1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2019 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static spinlock_t reg_indoor_lock; 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user, bool cached); 135 static void print_regdomain(const struct ieee80211_regdomain *rd); 136 137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 138 { 139 return rcu_dereference_rtnl(cfg80211_regdomain); 140 } 141 142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 143 { 144 return rcu_dereference_rtnl(wiphy->regd); 145 } 146 147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 148 { 149 switch (dfs_region) { 150 case NL80211_DFS_UNSET: 151 return "unset"; 152 case NL80211_DFS_FCC: 153 return "FCC"; 154 case NL80211_DFS_ETSI: 155 return "ETSI"; 156 case NL80211_DFS_JP: 157 return "JP"; 158 } 159 return "Unknown"; 160 } 161 162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 163 { 164 const struct ieee80211_regdomain *regd = NULL; 165 const struct ieee80211_regdomain *wiphy_regd = NULL; 166 167 regd = get_cfg80211_regdom(); 168 if (!wiphy) 169 goto out; 170 171 wiphy_regd = get_wiphy_regdom(wiphy); 172 if (!wiphy_regd) 173 goto out; 174 175 if (wiphy_regd->dfs_region == regd->dfs_region) 176 goto out; 177 178 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 179 dev_name(&wiphy->dev), 180 reg_dfs_region_str(wiphy_regd->dfs_region), 181 reg_dfs_region_str(regd->dfs_region)); 182 183 out: 184 return regd->dfs_region; 185 } 186 187 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 188 { 189 if (!r) 190 return; 191 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 192 } 193 194 static struct regulatory_request *get_last_request(void) 195 { 196 return rcu_dereference_rtnl(last_request); 197 } 198 199 /* Used to queue up regulatory hints */ 200 static LIST_HEAD(reg_requests_list); 201 static spinlock_t reg_requests_lock; 202 203 /* Used to queue up beacon hints for review */ 204 static LIST_HEAD(reg_pending_beacons); 205 static spinlock_t reg_pending_beacons_lock; 206 207 /* Used to keep track of processed beacon hints */ 208 static LIST_HEAD(reg_beacon_list); 209 210 struct reg_beacon { 211 struct list_head list; 212 struct ieee80211_channel chan; 213 }; 214 215 static void reg_check_chans_work(struct work_struct *work); 216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 217 218 static void reg_todo(struct work_struct *work); 219 static DECLARE_WORK(reg_work, reg_todo); 220 221 /* We keep a static world regulatory domain in case of the absence of CRDA */ 222 static const struct ieee80211_regdomain world_regdom = { 223 .n_reg_rules = 8, 224 .alpha2 = "00", 225 .reg_rules = { 226 /* IEEE 802.11b/g, channels 1..11 */ 227 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 228 /* IEEE 802.11b/g, channels 12..13. */ 229 REG_RULE(2467-10, 2472+10, 20, 6, 20, 230 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 231 /* IEEE 802.11 channel 14 - Only JP enables 232 * this and for 802.11b only */ 233 REG_RULE(2484-10, 2484+10, 20, 6, 20, 234 NL80211_RRF_NO_IR | 235 NL80211_RRF_NO_OFDM), 236 /* IEEE 802.11a, channel 36..48 */ 237 REG_RULE(5180-10, 5240+10, 80, 6, 20, 238 NL80211_RRF_NO_IR | 239 NL80211_RRF_AUTO_BW), 240 241 /* IEEE 802.11a, channel 52..64 - DFS required */ 242 REG_RULE(5260-10, 5320+10, 80, 6, 20, 243 NL80211_RRF_NO_IR | 244 NL80211_RRF_AUTO_BW | 245 NL80211_RRF_DFS), 246 247 /* IEEE 802.11a, channel 100..144 - DFS required */ 248 REG_RULE(5500-10, 5720+10, 160, 6, 20, 249 NL80211_RRF_NO_IR | 250 NL80211_RRF_DFS), 251 252 /* IEEE 802.11a, channel 149..165 */ 253 REG_RULE(5745-10, 5825+10, 80, 6, 20, 254 NL80211_RRF_NO_IR), 255 256 /* IEEE 802.11ad (60GHz), channels 1..3 */ 257 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 258 } 259 }; 260 261 /* protected by RTNL */ 262 static const struct ieee80211_regdomain *cfg80211_world_regdom = 263 &world_regdom; 264 265 static char *ieee80211_regdom = "00"; 266 static char user_alpha2[2]; 267 static const struct ieee80211_regdomain *cfg80211_user_regdom; 268 269 module_param(ieee80211_regdom, charp, 0444); 270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 271 272 static void reg_free_request(struct regulatory_request *request) 273 { 274 if (request == &core_request_world) 275 return; 276 277 if (request != get_last_request()) 278 kfree(request); 279 } 280 281 static void reg_free_last_request(void) 282 { 283 struct regulatory_request *lr = get_last_request(); 284 285 if (lr != &core_request_world && lr) 286 kfree_rcu(lr, rcu_head); 287 } 288 289 static void reg_update_last_request(struct regulatory_request *request) 290 { 291 struct regulatory_request *lr; 292 293 lr = get_last_request(); 294 if (lr == request) 295 return; 296 297 reg_free_last_request(); 298 rcu_assign_pointer(last_request, request); 299 } 300 301 static void reset_regdomains(bool full_reset, 302 const struct ieee80211_regdomain *new_regdom) 303 { 304 const struct ieee80211_regdomain *r; 305 306 ASSERT_RTNL(); 307 308 r = get_cfg80211_regdom(); 309 310 /* avoid freeing static information or freeing something twice */ 311 if (r == cfg80211_world_regdom) 312 r = NULL; 313 if (cfg80211_world_regdom == &world_regdom) 314 cfg80211_world_regdom = NULL; 315 if (r == &world_regdom) 316 r = NULL; 317 318 rcu_free_regdom(r); 319 rcu_free_regdom(cfg80211_world_regdom); 320 321 cfg80211_world_regdom = &world_regdom; 322 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 323 324 if (!full_reset) 325 return; 326 327 reg_update_last_request(&core_request_world); 328 } 329 330 /* 331 * Dynamic world regulatory domain requested by the wireless 332 * core upon initialization 333 */ 334 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 335 { 336 struct regulatory_request *lr; 337 338 lr = get_last_request(); 339 340 WARN_ON(!lr); 341 342 reset_regdomains(false, rd); 343 344 cfg80211_world_regdom = rd; 345 } 346 347 bool is_world_regdom(const char *alpha2) 348 { 349 if (!alpha2) 350 return false; 351 return alpha2[0] == '0' && alpha2[1] == '0'; 352 } 353 354 static bool is_alpha2_set(const char *alpha2) 355 { 356 if (!alpha2) 357 return false; 358 return alpha2[0] && alpha2[1]; 359 } 360 361 static bool is_unknown_alpha2(const char *alpha2) 362 { 363 if (!alpha2) 364 return false; 365 /* 366 * Special case where regulatory domain was built by driver 367 * but a specific alpha2 cannot be determined 368 */ 369 return alpha2[0] == '9' && alpha2[1] == '9'; 370 } 371 372 static bool is_intersected_alpha2(const char *alpha2) 373 { 374 if (!alpha2) 375 return false; 376 /* 377 * Special case where regulatory domain is the 378 * result of an intersection between two regulatory domain 379 * structures 380 */ 381 return alpha2[0] == '9' && alpha2[1] == '8'; 382 } 383 384 static bool is_an_alpha2(const char *alpha2) 385 { 386 if (!alpha2) 387 return false; 388 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 389 } 390 391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 392 { 393 if (!alpha2_x || !alpha2_y) 394 return false; 395 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 396 } 397 398 static bool regdom_changes(const char *alpha2) 399 { 400 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 401 402 if (!r) 403 return true; 404 return !alpha2_equal(r->alpha2, alpha2); 405 } 406 407 /* 408 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 409 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 410 * has ever been issued. 411 */ 412 static bool is_user_regdom_saved(void) 413 { 414 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 415 return false; 416 417 /* This would indicate a mistake on the design */ 418 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 419 "Unexpected user alpha2: %c%c\n", 420 user_alpha2[0], user_alpha2[1])) 421 return false; 422 423 return true; 424 } 425 426 static const struct ieee80211_regdomain * 427 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 428 { 429 struct ieee80211_regdomain *regd; 430 unsigned int i; 431 432 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 433 GFP_KERNEL); 434 if (!regd) 435 return ERR_PTR(-ENOMEM); 436 437 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 438 439 for (i = 0; i < src_regd->n_reg_rules; i++) 440 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 441 sizeof(struct ieee80211_reg_rule)); 442 443 return regd; 444 } 445 446 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 447 { 448 ASSERT_RTNL(); 449 450 if (!IS_ERR(cfg80211_user_regdom)) 451 kfree(cfg80211_user_regdom); 452 cfg80211_user_regdom = reg_copy_regd(rd); 453 } 454 455 struct reg_regdb_apply_request { 456 struct list_head list; 457 const struct ieee80211_regdomain *regdom; 458 }; 459 460 static LIST_HEAD(reg_regdb_apply_list); 461 static DEFINE_MUTEX(reg_regdb_apply_mutex); 462 463 static void reg_regdb_apply(struct work_struct *work) 464 { 465 struct reg_regdb_apply_request *request; 466 467 rtnl_lock(); 468 469 mutex_lock(®_regdb_apply_mutex); 470 while (!list_empty(®_regdb_apply_list)) { 471 request = list_first_entry(®_regdb_apply_list, 472 struct reg_regdb_apply_request, 473 list); 474 list_del(&request->list); 475 476 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 477 kfree(request); 478 } 479 mutex_unlock(®_regdb_apply_mutex); 480 481 rtnl_unlock(); 482 } 483 484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 485 486 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 487 { 488 struct reg_regdb_apply_request *request; 489 490 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 491 if (!request) { 492 kfree(regdom); 493 return -ENOMEM; 494 } 495 496 request->regdom = regdom; 497 498 mutex_lock(®_regdb_apply_mutex); 499 list_add_tail(&request->list, ®_regdb_apply_list); 500 mutex_unlock(®_regdb_apply_mutex); 501 502 schedule_work(®_regdb_work); 503 return 0; 504 } 505 506 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 507 /* Max number of consecutive attempts to communicate with CRDA */ 508 #define REG_MAX_CRDA_TIMEOUTS 10 509 510 static u32 reg_crda_timeouts; 511 512 static void crda_timeout_work(struct work_struct *work); 513 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 514 515 static void crda_timeout_work(struct work_struct *work) 516 { 517 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 518 rtnl_lock(); 519 reg_crda_timeouts++; 520 restore_regulatory_settings(true, false); 521 rtnl_unlock(); 522 } 523 524 static void cancel_crda_timeout(void) 525 { 526 cancel_delayed_work(&crda_timeout); 527 } 528 529 static void cancel_crda_timeout_sync(void) 530 { 531 cancel_delayed_work_sync(&crda_timeout); 532 } 533 534 static void reset_crda_timeouts(void) 535 { 536 reg_crda_timeouts = 0; 537 } 538 539 /* 540 * This lets us keep regulatory code which is updated on a regulatory 541 * basis in userspace. 542 */ 543 static int call_crda(const char *alpha2) 544 { 545 char country[12]; 546 char *env[] = { country, NULL }; 547 int ret; 548 549 snprintf(country, sizeof(country), "COUNTRY=%c%c", 550 alpha2[0], alpha2[1]); 551 552 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 553 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 554 return -EINVAL; 555 } 556 557 if (!is_world_regdom((char *) alpha2)) 558 pr_debug("Calling CRDA for country: %c%c\n", 559 alpha2[0], alpha2[1]); 560 else 561 pr_debug("Calling CRDA to update world regulatory domain\n"); 562 563 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 564 if (ret) 565 return ret; 566 567 queue_delayed_work(system_power_efficient_wq, 568 &crda_timeout, msecs_to_jiffies(3142)); 569 return 0; 570 } 571 #else 572 static inline void cancel_crda_timeout(void) {} 573 static inline void cancel_crda_timeout_sync(void) {} 574 static inline void reset_crda_timeouts(void) {} 575 static inline int call_crda(const char *alpha2) 576 { 577 return -ENODATA; 578 } 579 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 580 581 /* code to directly load a firmware database through request_firmware */ 582 static const struct fwdb_header *regdb; 583 584 struct fwdb_country { 585 u8 alpha2[2]; 586 __be16 coll_ptr; 587 /* this struct cannot be extended */ 588 } __packed __aligned(4); 589 590 struct fwdb_collection { 591 u8 len; 592 u8 n_rules; 593 u8 dfs_region; 594 /* no optional data yet */ 595 /* aligned to 2, then followed by __be16 array of rule pointers */ 596 } __packed __aligned(4); 597 598 enum fwdb_flags { 599 FWDB_FLAG_NO_OFDM = BIT(0), 600 FWDB_FLAG_NO_OUTDOOR = BIT(1), 601 FWDB_FLAG_DFS = BIT(2), 602 FWDB_FLAG_NO_IR = BIT(3), 603 FWDB_FLAG_AUTO_BW = BIT(4), 604 }; 605 606 struct fwdb_wmm_ac { 607 u8 ecw; 608 u8 aifsn; 609 __be16 cot; 610 } __packed; 611 612 struct fwdb_wmm_rule { 613 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 614 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 615 } __packed; 616 617 struct fwdb_rule { 618 u8 len; 619 u8 flags; 620 __be16 max_eirp; 621 __be32 start, end, max_bw; 622 /* start of optional data */ 623 __be16 cac_timeout; 624 __be16 wmm_ptr; 625 } __packed __aligned(4); 626 627 #define FWDB_MAGIC 0x52474442 628 #define FWDB_VERSION 20 629 630 struct fwdb_header { 631 __be32 magic; 632 __be32 version; 633 struct fwdb_country country[]; 634 } __packed __aligned(4); 635 636 static int ecw2cw(int ecw) 637 { 638 return (1 << ecw) - 1; 639 } 640 641 static bool valid_wmm(struct fwdb_wmm_rule *rule) 642 { 643 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 644 int i; 645 646 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 647 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 648 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 649 u8 aifsn = ac[i].aifsn; 650 651 if (cw_min >= cw_max) 652 return false; 653 654 if (aifsn < 1) 655 return false; 656 } 657 658 return true; 659 } 660 661 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 662 { 663 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 664 665 if ((u8 *)rule + sizeof(rule->len) > data + size) 666 return false; 667 668 /* mandatory fields */ 669 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 670 return false; 671 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 672 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 673 struct fwdb_wmm_rule *wmm; 674 675 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 676 return false; 677 678 wmm = (void *)(data + wmm_ptr); 679 680 if (!valid_wmm(wmm)) 681 return false; 682 } 683 return true; 684 } 685 686 static bool valid_country(const u8 *data, unsigned int size, 687 const struct fwdb_country *country) 688 { 689 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 690 struct fwdb_collection *coll = (void *)(data + ptr); 691 __be16 *rules_ptr; 692 unsigned int i; 693 694 /* make sure we can read len/n_rules */ 695 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 696 return false; 697 698 /* make sure base struct and all rules fit */ 699 if ((u8 *)coll + ALIGN(coll->len, 2) + 700 (coll->n_rules * 2) > data + size) 701 return false; 702 703 /* mandatory fields must exist */ 704 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 705 return false; 706 707 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 708 709 for (i = 0; i < coll->n_rules; i++) { 710 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 711 712 if (!valid_rule(data, size, rule_ptr)) 713 return false; 714 } 715 716 return true; 717 } 718 719 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 720 static struct key *builtin_regdb_keys; 721 722 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen) 723 { 724 const u8 *end = p + buflen; 725 size_t plen; 726 key_ref_t key; 727 728 while (p < end) { 729 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more 730 * than 256 bytes in size. 731 */ 732 if (end - p < 4) 733 goto dodgy_cert; 734 if (p[0] != 0x30 && 735 p[1] != 0x82) 736 goto dodgy_cert; 737 plen = (p[2] << 8) | p[3]; 738 plen += 4; 739 if (plen > end - p) 740 goto dodgy_cert; 741 742 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1), 743 "asymmetric", NULL, p, plen, 744 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 745 KEY_USR_VIEW | KEY_USR_READ), 746 KEY_ALLOC_NOT_IN_QUOTA | 747 KEY_ALLOC_BUILT_IN | 748 KEY_ALLOC_BYPASS_RESTRICTION); 749 if (IS_ERR(key)) { 750 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n", 751 PTR_ERR(key)); 752 } else { 753 pr_notice("Loaded X.509 cert '%s'\n", 754 key_ref_to_ptr(key)->description); 755 key_ref_put(key); 756 } 757 p += plen; 758 } 759 760 return; 761 762 dodgy_cert: 763 pr_err("Problem parsing in-kernel X.509 certificate list\n"); 764 } 765 766 static int __init load_builtin_regdb_keys(void) 767 { 768 builtin_regdb_keys = 769 keyring_alloc(".builtin_regdb_keys", 770 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 771 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 772 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 773 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 774 if (IS_ERR(builtin_regdb_keys)) 775 return PTR_ERR(builtin_regdb_keys); 776 777 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 778 779 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 780 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len); 781 #endif 782 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 783 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 784 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len); 785 #endif 786 787 return 0; 788 } 789 790 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 791 { 792 const struct firmware *sig; 793 bool result; 794 795 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 796 return false; 797 798 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 799 builtin_regdb_keys, 800 VERIFYING_UNSPECIFIED_SIGNATURE, 801 NULL, NULL) == 0; 802 803 release_firmware(sig); 804 805 return result; 806 } 807 808 static void free_regdb_keyring(void) 809 { 810 key_put(builtin_regdb_keys); 811 } 812 #else 813 static int load_builtin_regdb_keys(void) 814 { 815 return 0; 816 } 817 818 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 819 { 820 return true; 821 } 822 823 static void free_regdb_keyring(void) 824 { 825 } 826 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 827 828 static bool valid_regdb(const u8 *data, unsigned int size) 829 { 830 const struct fwdb_header *hdr = (void *)data; 831 const struct fwdb_country *country; 832 833 if (size < sizeof(*hdr)) 834 return false; 835 836 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 837 return false; 838 839 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 840 return false; 841 842 if (!regdb_has_valid_signature(data, size)) 843 return false; 844 845 country = &hdr->country[0]; 846 while ((u8 *)(country + 1) <= data + size) { 847 if (!country->coll_ptr) 848 break; 849 if (!valid_country(data, size, country)) 850 return false; 851 country++; 852 } 853 854 return true; 855 } 856 857 static void set_wmm_rule(const struct fwdb_header *db, 858 const struct fwdb_country *country, 859 const struct fwdb_rule *rule, 860 struct ieee80211_reg_rule *rrule) 861 { 862 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 863 struct fwdb_wmm_rule *wmm; 864 unsigned int i, wmm_ptr; 865 866 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 867 wmm = (void *)((u8 *)db + wmm_ptr); 868 869 if (!valid_wmm(wmm)) { 870 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 871 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 872 country->alpha2[0], country->alpha2[1]); 873 return; 874 } 875 876 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 877 wmm_rule->client[i].cw_min = 878 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 879 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 880 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 881 wmm_rule->client[i].cot = 882 1000 * be16_to_cpu(wmm->client[i].cot); 883 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 884 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 885 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 886 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 887 } 888 889 rrule->has_wmm = true; 890 } 891 892 static int __regdb_query_wmm(const struct fwdb_header *db, 893 const struct fwdb_country *country, int freq, 894 struct ieee80211_reg_rule *rrule) 895 { 896 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 897 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 898 int i; 899 900 for (i = 0; i < coll->n_rules; i++) { 901 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 902 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 903 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 904 905 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 906 continue; 907 908 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 909 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 910 set_wmm_rule(db, country, rule, rrule); 911 return 0; 912 } 913 } 914 915 return -ENODATA; 916 } 917 918 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 919 { 920 const struct fwdb_header *hdr = regdb; 921 const struct fwdb_country *country; 922 923 if (!regdb) 924 return -ENODATA; 925 926 if (IS_ERR(regdb)) 927 return PTR_ERR(regdb); 928 929 country = &hdr->country[0]; 930 while (country->coll_ptr) { 931 if (alpha2_equal(alpha2, country->alpha2)) 932 return __regdb_query_wmm(regdb, country, freq, rule); 933 934 country++; 935 } 936 937 return -ENODATA; 938 } 939 EXPORT_SYMBOL(reg_query_regdb_wmm); 940 941 static int regdb_query_country(const struct fwdb_header *db, 942 const struct fwdb_country *country) 943 { 944 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 945 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 946 struct ieee80211_regdomain *regdom; 947 unsigned int i; 948 949 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 950 GFP_KERNEL); 951 if (!regdom) 952 return -ENOMEM; 953 954 regdom->n_reg_rules = coll->n_rules; 955 regdom->alpha2[0] = country->alpha2[0]; 956 regdom->alpha2[1] = country->alpha2[1]; 957 regdom->dfs_region = coll->dfs_region; 958 959 for (i = 0; i < regdom->n_reg_rules; i++) { 960 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 961 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 962 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 963 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 964 965 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 966 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 967 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 968 969 rrule->power_rule.max_antenna_gain = 0; 970 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 971 972 rrule->flags = 0; 973 if (rule->flags & FWDB_FLAG_NO_OFDM) 974 rrule->flags |= NL80211_RRF_NO_OFDM; 975 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 976 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 977 if (rule->flags & FWDB_FLAG_DFS) 978 rrule->flags |= NL80211_RRF_DFS; 979 if (rule->flags & FWDB_FLAG_NO_IR) 980 rrule->flags |= NL80211_RRF_NO_IR; 981 if (rule->flags & FWDB_FLAG_AUTO_BW) 982 rrule->flags |= NL80211_RRF_AUTO_BW; 983 984 rrule->dfs_cac_ms = 0; 985 986 /* handle optional data */ 987 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 988 rrule->dfs_cac_ms = 989 1000 * be16_to_cpu(rule->cac_timeout); 990 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 991 set_wmm_rule(db, country, rule, rrule); 992 } 993 994 return reg_schedule_apply(regdom); 995 } 996 997 static int query_regdb(const char *alpha2) 998 { 999 const struct fwdb_header *hdr = regdb; 1000 const struct fwdb_country *country; 1001 1002 ASSERT_RTNL(); 1003 1004 if (IS_ERR(regdb)) 1005 return PTR_ERR(regdb); 1006 1007 country = &hdr->country[0]; 1008 while (country->coll_ptr) { 1009 if (alpha2_equal(alpha2, country->alpha2)) 1010 return regdb_query_country(regdb, country); 1011 country++; 1012 } 1013 1014 return -ENODATA; 1015 } 1016 1017 static void regdb_fw_cb(const struct firmware *fw, void *context) 1018 { 1019 int set_error = 0; 1020 bool restore = true; 1021 void *db; 1022 1023 if (!fw) { 1024 pr_info("failed to load regulatory.db\n"); 1025 set_error = -ENODATA; 1026 } else if (!valid_regdb(fw->data, fw->size)) { 1027 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1028 set_error = -EINVAL; 1029 } 1030 1031 rtnl_lock(); 1032 if (regdb && !IS_ERR(regdb)) { 1033 /* negative case - a bug 1034 * positive case - can happen due to race in case of multiple cb's in 1035 * queue, due to usage of asynchronous callback 1036 * 1037 * Either case, just restore and free new db. 1038 */ 1039 } else if (set_error) { 1040 regdb = ERR_PTR(set_error); 1041 } else if (fw) { 1042 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1043 if (db) { 1044 regdb = db; 1045 restore = context && query_regdb(context); 1046 } else { 1047 restore = true; 1048 } 1049 } 1050 1051 if (restore) 1052 restore_regulatory_settings(true, false); 1053 1054 rtnl_unlock(); 1055 1056 kfree(context); 1057 1058 release_firmware(fw); 1059 } 1060 1061 static int query_regdb_file(const char *alpha2) 1062 { 1063 ASSERT_RTNL(); 1064 1065 if (regdb) 1066 return query_regdb(alpha2); 1067 1068 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1069 if (!alpha2) 1070 return -ENOMEM; 1071 1072 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1073 ®_pdev->dev, GFP_KERNEL, 1074 (void *)alpha2, regdb_fw_cb); 1075 } 1076 1077 int reg_reload_regdb(void) 1078 { 1079 const struct firmware *fw; 1080 void *db; 1081 int err; 1082 1083 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1084 if (err) 1085 return err; 1086 1087 if (!valid_regdb(fw->data, fw->size)) { 1088 err = -ENODATA; 1089 goto out; 1090 } 1091 1092 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1093 if (!db) { 1094 err = -ENOMEM; 1095 goto out; 1096 } 1097 1098 rtnl_lock(); 1099 if (!IS_ERR_OR_NULL(regdb)) 1100 kfree(regdb); 1101 regdb = db; 1102 rtnl_unlock(); 1103 1104 out: 1105 release_firmware(fw); 1106 return err; 1107 } 1108 1109 static bool reg_query_database(struct regulatory_request *request) 1110 { 1111 if (query_regdb_file(request->alpha2) == 0) 1112 return true; 1113 1114 if (call_crda(request->alpha2) == 0) 1115 return true; 1116 1117 return false; 1118 } 1119 1120 bool reg_is_valid_request(const char *alpha2) 1121 { 1122 struct regulatory_request *lr = get_last_request(); 1123 1124 if (!lr || lr->processed) 1125 return false; 1126 1127 return alpha2_equal(lr->alpha2, alpha2); 1128 } 1129 1130 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1131 { 1132 struct regulatory_request *lr = get_last_request(); 1133 1134 /* 1135 * Follow the driver's regulatory domain, if present, unless a country 1136 * IE has been processed or a user wants to help complaince further 1137 */ 1138 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1139 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1140 wiphy->regd) 1141 return get_wiphy_regdom(wiphy); 1142 1143 return get_cfg80211_regdom(); 1144 } 1145 1146 static unsigned int 1147 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1148 const struct ieee80211_reg_rule *rule) 1149 { 1150 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1151 const struct ieee80211_freq_range *freq_range_tmp; 1152 const struct ieee80211_reg_rule *tmp; 1153 u32 start_freq, end_freq, idx, no; 1154 1155 for (idx = 0; idx < rd->n_reg_rules; idx++) 1156 if (rule == &rd->reg_rules[idx]) 1157 break; 1158 1159 if (idx == rd->n_reg_rules) 1160 return 0; 1161 1162 /* get start_freq */ 1163 no = idx; 1164 1165 while (no) { 1166 tmp = &rd->reg_rules[--no]; 1167 freq_range_tmp = &tmp->freq_range; 1168 1169 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1170 break; 1171 1172 freq_range = freq_range_tmp; 1173 } 1174 1175 start_freq = freq_range->start_freq_khz; 1176 1177 /* get end_freq */ 1178 freq_range = &rule->freq_range; 1179 no = idx; 1180 1181 while (no < rd->n_reg_rules - 1) { 1182 tmp = &rd->reg_rules[++no]; 1183 freq_range_tmp = &tmp->freq_range; 1184 1185 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1186 break; 1187 1188 freq_range = freq_range_tmp; 1189 } 1190 1191 end_freq = freq_range->end_freq_khz; 1192 1193 return end_freq - start_freq; 1194 } 1195 1196 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1197 const struct ieee80211_reg_rule *rule) 1198 { 1199 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1200 1201 if (rule->flags & NL80211_RRF_NO_160MHZ) 1202 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1203 if (rule->flags & NL80211_RRF_NO_80MHZ) 1204 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1205 1206 /* 1207 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1208 * are not allowed. 1209 */ 1210 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1211 rule->flags & NL80211_RRF_NO_HT40PLUS) 1212 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1213 1214 return bw; 1215 } 1216 1217 /* Sanity check on a regulatory rule */ 1218 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1219 { 1220 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1221 u32 freq_diff; 1222 1223 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1224 return false; 1225 1226 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1227 return false; 1228 1229 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1230 1231 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1232 freq_range->max_bandwidth_khz > freq_diff) 1233 return false; 1234 1235 return true; 1236 } 1237 1238 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1239 { 1240 const struct ieee80211_reg_rule *reg_rule = NULL; 1241 unsigned int i; 1242 1243 if (!rd->n_reg_rules) 1244 return false; 1245 1246 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1247 return false; 1248 1249 for (i = 0; i < rd->n_reg_rules; i++) { 1250 reg_rule = &rd->reg_rules[i]; 1251 if (!is_valid_reg_rule(reg_rule)) 1252 return false; 1253 } 1254 1255 return true; 1256 } 1257 1258 /** 1259 * freq_in_rule_band - tells us if a frequency is in a frequency band 1260 * @freq_range: frequency rule we want to query 1261 * @freq_khz: frequency we are inquiring about 1262 * 1263 * This lets us know if a specific frequency rule is or is not relevant to 1264 * a specific frequency's band. Bands are device specific and artificial 1265 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1266 * however it is safe for now to assume that a frequency rule should not be 1267 * part of a frequency's band if the start freq or end freq are off by more 1268 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1269 * 60 GHz band. 1270 * This resolution can be lowered and should be considered as we add 1271 * regulatory rule support for other "bands". 1272 **/ 1273 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1274 u32 freq_khz) 1275 { 1276 #define ONE_GHZ_IN_KHZ 1000000 1277 /* 1278 * From 802.11ad: directional multi-gigabit (DMG): 1279 * Pertaining to operation in a frequency band containing a channel 1280 * with the Channel starting frequency above 45 GHz. 1281 */ 1282 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1283 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1284 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1285 return true; 1286 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1287 return true; 1288 return false; 1289 #undef ONE_GHZ_IN_KHZ 1290 } 1291 1292 /* 1293 * Later on we can perhaps use the more restrictive DFS 1294 * region but we don't have information for that yet so 1295 * for now simply disallow conflicts. 1296 */ 1297 static enum nl80211_dfs_regions 1298 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1299 const enum nl80211_dfs_regions dfs_region2) 1300 { 1301 if (dfs_region1 != dfs_region2) 1302 return NL80211_DFS_UNSET; 1303 return dfs_region1; 1304 } 1305 1306 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1307 const struct ieee80211_wmm_ac *wmm_ac2, 1308 struct ieee80211_wmm_ac *intersect) 1309 { 1310 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1311 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1312 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1313 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1314 } 1315 1316 /* 1317 * Helper for regdom_intersect(), this does the real 1318 * mathematical intersection fun 1319 */ 1320 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1321 const struct ieee80211_regdomain *rd2, 1322 const struct ieee80211_reg_rule *rule1, 1323 const struct ieee80211_reg_rule *rule2, 1324 struct ieee80211_reg_rule *intersected_rule) 1325 { 1326 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1327 struct ieee80211_freq_range *freq_range; 1328 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1329 struct ieee80211_power_rule *power_rule; 1330 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1331 struct ieee80211_wmm_rule *wmm_rule; 1332 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1333 1334 freq_range1 = &rule1->freq_range; 1335 freq_range2 = &rule2->freq_range; 1336 freq_range = &intersected_rule->freq_range; 1337 1338 power_rule1 = &rule1->power_rule; 1339 power_rule2 = &rule2->power_rule; 1340 power_rule = &intersected_rule->power_rule; 1341 1342 wmm_rule1 = &rule1->wmm_rule; 1343 wmm_rule2 = &rule2->wmm_rule; 1344 wmm_rule = &intersected_rule->wmm_rule; 1345 1346 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1347 freq_range2->start_freq_khz); 1348 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1349 freq_range2->end_freq_khz); 1350 1351 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1352 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1353 1354 if (rule1->flags & NL80211_RRF_AUTO_BW) 1355 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1356 if (rule2->flags & NL80211_RRF_AUTO_BW) 1357 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1358 1359 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1360 1361 intersected_rule->flags = rule1->flags | rule2->flags; 1362 1363 /* 1364 * In case NL80211_RRF_AUTO_BW requested for both rules 1365 * set AUTO_BW in intersected rule also. Next we will 1366 * calculate BW correctly in handle_channel function. 1367 * In other case remove AUTO_BW flag while we calculate 1368 * maximum bandwidth correctly and auto calculation is 1369 * not required. 1370 */ 1371 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1372 (rule2->flags & NL80211_RRF_AUTO_BW)) 1373 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1374 else 1375 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1376 1377 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1378 if (freq_range->max_bandwidth_khz > freq_diff) 1379 freq_range->max_bandwidth_khz = freq_diff; 1380 1381 power_rule->max_eirp = min(power_rule1->max_eirp, 1382 power_rule2->max_eirp); 1383 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1384 power_rule2->max_antenna_gain); 1385 1386 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1387 rule2->dfs_cac_ms); 1388 1389 if (rule1->has_wmm && rule2->has_wmm) { 1390 u8 ac; 1391 1392 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1393 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1394 &wmm_rule2->client[ac], 1395 &wmm_rule->client[ac]); 1396 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1397 &wmm_rule2->ap[ac], 1398 &wmm_rule->ap[ac]); 1399 } 1400 1401 intersected_rule->has_wmm = true; 1402 } else if (rule1->has_wmm) { 1403 *wmm_rule = *wmm_rule1; 1404 intersected_rule->has_wmm = true; 1405 } else if (rule2->has_wmm) { 1406 *wmm_rule = *wmm_rule2; 1407 intersected_rule->has_wmm = true; 1408 } else { 1409 intersected_rule->has_wmm = false; 1410 } 1411 1412 if (!is_valid_reg_rule(intersected_rule)) 1413 return -EINVAL; 1414 1415 return 0; 1416 } 1417 1418 /* check whether old rule contains new rule */ 1419 static bool rule_contains(struct ieee80211_reg_rule *r1, 1420 struct ieee80211_reg_rule *r2) 1421 { 1422 /* for simplicity, currently consider only same flags */ 1423 if (r1->flags != r2->flags) 1424 return false; 1425 1426 /* verify r1 is more restrictive */ 1427 if ((r1->power_rule.max_antenna_gain > 1428 r2->power_rule.max_antenna_gain) || 1429 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1430 return false; 1431 1432 /* make sure r2's range is contained within r1 */ 1433 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1434 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1435 return false; 1436 1437 /* and finally verify that r1.max_bw >= r2.max_bw */ 1438 if (r1->freq_range.max_bandwidth_khz < 1439 r2->freq_range.max_bandwidth_khz) 1440 return false; 1441 1442 return true; 1443 } 1444 1445 /* add or extend current rules. do nothing if rule is already contained */ 1446 static void add_rule(struct ieee80211_reg_rule *rule, 1447 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1448 { 1449 struct ieee80211_reg_rule *tmp_rule; 1450 int i; 1451 1452 for (i = 0; i < *n_rules; i++) { 1453 tmp_rule = ®_rules[i]; 1454 /* rule is already contained - do nothing */ 1455 if (rule_contains(tmp_rule, rule)) 1456 return; 1457 1458 /* extend rule if possible */ 1459 if (rule_contains(rule, tmp_rule)) { 1460 memcpy(tmp_rule, rule, sizeof(*rule)); 1461 return; 1462 } 1463 } 1464 1465 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1466 (*n_rules)++; 1467 } 1468 1469 /** 1470 * regdom_intersect - do the intersection between two regulatory domains 1471 * @rd1: first regulatory domain 1472 * @rd2: second regulatory domain 1473 * 1474 * Use this function to get the intersection between two regulatory domains. 1475 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1476 * as no one single alpha2 can represent this regulatory domain. 1477 * 1478 * Returns a pointer to the regulatory domain structure which will hold the 1479 * resulting intersection of rules between rd1 and rd2. We will 1480 * kzalloc() this structure for you. 1481 */ 1482 static struct ieee80211_regdomain * 1483 regdom_intersect(const struct ieee80211_regdomain *rd1, 1484 const struct ieee80211_regdomain *rd2) 1485 { 1486 int r; 1487 unsigned int x, y; 1488 unsigned int num_rules = 0; 1489 const struct ieee80211_reg_rule *rule1, *rule2; 1490 struct ieee80211_reg_rule intersected_rule; 1491 struct ieee80211_regdomain *rd; 1492 1493 if (!rd1 || !rd2) 1494 return NULL; 1495 1496 /* 1497 * First we get a count of the rules we'll need, then we actually 1498 * build them. This is to so we can malloc() and free() a 1499 * regdomain once. The reason we use reg_rules_intersect() here 1500 * is it will return -EINVAL if the rule computed makes no sense. 1501 * All rules that do check out OK are valid. 1502 */ 1503 1504 for (x = 0; x < rd1->n_reg_rules; x++) { 1505 rule1 = &rd1->reg_rules[x]; 1506 for (y = 0; y < rd2->n_reg_rules; y++) { 1507 rule2 = &rd2->reg_rules[y]; 1508 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1509 &intersected_rule)) 1510 num_rules++; 1511 } 1512 } 1513 1514 if (!num_rules) 1515 return NULL; 1516 1517 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1518 if (!rd) 1519 return NULL; 1520 1521 for (x = 0; x < rd1->n_reg_rules; x++) { 1522 rule1 = &rd1->reg_rules[x]; 1523 for (y = 0; y < rd2->n_reg_rules; y++) { 1524 rule2 = &rd2->reg_rules[y]; 1525 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1526 &intersected_rule); 1527 /* 1528 * No need to memset here the intersected rule here as 1529 * we're not using the stack anymore 1530 */ 1531 if (r) 1532 continue; 1533 1534 add_rule(&intersected_rule, rd->reg_rules, 1535 &rd->n_reg_rules); 1536 } 1537 } 1538 1539 rd->alpha2[0] = '9'; 1540 rd->alpha2[1] = '8'; 1541 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1542 rd2->dfs_region); 1543 1544 return rd; 1545 } 1546 1547 /* 1548 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1549 * want to just have the channel structure use these 1550 */ 1551 static u32 map_regdom_flags(u32 rd_flags) 1552 { 1553 u32 channel_flags = 0; 1554 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1555 channel_flags |= IEEE80211_CHAN_NO_IR; 1556 if (rd_flags & NL80211_RRF_DFS) 1557 channel_flags |= IEEE80211_CHAN_RADAR; 1558 if (rd_flags & NL80211_RRF_NO_OFDM) 1559 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1560 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1561 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1562 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1563 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1564 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1565 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1566 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1567 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1568 if (rd_flags & NL80211_RRF_NO_80MHZ) 1569 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1570 if (rd_flags & NL80211_RRF_NO_160MHZ) 1571 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1572 return channel_flags; 1573 } 1574 1575 static const struct ieee80211_reg_rule * 1576 freq_reg_info_regd(u32 center_freq, 1577 const struct ieee80211_regdomain *regd, u32 bw) 1578 { 1579 int i; 1580 bool band_rule_found = false; 1581 bool bw_fits = false; 1582 1583 if (!regd) 1584 return ERR_PTR(-EINVAL); 1585 1586 for (i = 0; i < regd->n_reg_rules; i++) { 1587 const struct ieee80211_reg_rule *rr; 1588 const struct ieee80211_freq_range *fr = NULL; 1589 1590 rr = ®d->reg_rules[i]; 1591 fr = &rr->freq_range; 1592 1593 /* 1594 * We only need to know if one frequency rule was 1595 * was in center_freq's band, that's enough, so lets 1596 * not overwrite it once found 1597 */ 1598 if (!band_rule_found) 1599 band_rule_found = freq_in_rule_band(fr, center_freq); 1600 1601 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1602 1603 if (band_rule_found && bw_fits) 1604 return rr; 1605 } 1606 1607 if (!band_rule_found) 1608 return ERR_PTR(-ERANGE); 1609 1610 return ERR_PTR(-EINVAL); 1611 } 1612 1613 static const struct ieee80211_reg_rule * 1614 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1615 { 1616 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1617 const struct ieee80211_reg_rule *reg_rule = NULL; 1618 u32 bw; 1619 1620 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 1621 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1622 if (!IS_ERR(reg_rule)) 1623 return reg_rule; 1624 } 1625 1626 return reg_rule; 1627 } 1628 1629 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1630 u32 center_freq) 1631 { 1632 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20)); 1633 } 1634 EXPORT_SYMBOL(freq_reg_info); 1635 1636 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1637 { 1638 switch (initiator) { 1639 case NL80211_REGDOM_SET_BY_CORE: 1640 return "core"; 1641 case NL80211_REGDOM_SET_BY_USER: 1642 return "user"; 1643 case NL80211_REGDOM_SET_BY_DRIVER: 1644 return "driver"; 1645 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1646 return "country element"; 1647 default: 1648 WARN_ON(1); 1649 return "bug"; 1650 } 1651 } 1652 EXPORT_SYMBOL(reg_initiator_name); 1653 1654 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1655 const struct ieee80211_reg_rule *reg_rule, 1656 const struct ieee80211_channel *chan) 1657 { 1658 const struct ieee80211_freq_range *freq_range = NULL; 1659 u32 max_bandwidth_khz, bw_flags = 0; 1660 1661 freq_range = ®_rule->freq_range; 1662 1663 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1664 /* Check if auto calculation requested */ 1665 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1666 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1667 1668 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1669 if (!cfg80211_does_bw_fit_range(freq_range, 1670 MHZ_TO_KHZ(chan->center_freq), 1671 MHZ_TO_KHZ(10))) 1672 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1673 if (!cfg80211_does_bw_fit_range(freq_range, 1674 MHZ_TO_KHZ(chan->center_freq), 1675 MHZ_TO_KHZ(20))) 1676 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1677 1678 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1679 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1680 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1681 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1682 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1683 bw_flags |= IEEE80211_CHAN_NO_HT40; 1684 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1685 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1686 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1687 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1688 return bw_flags; 1689 } 1690 1691 /* 1692 * Note that right now we assume the desired channel bandwidth 1693 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1694 * per channel, the primary and the extension channel). 1695 */ 1696 static void handle_channel(struct wiphy *wiphy, 1697 enum nl80211_reg_initiator initiator, 1698 struct ieee80211_channel *chan) 1699 { 1700 u32 flags, bw_flags = 0; 1701 const struct ieee80211_reg_rule *reg_rule = NULL; 1702 const struct ieee80211_power_rule *power_rule = NULL; 1703 struct wiphy *request_wiphy = NULL; 1704 struct regulatory_request *lr = get_last_request(); 1705 const struct ieee80211_regdomain *regd; 1706 1707 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1708 1709 flags = chan->orig_flags; 1710 1711 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 1712 if (IS_ERR(reg_rule)) { 1713 /* 1714 * We will disable all channels that do not match our 1715 * received regulatory rule unless the hint is coming 1716 * from a Country IE and the Country IE had no information 1717 * about a band. The IEEE 802.11 spec allows for an AP 1718 * to send only a subset of the regulatory rules allowed, 1719 * so an AP in the US that only supports 2.4 GHz may only send 1720 * a country IE with information for the 2.4 GHz band 1721 * while 5 GHz is still supported. 1722 */ 1723 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1724 PTR_ERR(reg_rule) == -ERANGE) 1725 return; 1726 1727 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1728 request_wiphy && request_wiphy == wiphy && 1729 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1730 pr_debug("Disabling freq %d MHz for good\n", 1731 chan->center_freq); 1732 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1733 chan->flags = chan->orig_flags; 1734 } else { 1735 pr_debug("Disabling freq %d MHz\n", 1736 chan->center_freq); 1737 chan->flags |= IEEE80211_CHAN_DISABLED; 1738 } 1739 return; 1740 } 1741 1742 regd = reg_get_regdomain(wiphy); 1743 1744 power_rule = ®_rule->power_rule; 1745 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1746 1747 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1748 request_wiphy && request_wiphy == wiphy && 1749 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1750 /* 1751 * This guarantees the driver's requested regulatory domain 1752 * will always be used as a base for further regulatory 1753 * settings 1754 */ 1755 chan->flags = chan->orig_flags = 1756 map_regdom_flags(reg_rule->flags) | bw_flags; 1757 chan->max_antenna_gain = chan->orig_mag = 1758 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1759 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1760 (int) MBM_TO_DBM(power_rule->max_eirp); 1761 1762 if (chan->flags & IEEE80211_CHAN_RADAR) { 1763 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1764 if (reg_rule->dfs_cac_ms) 1765 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1766 } 1767 1768 return; 1769 } 1770 1771 chan->dfs_state = NL80211_DFS_USABLE; 1772 chan->dfs_state_entered = jiffies; 1773 1774 chan->beacon_found = false; 1775 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1776 chan->max_antenna_gain = 1777 min_t(int, chan->orig_mag, 1778 MBI_TO_DBI(power_rule->max_antenna_gain)); 1779 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1780 1781 if (chan->flags & IEEE80211_CHAN_RADAR) { 1782 if (reg_rule->dfs_cac_ms) 1783 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1784 else 1785 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1786 } 1787 1788 if (chan->orig_mpwr) { 1789 /* 1790 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1791 * will always follow the passed country IE power settings. 1792 */ 1793 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1794 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1795 chan->max_power = chan->max_reg_power; 1796 else 1797 chan->max_power = min(chan->orig_mpwr, 1798 chan->max_reg_power); 1799 } else 1800 chan->max_power = chan->max_reg_power; 1801 } 1802 1803 static void handle_band(struct wiphy *wiphy, 1804 enum nl80211_reg_initiator initiator, 1805 struct ieee80211_supported_band *sband) 1806 { 1807 unsigned int i; 1808 1809 if (!sband) 1810 return; 1811 1812 for (i = 0; i < sband->n_channels; i++) 1813 handle_channel(wiphy, initiator, &sband->channels[i]); 1814 } 1815 1816 static bool reg_request_cell_base(struct regulatory_request *request) 1817 { 1818 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1819 return false; 1820 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 1821 } 1822 1823 bool reg_last_request_cell_base(void) 1824 { 1825 return reg_request_cell_base(get_last_request()); 1826 } 1827 1828 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 1829 /* Core specific check */ 1830 static enum reg_request_treatment 1831 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1832 { 1833 struct regulatory_request *lr = get_last_request(); 1834 1835 if (!reg_num_devs_support_basehint) 1836 return REG_REQ_IGNORE; 1837 1838 if (reg_request_cell_base(lr) && 1839 !regdom_changes(pending_request->alpha2)) 1840 return REG_REQ_ALREADY_SET; 1841 1842 return REG_REQ_OK; 1843 } 1844 1845 /* Device specific check */ 1846 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1847 { 1848 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 1849 } 1850 #else 1851 static enum reg_request_treatment 1852 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1853 { 1854 return REG_REQ_IGNORE; 1855 } 1856 1857 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1858 { 1859 return true; 1860 } 1861 #endif 1862 1863 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 1864 { 1865 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 1866 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 1867 return true; 1868 return false; 1869 } 1870 1871 static bool ignore_reg_update(struct wiphy *wiphy, 1872 enum nl80211_reg_initiator initiator) 1873 { 1874 struct regulatory_request *lr = get_last_request(); 1875 1876 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 1877 return true; 1878 1879 if (!lr) { 1880 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 1881 reg_initiator_name(initiator)); 1882 return true; 1883 } 1884 1885 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1886 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 1887 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 1888 reg_initiator_name(initiator)); 1889 return true; 1890 } 1891 1892 /* 1893 * wiphy->regd will be set once the device has its own 1894 * desired regulatory domain set 1895 */ 1896 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1897 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1898 !is_world_regdom(lr->alpha2)) { 1899 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 1900 reg_initiator_name(initiator)); 1901 return true; 1902 } 1903 1904 if (reg_request_cell_base(lr)) 1905 return reg_dev_ignore_cell_hint(wiphy); 1906 1907 return false; 1908 } 1909 1910 static bool reg_is_world_roaming(struct wiphy *wiphy) 1911 { 1912 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1913 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1914 struct regulatory_request *lr = get_last_request(); 1915 1916 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1917 return true; 1918 1919 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1920 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1921 return true; 1922 1923 return false; 1924 } 1925 1926 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1927 struct reg_beacon *reg_beacon) 1928 { 1929 struct ieee80211_supported_band *sband; 1930 struct ieee80211_channel *chan; 1931 bool channel_changed = false; 1932 struct ieee80211_channel chan_before; 1933 1934 sband = wiphy->bands[reg_beacon->chan.band]; 1935 chan = &sband->channels[chan_idx]; 1936 1937 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1938 return; 1939 1940 if (chan->beacon_found) 1941 return; 1942 1943 chan->beacon_found = true; 1944 1945 if (!reg_is_world_roaming(wiphy)) 1946 return; 1947 1948 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 1949 return; 1950 1951 chan_before = *chan; 1952 1953 if (chan->flags & IEEE80211_CHAN_NO_IR) { 1954 chan->flags &= ~IEEE80211_CHAN_NO_IR; 1955 channel_changed = true; 1956 } 1957 1958 if (channel_changed) 1959 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1960 } 1961 1962 /* 1963 * Called when a scan on a wiphy finds a beacon on 1964 * new channel 1965 */ 1966 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1967 struct reg_beacon *reg_beacon) 1968 { 1969 unsigned int i; 1970 struct ieee80211_supported_band *sband; 1971 1972 if (!wiphy->bands[reg_beacon->chan.band]) 1973 return; 1974 1975 sband = wiphy->bands[reg_beacon->chan.band]; 1976 1977 for (i = 0; i < sband->n_channels; i++) 1978 handle_reg_beacon(wiphy, i, reg_beacon); 1979 } 1980 1981 /* 1982 * Called upon reg changes or a new wiphy is added 1983 */ 1984 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1985 { 1986 unsigned int i; 1987 struct ieee80211_supported_band *sband; 1988 struct reg_beacon *reg_beacon; 1989 1990 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1991 if (!wiphy->bands[reg_beacon->chan.band]) 1992 continue; 1993 sband = wiphy->bands[reg_beacon->chan.band]; 1994 for (i = 0; i < sband->n_channels; i++) 1995 handle_reg_beacon(wiphy, i, reg_beacon); 1996 } 1997 } 1998 1999 /* Reap the advantages of previously found beacons */ 2000 static void reg_process_beacons(struct wiphy *wiphy) 2001 { 2002 /* 2003 * Means we are just firing up cfg80211, so no beacons would 2004 * have been processed yet. 2005 */ 2006 if (!last_request) 2007 return; 2008 wiphy_update_beacon_reg(wiphy); 2009 } 2010 2011 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2012 { 2013 if (!chan) 2014 return false; 2015 if (chan->flags & IEEE80211_CHAN_DISABLED) 2016 return false; 2017 /* This would happen when regulatory rules disallow HT40 completely */ 2018 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2019 return false; 2020 return true; 2021 } 2022 2023 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2024 struct ieee80211_channel *channel) 2025 { 2026 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2027 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2028 const struct ieee80211_regdomain *regd; 2029 unsigned int i; 2030 u32 flags; 2031 2032 if (!is_ht40_allowed(channel)) { 2033 channel->flags |= IEEE80211_CHAN_NO_HT40; 2034 return; 2035 } 2036 2037 /* 2038 * We need to ensure the extension channels exist to 2039 * be able to use HT40- or HT40+, this finds them (or not) 2040 */ 2041 for (i = 0; i < sband->n_channels; i++) { 2042 struct ieee80211_channel *c = &sband->channels[i]; 2043 2044 if (c->center_freq == (channel->center_freq - 20)) 2045 channel_before = c; 2046 if (c->center_freq == (channel->center_freq + 20)) 2047 channel_after = c; 2048 } 2049 2050 flags = 0; 2051 regd = get_wiphy_regdom(wiphy); 2052 if (regd) { 2053 const struct ieee80211_reg_rule *reg_rule = 2054 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2055 regd, MHZ_TO_KHZ(20)); 2056 2057 if (!IS_ERR(reg_rule)) 2058 flags = reg_rule->flags; 2059 } 2060 2061 /* 2062 * Please note that this assumes target bandwidth is 20 MHz, 2063 * if that ever changes we also need to change the below logic 2064 * to include that as well. 2065 */ 2066 if (!is_ht40_allowed(channel_before) || 2067 flags & NL80211_RRF_NO_HT40MINUS) 2068 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2069 else 2070 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2071 2072 if (!is_ht40_allowed(channel_after) || 2073 flags & NL80211_RRF_NO_HT40PLUS) 2074 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2075 else 2076 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2077 } 2078 2079 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2080 struct ieee80211_supported_band *sband) 2081 { 2082 unsigned int i; 2083 2084 if (!sband) 2085 return; 2086 2087 for (i = 0; i < sband->n_channels; i++) 2088 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2089 } 2090 2091 static void reg_process_ht_flags(struct wiphy *wiphy) 2092 { 2093 enum nl80211_band band; 2094 2095 if (!wiphy) 2096 return; 2097 2098 for (band = 0; band < NUM_NL80211_BANDS; band++) 2099 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2100 } 2101 2102 static void reg_call_notifier(struct wiphy *wiphy, 2103 struct regulatory_request *request) 2104 { 2105 if (wiphy->reg_notifier) 2106 wiphy->reg_notifier(wiphy, request); 2107 } 2108 2109 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2110 { 2111 struct cfg80211_chan_def chandef; 2112 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2113 enum nl80211_iftype iftype; 2114 2115 wdev_lock(wdev); 2116 iftype = wdev->iftype; 2117 2118 /* make sure the interface is active */ 2119 if (!wdev->netdev || !netif_running(wdev->netdev)) 2120 goto wdev_inactive_unlock; 2121 2122 switch (iftype) { 2123 case NL80211_IFTYPE_AP: 2124 case NL80211_IFTYPE_P2P_GO: 2125 if (!wdev->beacon_interval) 2126 goto wdev_inactive_unlock; 2127 chandef = wdev->chandef; 2128 break; 2129 case NL80211_IFTYPE_ADHOC: 2130 if (!wdev->ssid_len) 2131 goto wdev_inactive_unlock; 2132 chandef = wdev->chandef; 2133 break; 2134 case NL80211_IFTYPE_STATION: 2135 case NL80211_IFTYPE_P2P_CLIENT: 2136 if (!wdev->current_bss || 2137 !wdev->current_bss->pub.channel) 2138 goto wdev_inactive_unlock; 2139 2140 if (!rdev->ops->get_channel || 2141 rdev_get_channel(rdev, wdev, &chandef)) 2142 cfg80211_chandef_create(&chandef, 2143 wdev->current_bss->pub.channel, 2144 NL80211_CHAN_NO_HT); 2145 break; 2146 case NL80211_IFTYPE_MONITOR: 2147 case NL80211_IFTYPE_AP_VLAN: 2148 case NL80211_IFTYPE_P2P_DEVICE: 2149 /* no enforcement required */ 2150 break; 2151 default: 2152 /* others not implemented for now */ 2153 WARN_ON(1); 2154 break; 2155 } 2156 2157 wdev_unlock(wdev); 2158 2159 switch (iftype) { 2160 case NL80211_IFTYPE_AP: 2161 case NL80211_IFTYPE_P2P_GO: 2162 case NL80211_IFTYPE_ADHOC: 2163 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 2164 case NL80211_IFTYPE_STATION: 2165 case NL80211_IFTYPE_P2P_CLIENT: 2166 return cfg80211_chandef_usable(wiphy, &chandef, 2167 IEEE80211_CHAN_DISABLED); 2168 default: 2169 break; 2170 } 2171 2172 return true; 2173 2174 wdev_inactive_unlock: 2175 wdev_unlock(wdev); 2176 return true; 2177 } 2178 2179 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2180 { 2181 struct wireless_dev *wdev; 2182 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2183 2184 ASSERT_RTNL(); 2185 2186 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2187 if (!reg_wdev_chan_valid(wiphy, wdev)) 2188 cfg80211_leave(rdev, wdev); 2189 } 2190 2191 static void reg_check_chans_work(struct work_struct *work) 2192 { 2193 struct cfg80211_registered_device *rdev; 2194 2195 pr_debug("Verifying active interfaces after reg change\n"); 2196 rtnl_lock(); 2197 2198 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2199 if (!(rdev->wiphy.regulatory_flags & 2200 REGULATORY_IGNORE_STALE_KICKOFF)) 2201 reg_leave_invalid_chans(&rdev->wiphy); 2202 2203 rtnl_unlock(); 2204 } 2205 2206 static void reg_check_channels(void) 2207 { 2208 /* 2209 * Give usermode a chance to do something nicer (move to another 2210 * channel, orderly disconnection), before forcing a disconnection. 2211 */ 2212 mod_delayed_work(system_power_efficient_wq, 2213 ®_check_chans, 2214 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2215 } 2216 2217 static void wiphy_update_regulatory(struct wiphy *wiphy, 2218 enum nl80211_reg_initiator initiator) 2219 { 2220 enum nl80211_band band; 2221 struct regulatory_request *lr = get_last_request(); 2222 2223 if (ignore_reg_update(wiphy, initiator)) { 2224 /* 2225 * Regulatory updates set by CORE are ignored for custom 2226 * regulatory cards. Let us notify the changes to the driver, 2227 * as some drivers used this to restore its orig_* reg domain. 2228 */ 2229 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2230 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2231 !(wiphy->regulatory_flags & 2232 REGULATORY_WIPHY_SELF_MANAGED)) 2233 reg_call_notifier(wiphy, lr); 2234 return; 2235 } 2236 2237 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2238 2239 for (band = 0; band < NUM_NL80211_BANDS; band++) 2240 handle_band(wiphy, initiator, wiphy->bands[band]); 2241 2242 reg_process_beacons(wiphy); 2243 reg_process_ht_flags(wiphy); 2244 reg_call_notifier(wiphy, lr); 2245 } 2246 2247 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2248 { 2249 struct cfg80211_registered_device *rdev; 2250 struct wiphy *wiphy; 2251 2252 ASSERT_RTNL(); 2253 2254 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2255 wiphy = &rdev->wiphy; 2256 wiphy_update_regulatory(wiphy, initiator); 2257 } 2258 2259 reg_check_channels(); 2260 } 2261 2262 static void handle_channel_custom(struct wiphy *wiphy, 2263 struct ieee80211_channel *chan, 2264 const struct ieee80211_regdomain *regd) 2265 { 2266 u32 bw_flags = 0; 2267 const struct ieee80211_reg_rule *reg_rule = NULL; 2268 const struct ieee80211_power_rule *power_rule = NULL; 2269 u32 bw; 2270 2271 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) { 2272 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq), 2273 regd, bw); 2274 if (!IS_ERR(reg_rule)) 2275 break; 2276 } 2277 2278 if (IS_ERR(reg_rule)) { 2279 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n", 2280 chan->center_freq); 2281 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2282 chan->flags |= IEEE80211_CHAN_DISABLED; 2283 } else { 2284 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2285 chan->flags = chan->orig_flags; 2286 } 2287 return; 2288 } 2289 2290 power_rule = ®_rule->power_rule; 2291 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2292 2293 chan->dfs_state_entered = jiffies; 2294 chan->dfs_state = NL80211_DFS_USABLE; 2295 2296 chan->beacon_found = false; 2297 2298 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2299 chan->flags = chan->orig_flags | bw_flags | 2300 map_regdom_flags(reg_rule->flags); 2301 else 2302 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2303 2304 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2305 chan->max_reg_power = chan->max_power = 2306 (int) MBM_TO_DBM(power_rule->max_eirp); 2307 2308 if (chan->flags & IEEE80211_CHAN_RADAR) { 2309 if (reg_rule->dfs_cac_ms) 2310 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2311 else 2312 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2313 } 2314 2315 chan->max_power = chan->max_reg_power; 2316 } 2317 2318 static void handle_band_custom(struct wiphy *wiphy, 2319 struct ieee80211_supported_band *sband, 2320 const struct ieee80211_regdomain *regd) 2321 { 2322 unsigned int i; 2323 2324 if (!sband) 2325 return; 2326 2327 for (i = 0; i < sband->n_channels; i++) 2328 handle_channel_custom(wiphy, &sband->channels[i], regd); 2329 } 2330 2331 /* Used by drivers prior to wiphy registration */ 2332 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2333 const struct ieee80211_regdomain *regd) 2334 { 2335 enum nl80211_band band; 2336 unsigned int bands_set = 0; 2337 2338 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2339 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2340 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2341 2342 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2343 if (!wiphy->bands[band]) 2344 continue; 2345 handle_band_custom(wiphy, wiphy->bands[band], regd); 2346 bands_set++; 2347 } 2348 2349 /* 2350 * no point in calling this if it won't have any effect 2351 * on your device's supported bands. 2352 */ 2353 WARN_ON(!bands_set); 2354 } 2355 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2356 2357 static void reg_set_request_processed(void) 2358 { 2359 bool need_more_processing = false; 2360 struct regulatory_request *lr = get_last_request(); 2361 2362 lr->processed = true; 2363 2364 spin_lock(®_requests_lock); 2365 if (!list_empty(®_requests_list)) 2366 need_more_processing = true; 2367 spin_unlock(®_requests_lock); 2368 2369 cancel_crda_timeout(); 2370 2371 if (need_more_processing) 2372 schedule_work(®_work); 2373 } 2374 2375 /** 2376 * reg_process_hint_core - process core regulatory requests 2377 * @pending_request: a pending core regulatory request 2378 * 2379 * The wireless subsystem can use this function to process 2380 * a regulatory request issued by the regulatory core. 2381 */ 2382 static enum reg_request_treatment 2383 reg_process_hint_core(struct regulatory_request *core_request) 2384 { 2385 if (reg_query_database(core_request)) { 2386 core_request->intersect = false; 2387 core_request->processed = false; 2388 reg_update_last_request(core_request); 2389 return REG_REQ_OK; 2390 } 2391 2392 return REG_REQ_IGNORE; 2393 } 2394 2395 static enum reg_request_treatment 2396 __reg_process_hint_user(struct regulatory_request *user_request) 2397 { 2398 struct regulatory_request *lr = get_last_request(); 2399 2400 if (reg_request_cell_base(user_request)) 2401 return reg_ignore_cell_hint(user_request); 2402 2403 if (reg_request_cell_base(lr)) 2404 return REG_REQ_IGNORE; 2405 2406 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2407 return REG_REQ_INTERSECT; 2408 /* 2409 * If the user knows better the user should set the regdom 2410 * to their country before the IE is picked up 2411 */ 2412 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2413 lr->intersect) 2414 return REG_REQ_IGNORE; 2415 /* 2416 * Process user requests only after previous user/driver/core 2417 * requests have been processed 2418 */ 2419 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2420 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2421 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2422 regdom_changes(lr->alpha2)) 2423 return REG_REQ_IGNORE; 2424 2425 if (!regdom_changes(user_request->alpha2)) 2426 return REG_REQ_ALREADY_SET; 2427 2428 return REG_REQ_OK; 2429 } 2430 2431 /** 2432 * reg_process_hint_user - process user regulatory requests 2433 * @user_request: a pending user regulatory request 2434 * 2435 * The wireless subsystem can use this function to process 2436 * a regulatory request initiated by userspace. 2437 */ 2438 static enum reg_request_treatment 2439 reg_process_hint_user(struct regulatory_request *user_request) 2440 { 2441 enum reg_request_treatment treatment; 2442 2443 treatment = __reg_process_hint_user(user_request); 2444 if (treatment == REG_REQ_IGNORE || 2445 treatment == REG_REQ_ALREADY_SET) 2446 return REG_REQ_IGNORE; 2447 2448 user_request->intersect = treatment == REG_REQ_INTERSECT; 2449 user_request->processed = false; 2450 2451 if (reg_query_database(user_request)) { 2452 reg_update_last_request(user_request); 2453 user_alpha2[0] = user_request->alpha2[0]; 2454 user_alpha2[1] = user_request->alpha2[1]; 2455 return REG_REQ_OK; 2456 } 2457 2458 return REG_REQ_IGNORE; 2459 } 2460 2461 static enum reg_request_treatment 2462 __reg_process_hint_driver(struct regulatory_request *driver_request) 2463 { 2464 struct regulatory_request *lr = get_last_request(); 2465 2466 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2467 if (regdom_changes(driver_request->alpha2)) 2468 return REG_REQ_OK; 2469 return REG_REQ_ALREADY_SET; 2470 } 2471 2472 /* 2473 * This would happen if you unplug and plug your card 2474 * back in or if you add a new device for which the previously 2475 * loaded card also agrees on the regulatory domain. 2476 */ 2477 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2478 !regdom_changes(driver_request->alpha2)) 2479 return REG_REQ_ALREADY_SET; 2480 2481 return REG_REQ_INTERSECT; 2482 } 2483 2484 /** 2485 * reg_process_hint_driver - process driver regulatory requests 2486 * @driver_request: a pending driver regulatory request 2487 * 2488 * The wireless subsystem can use this function to process 2489 * a regulatory request issued by an 802.11 driver. 2490 * 2491 * Returns one of the different reg request treatment values. 2492 */ 2493 static enum reg_request_treatment 2494 reg_process_hint_driver(struct wiphy *wiphy, 2495 struct regulatory_request *driver_request) 2496 { 2497 const struct ieee80211_regdomain *regd, *tmp; 2498 enum reg_request_treatment treatment; 2499 2500 treatment = __reg_process_hint_driver(driver_request); 2501 2502 switch (treatment) { 2503 case REG_REQ_OK: 2504 break; 2505 case REG_REQ_IGNORE: 2506 return REG_REQ_IGNORE; 2507 case REG_REQ_INTERSECT: 2508 case REG_REQ_ALREADY_SET: 2509 regd = reg_copy_regd(get_cfg80211_regdom()); 2510 if (IS_ERR(regd)) 2511 return REG_REQ_IGNORE; 2512 2513 tmp = get_wiphy_regdom(wiphy); 2514 rcu_assign_pointer(wiphy->regd, regd); 2515 rcu_free_regdom(tmp); 2516 } 2517 2518 2519 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2520 driver_request->processed = false; 2521 2522 /* 2523 * Since CRDA will not be called in this case as we already 2524 * have applied the requested regulatory domain before we just 2525 * inform userspace we have processed the request 2526 */ 2527 if (treatment == REG_REQ_ALREADY_SET) { 2528 nl80211_send_reg_change_event(driver_request); 2529 reg_update_last_request(driver_request); 2530 reg_set_request_processed(); 2531 return REG_REQ_ALREADY_SET; 2532 } 2533 2534 if (reg_query_database(driver_request)) { 2535 reg_update_last_request(driver_request); 2536 return REG_REQ_OK; 2537 } 2538 2539 return REG_REQ_IGNORE; 2540 } 2541 2542 static enum reg_request_treatment 2543 __reg_process_hint_country_ie(struct wiphy *wiphy, 2544 struct regulatory_request *country_ie_request) 2545 { 2546 struct wiphy *last_wiphy = NULL; 2547 struct regulatory_request *lr = get_last_request(); 2548 2549 if (reg_request_cell_base(lr)) { 2550 /* Trust a Cell base station over the AP's country IE */ 2551 if (regdom_changes(country_ie_request->alpha2)) 2552 return REG_REQ_IGNORE; 2553 return REG_REQ_ALREADY_SET; 2554 } else { 2555 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2556 return REG_REQ_IGNORE; 2557 } 2558 2559 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2560 return -EINVAL; 2561 2562 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2563 return REG_REQ_OK; 2564 2565 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2566 2567 if (last_wiphy != wiphy) { 2568 /* 2569 * Two cards with two APs claiming different 2570 * Country IE alpha2s. We could 2571 * intersect them, but that seems unlikely 2572 * to be correct. Reject second one for now. 2573 */ 2574 if (regdom_changes(country_ie_request->alpha2)) 2575 return REG_REQ_IGNORE; 2576 return REG_REQ_ALREADY_SET; 2577 } 2578 2579 if (regdom_changes(country_ie_request->alpha2)) 2580 return REG_REQ_OK; 2581 return REG_REQ_ALREADY_SET; 2582 } 2583 2584 /** 2585 * reg_process_hint_country_ie - process regulatory requests from country IEs 2586 * @country_ie_request: a regulatory request from a country IE 2587 * 2588 * The wireless subsystem can use this function to process 2589 * a regulatory request issued by a country Information Element. 2590 * 2591 * Returns one of the different reg request treatment values. 2592 */ 2593 static enum reg_request_treatment 2594 reg_process_hint_country_ie(struct wiphy *wiphy, 2595 struct regulatory_request *country_ie_request) 2596 { 2597 enum reg_request_treatment treatment; 2598 2599 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2600 2601 switch (treatment) { 2602 case REG_REQ_OK: 2603 break; 2604 case REG_REQ_IGNORE: 2605 return REG_REQ_IGNORE; 2606 case REG_REQ_ALREADY_SET: 2607 reg_free_request(country_ie_request); 2608 return REG_REQ_ALREADY_SET; 2609 case REG_REQ_INTERSECT: 2610 /* 2611 * This doesn't happen yet, not sure we 2612 * ever want to support it for this case. 2613 */ 2614 WARN_ONCE(1, "Unexpected intersection for country elements"); 2615 return REG_REQ_IGNORE; 2616 } 2617 2618 country_ie_request->intersect = false; 2619 country_ie_request->processed = false; 2620 2621 if (reg_query_database(country_ie_request)) { 2622 reg_update_last_request(country_ie_request); 2623 return REG_REQ_OK; 2624 } 2625 2626 return REG_REQ_IGNORE; 2627 } 2628 2629 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2630 { 2631 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2632 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2633 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2634 bool dfs_domain_same; 2635 2636 rcu_read_lock(); 2637 2638 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2639 wiphy1_regd = rcu_dereference(wiphy1->regd); 2640 if (!wiphy1_regd) 2641 wiphy1_regd = cfg80211_regd; 2642 2643 wiphy2_regd = rcu_dereference(wiphy2->regd); 2644 if (!wiphy2_regd) 2645 wiphy2_regd = cfg80211_regd; 2646 2647 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2648 2649 rcu_read_unlock(); 2650 2651 return dfs_domain_same; 2652 } 2653 2654 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2655 struct ieee80211_channel *src_chan) 2656 { 2657 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2658 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2659 return; 2660 2661 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2662 src_chan->flags & IEEE80211_CHAN_DISABLED) 2663 return; 2664 2665 if (src_chan->center_freq == dst_chan->center_freq && 2666 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2667 dst_chan->dfs_state = src_chan->dfs_state; 2668 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2669 } 2670 } 2671 2672 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2673 struct wiphy *src_wiphy) 2674 { 2675 struct ieee80211_supported_band *src_sband, *dst_sband; 2676 struct ieee80211_channel *src_chan, *dst_chan; 2677 int i, j, band; 2678 2679 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2680 return; 2681 2682 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2683 dst_sband = dst_wiphy->bands[band]; 2684 src_sband = src_wiphy->bands[band]; 2685 if (!dst_sband || !src_sband) 2686 continue; 2687 2688 for (i = 0; i < dst_sband->n_channels; i++) { 2689 dst_chan = &dst_sband->channels[i]; 2690 for (j = 0; j < src_sband->n_channels; j++) { 2691 src_chan = &src_sband->channels[j]; 2692 reg_copy_dfs_chan_state(dst_chan, src_chan); 2693 } 2694 } 2695 } 2696 } 2697 2698 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2699 { 2700 struct cfg80211_registered_device *rdev; 2701 2702 ASSERT_RTNL(); 2703 2704 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2705 if (wiphy == &rdev->wiphy) 2706 continue; 2707 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2708 } 2709 } 2710 2711 /* This processes *all* regulatory hints */ 2712 static void reg_process_hint(struct regulatory_request *reg_request) 2713 { 2714 struct wiphy *wiphy = NULL; 2715 enum reg_request_treatment treatment; 2716 enum nl80211_reg_initiator initiator = reg_request->initiator; 2717 2718 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2719 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2720 2721 switch (initiator) { 2722 case NL80211_REGDOM_SET_BY_CORE: 2723 treatment = reg_process_hint_core(reg_request); 2724 break; 2725 case NL80211_REGDOM_SET_BY_USER: 2726 treatment = reg_process_hint_user(reg_request); 2727 break; 2728 case NL80211_REGDOM_SET_BY_DRIVER: 2729 if (!wiphy) 2730 goto out_free; 2731 treatment = reg_process_hint_driver(wiphy, reg_request); 2732 break; 2733 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2734 if (!wiphy) 2735 goto out_free; 2736 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2737 break; 2738 default: 2739 WARN(1, "invalid initiator %d\n", initiator); 2740 goto out_free; 2741 } 2742 2743 if (treatment == REG_REQ_IGNORE) 2744 goto out_free; 2745 2746 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 2747 "unexpected treatment value %d\n", treatment); 2748 2749 /* This is required so that the orig_* parameters are saved. 2750 * NOTE: treatment must be set for any case that reaches here! 2751 */ 2752 if (treatment == REG_REQ_ALREADY_SET && wiphy && 2753 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2754 wiphy_update_regulatory(wiphy, initiator); 2755 wiphy_all_share_dfs_chan_state(wiphy); 2756 reg_check_channels(); 2757 } 2758 2759 return; 2760 2761 out_free: 2762 reg_free_request(reg_request); 2763 } 2764 2765 static void notify_self_managed_wiphys(struct regulatory_request *request) 2766 { 2767 struct cfg80211_registered_device *rdev; 2768 struct wiphy *wiphy; 2769 2770 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2771 wiphy = &rdev->wiphy; 2772 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 2773 request->initiator == NL80211_REGDOM_SET_BY_USER) 2774 reg_call_notifier(wiphy, request); 2775 } 2776 } 2777 2778 /* 2779 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 2780 * Regulatory hints come on a first come first serve basis and we 2781 * must process each one atomically. 2782 */ 2783 static void reg_process_pending_hints(void) 2784 { 2785 struct regulatory_request *reg_request, *lr; 2786 2787 lr = get_last_request(); 2788 2789 /* When last_request->processed becomes true this will be rescheduled */ 2790 if (lr && !lr->processed) { 2791 reg_process_hint(lr); 2792 return; 2793 } 2794 2795 spin_lock(®_requests_lock); 2796 2797 if (list_empty(®_requests_list)) { 2798 spin_unlock(®_requests_lock); 2799 return; 2800 } 2801 2802 reg_request = list_first_entry(®_requests_list, 2803 struct regulatory_request, 2804 list); 2805 list_del_init(®_request->list); 2806 2807 spin_unlock(®_requests_lock); 2808 2809 notify_self_managed_wiphys(reg_request); 2810 2811 reg_process_hint(reg_request); 2812 2813 lr = get_last_request(); 2814 2815 spin_lock(®_requests_lock); 2816 if (!list_empty(®_requests_list) && lr && lr->processed) 2817 schedule_work(®_work); 2818 spin_unlock(®_requests_lock); 2819 } 2820 2821 /* Processes beacon hints -- this has nothing to do with country IEs */ 2822 static void reg_process_pending_beacon_hints(void) 2823 { 2824 struct cfg80211_registered_device *rdev; 2825 struct reg_beacon *pending_beacon, *tmp; 2826 2827 /* This goes through the _pending_ beacon list */ 2828 spin_lock_bh(®_pending_beacons_lock); 2829 2830 list_for_each_entry_safe(pending_beacon, tmp, 2831 ®_pending_beacons, list) { 2832 list_del_init(&pending_beacon->list); 2833 2834 /* Applies the beacon hint to current wiphys */ 2835 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2836 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 2837 2838 /* Remembers the beacon hint for new wiphys or reg changes */ 2839 list_add_tail(&pending_beacon->list, ®_beacon_list); 2840 } 2841 2842 spin_unlock_bh(®_pending_beacons_lock); 2843 } 2844 2845 static void reg_process_self_managed_hints(void) 2846 { 2847 struct cfg80211_registered_device *rdev; 2848 struct wiphy *wiphy; 2849 const struct ieee80211_regdomain *tmp; 2850 const struct ieee80211_regdomain *regd; 2851 enum nl80211_band band; 2852 struct regulatory_request request = {}; 2853 2854 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2855 wiphy = &rdev->wiphy; 2856 2857 spin_lock(®_requests_lock); 2858 regd = rdev->requested_regd; 2859 rdev->requested_regd = NULL; 2860 spin_unlock(®_requests_lock); 2861 2862 if (regd == NULL) 2863 continue; 2864 2865 tmp = get_wiphy_regdom(wiphy); 2866 rcu_assign_pointer(wiphy->regd, regd); 2867 rcu_free_regdom(tmp); 2868 2869 for (band = 0; band < NUM_NL80211_BANDS; band++) 2870 handle_band_custom(wiphy, wiphy->bands[band], regd); 2871 2872 reg_process_ht_flags(wiphy); 2873 2874 request.wiphy_idx = get_wiphy_idx(wiphy); 2875 request.alpha2[0] = regd->alpha2[0]; 2876 request.alpha2[1] = regd->alpha2[1]; 2877 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 2878 2879 nl80211_send_wiphy_reg_change_event(&request); 2880 } 2881 2882 reg_check_channels(); 2883 } 2884 2885 static void reg_todo(struct work_struct *work) 2886 { 2887 rtnl_lock(); 2888 reg_process_pending_hints(); 2889 reg_process_pending_beacon_hints(); 2890 reg_process_self_managed_hints(); 2891 rtnl_unlock(); 2892 } 2893 2894 static void queue_regulatory_request(struct regulatory_request *request) 2895 { 2896 request->alpha2[0] = toupper(request->alpha2[0]); 2897 request->alpha2[1] = toupper(request->alpha2[1]); 2898 2899 spin_lock(®_requests_lock); 2900 list_add_tail(&request->list, ®_requests_list); 2901 spin_unlock(®_requests_lock); 2902 2903 schedule_work(®_work); 2904 } 2905 2906 /* 2907 * Core regulatory hint -- happens during cfg80211_init() 2908 * and when we restore regulatory settings. 2909 */ 2910 static int regulatory_hint_core(const char *alpha2) 2911 { 2912 struct regulatory_request *request; 2913 2914 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2915 if (!request) 2916 return -ENOMEM; 2917 2918 request->alpha2[0] = alpha2[0]; 2919 request->alpha2[1] = alpha2[1]; 2920 request->initiator = NL80211_REGDOM_SET_BY_CORE; 2921 request->wiphy_idx = WIPHY_IDX_INVALID; 2922 2923 queue_regulatory_request(request); 2924 2925 return 0; 2926 } 2927 2928 /* User hints */ 2929 int regulatory_hint_user(const char *alpha2, 2930 enum nl80211_user_reg_hint_type user_reg_hint_type) 2931 { 2932 struct regulatory_request *request; 2933 2934 if (WARN_ON(!alpha2)) 2935 return -EINVAL; 2936 2937 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2938 if (!request) 2939 return -ENOMEM; 2940 2941 request->wiphy_idx = WIPHY_IDX_INVALID; 2942 request->alpha2[0] = alpha2[0]; 2943 request->alpha2[1] = alpha2[1]; 2944 request->initiator = NL80211_REGDOM_SET_BY_USER; 2945 request->user_reg_hint_type = user_reg_hint_type; 2946 2947 /* Allow calling CRDA again */ 2948 reset_crda_timeouts(); 2949 2950 queue_regulatory_request(request); 2951 2952 return 0; 2953 } 2954 2955 int regulatory_hint_indoor(bool is_indoor, u32 portid) 2956 { 2957 spin_lock(®_indoor_lock); 2958 2959 /* It is possible that more than one user space process is trying to 2960 * configure the indoor setting. To handle such cases, clear the indoor 2961 * setting in case that some process does not think that the device 2962 * is operating in an indoor environment. In addition, if a user space 2963 * process indicates that it is controlling the indoor setting, save its 2964 * portid, i.e., make it the owner. 2965 */ 2966 reg_is_indoor = is_indoor; 2967 if (reg_is_indoor) { 2968 if (!reg_is_indoor_portid) 2969 reg_is_indoor_portid = portid; 2970 } else { 2971 reg_is_indoor_portid = 0; 2972 } 2973 2974 spin_unlock(®_indoor_lock); 2975 2976 if (!is_indoor) 2977 reg_check_channels(); 2978 2979 return 0; 2980 } 2981 2982 void regulatory_netlink_notify(u32 portid) 2983 { 2984 spin_lock(®_indoor_lock); 2985 2986 if (reg_is_indoor_portid != portid) { 2987 spin_unlock(®_indoor_lock); 2988 return; 2989 } 2990 2991 reg_is_indoor = false; 2992 reg_is_indoor_portid = 0; 2993 2994 spin_unlock(®_indoor_lock); 2995 2996 reg_check_channels(); 2997 } 2998 2999 /* Driver hints */ 3000 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3001 { 3002 struct regulatory_request *request; 3003 3004 if (WARN_ON(!alpha2 || !wiphy)) 3005 return -EINVAL; 3006 3007 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3008 3009 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3010 if (!request) 3011 return -ENOMEM; 3012 3013 request->wiphy_idx = get_wiphy_idx(wiphy); 3014 3015 request->alpha2[0] = alpha2[0]; 3016 request->alpha2[1] = alpha2[1]; 3017 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3018 3019 /* Allow calling CRDA again */ 3020 reset_crda_timeouts(); 3021 3022 queue_regulatory_request(request); 3023 3024 return 0; 3025 } 3026 EXPORT_SYMBOL(regulatory_hint); 3027 3028 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3029 const u8 *country_ie, u8 country_ie_len) 3030 { 3031 char alpha2[2]; 3032 enum environment_cap env = ENVIRON_ANY; 3033 struct regulatory_request *request = NULL, *lr; 3034 3035 /* IE len must be evenly divisible by 2 */ 3036 if (country_ie_len & 0x01) 3037 return; 3038 3039 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3040 return; 3041 3042 request = kzalloc(sizeof(*request), GFP_KERNEL); 3043 if (!request) 3044 return; 3045 3046 alpha2[0] = country_ie[0]; 3047 alpha2[1] = country_ie[1]; 3048 3049 if (country_ie[2] == 'I') 3050 env = ENVIRON_INDOOR; 3051 else if (country_ie[2] == 'O') 3052 env = ENVIRON_OUTDOOR; 3053 3054 rcu_read_lock(); 3055 lr = get_last_request(); 3056 3057 if (unlikely(!lr)) 3058 goto out; 3059 3060 /* 3061 * We will run this only upon a successful connection on cfg80211. 3062 * We leave conflict resolution to the workqueue, where can hold 3063 * the RTNL. 3064 */ 3065 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3066 lr->wiphy_idx != WIPHY_IDX_INVALID) 3067 goto out; 3068 3069 request->wiphy_idx = get_wiphy_idx(wiphy); 3070 request->alpha2[0] = alpha2[0]; 3071 request->alpha2[1] = alpha2[1]; 3072 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3073 request->country_ie_env = env; 3074 3075 /* Allow calling CRDA again */ 3076 reset_crda_timeouts(); 3077 3078 queue_regulatory_request(request); 3079 request = NULL; 3080 out: 3081 kfree(request); 3082 rcu_read_unlock(); 3083 } 3084 3085 static void restore_alpha2(char *alpha2, bool reset_user) 3086 { 3087 /* indicates there is no alpha2 to consider for restoration */ 3088 alpha2[0] = '9'; 3089 alpha2[1] = '7'; 3090 3091 /* The user setting has precedence over the module parameter */ 3092 if (is_user_regdom_saved()) { 3093 /* Unless we're asked to ignore it and reset it */ 3094 if (reset_user) { 3095 pr_debug("Restoring regulatory settings including user preference\n"); 3096 user_alpha2[0] = '9'; 3097 user_alpha2[1] = '7'; 3098 3099 /* 3100 * If we're ignoring user settings, we still need to 3101 * check the module parameter to ensure we put things 3102 * back as they were for a full restore. 3103 */ 3104 if (!is_world_regdom(ieee80211_regdom)) { 3105 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3106 ieee80211_regdom[0], ieee80211_regdom[1]); 3107 alpha2[0] = ieee80211_regdom[0]; 3108 alpha2[1] = ieee80211_regdom[1]; 3109 } 3110 } else { 3111 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3112 user_alpha2[0], user_alpha2[1]); 3113 alpha2[0] = user_alpha2[0]; 3114 alpha2[1] = user_alpha2[1]; 3115 } 3116 } else if (!is_world_regdom(ieee80211_regdom)) { 3117 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3118 ieee80211_regdom[0], ieee80211_regdom[1]); 3119 alpha2[0] = ieee80211_regdom[0]; 3120 alpha2[1] = ieee80211_regdom[1]; 3121 } else 3122 pr_debug("Restoring regulatory settings\n"); 3123 } 3124 3125 static void restore_custom_reg_settings(struct wiphy *wiphy) 3126 { 3127 struct ieee80211_supported_band *sband; 3128 enum nl80211_band band; 3129 struct ieee80211_channel *chan; 3130 int i; 3131 3132 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3133 sband = wiphy->bands[band]; 3134 if (!sband) 3135 continue; 3136 for (i = 0; i < sband->n_channels; i++) { 3137 chan = &sband->channels[i]; 3138 chan->flags = chan->orig_flags; 3139 chan->max_antenna_gain = chan->orig_mag; 3140 chan->max_power = chan->orig_mpwr; 3141 chan->beacon_found = false; 3142 } 3143 } 3144 } 3145 3146 /* 3147 * Restoring regulatory settings involves ingoring any 3148 * possibly stale country IE information and user regulatory 3149 * settings if so desired, this includes any beacon hints 3150 * learned as we could have traveled outside to another country 3151 * after disconnection. To restore regulatory settings we do 3152 * exactly what we did at bootup: 3153 * 3154 * - send a core regulatory hint 3155 * - send a user regulatory hint if applicable 3156 * 3157 * Device drivers that send a regulatory hint for a specific country 3158 * keep their own regulatory domain on wiphy->regd so that does does 3159 * not need to be remembered. 3160 */ 3161 static void restore_regulatory_settings(bool reset_user, bool cached) 3162 { 3163 char alpha2[2]; 3164 char world_alpha2[2]; 3165 struct reg_beacon *reg_beacon, *btmp; 3166 LIST_HEAD(tmp_reg_req_list); 3167 struct cfg80211_registered_device *rdev; 3168 3169 ASSERT_RTNL(); 3170 3171 /* 3172 * Clear the indoor setting in case that it is not controlled by user 3173 * space, as otherwise there is no guarantee that the device is still 3174 * operating in an indoor environment. 3175 */ 3176 spin_lock(®_indoor_lock); 3177 if (reg_is_indoor && !reg_is_indoor_portid) { 3178 reg_is_indoor = false; 3179 reg_check_channels(); 3180 } 3181 spin_unlock(®_indoor_lock); 3182 3183 reset_regdomains(true, &world_regdom); 3184 restore_alpha2(alpha2, reset_user); 3185 3186 /* 3187 * If there's any pending requests we simply 3188 * stash them to a temporary pending queue and 3189 * add then after we've restored regulatory 3190 * settings. 3191 */ 3192 spin_lock(®_requests_lock); 3193 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3194 spin_unlock(®_requests_lock); 3195 3196 /* Clear beacon hints */ 3197 spin_lock_bh(®_pending_beacons_lock); 3198 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3199 list_del(®_beacon->list); 3200 kfree(reg_beacon); 3201 } 3202 spin_unlock_bh(®_pending_beacons_lock); 3203 3204 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3205 list_del(®_beacon->list); 3206 kfree(reg_beacon); 3207 } 3208 3209 /* First restore to the basic regulatory settings */ 3210 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3211 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3212 3213 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3214 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3215 continue; 3216 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3217 restore_custom_reg_settings(&rdev->wiphy); 3218 } 3219 3220 if (cached && (!is_an_alpha2(alpha2) || 3221 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3222 reset_regdomains(false, cfg80211_world_regdom); 3223 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3224 print_regdomain(get_cfg80211_regdom()); 3225 nl80211_send_reg_change_event(&core_request_world); 3226 reg_set_request_processed(); 3227 3228 if (is_an_alpha2(alpha2) && 3229 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3230 struct regulatory_request *ureq; 3231 3232 spin_lock(®_requests_lock); 3233 ureq = list_last_entry(®_requests_list, 3234 struct regulatory_request, 3235 list); 3236 list_del(&ureq->list); 3237 spin_unlock(®_requests_lock); 3238 3239 notify_self_managed_wiphys(ureq); 3240 reg_update_last_request(ureq); 3241 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3242 REGD_SOURCE_CACHED); 3243 } 3244 } else { 3245 regulatory_hint_core(world_alpha2); 3246 3247 /* 3248 * This restores the ieee80211_regdom module parameter 3249 * preference or the last user requested regulatory 3250 * settings, user regulatory settings takes precedence. 3251 */ 3252 if (is_an_alpha2(alpha2)) 3253 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3254 } 3255 3256 spin_lock(®_requests_lock); 3257 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3258 spin_unlock(®_requests_lock); 3259 3260 pr_debug("Kicking the queue\n"); 3261 3262 schedule_work(®_work); 3263 } 3264 3265 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3266 { 3267 struct cfg80211_registered_device *rdev; 3268 struct wireless_dev *wdev; 3269 3270 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3271 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3272 wdev_lock(wdev); 3273 if (!(wdev->wiphy->regulatory_flags & flag)) { 3274 wdev_unlock(wdev); 3275 return false; 3276 } 3277 wdev_unlock(wdev); 3278 } 3279 } 3280 3281 return true; 3282 } 3283 3284 void regulatory_hint_disconnect(void) 3285 { 3286 /* Restore of regulatory settings is not required when wiphy(s) 3287 * ignore IE from connected access point but clearance of beacon hints 3288 * is required when wiphy(s) supports beacon hints. 3289 */ 3290 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3291 struct reg_beacon *reg_beacon, *btmp; 3292 3293 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3294 return; 3295 3296 spin_lock_bh(®_pending_beacons_lock); 3297 list_for_each_entry_safe(reg_beacon, btmp, 3298 ®_pending_beacons, list) { 3299 list_del(®_beacon->list); 3300 kfree(reg_beacon); 3301 } 3302 spin_unlock_bh(®_pending_beacons_lock); 3303 3304 list_for_each_entry_safe(reg_beacon, btmp, 3305 ®_beacon_list, list) { 3306 list_del(®_beacon->list); 3307 kfree(reg_beacon); 3308 } 3309 3310 return; 3311 } 3312 3313 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3314 restore_regulatory_settings(false, true); 3315 } 3316 3317 static bool freq_is_chan_12_13_14(u32 freq) 3318 { 3319 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3320 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3321 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3322 return true; 3323 return false; 3324 } 3325 3326 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3327 { 3328 struct reg_beacon *pending_beacon; 3329 3330 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3331 if (beacon_chan->center_freq == 3332 pending_beacon->chan.center_freq) 3333 return true; 3334 return false; 3335 } 3336 3337 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3338 struct ieee80211_channel *beacon_chan, 3339 gfp_t gfp) 3340 { 3341 struct reg_beacon *reg_beacon; 3342 bool processing; 3343 3344 if (beacon_chan->beacon_found || 3345 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3346 (beacon_chan->band == NL80211_BAND_2GHZ && 3347 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3348 return 0; 3349 3350 spin_lock_bh(®_pending_beacons_lock); 3351 processing = pending_reg_beacon(beacon_chan); 3352 spin_unlock_bh(®_pending_beacons_lock); 3353 3354 if (processing) 3355 return 0; 3356 3357 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3358 if (!reg_beacon) 3359 return -ENOMEM; 3360 3361 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 3362 beacon_chan->center_freq, 3363 ieee80211_frequency_to_channel(beacon_chan->center_freq), 3364 wiphy_name(wiphy)); 3365 3366 memcpy(®_beacon->chan, beacon_chan, 3367 sizeof(struct ieee80211_channel)); 3368 3369 /* 3370 * Since we can be called from BH or and non-BH context 3371 * we must use spin_lock_bh() 3372 */ 3373 spin_lock_bh(®_pending_beacons_lock); 3374 list_add_tail(®_beacon->list, ®_pending_beacons); 3375 spin_unlock_bh(®_pending_beacons_lock); 3376 3377 schedule_work(®_work); 3378 3379 return 0; 3380 } 3381 3382 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3383 { 3384 unsigned int i; 3385 const struct ieee80211_reg_rule *reg_rule = NULL; 3386 const struct ieee80211_freq_range *freq_range = NULL; 3387 const struct ieee80211_power_rule *power_rule = NULL; 3388 char bw[32], cac_time[32]; 3389 3390 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3391 3392 for (i = 0; i < rd->n_reg_rules; i++) { 3393 reg_rule = &rd->reg_rules[i]; 3394 freq_range = ®_rule->freq_range; 3395 power_rule = ®_rule->power_rule; 3396 3397 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3398 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 3399 freq_range->max_bandwidth_khz, 3400 reg_get_max_bandwidth(rd, reg_rule)); 3401 else 3402 snprintf(bw, sizeof(bw), "%d KHz", 3403 freq_range->max_bandwidth_khz); 3404 3405 if (reg_rule->flags & NL80211_RRF_DFS) 3406 scnprintf(cac_time, sizeof(cac_time), "%u s", 3407 reg_rule->dfs_cac_ms/1000); 3408 else 3409 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3410 3411 3412 /* 3413 * There may not be documentation for max antenna gain 3414 * in certain regions 3415 */ 3416 if (power_rule->max_antenna_gain) 3417 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3418 freq_range->start_freq_khz, 3419 freq_range->end_freq_khz, 3420 bw, 3421 power_rule->max_antenna_gain, 3422 power_rule->max_eirp, 3423 cac_time); 3424 else 3425 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3426 freq_range->start_freq_khz, 3427 freq_range->end_freq_khz, 3428 bw, 3429 power_rule->max_eirp, 3430 cac_time); 3431 } 3432 } 3433 3434 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3435 { 3436 switch (dfs_region) { 3437 case NL80211_DFS_UNSET: 3438 case NL80211_DFS_FCC: 3439 case NL80211_DFS_ETSI: 3440 case NL80211_DFS_JP: 3441 return true; 3442 default: 3443 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3444 return false; 3445 } 3446 } 3447 3448 static void print_regdomain(const struct ieee80211_regdomain *rd) 3449 { 3450 struct regulatory_request *lr = get_last_request(); 3451 3452 if (is_intersected_alpha2(rd->alpha2)) { 3453 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3454 struct cfg80211_registered_device *rdev; 3455 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3456 if (rdev) { 3457 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3458 rdev->country_ie_alpha2[0], 3459 rdev->country_ie_alpha2[1]); 3460 } else 3461 pr_debug("Current regulatory domain intersected:\n"); 3462 } else 3463 pr_debug("Current regulatory domain intersected:\n"); 3464 } else if (is_world_regdom(rd->alpha2)) { 3465 pr_debug("World regulatory domain updated:\n"); 3466 } else { 3467 if (is_unknown_alpha2(rd->alpha2)) 3468 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3469 else { 3470 if (reg_request_cell_base(lr)) 3471 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3472 rd->alpha2[0], rd->alpha2[1]); 3473 else 3474 pr_debug("Regulatory domain changed to country: %c%c\n", 3475 rd->alpha2[0], rd->alpha2[1]); 3476 } 3477 } 3478 3479 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3480 print_rd_rules(rd); 3481 } 3482 3483 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3484 { 3485 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3486 print_rd_rules(rd); 3487 } 3488 3489 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3490 { 3491 if (!is_world_regdom(rd->alpha2)) 3492 return -EINVAL; 3493 update_world_regdomain(rd); 3494 return 0; 3495 } 3496 3497 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3498 struct regulatory_request *user_request) 3499 { 3500 const struct ieee80211_regdomain *intersected_rd = NULL; 3501 3502 if (!regdom_changes(rd->alpha2)) 3503 return -EALREADY; 3504 3505 if (!is_valid_rd(rd)) { 3506 pr_err("Invalid regulatory domain detected: %c%c\n", 3507 rd->alpha2[0], rd->alpha2[1]); 3508 print_regdomain_info(rd); 3509 return -EINVAL; 3510 } 3511 3512 if (!user_request->intersect) { 3513 reset_regdomains(false, rd); 3514 return 0; 3515 } 3516 3517 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3518 if (!intersected_rd) 3519 return -EINVAL; 3520 3521 kfree(rd); 3522 rd = NULL; 3523 reset_regdomains(false, intersected_rd); 3524 3525 return 0; 3526 } 3527 3528 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3529 struct regulatory_request *driver_request) 3530 { 3531 const struct ieee80211_regdomain *regd; 3532 const struct ieee80211_regdomain *intersected_rd = NULL; 3533 const struct ieee80211_regdomain *tmp; 3534 struct wiphy *request_wiphy; 3535 3536 if (is_world_regdom(rd->alpha2)) 3537 return -EINVAL; 3538 3539 if (!regdom_changes(rd->alpha2)) 3540 return -EALREADY; 3541 3542 if (!is_valid_rd(rd)) { 3543 pr_err("Invalid regulatory domain detected: %c%c\n", 3544 rd->alpha2[0], rd->alpha2[1]); 3545 print_regdomain_info(rd); 3546 return -EINVAL; 3547 } 3548 3549 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3550 if (!request_wiphy) 3551 return -ENODEV; 3552 3553 if (!driver_request->intersect) { 3554 if (request_wiphy->regd) 3555 return -EALREADY; 3556 3557 regd = reg_copy_regd(rd); 3558 if (IS_ERR(regd)) 3559 return PTR_ERR(regd); 3560 3561 rcu_assign_pointer(request_wiphy->regd, regd); 3562 reset_regdomains(false, rd); 3563 return 0; 3564 } 3565 3566 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3567 if (!intersected_rd) 3568 return -EINVAL; 3569 3570 /* 3571 * We can trash what CRDA provided now. 3572 * However if a driver requested this specific regulatory 3573 * domain we keep it for its private use 3574 */ 3575 tmp = get_wiphy_regdom(request_wiphy); 3576 rcu_assign_pointer(request_wiphy->regd, rd); 3577 rcu_free_regdom(tmp); 3578 3579 rd = NULL; 3580 3581 reset_regdomains(false, intersected_rd); 3582 3583 return 0; 3584 } 3585 3586 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3587 struct regulatory_request *country_ie_request) 3588 { 3589 struct wiphy *request_wiphy; 3590 3591 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3592 !is_unknown_alpha2(rd->alpha2)) 3593 return -EINVAL; 3594 3595 /* 3596 * Lets only bother proceeding on the same alpha2 if the current 3597 * rd is non static (it means CRDA was present and was used last) 3598 * and the pending request came in from a country IE 3599 */ 3600 3601 if (!is_valid_rd(rd)) { 3602 pr_err("Invalid regulatory domain detected: %c%c\n", 3603 rd->alpha2[0], rd->alpha2[1]); 3604 print_regdomain_info(rd); 3605 return -EINVAL; 3606 } 3607 3608 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3609 if (!request_wiphy) 3610 return -ENODEV; 3611 3612 if (country_ie_request->intersect) 3613 return -EINVAL; 3614 3615 reset_regdomains(false, rd); 3616 return 0; 3617 } 3618 3619 /* 3620 * Use this call to set the current regulatory domain. Conflicts with 3621 * multiple drivers can be ironed out later. Caller must've already 3622 * kmalloc'd the rd structure. 3623 */ 3624 int set_regdom(const struct ieee80211_regdomain *rd, 3625 enum ieee80211_regd_source regd_src) 3626 { 3627 struct regulatory_request *lr; 3628 bool user_reset = false; 3629 int r; 3630 3631 if (IS_ERR_OR_NULL(rd)) 3632 return -ENODATA; 3633 3634 if (!reg_is_valid_request(rd->alpha2)) { 3635 kfree(rd); 3636 return -EINVAL; 3637 } 3638 3639 if (regd_src == REGD_SOURCE_CRDA) 3640 reset_crda_timeouts(); 3641 3642 lr = get_last_request(); 3643 3644 /* Note that this doesn't update the wiphys, this is done below */ 3645 switch (lr->initiator) { 3646 case NL80211_REGDOM_SET_BY_CORE: 3647 r = reg_set_rd_core(rd); 3648 break; 3649 case NL80211_REGDOM_SET_BY_USER: 3650 cfg80211_save_user_regdom(rd); 3651 r = reg_set_rd_user(rd, lr); 3652 user_reset = true; 3653 break; 3654 case NL80211_REGDOM_SET_BY_DRIVER: 3655 r = reg_set_rd_driver(rd, lr); 3656 break; 3657 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3658 r = reg_set_rd_country_ie(rd, lr); 3659 break; 3660 default: 3661 WARN(1, "invalid initiator %d\n", lr->initiator); 3662 kfree(rd); 3663 return -EINVAL; 3664 } 3665 3666 if (r) { 3667 switch (r) { 3668 case -EALREADY: 3669 reg_set_request_processed(); 3670 break; 3671 default: 3672 /* Back to world regulatory in case of errors */ 3673 restore_regulatory_settings(user_reset, false); 3674 } 3675 3676 kfree(rd); 3677 return r; 3678 } 3679 3680 /* This would make this whole thing pointless */ 3681 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3682 return -EINVAL; 3683 3684 /* update all wiphys now with the new established regulatory domain */ 3685 update_all_wiphy_regulatory(lr->initiator); 3686 3687 print_regdomain(get_cfg80211_regdom()); 3688 3689 nl80211_send_reg_change_event(lr); 3690 3691 reg_set_request_processed(); 3692 3693 return 0; 3694 } 3695 3696 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 3697 struct ieee80211_regdomain *rd) 3698 { 3699 const struct ieee80211_regdomain *regd; 3700 const struct ieee80211_regdomain *prev_regd; 3701 struct cfg80211_registered_device *rdev; 3702 3703 if (WARN_ON(!wiphy || !rd)) 3704 return -EINVAL; 3705 3706 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 3707 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 3708 return -EPERM; 3709 3710 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { 3711 print_regdomain_info(rd); 3712 return -EINVAL; 3713 } 3714 3715 regd = reg_copy_regd(rd); 3716 if (IS_ERR(regd)) 3717 return PTR_ERR(regd); 3718 3719 rdev = wiphy_to_rdev(wiphy); 3720 3721 spin_lock(®_requests_lock); 3722 prev_regd = rdev->requested_regd; 3723 rdev->requested_regd = regd; 3724 spin_unlock(®_requests_lock); 3725 3726 kfree(prev_regd); 3727 return 0; 3728 } 3729 3730 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 3731 struct ieee80211_regdomain *rd) 3732 { 3733 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 3734 3735 if (ret) 3736 return ret; 3737 3738 schedule_work(®_work); 3739 return 0; 3740 } 3741 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 3742 3743 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, 3744 struct ieee80211_regdomain *rd) 3745 { 3746 int ret; 3747 3748 ASSERT_RTNL(); 3749 3750 ret = __regulatory_set_wiphy_regd(wiphy, rd); 3751 if (ret) 3752 return ret; 3753 3754 /* process the request immediately */ 3755 reg_process_self_managed_hints(); 3756 return 0; 3757 } 3758 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); 3759 3760 void wiphy_regulatory_register(struct wiphy *wiphy) 3761 { 3762 struct regulatory_request *lr = get_last_request(); 3763 3764 /* self-managed devices ignore beacon hints and country IE */ 3765 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 3766 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 3767 REGULATORY_COUNTRY_IE_IGNORE; 3768 3769 /* 3770 * The last request may have been received before this 3771 * registration call. Call the driver notifier if 3772 * initiator is USER. 3773 */ 3774 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 3775 reg_call_notifier(wiphy, lr); 3776 } 3777 3778 if (!reg_dev_ignore_cell_hint(wiphy)) 3779 reg_num_devs_support_basehint++; 3780 3781 wiphy_update_regulatory(wiphy, lr->initiator); 3782 wiphy_all_share_dfs_chan_state(wiphy); 3783 } 3784 3785 void wiphy_regulatory_deregister(struct wiphy *wiphy) 3786 { 3787 struct wiphy *request_wiphy = NULL; 3788 struct regulatory_request *lr; 3789 3790 lr = get_last_request(); 3791 3792 if (!reg_dev_ignore_cell_hint(wiphy)) 3793 reg_num_devs_support_basehint--; 3794 3795 rcu_free_regdom(get_wiphy_regdom(wiphy)); 3796 RCU_INIT_POINTER(wiphy->regd, NULL); 3797 3798 if (lr) 3799 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 3800 3801 if (!request_wiphy || request_wiphy != wiphy) 3802 return; 3803 3804 lr->wiphy_idx = WIPHY_IDX_INVALID; 3805 lr->country_ie_env = ENVIRON_ANY; 3806 } 3807 3808 /* 3809 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for 3810 * UNII band definitions 3811 */ 3812 int cfg80211_get_unii(int freq) 3813 { 3814 /* UNII-1 */ 3815 if (freq >= 5150 && freq <= 5250) 3816 return 0; 3817 3818 /* UNII-2A */ 3819 if (freq > 5250 && freq <= 5350) 3820 return 1; 3821 3822 /* UNII-2B */ 3823 if (freq > 5350 && freq <= 5470) 3824 return 2; 3825 3826 /* UNII-2C */ 3827 if (freq > 5470 && freq <= 5725) 3828 return 3; 3829 3830 /* UNII-3 */ 3831 if (freq > 5725 && freq <= 5825) 3832 return 4; 3833 3834 return -EINVAL; 3835 } 3836 3837 bool regulatory_indoor_allowed(void) 3838 { 3839 return reg_is_indoor; 3840 } 3841 3842 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 3843 { 3844 const struct ieee80211_regdomain *regd = NULL; 3845 const struct ieee80211_regdomain *wiphy_regd = NULL; 3846 bool pre_cac_allowed = false; 3847 3848 rcu_read_lock(); 3849 3850 regd = rcu_dereference(cfg80211_regdomain); 3851 wiphy_regd = rcu_dereference(wiphy->regd); 3852 if (!wiphy_regd) { 3853 if (regd->dfs_region == NL80211_DFS_ETSI) 3854 pre_cac_allowed = true; 3855 3856 rcu_read_unlock(); 3857 3858 return pre_cac_allowed; 3859 } 3860 3861 if (regd->dfs_region == wiphy_regd->dfs_region && 3862 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 3863 pre_cac_allowed = true; 3864 3865 rcu_read_unlock(); 3866 3867 return pre_cac_allowed; 3868 } 3869 3870 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 3871 struct cfg80211_chan_def *chandef, 3872 enum nl80211_dfs_state dfs_state, 3873 enum nl80211_radar_event event) 3874 { 3875 struct cfg80211_registered_device *rdev; 3876 3877 ASSERT_RTNL(); 3878 3879 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 3880 return; 3881 3882 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3883 if (wiphy == &rdev->wiphy) 3884 continue; 3885 3886 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 3887 continue; 3888 3889 if (!ieee80211_get_channel(&rdev->wiphy, 3890 chandef->chan->center_freq)) 3891 continue; 3892 3893 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 3894 3895 if (event == NL80211_RADAR_DETECTED || 3896 event == NL80211_RADAR_CAC_FINISHED) 3897 cfg80211_sched_dfs_chan_update(rdev); 3898 3899 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 3900 } 3901 } 3902 3903 static int __init regulatory_init_db(void) 3904 { 3905 int err; 3906 3907 /* 3908 * It's possible that - due to other bugs/issues - cfg80211 3909 * never called regulatory_init() below, or that it failed; 3910 * in that case, don't try to do any further work here as 3911 * it's doomed to lead to crashes. 3912 */ 3913 if (IS_ERR_OR_NULL(reg_pdev)) 3914 return -EINVAL; 3915 3916 err = load_builtin_regdb_keys(); 3917 if (err) 3918 return err; 3919 3920 /* We always try to get an update for the static regdomain */ 3921 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 3922 if (err) { 3923 if (err == -ENOMEM) { 3924 platform_device_unregister(reg_pdev); 3925 return err; 3926 } 3927 /* 3928 * N.B. kobject_uevent_env() can fail mainly for when we're out 3929 * memory which is handled and propagated appropriately above 3930 * but it can also fail during a netlink_broadcast() or during 3931 * early boot for call_usermodehelper(). For now treat these 3932 * errors as non-fatal. 3933 */ 3934 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 3935 } 3936 3937 /* 3938 * Finally, if the user set the module parameter treat it 3939 * as a user hint. 3940 */ 3941 if (!is_world_regdom(ieee80211_regdom)) 3942 regulatory_hint_user(ieee80211_regdom, 3943 NL80211_USER_REG_HINT_USER); 3944 3945 return 0; 3946 } 3947 #ifndef MODULE 3948 late_initcall(regulatory_init_db); 3949 #endif 3950 3951 int __init regulatory_init(void) 3952 { 3953 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 3954 if (IS_ERR(reg_pdev)) 3955 return PTR_ERR(reg_pdev); 3956 3957 spin_lock_init(®_requests_lock); 3958 spin_lock_init(®_pending_beacons_lock); 3959 spin_lock_init(®_indoor_lock); 3960 3961 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 3962 3963 user_alpha2[0] = '9'; 3964 user_alpha2[1] = '7'; 3965 3966 #ifdef MODULE 3967 return regulatory_init_db(); 3968 #else 3969 return 0; 3970 #endif 3971 } 3972 3973 void regulatory_exit(void) 3974 { 3975 struct regulatory_request *reg_request, *tmp; 3976 struct reg_beacon *reg_beacon, *btmp; 3977 3978 cancel_work_sync(®_work); 3979 cancel_crda_timeout_sync(); 3980 cancel_delayed_work_sync(®_check_chans); 3981 3982 /* Lock to suppress warnings */ 3983 rtnl_lock(); 3984 reset_regdomains(true, NULL); 3985 rtnl_unlock(); 3986 3987 dev_set_uevent_suppress(®_pdev->dev, true); 3988 3989 platform_device_unregister(reg_pdev); 3990 3991 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3992 list_del(®_beacon->list); 3993 kfree(reg_beacon); 3994 } 3995 3996 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3997 list_del(®_beacon->list); 3998 kfree(reg_beacon); 3999 } 4000 4001 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4002 list_del(®_request->list); 4003 kfree(reg_request); 4004 } 4005 4006 if (!IS_ERR_OR_NULL(regdb)) 4007 kfree(regdb); 4008 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4009 kfree(cfg80211_user_regdom); 4010 4011 free_regdb_keyring(); 4012 } 4013