xref: /openbmc/linux/net/wireless/reg.c (revision a8fe58ce)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 
22 /**
23  * DOC: Wireless regulatory infrastructure
24  *
25  * The usual implementation is for a driver to read a device EEPROM to
26  * determine which regulatory domain it should be operating under, then
27  * looking up the allowable channels in a driver-local table and finally
28  * registering those channels in the wiphy structure.
29  *
30  * Another set of compliance enforcement is for drivers to use their
31  * own compliance limits which can be stored on the EEPROM. The host
32  * driver or firmware may ensure these are used.
33  *
34  * In addition to all this we provide an extra layer of regulatory
35  * conformance. For drivers which do not have any regulatory
36  * information CRDA provides the complete regulatory solution.
37  * For others it provides a community effort on further restrictions
38  * to enhance compliance.
39  *
40  * Note: When number of rules --> infinity we will not be able to
41  * index on alpha2 any more, instead we'll probably have to
42  * rely on some SHA1 checksum of the regdomain for example.
43  *
44  */
45 
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62 
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...)			\
65 	printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69 
70 /*
71  * Grace period we give before making sure all current interfaces reside on
72  * channels allowed by the current regulatory domain.
73  */
74 #define REG_ENFORCE_GRACE_MS 60000
75 
76 /**
77  * enum reg_request_treatment - regulatory request treatment
78  *
79  * @REG_REQ_OK: continue processing the regulatory request
80  * @REG_REQ_IGNORE: ignore the regulatory request
81  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82  *	be intersected with the current one.
83  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84  *	regulatory settings, and no further processing is required.
85  */
86 enum reg_request_treatment {
87 	REG_REQ_OK,
88 	REG_REQ_IGNORE,
89 	REG_REQ_INTERSECT,
90 	REG_REQ_ALREADY_SET,
91 };
92 
93 static struct regulatory_request core_request_world = {
94 	.initiator = NL80211_REGDOM_SET_BY_CORE,
95 	.alpha2[0] = '0',
96 	.alpha2[1] = '0',
97 	.intersect = false,
98 	.processed = true,
99 	.country_ie_env = ENVIRON_ANY,
100 };
101 
102 /*
103  * Receipt of information from last regulatory request,
104  * protected by RTNL (and can be accessed with RCU protection)
105  */
106 static struct regulatory_request __rcu *last_request =
107 	(void __force __rcu *)&core_request_world;
108 
109 /* To trigger userspace events */
110 static struct platform_device *reg_pdev;
111 
112 /*
113  * Central wireless core regulatory domains, we only need two,
114  * the current one and a world regulatory domain in case we have no
115  * information to give us an alpha2.
116  * (protected by RTNL, can be read under RCU)
117  */
118 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
119 
120 /*
121  * Number of devices that registered to the core
122  * that support cellular base station regulatory hints
123  * (protected by RTNL)
124  */
125 static int reg_num_devs_support_basehint;
126 
127 /*
128  * State variable indicating if the platform on which the devices
129  * are attached is operating in an indoor environment. The state variable
130  * is relevant for all registered devices.
131  */
132 static bool reg_is_indoor;
133 static spinlock_t reg_indoor_lock;
134 
135 /* Used to track the userspace process controlling the indoor setting */
136 static u32 reg_is_indoor_portid;
137 
138 static void restore_regulatory_settings(bool reset_user);
139 
140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142 	return rtnl_dereference(cfg80211_regdomain);
143 }
144 
145 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
146 {
147 	return rtnl_dereference(wiphy->regd);
148 }
149 
150 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
151 {
152 	switch (dfs_region) {
153 	case NL80211_DFS_UNSET:
154 		return "unset";
155 	case NL80211_DFS_FCC:
156 		return "FCC";
157 	case NL80211_DFS_ETSI:
158 		return "ETSI";
159 	case NL80211_DFS_JP:
160 		return "JP";
161 	}
162 	return "Unknown";
163 }
164 
165 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
166 {
167 	const struct ieee80211_regdomain *regd = NULL;
168 	const struct ieee80211_regdomain *wiphy_regd = NULL;
169 
170 	regd = get_cfg80211_regdom();
171 	if (!wiphy)
172 		goto out;
173 
174 	wiphy_regd = get_wiphy_regdom(wiphy);
175 	if (!wiphy_regd)
176 		goto out;
177 
178 	if (wiphy_regd->dfs_region == regd->dfs_region)
179 		goto out;
180 
181 	REG_DBG_PRINT("%s: device specific dfs_region "
182 		      "(%s) disagrees with cfg80211's "
183 		      "central dfs_region (%s)\n",
184 		      dev_name(&wiphy->dev),
185 		      reg_dfs_region_str(wiphy_regd->dfs_region),
186 		      reg_dfs_region_str(regd->dfs_region));
187 
188 out:
189 	return regd->dfs_region;
190 }
191 
192 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
193 {
194 	if (!r)
195 		return;
196 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
197 }
198 
199 static struct regulatory_request *get_last_request(void)
200 {
201 	return rcu_dereference_rtnl(last_request);
202 }
203 
204 /* Used to queue up regulatory hints */
205 static LIST_HEAD(reg_requests_list);
206 static spinlock_t reg_requests_lock;
207 
208 /* Used to queue up beacon hints for review */
209 static LIST_HEAD(reg_pending_beacons);
210 static spinlock_t reg_pending_beacons_lock;
211 
212 /* Used to keep track of processed beacon hints */
213 static LIST_HEAD(reg_beacon_list);
214 
215 struct reg_beacon {
216 	struct list_head list;
217 	struct ieee80211_channel chan;
218 };
219 
220 static void reg_check_chans_work(struct work_struct *work);
221 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
222 
223 static void reg_todo(struct work_struct *work);
224 static DECLARE_WORK(reg_work, reg_todo);
225 
226 /* We keep a static world regulatory domain in case of the absence of CRDA */
227 static const struct ieee80211_regdomain world_regdom = {
228 	.n_reg_rules = 8,
229 	.alpha2 =  "00",
230 	.reg_rules = {
231 		/* IEEE 802.11b/g, channels 1..11 */
232 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
233 		/* IEEE 802.11b/g, channels 12..13. */
234 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
235 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
236 		/* IEEE 802.11 channel 14 - Only JP enables
237 		 * this and for 802.11b only */
238 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
239 			NL80211_RRF_NO_IR |
240 			NL80211_RRF_NO_OFDM),
241 		/* IEEE 802.11a, channel 36..48 */
242 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
243                         NL80211_RRF_NO_IR |
244                         NL80211_RRF_AUTO_BW),
245 
246 		/* IEEE 802.11a, channel 52..64 - DFS required */
247 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
248 			NL80211_RRF_NO_IR |
249 			NL80211_RRF_AUTO_BW |
250 			NL80211_RRF_DFS),
251 
252 		/* IEEE 802.11a, channel 100..144 - DFS required */
253 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
254 			NL80211_RRF_NO_IR |
255 			NL80211_RRF_DFS),
256 
257 		/* IEEE 802.11a, channel 149..165 */
258 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
259 			NL80211_RRF_NO_IR),
260 
261 		/* IEEE 802.11ad (60GHz), channels 1..3 */
262 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
263 	}
264 };
265 
266 /* protected by RTNL */
267 static const struct ieee80211_regdomain *cfg80211_world_regdom =
268 	&world_regdom;
269 
270 static char *ieee80211_regdom = "00";
271 static char user_alpha2[2];
272 
273 module_param(ieee80211_regdom, charp, 0444);
274 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
275 
276 static void reg_free_request(struct regulatory_request *request)
277 {
278 	if (request == &core_request_world)
279 		return;
280 
281 	if (request != get_last_request())
282 		kfree(request);
283 }
284 
285 static void reg_free_last_request(void)
286 {
287 	struct regulatory_request *lr = get_last_request();
288 
289 	if (lr != &core_request_world && lr)
290 		kfree_rcu(lr, rcu_head);
291 }
292 
293 static void reg_update_last_request(struct regulatory_request *request)
294 {
295 	struct regulatory_request *lr;
296 
297 	lr = get_last_request();
298 	if (lr == request)
299 		return;
300 
301 	reg_free_last_request();
302 	rcu_assign_pointer(last_request, request);
303 }
304 
305 static void reset_regdomains(bool full_reset,
306 			     const struct ieee80211_regdomain *new_regdom)
307 {
308 	const struct ieee80211_regdomain *r;
309 
310 	ASSERT_RTNL();
311 
312 	r = get_cfg80211_regdom();
313 
314 	/* avoid freeing static information or freeing something twice */
315 	if (r == cfg80211_world_regdom)
316 		r = NULL;
317 	if (cfg80211_world_regdom == &world_regdom)
318 		cfg80211_world_regdom = NULL;
319 	if (r == &world_regdom)
320 		r = NULL;
321 
322 	rcu_free_regdom(r);
323 	rcu_free_regdom(cfg80211_world_regdom);
324 
325 	cfg80211_world_regdom = &world_regdom;
326 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
327 
328 	if (!full_reset)
329 		return;
330 
331 	reg_update_last_request(&core_request_world);
332 }
333 
334 /*
335  * Dynamic world regulatory domain requested by the wireless
336  * core upon initialization
337  */
338 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
339 {
340 	struct regulatory_request *lr;
341 
342 	lr = get_last_request();
343 
344 	WARN_ON(!lr);
345 
346 	reset_regdomains(false, rd);
347 
348 	cfg80211_world_regdom = rd;
349 }
350 
351 bool is_world_regdom(const char *alpha2)
352 {
353 	if (!alpha2)
354 		return false;
355 	return alpha2[0] == '0' && alpha2[1] == '0';
356 }
357 
358 static bool is_alpha2_set(const char *alpha2)
359 {
360 	if (!alpha2)
361 		return false;
362 	return alpha2[0] && alpha2[1];
363 }
364 
365 static bool is_unknown_alpha2(const char *alpha2)
366 {
367 	if (!alpha2)
368 		return false;
369 	/*
370 	 * Special case where regulatory domain was built by driver
371 	 * but a specific alpha2 cannot be determined
372 	 */
373 	return alpha2[0] == '9' && alpha2[1] == '9';
374 }
375 
376 static bool is_intersected_alpha2(const char *alpha2)
377 {
378 	if (!alpha2)
379 		return false;
380 	/*
381 	 * Special case where regulatory domain is the
382 	 * result of an intersection between two regulatory domain
383 	 * structures
384 	 */
385 	return alpha2[0] == '9' && alpha2[1] == '8';
386 }
387 
388 static bool is_an_alpha2(const char *alpha2)
389 {
390 	if (!alpha2)
391 		return false;
392 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
393 }
394 
395 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
396 {
397 	if (!alpha2_x || !alpha2_y)
398 		return false;
399 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
400 }
401 
402 static bool regdom_changes(const char *alpha2)
403 {
404 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
405 
406 	if (!r)
407 		return true;
408 	return !alpha2_equal(r->alpha2, alpha2);
409 }
410 
411 /*
412  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
413  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
414  * has ever been issued.
415  */
416 static bool is_user_regdom_saved(void)
417 {
418 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
419 		return false;
420 
421 	/* This would indicate a mistake on the design */
422 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
423 		 "Unexpected user alpha2: %c%c\n",
424 		 user_alpha2[0], user_alpha2[1]))
425 		return false;
426 
427 	return true;
428 }
429 
430 static const struct ieee80211_regdomain *
431 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
432 {
433 	struct ieee80211_regdomain *regd;
434 	int size_of_regd;
435 	unsigned int i;
436 
437 	size_of_regd =
438 		sizeof(struct ieee80211_regdomain) +
439 		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
440 
441 	regd = kzalloc(size_of_regd, GFP_KERNEL);
442 	if (!regd)
443 		return ERR_PTR(-ENOMEM);
444 
445 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
446 
447 	for (i = 0; i < src_regd->n_reg_rules; i++)
448 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
449 		       sizeof(struct ieee80211_reg_rule));
450 
451 	return regd;
452 }
453 
454 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
455 struct reg_regdb_apply_request {
456 	struct list_head list;
457 	const struct ieee80211_regdomain *regdom;
458 };
459 
460 static LIST_HEAD(reg_regdb_apply_list);
461 static DEFINE_MUTEX(reg_regdb_apply_mutex);
462 
463 static void reg_regdb_apply(struct work_struct *work)
464 {
465 	struct reg_regdb_apply_request *request;
466 
467 	rtnl_lock();
468 
469 	mutex_lock(&reg_regdb_apply_mutex);
470 	while (!list_empty(&reg_regdb_apply_list)) {
471 		request = list_first_entry(&reg_regdb_apply_list,
472 					   struct reg_regdb_apply_request,
473 					   list);
474 		list_del(&request->list);
475 
476 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
477 		kfree(request);
478 	}
479 	mutex_unlock(&reg_regdb_apply_mutex);
480 
481 	rtnl_unlock();
482 }
483 
484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
485 
486 static int reg_query_builtin(const char *alpha2)
487 {
488 	const struct ieee80211_regdomain *regdom = NULL;
489 	struct reg_regdb_apply_request *request;
490 	unsigned int i;
491 
492 	for (i = 0; i < reg_regdb_size; i++) {
493 		if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
494 			regdom = reg_regdb[i];
495 			break;
496 		}
497 	}
498 
499 	if (!regdom)
500 		return -ENODATA;
501 
502 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
503 	if (!request)
504 		return -ENOMEM;
505 
506 	request->regdom = reg_copy_regd(regdom);
507 	if (IS_ERR_OR_NULL(request->regdom)) {
508 		kfree(request);
509 		return -ENOMEM;
510 	}
511 
512 	mutex_lock(&reg_regdb_apply_mutex);
513 	list_add_tail(&request->list, &reg_regdb_apply_list);
514 	mutex_unlock(&reg_regdb_apply_mutex);
515 
516 	schedule_work(&reg_regdb_work);
517 
518 	return 0;
519 }
520 
521 /* Feel free to add any other sanity checks here */
522 static void reg_regdb_size_check(void)
523 {
524 	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
525 	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
526 }
527 #else
528 static inline void reg_regdb_size_check(void) {}
529 static inline int reg_query_builtin(const char *alpha2)
530 {
531 	return -ENODATA;
532 }
533 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
534 
535 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
536 /* Max number of consecutive attempts to communicate with CRDA  */
537 #define REG_MAX_CRDA_TIMEOUTS 10
538 
539 static u32 reg_crda_timeouts;
540 
541 static void crda_timeout_work(struct work_struct *work);
542 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
543 
544 static void crda_timeout_work(struct work_struct *work)
545 {
546 	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
547 	rtnl_lock();
548 	reg_crda_timeouts++;
549 	restore_regulatory_settings(true);
550 	rtnl_unlock();
551 }
552 
553 static void cancel_crda_timeout(void)
554 {
555 	cancel_delayed_work(&crda_timeout);
556 }
557 
558 static void cancel_crda_timeout_sync(void)
559 {
560 	cancel_delayed_work_sync(&crda_timeout);
561 }
562 
563 static void reset_crda_timeouts(void)
564 {
565 	reg_crda_timeouts = 0;
566 }
567 
568 /*
569  * This lets us keep regulatory code which is updated on a regulatory
570  * basis in userspace.
571  */
572 static int call_crda(const char *alpha2)
573 {
574 	char country[12];
575 	char *env[] = { country, NULL };
576 	int ret;
577 
578 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
579 		 alpha2[0], alpha2[1]);
580 
581 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
582 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
583 		return -EINVAL;
584 	}
585 
586 	if (!is_world_regdom((char *) alpha2))
587 		pr_debug("Calling CRDA for country: %c%c\n",
588 			alpha2[0], alpha2[1]);
589 	else
590 		pr_debug("Calling CRDA to update world regulatory domain\n");
591 
592 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
593 	if (ret)
594 		return ret;
595 
596 	queue_delayed_work(system_power_efficient_wq,
597 			   &crda_timeout, msecs_to_jiffies(3142));
598 	return 0;
599 }
600 #else
601 static inline void cancel_crda_timeout(void) {}
602 static inline void cancel_crda_timeout_sync(void) {}
603 static inline void reset_crda_timeouts(void) {}
604 static inline int call_crda(const char *alpha2)
605 {
606 	return -ENODATA;
607 }
608 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
609 
610 static bool reg_query_database(struct regulatory_request *request)
611 {
612 	/* query internal regulatory database (if it exists) */
613 	if (reg_query_builtin(request->alpha2) == 0)
614 		return true;
615 
616 	if (call_crda(request->alpha2) == 0)
617 		return true;
618 
619 	return false;
620 }
621 
622 bool reg_is_valid_request(const char *alpha2)
623 {
624 	struct regulatory_request *lr = get_last_request();
625 
626 	if (!lr || lr->processed)
627 		return false;
628 
629 	return alpha2_equal(lr->alpha2, alpha2);
630 }
631 
632 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
633 {
634 	struct regulatory_request *lr = get_last_request();
635 
636 	/*
637 	 * Follow the driver's regulatory domain, if present, unless a country
638 	 * IE has been processed or a user wants to help complaince further
639 	 */
640 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
641 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
642 	    wiphy->regd)
643 		return get_wiphy_regdom(wiphy);
644 
645 	return get_cfg80211_regdom();
646 }
647 
648 static unsigned int
649 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
650 				 const struct ieee80211_reg_rule *rule)
651 {
652 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
653 	const struct ieee80211_freq_range *freq_range_tmp;
654 	const struct ieee80211_reg_rule *tmp;
655 	u32 start_freq, end_freq, idx, no;
656 
657 	for (idx = 0; idx < rd->n_reg_rules; idx++)
658 		if (rule == &rd->reg_rules[idx])
659 			break;
660 
661 	if (idx == rd->n_reg_rules)
662 		return 0;
663 
664 	/* get start_freq */
665 	no = idx;
666 
667 	while (no) {
668 		tmp = &rd->reg_rules[--no];
669 		freq_range_tmp = &tmp->freq_range;
670 
671 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
672 			break;
673 
674 		freq_range = freq_range_tmp;
675 	}
676 
677 	start_freq = freq_range->start_freq_khz;
678 
679 	/* get end_freq */
680 	freq_range = &rule->freq_range;
681 	no = idx;
682 
683 	while (no < rd->n_reg_rules - 1) {
684 		tmp = &rd->reg_rules[++no];
685 		freq_range_tmp = &tmp->freq_range;
686 
687 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
688 			break;
689 
690 		freq_range = freq_range_tmp;
691 	}
692 
693 	end_freq = freq_range->end_freq_khz;
694 
695 	return end_freq - start_freq;
696 }
697 
698 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
699 				   const struct ieee80211_reg_rule *rule)
700 {
701 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
702 
703 	if (rule->flags & NL80211_RRF_NO_160MHZ)
704 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
705 	if (rule->flags & NL80211_RRF_NO_80MHZ)
706 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
707 
708 	/*
709 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
710 	 * are not allowed.
711 	 */
712 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
713 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
714 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
715 
716 	return bw;
717 }
718 
719 /* Sanity check on a regulatory rule */
720 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
721 {
722 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
723 	u32 freq_diff;
724 
725 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
726 		return false;
727 
728 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
729 		return false;
730 
731 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
732 
733 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
734 	    freq_range->max_bandwidth_khz > freq_diff)
735 		return false;
736 
737 	return true;
738 }
739 
740 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
741 {
742 	const struct ieee80211_reg_rule *reg_rule = NULL;
743 	unsigned int i;
744 
745 	if (!rd->n_reg_rules)
746 		return false;
747 
748 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
749 		return false;
750 
751 	for (i = 0; i < rd->n_reg_rules; i++) {
752 		reg_rule = &rd->reg_rules[i];
753 		if (!is_valid_reg_rule(reg_rule))
754 			return false;
755 	}
756 
757 	return true;
758 }
759 
760 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
761 			    u32 center_freq_khz, u32 bw_khz)
762 {
763 	u32 start_freq_khz, end_freq_khz;
764 
765 	start_freq_khz = center_freq_khz - (bw_khz/2);
766 	end_freq_khz = center_freq_khz + (bw_khz/2);
767 
768 	if (start_freq_khz >= freq_range->start_freq_khz &&
769 	    end_freq_khz <= freq_range->end_freq_khz)
770 		return true;
771 
772 	return false;
773 }
774 
775 /**
776  * freq_in_rule_band - tells us if a frequency is in a frequency band
777  * @freq_range: frequency rule we want to query
778  * @freq_khz: frequency we are inquiring about
779  *
780  * This lets us know if a specific frequency rule is or is not relevant to
781  * a specific frequency's band. Bands are device specific and artificial
782  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
783  * however it is safe for now to assume that a frequency rule should not be
784  * part of a frequency's band if the start freq or end freq are off by more
785  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
786  * 60 GHz band.
787  * This resolution can be lowered and should be considered as we add
788  * regulatory rule support for other "bands".
789  **/
790 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
791 			      u32 freq_khz)
792 {
793 #define ONE_GHZ_IN_KHZ	1000000
794 	/*
795 	 * From 802.11ad: directional multi-gigabit (DMG):
796 	 * Pertaining to operation in a frequency band containing a channel
797 	 * with the Channel starting frequency above 45 GHz.
798 	 */
799 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
800 			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
801 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
802 		return true;
803 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
804 		return true;
805 	return false;
806 #undef ONE_GHZ_IN_KHZ
807 }
808 
809 /*
810  * Later on we can perhaps use the more restrictive DFS
811  * region but we don't have information for that yet so
812  * for now simply disallow conflicts.
813  */
814 static enum nl80211_dfs_regions
815 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
816 			 const enum nl80211_dfs_regions dfs_region2)
817 {
818 	if (dfs_region1 != dfs_region2)
819 		return NL80211_DFS_UNSET;
820 	return dfs_region1;
821 }
822 
823 /*
824  * Helper for regdom_intersect(), this does the real
825  * mathematical intersection fun
826  */
827 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
828 			       const struct ieee80211_regdomain *rd2,
829 			       const struct ieee80211_reg_rule *rule1,
830 			       const struct ieee80211_reg_rule *rule2,
831 			       struct ieee80211_reg_rule *intersected_rule)
832 {
833 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
834 	struct ieee80211_freq_range *freq_range;
835 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
836 	struct ieee80211_power_rule *power_rule;
837 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
838 
839 	freq_range1 = &rule1->freq_range;
840 	freq_range2 = &rule2->freq_range;
841 	freq_range = &intersected_rule->freq_range;
842 
843 	power_rule1 = &rule1->power_rule;
844 	power_rule2 = &rule2->power_rule;
845 	power_rule = &intersected_rule->power_rule;
846 
847 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
848 					 freq_range2->start_freq_khz);
849 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
850 				       freq_range2->end_freq_khz);
851 
852 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
853 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
854 
855 	if (rule1->flags & NL80211_RRF_AUTO_BW)
856 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
857 	if (rule2->flags & NL80211_RRF_AUTO_BW)
858 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
859 
860 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
861 
862 	intersected_rule->flags = rule1->flags | rule2->flags;
863 
864 	/*
865 	 * In case NL80211_RRF_AUTO_BW requested for both rules
866 	 * set AUTO_BW in intersected rule also. Next we will
867 	 * calculate BW correctly in handle_channel function.
868 	 * In other case remove AUTO_BW flag while we calculate
869 	 * maximum bandwidth correctly and auto calculation is
870 	 * not required.
871 	 */
872 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
873 	    (rule2->flags & NL80211_RRF_AUTO_BW))
874 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
875 	else
876 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
877 
878 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
879 	if (freq_range->max_bandwidth_khz > freq_diff)
880 		freq_range->max_bandwidth_khz = freq_diff;
881 
882 	power_rule->max_eirp = min(power_rule1->max_eirp,
883 		power_rule2->max_eirp);
884 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
885 		power_rule2->max_antenna_gain);
886 
887 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
888 					   rule2->dfs_cac_ms);
889 
890 	if (!is_valid_reg_rule(intersected_rule))
891 		return -EINVAL;
892 
893 	return 0;
894 }
895 
896 /* check whether old rule contains new rule */
897 static bool rule_contains(struct ieee80211_reg_rule *r1,
898 			  struct ieee80211_reg_rule *r2)
899 {
900 	/* for simplicity, currently consider only same flags */
901 	if (r1->flags != r2->flags)
902 		return false;
903 
904 	/* verify r1 is more restrictive */
905 	if ((r1->power_rule.max_antenna_gain >
906 	     r2->power_rule.max_antenna_gain) ||
907 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
908 		return false;
909 
910 	/* make sure r2's range is contained within r1 */
911 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
912 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
913 		return false;
914 
915 	/* and finally verify that r1.max_bw >= r2.max_bw */
916 	if (r1->freq_range.max_bandwidth_khz <
917 	    r2->freq_range.max_bandwidth_khz)
918 		return false;
919 
920 	return true;
921 }
922 
923 /* add or extend current rules. do nothing if rule is already contained */
924 static void add_rule(struct ieee80211_reg_rule *rule,
925 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
926 {
927 	struct ieee80211_reg_rule *tmp_rule;
928 	int i;
929 
930 	for (i = 0; i < *n_rules; i++) {
931 		tmp_rule = &reg_rules[i];
932 		/* rule is already contained - do nothing */
933 		if (rule_contains(tmp_rule, rule))
934 			return;
935 
936 		/* extend rule if possible */
937 		if (rule_contains(rule, tmp_rule)) {
938 			memcpy(tmp_rule, rule, sizeof(*rule));
939 			return;
940 		}
941 	}
942 
943 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
944 	(*n_rules)++;
945 }
946 
947 /**
948  * regdom_intersect - do the intersection between two regulatory domains
949  * @rd1: first regulatory domain
950  * @rd2: second regulatory domain
951  *
952  * Use this function to get the intersection between two regulatory domains.
953  * Once completed we will mark the alpha2 for the rd as intersected, "98",
954  * as no one single alpha2 can represent this regulatory domain.
955  *
956  * Returns a pointer to the regulatory domain structure which will hold the
957  * resulting intersection of rules between rd1 and rd2. We will
958  * kzalloc() this structure for you.
959  */
960 static struct ieee80211_regdomain *
961 regdom_intersect(const struct ieee80211_regdomain *rd1,
962 		 const struct ieee80211_regdomain *rd2)
963 {
964 	int r, size_of_regd;
965 	unsigned int x, y;
966 	unsigned int num_rules = 0;
967 	const struct ieee80211_reg_rule *rule1, *rule2;
968 	struct ieee80211_reg_rule intersected_rule;
969 	struct ieee80211_regdomain *rd;
970 
971 	if (!rd1 || !rd2)
972 		return NULL;
973 
974 	/*
975 	 * First we get a count of the rules we'll need, then we actually
976 	 * build them. This is to so we can malloc() and free() a
977 	 * regdomain once. The reason we use reg_rules_intersect() here
978 	 * is it will return -EINVAL if the rule computed makes no sense.
979 	 * All rules that do check out OK are valid.
980 	 */
981 
982 	for (x = 0; x < rd1->n_reg_rules; x++) {
983 		rule1 = &rd1->reg_rules[x];
984 		for (y = 0; y < rd2->n_reg_rules; y++) {
985 			rule2 = &rd2->reg_rules[y];
986 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
987 						 &intersected_rule))
988 				num_rules++;
989 		}
990 	}
991 
992 	if (!num_rules)
993 		return NULL;
994 
995 	size_of_regd = sizeof(struct ieee80211_regdomain) +
996 		       num_rules * sizeof(struct ieee80211_reg_rule);
997 
998 	rd = kzalloc(size_of_regd, GFP_KERNEL);
999 	if (!rd)
1000 		return NULL;
1001 
1002 	for (x = 0; x < rd1->n_reg_rules; x++) {
1003 		rule1 = &rd1->reg_rules[x];
1004 		for (y = 0; y < rd2->n_reg_rules; y++) {
1005 			rule2 = &rd2->reg_rules[y];
1006 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1007 						&intersected_rule);
1008 			/*
1009 			 * No need to memset here the intersected rule here as
1010 			 * we're not using the stack anymore
1011 			 */
1012 			if (r)
1013 				continue;
1014 
1015 			add_rule(&intersected_rule, rd->reg_rules,
1016 				 &rd->n_reg_rules);
1017 		}
1018 	}
1019 
1020 	rd->alpha2[0] = '9';
1021 	rd->alpha2[1] = '8';
1022 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1023 						  rd2->dfs_region);
1024 
1025 	return rd;
1026 }
1027 
1028 /*
1029  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1030  * want to just have the channel structure use these
1031  */
1032 static u32 map_regdom_flags(u32 rd_flags)
1033 {
1034 	u32 channel_flags = 0;
1035 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1036 		channel_flags |= IEEE80211_CHAN_NO_IR;
1037 	if (rd_flags & NL80211_RRF_DFS)
1038 		channel_flags |= IEEE80211_CHAN_RADAR;
1039 	if (rd_flags & NL80211_RRF_NO_OFDM)
1040 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1041 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1042 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1043 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1044 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1045 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1046 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1047 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1048 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1049 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1050 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1051 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1052 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1053 	return channel_flags;
1054 }
1055 
1056 static const struct ieee80211_reg_rule *
1057 freq_reg_info_regd(u32 center_freq,
1058 		   const struct ieee80211_regdomain *regd, u32 bw)
1059 {
1060 	int i;
1061 	bool band_rule_found = false;
1062 	bool bw_fits = false;
1063 
1064 	if (!regd)
1065 		return ERR_PTR(-EINVAL);
1066 
1067 	for (i = 0; i < regd->n_reg_rules; i++) {
1068 		const struct ieee80211_reg_rule *rr;
1069 		const struct ieee80211_freq_range *fr = NULL;
1070 
1071 		rr = &regd->reg_rules[i];
1072 		fr = &rr->freq_range;
1073 
1074 		/*
1075 		 * We only need to know if one frequency rule was
1076 		 * was in center_freq's band, that's enough, so lets
1077 		 * not overwrite it once found
1078 		 */
1079 		if (!band_rule_found)
1080 			band_rule_found = freq_in_rule_band(fr, center_freq);
1081 
1082 		bw_fits = reg_does_bw_fit(fr, center_freq, bw);
1083 
1084 		if (band_rule_found && bw_fits)
1085 			return rr;
1086 	}
1087 
1088 	if (!band_rule_found)
1089 		return ERR_PTR(-ERANGE);
1090 
1091 	return ERR_PTR(-EINVAL);
1092 }
1093 
1094 static const struct ieee80211_reg_rule *
1095 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1096 {
1097 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1098 	const struct ieee80211_reg_rule *reg_rule = NULL;
1099 	u32 bw;
1100 
1101 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1102 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1103 		if (!IS_ERR(reg_rule))
1104 			return reg_rule;
1105 	}
1106 
1107 	return reg_rule;
1108 }
1109 
1110 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1111 					       u32 center_freq)
1112 {
1113 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1114 }
1115 EXPORT_SYMBOL(freq_reg_info);
1116 
1117 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1118 {
1119 	switch (initiator) {
1120 	case NL80211_REGDOM_SET_BY_CORE:
1121 		return "core";
1122 	case NL80211_REGDOM_SET_BY_USER:
1123 		return "user";
1124 	case NL80211_REGDOM_SET_BY_DRIVER:
1125 		return "driver";
1126 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1127 		return "country IE";
1128 	default:
1129 		WARN_ON(1);
1130 		return "bug";
1131 	}
1132 }
1133 EXPORT_SYMBOL(reg_initiator_name);
1134 
1135 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1136 				    struct ieee80211_channel *chan,
1137 				    const struct ieee80211_reg_rule *reg_rule)
1138 {
1139 #ifdef CONFIG_CFG80211_REG_DEBUG
1140 	const struct ieee80211_power_rule *power_rule;
1141 	const struct ieee80211_freq_range *freq_range;
1142 	char max_antenna_gain[32], bw[32];
1143 
1144 	power_rule = &reg_rule->power_rule;
1145 	freq_range = &reg_rule->freq_range;
1146 
1147 	if (!power_rule->max_antenna_gain)
1148 		snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1149 	else
1150 		snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d mBi",
1151 			 power_rule->max_antenna_gain);
1152 
1153 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1154 		snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1155 			 freq_range->max_bandwidth_khz,
1156 			 reg_get_max_bandwidth(regd, reg_rule));
1157 	else
1158 		snprintf(bw, sizeof(bw), "%d KHz",
1159 			 freq_range->max_bandwidth_khz);
1160 
1161 	REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1162 		      chan->center_freq);
1163 
1164 	REG_DBG_PRINT("(%d KHz - %d KHz @ %s), (%s, %d mBm)\n",
1165 		      freq_range->start_freq_khz, freq_range->end_freq_khz,
1166 		      bw, max_antenna_gain,
1167 		      power_rule->max_eirp);
1168 #endif
1169 }
1170 
1171 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1172 					  const struct ieee80211_reg_rule *reg_rule,
1173 					  const struct ieee80211_channel *chan)
1174 {
1175 	const struct ieee80211_freq_range *freq_range = NULL;
1176 	u32 max_bandwidth_khz, bw_flags = 0;
1177 
1178 	freq_range = &reg_rule->freq_range;
1179 
1180 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1181 	/* Check if auto calculation requested */
1182 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1183 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1184 
1185 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1186 	if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1187 			     MHZ_TO_KHZ(10)))
1188 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1189 	if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1190 			     MHZ_TO_KHZ(20)))
1191 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1192 
1193 	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1194 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1195 	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1196 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1197 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1198 		bw_flags |= IEEE80211_CHAN_NO_HT40;
1199 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1200 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1201 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1202 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1203 	return bw_flags;
1204 }
1205 
1206 /*
1207  * Note that right now we assume the desired channel bandwidth
1208  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1209  * per channel, the primary and the extension channel).
1210  */
1211 static void handle_channel(struct wiphy *wiphy,
1212 			   enum nl80211_reg_initiator initiator,
1213 			   struct ieee80211_channel *chan)
1214 {
1215 	u32 flags, bw_flags = 0;
1216 	const struct ieee80211_reg_rule *reg_rule = NULL;
1217 	const struct ieee80211_power_rule *power_rule = NULL;
1218 	struct wiphy *request_wiphy = NULL;
1219 	struct regulatory_request *lr = get_last_request();
1220 	const struct ieee80211_regdomain *regd;
1221 
1222 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1223 
1224 	flags = chan->orig_flags;
1225 
1226 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1227 	if (IS_ERR(reg_rule)) {
1228 		/*
1229 		 * We will disable all channels that do not match our
1230 		 * received regulatory rule unless the hint is coming
1231 		 * from a Country IE and the Country IE had no information
1232 		 * about a band. The IEEE 802.11 spec allows for an AP
1233 		 * to send only a subset of the regulatory rules allowed,
1234 		 * so an AP in the US that only supports 2.4 GHz may only send
1235 		 * a country IE with information for the 2.4 GHz band
1236 		 * while 5 GHz is still supported.
1237 		 */
1238 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1239 		    PTR_ERR(reg_rule) == -ERANGE)
1240 			return;
1241 
1242 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1243 		    request_wiphy && request_wiphy == wiphy &&
1244 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1245 			REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1246 				      chan->center_freq);
1247 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1248 			chan->flags = chan->orig_flags;
1249 		} else {
1250 			REG_DBG_PRINT("Disabling freq %d MHz\n",
1251 				      chan->center_freq);
1252 			chan->flags |= IEEE80211_CHAN_DISABLED;
1253 		}
1254 		return;
1255 	}
1256 
1257 	regd = reg_get_regdomain(wiphy);
1258 	chan_reg_rule_print_dbg(regd, chan, reg_rule);
1259 
1260 	power_rule = &reg_rule->power_rule;
1261 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1262 
1263 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1264 	    request_wiphy && request_wiphy == wiphy &&
1265 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1266 		/*
1267 		 * This guarantees the driver's requested regulatory domain
1268 		 * will always be used as a base for further regulatory
1269 		 * settings
1270 		 */
1271 		chan->flags = chan->orig_flags =
1272 			map_regdom_flags(reg_rule->flags) | bw_flags;
1273 		chan->max_antenna_gain = chan->orig_mag =
1274 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1275 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1276 			(int) MBM_TO_DBM(power_rule->max_eirp);
1277 
1278 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1279 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1280 			if (reg_rule->dfs_cac_ms)
1281 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1282 		}
1283 
1284 		return;
1285 	}
1286 
1287 	chan->dfs_state = NL80211_DFS_USABLE;
1288 	chan->dfs_state_entered = jiffies;
1289 
1290 	chan->beacon_found = false;
1291 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1292 	chan->max_antenna_gain =
1293 		min_t(int, chan->orig_mag,
1294 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1295 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1296 
1297 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1298 		if (reg_rule->dfs_cac_ms)
1299 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1300 		else
1301 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1302 	}
1303 
1304 	if (chan->orig_mpwr) {
1305 		/*
1306 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1307 		 * will always follow the passed country IE power settings.
1308 		 */
1309 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1310 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1311 			chan->max_power = chan->max_reg_power;
1312 		else
1313 			chan->max_power = min(chan->orig_mpwr,
1314 					      chan->max_reg_power);
1315 	} else
1316 		chan->max_power = chan->max_reg_power;
1317 }
1318 
1319 static void handle_band(struct wiphy *wiphy,
1320 			enum nl80211_reg_initiator initiator,
1321 			struct ieee80211_supported_band *sband)
1322 {
1323 	unsigned int i;
1324 
1325 	if (!sband)
1326 		return;
1327 
1328 	for (i = 0; i < sband->n_channels; i++)
1329 		handle_channel(wiphy, initiator, &sband->channels[i]);
1330 }
1331 
1332 static bool reg_request_cell_base(struct regulatory_request *request)
1333 {
1334 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1335 		return false;
1336 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1337 }
1338 
1339 bool reg_last_request_cell_base(void)
1340 {
1341 	return reg_request_cell_base(get_last_request());
1342 }
1343 
1344 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1345 /* Core specific check */
1346 static enum reg_request_treatment
1347 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1348 {
1349 	struct regulatory_request *lr = get_last_request();
1350 
1351 	if (!reg_num_devs_support_basehint)
1352 		return REG_REQ_IGNORE;
1353 
1354 	if (reg_request_cell_base(lr) &&
1355 	    !regdom_changes(pending_request->alpha2))
1356 		return REG_REQ_ALREADY_SET;
1357 
1358 	return REG_REQ_OK;
1359 }
1360 
1361 /* Device specific check */
1362 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1363 {
1364 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1365 }
1366 #else
1367 static enum reg_request_treatment
1368 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1369 {
1370 	return REG_REQ_IGNORE;
1371 }
1372 
1373 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1374 {
1375 	return true;
1376 }
1377 #endif
1378 
1379 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1380 {
1381 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1382 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1383 		return true;
1384 	return false;
1385 }
1386 
1387 static bool ignore_reg_update(struct wiphy *wiphy,
1388 			      enum nl80211_reg_initiator initiator)
1389 {
1390 	struct regulatory_request *lr = get_last_request();
1391 
1392 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1393 		return true;
1394 
1395 	if (!lr) {
1396 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1397 			      "since last_request is not set\n",
1398 			      reg_initiator_name(initiator));
1399 		return true;
1400 	}
1401 
1402 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1403 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1404 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1405 			      "since the driver uses its own custom "
1406 			      "regulatory domain\n",
1407 			      reg_initiator_name(initiator));
1408 		return true;
1409 	}
1410 
1411 	/*
1412 	 * wiphy->regd will be set once the device has its own
1413 	 * desired regulatory domain set
1414 	 */
1415 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1416 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1417 	    !is_world_regdom(lr->alpha2)) {
1418 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1419 			      "since the driver requires its own regulatory "
1420 			      "domain to be set first\n",
1421 			      reg_initiator_name(initiator));
1422 		return true;
1423 	}
1424 
1425 	if (reg_request_cell_base(lr))
1426 		return reg_dev_ignore_cell_hint(wiphy);
1427 
1428 	return false;
1429 }
1430 
1431 static bool reg_is_world_roaming(struct wiphy *wiphy)
1432 {
1433 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1434 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1435 	struct regulatory_request *lr = get_last_request();
1436 
1437 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1438 		return true;
1439 
1440 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1441 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1442 		return true;
1443 
1444 	return false;
1445 }
1446 
1447 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1448 			      struct reg_beacon *reg_beacon)
1449 {
1450 	struct ieee80211_supported_band *sband;
1451 	struct ieee80211_channel *chan;
1452 	bool channel_changed = false;
1453 	struct ieee80211_channel chan_before;
1454 
1455 	sband = wiphy->bands[reg_beacon->chan.band];
1456 	chan = &sband->channels[chan_idx];
1457 
1458 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1459 		return;
1460 
1461 	if (chan->beacon_found)
1462 		return;
1463 
1464 	chan->beacon_found = true;
1465 
1466 	if (!reg_is_world_roaming(wiphy))
1467 		return;
1468 
1469 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1470 		return;
1471 
1472 	chan_before.center_freq = chan->center_freq;
1473 	chan_before.flags = chan->flags;
1474 
1475 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1476 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1477 		channel_changed = true;
1478 	}
1479 
1480 	if (channel_changed)
1481 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1482 }
1483 
1484 /*
1485  * Called when a scan on a wiphy finds a beacon on
1486  * new channel
1487  */
1488 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1489 				    struct reg_beacon *reg_beacon)
1490 {
1491 	unsigned int i;
1492 	struct ieee80211_supported_band *sband;
1493 
1494 	if (!wiphy->bands[reg_beacon->chan.band])
1495 		return;
1496 
1497 	sband = wiphy->bands[reg_beacon->chan.band];
1498 
1499 	for (i = 0; i < sband->n_channels; i++)
1500 		handle_reg_beacon(wiphy, i, reg_beacon);
1501 }
1502 
1503 /*
1504  * Called upon reg changes or a new wiphy is added
1505  */
1506 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1507 {
1508 	unsigned int i;
1509 	struct ieee80211_supported_band *sband;
1510 	struct reg_beacon *reg_beacon;
1511 
1512 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1513 		if (!wiphy->bands[reg_beacon->chan.band])
1514 			continue;
1515 		sband = wiphy->bands[reg_beacon->chan.band];
1516 		for (i = 0; i < sband->n_channels; i++)
1517 			handle_reg_beacon(wiphy, i, reg_beacon);
1518 	}
1519 }
1520 
1521 /* Reap the advantages of previously found beacons */
1522 static void reg_process_beacons(struct wiphy *wiphy)
1523 {
1524 	/*
1525 	 * Means we are just firing up cfg80211, so no beacons would
1526 	 * have been processed yet.
1527 	 */
1528 	if (!last_request)
1529 		return;
1530 	wiphy_update_beacon_reg(wiphy);
1531 }
1532 
1533 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1534 {
1535 	if (!chan)
1536 		return false;
1537 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1538 		return false;
1539 	/* This would happen when regulatory rules disallow HT40 completely */
1540 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1541 		return false;
1542 	return true;
1543 }
1544 
1545 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1546 					 struct ieee80211_channel *channel)
1547 {
1548 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1549 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1550 	unsigned int i;
1551 
1552 	if (!is_ht40_allowed(channel)) {
1553 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1554 		return;
1555 	}
1556 
1557 	/*
1558 	 * We need to ensure the extension channels exist to
1559 	 * be able to use HT40- or HT40+, this finds them (or not)
1560 	 */
1561 	for (i = 0; i < sband->n_channels; i++) {
1562 		struct ieee80211_channel *c = &sband->channels[i];
1563 
1564 		if (c->center_freq == (channel->center_freq - 20))
1565 			channel_before = c;
1566 		if (c->center_freq == (channel->center_freq + 20))
1567 			channel_after = c;
1568 	}
1569 
1570 	/*
1571 	 * Please note that this assumes target bandwidth is 20 MHz,
1572 	 * if that ever changes we also need to change the below logic
1573 	 * to include that as well.
1574 	 */
1575 	if (!is_ht40_allowed(channel_before))
1576 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1577 	else
1578 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1579 
1580 	if (!is_ht40_allowed(channel_after))
1581 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1582 	else
1583 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1584 }
1585 
1586 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1587 				      struct ieee80211_supported_band *sband)
1588 {
1589 	unsigned int i;
1590 
1591 	if (!sband)
1592 		return;
1593 
1594 	for (i = 0; i < sband->n_channels; i++)
1595 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1596 }
1597 
1598 static void reg_process_ht_flags(struct wiphy *wiphy)
1599 {
1600 	enum ieee80211_band band;
1601 
1602 	if (!wiphy)
1603 		return;
1604 
1605 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1606 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1607 }
1608 
1609 static void reg_call_notifier(struct wiphy *wiphy,
1610 			      struct regulatory_request *request)
1611 {
1612 	if (wiphy->reg_notifier)
1613 		wiphy->reg_notifier(wiphy, request);
1614 }
1615 
1616 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1617 {
1618 	struct cfg80211_chan_def chandef;
1619 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1620 	enum nl80211_iftype iftype;
1621 
1622 	wdev_lock(wdev);
1623 	iftype = wdev->iftype;
1624 
1625 	/* make sure the interface is active */
1626 	if (!wdev->netdev || !netif_running(wdev->netdev))
1627 		goto wdev_inactive_unlock;
1628 
1629 	switch (iftype) {
1630 	case NL80211_IFTYPE_AP:
1631 	case NL80211_IFTYPE_P2P_GO:
1632 		if (!wdev->beacon_interval)
1633 			goto wdev_inactive_unlock;
1634 		chandef = wdev->chandef;
1635 		break;
1636 	case NL80211_IFTYPE_ADHOC:
1637 		if (!wdev->ssid_len)
1638 			goto wdev_inactive_unlock;
1639 		chandef = wdev->chandef;
1640 		break;
1641 	case NL80211_IFTYPE_STATION:
1642 	case NL80211_IFTYPE_P2P_CLIENT:
1643 		if (!wdev->current_bss ||
1644 		    !wdev->current_bss->pub.channel)
1645 			goto wdev_inactive_unlock;
1646 
1647 		if (!rdev->ops->get_channel ||
1648 		    rdev_get_channel(rdev, wdev, &chandef))
1649 			cfg80211_chandef_create(&chandef,
1650 						wdev->current_bss->pub.channel,
1651 						NL80211_CHAN_NO_HT);
1652 		break;
1653 	case NL80211_IFTYPE_MONITOR:
1654 	case NL80211_IFTYPE_AP_VLAN:
1655 	case NL80211_IFTYPE_P2P_DEVICE:
1656 		/* no enforcement required */
1657 		break;
1658 	default:
1659 		/* others not implemented for now */
1660 		WARN_ON(1);
1661 		break;
1662 	}
1663 
1664 	wdev_unlock(wdev);
1665 
1666 	switch (iftype) {
1667 	case NL80211_IFTYPE_AP:
1668 	case NL80211_IFTYPE_P2P_GO:
1669 	case NL80211_IFTYPE_ADHOC:
1670 		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1671 	case NL80211_IFTYPE_STATION:
1672 	case NL80211_IFTYPE_P2P_CLIENT:
1673 		return cfg80211_chandef_usable(wiphy, &chandef,
1674 					       IEEE80211_CHAN_DISABLED);
1675 	default:
1676 		break;
1677 	}
1678 
1679 	return true;
1680 
1681 wdev_inactive_unlock:
1682 	wdev_unlock(wdev);
1683 	return true;
1684 }
1685 
1686 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1687 {
1688 	struct wireless_dev *wdev;
1689 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1690 
1691 	ASSERT_RTNL();
1692 
1693 	list_for_each_entry(wdev, &rdev->wdev_list, list)
1694 		if (!reg_wdev_chan_valid(wiphy, wdev))
1695 			cfg80211_leave(rdev, wdev);
1696 }
1697 
1698 static void reg_check_chans_work(struct work_struct *work)
1699 {
1700 	struct cfg80211_registered_device *rdev;
1701 
1702 	REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1703 	rtnl_lock();
1704 
1705 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1706 		if (!(rdev->wiphy.regulatory_flags &
1707 		      REGULATORY_IGNORE_STALE_KICKOFF))
1708 			reg_leave_invalid_chans(&rdev->wiphy);
1709 
1710 	rtnl_unlock();
1711 }
1712 
1713 static void reg_check_channels(void)
1714 {
1715 	/*
1716 	 * Give usermode a chance to do something nicer (move to another
1717 	 * channel, orderly disconnection), before forcing a disconnection.
1718 	 */
1719 	mod_delayed_work(system_power_efficient_wq,
1720 			 &reg_check_chans,
1721 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1722 }
1723 
1724 static void wiphy_update_regulatory(struct wiphy *wiphy,
1725 				    enum nl80211_reg_initiator initiator)
1726 {
1727 	enum ieee80211_band band;
1728 	struct regulatory_request *lr = get_last_request();
1729 
1730 	if (ignore_reg_update(wiphy, initiator)) {
1731 		/*
1732 		 * Regulatory updates set by CORE are ignored for custom
1733 		 * regulatory cards. Let us notify the changes to the driver,
1734 		 * as some drivers used this to restore its orig_* reg domain.
1735 		 */
1736 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1737 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1738 			reg_call_notifier(wiphy, lr);
1739 		return;
1740 	}
1741 
1742 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1743 
1744 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1745 		handle_band(wiphy, initiator, wiphy->bands[band]);
1746 
1747 	reg_process_beacons(wiphy);
1748 	reg_process_ht_flags(wiphy);
1749 	reg_call_notifier(wiphy, lr);
1750 }
1751 
1752 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1753 {
1754 	struct cfg80211_registered_device *rdev;
1755 	struct wiphy *wiphy;
1756 
1757 	ASSERT_RTNL();
1758 
1759 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1760 		wiphy = &rdev->wiphy;
1761 		wiphy_update_regulatory(wiphy, initiator);
1762 	}
1763 
1764 	reg_check_channels();
1765 }
1766 
1767 static void handle_channel_custom(struct wiphy *wiphy,
1768 				  struct ieee80211_channel *chan,
1769 				  const struct ieee80211_regdomain *regd)
1770 {
1771 	u32 bw_flags = 0;
1772 	const struct ieee80211_reg_rule *reg_rule = NULL;
1773 	const struct ieee80211_power_rule *power_rule = NULL;
1774 	u32 bw;
1775 
1776 	for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1777 		reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
1778 					      regd, bw);
1779 		if (!IS_ERR(reg_rule))
1780 			break;
1781 	}
1782 
1783 	if (IS_ERR(reg_rule)) {
1784 		REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1785 			      chan->center_freq);
1786 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1787 			chan->flags |= IEEE80211_CHAN_DISABLED;
1788 		} else {
1789 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1790 			chan->flags = chan->orig_flags;
1791 		}
1792 		return;
1793 	}
1794 
1795 	chan_reg_rule_print_dbg(regd, chan, reg_rule);
1796 
1797 	power_rule = &reg_rule->power_rule;
1798 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1799 
1800 	chan->dfs_state_entered = jiffies;
1801 	chan->dfs_state = NL80211_DFS_USABLE;
1802 
1803 	chan->beacon_found = false;
1804 
1805 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1806 		chan->flags = chan->orig_flags | bw_flags |
1807 			      map_regdom_flags(reg_rule->flags);
1808 	else
1809 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1810 
1811 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1812 	chan->max_reg_power = chan->max_power =
1813 		(int) MBM_TO_DBM(power_rule->max_eirp);
1814 
1815 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1816 		if (reg_rule->dfs_cac_ms)
1817 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1818 		else
1819 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1820 	}
1821 
1822 	chan->max_power = chan->max_reg_power;
1823 }
1824 
1825 static void handle_band_custom(struct wiphy *wiphy,
1826 			       struct ieee80211_supported_band *sband,
1827 			       const struct ieee80211_regdomain *regd)
1828 {
1829 	unsigned int i;
1830 
1831 	if (!sband)
1832 		return;
1833 
1834 	for (i = 0; i < sband->n_channels; i++)
1835 		handle_channel_custom(wiphy, &sband->channels[i], regd);
1836 }
1837 
1838 /* Used by drivers prior to wiphy registration */
1839 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1840 				   const struct ieee80211_regdomain *regd)
1841 {
1842 	enum ieee80211_band band;
1843 	unsigned int bands_set = 0;
1844 
1845 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1846 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
1847 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1848 
1849 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1850 		if (!wiphy->bands[band])
1851 			continue;
1852 		handle_band_custom(wiphy, wiphy->bands[band], regd);
1853 		bands_set++;
1854 	}
1855 
1856 	/*
1857 	 * no point in calling this if it won't have any effect
1858 	 * on your device's supported bands.
1859 	 */
1860 	WARN_ON(!bands_set);
1861 }
1862 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1863 
1864 static void reg_set_request_processed(void)
1865 {
1866 	bool need_more_processing = false;
1867 	struct regulatory_request *lr = get_last_request();
1868 
1869 	lr->processed = true;
1870 
1871 	spin_lock(&reg_requests_lock);
1872 	if (!list_empty(&reg_requests_list))
1873 		need_more_processing = true;
1874 	spin_unlock(&reg_requests_lock);
1875 
1876 	cancel_crda_timeout();
1877 
1878 	if (need_more_processing)
1879 		schedule_work(&reg_work);
1880 }
1881 
1882 /**
1883  * reg_process_hint_core - process core regulatory requests
1884  * @pending_request: a pending core regulatory request
1885  *
1886  * The wireless subsystem can use this function to process
1887  * a regulatory request issued by the regulatory core.
1888  */
1889 static enum reg_request_treatment
1890 reg_process_hint_core(struct regulatory_request *core_request)
1891 {
1892 	if (reg_query_database(core_request)) {
1893 		core_request->intersect = false;
1894 		core_request->processed = false;
1895 		reg_update_last_request(core_request);
1896 		return REG_REQ_OK;
1897 	}
1898 
1899 	return REG_REQ_IGNORE;
1900 }
1901 
1902 static enum reg_request_treatment
1903 __reg_process_hint_user(struct regulatory_request *user_request)
1904 {
1905 	struct regulatory_request *lr = get_last_request();
1906 
1907 	if (reg_request_cell_base(user_request))
1908 		return reg_ignore_cell_hint(user_request);
1909 
1910 	if (reg_request_cell_base(lr))
1911 		return REG_REQ_IGNORE;
1912 
1913 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1914 		return REG_REQ_INTERSECT;
1915 	/*
1916 	 * If the user knows better the user should set the regdom
1917 	 * to their country before the IE is picked up
1918 	 */
1919 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1920 	    lr->intersect)
1921 		return REG_REQ_IGNORE;
1922 	/*
1923 	 * Process user requests only after previous user/driver/core
1924 	 * requests have been processed
1925 	 */
1926 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1927 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1928 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1929 	    regdom_changes(lr->alpha2))
1930 		return REG_REQ_IGNORE;
1931 
1932 	if (!regdom_changes(user_request->alpha2))
1933 		return REG_REQ_ALREADY_SET;
1934 
1935 	return REG_REQ_OK;
1936 }
1937 
1938 /**
1939  * reg_process_hint_user - process user regulatory requests
1940  * @user_request: a pending user regulatory request
1941  *
1942  * The wireless subsystem can use this function to process
1943  * a regulatory request initiated by userspace.
1944  */
1945 static enum reg_request_treatment
1946 reg_process_hint_user(struct regulatory_request *user_request)
1947 {
1948 	enum reg_request_treatment treatment;
1949 
1950 	treatment = __reg_process_hint_user(user_request);
1951 	if (treatment == REG_REQ_IGNORE ||
1952 	    treatment == REG_REQ_ALREADY_SET)
1953 		return REG_REQ_IGNORE;
1954 
1955 	user_request->intersect = treatment == REG_REQ_INTERSECT;
1956 	user_request->processed = false;
1957 
1958 	if (reg_query_database(user_request)) {
1959 		reg_update_last_request(user_request);
1960 		user_alpha2[0] = user_request->alpha2[0];
1961 		user_alpha2[1] = user_request->alpha2[1];
1962 		return REG_REQ_OK;
1963 	}
1964 
1965 	return REG_REQ_IGNORE;
1966 }
1967 
1968 static enum reg_request_treatment
1969 __reg_process_hint_driver(struct regulatory_request *driver_request)
1970 {
1971 	struct regulatory_request *lr = get_last_request();
1972 
1973 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1974 		if (regdom_changes(driver_request->alpha2))
1975 			return REG_REQ_OK;
1976 		return REG_REQ_ALREADY_SET;
1977 	}
1978 
1979 	/*
1980 	 * This would happen if you unplug and plug your card
1981 	 * back in or if you add a new device for which the previously
1982 	 * loaded card also agrees on the regulatory domain.
1983 	 */
1984 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1985 	    !regdom_changes(driver_request->alpha2))
1986 		return REG_REQ_ALREADY_SET;
1987 
1988 	return REG_REQ_INTERSECT;
1989 }
1990 
1991 /**
1992  * reg_process_hint_driver - process driver regulatory requests
1993  * @driver_request: a pending driver regulatory request
1994  *
1995  * The wireless subsystem can use this function to process
1996  * a regulatory request issued by an 802.11 driver.
1997  *
1998  * Returns one of the different reg request treatment values.
1999  */
2000 static enum reg_request_treatment
2001 reg_process_hint_driver(struct wiphy *wiphy,
2002 			struct regulatory_request *driver_request)
2003 {
2004 	const struct ieee80211_regdomain *regd, *tmp;
2005 	enum reg_request_treatment treatment;
2006 
2007 	treatment = __reg_process_hint_driver(driver_request);
2008 
2009 	switch (treatment) {
2010 	case REG_REQ_OK:
2011 		break;
2012 	case REG_REQ_IGNORE:
2013 		return REG_REQ_IGNORE;
2014 	case REG_REQ_INTERSECT:
2015 	case REG_REQ_ALREADY_SET:
2016 		regd = reg_copy_regd(get_cfg80211_regdom());
2017 		if (IS_ERR(regd))
2018 			return REG_REQ_IGNORE;
2019 
2020 		tmp = get_wiphy_regdom(wiphy);
2021 		rcu_assign_pointer(wiphy->regd, regd);
2022 		rcu_free_regdom(tmp);
2023 	}
2024 
2025 
2026 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2027 	driver_request->processed = false;
2028 
2029 	/*
2030 	 * Since CRDA will not be called in this case as we already
2031 	 * have applied the requested regulatory domain before we just
2032 	 * inform userspace we have processed the request
2033 	 */
2034 	if (treatment == REG_REQ_ALREADY_SET) {
2035 		nl80211_send_reg_change_event(driver_request);
2036 		reg_update_last_request(driver_request);
2037 		reg_set_request_processed();
2038 		return REG_REQ_ALREADY_SET;
2039 	}
2040 
2041 	if (reg_query_database(driver_request)) {
2042 		reg_update_last_request(driver_request);
2043 		return REG_REQ_OK;
2044 	}
2045 
2046 	return REG_REQ_IGNORE;
2047 }
2048 
2049 static enum reg_request_treatment
2050 __reg_process_hint_country_ie(struct wiphy *wiphy,
2051 			      struct regulatory_request *country_ie_request)
2052 {
2053 	struct wiphy *last_wiphy = NULL;
2054 	struct regulatory_request *lr = get_last_request();
2055 
2056 	if (reg_request_cell_base(lr)) {
2057 		/* Trust a Cell base station over the AP's country IE */
2058 		if (regdom_changes(country_ie_request->alpha2))
2059 			return REG_REQ_IGNORE;
2060 		return REG_REQ_ALREADY_SET;
2061 	} else {
2062 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2063 			return REG_REQ_IGNORE;
2064 	}
2065 
2066 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2067 		return -EINVAL;
2068 
2069 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2070 		return REG_REQ_OK;
2071 
2072 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2073 
2074 	if (last_wiphy != wiphy) {
2075 		/*
2076 		 * Two cards with two APs claiming different
2077 		 * Country IE alpha2s. We could
2078 		 * intersect them, but that seems unlikely
2079 		 * to be correct. Reject second one for now.
2080 		 */
2081 		if (regdom_changes(country_ie_request->alpha2))
2082 			return REG_REQ_IGNORE;
2083 		return REG_REQ_ALREADY_SET;
2084 	}
2085 
2086 	if (regdom_changes(country_ie_request->alpha2))
2087 		return REG_REQ_OK;
2088 	return REG_REQ_ALREADY_SET;
2089 }
2090 
2091 /**
2092  * reg_process_hint_country_ie - process regulatory requests from country IEs
2093  * @country_ie_request: a regulatory request from a country IE
2094  *
2095  * The wireless subsystem can use this function to process
2096  * a regulatory request issued by a country Information Element.
2097  *
2098  * Returns one of the different reg request treatment values.
2099  */
2100 static enum reg_request_treatment
2101 reg_process_hint_country_ie(struct wiphy *wiphy,
2102 			    struct regulatory_request *country_ie_request)
2103 {
2104 	enum reg_request_treatment treatment;
2105 
2106 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2107 
2108 	switch (treatment) {
2109 	case REG_REQ_OK:
2110 		break;
2111 	case REG_REQ_IGNORE:
2112 		return REG_REQ_IGNORE;
2113 	case REG_REQ_ALREADY_SET:
2114 		reg_free_request(country_ie_request);
2115 		return REG_REQ_ALREADY_SET;
2116 	case REG_REQ_INTERSECT:
2117 		/*
2118 		 * This doesn't happen yet, not sure we
2119 		 * ever want to support it for this case.
2120 		 */
2121 		WARN_ONCE(1, "Unexpected intersection for country IEs");
2122 		return REG_REQ_IGNORE;
2123 	}
2124 
2125 	country_ie_request->intersect = false;
2126 	country_ie_request->processed = false;
2127 
2128 	if (reg_query_database(country_ie_request)) {
2129 		reg_update_last_request(country_ie_request);
2130 		return REG_REQ_OK;
2131 	}
2132 
2133 	return REG_REQ_IGNORE;
2134 }
2135 
2136 /* This processes *all* regulatory hints */
2137 static void reg_process_hint(struct regulatory_request *reg_request)
2138 {
2139 	struct wiphy *wiphy = NULL;
2140 	enum reg_request_treatment treatment;
2141 
2142 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2143 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2144 
2145 	switch (reg_request->initiator) {
2146 	case NL80211_REGDOM_SET_BY_CORE:
2147 		treatment = reg_process_hint_core(reg_request);
2148 		break;
2149 	case NL80211_REGDOM_SET_BY_USER:
2150 		treatment = reg_process_hint_user(reg_request);
2151 		break;
2152 	case NL80211_REGDOM_SET_BY_DRIVER:
2153 		if (!wiphy)
2154 			goto out_free;
2155 		treatment = reg_process_hint_driver(wiphy, reg_request);
2156 		break;
2157 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2158 		if (!wiphy)
2159 			goto out_free;
2160 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2161 		break;
2162 	default:
2163 		WARN(1, "invalid initiator %d\n", reg_request->initiator);
2164 		goto out_free;
2165 	}
2166 
2167 	if (treatment == REG_REQ_IGNORE)
2168 		goto out_free;
2169 
2170 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2171 	     "unexpected treatment value %d\n", treatment);
2172 
2173 	/* This is required so that the orig_* parameters are saved.
2174 	 * NOTE: treatment must be set for any case that reaches here!
2175 	 */
2176 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2177 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2178 		wiphy_update_regulatory(wiphy, reg_request->initiator);
2179 		reg_check_channels();
2180 	}
2181 
2182 	return;
2183 
2184 out_free:
2185 	reg_free_request(reg_request);
2186 }
2187 
2188 static bool reg_only_self_managed_wiphys(void)
2189 {
2190 	struct cfg80211_registered_device *rdev;
2191 	struct wiphy *wiphy;
2192 	bool self_managed_found = false;
2193 
2194 	ASSERT_RTNL();
2195 
2196 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2197 		wiphy = &rdev->wiphy;
2198 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2199 			self_managed_found = true;
2200 		else
2201 			return false;
2202 	}
2203 
2204 	/* make sure at least one self-managed wiphy exists */
2205 	return self_managed_found;
2206 }
2207 
2208 /*
2209  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2210  * Regulatory hints come on a first come first serve basis and we
2211  * must process each one atomically.
2212  */
2213 static void reg_process_pending_hints(void)
2214 {
2215 	struct regulatory_request *reg_request, *lr;
2216 
2217 	lr = get_last_request();
2218 
2219 	/* When last_request->processed becomes true this will be rescheduled */
2220 	if (lr && !lr->processed) {
2221 		reg_process_hint(lr);
2222 		return;
2223 	}
2224 
2225 	spin_lock(&reg_requests_lock);
2226 
2227 	if (list_empty(&reg_requests_list)) {
2228 		spin_unlock(&reg_requests_lock);
2229 		return;
2230 	}
2231 
2232 	reg_request = list_first_entry(&reg_requests_list,
2233 				       struct regulatory_request,
2234 				       list);
2235 	list_del_init(&reg_request->list);
2236 
2237 	spin_unlock(&reg_requests_lock);
2238 
2239 	if (reg_only_self_managed_wiphys()) {
2240 		reg_free_request(reg_request);
2241 		return;
2242 	}
2243 
2244 	reg_process_hint(reg_request);
2245 
2246 	lr = get_last_request();
2247 
2248 	spin_lock(&reg_requests_lock);
2249 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
2250 		schedule_work(&reg_work);
2251 	spin_unlock(&reg_requests_lock);
2252 }
2253 
2254 /* Processes beacon hints -- this has nothing to do with country IEs */
2255 static void reg_process_pending_beacon_hints(void)
2256 {
2257 	struct cfg80211_registered_device *rdev;
2258 	struct reg_beacon *pending_beacon, *tmp;
2259 
2260 	/* This goes through the _pending_ beacon list */
2261 	spin_lock_bh(&reg_pending_beacons_lock);
2262 
2263 	list_for_each_entry_safe(pending_beacon, tmp,
2264 				 &reg_pending_beacons, list) {
2265 		list_del_init(&pending_beacon->list);
2266 
2267 		/* Applies the beacon hint to current wiphys */
2268 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2269 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2270 
2271 		/* Remembers the beacon hint for new wiphys or reg changes */
2272 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2273 	}
2274 
2275 	spin_unlock_bh(&reg_pending_beacons_lock);
2276 }
2277 
2278 static void reg_process_self_managed_hints(void)
2279 {
2280 	struct cfg80211_registered_device *rdev;
2281 	struct wiphy *wiphy;
2282 	const struct ieee80211_regdomain *tmp;
2283 	const struct ieee80211_regdomain *regd;
2284 	enum ieee80211_band band;
2285 	struct regulatory_request request = {};
2286 
2287 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2288 		wiphy = &rdev->wiphy;
2289 
2290 		spin_lock(&reg_requests_lock);
2291 		regd = rdev->requested_regd;
2292 		rdev->requested_regd = NULL;
2293 		spin_unlock(&reg_requests_lock);
2294 
2295 		if (regd == NULL)
2296 			continue;
2297 
2298 		tmp = get_wiphy_regdom(wiphy);
2299 		rcu_assign_pointer(wiphy->regd, regd);
2300 		rcu_free_regdom(tmp);
2301 
2302 		for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2303 			handle_band_custom(wiphy, wiphy->bands[band], regd);
2304 
2305 		reg_process_ht_flags(wiphy);
2306 
2307 		request.wiphy_idx = get_wiphy_idx(wiphy);
2308 		request.alpha2[0] = regd->alpha2[0];
2309 		request.alpha2[1] = regd->alpha2[1];
2310 		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2311 
2312 		nl80211_send_wiphy_reg_change_event(&request);
2313 	}
2314 
2315 	reg_check_channels();
2316 }
2317 
2318 static void reg_todo(struct work_struct *work)
2319 {
2320 	rtnl_lock();
2321 	reg_process_pending_hints();
2322 	reg_process_pending_beacon_hints();
2323 	reg_process_self_managed_hints();
2324 	rtnl_unlock();
2325 }
2326 
2327 static void queue_regulatory_request(struct regulatory_request *request)
2328 {
2329 	request->alpha2[0] = toupper(request->alpha2[0]);
2330 	request->alpha2[1] = toupper(request->alpha2[1]);
2331 
2332 	spin_lock(&reg_requests_lock);
2333 	list_add_tail(&request->list, &reg_requests_list);
2334 	spin_unlock(&reg_requests_lock);
2335 
2336 	schedule_work(&reg_work);
2337 }
2338 
2339 /*
2340  * Core regulatory hint -- happens during cfg80211_init()
2341  * and when we restore regulatory settings.
2342  */
2343 static int regulatory_hint_core(const char *alpha2)
2344 {
2345 	struct regulatory_request *request;
2346 
2347 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2348 	if (!request)
2349 		return -ENOMEM;
2350 
2351 	request->alpha2[0] = alpha2[0];
2352 	request->alpha2[1] = alpha2[1];
2353 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2354 
2355 	queue_regulatory_request(request);
2356 
2357 	return 0;
2358 }
2359 
2360 /* User hints */
2361 int regulatory_hint_user(const char *alpha2,
2362 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2363 {
2364 	struct regulatory_request *request;
2365 
2366 	if (WARN_ON(!alpha2))
2367 		return -EINVAL;
2368 
2369 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2370 	if (!request)
2371 		return -ENOMEM;
2372 
2373 	request->wiphy_idx = WIPHY_IDX_INVALID;
2374 	request->alpha2[0] = alpha2[0];
2375 	request->alpha2[1] = alpha2[1];
2376 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2377 	request->user_reg_hint_type = user_reg_hint_type;
2378 
2379 	/* Allow calling CRDA again */
2380 	reset_crda_timeouts();
2381 
2382 	queue_regulatory_request(request);
2383 
2384 	return 0;
2385 }
2386 
2387 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2388 {
2389 	spin_lock(&reg_indoor_lock);
2390 
2391 	/* It is possible that more than one user space process is trying to
2392 	 * configure the indoor setting. To handle such cases, clear the indoor
2393 	 * setting in case that some process does not think that the device
2394 	 * is operating in an indoor environment. In addition, if a user space
2395 	 * process indicates that it is controlling the indoor setting, save its
2396 	 * portid, i.e., make it the owner.
2397 	 */
2398 	reg_is_indoor = is_indoor;
2399 	if (reg_is_indoor) {
2400 		if (!reg_is_indoor_portid)
2401 			reg_is_indoor_portid = portid;
2402 	} else {
2403 		reg_is_indoor_portid = 0;
2404 	}
2405 
2406 	spin_unlock(&reg_indoor_lock);
2407 
2408 	if (!is_indoor)
2409 		reg_check_channels();
2410 
2411 	return 0;
2412 }
2413 
2414 void regulatory_netlink_notify(u32 portid)
2415 {
2416 	spin_lock(&reg_indoor_lock);
2417 
2418 	if (reg_is_indoor_portid != portid) {
2419 		spin_unlock(&reg_indoor_lock);
2420 		return;
2421 	}
2422 
2423 	reg_is_indoor = false;
2424 	reg_is_indoor_portid = 0;
2425 
2426 	spin_unlock(&reg_indoor_lock);
2427 
2428 	reg_check_channels();
2429 }
2430 
2431 /* Driver hints */
2432 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2433 {
2434 	struct regulatory_request *request;
2435 
2436 	if (WARN_ON(!alpha2 || !wiphy))
2437 		return -EINVAL;
2438 
2439 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2440 
2441 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2442 	if (!request)
2443 		return -ENOMEM;
2444 
2445 	request->wiphy_idx = get_wiphy_idx(wiphy);
2446 
2447 	request->alpha2[0] = alpha2[0];
2448 	request->alpha2[1] = alpha2[1];
2449 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2450 
2451 	/* Allow calling CRDA again */
2452 	reset_crda_timeouts();
2453 
2454 	queue_regulatory_request(request);
2455 
2456 	return 0;
2457 }
2458 EXPORT_SYMBOL(regulatory_hint);
2459 
2460 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2461 				const u8 *country_ie, u8 country_ie_len)
2462 {
2463 	char alpha2[2];
2464 	enum environment_cap env = ENVIRON_ANY;
2465 	struct regulatory_request *request = NULL, *lr;
2466 
2467 	/* IE len must be evenly divisible by 2 */
2468 	if (country_ie_len & 0x01)
2469 		return;
2470 
2471 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2472 		return;
2473 
2474 	request = kzalloc(sizeof(*request), GFP_KERNEL);
2475 	if (!request)
2476 		return;
2477 
2478 	alpha2[0] = country_ie[0];
2479 	alpha2[1] = country_ie[1];
2480 
2481 	if (country_ie[2] == 'I')
2482 		env = ENVIRON_INDOOR;
2483 	else if (country_ie[2] == 'O')
2484 		env = ENVIRON_OUTDOOR;
2485 
2486 	rcu_read_lock();
2487 	lr = get_last_request();
2488 
2489 	if (unlikely(!lr))
2490 		goto out;
2491 
2492 	/*
2493 	 * We will run this only upon a successful connection on cfg80211.
2494 	 * We leave conflict resolution to the workqueue, where can hold
2495 	 * the RTNL.
2496 	 */
2497 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2498 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
2499 		goto out;
2500 
2501 	request->wiphy_idx = get_wiphy_idx(wiphy);
2502 	request->alpha2[0] = alpha2[0];
2503 	request->alpha2[1] = alpha2[1];
2504 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2505 	request->country_ie_env = env;
2506 
2507 	/* Allow calling CRDA again */
2508 	reset_crda_timeouts();
2509 
2510 	queue_regulatory_request(request);
2511 	request = NULL;
2512 out:
2513 	kfree(request);
2514 	rcu_read_unlock();
2515 }
2516 
2517 static void restore_alpha2(char *alpha2, bool reset_user)
2518 {
2519 	/* indicates there is no alpha2 to consider for restoration */
2520 	alpha2[0] = '9';
2521 	alpha2[1] = '7';
2522 
2523 	/* The user setting has precedence over the module parameter */
2524 	if (is_user_regdom_saved()) {
2525 		/* Unless we're asked to ignore it and reset it */
2526 		if (reset_user) {
2527 			REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2528 			user_alpha2[0] = '9';
2529 			user_alpha2[1] = '7';
2530 
2531 			/*
2532 			 * If we're ignoring user settings, we still need to
2533 			 * check the module parameter to ensure we put things
2534 			 * back as they were for a full restore.
2535 			 */
2536 			if (!is_world_regdom(ieee80211_regdom)) {
2537 				REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2538 					      ieee80211_regdom[0], ieee80211_regdom[1]);
2539 				alpha2[0] = ieee80211_regdom[0];
2540 				alpha2[1] = ieee80211_regdom[1];
2541 			}
2542 		} else {
2543 			REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2544 				      user_alpha2[0], user_alpha2[1]);
2545 			alpha2[0] = user_alpha2[0];
2546 			alpha2[1] = user_alpha2[1];
2547 		}
2548 	} else if (!is_world_regdom(ieee80211_regdom)) {
2549 		REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2550 			      ieee80211_regdom[0], ieee80211_regdom[1]);
2551 		alpha2[0] = ieee80211_regdom[0];
2552 		alpha2[1] = ieee80211_regdom[1];
2553 	} else
2554 		REG_DBG_PRINT("Restoring regulatory settings\n");
2555 }
2556 
2557 static void restore_custom_reg_settings(struct wiphy *wiphy)
2558 {
2559 	struct ieee80211_supported_band *sband;
2560 	enum ieee80211_band band;
2561 	struct ieee80211_channel *chan;
2562 	int i;
2563 
2564 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2565 		sband = wiphy->bands[band];
2566 		if (!sband)
2567 			continue;
2568 		for (i = 0; i < sband->n_channels; i++) {
2569 			chan = &sband->channels[i];
2570 			chan->flags = chan->orig_flags;
2571 			chan->max_antenna_gain = chan->orig_mag;
2572 			chan->max_power = chan->orig_mpwr;
2573 			chan->beacon_found = false;
2574 		}
2575 	}
2576 }
2577 
2578 /*
2579  * Restoring regulatory settings involves ingoring any
2580  * possibly stale country IE information and user regulatory
2581  * settings if so desired, this includes any beacon hints
2582  * learned as we could have traveled outside to another country
2583  * after disconnection. To restore regulatory settings we do
2584  * exactly what we did at bootup:
2585  *
2586  *   - send a core regulatory hint
2587  *   - send a user regulatory hint if applicable
2588  *
2589  * Device drivers that send a regulatory hint for a specific country
2590  * keep their own regulatory domain on wiphy->regd so that does does
2591  * not need to be remembered.
2592  */
2593 static void restore_regulatory_settings(bool reset_user)
2594 {
2595 	char alpha2[2];
2596 	char world_alpha2[2];
2597 	struct reg_beacon *reg_beacon, *btmp;
2598 	LIST_HEAD(tmp_reg_req_list);
2599 	struct cfg80211_registered_device *rdev;
2600 
2601 	ASSERT_RTNL();
2602 
2603 	/*
2604 	 * Clear the indoor setting in case that it is not controlled by user
2605 	 * space, as otherwise there is no guarantee that the device is still
2606 	 * operating in an indoor environment.
2607 	 */
2608 	spin_lock(&reg_indoor_lock);
2609 	if (reg_is_indoor && !reg_is_indoor_portid) {
2610 		reg_is_indoor = false;
2611 		reg_check_channels();
2612 	}
2613 	spin_unlock(&reg_indoor_lock);
2614 
2615 	reset_regdomains(true, &world_regdom);
2616 	restore_alpha2(alpha2, reset_user);
2617 
2618 	/*
2619 	 * If there's any pending requests we simply
2620 	 * stash them to a temporary pending queue and
2621 	 * add then after we've restored regulatory
2622 	 * settings.
2623 	 */
2624 	spin_lock(&reg_requests_lock);
2625 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2626 	spin_unlock(&reg_requests_lock);
2627 
2628 	/* Clear beacon hints */
2629 	spin_lock_bh(&reg_pending_beacons_lock);
2630 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2631 		list_del(&reg_beacon->list);
2632 		kfree(reg_beacon);
2633 	}
2634 	spin_unlock_bh(&reg_pending_beacons_lock);
2635 
2636 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2637 		list_del(&reg_beacon->list);
2638 		kfree(reg_beacon);
2639 	}
2640 
2641 	/* First restore to the basic regulatory settings */
2642 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2643 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2644 
2645 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2646 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2647 			continue;
2648 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2649 			restore_custom_reg_settings(&rdev->wiphy);
2650 	}
2651 
2652 	regulatory_hint_core(world_alpha2);
2653 
2654 	/*
2655 	 * This restores the ieee80211_regdom module parameter
2656 	 * preference or the last user requested regulatory
2657 	 * settings, user regulatory settings takes precedence.
2658 	 */
2659 	if (is_an_alpha2(alpha2))
2660 		regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2661 
2662 	spin_lock(&reg_requests_lock);
2663 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2664 	spin_unlock(&reg_requests_lock);
2665 
2666 	REG_DBG_PRINT("Kicking the queue\n");
2667 
2668 	schedule_work(&reg_work);
2669 }
2670 
2671 void regulatory_hint_disconnect(void)
2672 {
2673 	REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2674 	restore_regulatory_settings(false);
2675 }
2676 
2677 static bool freq_is_chan_12_13_14(u16 freq)
2678 {
2679 	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2680 	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2681 	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2682 		return true;
2683 	return false;
2684 }
2685 
2686 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2687 {
2688 	struct reg_beacon *pending_beacon;
2689 
2690 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2691 		if (beacon_chan->center_freq ==
2692 		    pending_beacon->chan.center_freq)
2693 			return true;
2694 	return false;
2695 }
2696 
2697 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2698 				 struct ieee80211_channel *beacon_chan,
2699 				 gfp_t gfp)
2700 {
2701 	struct reg_beacon *reg_beacon;
2702 	bool processing;
2703 
2704 	if (beacon_chan->beacon_found ||
2705 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2706 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2707 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2708 		return 0;
2709 
2710 	spin_lock_bh(&reg_pending_beacons_lock);
2711 	processing = pending_reg_beacon(beacon_chan);
2712 	spin_unlock_bh(&reg_pending_beacons_lock);
2713 
2714 	if (processing)
2715 		return 0;
2716 
2717 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2718 	if (!reg_beacon)
2719 		return -ENOMEM;
2720 
2721 	REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2722 		      beacon_chan->center_freq,
2723 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
2724 		      wiphy_name(wiphy));
2725 
2726 	memcpy(&reg_beacon->chan, beacon_chan,
2727 	       sizeof(struct ieee80211_channel));
2728 
2729 	/*
2730 	 * Since we can be called from BH or and non-BH context
2731 	 * we must use spin_lock_bh()
2732 	 */
2733 	spin_lock_bh(&reg_pending_beacons_lock);
2734 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2735 	spin_unlock_bh(&reg_pending_beacons_lock);
2736 
2737 	schedule_work(&reg_work);
2738 
2739 	return 0;
2740 }
2741 
2742 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2743 {
2744 	unsigned int i;
2745 	const struct ieee80211_reg_rule *reg_rule = NULL;
2746 	const struct ieee80211_freq_range *freq_range = NULL;
2747 	const struct ieee80211_power_rule *power_rule = NULL;
2748 	char bw[32], cac_time[32];
2749 
2750 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2751 
2752 	for (i = 0; i < rd->n_reg_rules; i++) {
2753 		reg_rule = &rd->reg_rules[i];
2754 		freq_range = &reg_rule->freq_range;
2755 		power_rule = &reg_rule->power_rule;
2756 
2757 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2758 			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2759 				 freq_range->max_bandwidth_khz,
2760 				 reg_get_max_bandwidth(rd, reg_rule));
2761 		else
2762 			snprintf(bw, sizeof(bw), "%d KHz",
2763 				 freq_range->max_bandwidth_khz);
2764 
2765 		if (reg_rule->flags & NL80211_RRF_DFS)
2766 			scnprintf(cac_time, sizeof(cac_time), "%u s",
2767 				  reg_rule->dfs_cac_ms/1000);
2768 		else
2769 			scnprintf(cac_time, sizeof(cac_time), "N/A");
2770 
2771 
2772 		/*
2773 		 * There may not be documentation for max antenna gain
2774 		 * in certain regions
2775 		 */
2776 		if (power_rule->max_antenna_gain)
2777 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2778 				freq_range->start_freq_khz,
2779 				freq_range->end_freq_khz,
2780 				bw,
2781 				power_rule->max_antenna_gain,
2782 				power_rule->max_eirp,
2783 				cac_time);
2784 		else
2785 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2786 				freq_range->start_freq_khz,
2787 				freq_range->end_freq_khz,
2788 				bw,
2789 				power_rule->max_eirp,
2790 				cac_time);
2791 	}
2792 }
2793 
2794 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2795 {
2796 	switch (dfs_region) {
2797 	case NL80211_DFS_UNSET:
2798 	case NL80211_DFS_FCC:
2799 	case NL80211_DFS_ETSI:
2800 	case NL80211_DFS_JP:
2801 		return true;
2802 	default:
2803 		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2804 			      dfs_region);
2805 		return false;
2806 	}
2807 }
2808 
2809 static void print_regdomain(const struct ieee80211_regdomain *rd)
2810 {
2811 	struct regulatory_request *lr = get_last_request();
2812 
2813 	if (is_intersected_alpha2(rd->alpha2)) {
2814 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2815 			struct cfg80211_registered_device *rdev;
2816 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2817 			if (rdev) {
2818 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
2819 					rdev->country_ie_alpha2[0],
2820 					rdev->country_ie_alpha2[1]);
2821 			} else
2822 				pr_debug("Current regulatory domain intersected:\n");
2823 		} else
2824 			pr_debug("Current regulatory domain intersected:\n");
2825 	} else if (is_world_regdom(rd->alpha2)) {
2826 		pr_debug("World regulatory domain updated:\n");
2827 	} else {
2828 		if (is_unknown_alpha2(rd->alpha2))
2829 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
2830 		else {
2831 			if (reg_request_cell_base(lr))
2832 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
2833 					rd->alpha2[0], rd->alpha2[1]);
2834 			else
2835 				pr_debug("Regulatory domain changed to country: %c%c\n",
2836 					rd->alpha2[0], rd->alpha2[1]);
2837 		}
2838 	}
2839 
2840 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2841 	print_rd_rules(rd);
2842 }
2843 
2844 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2845 {
2846 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2847 	print_rd_rules(rd);
2848 }
2849 
2850 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2851 {
2852 	if (!is_world_regdom(rd->alpha2))
2853 		return -EINVAL;
2854 	update_world_regdomain(rd);
2855 	return 0;
2856 }
2857 
2858 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2859 			   struct regulatory_request *user_request)
2860 {
2861 	const struct ieee80211_regdomain *intersected_rd = NULL;
2862 
2863 	if (!regdom_changes(rd->alpha2))
2864 		return -EALREADY;
2865 
2866 	if (!is_valid_rd(rd)) {
2867 		pr_err("Invalid regulatory domain detected: %c%c\n",
2868 		       rd->alpha2[0], rd->alpha2[1]);
2869 		print_regdomain_info(rd);
2870 		return -EINVAL;
2871 	}
2872 
2873 	if (!user_request->intersect) {
2874 		reset_regdomains(false, rd);
2875 		return 0;
2876 	}
2877 
2878 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2879 	if (!intersected_rd)
2880 		return -EINVAL;
2881 
2882 	kfree(rd);
2883 	rd = NULL;
2884 	reset_regdomains(false, intersected_rd);
2885 
2886 	return 0;
2887 }
2888 
2889 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2890 			     struct regulatory_request *driver_request)
2891 {
2892 	const struct ieee80211_regdomain *regd;
2893 	const struct ieee80211_regdomain *intersected_rd = NULL;
2894 	const struct ieee80211_regdomain *tmp;
2895 	struct wiphy *request_wiphy;
2896 
2897 	if (is_world_regdom(rd->alpha2))
2898 		return -EINVAL;
2899 
2900 	if (!regdom_changes(rd->alpha2))
2901 		return -EALREADY;
2902 
2903 	if (!is_valid_rd(rd)) {
2904 		pr_err("Invalid regulatory domain detected: %c%c\n",
2905 		       rd->alpha2[0], rd->alpha2[1]);
2906 		print_regdomain_info(rd);
2907 		return -EINVAL;
2908 	}
2909 
2910 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2911 	if (!request_wiphy)
2912 		return -ENODEV;
2913 
2914 	if (!driver_request->intersect) {
2915 		if (request_wiphy->regd)
2916 			return -EALREADY;
2917 
2918 		regd = reg_copy_regd(rd);
2919 		if (IS_ERR(regd))
2920 			return PTR_ERR(regd);
2921 
2922 		rcu_assign_pointer(request_wiphy->regd, regd);
2923 		reset_regdomains(false, rd);
2924 		return 0;
2925 	}
2926 
2927 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2928 	if (!intersected_rd)
2929 		return -EINVAL;
2930 
2931 	/*
2932 	 * We can trash what CRDA provided now.
2933 	 * However if a driver requested this specific regulatory
2934 	 * domain we keep it for its private use
2935 	 */
2936 	tmp = get_wiphy_regdom(request_wiphy);
2937 	rcu_assign_pointer(request_wiphy->regd, rd);
2938 	rcu_free_regdom(tmp);
2939 
2940 	rd = NULL;
2941 
2942 	reset_regdomains(false, intersected_rd);
2943 
2944 	return 0;
2945 }
2946 
2947 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2948 				 struct regulatory_request *country_ie_request)
2949 {
2950 	struct wiphy *request_wiphy;
2951 
2952 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2953 	    !is_unknown_alpha2(rd->alpha2))
2954 		return -EINVAL;
2955 
2956 	/*
2957 	 * Lets only bother proceeding on the same alpha2 if the current
2958 	 * rd is non static (it means CRDA was present and was used last)
2959 	 * and the pending request came in from a country IE
2960 	 */
2961 
2962 	if (!is_valid_rd(rd)) {
2963 		pr_err("Invalid regulatory domain detected: %c%c\n",
2964 		       rd->alpha2[0], rd->alpha2[1]);
2965 		print_regdomain_info(rd);
2966 		return -EINVAL;
2967 	}
2968 
2969 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2970 	if (!request_wiphy)
2971 		return -ENODEV;
2972 
2973 	if (country_ie_request->intersect)
2974 		return -EINVAL;
2975 
2976 	reset_regdomains(false, rd);
2977 	return 0;
2978 }
2979 
2980 /*
2981  * Use this call to set the current regulatory domain. Conflicts with
2982  * multiple drivers can be ironed out later. Caller must've already
2983  * kmalloc'd the rd structure.
2984  */
2985 int set_regdom(const struct ieee80211_regdomain *rd,
2986 	       enum ieee80211_regd_source regd_src)
2987 {
2988 	struct regulatory_request *lr;
2989 	bool user_reset = false;
2990 	int r;
2991 
2992 	if (!reg_is_valid_request(rd->alpha2)) {
2993 		kfree(rd);
2994 		return -EINVAL;
2995 	}
2996 
2997 	if (regd_src == REGD_SOURCE_CRDA)
2998 		reset_crda_timeouts();
2999 
3000 	lr = get_last_request();
3001 
3002 	/* Note that this doesn't update the wiphys, this is done below */
3003 	switch (lr->initiator) {
3004 	case NL80211_REGDOM_SET_BY_CORE:
3005 		r = reg_set_rd_core(rd);
3006 		break;
3007 	case NL80211_REGDOM_SET_BY_USER:
3008 		r = reg_set_rd_user(rd, lr);
3009 		user_reset = true;
3010 		break;
3011 	case NL80211_REGDOM_SET_BY_DRIVER:
3012 		r = reg_set_rd_driver(rd, lr);
3013 		break;
3014 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3015 		r = reg_set_rd_country_ie(rd, lr);
3016 		break;
3017 	default:
3018 		WARN(1, "invalid initiator %d\n", lr->initiator);
3019 		kfree(rd);
3020 		return -EINVAL;
3021 	}
3022 
3023 	if (r) {
3024 		switch (r) {
3025 		case -EALREADY:
3026 			reg_set_request_processed();
3027 			break;
3028 		default:
3029 			/* Back to world regulatory in case of errors */
3030 			restore_regulatory_settings(user_reset);
3031 		}
3032 
3033 		kfree(rd);
3034 		return r;
3035 	}
3036 
3037 	/* This would make this whole thing pointless */
3038 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3039 		return -EINVAL;
3040 
3041 	/* update all wiphys now with the new established regulatory domain */
3042 	update_all_wiphy_regulatory(lr->initiator);
3043 
3044 	print_regdomain(get_cfg80211_regdom());
3045 
3046 	nl80211_send_reg_change_event(lr);
3047 
3048 	reg_set_request_processed();
3049 
3050 	return 0;
3051 }
3052 
3053 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3054 				       struct ieee80211_regdomain *rd)
3055 {
3056 	const struct ieee80211_regdomain *regd;
3057 	const struct ieee80211_regdomain *prev_regd;
3058 	struct cfg80211_registered_device *rdev;
3059 
3060 	if (WARN_ON(!wiphy || !rd))
3061 		return -EINVAL;
3062 
3063 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3064 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3065 		return -EPERM;
3066 
3067 	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3068 		print_regdomain_info(rd);
3069 		return -EINVAL;
3070 	}
3071 
3072 	regd = reg_copy_regd(rd);
3073 	if (IS_ERR(regd))
3074 		return PTR_ERR(regd);
3075 
3076 	rdev = wiphy_to_rdev(wiphy);
3077 
3078 	spin_lock(&reg_requests_lock);
3079 	prev_regd = rdev->requested_regd;
3080 	rdev->requested_regd = regd;
3081 	spin_unlock(&reg_requests_lock);
3082 
3083 	kfree(prev_regd);
3084 	return 0;
3085 }
3086 
3087 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3088 			      struct ieee80211_regdomain *rd)
3089 {
3090 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3091 
3092 	if (ret)
3093 		return ret;
3094 
3095 	schedule_work(&reg_work);
3096 	return 0;
3097 }
3098 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3099 
3100 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3101 					struct ieee80211_regdomain *rd)
3102 {
3103 	int ret;
3104 
3105 	ASSERT_RTNL();
3106 
3107 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3108 	if (ret)
3109 		return ret;
3110 
3111 	/* process the request immediately */
3112 	reg_process_self_managed_hints();
3113 	return 0;
3114 }
3115 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3116 
3117 void wiphy_regulatory_register(struct wiphy *wiphy)
3118 {
3119 	struct regulatory_request *lr;
3120 
3121 	/* self-managed devices ignore external hints */
3122 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3123 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3124 					   REGULATORY_COUNTRY_IE_IGNORE;
3125 
3126 	if (!reg_dev_ignore_cell_hint(wiphy))
3127 		reg_num_devs_support_basehint++;
3128 
3129 	lr = get_last_request();
3130 	wiphy_update_regulatory(wiphy, lr->initiator);
3131 }
3132 
3133 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3134 {
3135 	struct wiphy *request_wiphy = NULL;
3136 	struct regulatory_request *lr;
3137 
3138 	lr = get_last_request();
3139 
3140 	if (!reg_dev_ignore_cell_hint(wiphy))
3141 		reg_num_devs_support_basehint--;
3142 
3143 	rcu_free_regdom(get_wiphy_regdom(wiphy));
3144 	RCU_INIT_POINTER(wiphy->regd, NULL);
3145 
3146 	if (lr)
3147 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3148 
3149 	if (!request_wiphy || request_wiphy != wiphy)
3150 		return;
3151 
3152 	lr->wiphy_idx = WIPHY_IDX_INVALID;
3153 	lr->country_ie_env = ENVIRON_ANY;
3154 }
3155 
3156 /*
3157  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3158  * UNII band definitions
3159  */
3160 int cfg80211_get_unii(int freq)
3161 {
3162 	/* UNII-1 */
3163 	if (freq >= 5150 && freq <= 5250)
3164 		return 0;
3165 
3166 	/* UNII-2A */
3167 	if (freq > 5250 && freq <= 5350)
3168 		return 1;
3169 
3170 	/* UNII-2B */
3171 	if (freq > 5350 && freq <= 5470)
3172 		return 2;
3173 
3174 	/* UNII-2C */
3175 	if (freq > 5470 && freq <= 5725)
3176 		return 3;
3177 
3178 	/* UNII-3 */
3179 	if (freq > 5725 && freq <= 5825)
3180 		return 4;
3181 
3182 	return -EINVAL;
3183 }
3184 
3185 bool regulatory_indoor_allowed(void)
3186 {
3187 	return reg_is_indoor;
3188 }
3189 
3190 int __init regulatory_init(void)
3191 {
3192 	int err = 0;
3193 
3194 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3195 	if (IS_ERR(reg_pdev))
3196 		return PTR_ERR(reg_pdev);
3197 
3198 	spin_lock_init(&reg_requests_lock);
3199 	spin_lock_init(&reg_pending_beacons_lock);
3200 	spin_lock_init(&reg_indoor_lock);
3201 
3202 	reg_regdb_size_check();
3203 
3204 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3205 
3206 	user_alpha2[0] = '9';
3207 	user_alpha2[1] = '7';
3208 
3209 	/* We always try to get an update for the static regdomain */
3210 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3211 	if (err) {
3212 		if (err == -ENOMEM) {
3213 			platform_device_unregister(reg_pdev);
3214 			return err;
3215 		}
3216 		/*
3217 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
3218 		 * memory which is handled and propagated appropriately above
3219 		 * but it can also fail during a netlink_broadcast() or during
3220 		 * early boot for call_usermodehelper(). For now treat these
3221 		 * errors as non-fatal.
3222 		 */
3223 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3224 	}
3225 
3226 	/*
3227 	 * Finally, if the user set the module parameter treat it
3228 	 * as a user hint.
3229 	 */
3230 	if (!is_world_regdom(ieee80211_regdom))
3231 		regulatory_hint_user(ieee80211_regdom,
3232 				     NL80211_USER_REG_HINT_USER);
3233 
3234 	return 0;
3235 }
3236 
3237 void regulatory_exit(void)
3238 {
3239 	struct regulatory_request *reg_request, *tmp;
3240 	struct reg_beacon *reg_beacon, *btmp;
3241 
3242 	cancel_work_sync(&reg_work);
3243 	cancel_crda_timeout_sync();
3244 	cancel_delayed_work_sync(&reg_check_chans);
3245 
3246 	/* Lock to suppress warnings */
3247 	rtnl_lock();
3248 	reset_regdomains(true, NULL);
3249 	rtnl_unlock();
3250 
3251 	dev_set_uevent_suppress(&reg_pdev->dev, true);
3252 
3253 	platform_device_unregister(reg_pdev);
3254 
3255 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3256 		list_del(&reg_beacon->list);
3257 		kfree(reg_beacon);
3258 	}
3259 
3260 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3261 		list_del(&reg_beacon->list);
3262 		kfree(reg_beacon);
3263 	}
3264 
3265 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3266 		list_del(&reg_request->list);
3267 		kfree(reg_request);
3268 	}
3269 }
3270