINT("Disabling freq %d MHz\n", 1036 chan->center_freq); 1037 chan->flags |= IEEE80211_CHAN_DISABLED; 1038 } 1039 return; 1040 } 1041 1042 regd = reg_get_regdomain(wiphy); 1043 chan_reg_rule_print_dbg(regd, chan, reg_rule); 1044 1045 power_rule = ®_rule->power_rule; 1046 freq_range = ®_rule->freq_range; 1047 1048 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1049 /* Check if auto calculation requested */ 1050 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1051 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1052 1053 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1054 bw_flags = IEEE80211_CHAN_NO_HT40; 1055 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1056 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1057 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1058 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1059 1060 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1061 request_wiphy && request_wiphy == wiphy && 1062 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1063 /* 1064 * This guarantees the driver's requested regulatory domain 1065 * will always be used as a base for further regulatory 1066 * settings 1067 */ 1068 chan->flags = chan->orig_flags = 1069 map_regdom_flags(reg_rule->flags) | bw_flags; 1070 chan->max_antenna_gain = chan->orig_mag = 1071 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1072 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1073 (int) MBM_TO_DBM(power_rule->max_eirp); 1074 return; 1075 } 1076 1077 chan->dfs_state = NL80211_DFS_USABLE; 1078 chan->dfs_state_entered = jiffies; 1079 1080 chan->beacon_found = false; 1081 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1082 chan->max_antenna_gain = 1083 min_t(int, chan->orig_mag, 1084 MBI_TO_DBI(power_rule->max_antenna_gain)); 1085 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1086 1087 if (chan->flags & IEEE80211_CHAN_RADAR) { 1088 if (reg_rule->dfs_cac_ms) 1089 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1090 else 1091 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1092 } 1093 1094 if (chan->orig_mpwr) { 1095 /* 1096 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1097 * will always follow the passed country IE power settings. 1098 */ 1099 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1100 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1101 chan->max_power = chan->max_reg_power; 1102 else 1103 chan->max_power = min(chan->orig_mpwr, 1104 chan->max_reg_power); 1105 } else 1106 chan->max_power = chan->max_reg_power; 1107 } 1108 1109 static void handle_band(struct wiphy *wiphy, 1110 enum nl80211_reg_initiator initiator, 1111 struct ieee80211_supported_band *sband) 1112 { 1113 unsigned int i; 1114 1115 if (!sband) 1116 return; 1117 1118 for (i = 0; i < sband->n_channels; i++) 1119 handle_channel(wiphy, initiator, &sband->channels[i]); 1120 } 1121 1122 static bool reg_request_cell_base(struct regulatory_request *request) 1123 { 1124 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1125 return false; 1126 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 1127 } 1128 1129 bool reg_last_request_cell_base(void) 1130 { 1131 return reg_request_cell_base(get_last_request()); 1132 } 1133 1134 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS 1135 /* Core specific check */ 1136 static enum reg_request_treatment 1137 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1138 { 1139 struct regulatory_request *lr = get_last_request(); 1140 1141 if (!reg_num_devs_support_basehint) 1142 return REG_REQ_IGNORE; 1143 1144 if (reg_request_cell_base(lr) && 1145 !regdom_changes(pending_request->alpha2)) 1146 return REG_REQ_ALREADY_SET; 1147 1148 return REG_REQ_OK; 1149 } 1150 1151 /* Device specific check */ 1152 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1153 { 1154 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 1155 } 1156 #else 1157 static int reg_ignore_cell_hint(struct regulatory_request *pending_request) 1158 { 1159 return REG_REQ_IGNORE; 1160 } 1161 1162 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1163 { 1164 return true; 1165 } 1166 #endif 1167 1168 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 1169 { 1170 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 1171 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 1172 return true; 1173 return false; 1174 } 1175 1176 static bool ignore_reg_update(struct wiphy *wiphy, 1177 enum nl80211_reg_initiator initiator) 1178 { 1179 struct regulatory_request *lr = get_last_request(); 1180 1181 if (!lr) { 1182 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1183 "since last_request is not set\n", 1184 reg_initiator_name(initiator)); 1185 return true; 1186 } 1187 1188 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1189 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 1190 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1191 "since the driver uses its own custom " 1192 "regulatory domain\n", 1193 reg_initiator_name(initiator)); 1194 return true; 1195 } 1196 1197 /* 1198 * wiphy->regd will be set once the device has its own 1199 * desired regulatory domain set 1200 */ 1201 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1202 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1203 !is_world_regdom(lr->alpha2)) { 1204 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1205 "since the driver requires its own regulatory " 1206 "domain to be set first\n", 1207 reg_initiator_name(initiator)); 1208 return true; 1209 } 1210 1211 if (reg_request_cell_base(lr)) 1212 return reg_dev_ignore_cell_hint(wiphy); 1213 1214 return false; 1215 } 1216 1217 static bool reg_is_world_roaming(struct wiphy *wiphy) 1218 { 1219 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1220 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1221 struct regulatory_request *lr = get_last_request(); 1222 1223 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1224 return true; 1225 1226 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1227 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1228 return true; 1229 1230 return false; 1231 } 1232 1233 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1234 struct reg_beacon *reg_beacon) 1235 { 1236 struct ieee80211_supported_band *sband; 1237 struct ieee80211_channel *chan; 1238 bool channel_changed = false; 1239 struct ieee80211_channel chan_before; 1240 1241 sband = wiphy->bands[reg_beacon->chan.band]; 1242 chan = &sband->channels[chan_idx]; 1243 1244 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1245 return; 1246 1247 if (chan->beacon_found) 1248 return; 1249 1250 chan->beacon_found = true; 1251 1252 if (!reg_is_world_roaming(wiphy)) 1253 return; 1254 1255 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 1256 return; 1257 1258 chan_before.center_freq = chan->center_freq; 1259 chan_before.flags = chan->flags; 1260 1261 if (chan->flags & IEEE80211_CHAN_NO_IR) { 1262 chan->flags &= ~IEEE80211_CHAN_NO_IR; 1263 channel_changed = true; 1264 } 1265 1266 if (channel_changed) 1267 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1268 } 1269 1270 /* 1271 * Called when a scan on a wiphy finds a beacon on 1272 * new channel 1273 */ 1274 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1275 struct reg_beacon *reg_beacon) 1276 { 1277 unsigned int i; 1278 struct ieee80211_supported_band *sband; 1279 1280 if (!wiphy->bands[reg_beacon->chan.band]) 1281 return; 1282 1283 sband = wiphy->bands[reg_beacon->chan.band]; 1284 1285 for (i = 0; i < sband->n_channels; i++) 1286 handle_reg_beacon(wiphy, i, reg_beacon); 1287 } 1288 1289 /* 1290 * Called upon reg changes or a new wiphy is added 1291 */ 1292 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1293 { 1294 unsigned int i; 1295 struct ieee80211_supported_band *sband; 1296 struct reg_beacon *reg_beacon; 1297 1298 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1299 if (!wiphy->bands[reg_beacon->chan.band]) 1300 continue; 1301 sband = wiphy->bands[reg_beacon->chan.band]; 1302 for (i = 0; i < sband->n_channels; i++) 1303 handle_reg_beacon(wiphy, i, reg_beacon); 1304 } 1305 } 1306 1307 /* Reap the advantages of previously found beacons */ 1308 static void reg_process_beacons(struct wiphy *wiphy) 1309 { 1310 /* 1311 * Means we are just firing up cfg80211, so no beacons would 1312 * have been processed yet. 1313 */ 1314 if (!last_request) 1315 return; 1316 wiphy_update_beacon_reg(wiphy); 1317 } 1318 1319 static bool is_ht40_allowed(struct ieee80211_channel *chan) 1320 { 1321 if (!chan) 1322 return false; 1323 if (chan->flags & IEEE80211_CHAN_DISABLED) 1324 return false; 1325 /* This would happen when regulatory rules disallow HT40 completely */ 1326 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 1327 return false; 1328 return true; 1329 } 1330 1331 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1332 struct ieee80211_channel *channel) 1333 { 1334 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 1335 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1336 unsigned int i; 1337 1338 if (!is_ht40_allowed(channel)) { 1339 channel->flags |= IEEE80211_CHAN_NO_HT40; 1340 return; 1341 } 1342 1343 /* 1344 * We need to ensure the extension channels exist to 1345 * be able to use HT40- or HT40+, this finds them (or not) 1346 */ 1347 for (i = 0; i < sband->n_channels; i++) { 1348 struct ieee80211_channel *c = &sband->channels[i]; 1349 1350 if (c->center_freq == (channel->center_freq - 20)) 1351 channel_before = c; 1352 if (c->center_freq == (channel->center_freq + 20)) 1353 channel_after = c; 1354 } 1355 1356 /* 1357 * Please note that this assumes target bandwidth is 20 MHz, 1358 * if that ever changes we also need to change the below logic 1359 * to include that as well. 1360 */ 1361 if (!is_ht40_allowed(channel_before)) 1362 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1363 else 1364 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1365 1366 if (!is_ht40_allowed(channel_after)) 1367 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1368 else 1369 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1370 } 1371 1372 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1373 struct ieee80211_supported_band *sband) 1374 { 1375 unsigned int i; 1376 1377 if (!sband) 1378 return; 1379 1380 for (i = 0; i < sband->n_channels; i++) 1381 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 1382 } 1383 1384 static void reg_process_ht_flags(struct wiphy *wiphy) 1385 { 1386 enum ieee80211_band band; 1387 1388 if (!wiphy) 1389 return; 1390 1391 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1392 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 1393 } 1394 1395 static void reg_call_notifier(struct wiphy *wiphy, 1396 struct regulatory_request *request) 1397 { 1398 if (wiphy->reg_notifier) 1399 wiphy->reg_notifier(wiphy, request); 1400 } 1401 1402 static void wiphy_update_regulatory(struct wiphy *wiphy, 1403 enum nl80211_reg_initiator initiator) 1404 { 1405 enum ieee80211_band band; 1406 struct regulatory_request *lr = get_last_request(); 1407 1408 if (ignore_reg_update(wiphy, initiator)) { 1409 /* 1410 * Regulatory updates set by CORE are ignored for custom 1411 * regulatory cards. Let us notify the changes to the driver, 1412 * as some drivers used this to restore its orig_* reg domain. 1413 */ 1414 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1415 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1416 reg_call_notifier(wiphy, lr); 1417 return; 1418 } 1419 1420 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 1421 1422 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1423 handle_band(wiphy, initiator, wiphy->bands[band]); 1424 1425 reg_process_beacons(wiphy); 1426 reg_process_ht_flags(wiphy); 1427 reg_call_notifier(wiphy, lr); 1428 } 1429 1430 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 1431 { 1432 struct cfg80211_registered_device *rdev; 1433 struct wiphy *wiphy; 1434 1435 ASSERT_RTNL(); 1436 1437 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1438 wiphy = &rdev->wiphy; 1439 wiphy_update_regulatory(wiphy, initiator); 1440 } 1441 } 1442 1443 static void handle_channel_custom(struct wiphy *wiphy, 1444 struct ieee80211_channel *chan, 1445 const struct ieee80211_regdomain *regd) 1446 { 1447 u32 bw_flags = 0; 1448 const struct ieee80211_reg_rule *reg_rule = NULL; 1449 const struct ieee80211_power_rule *power_rule = NULL; 1450 const struct ieee80211_freq_range *freq_range = NULL; 1451 u32 max_bandwidth_khz; 1452 1453 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq), 1454 regd); 1455 1456 if (IS_ERR(reg_rule)) { 1457 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n", 1458 chan->center_freq); 1459 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1460 chan->flags = chan->orig_flags; 1461 return; 1462 } 1463 1464 chan_reg_rule_print_dbg(regd, chan, reg_rule); 1465 1466 power_rule = ®_rule->power_rule; 1467 freq_range = ®_rule->freq_range; 1468 1469 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1470 /* Check if auto calculation requested */ 1471 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1472 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1473 1474 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1475 bw_flags = IEEE80211_CHAN_NO_HT40; 1476 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1477 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1478 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1479 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1480 1481 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1482 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1483 chan->max_reg_power = chan->max_power = 1484 (int) MBM_TO_DBM(power_rule->max_eirp); 1485 } 1486 1487 static void handle_band_custom(struct wiphy *wiphy, 1488 struct ieee80211_supported_band *sband, 1489 const struct ieee80211_regdomain *regd) 1490 { 1491 unsigned int i; 1492 1493 if (!sband) 1494 return; 1495 1496 for (i = 0; i < sband->n_channels; i++) 1497 handle_channel_custom(wiphy, &sband->channels[i], regd); 1498 } 1499 1500 /* Used by drivers prior to wiphy registration */ 1501 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1502 const struct ieee80211_regdomain *regd) 1503 { 1504 enum ieee80211_band band; 1505 unsigned int bands_set = 0; 1506 1507 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 1508 "wiphy should have REGULATORY_CUSTOM_REG\n"); 1509 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 1510 1511 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1512 if (!wiphy->bands[band]) 1513 continue; 1514 handle_band_custom(wiphy, wiphy->bands[band], regd); 1515 bands_set++; 1516 } 1517 1518 /* 1519 * no point in calling this if it won't have any effect 1520 * on your device's supported bands. 1521 */ 1522 WARN_ON(!bands_set); 1523 } 1524 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1525 1526 static void reg_set_request_processed(void) 1527 { 1528 bool need_more_processing = false; 1529 struct regulatory_request *lr = get_last_request(); 1530 1531 lr->processed = true; 1532 1533 spin_lock(®_requests_lock); 1534 if (!list_empty(®_requests_list)) 1535 need_more_processing = true; 1536 spin_unlock(®_requests_lock); 1537 1538 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 1539 cancel_delayed_work(®_timeout); 1540 1541 if (need_more_processing) 1542 schedule_work(®_work); 1543 } 1544 1545 /** 1546 * reg_process_hint_core - process core regulatory requests 1547 * @pending_request: a pending core regulatory request 1548 * 1549 * The wireless subsystem can use this function to process 1550 * a regulatory request issued by the regulatory core. 1551 * 1552 * Returns one of the different reg request treatment values. 1553 */ 1554 static enum reg_request_treatment 1555 reg_process_hint_core(struct regulatory_request *core_request) 1556 { 1557 1558 core_request->intersect = false; 1559 core_request->processed = false; 1560 1561 reg_update_last_request(core_request); 1562 1563 return reg_call_crda(core_request); 1564 } 1565 1566 static enum reg_request_treatment 1567 __reg_process_hint_user(struct regulatory_request *user_request) 1568 { 1569 struct regulatory_request *lr = get_last_request(); 1570 1571 if (reg_request_cell_base(user_request)) 1572 return reg_ignore_cell_hint(user_request); 1573 1574 if (reg_request_cell_base(lr)) 1575 return REG_REQ_IGNORE; 1576 1577 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1578 return REG_REQ_INTERSECT; 1579 /* 1580 * If the user knows better the user should set the regdom 1581 * to their country before the IE is picked up 1582 */ 1583 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 1584 lr->intersect) 1585 return REG_REQ_IGNORE; 1586 /* 1587 * Process user requests only after previous user/driver/core 1588 * requests have been processed 1589 */ 1590 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 1591 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1592 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 1593 regdom_changes(lr->alpha2)) 1594 return REG_REQ_IGNORE; 1595 1596 if (!regdom_changes(user_request->alpha2)) 1597 return REG_REQ_ALREADY_SET; 1598 1599 return REG_REQ_OK; 1600 } 1601 1602 /** 1603 * reg_process_hint_user - process user regulatory requests 1604 * @user_request: a pending user regulatory request 1605 * 1606 * The wireless subsystem can use this function to process 1607 * a regulatory request initiated by userspace. 1608 * 1609 * Returns one of the different reg request treatment values. 1610 */ 1611 static enum reg_request_treatment 1612 reg_process_hint_user(struct regulatory_request *user_request) 1613 { 1614 enum reg_request_treatment treatment; 1615 1616 treatment = __reg_process_hint_user(user_request); 1617 if (treatment == REG_REQ_IGNORE || 1618 treatment == REG_REQ_ALREADY_SET) { 1619 kfree(user_request); 1620 return treatment; 1621 } 1622 1623 user_request->intersect = treatment == REG_REQ_INTERSECT; 1624 user_request->processed = false; 1625 1626 reg_update_last_request(user_request); 1627 1628 user_alpha2[0] = user_request->alpha2[0]; 1629 user_alpha2[1] = user_request->alpha2[1]; 1630 1631 return reg_call_crda(user_request); 1632 } 1633 1634 static enum reg_request_treatment 1635 __reg_process_hint_driver(struct regulatory_request *driver_request) 1636 { 1637 struct regulatory_request *lr = get_last_request(); 1638 1639 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 1640 if (regdom_changes(driver_request->alpha2)) 1641 return REG_REQ_OK; 1642 return REG_REQ_ALREADY_SET; 1643 } 1644 1645 /* 1646 * This would happen if you unplug and plug your card 1647 * back in or if you add a new device for which the previously 1648 * loaded card also agrees on the regulatory domain. 1649 */ 1650 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1651 !regdom_changes(driver_request->alpha2)) 1652 return REG_REQ_ALREADY_SET; 1653 1654 return REG_REQ_INTERSECT; 1655 } 1656 1657 /** 1658 * reg_process_hint_driver - process driver regulatory requests 1659 * @driver_request: a pending driver regulatory request 1660 * 1661 * The wireless subsystem can use this function to process 1662 * a regulatory request issued by an 802.11 driver. 1663 * 1664 * Returns one of the different reg request treatment values. 1665 */ 1666 static enum reg_request_treatment 1667 reg_process_hint_driver(struct wiphy *wiphy, 1668 struct regulatory_request *driver_request) 1669 { 1670 const struct ieee80211_regdomain *regd; 1671 enum reg_request_treatment treatment; 1672 1673 treatment = __reg_process_hint_driver(driver_request); 1674 1675 switch (treatment) { 1676 case REG_REQ_OK: 1677 break; 1678 case REG_REQ_IGNORE: 1679 kfree(driver_request); 1680 return treatment; 1681 case REG_REQ_INTERSECT: 1682 /* fall through */ 1683 case REG_REQ_ALREADY_SET: 1684 regd = reg_copy_regd(get_cfg80211_regdom()); 1685 if (IS_ERR(regd)) { 1686 kfree(driver_request); 1687 return REG_REQ_IGNORE; 1688 } 1689 rcu_assign_pointer(wiphy->regd, regd); 1690 } 1691 1692 1693 driver_request->intersect = treatment == REG_REQ_INTERSECT; 1694 driver_request->processed = false; 1695 1696 reg_update_last_request(driver_request); 1697 1698 /* 1699 * Since CRDA will not be called in this case as we already 1700 * have applied the requested regulatory domain before we just 1701 * inform userspace we have processed the request 1702 */ 1703 if (treatment == REG_REQ_ALREADY_SET) { 1704 nl80211_send_reg_change_event(driver_request); 1705 reg_set_request_processed(); 1706 return treatment; 1707 } 1708 1709 return reg_call_crda(driver_request); 1710 } 1711 1712 static enum reg_request_treatment 1713 __reg_process_hint_country_ie(struct wiphy *wiphy, 1714 struct regulatory_request *country_ie_request) 1715 { 1716 struct wiphy *last_wiphy = NULL; 1717 struct regulatory_request *lr = get_last_request(); 1718 1719 if (reg_request_cell_base(lr)) { 1720 /* Trust a Cell base station over the AP's country IE */ 1721 if (regdom_changes(country_ie_request->alpha2)) 1722 return REG_REQ_IGNORE; 1723 return REG_REQ_ALREADY_SET; 1724 } else { 1725 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 1726 return REG_REQ_IGNORE; 1727 } 1728 1729 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 1730 return -EINVAL; 1731 1732 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 1733 return REG_REQ_OK; 1734 1735 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1736 1737 if (last_wiphy != wiphy) { 1738 /* 1739 * Two cards with two APs claiming different 1740 * Country IE alpha2s. We could 1741 * intersect them, but that seems unlikely 1742 * to be correct. Reject second one for now. 1743 */ 1744 if (regdom_changes(country_ie_request->alpha2)) 1745 return REG_REQ_IGNORE; 1746 return REG_REQ_ALREADY_SET; 1747 } 1748 /* 1749 * Two consecutive Country IE hints on the same wiphy. 1750 * This should be picked up early by the driver/stack 1751 */ 1752 if (WARN_ON(regdom_changes(country_ie_request->alpha2))) 1753 return REG_REQ_OK; 1754 return REG_REQ_ALREADY_SET; 1755 } 1756 1757 /** 1758 * reg_process_hint_country_ie - process regulatory requests from country IEs 1759 * @country_ie_request: a regulatory request from a country IE 1760 * 1761 * The wireless subsystem can use this function to process 1762 * a regulatory request issued by a country Information Element. 1763 * 1764 * Returns one of the different reg request treatment values. 1765 */ 1766 static enum reg_request_treatment 1767 reg_process_hint_country_ie(struct wiphy *wiphy, 1768 struct regulatory_request *country_ie_request) 1769 { 1770 enum reg_request_treatment treatment; 1771 1772 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 1773 1774 switch (treatment) { 1775 case REG_REQ_OK: 1776 break; 1777 case REG_REQ_IGNORE: 1778 /* fall through */ 1779 case REG_REQ_ALREADY_SET: 1780 kfree(country_ie_request); 1781 return treatment; 1782 case REG_REQ_INTERSECT: 1783 kfree(country_ie_request); 1784 /* 1785 * This doesn't happen yet, not sure we 1786 * ever want to support it for this case. 1787 */ 1788 WARN_ONCE(1, "Unexpected intersection for country IEs"); 1789 return REG_REQ_IGNORE; 1790 } 1791 1792 country_ie_request->intersect = false; 1793 country_ie_request->processed = false; 1794 1795 reg_update_last_request(country_ie_request); 1796 1797 return reg_call_crda(country_ie_request); 1798 } 1799 1800 /* This processes *all* regulatory hints */ 1801 static void reg_process_hint(struct regulatory_request *reg_request) 1802 { 1803 struct wiphy *wiphy = NULL; 1804 enum reg_request_treatment treatment; 1805 1806 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 1807 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 1808 1809 switch (reg_request->initiator) { 1810 case NL80211_REGDOM_SET_BY_CORE: 1811 reg_process_hint_core(reg_request); 1812 return; 1813 case NL80211_REGDOM_SET_BY_USER: 1814 treatment = reg_process_hint_user(reg_request); 1815 if (treatment == REG_REQ_IGNORE || 1816 treatment == REG_REQ_ALREADY_SET) 1817 return; 1818 queue_delayed_work(system_power_efficient_wq, 1819 ®_timeout, msecs_to_jiffies(3142)); 1820 return; 1821 case NL80211_REGDOM_SET_BY_DRIVER: 1822 if (!wiphy) 1823 goto out_free; 1824 treatment = reg_process_hint_driver(wiphy, reg_request); 1825 break; 1826 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1827 if (!wiphy) 1828 goto out_free; 1829 treatment = reg_process_hint_country_ie(wiphy, reg_request); 1830 break; 1831 default: 1832 WARN(1, "invalid initiator %d\n", reg_request->initiator); 1833 goto out_free; 1834 } 1835 1836 /* This is required so that the orig_* parameters are saved */ 1837 if (treatment == REG_REQ_ALREADY_SET && wiphy && 1838 wiphy->regulatory_flags & REGULATORY_STRICT_REG) 1839 wiphy_update_regulatory(wiphy, reg_request->initiator); 1840 1841 return; 1842 1843 out_free: 1844 kfree(reg_request); 1845 } 1846 1847 /* 1848 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 1849 * Regulatory hints come on a first come first serve basis and we 1850 * must process each one atomically. 1851 */ 1852 static void reg_process_pending_hints(void) 1853 { 1854 struct regulatory_request *reg_request, *lr; 1855 1856 lr = get_last_request(); 1857 1858 /* When last_request->processed becomes true this will be rescheduled */ 1859 if (lr && !lr->processed) { 1860 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n"); 1861 return; 1862 } 1863 1864 spin_lock(®_requests_lock); 1865 1866 if (list_empty(®_requests_list)) { 1867 spin_unlock(®_requests_lock); 1868 return; 1869 } 1870 1871 reg_request = list_first_entry(®_requests_list, 1872 struct regulatory_request, 1873 list); 1874 list_del_init(®_request->list); 1875 1876 spin_unlock(®_requests_lock); 1877 1878 reg_process_hint(reg_request); 1879 } 1880 1881 /* Processes beacon hints -- this has nothing to do with country IEs */ 1882 static void reg_process_pending_beacon_hints(void) 1883 { 1884 struct cfg80211_registered_device *rdev; 1885 struct reg_beacon *pending_beacon, *tmp; 1886 1887 /* This goes through the _pending_ beacon list */ 1888 spin_lock_bh(®_pending_beacons_lock); 1889 1890 list_for_each_entry_safe(pending_beacon, tmp, 1891 ®_pending_beacons, list) { 1892 list_del_init(&pending_beacon->list); 1893 1894 /* Applies the beacon hint to current wiphys */ 1895 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1896 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 1897 1898 /* Remembers the beacon hint for new wiphys or reg changes */ 1899 list_add_tail(&pending_beacon->list, ®_beacon_list); 1900 } 1901 1902 spin_unlock_bh(®_pending_beacons_lock); 1903 } 1904 1905 static void reg_todo(struct work_struct *work) 1906 { 1907 rtnl_lock(); 1908 reg_process_pending_hints(); 1909 reg_process_pending_beacon_hints(); 1910 rtnl_unlock(); 1911 } 1912 1913 static void queue_regulatory_request(struct regulatory_request *request) 1914 { 1915 request->alpha2[0] = toupper(request->alpha2[0]); 1916 request->alpha2[1] = toupper(request->alpha2[1]); 1917 1918 spin_lock(®_requests_lock); 1919 list_add_tail(&request->list, ®_requests_list); 1920 spin_unlock(®_requests_lock); 1921 1922 schedule_work(®_work); 1923 } 1924 1925 /* 1926 * Core regulatory hint -- happens during cfg80211_init() 1927 * and when we restore regulatory settings. 1928 */ 1929 static int regulatory_hint_core(const char *alpha2) 1930 { 1931 struct regulatory_request *request; 1932 1933 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1934 if (!request) 1935 return -ENOMEM; 1936 1937 request->alpha2[0] = alpha2[0]; 1938 request->alpha2[1] = alpha2[1]; 1939 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1940 1941 queue_regulatory_request(request); 1942 1943 return 0; 1944 } 1945 1946 /* User hints */ 1947 int regulatory_hint_user(const char *alpha2, 1948 enum nl80211_user_reg_hint_type user_reg_hint_type) 1949 { 1950 struct regulatory_request *request; 1951 1952 if (WARN_ON(!alpha2)) 1953 return -EINVAL; 1954 1955 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1956 if (!request) 1957 return -ENOMEM; 1958 1959 request->wiphy_idx = WIPHY_IDX_INVALID; 1960 request->alpha2[0] = alpha2[0]; 1961 request->alpha2[1] = alpha2[1]; 1962 request->initiator = NL80211_REGDOM_SET_BY_USER; 1963 request->user_reg_hint_type = user_reg_hint_type; 1964 1965 queue_regulatory_request(request); 1966 1967 return 0; 1968 } 1969 1970 /* Driver hints */ 1971 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 1972 { 1973 struct regulatory_request *request; 1974 1975 if (WARN_ON(!alpha2 || !wiphy)) 1976 return -EINVAL; 1977 1978 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 1979 1980 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1981 if (!request) 1982 return -ENOMEM; 1983 1984 request->wiphy_idx = get_wiphy_idx(wiphy); 1985 1986 request->alpha2[0] = alpha2[0]; 1987 request->alpha2[1] = alpha2[1]; 1988 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 1989 1990 queue_regulatory_request(request); 1991 1992 return 0; 1993 } 1994 EXPORT_SYMBOL(regulatory_hint); 1995 1996 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band, 1997 const u8 *country_ie, u8 country_ie_len) 1998 { 1999 char alpha2[2]; 2000 enum environment_cap env = ENVIRON_ANY; 2001 struct regulatory_request *request = NULL, *lr; 2002 2003 /* IE len must be evenly divisible by 2 */ 2004 if (country_ie_len & 0x01) 2005 return; 2006 2007 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 2008 return; 2009 2010 request = kzalloc(sizeof(*request), GFP_KERNEL); 2011 if (!request) 2012 return; 2013 2014 alpha2[0] = country_ie[0]; 2015 alpha2[1] = country_ie[1]; 2016 2017 if (country_ie[2] == 'I') 2018 env = ENVIRON_INDOOR; 2019 else if (country_ie[2] == 'O') 2020 env = ENVIRON_OUTDOOR; 2021 2022 rcu_read_lock(); 2023 lr = get_last_request(); 2024 2025 if (unlikely(!lr)) 2026 goto out; 2027 2028 /* 2029 * We will run this only upon a successful connection on cfg80211. 2030 * We leave conflict resolution to the workqueue, where can hold 2031 * the RTNL. 2032 */ 2033 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2034 lr->wiphy_idx != WIPHY_IDX_INVALID) 2035 goto out; 2036 2037 request->wiphy_idx = get_wiphy_idx(wiphy); 2038 request->alpha2[0] = alpha2[0]; 2039 request->alpha2[1] = alpha2[1]; 2040 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 2041 request->country_ie_env = env; 2042 2043 queue_regulatory_request(request); 2044 request = NULL; 2045 out: 2046 kfree(request); 2047 rcu_read_unlock(); 2048 } 2049 2050 static void restore_alpha2(char *alpha2, bool reset_user) 2051 { 2052 /* indicates there is no alpha2 to consider for restoration */ 2053 alpha2[0] = '9'; 2054 alpha2[1] = '7'; 2055 2056 /* The user setting has precedence over the module parameter */ 2057 if (is_user_regdom_saved()) { 2058 /* Unless we're asked to ignore it and reset it */ 2059 if (reset_user) { 2060 REG_DBG_PRINT("Restoring regulatory settings including user preference\n"); 2061 user_alpha2[0] = '9'; 2062 user_alpha2[1] = '7'; 2063 2064 /* 2065 * If we're ignoring user settings, we still need to 2066 * check the module parameter to ensure we put things 2067 * back as they were for a full restore. 2068 */ 2069 if (!is_world_regdom(ieee80211_regdom)) { 2070 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 2071 ieee80211_regdom[0], ieee80211_regdom[1]); 2072 alpha2[0] = ieee80211_regdom[0]; 2073 alpha2[1] = ieee80211_regdom[1]; 2074 } 2075 } else { 2076 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n", 2077 user_alpha2[0], user_alpha2[1]); 2078 alpha2[0] = user_alpha2[0]; 2079 alpha2[1] = user_alpha2[1]; 2080 } 2081 } else if (!is_world_regdom(ieee80211_regdom)) { 2082 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 2083 ieee80211_regdom[0], ieee80211_regdom[1]); 2084 alpha2[0] = ieee80211_regdom[0]; 2085 alpha2[1] = ieee80211_regdom[1]; 2086 } else 2087 REG_DBG_PRINT("Restoring regulatory settings\n"); 2088 } 2089 2090 static void restore_custom_reg_settings(struct wiphy *wiphy) 2091 { 2092 struct ieee80211_supported_band *sband; 2093 enum ieee80211_band band; 2094 struct ieee80211_channel *chan; 2095 int i; 2096 2097 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 2098 sband = wiphy->bands[band]; 2099 if (!sband) 2100 continue; 2101 for (i = 0; i < sband->n_channels; i++) { 2102 chan = &sband->channels[i]; 2103 chan->flags = chan->orig_flags; 2104 chan->max_antenna_gain = chan->orig_mag; 2105 chan->max_power = chan->orig_mpwr; 2106 chan->beacon_found = false; 2107 } 2108 } 2109 } 2110 2111 /* 2112 * Restoring regulatory settings involves ingoring any 2113 * possibly stale country IE information and user regulatory 2114 * settings if so desired, this includes any beacon hints 2115 * learned as we could have traveled outside to another country 2116 * after disconnection. To restore regulatory settings we do 2117 * exactly what we did at bootup: 2118 * 2119 * - send a core regulatory hint 2120 * - send a user regulatory hint if applicable 2121 * 2122 * Device drivers that send a regulatory hint for a specific country 2123 * keep their own regulatory domain on wiphy->regd so that does does 2124 * not need to be remembered. 2125 */ 2126 static void restore_regulatory_settings(bool reset_user) 2127 { 2128 char alpha2[2]; 2129 char world_alpha2[2]; 2130 struct reg_beacon *reg_beacon, *btmp; 2131 struct regulatory_request *reg_request, *tmp; 2132 LIST_HEAD(tmp_reg_req_list); 2133 struct cfg80211_registered_device *rdev; 2134 2135 ASSERT_RTNL(); 2136 2137 reset_regdomains(true, &world_regdom); 2138 restore_alpha2(alpha2, reset_user); 2139 2140 /* 2141 * If there's any pending requests we simply 2142 * stash them to a temporary pending queue and 2143 * add then after we've restored regulatory 2144 * settings. 2145 */ 2146 spin_lock(®_requests_lock); 2147 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 2148 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER) 2149 continue; 2150 list_move_tail(®_request->list, &tmp_reg_req_list); 2151 } 2152 spin_unlock(®_requests_lock); 2153 2154 /* Clear beacon hints */ 2155 spin_lock_bh(®_pending_beacons_lock); 2156 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 2157 list_del(®_beacon->list); 2158 kfree(reg_beacon); 2159 } 2160 spin_unlock_bh(®_pending_beacons_lock); 2161 2162 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 2163 list_del(®_beacon->list); 2164 kfree(reg_beacon); 2165 } 2166 2167 /* First restore to the basic regulatory settings */ 2168 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 2169 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 2170 2171 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2172 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 2173 restore_custom_reg_settings(&rdev->wiphy); 2174 } 2175 2176 regulatory_hint_core(world_alpha2); 2177 2178 /* 2179 * This restores the ieee80211_regdom module parameter 2180 * preference or the last user requested regulatory 2181 * settings, user regulatory settings takes precedence. 2182 */ 2183 if (is_an_alpha2(alpha2)) 2184 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER); 2185 2186 spin_lock(®_requests_lock); 2187 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 2188 spin_unlock(®_requests_lock); 2189 2190 REG_DBG_PRINT("Kicking the queue\n"); 2191 2192 schedule_work(®_work); 2193 } 2194 2195 void regulatory_hint_disconnect(void) 2196 { 2197 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n"); 2198 restore_regulatory_settings(false); 2199 } 2200 2201 static bool freq_is_chan_12_13_14(u16 freq) 2202 { 2203 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || 2204 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || 2205 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) 2206 return true; 2207 return false; 2208 } 2209 2210 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 2211 { 2212 struct reg_beacon *pending_beacon; 2213 2214 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 2215 if (beacon_chan->center_freq == 2216 pending_beacon->chan.center_freq) 2217 return true; 2218 return false; 2219 } 2220 2221 int regulatory_hint_found_beacon(struct wiphy *wiphy, 2222 struct ieee80211_channel *beacon_chan, 2223 gfp_t gfp) 2224 { 2225 struct reg_beacon *reg_beacon; 2226 bool processing; 2227 2228 if (beacon_chan->beacon_found || 2229 beacon_chan->flags & IEEE80211_CHAN_RADAR || 2230 (beacon_chan->band == IEEE80211_BAND_2GHZ && 2231 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 2232 return 0; 2233 2234 spin_lock_bh(®_pending_beacons_lock); 2235 processing = pending_reg_beacon(beacon_chan); 2236 spin_unlock_bh(®_pending_beacons_lock); 2237 2238 if (processing) 2239 return 0; 2240 2241 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 2242 if (!reg_beacon) 2243 return -ENOMEM; 2244 2245 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 2246 beacon_chan->center_freq, 2247 ieee80211_frequency_to_channel(beacon_chan->center_freq), 2248 wiphy_name(wiphy)); 2249 2250 memcpy(®_beacon->chan, beacon_chan, 2251 sizeof(struct ieee80211_channel)); 2252 2253 /* 2254 * Since we can be called from BH or and non-BH context 2255 * we must use spin_lock_bh() 2256 */ 2257 spin_lock_bh(®_pending_beacons_lock); 2258 list_add_tail(®_beacon->list, ®_pending_beacons); 2259 spin_unlock_bh(®_pending_beacons_lock); 2260 2261 schedule_work(®_work); 2262 2263 return 0; 2264 } 2265 2266 static void print_rd_rules(const struct ieee80211_regdomain *rd) 2267 { 2268 unsigned int i; 2269 const struct ieee80211_reg_rule *reg_rule = NULL; 2270 const struct ieee80211_freq_range *freq_range = NULL; 2271 const struct ieee80211_power_rule *power_rule = NULL; 2272 char bw[32], cac_time[32]; 2273 2274 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 2275 2276 for (i = 0; i < rd->n_reg_rules; i++) { 2277 reg_rule = &rd->reg_rules[i]; 2278 freq_range = ®_rule->freq_range; 2279 power_rule = ®_rule->power_rule; 2280 2281 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 2282 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 2283 freq_range->max_bandwidth_khz, 2284 reg_get_max_bandwidth(rd, reg_rule)); 2285 else 2286 snprintf(bw, sizeof(bw), "%d KHz", 2287 freq_range->max_bandwidth_khz); 2288 2289 if (reg_rule->flags & NL80211_RRF_DFS) 2290 scnprintf(cac_time, sizeof(cac_time), "%u s", 2291 reg_rule->dfs_cac_ms/1000); 2292 else 2293 scnprintf(cac_time, sizeof(cac_time), "N/A"); 2294 2295 2296 /* 2297 * There may not be documentation for max antenna gain 2298 * in certain regions 2299 */ 2300 if (power_rule->max_antenna_gain) 2301 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 2302 freq_range->start_freq_khz, 2303 freq_range->end_freq_khz, 2304 bw, 2305 power_rule->max_antenna_gain, 2306 power_rule->max_eirp, 2307 cac_time); 2308 else 2309 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 2310 freq_range->start_freq_khz, 2311 freq_range->end_freq_khz, 2312 bw, 2313 power_rule->max_eirp, 2314 cac_time); 2315 } 2316 } 2317 2318 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 2319 { 2320 switch (dfs_region) { 2321 case NL80211_DFS_UNSET: 2322 case NL80211_DFS_FCC: 2323 case NL80211_DFS_ETSI: 2324 case NL80211_DFS_JP: 2325 return true; 2326 default: 2327 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n", 2328 dfs_region); 2329 return false; 2330 } 2331 } 2332 2333 static void print_regdomain(const struct ieee80211_regdomain *rd) 2334 { 2335 struct regulatory_request *lr = get_last_request(); 2336 2337 if (is_intersected_alpha2(rd->alpha2)) { 2338 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2339 struct cfg80211_registered_device *rdev; 2340 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 2341 if (rdev) { 2342 pr_info("Current regulatory domain updated by AP to: %c%c\n", 2343 rdev->country_ie_alpha2[0], 2344 rdev->country_ie_alpha2[1]); 2345 } else 2346 pr_info("Current regulatory domain intersected:\n"); 2347 } else 2348 pr_info("Current regulatory domain intersected:\n"); 2349 } else if (is_world_regdom(rd->alpha2)) { 2350 pr_info("World regulatory domain updated:\n"); 2351 } else { 2352 if (is_unknown_alpha2(rd->alpha2)) 2353 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); 2354 else { 2355 if (reg_request_cell_base(lr)) 2356 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n", 2357 rd->alpha2[0], rd->alpha2[1]); 2358 else 2359 pr_info("Regulatory domain changed to country: %c%c\n", 2360 rd->alpha2[0], rd->alpha2[1]); 2361 } 2362 } 2363 2364 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 2365 print_rd_rules(rd); 2366 } 2367 2368 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 2369 { 2370 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 2371 print_rd_rules(rd); 2372 } 2373 2374 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 2375 { 2376 if (!is_world_regdom(rd->alpha2)) 2377 return -EINVAL; 2378 update_world_regdomain(rd); 2379 return 0; 2380 } 2381 2382 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 2383 struct regulatory_request *user_request) 2384 { 2385 const struct ieee80211_regdomain *intersected_rd = NULL; 2386 2387 if (!regdom_changes(rd->alpha2)) 2388 return -EALREADY; 2389 2390 if (!is_valid_rd(rd)) { 2391 pr_err("Invalid regulatory domain detected:\n"); 2392 print_regdomain_info(rd); 2393 return -EINVAL; 2394 } 2395 2396 if (!user_request->intersect) { 2397 reset_regdomains(false, rd); 2398 return 0; 2399 } 2400 2401 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2402 if (!intersected_rd) 2403 return -EINVAL; 2404 2405 kfree(rd); 2406 rd = NULL; 2407 reset_regdomains(false, intersected_rd); 2408 2409 return 0; 2410 } 2411 2412 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 2413 struct regulatory_request *driver_request) 2414 { 2415 const struct ieee80211_regdomain *regd; 2416 const struct ieee80211_regdomain *intersected_rd = NULL; 2417 const struct ieee80211_regdomain *tmp; 2418 struct wiphy *request_wiphy; 2419 2420 if (is_world_regdom(rd->alpha2)) 2421 return -EINVAL; 2422 2423 if (!regdom_changes(rd->alpha2)) 2424 return -EALREADY; 2425 2426 if (!is_valid_rd(rd)) { 2427 pr_err("Invalid regulatory domain detected:\n"); 2428 print_regdomain_info(rd); 2429 return -EINVAL; 2430 } 2431 2432 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 2433 if (!request_wiphy) { 2434 queue_delayed_work(system_power_efficient_wq, 2435 ®_timeout, 0); 2436 return -ENODEV; 2437 } 2438 2439 if (!driver_request->intersect) { 2440 if (request_wiphy->regd) 2441 return -EALREADY; 2442 2443 regd = reg_copy_regd(rd); 2444 if (IS_ERR(regd)) 2445 return PTR_ERR(regd); 2446 2447 rcu_assign_pointer(request_wiphy->regd, regd); 2448 reset_regdomains(false, rd); 2449 return 0; 2450 } 2451 2452 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2453 if (!intersected_rd) 2454 return -EINVAL; 2455 2456 /* 2457 * We can trash what CRDA provided now. 2458 * However if a driver requested this specific regulatory 2459 * domain we keep it for its private use 2460 */ 2461 tmp = get_wiphy_regdom(request_wiphy); 2462 rcu_assign_pointer(request_wiphy->regd, rd); 2463 rcu_free_regdom(tmp); 2464 2465 rd = NULL; 2466 2467 reset_regdomains(false, intersected_rd); 2468 2469 return 0; 2470 } 2471 2472 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 2473 struct regulatory_request *country_ie_request) 2474 { 2475 struct wiphy *request_wiphy; 2476 2477 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 2478 !is_unknown_alpha2(rd->alpha2)) 2479 return -EINVAL; 2480 2481 /* 2482 * Lets only bother proceeding on the same alpha2 if the current 2483 * rd is non static (it means CRDA was present and was used last) 2484 * and the pending request came in from a country IE 2485 */ 2486 2487 if (!is_valid_rd(rd)) { 2488 pr_err("Invalid regulatory domain detected:\n"); 2489 print_regdomain_info(rd); 2490 return -EINVAL; 2491 } 2492 2493 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 2494 if (!request_wiphy) { 2495 queue_delayed_work(system_power_efficient_wq, 2496 ®_timeout, 0); 2497 return -ENODEV; 2498 } 2499 2500 if (country_ie_request->intersect) 2501 return -EINVAL; 2502 2503 reset_regdomains(false, rd); 2504 return 0; 2505 } 2506 2507 /* 2508 * Use this call to set the current regulatory domain. Conflicts with 2509 * multiple drivers can be ironed out later. Caller must've already 2510 * kmalloc'd the rd structure. 2511 */ 2512 int set_regdom(const struct ieee80211_regdomain *rd) 2513 { 2514 struct regulatory_request *lr; 2515 bool user_reset = false; 2516 int r; 2517 2518 if (!reg_is_valid_request(rd->alpha2)) { 2519 kfree(rd); 2520 return -EINVAL; 2521 } 2522 2523 lr = get_last_request(); 2524 2525 /* Note that this doesn't update the wiphys, this is done below */ 2526 switch (lr->initiator) { 2527 case NL80211_REGDOM_SET_BY_CORE: 2528 r = reg_set_rd_core(rd); 2529 break; 2530 case NL80211_REGDOM_SET_BY_USER: 2531 r = reg_set_rd_user(rd, lr); 2532 user_reset = true; 2533 break; 2534 case NL80211_REGDOM_SET_BY_DRIVER: 2535 r = reg_set_rd_driver(rd, lr); 2536 break; 2537 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2538 r = reg_set_rd_country_ie(rd, lr); 2539 break; 2540 default: 2541 WARN(1, "invalid initiator %d\n", lr->initiator); 2542 return -EINVAL; 2543 } 2544 2545 if (r) { 2546 switch (r) { 2547 case -EALREADY: 2548 reg_set_request_processed(); 2549 break; 2550 default: 2551 /* Back to world regulatory in case of errors */ 2552 restore_regulatory_settings(user_reset); 2553 } 2554 2555 kfree(rd); 2556 return r; 2557 } 2558 2559 /* This would make this whole thing pointless */ 2560 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 2561 return -EINVAL; 2562 2563 /* update all wiphys now with the new established regulatory domain */ 2564 update_all_wiphy_regulatory(lr->initiator); 2565 2566 print_regdomain(get_cfg80211_regdom()); 2567 2568 nl80211_send_reg_change_event(lr); 2569 2570 reg_set_request_processed(); 2571 2572 return 0; 2573 } 2574 2575 void wiphy_regulatory_register(struct wiphy *wiphy) 2576 { 2577 struct regulatory_request *lr; 2578 2579 if (!reg_dev_ignore_cell_hint(wiphy)) 2580 reg_num_devs_support_basehint++; 2581 2582 lr = get_last_request(); 2583 wiphy_update_regulatory(wiphy, lr->initiator); 2584 } 2585 2586 void wiphy_regulatory_deregister(struct wiphy *wiphy) 2587 { 2588 struct wiphy *request_wiphy = NULL; 2589 struct regulatory_request *lr; 2590 2591 lr = get_last_request(); 2592 2593 if (!reg_dev_ignore_cell_hint(wiphy)) 2594 reg_num_devs_support_basehint--; 2595 2596 rcu_free_regdom(get_wiphy_regdom(wiphy)); 2597 rcu_assign_pointer(wiphy->regd, NULL); 2598 2599 if (lr) 2600 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2601 2602 if (!request_wiphy || request_wiphy != wiphy) 2603 return; 2604 2605 lr->wiphy_idx = WIPHY_IDX_INVALID; 2606 lr->country_ie_env = ENVIRON_ANY; 2607 } 2608 2609 static void reg_timeout_work(struct work_struct *work) 2610 { 2611 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 2612 rtnl_lock(); 2613 restore_regulatory_settings(true); 2614 rtnl_unlock(); 2615 } 2616 2617 int __init regulatory_init(void) 2618 { 2619 int err = 0; 2620 2621 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 2622 if (IS_ERR(reg_pdev)) 2623 return PTR_ERR(reg_pdev); 2624 2625 spin_lock_init(®_requests_lock); 2626 spin_lock_init(®_pending_beacons_lock); 2627 2628 reg_regdb_size_check(); 2629 2630 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 2631 2632 user_alpha2[0] = '9'; 2633 user_alpha2[1] = '7'; 2634 2635 /* We always try to get an update for the static regdomain */ 2636 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 2637 if (err) { 2638 if (err == -ENOMEM) 2639 return err; 2640 /* 2641 * N.B. kobject_uevent_env() can fail mainly for when we're out 2642 * memory which is handled and propagated appropriately above 2643 * but it can also fail during a netlink_broadcast() or during 2644 * early boot for call_usermodehelper(). For now treat these 2645 * errors as non-fatal. 2646 */ 2647 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 2648 } 2649 2650 /* 2651 * Finally, if the user set the module parameter treat it 2652 * as a user hint. 2653 */ 2654 if (!is_world_regdom(ieee80211_regdom)) 2655 regulatory_hint_user(ieee80211_regdom, 2656 NL80211_USER_REG_HINT_USER); 2657 2658 return 0; 2659 } 2660 2661 void regulatory_exit(void) 2662 { 2663 struct regulatory_request *reg_request, *tmp; 2664 struct reg_beacon *reg_beacon, *btmp; 2665 2666 cancel_work_sync(®_work); 2667 cancel_delayed_work_sync(®_timeout); 2668 2669 /* Lock to suppress warnings */ 2670 rtnl_lock(); 2671 reset_regdomains(true, NULL); 2672 rtnl_unlock(); 2673 2674 dev_set_uevent_suppress(®_pdev->dev, true); 2675 2676 platform_device_unregister(reg_pdev); 2677 2678 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 2679 list_del(®_beacon->list); 2680 kfree(reg_beacon); 2681 } 2682 2683 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 2684 list_del(®_beacon->list); 2685 kfree(reg_beacon); 2686 } 2687 2688 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 2689 list_del(®_request->list); 2690 kfree(reg_request); 2691 } 2692 } 2693