1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2022 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static DEFINE_SPINLOCK(reg_indoor_lock); 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user, bool cached); 135 static void print_regdomain(const struct ieee80211_regdomain *rd); 136 static void reg_process_hint(struct regulatory_request *reg_request); 137 138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 139 { 140 return rcu_dereference_rtnl(cfg80211_regdomain); 141 } 142 143 /* 144 * Returns the regulatory domain associated with the wiphy. 145 * 146 * Requires any of RTNL, wiphy mutex or RCU protection. 147 */ 148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 149 { 150 return rcu_dereference_check(wiphy->regd, 151 lockdep_is_held(&wiphy->mtx) || 152 lockdep_rtnl_is_held()); 153 } 154 EXPORT_SYMBOL(get_wiphy_regdom); 155 156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 157 { 158 switch (dfs_region) { 159 case NL80211_DFS_UNSET: 160 return "unset"; 161 case NL80211_DFS_FCC: 162 return "FCC"; 163 case NL80211_DFS_ETSI: 164 return "ETSI"; 165 case NL80211_DFS_JP: 166 return "JP"; 167 } 168 return "Unknown"; 169 } 170 171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 172 { 173 const struct ieee80211_regdomain *regd = NULL; 174 const struct ieee80211_regdomain *wiphy_regd = NULL; 175 enum nl80211_dfs_regions dfs_region; 176 177 rcu_read_lock(); 178 regd = get_cfg80211_regdom(); 179 dfs_region = regd->dfs_region; 180 181 if (!wiphy) 182 goto out; 183 184 wiphy_regd = get_wiphy_regdom(wiphy); 185 if (!wiphy_regd) 186 goto out; 187 188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 189 dfs_region = wiphy_regd->dfs_region; 190 goto out; 191 } 192 193 if (wiphy_regd->dfs_region == regd->dfs_region) 194 goto out; 195 196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 197 dev_name(&wiphy->dev), 198 reg_dfs_region_str(wiphy_regd->dfs_region), 199 reg_dfs_region_str(regd->dfs_region)); 200 201 out: 202 rcu_read_unlock(); 203 204 return dfs_region; 205 } 206 207 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 208 { 209 if (!r) 210 return; 211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 212 } 213 214 static struct regulatory_request *get_last_request(void) 215 { 216 return rcu_dereference_rtnl(last_request); 217 } 218 219 /* Used to queue up regulatory hints */ 220 static LIST_HEAD(reg_requests_list); 221 static DEFINE_SPINLOCK(reg_requests_lock); 222 223 /* Used to queue up beacon hints for review */ 224 static LIST_HEAD(reg_pending_beacons); 225 static DEFINE_SPINLOCK(reg_pending_beacons_lock); 226 227 /* Used to keep track of processed beacon hints */ 228 static LIST_HEAD(reg_beacon_list); 229 230 struct reg_beacon { 231 struct list_head list; 232 struct ieee80211_channel chan; 233 }; 234 235 static void reg_check_chans_work(struct work_struct *work); 236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 237 238 static void reg_todo(struct work_struct *work); 239 static DECLARE_WORK(reg_work, reg_todo); 240 241 /* We keep a static world regulatory domain in case of the absence of CRDA */ 242 static const struct ieee80211_regdomain world_regdom = { 243 .n_reg_rules = 8, 244 .alpha2 = "00", 245 .reg_rules = { 246 /* IEEE 802.11b/g, channels 1..11 */ 247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 248 /* IEEE 802.11b/g, channels 12..13. */ 249 REG_RULE(2467-10, 2472+10, 20, 6, 20, 250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 251 /* IEEE 802.11 channel 14 - Only JP enables 252 * this and for 802.11b only */ 253 REG_RULE(2484-10, 2484+10, 20, 6, 20, 254 NL80211_RRF_NO_IR | 255 NL80211_RRF_NO_OFDM), 256 /* IEEE 802.11a, channel 36..48 */ 257 REG_RULE(5180-10, 5240+10, 80, 6, 20, 258 NL80211_RRF_NO_IR | 259 NL80211_RRF_AUTO_BW), 260 261 /* IEEE 802.11a, channel 52..64 - DFS required */ 262 REG_RULE(5260-10, 5320+10, 80, 6, 20, 263 NL80211_RRF_NO_IR | 264 NL80211_RRF_AUTO_BW | 265 NL80211_RRF_DFS), 266 267 /* IEEE 802.11a, channel 100..144 - DFS required */ 268 REG_RULE(5500-10, 5720+10, 160, 6, 20, 269 NL80211_RRF_NO_IR | 270 NL80211_RRF_DFS), 271 272 /* IEEE 802.11a, channel 149..165 */ 273 REG_RULE(5745-10, 5825+10, 80, 6, 20, 274 NL80211_RRF_NO_IR), 275 276 /* IEEE 802.11ad (60GHz), channels 1..3 */ 277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 278 } 279 }; 280 281 /* protected by RTNL */ 282 static const struct ieee80211_regdomain *cfg80211_world_regdom = 283 &world_regdom; 284 285 static char *ieee80211_regdom = "00"; 286 static char user_alpha2[2]; 287 static const struct ieee80211_regdomain *cfg80211_user_regdom; 288 289 module_param(ieee80211_regdom, charp, 0444); 290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 291 292 static void reg_free_request(struct regulatory_request *request) 293 { 294 if (request == &core_request_world) 295 return; 296 297 if (request != get_last_request()) 298 kfree(request); 299 } 300 301 static void reg_free_last_request(void) 302 { 303 struct regulatory_request *lr = get_last_request(); 304 305 if (lr != &core_request_world && lr) 306 kfree_rcu(lr, rcu_head); 307 } 308 309 static void reg_update_last_request(struct regulatory_request *request) 310 { 311 struct regulatory_request *lr; 312 313 lr = get_last_request(); 314 if (lr == request) 315 return; 316 317 reg_free_last_request(); 318 rcu_assign_pointer(last_request, request); 319 } 320 321 static void reset_regdomains(bool full_reset, 322 const struct ieee80211_regdomain *new_regdom) 323 { 324 const struct ieee80211_regdomain *r; 325 326 ASSERT_RTNL(); 327 328 r = get_cfg80211_regdom(); 329 330 /* avoid freeing static information or freeing something twice */ 331 if (r == cfg80211_world_regdom) 332 r = NULL; 333 if (cfg80211_world_regdom == &world_regdom) 334 cfg80211_world_regdom = NULL; 335 if (r == &world_regdom) 336 r = NULL; 337 338 rcu_free_regdom(r); 339 rcu_free_regdom(cfg80211_world_regdom); 340 341 cfg80211_world_regdom = &world_regdom; 342 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 343 344 if (!full_reset) 345 return; 346 347 reg_update_last_request(&core_request_world); 348 } 349 350 /* 351 * Dynamic world regulatory domain requested by the wireless 352 * core upon initialization 353 */ 354 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 355 { 356 struct regulatory_request *lr; 357 358 lr = get_last_request(); 359 360 WARN_ON(!lr); 361 362 reset_regdomains(false, rd); 363 364 cfg80211_world_regdom = rd; 365 } 366 367 bool is_world_regdom(const char *alpha2) 368 { 369 if (!alpha2) 370 return false; 371 return alpha2[0] == '0' && alpha2[1] == '0'; 372 } 373 374 static bool is_alpha2_set(const char *alpha2) 375 { 376 if (!alpha2) 377 return false; 378 return alpha2[0] && alpha2[1]; 379 } 380 381 static bool is_unknown_alpha2(const char *alpha2) 382 { 383 if (!alpha2) 384 return false; 385 /* 386 * Special case where regulatory domain was built by driver 387 * but a specific alpha2 cannot be determined 388 */ 389 return alpha2[0] == '9' && alpha2[1] == '9'; 390 } 391 392 static bool is_intersected_alpha2(const char *alpha2) 393 { 394 if (!alpha2) 395 return false; 396 /* 397 * Special case where regulatory domain is the 398 * result of an intersection between two regulatory domain 399 * structures 400 */ 401 return alpha2[0] == '9' && alpha2[1] == '8'; 402 } 403 404 static bool is_an_alpha2(const char *alpha2) 405 { 406 if (!alpha2) 407 return false; 408 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 409 } 410 411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 412 { 413 if (!alpha2_x || !alpha2_y) 414 return false; 415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 416 } 417 418 static bool regdom_changes(const char *alpha2) 419 { 420 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 421 422 if (!r) 423 return true; 424 return !alpha2_equal(r->alpha2, alpha2); 425 } 426 427 /* 428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 430 * has ever been issued. 431 */ 432 static bool is_user_regdom_saved(void) 433 { 434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 435 return false; 436 437 /* This would indicate a mistake on the design */ 438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 439 "Unexpected user alpha2: %c%c\n", 440 user_alpha2[0], user_alpha2[1])) 441 return false; 442 443 return true; 444 } 445 446 static const struct ieee80211_regdomain * 447 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 448 { 449 struct ieee80211_regdomain *regd; 450 unsigned int i; 451 452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 453 GFP_KERNEL); 454 if (!regd) 455 return ERR_PTR(-ENOMEM); 456 457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 458 459 for (i = 0; i < src_regd->n_reg_rules; i++) 460 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 461 sizeof(struct ieee80211_reg_rule)); 462 463 return regd; 464 } 465 466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 467 { 468 ASSERT_RTNL(); 469 470 if (!IS_ERR(cfg80211_user_regdom)) 471 kfree(cfg80211_user_regdom); 472 cfg80211_user_regdom = reg_copy_regd(rd); 473 } 474 475 struct reg_regdb_apply_request { 476 struct list_head list; 477 const struct ieee80211_regdomain *regdom; 478 }; 479 480 static LIST_HEAD(reg_regdb_apply_list); 481 static DEFINE_MUTEX(reg_regdb_apply_mutex); 482 483 static void reg_regdb_apply(struct work_struct *work) 484 { 485 struct reg_regdb_apply_request *request; 486 487 rtnl_lock(); 488 489 mutex_lock(®_regdb_apply_mutex); 490 while (!list_empty(®_regdb_apply_list)) { 491 request = list_first_entry(®_regdb_apply_list, 492 struct reg_regdb_apply_request, 493 list); 494 list_del(&request->list); 495 496 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 497 kfree(request); 498 } 499 mutex_unlock(®_regdb_apply_mutex); 500 501 rtnl_unlock(); 502 } 503 504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 505 506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 507 { 508 struct reg_regdb_apply_request *request; 509 510 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 511 if (!request) { 512 kfree(regdom); 513 return -ENOMEM; 514 } 515 516 request->regdom = regdom; 517 518 mutex_lock(®_regdb_apply_mutex); 519 list_add_tail(&request->list, ®_regdb_apply_list); 520 mutex_unlock(®_regdb_apply_mutex); 521 522 schedule_work(®_regdb_work); 523 return 0; 524 } 525 526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 527 /* Max number of consecutive attempts to communicate with CRDA */ 528 #define REG_MAX_CRDA_TIMEOUTS 10 529 530 static u32 reg_crda_timeouts; 531 532 static void crda_timeout_work(struct work_struct *work); 533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 534 535 static void crda_timeout_work(struct work_struct *work) 536 { 537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 538 rtnl_lock(); 539 reg_crda_timeouts++; 540 restore_regulatory_settings(true, false); 541 rtnl_unlock(); 542 } 543 544 static void cancel_crda_timeout(void) 545 { 546 cancel_delayed_work(&crda_timeout); 547 } 548 549 static void cancel_crda_timeout_sync(void) 550 { 551 cancel_delayed_work_sync(&crda_timeout); 552 } 553 554 static void reset_crda_timeouts(void) 555 { 556 reg_crda_timeouts = 0; 557 } 558 559 /* 560 * This lets us keep regulatory code which is updated on a regulatory 561 * basis in userspace. 562 */ 563 static int call_crda(const char *alpha2) 564 { 565 char country[12]; 566 char *env[] = { country, NULL }; 567 int ret; 568 569 snprintf(country, sizeof(country), "COUNTRY=%c%c", 570 alpha2[0], alpha2[1]); 571 572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 574 return -EINVAL; 575 } 576 577 if (!is_world_regdom((char *) alpha2)) 578 pr_debug("Calling CRDA for country: %c%c\n", 579 alpha2[0], alpha2[1]); 580 else 581 pr_debug("Calling CRDA to update world regulatory domain\n"); 582 583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 584 if (ret) 585 return ret; 586 587 queue_delayed_work(system_power_efficient_wq, 588 &crda_timeout, msecs_to_jiffies(3142)); 589 return 0; 590 } 591 #else 592 static inline void cancel_crda_timeout(void) {} 593 static inline void cancel_crda_timeout_sync(void) {} 594 static inline void reset_crda_timeouts(void) {} 595 static inline int call_crda(const char *alpha2) 596 { 597 return -ENODATA; 598 } 599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 600 601 /* code to directly load a firmware database through request_firmware */ 602 static const struct fwdb_header *regdb; 603 604 struct fwdb_country { 605 u8 alpha2[2]; 606 __be16 coll_ptr; 607 /* this struct cannot be extended */ 608 } __packed __aligned(4); 609 610 struct fwdb_collection { 611 u8 len; 612 u8 n_rules; 613 u8 dfs_region; 614 /* no optional data yet */ 615 /* aligned to 2, then followed by __be16 array of rule pointers */ 616 } __packed __aligned(4); 617 618 enum fwdb_flags { 619 FWDB_FLAG_NO_OFDM = BIT(0), 620 FWDB_FLAG_NO_OUTDOOR = BIT(1), 621 FWDB_FLAG_DFS = BIT(2), 622 FWDB_FLAG_NO_IR = BIT(3), 623 FWDB_FLAG_AUTO_BW = BIT(4), 624 }; 625 626 struct fwdb_wmm_ac { 627 u8 ecw; 628 u8 aifsn; 629 __be16 cot; 630 } __packed; 631 632 struct fwdb_wmm_rule { 633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 635 } __packed; 636 637 struct fwdb_rule { 638 u8 len; 639 u8 flags; 640 __be16 max_eirp; 641 __be32 start, end, max_bw; 642 /* start of optional data */ 643 __be16 cac_timeout; 644 __be16 wmm_ptr; 645 } __packed __aligned(4); 646 647 #define FWDB_MAGIC 0x52474442 648 #define FWDB_VERSION 20 649 650 struct fwdb_header { 651 __be32 magic; 652 __be32 version; 653 struct fwdb_country country[]; 654 } __packed __aligned(4); 655 656 static int ecw2cw(int ecw) 657 { 658 return (1 << ecw) - 1; 659 } 660 661 static bool valid_wmm(struct fwdb_wmm_rule *rule) 662 { 663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 664 int i; 665 666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 667 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 668 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 669 u8 aifsn = ac[i].aifsn; 670 671 if (cw_min >= cw_max) 672 return false; 673 674 if (aifsn < 1) 675 return false; 676 } 677 678 return true; 679 } 680 681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 682 { 683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 684 685 if ((u8 *)rule + sizeof(rule->len) > data + size) 686 return false; 687 688 /* mandatory fields */ 689 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 690 return false; 691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 693 struct fwdb_wmm_rule *wmm; 694 695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 696 return false; 697 698 wmm = (void *)(data + wmm_ptr); 699 700 if (!valid_wmm(wmm)) 701 return false; 702 } 703 return true; 704 } 705 706 static bool valid_country(const u8 *data, unsigned int size, 707 const struct fwdb_country *country) 708 { 709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 710 struct fwdb_collection *coll = (void *)(data + ptr); 711 __be16 *rules_ptr; 712 unsigned int i; 713 714 /* make sure we can read len/n_rules */ 715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 716 return false; 717 718 /* make sure base struct and all rules fit */ 719 if ((u8 *)coll + ALIGN(coll->len, 2) + 720 (coll->n_rules * 2) > data + size) 721 return false; 722 723 /* mandatory fields must exist */ 724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 725 return false; 726 727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 728 729 for (i = 0; i < coll->n_rules; i++) { 730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 731 732 if (!valid_rule(data, size, rule_ptr)) 733 return false; 734 } 735 736 return true; 737 } 738 739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 740 static struct key *builtin_regdb_keys; 741 742 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen) 743 { 744 const u8 *end = p + buflen; 745 size_t plen; 746 key_ref_t key; 747 748 while (p < end) { 749 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more 750 * than 256 bytes in size. 751 */ 752 if (end - p < 4) 753 goto dodgy_cert; 754 if (p[0] != 0x30 && 755 p[1] != 0x82) 756 goto dodgy_cert; 757 plen = (p[2] << 8) | p[3]; 758 plen += 4; 759 if (plen > end - p) 760 goto dodgy_cert; 761 762 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1), 763 "asymmetric", NULL, p, plen, 764 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 765 KEY_USR_VIEW | KEY_USR_READ), 766 KEY_ALLOC_NOT_IN_QUOTA | 767 KEY_ALLOC_BUILT_IN | 768 KEY_ALLOC_BYPASS_RESTRICTION); 769 if (IS_ERR(key)) { 770 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n", 771 PTR_ERR(key)); 772 } else { 773 pr_notice("Loaded X.509 cert '%s'\n", 774 key_ref_to_ptr(key)->description); 775 key_ref_put(key); 776 } 777 p += plen; 778 } 779 780 return; 781 782 dodgy_cert: 783 pr_err("Problem parsing in-kernel X.509 certificate list\n"); 784 } 785 786 static int __init load_builtin_regdb_keys(void) 787 { 788 builtin_regdb_keys = 789 keyring_alloc(".builtin_regdb_keys", 790 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 791 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 792 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 793 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 794 if (IS_ERR(builtin_regdb_keys)) 795 return PTR_ERR(builtin_regdb_keys); 796 797 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 798 799 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 800 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len); 801 #endif 802 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 803 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 804 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len); 805 #endif 806 807 return 0; 808 } 809 810 MODULE_FIRMWARE("regulatory.db.p7s"); 811 812 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 813 { 814 const struct firmware *sig; 815 bool result; 816 817 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 818 return false; 819 820 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 821 builtin_regdb_keys, 822 VERIFYING_UNSPECIFIED_SIGNATURE, 823 NULL, NULL) == 0; 824 825 release_firmware(sig); 826 827 return result; 828 } 829 830 static void free_regdb_keyring(void) 831 { 832 key_put(builtin_regdb_keys); 833 } 834 #else 835 static int load_builtin_regdb_keys(void) 836 { 837 return 0; 838 } 839 840 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 841 { 842 return true; 843 } 844 845 static void free_regdb_keyring(void) 846 { 847 } 848 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 849 850 static bool valid_regdb(const u8 *data, unsigned int size) 851 { 852 const struct fwdb_header *hdr = (void *)data; 853 const struct fwdb_country *country; 854 855 if (size < sizeof(*hdr)) 856 return false; 857 858 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 859 return false; 860 861 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 862 return false; 863 864 if (!regdb_has_valid_signature(data, size)) 865 return false; 866 867 country = &hdr->country[0]; 868 while ((u8 *)(country + 1) <= data + size) { 869 if (!country->coll_ptr) 870 break; 871 if (!valid_country(data, size, country)) 872 return false; 873 country++; 874 } 875 876 return true; 877 } 878 879 static void set_wmm_rule(const struct fwdb_header *db, 880 const struct fwdb_country *country, 881 const struct fwdb_rule *rule, 882 struct ieee80211_reg_rule *rrule) 883 { 884 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 885 struct fwdb_wmm_rule *wmm; 886 unsigned int i, wmm_ptr; 887 888 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 889 wmm = (void *)((u8 *)db + wmm_ptr); 890 891 if (!valid_wmm(wmm)) { 892 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 893 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 894 country->alpha2[0], country->alpha2[1]); 895 return; 896 } 897 898 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 899 wmm_rule->client[i].cw_min = 900 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 901 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 902 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 903 wmm_rule->client[i].cot = 904 1000 * be16_to_cpu(wmm->client[i].cot); 905 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 906 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 907 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 908 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 909 } 910 911 rrule->has_wmm = true; 912 } 913 914 static int __regdb_query_wmm(const struct fwdb_header *db, 915 const struct fwdb_country *country, int freq, 916 struct ieee80211_reg_rule *rrule) 917 { 918 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 919 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 920 int i; 921 922 for (i = 0; i < coll->n_rules; i++) { 923 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 924 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 925 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 926 927 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 928 continue; 929 930 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 931 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 932 set_wmm_rule(db, country, rule, rrule); 933 return 0; 934 } 935 } 936 937 return -ENODATA; 938 } 939 940 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 941 { 942 const struct fwdb_header *hdr = regdb; 943 const struct fwdb_country *country; 944 945 if (!regdb) 946 return -ENODATA; 947 948 if (IS_ERR(regdb)) 949 return PTR_ERR(regdb); 950 951 country = &hdr->country[0]; 952 while (country->coll_ptr) { 953 if (alpha2_equal(alpha2, country->alpha2)) 954 return __regdb_query_wmm(regdb, country, freq, rule); 955 956 country++; 957 } 958 959 return -ENODATA; 960 } 961 EXPORT_SYMBOL(reg_query_regdb_wmm); 962 963 static int regdb_query_country(const struct fwdb_header *db, 964 const struct fwdb_country *country) 965 { 966 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 967 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 968 struct ieee80211_regdomain *regdom; 969 unsigned int i; 970 971 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 972 GFP_KERNEL); 973 if (!regdom) 974 return -ENOMEM; 975 976 regdom->n_reg_rules = coll->n_rules; 977 regdom->alpha2[0] = country->alpha2[0]; 978 regdom->alpha2[1] = country->alpha2[1]; 979 regdom->dfs_region = coll->dfs_region; 980 981 for (i = 0; i < regdom->n_reg_rules; i++) { 982 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 983 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 984 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 985 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 986 987 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 988 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 989 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 990 991 rrule->power_rule.max_antenna_gain = 0; 992 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 993 994 rrule->flags = 0; 995 if (rule->flags & FWDB_FLAG_NO_OFDM) 996 rrule->flags |= NL80211_RRF_NO_OFDM; 997 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 998 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 999 if (rule->flags & FWDB_FLAG_DFS) 1000 rrule->flags |= NL80211_RRF_DFS; 1001 if (rule->flags & FWDB_FLAG_NO_IR) 1002 rrule->flags |= NL80211_RRF_NO_IR; 1003 if (rule->flags & FWDB_FLAG_AUTO_BW) 1004 rrule->flags |= NL80211_RRF_AUTO_BW; 1005 1006 rrule->dfs_cac_ms = 0; 1007 1008 /* handle optional data */ 1009 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 1010 rrule->dfs_cac_ms = 1011 1000 * be16_to_cpu(rule->cac_timeout); 1012 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 1013 set_wmm_rule(db, country, rule, rrule); 1014 } 1015 1016 return reg_schedule_apply(regdom); 1017 } 1018 1019 static int query_regdb(const char *alpha2) 1020 { 1021 const struct fwdb_header *hdr = regdb; 1022 const struct fwdb_country *country; 1023 1024 ASSERT_RTNL(); 1025 1026 if (IS_ERR(regdb)) 1027 return PTR_ERR(regdb); 1028 1029 country = &hdr->country[0]; 1030 while (country->coll_ptr) { 1031 if (alpha2_equal(alpha2, country->alpha2)) 1032 return regdb_query_country(regdb, country); 1033 country++; 1034 } 1035 1036 return -ENODATA; 1037 } 1038 1039 static void regdb_fw_cb(const struct firmware *fw, void *context) 1040 { 1041 int set_error = 0; 1042 bool restore = true; 1043 void *db; 1044 1045 if (!fw) { 1046 pr_info("failed to load regulatory.db\n"); 1047 set_error = -ENODATA; 1048 } else if (!valid_regdb(fw->data, fw->size)) { 1049 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1050 set_error = -EINVAL; 1051 } 1052 1053 rtnl_lock(); 1054 if (regdb && !IS_ERR(regdb)) { 1055 /* negative case - a bug 1056 * positive case - can happen due to race in case of multiple cb's in 1057 * queue, due to usage of asynchronous callback 1058 * 1059 * Either case, just restore and free new db. 1060 */ 1061 } else if (set_error) { 1062 regdb = ERR_PTR(set_error); 1063 } else if (fw) { 1064 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1065 if (db) { 1066 regdb = db; 1067 restore = context && query_regdb(context); 1068 } else { 1069 restore = true; 1070 } 1071 } 1072 1073 if (restore) 1074 restore_regulatory_settings(true, false); 1075 1076 rtnl_unlock(); 1077 1078 kfree(context); 1079 1080 release_firmware(fw); 1081 } 1082 1083 MODULE_FIRMWARE("regulatory.db"); 1084 1085 static int query_regdb_file(const char *alpha2) 1086 { 1087 int err; 1088 1089 ASSERT_RTNL(); 1090 1091 if (regdb) 1092 return query_regdb(alpha2); 1093 1094 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1095 if (!alpha2) 1096 return -ENOMEM; 1097 1098 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1099 ®_pdev->dev, GFP_KERNEL, 1100 (void *)alpha2, regdb_fw_cb); 1101 if (err) 1102 kfree(alpha2); 1103 1104 return err; 1105 } 1106 1107 int reg_reload_regdb(void) 1108 { 1109 const struct firmware *fw; 1110 void *db; 1111 int err; 1112 const struct ieee80211_regdomain *current_regdomain; 1113 struct regulatory_request *request; 1114 1115 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1116 if (err) 1117 return err; 1118 1119 if (!valid_regdb(fw->data, fw->size)) { 1120 err = -ENODATA; 1121 goto out; 1122 } 1123 1124 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1125 if (!db) { 1126 err = -ENOMEM; 1127 goto out; 1128 } 1129 1130 rtnl_lock(); 1131 if (!IS_ERR_OR_NULL(regdb)) 1132 kfree(regdb); 1133 regdb = db; 1134 1135 /* reset regulatory domain */ 1136 current_regdomain = get_cfg80211_regdom(); 1137 1138 request = kzalloc(sizeof(*request), GFP_KERNEL); 1139 if (!request) { 1140 err = -ENOMEM; 1141 goto out_unlock; 1142 } 1143 1144 request->wiphy_idx = WIPHY_IDX_INVALID; 1145 request->alpha2[0] = current_regdomain->alpha2[0]; 1146 request->alpha2[1] = current_regdomain->alpha2[1]; 1147 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1148 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER; 1149 1150 reg_process_hint(request); 1151 1152 out_unlock: 1153 rtnl_unlock(); 1154 out: 1155 release_firmware(fw); 1156 return err; 1157 } 1158 1159 static bool reg_query_database(struct regulatory_request *request) 1160 { 1161 if (query_regdb_file(request->alpha2) == 0) 1162 return true; 1163 1164 if (call_crda(request->alpha2) == 0) 1165 return true; 1166 1167 return false; 1168 } 1169 1170 bool reg_is_valid_request(const char *alpha2) 1171 { 1172 struct regulatory_request *lr = get_last_request(); 1173 1174 if (!lr || lr->processed) 1175 return false; 1176 1177 return alpha2_equal(lr->alpha2, alpha2); 1178 } 1179 1180 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1181 { 1182 struct regulatory_request *lr = get_last_request(); 1183 1184 /* 1185 * Follow the driver's regulatory domain, if present, unless a country 1186 * IE has been processed or a user wants to help complaince further 1187 */ 1188 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1189 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1190 wiphy->regd) 1191 return get_wiphy_regdom(wiphy); 1192 1193 return get_cfg80211_regdom(); 1194 } 1195 1196 static unsigned int 1197 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1198 const struct ieee80211_reg_rule *rule) 1199 { 1200 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1201 const struct ieee80211_freq_range *freq_range_tmp; 1202 const struct ieee80211_reg_rule *tmp; 1203 u32 start_freq, end_freq, idx, no; 1204 1205 for (idx = 0; idx < rd->n_reg_rules; idx++) 1206 if (rule == &rd->reg_rules[idx]) 1207 break; 1208 1209 if (idx == rd->n_reg_rules) 1210 return 0; 1211 1212 /* get start_freq */ 1213 no = idx; 1214 1215 while (no) { 1216 tmp = &rd->reg_rules[--no]; 1217 freq_range_tmp = &tmp->freq_range; 1218 1219 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1220 break; 1221 1222 freq_range = freq_range_tmp; 1223 } 1224 1225 start_freq = freq_range->start_freq_khz; 1226 1227 /* get end_freq */ 1228 freq_range = &rule->freq_range; 1229 no = idx; 1230 1231 while (no < rd->n_reg_rules - 1) { 1232 tmp = &rd->reg_rules[++no]; 1233 freq_range_tmp = &tmp->freq_range; 1234 1235 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1236 break; 1237 1238 freq_range = freq_range_tmp; 1239 } 1240 1241 end_freq = freq_range->end_freq_khz; 1242 1243 return end_freq - start_freq; 1244 } 1245 1246 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1247 const struct ieee80211_reg_rule *rule) 1248 { 1249 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1250 1251 if (rule->flags & NL80211_RRF_NO_320MHZ) 1252 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160)); 1253 if (rule->flags & NL80211_RRF_NO_160MHZ) 1254 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1255 if (rule->flags & NL80211_RRF_NO_80MHZ) 1256 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1257 1258 /* 1259 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1260 * are not allowed. 1261 */ 1262 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1263 rule->flags & NL80211_RRF_NO_HT40PLUS) 1264 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1265 1266 return bw; 1267 } 1268 1269 /* Sanity check on a regulatory rule */ 1270 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1271 { 1272 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1273 u32 freq_diff; 1274 1275 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1276 return false; 1277 1278 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1279 return false; 1280 1281 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1282 1283 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1284 freq_range->max_bandwidth_khz > freq_diff) 1285 return false; 1286 1287 return true; 1288 } 1289 1290 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1291 { 1292 const struct ieee80211_reg_rule *reg_rule = NULL; 1293 unsigned int i; 1294 1295 if (!rd->n_reg_rules) 1296 return false; 1297 1298 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1299 return false; 1300 1301 for (i = 0; i < rd->n_reg_rules; i++) { 1302 reg_rule = &rd->reg_rules[i]; 1303 if (!is_valid_reg_rule(reg_rule)) 1304 return false; 1305 } 1306 1307 return true; 1308 } 1309 1310 /** 1311 * freq_in_rule_band - tells us if a frequency is in a frequency band 1312 * @freq_range: frequency rule we want to query 1313 * @freq_khz: frequency we are inquiring about 1314 * 1315 * This lets us know if a specific frequency rule is or is not relevant to 1316 * a specific frequency's band. Bands are device specific and artificial 1317 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1318 * however it is safe for now to assume that a frequency rule should not be 1319 * part of a frequency's band if the start freq or end freq are off by more 1320 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1321 * 60 GHz band. 1322 * This resolution can be lowered and should be considered as we add 1323 * regulatory rule support for other "bands". 1324 **/ 1325 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1326 u32 freq_khz) 1327 { 1328 #define ONE_GHZ_IN_KHZ 1000000 1329 /* 1330 * From 802.11ad: directional multi-gigabit (DMG): 1331 * Pertaining to operation in a frequency band containing a channel 1332 * with the Channel starting frequency above 45 GHz. 1333 */ 1334 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1335 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1336 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1337 return true; 1338 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1339 return true; 1340 return false; 1341 #undef ONE_GHZ_IN_KHZ 1342 } 1343 1344 /* 1345 * Later on we can perhaps use the more restrictive DFS 1346 * region but we don't have information for that yet so 1347 * for now simply disallow conflicts. 1348 */ 1349 static enum nl80211_dfs_regions 1350 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1351 const enum nl80211_dfs_regions dfs_region2) 1352 { 1353 if (dfs_region1 != dfs_region2) 1354 return NL80211_DFS_UNSET; 1355 return dfs_region1; 1356 } 1357 1358 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1359 const struct ieee80211_wmm_ac *wmm_ac2, 1360 struct ieee80211_wmm_ac *intersect) 1361 { 1362 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1363 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1364 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1365 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1366 } 1367 1368 /* 1369 * Helper for regdom_intersect(), this does the real 1370 * mathematical intersection fun 1371 */ 1372 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1373 const struct ieee80211_regdomain *rd2, 1374 const struct ieee80211_reg_rule *rule1, 1375 const struct ieee80211_reg_rule *rule2, 1376 struct ieee80211_reg_rule *intersected_rule) 1377 { 1378 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1379 struct ieee80211_freq_range *freq_range; 1380 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1381 struct ieee80211_power_rule *power_rule; 1382 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1383 struct ieee80211_wmm_rule *wmm_rule; 1384 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1385 1386 freq_range1 = &rule1->freq_range; 1387 freq_range2 = &rule2->freq_range; 1388 freq_range = &intersected_rule->freq_range; 1389 1390 power_rule1 = &rule1->power_rule; 1391 power_rule2 = &rule2->power_rule; 1392 power_rule = &intersected_rule->power_rule; 1393 1394 wmm_rule1 = &rule1->wmm_rule; 1395 wmm_rule2 = &rule2->wmm_rule; 1396 wmm_rule = &intersected_rule->wmm_rule; 1397 1398 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1399 freq_range2->start_freq_khz); 1400 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1401 freq_range2->end_freq_khz); 1402 1403 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1404 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1405 1406 if (rule1->flags & NL80211_RRF_AUTO_BW) 1407 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1408 if (rule2->flags & NL80211_RRF_AUTO_BW) 1409 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1410 1411 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1412 1413 intersected_rule->flags = rule1->flags | rule2->flags; 1414 1415 /* 1416 * In case NL80211_RRF_AUTO_BW requested for both rules 1417 * set AUTO_BW in intersected rule also. Next we will 1418 * calculate BW correctly in handle_channel function. 1419 * In other case remove AUTO_BW flag while we calculate 1420 * maximum bandwidth correctly and auto calculation is 1421 * not required. 1422 */ 1423 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1424 (rule2->flags & NL80211_RRF_AUTO_BW)) 1425 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1426 else 1427 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1428 1429 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1430 if (freq_range->max_bandwidth_khz > freq_diff) 1431 freq_range->max_bandwidth_khz = freq_diff; 1432 1433 power_rule->max_eirp = min(power_rule1->max_eirp, 1434 power_rule2->max_eirp); 1435 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1436 power_rule2->max_antenna_gain); 1437 1438 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1439 rule2->dfs_cac_ms); 1440 1441 if (rule1->has_wmm && rule2->has_wmm) { 1442 u8 ac; 1443 1444 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1445 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1446 &wmm_rule2->client[ac], 1447 &wmm_rule->client[ac]); 1448 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1449 &wmm_rule2->ap[ac], 1450 &wmm_rule->ap[ac]); 1451 } 1452 1453 intersected_rule->has_wmm = true; 1454 } else if (rule1->has_wmm) { 1455 *wmm_rule = *wmm_rule1; 1456 intersected_rule->has_wmm = true; 1457 } else if (rule2->has_wmm) { 1458 *wmm_rule = *wmm_rule2; 1459 intersected_rule->has_wmm = true; 1460 } else { 1461 intersected_rule->has_wmm = false; 1462 } 1463 1464 if (!is_valid_reg_rule(intersected_rule)) 1465 return -EINVAL; 1466 1467 return 0; 1468 } 1469 1470 /* check whether old rule contains new rule */ 1471 static bool rule_contains(struct ieee80211_reg_rule *r1, 1472 struct ieee80211_reg_rule *r2) 1473 { 1474 /* for simplicity, currently consider only same flags */ 1475 if (r1->flags != r2->flags) 1476 return false; 1477 1478 /* verify r1 is more restrictive */ 1479 if ((r1->power_rule.max_antenna_gain > 1480 r2->power_rule.max_antenna_gain) || 1481 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1482 return false; 1483 1484 /* make sure r2's range is contained within r1 */ 1485 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1486 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1487 return false; 1488 1489 /* and finally verify that r1.max_bw >= r2.max_bw */ 1490 if (r1->freq_range.max_bandwidth_khz < 1491 r2->freq_range.max_bandwidth_khz) 1492 return false; 1493 1494 return true; 1495 } 1496 1497 /* add or extend current rules. do nothing if rule is already contained */ 1498 static void add_rule(struct ieee80211_reg_rule *rule, 1499 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1500 { 1501 struct ieee80211_reg_rule *tmp_rule; 1502 int i; 1503 1504 for (i = 0; i < *n_rules; i++) { 1505 tmp_rule = ®_rules[i]; 1506 /* rule is already contained - do nothing */ 1507 if (rule_contains(tmp_rule, rule)) 1508 return; 1509 1510 /* extend rule if possible */ 1511 if (rule_contains(rule, tmp_rule)) { 1512 memcpy(tmp_rule, rule, sizeof(*rule)); 1513 return; 1514 } 1515 } 1516 1517 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1518 (*n_rules)++; 1519 } 1520 1521 /** 1522 * regdom_intersect - do the intersection between two regulatory domains 1523 * @rd1: first regulatory domain 1524 * @rd2: second regulatory domain 1525 * 1526 * Use this function to get the intersection between two regulatory domains. 1527 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1528 * as no one single alpha2 can represent this regulatory domain. 1529 * 1530 * Returns a pointer to the regulatory domain structure which will hold the 1531 * resulting intersection of rules between rd1 and rd2. We will 1532 * kzalloc() this structure for you. 1533 */ 1534 static struct ieee80211_regdomain * 1535 regdom_intersect(const struct ieee80211_regdomain *rd1, 1536 const struct ieee80211_regdomain *rd2) 1537 { 1538 int r; 1539 unsigned int x, y; 1540 unsigned int num_rules = 0; 1541 const struct ieee80211_reg_rule *rule1, *rule2; 1542 struct ieee80211_reg_rule intersected_rule; 1543 struct ieee80211_regdomain *rd; 1544 1545 if (!rd1 || !rd2) 1546 return NULL; 1547 1548 /* 1549 * First we get a count of the rules we'll need, then we actually 1550 * build them. This is to so we can malloc() and free() a 1551 * regdomain once. The reason we use reg_rules_intersect() here 1552 * is it will return -EINVAL if the rule computed makes no sense. 1553 * All rules that do check out OK are valid. 1554 */ 1555 1556 for (x = 0; x < rd1->n_reg_rules; x++) { 1557 rule1 = &rd1->reg_rules[x]; 1558 for (y = 0; y < rd2->n_reg_rules; y++) { 1559 rule2 = &rd2->reg_rules[y]; 1560 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1561 &intersected_rule)) 1562 num_rules++; 1563 } 1564 } 1565 1566 if (!num_rules) 1567 return NULL; 1568 1569 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1570 if (!rd) 1571 return NULL; 1572 1573 for (x = 0; x < rd1->n_reg_rules; x++) { 1574 rule1 = &rd1->reg_rules[x]; 1575 for (y = 0; y < rd2->n_reg_rules; y++) { 1576 rule2 = &rd2->reg_rules[y]; 1577 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1578 &intersected_rule); 1579 /* 1580 * No need to memset here the intersected rule here as 1581 * we're not using the stack anymore 1582 */ 1583 if (r) 1584 continue; 1585 1586 add_rule(&intersected_rule, rd->reg_rules, 1587 &rd->n_reg_rules); 1588 } 1589 } 1590 1591 rd->alpha2[0] = '9'; 1592 rd->alpha2[1] = '8'; 1593 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1594 rd2->dfs_region); 1595 1596 return rd; 1597 } 1598 1599 /* 1600 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1601 * want to just have the channel structure use these 1602 */ 1603 static u32 map_regdom_flags(u32 rd_flags) 1604 { 1605 u32 channel_flags = 0; 1606 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1607 channel_flags |= IEEE80211_CHAN_NO_IR; 1608 if (rd_flags & NL80211_RRF_DFS) 1609 channel_flags |= IEEE80211_CHAN_RADAR; 1610 if (rd_flags & NL80211_RRF_NO_OFDM) 1611 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1612 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1613 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1614 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1615 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1616 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1617 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1618 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1619 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1620 if (rd_flags & NL80211_RRF_NO_80MHZ) 1621 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1622 if (rd_flags & NL80211_RRF_NO_160MHZ) 1623 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1624 if (rd_flags & NL80211_RRF_NO_HE) 1625 channel_flags |= IEEE80211_CHAN_NO_HE; 1626 if (rd_flags & NL80211_RRF_NO_320MHZ) 1627 channel_flags |= IEEE80211_CHAN_NO_320MHZ; 1628 return channel_flags; 1629 } 1630 1631 static const struct ieee80211_reg_rule * 1632 freq_reg_info_regd(u32 center_freq, 1633 const struct ieee80211_regdomain *regd, u32 bw) 1634 { 1635 int i; 1636 bool band_rule_found = false; 1637 bool bw_fits = false; 1638 1639 if (!regd) 1640 return ERR_PTR(-EINVAL); 1641 1642 for (i = 0; i < regd->n_reg_rules; i++) { 1643 const struct ieee80211_reg_rule *rr; 1644 const struct ieee80211_freq_range *fr = NULL; 1645 1646 rr = ®d->reg_rules[i]; 1647 fr = &rr->freq_range; 1648 1649 /* 1650 * We only need to know if one frequency rule was 1651 * in center_freq's band, that's enough, so let's 1652 * not overwrite it once found 1653 */ 1654 if (!band_rule_found) 1655 band_rule_found = freq_in_rule_band(fr, center_freq); 1656 1657 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1658 1659 if (band_rule_found && bw_fits) 1660 return rr; 1661 } 1662 1663 if (!band_rule_found) 1664 return ERR_PTR(-ERANGE); 1665 1666 return ERR_PTR(-EINVAL); 1667 } 1668 1669 static const struct ieee80211_reg_rule * 1670 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1671 { 1672 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1673 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20}; 1674 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE); 1675 int i = ARRAY_SIZE(bws) - 1; 1676 u32 bw; 1677 1678 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) { 1679 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1680 if (!IS_ERR(reg_rule)) 1681 return reg_rule; 1682 } 1683 1684 return reg_rule; 1685 } 1686 1687 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1688 u32 center_freq) 1689 { 1690 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20; 1691 1692 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw)); 1693 } 1694 EXPORT_SYMBOL(freq_reg_info); 1695 1696 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1697 { 1698 switch (initiator) { 1699 case NL80211_REGDOM_SET_BY_CORE: 1700 return "core"; 1701 case NL80211_REGDOM_SET_BY_USER: 1702 return "user"; 1703 case NL80211_REGDOM_SET_BY_DRIVER: 1704 return "driver"; 1705 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1706 return "country element"; 1707 default: 1708 WARN_ON(1); 1709 return "bug"; 1710 } 1711 } 1712 EXPORT_SYMBOL(reg_initiator_name); 1713 1714 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1715 const struct ieee80211_reg_rule *reg_rule, 1716 const struct ieee80211_channel *chan) 1717 { 1718 const struct ieee80211_freq_range *freq_range = NULL; 1719 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0; 1720 bool is_s1g = chan->band == NL80211_BAND_S1GHZ; 1721 1722 freq_range = ®_rule->freq_range; 1723 1724 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1725 center_freq_khz = ieee80211_channel_to_khz(chan); 1726 /* Check if auto calculation requested */ 1727 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1728 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1729 1730 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1731 if (!cfg80211_does_bw_fit_range(freq_range, 1732 center_freq_khz, 1733 MHZ_TO_KHZ(10))) 1734 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1735 if (!cfg80211_does_bw_fit_range(freq_range, 1736 center_freq_khz, 1737 MHZ_TO_KHZ(20))) 1738 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1739 1740 if (is_s1g) { 1741 /* S1G is strict about non overlapping channels. We can 1742 * calculate which bandwidth is allowed per channel by finding 1743 * the largest bandwidth which cleanly divides the freq_range. 1744 */ 1745 int edge_offset; 1746 int ch_bw = max_bandwidth_khz; 1747 1748 while (ch_bw) { 1749 edge_offset = (center_freq_khz - ch_bw / 2) - 1750 freq_range->start_freq_khz; 1751 if (edge_offset % ch_bw == 0) { 1752 switch (KHZ_TO_MHZ(ch_bw)) { 1753 case 1: 1754 bw_flags |= IEEE80211_CHAN_1MHZ; 1755 break; 1756 case 2: 1757 bw_flags |= IEEE80211_CHAN_2MHZ; 1758 break; 1759 case 4: 1760 bw_flags |= IEEE80211_CHAN_4MHZ; 1761 break; 1762 case 8: 1763 bw_flags |= IEEE80211_CHAN_8MHZ; 1764 break; 1765 case 16: 1766 bw_flags |= IEEE80211_CHAN_16MHZ; 1767 break; 1768 default: 1769 /* If we got here, no bandwidths fit on 1770 * this frequency, ie. band edge. 1771 */ 1772 bw_flags |= IEEE80211_CHAN_DISABLED; 1773 break; 1774 } 1775 break; 1776 } 1777 ch_bw /= 2; 1778 } 1779 } else { 1780 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1781 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1782 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1783 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1784 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1785 bw_flags |= IEEE80211_CHAN_NO_HT40; 1786 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1787 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1788 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1789 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1790 if (max_bandwidth_khz < MHZ_TO_KHZ(320)) 1791 bw_flags |= IEEE80211_CHAN_NO_320MHZ; 1792 } 1793 return bw_flags; 1794 } 1795 1796 static void handle_channel_single_rule(struct wiphy *wiphy, 1797 enum nl80211_reg_initiator initiator, 1798 struct ieee80211_channel *chan, 1799 u32 flags, 1800 struct regulatory_request *lr, 1801 struct wiphy *request_wiphy, 1802 const struct ieee80211_reg_rule *reg_rule) 1803 { 1804 u32 bw_flags = 0; 1805 const struct ieee80211_power_rule *power_rule = NULL; 1806 const struct ieee80211_regdomain *regd; 1807 1808 regd = reg_get_regdomain(wiphy); 1809 1810 power_rule = ®_rule->power_rule; 1811 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1812 1813 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1814 request_wiphy && request_wiphy == wiphy && 1815 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1816 /* 1817 * This guarantees the driver's requested regulatory domain 1818 * will always be used as a base for further regulatory 1819 * settings 1820 */ 1821 chan->flags = chan->orig_flags = 1822 map_regdom_flags(reg_rule->flags) | bw_flags; 1823 chan->max_antenna_gain = chan->orig_mag = 1824 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1825 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1826 (int) MBM_TO_DBM(power_rule->max_eirp); 1827 1828 if (chan->flags & IEEE80211_CHAN_RADAR) { 1829 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1830 if (reg_rule->dfs_cac_ms) 1831 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1832 } 1833 1834 return; 1835 } 1836 1837 chan->dfs_state = NL80211_DFS_USABLE; 1838 chan->dfs_state_entered = jiffies; 1839 1840 chan->beacon_found = false; 1841 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1842 chan->max_antenna_gain = 1843 min_t(int, chan->orig_mag, 1844 MBI_TO_DBI(power_rule->max_antenna_gain)); 1845 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1846 1847 if (chan->flags & IEEE80211_CHAN_RADAR) { 1848 if (reg_rule->dfs_cac_ms) 1849 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1850 else 1851 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1852 } 1853 1854 if (chan->orig_mpwr) { 1855 /* 1856 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1857 * will always follow the passed country IE power settings. 1858 */ 1859 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1860 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1861 chan->max_power = chan->max_reg_power; 1862 else 1863 chan->max_power = min(chan->orig_mpwr, 1864 chan->max_reg_power); 1865 } else 1866 chan->max_power = chan->max_reg_power; 1867 } 1868 1869 static void handle_channel_adjacent_rules(struct wiphy *wiphy, 1870 enum nl80211_reg_initiator initiator, 1871 struct ieee80211_channel *chan, 1872 u32 flags, 1873 struct regulatory_request *lr, 1874 struct wiphy *request_wiphy, 1875 const struct ieee80211_reg_rule *rrule1, 1876 const struct ieee80211_reg_rule *rrule2, 1877 struct ieee80211_freq_range *comb_range) 1878 { 1879 u32 bw_flags1 = 0; 1880 u32 bw_flags2 = 0; 1881 const struct ieee80211_power_rule *power_rule1 = NULL; 1882 const struct ieee80211_power_rule *power_rule2 = NULL; 1883 const struct ieee80211_regdomain *regd; 1884 1885 regd = reg_get_regdomain(wiphy); 1886 1887 power_rule1 = &rrule1->power_rule; 1888 power_rule2 = &rrule2->power_rule; 1889 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan); 1890 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan); 1891 1892 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1893 request_wiphy && request_wiphy == wiphy && 1894 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1895 /* This guarantees the driver's requested regulatory domain 1896 * will always be used as a base for further regulatory 1897 * settings 1898 */ 1899 chan->flags = 1900 map_regdom_flags(rrule1->flags) | 1901 map_regdom_flags(rrule2->flags) | 1902 bw_flags1 | 1903 bw_flags2; 1904 chan->orig_flags = chan->flags; 1905 chan->max_antenna_gain = 1906 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain), 1907 MBI_TO_DBI(power_rule2->max_antenna_gain)); 1908 chan->orig_mag = chan->max_antenna_gain; 1909 chan->max_reg_power = 1910 min_t(int, MBM_TO_DBM(power_rule1->max_eirp), 1911 MBM_TO_DBM(power_rule2->max_eirp)); 1912 chan->max_power = chan->max_reg_power; 1913 chan->orig_mpwr = chan->max_reg_power; 1914 1915 if (chan->flags & IEEE80211_CHAN_RADAR) { 1916 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1917 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1918 chan->dfs_cac_ms = max_t(unsigned int, 1919 rrule1->dfs_cac_ms, 1920 rrule2->dfs_cac_ms); 1921 } 1922 1923 return; 1924 } 1925 1926 chan->dfs_state = NL80211_DFS_USABLE; 1927 chan->dfs_state_entered = jiffies; 1928 1929 chan->beacon_found = false; 1930 chan->flags = flags | bw_flags1 | bw_flags2 | 1931 map_regdom_flags(rrule1->flags) | 1932 map_regdom_flags(rrule2->flags); 1933 1934 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz 1935 * (otherwise no adj. rule case), recheck therefore 1936 */ 1937 if (cfg80211_does_bw_fit_range(comb_range, 1938 ieee80211_channel_to_khz(chan), 1939 MHZ_TO_KHZ(10))) 1940 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ; 1941 if (cfg80211_does_bw_fit_range(comb_range, 1942 ieee80211_channel_to_khz(chan), 1943 MHZ_TO_KHZ(20))) 1944 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ; 1945 1946 chan->max_antenna_gain = 1947 min_t(int, chan->orig_mag, 1948 min_t(int, 1949 MBI_TO_DBI(power_rule1->max_antenna_gain), 1950 MBI_TO_DBI(power_rule2->max_antenna_gain))); 1951 chan->max_reg_power = min_t(int, 1952 MBM_TO_DBM(power_rule1->max_eirp), 1953 MBM_TO_DBM(power_rule2->max_eirp)); 1954 1955 if (chan->flags & IEEE80211_CHAN_RADAR) { 1956 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1957 chan->dfs_cac_ms = max_t(unsigned int, 1958 rrule1->dfs_cac_ms, 1959 rrule2->dfs_cac_ms); 1960 else 1961 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1962 } 1963 1964 if (chan->orig_mpwr) { 1965 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1966 * will always follow the passed country IE power settings. 1967 */ 1968 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1969 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1970 chan->max_power = chan->max_reg_power; 1971 else 1972 chan->max_power = min(chan->orig_mpwr, 1973 chan->max_reg_power); 1974 } else { 1975 chan->max_power = chan->max_reg_power; 1976 } 1977 } 1978 1979 /* Note that right now we assume the desired channel bandwidth 1980 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1981 * per channel, the primary and the extension channel). 1982 */ 1983 static void handle_channel(struct wiphy *wiphy, 1984 enum nl80211_reg_initiator initiator, 1985 struct ieee80211_channel *chan) 1986 { 1987 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan); 1988 struct regulatory_request *lr = get_last_request(); 1989 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1990 const struct ieee80211_reg_rule *rrule = NULL; 1991 const struct ieee80211_reg_rule *rrule1 = NULL; 1992 const struct ieee80211_reg_rule *rrule2 = NULL; 1993 1994 u32 flags = chan->orig_flags; 1995 1996 rrule = freq_reg_info(wiphy, orig_chan_freq); 1997 if (IS_ERR(rrule)) { 1998 /* check for adjacent match, therefore get rules for 1999 * chan - 20 MHz and chan + 20 MHz and test 2000 * if reg rules are adjacent 2001 */ 2002 rrule1 = freq_reg_info(wiphy, 2003 orig_chan_freq - MHZ_TO_KHZ(20)); 2004 rrule2 = freq_reg_info(wiphy, 2005 orig_chan_freq + MHZ_TO_KHZ(20)); 2006 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) { 2007 struct ieee80211_freq_range comb_range; 2008 2009 if (rrule1->freq_range.end_freq_khz != 2010 rrule2->freq_range.start_freq_khz) 2011 goto disable_chan; 2012 2013 comb_range.start_freq_khz = 2014 rrule1->freq_range.start_freq_khz; 2015 comb_range.end_freq_khz = 2016 rrule2->freq_range.end_freq_khz; 2017 comb_range.max_bandwidth_khz = 2018 min_t(u32, 2019 rrule1->freq_range.max_bandwidth_khz, 2020 rrule2->freq_range.max_bandwidth_khz); 2021 2022 if (!cfg80211_does_bw_fit_range(&comb_range, 2023 orig_chan_freq, 2024 MHZ_TO_KHZ(20))) 2025 goto disable_chan; 2026 2027 handle_channel_adjacent_rules(wiphy, initiator, chan, 2028 flags, lr, request_wiphy, 2029 rrule1, rrule2, 2030 &comb_range); 2031 return; 2032 } 2033 2034 disable_chan: 2035 /* We will disable all channels that do not match our 2036 * received regulatory rule unless the hint is coming 2037 * from a Country IE and the Country IE had no information 2038 * about a band. The IEEE 802.11 spec allows for an AP 2039 * to send only a subset of the regulatory rules allowed, 2040 * so an AP in the US that only supports 2.4 GHz may only send 2041 * a country IE with information for the 2.4 GHz band 2042 * while 5 GHz is still supported. 2043 */ 2044 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2045 PTR_ERR(rrule) == -ERANGE) 2046 return; 2047 2048 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2049 request_wiphy && request_wiphy == wiphy && 2050 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2051 pr_debug("Disabling freq %d.%03d MHz for good\n", 2052 chan->center_freq, chan->freq_offset); 2053 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2054 chan->flags = chan->orig_flags; 2055 } else { 2056 pr_debug("Disabling freq %d.%03d MHz\n", 2057 chan->center_freq, chan->freq_offset); 2058 chan->flags |= IEEE80211_CHAN_DISABLED; 2059 } 2060 return; 2061 } 2062 2063 handle_channel_single_rule(wiphy, initiator, chan, flags, lr, 2064 request_wiphy, rrule); 2065 } 2066 2067 static void handle_band(struct wiphy *wiphy, 2068 enum nl80211_reg_initiator initiator, 2069 struct ieee80211_supported_band *sband) 2070 { 2071 unsigned int i; 2072 2073 if (!sband) 2074 return; 2075 2076 for (i = 0; i < sband->n_channels; i++) 2077 handle_channel(wiphy, initiator, &sband->channels[i]); 2078 } 2079 2080 static bool reg_request_cell_base(struct regulatory_request *request) 2081 { 2082 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 2083 return false; 2084 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 2085 } 2086 2087 bool reg_last_request_cell_base(void) 2088 { 2089 return reg_request_cell_base(get_last_request()); 2090 } 2091 2092 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 2093 /* Core specific check */ 2094 static enum reg_request_treatment 2095 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2096 { 2097 struct regulatory_request *lr = get_last_request(); 2098 2099 if (!reg_num_devs_support_basehint) 2100 return REG_REQ_IGNORE; 2101 2102 if (reg_request_cell_base(lr) && 2103 !regdom_changes(pending_request->alpha2)) 2104 return REG_REQ_ALREADY_SET; 2105 2106 return REG_REQ_OK; 2107 } 2108 2109 /* Device specific check */ 2110 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2111 { 2112 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 2113 } 2114 #else 2115 static enum reg_request_treatment 2116 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2117 { 2118 return REG_REQ_IGNORE; 2119 } 2120 2121 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2122 { 2123 return true; 2124 } 2125 #endif 2126 2127 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 2128 { 2129 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 2130 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 2131 return true; 2132 return false; 2133 } 2134 2135 static bool ignore_reg_update(struct wiphy *wiphy, 2136 enum nl80211_reg_initiator initiator) 2137 { 2138 struct regulatory_request *lr = get_last_request(); 2139 2140 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2141 return true; 2142 2143 if (!lr) { 2144 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 2145 reg_initiator_name(initiator)); 2146 return true; 2147 } 2148 2149 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2150 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 2151 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 2152 reg_initiator_name(initiator)); 2153 return true; 2154 } 2155 2156 /* 2157 * wiphy->regd will be set once the device has its own 2158 * desired regulatory domain set 2159 */ 2160 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 2161 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2162 !is_world_regdom(lr->alpha2)) { 2163 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 2164 reg_initiator_name(initiator)); 2165 return true; 2166 } 2167 2168 if (reg_request_cell_base(lr)) 2169 return reg_dev_ignore_cell_hint(wiphy); 2170 2171 return false; 2172 } 2173 2174 static bool reg_is_world_roaming(struct wiphy *wiphy) 2175 { 2176 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 2177 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 2178 struct regulatory_request *lr = get_last_request(); 2179 2180 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 2181 return true; 2182 2183 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2184 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2185 return true; 2186 2187 return false; 2188 } 2189 2190 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 2191 struct reg_beacon *reg_beacon) 2192 { 2193 struct ieee80211_supported_band *sband; 2194 struct ieee80211_channel *chan; 2195 bool channel_changed = false; 2196 struct ieee80211_channel chan_before; 2197 2198 sband = wiphy->bands[reg_beacon->chan.band]; 2199 chan = &sband->channels[chan_idx]; 2200 2201 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan))) 2202 return; 2203 2204 if (chan->beacon_found) 2205 return; 2206 2207 chan->beacon_found = true; 2208 2209 if (!reg_is_world_roaming(wiphy)) 2210 return; 2211 2212 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 2213 return; 2214 2215 chan_before = *chan; 2216 2217 if (chan->flags & IEEE80211_CHAN_NO_IR) { 2218 chan->flags &= ~IEEE80211_CHAN_NO_IR; 2219 channel_changed = true; 2220 } 2221 2222 if (channel_changed) 2223 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 2224 } 2225 2226 /* 2227 * Called when a scan on a wiphy finds a beacon on 2228 * new channel 2229 */ 2230 static void wiphy_update_new_beacon(struct wiphy *wiphy, 2231 struct reg_beacon *reg_beacon) 2232 { 2233 unsigned int i; 2234 struct ieee80211_supported_band *sband; 2235 2236 if (!wiphy->bands[reg_beacon->chan.band]) 2237 return; 2238 2239 sband = wiphy->bands[reg_beacon->chan.band]; 2240 2241 for (i = 0; i < sband->n_channels; i++) 2242 handle_reg_beacon(wiphy, i, reg_beacon); 2243 } 2244 2245 /* 2246 * Called upon reg changes or a new wiphy is added 2247 */ 2248 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 2249 { 2250 unsigned int i; 2251 struct ieee80211_supported_band *sband; 2252 struct reg_beacon *reg_beacon; 2253 2254 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 2255 if (!wiphy->bands[reg_beacon->chan.band]) 2256 continue; 2257 sband = wiphy->bands[reg_beacon->chan.band]; 2258 for (i = 0; i < sband->n_channels; i++) 2259 handle_reg_beacon(wiphy, i, reg_beacon); 2260 } 2261 } 2262 2263 /* Reap the advantages of previously found beacons */ 2264 static void reg_process_beacons(struct wiphy *wiphy) 2265 { 2266 /* 2267 * Means we are just firing up cfg80211, so no beacons would 2268 * have been processed yet. 2269 */ 2270 if (!last_request) 2271 return; 2272 wiphy_update_beacon_reg(wiphy); 2273 } 2274 2275 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2276 { 2277 if (!chan) 2278 return false; 2279 if (chan->flags & IEEE80211_CHAN_DISABLED) 2280 return false; 2281 /* This would happen when regulatory rules disallow HT40 completely */ 2282 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2283 return false; 2284 return true; 2285 } 2286 2287 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2288 struct ieee80211_channel *channel) 2289 { 2290 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2291 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2292 const struct ieee80211_regdomain *regd; 2293 unsigned int i; 2294 u32 flags; 2295 2296 if (!is_ht40_allowed(channel)) { 2297 channel->flags |= IEEE80211_CHAN_NO_HT40; 2298 return; 2299 } 2300 2301 /* 2302 * We need to ensure the extension channels exist to 2303 * be able to use HT40- or HT40+, this finds them (or not) 2304 */ 2305 for (i = 0; i < sband->n_channels; i++) { 2306 struct ieee80211_channel *c = &sband->channels[i]; 2307 2308 if (c->center_freq == (channel->center_freq - 20)) 2309 channel_before = c; 2310 if (c->center_freq == (channel->center_freq + 20)) 2311 channel_after = c; 2312 } 2313 2314 flags = 0; 2315 regd = get_wiphy_regdom(wiphy); 2316 if (regd) { 2317 const struct ieee80211_reg_rule *reg_rule = 2318 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2319 regd, MHZ_TO_KHZ(20)); 2320 2321 if (!IS_ERR(reg_rule)) 2322 flags = reg_rule->flags; 2323 } 2324 2325 /* 2326 * Please note that this assumes target bandwidth is 20 MHz, 2327 * if that ever changes we also need to change the below logic 2328 * to include that as well. 2329 */ 2330 if (!is_ht40_allowed(channel_before) || 2331 flags & NL80211_RRF_NO_HT40MINUS) 2332 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2333 else 2334 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2335 2336 if (!is_ht40_allowed(channel_after) || 2337 flags & NL80211_RRF_NO_HT40PLUS) 2338 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2339 else 2340 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2341 } 2342 2343 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2344 struct ieee80211_supported_band *sband) 2345 { 2346 unsigned int i; 2347 2348 if (!sband) 2349 return; 2350 2351 for (i = 0; i < sband->n_channels; i++) 2352 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2353 } 2354 2355 static void reg_process_ht_flags(struct wiphy *wiphy) 2356 { 2357 enum nl80211_band band; 2358 2359 if (!wiphy) 2360 return; 2361 2362 for (band = 0; band < NUM_NL80211_BANDS; band++) 2363 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2364 } 2365 2366 static void reg_call_notifier(struct wiphy *wiphy, 2367 struct regulatory_request *request) 2368 { 2369 if (wiphy->reg_notifier) 2370 wiphy->reg_notifier(wiphy, request); 2371 } 2372 2373 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2374 { 2375 struct cfg80211_chan_def chandef = {}; 2376 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2377 enum nl80211_iftype iftype; 2378 bool ret; 2379 int link; 2380 2381 wdev_lock(wdev); 2382 iftype = wdev->iftype; 2383 2384 /* make sure the interface is active */ 2385 if (!wdev->netdev || !netif_running(wdev->netdev)) 2386 goto wdev_inactive_unlock; 2387 2388 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) { 2389 struct ieee80211_channel *chan; 2390 2391 if (!wdev->valid_links && link > 0) 2392 break; 2393 if (!(wdev->valid_links & BIT(link))) 2394 continue; 2395 switch (iftype) { 2396 case NL80211_IFTYPE_AP: 2397 case NL80211_IFTYPE_P2P_GO: 2398 if (!wdev->links[link].ap.beacon_interval) 2399 continue; 2400 chandef = wdev->links[link].ap.chandef; 2401 break; 2402 case NL80211_IFTYPE_MESH_POINT: 2403 if (!wdev->u.mesh.beacon_interval) 2404 continue; 2405 chandef = wdev->u.mesh.chandef; 2406 break; 2407 case NL80211_IFTYPE_ADHOC: 2408 if (!wdev->u.ibss.ssid_len) 2409 continue; 2410 chandef = wdev->u.ibss.chandef; 2411 break; 2412 case NL80211_IFTYPE_STATION: 2413 case NL80211_IFTYPE_P2P_CLIENT: 2414 /* Maybe we could consider disabling that link only? */ 2415 if (!wdev->links[link].client.current_bss) 2416 continue; 2417 2418 chan = wdev->links[link].client.current_bss->pub.channel; 2419 if (!chan) 2420 continue; 2421 2422 if (!rdev->ops->get_channel || 2423 rdev_get_channel(rdev, wdev, link, &chandef)) 2424 cfg80211_chandef_create(&chandef, chan, 2425 NL80211_CHAN_NO_HT); 2426 break; 2427 case NL80211_IFTYPE_MONITOR: 2428 case NL80211_IFTYPE_AP_VLAN: 2429 case NL80211_IFTYPE_P2P_DEVICE: 2430 /* no enforcement required */ 2431 break; 2432 default: 2433 /* others not implemented for now */ 2434 WARN_ON(1); 2435 break; 2436 } 2437 2438 wdev_unlock(wdev); 2439 2440 switch (iftype) { 2441 case NL80211_IFTYPE_AP: 2442 case NL80211_IFTYPE_P2P_GO: 2443 case NL80211_IFTYPE_ADHOC: 2444 case NL80211_IFTYPE_MESH_POINT: 2445 wiphy_lock(wiphy); 2446 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, 2447 iftype); 2448 wiphy_unlock(wiphy); 2449 2450 if (!ret) 2451 return ret; 2452 break; 2453 case NL80211_IFTYPE_STATION: 2454 case NL80211_IFTYPE_P2P_CLIENT: 2455 ret = cfg80211_chandef_usable(wiphy, &chandef, 2456 IEEE80211_CHAN_DISABLED); 2457 if (!ret) 2458 return ret; 2459 break; 2460 default: 2461 break; 2462 } 2463 2464 wdev_lock(wdev); 2465 } 2466 2467 wdev_unlock(wdev); 2468 2469 return true; 2470 2471 wdev_inactive_unlock: 2472 wdev_unlock(wdev); 2473 return true; 2474 } 2475 2476 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2477 { 2478 struct wireless_dev *wdev; 2479 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2480 2481 ASSERT_RTNL(); 2482 2483 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2484 if (!reg_wdev_chan_valid(wiphy, wdev)) 2485 cfg80211_leave(rdev, wdev); 2486 } 2487 2488 static void reg_check_chans_work(struct work_struct *work) 2489 { 2490 struct cfg80211_registered_device *rdev; 2491 2492 pr_debug("Verifying active interfaces after reg change\n"); 2493 rtnl_lock(); 2494 2495 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2496 if (!(rdev->wiphy.regulatory_flags & 2497 REGULATORY_IGNORE_STALE_KICKOFF)) 2498 reg_leave_invalid_chans(&rdev->wiphy); 2499 2500 rtnl_unlock(); 2501 } 2502 2503 static void reg_check_channels(void) 2504 { 2505 /* 2506 * Give usermode a chance to do something nicer (move to another 2507 * channel, orderly disconnection), before forcing a disconnection. 2508 */ 2509 mod_delayed_work(system_power_efficient_wq, 2510 ®_check_chans, 2511 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2512 } 2513 2514 static void wiphy_update_regulatory(struct wiphy *wiphy, 2515 enum nl80211_reg_initiator initiator) 2516 { 2517 enum nl80211_band band; 2518 struct regulatory_request *lr = get_last_request(); 2519 2520 if (ignore_reg_update(wiphy, initiator)) { 2521 /* 2522 * Regulatory updates set by CORE are ignored for custom 2523 * regulatory cards. Let us notify the changes to the driver, 2524 * as some drivers used this to restore its orig_* reg domain. 2525 */ 2526 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2527 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2528 !(wiphy->regulatory_flags & 2529 REGULATORY_WIPHY_SELF_MANAGED)) 2530 reg_call_notifier(wiphy, lr); 2531 return; 2532 } 2533 2534 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2535 2536 for (band = 0; band < NUM_NL80211_BANDS; band++) 2537 handle_band(wiphy, initiator, wiphy->bands[band]); 2538 2539 reg_process_beacons(wiphy); 2540 reg_process_ht_flags(wiphy); 2541 reg_call_notifier(wiphy, lr); 2542 } 2543 2544 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2545 { 2546 struct cfg80211_registered_device *rdev; 2547 struct wiphy *wiphy; 2548 2549 ASSERT_RTNL(); 2550 2551 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2552 wiphy = &rdev->wiphy; 2553 wiphy_update_regulatory(wiphy, initiator); 2554 } 2555 2556 reg_check_channels(); 2557 } 2558 2559 static void handle_channel_custom(struct wiphy *wiphy, 2560 struct ieee80211_channel *chan, 2561 const struct ieee80211_regdomain *regd, 2562 u32 min_bw) 2563 { 2564 u32 bw_flags = 0; 2565 const struct ieee80211_reg_rule *reg_rule = NULL; 2566 const struct ieee80211_power_rule *power_rule = NULL; 2567 u32 bw, center_freq_khz; 2568 2569 center_freq_khz = ieee80211_channel_to_khz(chan); 2570 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 2571 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw); 2572 if (!IS_ERR(reg_rule)) 2573 break; 2574 } 2575 2576 if (IS_ERR_OR_NULL(reg_rule)) { 2577 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n", 2578 chan->center_freq, chan->freq_offset); 2579 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2580 chan->flags |= IEEE80211_CHAN_DISABLED; 2581 } else { 2582 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2583 chan->flags = chan->orig_flags; 2584 } 2585 return; 2586 } 2587 2588 power_rule = ®_rule->power_rule; 2589 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2590 2591 chan->dfs_state_entered = jiffies; 2592 chan->dfs_state = NL80211_DFS_USABLE; 2593 2594 chan->beacon_found = false; 2595 2596 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2597 chan->flags = chan->orig_flags | bw_flags | 2598 map_regdom_flags(reg_rule->flags); 2599 else 2600 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2601 2602 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2603 chan->max_reg_power = chan->max_power = 2604 (int) MBM_TO_DBM(power_rule->max_eirp); 2605 2606 if (chan->flags & IEEE80211_CHAN_RADAR) { 2607 if (reg_rule->dfs_cac_ms) 2608 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2609 else 2610 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2611 } 2612 2613 chan->max_power = chan->max_reg_power; 2614 } 2615 2616 static void handle_band_custom(struct wiphy *wiphy, 2617 struct ieee80211_supported_band *sband, 2618 const struct ieee80211_regdomain *regd) 2619 { 2620 unsigned int i; 2621 2622 if (!sband) 2623 return; 2624 2625 /* 2626 * We currently assume that you always want at least 20 MHz, 2627 * otherwise channel 12 might get enabled if this rule is 2628 * compatible to US, which permits 2402 - 2472 MHz. 2629 */ 2630 for (i = 0; i < sband->n_channels; i++) 2631 handle_channel_custom(wiphy, &sband->channels[i], regd, 2632 MHZ_TO_KHZ(20)); 2633 } 2634 2635 /* Used by drivers prior to wiphy registration */ 2636 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2637 const struct ieee80211_regdomain *regd) 2638 { 2639 const struct ieee80211_regdomain *new_regd, *tmp; 2640 enum nl80211_band band; 2641 unsigned int bands_set = 0; 2642 2643 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2644 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2645 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2646 2647 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2648 if (!wiphy->bands[band]) 2649 continue; 2650 handle_band_custom(wiphy, wiphy->bands[band], regd); 2651 bands_set++; 2652 } 2653 2654 /* 2655 * no point in calling this if it won't have any effect 2656 * on your device's supported bands. 2657 */ 2658 WARN_ON(!bands_set); 2659 new_regd = reg_copy_regd(regd); 2660 if (IS_ERR(new_regd)) 2661 return; 2662 2663 rtnl_lock(); 2664 wiphy_lock(wiphy); 2665 2666 tmp = get_wiphy_regdom(wiphy); 2667 rcu_assign_pointer(wiphy->regd, new_regd); 2668 rcu_free_regdom(tmp); 2669 2670 wiphy_unlock(wiphy); 2671 rtnl_unlock(); 2672 } 2673 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2674 2675 static void reg_set_request_processed(void) 2676 { 2677 bool need_more_processing = false; 2678 struct regulatory_request *lr = get_last_request(); 2679 2680 lr->processed = true; 2681 2682 spin_lock(®_requests_lock); 2683 if (!list_empty(®_requests_list)) 2684 need_more_processing = true; 2685 spin_unlock(®_requests_lock); 2686 2687 cancel_crda_timeout(); 2688 2689 if (need_more_processing) 2690 schedule_work(®_work); 2691 } 2692 2693 /** 2694 * reg_process_hint_core - process core regulatory requests 2695 * @core_request: a pending core regulatory request 2696 * 2697 * The wireless subsystem can use this function to process 2698 * a regulatory request issued by the regulatory core. 2699 */ 2700 static enum reg_request_treatment 2701 reg_process_hint_core(struct regulatory_request *core_request) 2702 { 2703 if (reg_query_database(core_request)) { 2704 core_request->intersect = false; 2705 core_request->processed = false; 2706 reg_update_last_request(core_request); 2707 return REG_REQ_OK; 2708 } 2709 2710 return REG_REQ_IGNORE; 2711 } 2712 2713 static enum reg_request_treatment 2714 __reg_process_hint_user(struct regulatory_request *user_request) 2715 { 2716 struct regulatory_request *lr = get_last_request(); 2717 2718 if (reg_request_cell_base(user_request)) 2719 return reg_ignore_cell_hint(user_request); 2720 2721 if (reg_request_cell_base(lr)) 2722 return REG_REQ_IGNORE; 2723 2724 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2725 return REG_REQ_INTERSECT; 2726 /* 2727 * If the user knows better the user should set the regdom 2728 * to their country before the IE is picked up 2729 */ 2730 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2731 lr->intersect) 2732 return REG_REQ_IGNORE; 2733 /* 2734 * Process user requests only after previous user/driver/core 2735 * requests have been processed 2736 */ 2737 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2738 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2739 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2740 regdom_changes(lr->alpha2)) 2741 return REG_REQ_IGNORE; 2742 2743 if (!regdom_changes(user_request->alpha2)) 2744 return REG_REQ_ALREADY_SET; 2745 2746 return REG_REQ_OK; 2747 } 2748 2749 /** 2750 * reg_process_hint_user - process user regulatory requests 2751 * @user_request: a pending user regulatory request 2752 * 2753 * The wireless subsystem can use this function to process 2754 * a regulatory request initiated by userspace. 2755 */ 2756 static enum reg_request_treatment 2757 reg_process_hint_user(struct regulatory_request *user_request) 2758 { 2759 enum reg_request_treatment treatment; 2760 2761 treatment = __reg_process_hint_user(user_request); 2762 if (treatment == REG_REQ_IGNORE || 2763 treatment == REG_REQ_ALREADY_SET) 2764 return REG_REQ_IGNORE; 2765 2766 user_request->intersect = treatment == REG_REQ_INTERSECT; 2767 user_request->processed = false; 2768 2769 if (reg_query_database(user_request)) { 2770 reg_update_last_request(user_request); 2771 user_alpha2[0] = user_request->alpha2[0]; 2772 user_alpha2[1] = user_request->alpha2[1]; 2773 return REG_REQ_OK; 2774 } 2775 2776 return REG_REQ_IGNORE; 2777 } 2778 2779 static enum reg_request_treatment 2780 __reg_process_hint_driver(struct regulatory_request *driver_request) 2781 { 2782 struct regulatory_request *lr = get_last_request(); 2783 2784 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2785 if (regdom_changes(driver_request->alpha2)) 2786 return REG_REQ_OK; 2787 return REG_REQ_ALREADY_SET; 2788 } 2789 2790 /* 2791 * This would happen if you unplug and plug your card 2792 * back in or if you add a new device for which the previously 2793 * loaded card also agrees on the regulatory domain. 2794 */ 2795 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2796 !regdom_changes(driver_request->alpha2)) 2797 return REG_REQ_ALREADY_SET; 2798 2799 return REG_REQ_INTERSECT; 2800 } 2801 2802 /** 2803 * reg_process_hint_driver - process driver regulatory requests 2804 * @wiphy: the wireless device for the regulatory request 2805 * @driver_request: a pending driver regulatory request 2806 * 2807 * The wireless subsystem can use this function to process 2808 * a regulatory request issued by an 802.11 driver. 2809 * 2810 * Returns one of the different reg request treatment values. 2811 */ 2812 static enum reg_request_treatment 2813 reg_process_hint_driver(struct wiphy *wiphy, 2814 struct regulatory_request *driver_request) 2815 { 2816 const struct ieee80211_regdomain *regd, *tmp; 2817 enum reg_request_treatment treatment; 2818 2819 treatment = __reg_process_hint_driver(driver_request); 2820 2821 switch (treatment) { 2822 case REG_REQ_OK: 2823 break; 2824 case REG_REQ_IGNORE: 2825 return REG_REQ_IGNORE; 2826 case REG_REQ_INTERSECT: 2827 case REG_REQ_ALREADY_SET: 2828 regd = reg_copy_regd(get_cfg80211_regdom()); 2829 if (IS_ERR(regd)) 2830 return REG_REQ_IGNORE; 2831 2832 tmp = get_wiphy_regdom(wiphy); 2833 ASSERT_RTNL(); 2834 wiphy_lock(wiphy); 2835 rcu_assign_pointer(wiphy->regd, regd); 2836 wiphy_unlock(wiphy); 2837 rcu_free_regdom(tmp); 2838 } 2839 2840 2841 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2842 driver_request->processed = false; 2843 2844 /* 2845 * Since CRDA will not be called in this case as we already 2846 * have applied the requested regulatory domain before we just 2847 * inform userspace we have processed the request 2848 */ 2849 if (treatment == REG_REQ_ALREADY_SET) { 2850 nl80211_send_reg_change_event(driver_request); 2851 reg_update_last_request(driver_request); 2852 reg_set_request_processed(); 2853 return REG_REQ_ALREADY_SET; 2854 } 2855 2856 if (reg_query_database(driver_request)) { 2857 reg_update_last_request(driver_request); 2858 return REG_REQ_OK; 2859 } 2860 2861 return REG_REQ_IGNORE; 2862 } 2863 2864 static enum reg_request_treatment 2865 __reg_process_hint_country_ie(struct wiphy *wiphy, 2866 struct regulatory_request *country_ie_request) 2867 { 2868 struct wiphy *last_wiphy = NULL; 2869 struct regulatory_request *lr = get_last_request(); 2870 2871 if (reg_request_cell_base(lr)) { 2872 /* Trust a Cell base station over the AP's country IE */ 2873 if (regdom_changes(country_ie_request->alpha2)) 2874 return REG_REQ_IGNORE; 2875 return REG_REQ_ALREADY_SET; 2876 } else { 2877 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2878 return REG_REQ_IGNORE; 2879 } 2880 2881 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2882 return -EINVAL; 2883 2884 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2885 return REG_REQ_OK; 2886 2887 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2888 2889 if (last_wiphy != wiphy) { 2890 /* 2891 * Two cards with two APs claiming different 2892 * Country IE alpha2s. We could 2893 * intersect them, but that seems unlikely 2894 * to be correct. Reject second one for now. 2895 */ 2896 if (regdom_changes(country_ie_request->alpha2)) 2897 return REG_REQ_IGNORE; 2898 return REG_REQ_ALREADY_SET; 2899 } 2900 2901 if (regdom_changes(country_ie_request->alpha2)) 2902 return REG_REQ_OK; 2903 return REG_REQ_ALREADY_SET; 2904 } 2905 2906 /** 2907 * reg_process_hint_country_ie - process regulatory requests from country IEs 2908 * @wiphy: the wireless device for the regulatory request 2909 * @country_ie_request: a regulatory request from a country IE 2910 * 2911 * The wireless subsystem can use this function to process 2912 * a regulatory request issued by a country Information Element. 2913 * 2914 * Returns one of the different reg request treatment values. 2915 */ 2916 static enum reg_request_treatment 2917 reg_process_hint_country_ie(struct wiphy *wiphy, 2918 struct regulatory_request *country_ie_request) 2919 { 2920 enum reg_request_treatment treatment; 2921 2922 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2923 2924 switch (treatment) { 2925 case REG_REQ_OK: 2926 break; 2927 case REG_REQ_IGNORE: 2928 return REG_REQ_IGNORE; 2929 case REG_REQ_ALREADY_SET: 2930 reg_free_request(country_ie_request); 2931 return REG_REQ_ALREADY_SET; 2932 case REG_REQ_INTERSECT: 2933 /* 2934 * This doesn't happen yet, not sure we 2935 * ever want to support it for this case. 2936 */ 2937 WARN_ONCE(1, "Unexpected intersection for country elements"); 2938 return REG_REQ_IGNORE; 2939 } 2940 2941 country_ie_request->intersect = false; 2942 country_ie_request->processed = false; 2943 2944 if (reg_query_database(country_ie_request)) { 2945 reg_update_last_request(country_ie_request); 2946 return REG_REQ_OK; 2947 } 2948 2949 return REG_REQ_IGNORE; 2950 } 2951 2952 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2953 { 2954 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2955 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2956 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2957 bool dfs_domain_same; 2958 2959 rcu_read_lock(); 2960 2961 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2962 wiphy1_regd = rcu_dereference(wiphy1->regd); 2963 if (!wiphy1_regd) 2964 wiphy1_regd = cfg80211_regd; 2965 2966 wiphy2_regd = rcu_dereference(wiphy2->regd); 2967 if (!wiphy2_regd) 2968 wiphy2_regd = cfg80211_regd; 2969 2970 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2971 2972 rcu_read_unlock(); 2973 2974 return dfs_domain_same; 2975 } 2976 2977 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2978 struct ieee80211_channel *src_chan) 2979 { 2980 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2981 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2982 return; 2983 2984 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2985 src_chan->flags & IEEE80211_CHAN_DISABLED) 2986 return; 2987 2988 if (src_chan->center_freq == dst_chan->center_freq && 2989 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2990 dst_chan->dfs_state = src_chan->dfs_state; 2991 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2992 } 2993 } 2994 2995 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2996 struct wiphy *src_wiphy) 2997 { 2998 struct ieee80211_supported_band *src_sband, *dst_sband; 2999 struct ieee80211_channel *src_chan, *dst_chan; 3000 int i, j, band; 3001 3002 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 3003 return; 3004 3005 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3006 dst_sband = dst_wiphy->bands[band]; 3007 src_sband = src_wiphy->bands[band]; 3008 if (!dst_sband || !src_sband) 3009 continue; 3010 3011 for (i = 0; i < dst_sband->n_channels; i++) { 3012 dst_chan = &dst_sband->channels[i]; 3013 for (j = 0; j < src_sband->n_channels; j++) { 3014 src_chan = &src_sband->channels[j]; 3015 reg_copy_dfs_chan_state(dst_chan, src_chan); 3016 } 3017 } 3018 } 3019 } 3020 3021 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 3022 { 3023 struct cfg80211_registered_device *rdev; 3024 3025 ASSERT_RTNL(); 3026 3027 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3028 if (wiphy == &rdev->wiphy) 3029 continue; 3030 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 3031 } 3032 } 3033 3034 /* This processes *all* regulatory hints */ 3035 static void reg_process_hint(struct regulatory_request *reg_request) 3036 { 3037 struct wiphy *wiphy = NULL; 3038 enum reg_request_treatment treatment; 3039 enum nl80211_reg_initiator initiator = reg_request->initiator; 3040 3041 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 3042 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 3043 3044 switch (initiator) { 3045 case NL80211_REGDOM_SET_BY_CORE: 3046 treatment = reg_process_hint_core(reg_request); 3047 break; 3048 case NL80211_REGDOM_SET_BY_USER: 3049 treatment = reg_process_hint_user(reg_request); 3050 break; 3051 case NL80211_REGDOM_SET_BY_DRIVER: 3052 if (!wiphy) 3053 goto out_free; 3054 treatment = reg_process_hint_driver(wiphy, reg_request); 3055 break; 3056 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3057 if (!wiphy) 3058 goto out_free; 3059 treatment = reg_process_hint_country_ie(wiphy, reg_request); 3060 break; 3061 default: 3062 WARN(1, "invalid initiator %d\n", initiator); 3063 goto out_free; 3064 } 3065 3066 if (treatment == REG_REQ_IGNORE) 3067 goto out_free; 3068 3069 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 3070 "unexpected treatment value %d\n", treatment); 3071 3072 /* This is required so that the orig_* parameters are saved. 3073 * NOTE: treatment must be set for any case that reaches here! 3074 */ 3075 if (treatment == REG_REQ_ALREADY_SET && wiphy && 3076 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 3077 wiphy_update_regulatory(wiphy, initiator); 3078 wiphy_all_share_dfs_chan_state(wiphy); 3079 reg_check_channels(); 3080 } 3081 3082 return; 3083 3084 out_free: 3085 reg_free_request(reg_request); 3086 } 3087 3088 static void notify_self_managed_wiphys(struct regulatory_request *request) 3089 { 3090 struct cfg80211_registered_device *rdev; 3091 struct wiphy *wiphy; 3092 3093 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3094 wiphy = &rdev->wiphy; 3095 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 3096 request->initiator == NL80211_REGDOM_SET_BY_USER) 3097 reg_call_notifier(wiphy, request); 3098 } 3099 } 3100 3101 /* 3102 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 3103 * Regulatory hints come on a first come first serve basis and we 3104 * must process each one atomically. 3105 */ 3106 static void reg_process_pending_hints(void) 3107 { 3108 struct regulatory_request *reg_request, *lr; 3109 3110 lr = get_last_request(); 3111 3112 /* When last_request->processed becomes true this will be rescheduled */ 3113 if (lr && !lr->processed) { 3114 pr_debug("Pending regulatory request, waiting for it to be processed...\n"); 3115 return; 3116 } 3117 3118 spin_lock(®_requests_lock); 3119 3120 if (list_empty(®_requests_list)) { 3121 spin_unlock(®_requests_lock); 3122 return; 3123 } 3124 3125 reg_request = list_first_entry(®_requests_list, 3126 struct regulatory_request, 3127 list); 3128 list_del_init(®_request->list); 3129 3130 spin_unlock(®_requests_lock); 3131 3132 notify_self_managed_wiphys(reg_request); 3133 3134 reg_process_hint(reg_request); 3135 3136 lr = get_last_request(); 3137 3138 spin_lock(®_requests_lock); 3139 if (!list_empty(®_requests_list) && lr && lr->processed) 3140 schedule_work(®_work); 3141 spin_unlock(®_requests_lock); 3142 } 3143 3144 /* Processes beacon hints -- this has nothing to do with country IEs */ 3145 static void reg_process_pending_beacon_hints(void) 3146 { 3147 struct cfg80211_registered_device *rdev; 3148 struct reg_beacon *pending_beacon, *tmp; 3149 3150 /* This goes through the _pending_ beacon list */ 3151 spin_lock_bh(®_pending_beacons_lock); 3152 3153 list_for_each_entry_safe(pending_beacon, tmp, 3154 ®_pending_beacons, list) { 3155 list_del_init(&pending_beacon->list); 3156 3157 /* Applies the beacon hint to current wiphys */ 3158 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 3159 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 3160 3161 /* Remembers the beacon hint for new wiphys or reg changes */ 3162 list_add_tail(&pending_beacon->list, ®_beacon_list); 3163 } 3164 3165 spin_unlock_bh(®_pending_beacons_lock); 3166 } 3167 3168 static void reg_process_self_managed_hint(struct wiphy *wiphy) 3169 { 3170 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3171 const struct ieee80211_regdomain *tmp; 3172 const struct ieee80211_regdomain *regd; 3173 enum nl80211_band band; 3174 struct regulatory_request request = {}; 3175 3176 ASSERT_RTNL(); 3177 lockdep_assert_wiphy(wiphy); 3178 3179 spin_lock(®_requests_lock); 3180 regd = rdev->requested_regd; 3181 rdev->requested_regd = NULL; 3182 spin_unlock(®_requests_lock); 3183 3184 if (!regd) 3185 return; 3186 3187 tmp = get_wiphy_regdom(wiphy); 3188 rcu_assign_pointer(wiphy->regd, regd); 3189 rcu_free_regdom(tmp); 3190 3191 for (band = 0; band < NUM_NL80211_BANDS; band++) 3192 handle_band_custom(wiphy, wiphy->bands[band], regd); 3193 3194 reg_process_ht_flags(wiphy); 3195 3196 request.wiphy_idx = get_wiphy_idx(wiphy); 3197 request.alpha2[0] = regd->alpha2[0]; 3198 request.alpha2[1] = regd->alpha2[1]; 3199 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 3200 3201 nl80211_send_wiphy_reg_change_event(&request); 3202 } 3203 3204 static void reg_process_self_managed_hints(void) 3205 { 3206 struct cfg80211_registered_device *rdev; 3207 3208 ASSERT_RTNL(); 3209 3210 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3211 wiphy_lock(&rdev->wiphy); 3212 reg_process_self_managed_hint(&rdev->wiphy); 3213 wiphy_unlock(&rdev->wiphy); 3214 } 3215 3216 reg_check_channels(); 3217 } 3218 3219 static void reg_todo(struct work_struct *work) 3220 { 3221 rtnl_lock(); 3222 reg_process_pending_hints(); 3223 reg_process_pending_beacon_hints(); 3224 reg_process_self_managed_hints(); 3225 rtnl_unlock(); 3226 } 3227 3228 static void queue_regulatory_request(struct regulatory_request *request) 3229 { 3230 request->alpha2[0] = toupper(request->alpha2[0]); 3231 request->alpha2[1] = toupper(request->alpha2[1]); 3232 3233 spin_lock(®_requests_lock); 3234 list_add_tail(&request->list, ®_requests_list); 3235 spin_unlock(®_requests_lock); 3236 3237 schedule_work(®_work); 3238 } 3239 3240 /* 3241 * Core regulatory hint -- happens during cfg80211_init() 3242 * and when we restore regulatory settings. 3243 */ 3244 static int regulatory_hint_core(const char *alpha2) 3245 { 3246 struct regulatory_request *request; 3247 3248 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3249 if (!request) 3250 return -ENOMEM; 3251 3252 request->alpha2[0] = alpha2[0]; 3253 request->alpha2[1] = alpha2[1]; 3254 request->initiator = NL80211_REGDOM_SET_BY_CORE; 3255 request->wiphy_idx = WIPHY_IDX_INVALID; 3256 3257 queue_regulatory_request(request); 3258 3259 return 0; 3260 } 3261 3262 /* User hints */ 3263 int regulatory_hint_user(const char *alpha2, 3264 enum nl80211_user_reg_hint_type user_reg_hint_type) 3265 { 3266 struct regulatory_request *request; 3267 3268 if (WARN_ON(!alpha2)) 3269 return -EINVAL; 3270 3271 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2)) 3272 return -EINVAL; 3273 3274 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3275 if (!request) 3276 return -ENOMEM; 3277 3278 request->wiphy_idx = WIPHY_IDX_INVALID; 3279 request->alpha2[0] = alpha2[0]; 3280 request->alpha2[1] = alpha2[1]; 3281 request->initiator = NL80211_REGDOM_SET_BY_USER; 3282 request->user_reg_hint_type = user_reg_hint_type; 3283 3284 /* Allow calling CRDA again */ 3285 reset_crda_timeouts(); 3286 3287 queue_regulatory_request(request); 3288 3289 return 0; 3290 } 3291 3292 int regulatory_hint_indoor(bool is_indoor, u32 portid) 3293 { 3294 spin_lock(®_indoor_lock); 3295 3296 /* It is possible that more than one user space process is trying to 3297 * configure the indoor setting. To handle such cases, clear the indoor 3298 * setting in case that some process does not think that the device 3299 * is operating in an indoor environment. In addition, if a user space 3300 * process indicates that it is controlling the indoor setting, save its 3301 * portid, i.e., make it the owner. 3302 */ 3303 reg_is_indoor = is_indoor; 3304 if (reg_is_indoor) { 3305 if (!reg_is_indoor_portid) 3306 reg_is_indoor_portid = portid; 3307 } else { 3308 reg_is_indoor_portid = 0; 3309 } 3310 3311 spin_unlock(®_indoor_lock); 3312 3313 if (!is_indoor) 3314 reg_check_channels(); 3315 3316 return 0; 3317 } 3318 3319 void regulatory_netlink_notify(u32 portid) 3320 { 3321 spin_lock(®_indoor_lock); 3322 3323 if (reg_is_indoor_portid != portid) { 3324 spin_unlock(®_indoor_lock); 3325 return; 3326 } 3327 3328 reg_is_indoor = false; 3329 reg_is_indoor_portid = 0; 3330 3331 spin_unlock(®_indoor_lock); 3332 3333 reg_check_channels(); 3334 } 3335 3336 /* Driver hints */ 3337 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3338 { 3339 struct regulatory_request *request; 3340 3341 if (WARN_ON(!alpha2 || !wiphy)) 3342 return -EINVAL; 3343 3344 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3345 3346 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3347 if (!request) 3348 return -ENOMEM; 3349 3350 request->wiphy_idx = get_wiphy_idx(wiphy); 3351 3352 request->alpha2[0] = alpha2[0]; 3353 request->alpha2[1] = alpha2[1]; 3354 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3355 3356 /* Allow calling CRDA again */ 3357 reset_crda_timeouts(); 3358 3359 queue_regulatory_request(request); 3360 3361 return 0; 3362 } 3363 EXPORT_SYMBOL(regulatory_hint); 3364 3365 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3366 const u8 *country_ie, u8 country_ie_len) 3367 { 3368 char alpha2[2]; 3369 enum environment_cap env = ENVIRON_ANY; 3370 struct regulatory_request *request = NULL, *lr; 3371 3372 /* IE len must be evenly divisible by 2 */ 3373 if (country_ie_len & 0x01) 3374 return; 3375 3376 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3377 return; 3378 3379 request = kzalloc(sizeof(*request), GFP_KERNEL); 3380 if (!request) 3381 return; 3382 3383 alpha2[0] = country_ie[0]; 3384 alpha2[1] = country_ie[1]; 3385 3386 if (country_ie[2] == 'I') 3387 env = ENVIRON_INDOOR; 3388 else if (country_ie[2] == 'O') 3389 env = ENVIRON_OUTDOOR; 3390 3391 rcu_read_lock(); 3392 lr = get_last_request(); 3393 3394 if (unlikely(!lr)) 3395 goto out; 3396 3397 /* 3398 * We will run this only upon a successful connection on cfg80211. 3399 * We leave conflict resolution to the workqueue, where can hold 3400 * the RTNL. 3401 */ 3402 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3403 lr->wiphy_idx != WIPHY_IDX_INVALID) 3404 goto out; 3405 3406 request->wiphy_idx = get_wiphy_idx(wiphy); 3407 request->alpha2[0] = alpha2[0]; 3408 request->alpha2[1] = alpha2[1]; 3409 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3410 request->country_ie_env = env; 3411 3412 /* Allow calling CRDA again */ 3413 reset_crda_timeouts(); 3414 3415 queue_regulatory_request(request); 3416 request = NULL; 3417 out: 3418 kfree(request); 3419 rcu_read_unlock(); 3420 } 3421 3422 static void restore_alpha2(char *alpha2, bool reset_user) 3423 { 3424 /* indicates there is no alpha2 to consider for restoration */ 3425 alpha2[0] = '9'; 3426 alpha2[1] = '7'; 3427 3428 /* The user setting has precedence over the module parameter */ 3429 if (is_user_regdom_saved()) { 3430 /* Unless we're asked to ignore it and reset it */ 3431 if (reset_user) { 3432 pr_debug("Restoring regulatory settings including user preference\n"); 3433 user_alpha2[0] = '9'; 3434 user_alpha2[1] = '7'; 3435 3436 /* 3437 * If we're ignoring user settings, we still need to 3438 * check the module parameter to ensure we put things 3439 * back as they were for a full restore. 3440 */ 3441 if (!is_world_regdom(ieee80211_regdom)) { 3442 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3443 ieee80211_regdom[0], ieee80211_regdom[1]); 3444 alpha2[0] = ieee80211_regdom[0]; 3445 alpha2[1] = ieee80211_regdom[1]; 3446 } 3447 } else { 3448 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3449 user_alpha2[0], user_alpha2[1]); 3450 alpha2[0] = user_alpha2[0]; 3451 alpha2[1] = user_alpha2[1]; 3452 } 3453 } else if (!is_world_regdom(ieee80211_regdom)) { 3454 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3455 ieee80211_regdom[0], ieee80211_regdom[1]); 3456 alpha2[0] = ieee80211_regdom[0]; 3457 alpha2[1] = ieee80211_regdom[1]; 3458 } else 3459 pr_debug("Restoring regulatory settings\n"); 3460 } 3461 3462 static void restore_custom_reg_settings(struct wiphy *wiphy) 3463 { 3464 struct ieee80211_supported_band *sband; 3465 enum nl80211_band band; 3466 struct ieee80211_channel *chan; 3467 int i; 3468 3469 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3470 sband = wiphy->bands[band]; 3471 if (!sband) 3472 continue; 3473 for (i = 0; i < sband->n_channels; i++) { 3474 chan = &sband->channels[i]; 3475 chan->flags = chan->orig_flags; 3476 chan->max_antenna_gain = chan->orig_mag; 3477 chan->max_power = chan->orig_mpwr; 3478 chan->beacon_found = false; 3479 } 3480 } 3481 } 3482 3483 /* 3484 * Restoring regulatory settings involves ignoring any 3485 * possibly stale country IE information and user regulatory 3486 * settings if so desired, this includes any beacon hints 3487 * learned as we could have traveled outside to another country 3488 * after disconnection. To restore regulatory settings we do 3489 * exactly what we did at bootup: 3490 * 3491 * - send a core regulatory hint 3492 * - send a user regulatory hint if applicable 3493 * 3494 * Device drivers that send a regulatory hint for a specific country 3495 * keep their own regulatory domain on wiphy->regd so that does 3496 * not need to be remembered. 3497 */ 3498 static void restore_regulatory_settings(bool reset_user, bool cached) 3499 { 3500 char alpha2[2]; 3501 char world_alpha2[2]; 3502 struct reg_beacon *reg_beacon, *btmp; 3503 LIST_HEAD(tmp_reg_req_list); 3504 struct cfg80211_registered_device *rdev; 3505 3506 ASSERT_RTNL(); 3507 3508 /* 3509 * Clear the indoor setting in case that it is not controlled by user 3510 * space, as otherwise there is no guarantee that the device is still 3511 * operating in an indoor environment. 3512 */ 3513 spin_lock(®_indoor_lock); 3514 if (reg_is_indoor && !reg_is_indoor_portid) { 3515 reg_is_indoor = false; 3516 reg_check_channels(); 3517 } 3518 spin_unlock(®_indoor_lock); 3519 3520 reset_regdomains(true, &world_regdom); 3521 restore_alpha2(alpha2, reset_user); 3522 3523 /* 3524 * If there's any pending requests we simply 3525 * stash them to a temporary pending queue and 3526 * add then after we've restored regulatory 3527 * settings. 3528 */ 3529 spin_lock(®_requests_lock); 3530 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3531 spin_unlock(®_requests_lock); 3532 3533 /* Clear beacon hints */ 3534 spin_lock_bh(®_pending_beacons_lock); 3535 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3536 list_del(®_beacon->list); 3537 kfree(reg_beacon); 3538 } 3539 spin_unlock_bh(®_pending_beacons_lock); 3540 3541 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3542 list_del(®_beacon->list); 3543 kfree(reg_beacon); 3544 } 3545 3546 /* First restore to the basic regulatory settings */ 3547 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3548 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3549 3550 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3551 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3552 continue; 3553 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3554 restore_custom_reg_settings(&rdev->wiphy); 3555 } 3556 3557 if (cached && (!is_an_alpha2(alpha2) || 3558 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3559 reset_regdomains(false, cfg80211_world_regdom); 3560 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3561 print_regdomain(get_cfg80211_regdom()); 3562 nl80211_send_reg_change_event(&core_request_world); 3563 reg_set_request_processed(); 3564 3565 if (is_an_alpha2(alpha2) && 3566 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3567 struct regulatory_request *ureq; 3568 3569 spin_lock(®_requests_lock); 3570 ureq = list_last_entry(®_requests_list, 3571 struct regulatory_request, 3572 list); 3573 list_del(&ureq->list); 3574 spin_unlock(®_requests_lock); 3575 3576 notify_self_managed_wiphys(ureq); 3577 reg_update_last_request(ureq); 3578 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3579 REGD_SOURCE_CACHED); 3580 } 3581 } else { 3582 regulatory_hint_core(world_alpha2); 3583 3584 /* 3585 * This restores the ieee80211_regdom module parameter 3586 * preference or the last user requested regulatory 3587 * settings, user regulatory settings takes precedence. 3588 */ 3589 if (is_an_alpha2(alpha2)) 3590 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3591 } 3592 3593 spin_lock(®_requests_lock); 3594 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3595 spin_unlock(®_requests_lock); 3596 3597 pr_debug("Kicking the queue\n"); 3598 3599 schedule_work(®_work); 3600 } 3601 3602 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3603 { 3604 struct cfg80211_registered_device *rdev; 3605 struct wireless_dev *wdev; 3606 3607 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3608 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3609 wdev_lock(wdev); 3610 if (!(wdev->wiphy->regulatory_flags & flag)) { 3611 wdev_unlock(wdev); 3612 return false; 3613 } 3614 wdev_unlock(wdev); 3615 } 3616 } 3617 3618 return true; 3619 } 3620 3621 void regulatory_hint_disconnect(void) 3622 { 3623 /* Restore of regulatory settings is not required when wiphy(s) 3624 * ignore IE from connected access point but clearance of beacon hints 3625 * is required when wiphy(s) supports beacon hints. 3626 */ 3627 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3628 struct reg_beacon *reg_beacon, *btmp; 3629 3630 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3631 return; 3632 3633 spin_lock_bh(®_pending_beacons_lock); 3634 list_for_each_entry_safe(reg_beacon, btmp, 3635 ®_pending_beacons, list) { 3636 list_del(®_beacon->list); 3637 kfree(reg_beacon); 3638 } 3639 spin_unlock_bh(®_pending_beacons_lock); 3640 3641 list_for_each_entry_safe(reg_beacon, btmp, 3642 ®_beacon_list, list) { 3643 list_del(®_beacon->list); 3644 kfree(reg_beacon); 3645 } 3646 3647 return; 3648 } 3649 3650 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3651 restore_regulatory_settings(false, true); 3652 } 3653 3654 static bool freq_is_chan_12_13_14(u32 freq) 3655 { 3656 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3657 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3658 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3659 return true; 3660 return false; 3661 } 3662 3663 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3664 { 3665 struct reg_beacon *pending_beacon; 3666 3667 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3668 if (ieee80211_channel_equal(beacon_chan, 3669 &pending_beacon->chan)) 3670 return true; 3671 return false; 3672 } 3673 3674 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3675 struct ieee80211_channel *beacon_chan, 3676 gfp_t gfp) 3677 { 3678 struct reg_beacon *reg_beacon; 3679 bool processing; 3680 3681 if (beacon_chan->beacon_found || 3682 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3683 (beacon_chan->band == NL80211_BAND_2GHZ && 3684 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3685 return 0; 3686 3687 spin_lock_bh(®_pending_beacons_lock); 3688 processing = pending_reg_beacon(beacon_chan); 3689 spin_unlock_bh(®_pending_beacons_lock); 3690 3691 if (processing) 3692 return 0; 3693 3694 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3695 if (!reg_beacon) 3696 return -ENOMEM; 3697 3698 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n", 3699 beacon_chan->center_freq, beacon_chan->freq_offset, 3700 ieee80211_freq_khz_to_channel( 3701 ieee80211_channel_to_khz(beacon_chan)), 3702 wiphy_name(wiphy)); 3703 3704 memcpy(®_beacon->chan, beacon_chan, 3705 sizeof(struct ieee80211_channel)); 3706 3707 /* 3708 * Since we can be called from BH or and non-BH context 3709 * we must use spin_lock_bh() 3710 */ 3711 spin_lock_bh(®_pending_beacons_lock); 3712 list_add_tail(®_beacon->list, ®_pending_beacons); 3713 spin_unlock_bh(®_pending_beacons_lock); 3714 3715 schedule_work(®_work); 3716 3717 return 0; 3718 } 3719 3720 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3721 { 3722 unsigned int i; 3723 const struct ieee80211_reg_rule *reg_rule = NULL; 3724 const struct ieee80211_freq_range *freq_range = NULL; 3725 const struct ieee80211_power_rule *power_rule = NULL; 3726 char bw[32], cac_time[32]; 3727 3728 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3729 3730 for (i = 0; i < rd->n_reg_rules; i++) { 3731 reg_rule = &rd->reg_rules[i]; 3732 freq_range = ®_rule->freq_range; 3733 power_rule = ®_rule->power_rule; 3734 3735 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3736 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO", 3737 freq_range->max_bandwidth_khz, 3738 reg_get_max_bandwidth(rd, reg_rule)); 3739 else 3740 snprintf(bw, sizeof(bw), "%d KHz", 3741 freq_range->max_bandwidth_khz); 3742 3743 if (reg_rule->flags & NL80211_RRF_DFS) 3744 scnprintf(cac_time, sizeof(cac_time), "%u s", 3745 reg_rule->dfs_cac_ms/1000); 3746 else 3747 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3748 3749 3750 /* 3751 * There may not be documentation for max antenna gain 3752 * in certain regions 3753 */ 3754 if (power_rule->max_antenna_gain) 3755 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3756 freq_range->start_freq_khz, 3757 freq_range->end_freq_khz, 3758 bw, 3759 power_rule->max_antenna_gain, 3760 power_rule->max_eirp, 3761 cac_time); 3762 else 3763 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3764 freq_range->start_freq_khz, 3765 freq_range->end_freq_khz, 3766 bw, 3767 power_rule->max_eirp, 3768 cac_time); 3769 } 3770 } 3771 3772 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3773 { 3774 switch (dfs_region) { 3775 case NL80211_DFS_UNSET: 3776 case NL80211_DFS_FCC: 3777 case NL80211_DFS_ETSI: 3778 case NL80211_DFS_JP: 3779 return true; 3780 default: 3781 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3782 return false; 3783 } 3784 } 3785 3786 static void print_regdomain(const struct ieee80211_regdomain *rd) 3787 { 3788 struct regulatory_request *lr = get_last_request(); 3789 3790 if (is_intersected_alpha2(rd->alpha2)) { 3791 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3792 struct cfg80211_registered_device *rdev; 3793 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3794 if (rdev) { 3795 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3796 rdev->country_ie_alpha2[0], 3797 rdev->country_ie_alpha2[1]); 3798 } else 3799 pr_debug("Current regulatory domain intersected:\n"); 3800 } else 3801 pr_debug("Current regulatory domain intersected:\n"); 3802 } else if (is_world_regdom(rd->alpha2)) { 3803 pr_debug("World regulatory domain updated:\n"); 3804 } else { 3805 if (is_unknown_alpha2(rd->alpha2)) 3806 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3807 else { 3808 if (reg_request_cell_base(lr)) 3809 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3810 rd->alpha2[0], rd->alpha2[1]); 3811 else 3812 pr_debug("Regulatory domain changed to country: %c%c\n", 3813 rd->alpha2[0], rd->alpha2[1]); 3814 } 3815 } 3816 3817 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3818 print_rd_rules(rd); 3819 } 3820 3821 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3822 { 3823 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3824 print_rd_rules(rd); 3825 } 3826 3827 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3828 { 3829 if (!is_world_regdom(rd->alpha2)) 3830 return -EINVAL; 3831 update_world_regdomain(rd); 3832 return 0; 3833 } 3834 3835 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3836 struct regulatory_request *user_request) 3837 { 3838 const struct ieee80211_regdomain *intersected_rd = NULL; 3839 3840 if (!regdom_changes(rd->alpha2)) 3841 return -EALREADY; 3842 3843 if (!is_valid_rd(rd)) { 3844 pr_err("Invalid regulatory domain detected: %c%c\n", 3845 rd->alpha2[0], rd->alpha2[1]); 3846 print_regdomain_info(rd); 3847 return -EINVAL; 3848 } 3849 3850 if (!user_request->intersect) { 3851 reset_regdomains(false, rd); 3852 return 0; 3853 } 3854 3855 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3856 if (!intersected_rd) 3857 return -EINVAL; 3858 3859 kfree(rd); 3860 rd = NULL; 3861 reset_regdomains(false, intersected_rd); 3862 3863 return 0; 3864 } 3865 3866 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3867 struct regulatory_request *driver_request) 3868 { 3869 const struct ieee80211_regdomain *regd; 3870 const struct ieee80211_regdomain *intersected_rd = NULL; 3871 const struct ieee80211_regdomain *tmp; 3872 struct wiphy *request_wiphy; 3873 3874 if (is_world_regdom(rd->alpha2)) 3875 return -EINVAL; 3876 3877 if (!regdom_changes(rd->alpha2)) 3878 return -EALREADY; 3879 3880 if (!is_valid_rd(rd)) { 3881 pr_err("Invalid regulatory domain detected: %c%c\n", 3882 rd->alpha2[0], rd->alpha2[1]); 3883 print_regdomain_info(rd); 3884 return -EINVAL; 3885 } 3886 3887 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3888 if (!request_wiphy) 3889 return -ENODEV; 3890 3891 if (!driver_request->intersect) { 3892 ASSERT_RTNL(); 3893 wiphy_lock(request_wiphy); 3894 if (request_wiphy->regd) { 3895 wiphy_unlock(request_wiphy); 3896 return -EALREADY; 3897 } 3898 3899 regd = reg_copy_regd(rd); 3900 if (IS_ERR(regd)) { 3901 wiphy_unlock(request_wiphy); 3902 return PTR_ERR(regd); 3903 } 3904 3905 rcu_assign_pointer(request_wiphy->regd, regd); 3906 wiphy_unlock(request_wiphy); 3907 reset_regdomains(false, rd); 3908 return 0; 3909 } 3910 3911 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3912 if (!intersected_rd) 3913 return -EINVAL; 3914 3915 /* 3916 * We can trash what CRDA provided now. 3917 * However if a driver requested this specific regulatory 3918 * domain we keep it for its private use 3919 */ 3920 tmp = get_wiphy_regdom(request_wiphy); 3921 rcu_assign_pointer(request_wiphy->regd, rd); 3922 rcu_free_regdom(tmp); 3923 3924 rd = NULL; 3925 3926 reset_regdomains(false, intersected_rd); 3927 3928 return 0; 3929 } 3930 3931 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3932 struct regulatory_request *country_ie_request) 3933 { 3934 struct wiphy *request_wiphy; 3935 3936 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3937 !is_unknown_alpha2(rd->alpha2)) 3938 return -EINVAL; 3939 3940 /* 3941 * Lets only bother proceeding on the same alpha2 if the current 3942 * rd is non static (it means CRDA was present and was used last) 3943 * and the pending request came in from a country IE 3944 */ 3945 3946 if (!is_valid_rd(rd)) { 3947 pr_err("Invalid regulatory domain detected: %c%c\n", 3948 rd->alpha2[0], rd->alpha2[1]); 3949 print_regdomain_info(rd); 3950 return -EINVAL; 3951 } 3952 3953 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3954 if (!request_wiphy) 3955 return -ENODEV; 3956 3957 if (country_ie_request->intersect) 3958 return -EINVAL; 3959 3960 reset_regdomains(false, rd); 3961 return 0; 3962 } 3963 3964 /* 3965 * Use this call to set the current regulatory domain. Conflicts with 3966 * multiple drivers can be ironed out later. Caller must've already 3967 * kmalloc'd the rd structure. 3968 */ 3969 int set_regdom(const struct ieee80211_regdomain *rd, 3970 enum ieee80211_regd_source regd_src) 3971 { 3972 struct regulatory_request *lr; 3973 bool user_reset = false; 3974 int r; 3975 3976 if (IS_ERR_OR_NULL(rd)) 3977 return -ENODATA; 3978 3979 if (!reg_is_valid_request(rd->alpha2)) { 3980 kfree(rd); 3981 return -EINVAL; 3982 } 3983 3984 if (regd_src == REGD_SOURCE_CRDA) 3985 reset_crda_timeouts(); 3986 3987 lr = get_last_request(); 3988 3989 /* Note that this doesn't update the wiphys, this is done below */ 3990 switch (lr->initiator) { 3991 case NL80211_REGDOM_SET_BY_CORE: 3992 r = reg_set_rd_core(rd); 3993 break; 3994 case NL80211_REGDOM_SET_BY_USER: 3995 cfg80211_save_user_regdom(rd); 3996 r = reg_set_rd_user(rd, lr); 3997 user_reset = true; 3998 break; 3999 case NL80211_REGDOM_SET_BY_DRIVER: 4000 r = reg_set_rd_driver(rd, lr); 4001 break; 4002 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 4003 r = reg_set_rd_country_ie(rd, lr); 4004 break; 4005 default: 4006 WARN(1, "invalid initiator %d\n", lr->initiator); 4007 kfree(rd); 4008 return -EINVAL; 4009 } 4010 4011 if (r) { 4012 switch (r) { 4013 case -EALREADY: 4014 reg_set_request_processed(); 4015 break; 4016 default: 4017 /* Back to world regulatory in case of errors */ 4018 restore_regulatory_settings(user_reset, false); 4019 } 4020 4021 kfree(rd); 4022 return r; 4023 } 4024 4025 /* This would make this whole thing pointless */ 4026 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 4027 return -EINVAL; 4028 4029 /* update all wiphys now with the new established regulatory domain */ 4030 update_all_wiphy_regulatory(lr->initiator); 4031 4032 print_regdomain(get_cfg80211_regdom()); 4033 4034 nl80211_send_reg_change_event(lr); 4035 4036 reg_set_request_processed(); 4037 4038 return 0; 4039 } 4040 4041 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 4042 struct ieee80211_regdomain *rd) 4043 { 4044 const struct ieee80211_regdomain *regd; 4045 const struct ieee80211_regdomain *prev_regd; 4046 struct cfg80211_registered_device *rdev; 4047 4048 if (WARN_ON(!wiphy || !rd)) 4049 return -EINVAL; 4050 4051 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 4052 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 4053 return -EPERM; 4054 4055 if (WARN(!is_valid_rd(rd), 4056 "Invalid regulatory domain detected: %c%c\n", 4057 rd->alpha2[0], rd->alpha2[1])) { 4058 print_regdomain_info(rd); 4059 return -EINVAL; 4060 } 4061 4062 regd = reg_copy_regd(rd); 4063 if (IS_ERR(regd)) 4064 return PTR_ERR(regd); 4065 4066 rdev = wiphy_to_rdev(wiphy); 4067 4068 spin_lock(®_requests_lock); 4069 prev_regd = rdev->requested_regd; 4070 rdev->requested_regd = regd; 4071 spin_unlock(®_requests_lock); 4072 4073 kfree(prev_regd); 4074 return 0; 4075 } 4076 4077 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 4078 struct ieee80211_regdomain *rd) 4079 { 4080 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 4081 4082 if (ret) 4083 return ret; 4084 4085 schedule_work(®_work); 4086 return 0; 4087 } 4088 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 4089 4090 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy, 4091 struct ieee80211_regdomain *rd) 4092 { 4093 int ret; 4094 4095 ASSERT_RTNL(); 4096 4097 ret = __regulatory_set_wiphy_regd(wiphy, rd); 4098 if (ret) 4099 return ret; 4100 4101 /* process the request immediately */ 4102 reg_process_self_managed_hint(wiphy); 4103 reg_check_channels(); 4104 return 0; 4105 } 4106 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync); 4107 4108 void wiphy_regulatory_register(struct wiphy *wiphy) 4109 { 4110 struct regulatory_request *lr = get_last_request(); 4111 4112 /* self-managed devices ignore beacon hints and country IE */ 4113 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 4114 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 4115 REGULATORY_COUNTRY_IE_IGNORE; 4116 4117 /* 4118 * The last request may have been received before this 4119 * registration call. Call the driver notifier if 4120 * initiator is USER. 4121 */ 4122 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 4123 reg_call_notifier(wiphy, lr); 4124 } 4125 4126 if (!reg_dev_ignore_cell_hint(wiphy)) 4127 reg_num_devs_support_basehint++; 4128 4129 wiphy_update_regulatory(wiphy, lr->initiator); 4130 wiphy_all_share_dfs_chan_state(wiphy); 4131 reg_process_self_managed_hints(); 4132 } 4133 4134 void wiphy_regulatory_deregister(struct wiphy *wiphy) 4135 { 4136 struct wiphy *request_wiphy = NULL; 4137 struct regulatory_request *lr; 4138 4139 lr = get_last_request(); 4140 4141 if (!reg_dev_ignore_cell_hint(wiphy)) 4142 reg_num_devs_support_basehint--; 4143 4144 rcu_free_regdom(get_wiphy_regdom(wiphy)); 4145 RCU_INIT_POINTER(wiphy->regd, NULL); 4146 4147 if (lr) 4148 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 4149 4150 if (!request_wiphy || request_wiphy != wiphy) 4151 return; 4152 4153 lr->wiphy_idx = WIPHY_IDX_INVALID; 4154 lr->country_ie_env = ENVIRON_ANY; 4155 } 4156 4157 /* 4158 * See FCC notices for UNII band definitions 4159 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii 4160 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0 4161 */ 4162 int cfg80211_get_unii(int freq) 4163 { 4164 /* UNII-1 */ 4165 if (freq >= 5150 && freq <= 5250) 4166 return 0; 4167 4168 /* UNII-2A */ 4169 if (freq > 5250 && freq <= 5350) 4170 return 1; 4171 4172 /* UNII-2B */ 4173 if (freq > 5350 && freq <= 5470) 4174 return 2; 4175 4176 /* UNII-2C */ 4177 if (freq > 5470 && freq <= 5725) 4178 return 3; 4179 4180 /* UNII-3 */ 4181 if (freq > 5725 && freq <= 5825) 4182 return 4; 4183 4184 /* UNII-5 */ 4185 if (freq > 5925 && freq <= 6425) 4186 return 5; 4187 4188 /* UNII-6 */ 4189 if (freq > 6425 && freq <= 6525) 4190 return 6; 4191 4192 /* UNII-7 */ 4193 if (freq > 6525 && freq <= 6875) 4194 return 7; 4195 4196 /* UNII-8 */ 4197 if (freq > 6875 && freq <= 7125) 4198 return 8; 4199 4200 return -EINVAL; 4201 } 4202 4203 bool regulatory_indoor_allowed(void) 4204 { 4205 return reg_is_indoor; 4206 } 4207 4208 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 4209 { 4210 const struct ieee80211_regdomain *regd = NULL; 4211 const struct ieee80211_regdomain *wiphy_regd = NULL; 4212 bool pre_cac_allowed = false; 4213 4214 rcu_read_lock(); 4215 4216 regd = rcu_dereference(cfg80211_regdomain); 4217 wiphy_regd = rcu_dereference(wiphy->regd); 4218 if (!wiphy_regd) { 4219 if (regd->dfs_region == NL80211_DFS_ETSI) 4220 pre_cac_allowed = true; 4221 4222 rcu_read_unlock(); 4223 4224 return pre_cac_allowed; 4225 } 4226 4227 if (regd->dfs_region == wiphy_regd->dfs_region && 4228 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 4229 pre_cac_allowed = true; 4230 4231 rcu_read_unlock(); 4232 4233 return pre_cac_allowed; 4234 } 4235 EXPORT_SYMBOL(regulatory_pre_cac_allowed); 4236 4237 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev) 4238 { 4239 struct wireless_dev *wdev; 4240 /* If we finished CAC or received radar, we should end any 4241 * CAC running on the same channels. 4242 * the check !cfg80211_chandef_dfs_usable contain 2 options: 4243 * either all channels are available - those the CAC_FINISHED 4244 * event has effected another wdev state, or there is a channel 4245 * in unavailable state in wdev chandef - those the RADAR_DETECTED 4246 * event has effected another wdev state. 4247 * In both cases we should end the CAC on the wdev. 4248 */ 4249 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 4250 struct cfg80211_chan_def *chandef; 4251 4252 if (!wdev->cac_started) 4253 continue; 4254 4255 /* FIXME: radar detection is tied to link 0 for now */ 4256 chandef = wdev_chandef(wdev, 0); 4257 if (!chandef) 4258 continue; 4259 4260 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef)) 4261 rdev_end_cac(rdev, wdev->netdev); 4262 } 4263 } 4264 4265 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 4266 struct cfg80211_chan_def *chandef, 4267 enum nl80211_dfs_state dfs_state, 4268 enum nl80211_radar_event event) 4269 { 4270 struct cfg80211_registered_device *rdev; 4271 4272 ASSERT_RTNL(); 4273 4274 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 4275 return; 4276 4277 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 4278 if (wiphy == &rdev->wiphy) 4279 continue; 4280 4281 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 4282 continue; 4283 4284 if (!ieee80211_get_channel(&rdev->wiphy, 4285 chandef->chan->center_freq)) 4286 continue; 4287 4288 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 4289 4290 if (event == NL80211_RADAR_DETECTED || 4291 event == NL80211_RADAR_CAC_FINISHED) { 4292 cfg80211_sched_dfs_chan_update(rdev); 4293 cfg80211_check_and_end_cac(rdev); 4294 } 4295 4296 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 4297 } 4298 } 4299 4300 static int __init regulatory_init_db(void) 4301 { 4302 int err; 4303 4304 /* 4305 * It's possible that - due to other bugs/issues - cfg80211 4306 * never called regulatory_init() below, or that it failed; 4307 * in that case, don't try to do any further work here as 4308 * it's doomed to lead to crashes. 4309 */ 4310 if (IS_ERR_OR_NULL(reg_pdev)) 4311 return -EINVAL; 4312 4313 err = load_builtin_regdb_keys(); 4314 if (err) 4315 return err; 4316 4317 /* We always try to get an update for the static regdomain */ 4318 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 4319 if (err) { 4320 if (err == -ENOMEM) { 4321 platform_device_unregister(reg_pdev); 4322 return err; 4323 } 4324 /* 4325 * N.B. kobject_uevent_env() can fail mainly for when we're out 4326 * memory which is handled and propagated appropriately above 4327 * but it can also fail during a netlink_broadcast() or during 4328 * early boot for call_usermodehelper(). For now treat these 4329 * errors as non-fatal. 4330 */ 4331 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 4332 } 4333 4334 /* 4335 * Finally, if the user set the module parameter treat it 4336 * as a user hint. 4337 */ 4338 if (!is_world_regdom(ieee80211_regdom)) 4339 regulatory_hint_user(ieee80211_regdom, 4340 NL80211_USER_REG_HINT_USER); 4341 4342 return 0; 4343 } 4344 #ifndef MODULE 4345 late_initcall(regulatory_init_db); 4346 #endif 4347 4348 int __init regulatory_init(void) 4349 { 4350 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 4351 if (IS_ERR(reg_pdev)) 4352 return PTR_ERR(reg_pdev); 4353 4354 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 4355 4356 user_alpha2[0] = '9'; 4357 user_alpha2[1] = '7'; 4358 4359 #ifdef MODULE 4360 return regulatory_init_db(); 4361 #else 4362 return 0; 4363 #endif 4364 } 4365 4366 void regulatory_exit(void) 4367 { 4368 struct regulatory_request *reg_request, *tmp; 4369 struct reg_beacon *reg_beacon, *btmp; 4370 4371 cancel_work_sync(®_work); 4372 cancel_crda_timeout_sync(); 4373 cancel_delayed_work_sync(®_check_chans); 4374 4375 /* Lock to suppress warnings */ 4376 rtnl_lock(); 4377 reset_regdomains(true, NULL); 4378 rtnl_unlock(); 4379 4380 dev_set_uevent_suppress(®_pdev->dev, true); 4381 4382 platform_device_unregister(reg_pdev); 4383 4384 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 4385 list_del(®_beacon->list); 4386 kfree(reg_beacon); 4387 } 4388 4389 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 4390 list_del(®_beacon->list); 4391 kfree(reg_beacon); 4392 } 4393 4394 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4395 list_del(®_request->list); 4396 kfree(reg_request); 4397 } 4398 4399 if (!IS_ERR_OR_NULL(regdb)) 4400 kfree(regdb); 4401 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4402 kfree(cfg80211_user_regdom); 4403 4404 free_regdb_keyring(); 4405 } 4406