1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 /** 13 * DOC: Wireless regulatory infrastructure 14 * 15 * The usual implementation is for a driver to read a device EEPROM to 16 * determine which regulatory domain it should be operating under, then 17 * looking up the allowable channels in a driver-local table and finally 18 * registering those channels in the wiphy structure. 19 * 20 * Another set of compliance enforcement is for drivers to use their 21 * own compliance limits which can be stored on the EEPROM. The host 22 * driver or firmware may ensure these are used. 23 * 24 * In addition to all this we provide an extra layer of regulatory 25 * conformance. For drivers which do not have any regulatory 26 * information CRDA provides the complete regulatory solution. 27 * For others it provides a community effort on further restrictions 28 * to enhance compliance. 29 * 30 * Note: When number of rules --> infinity we will not be able to 31 * index on alpha2 any more, instead we'll probably have to 32 * rely on some SHA1 checksum of the regdomain for example. 33 * 34 */ 35 36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 37 38 #include <linux/kernel.h> 39 #include <linux/slab.h> 40 #include <linux/list.h> 41 #include <linux/random.h> 42 #include <linux/ctype.h> 43 #include <linux/nl80211.h> 44 #include <linux/platform_device.h> 45 #include <net/cfg80211.h> 46 #include "core.h" 47 #include "reg.h" 48 #include "regdb.h" 49 #include "nl80211.h" 50 51 #ifdef CONFIG_CFG80211_REG_DEBUG 52 #define REG_DBG_PRINT(format, args...) \ 53 do { \ 54 printk(KERN_DEBUG pr_fmt(format), ##args); \ 55 } while (0) 56 #else 57 #define REG_DBG_PRINT(args...) 58 #endif 59 60 /* Receipt of information from last regulatory request */ 61 static struct regulatory_request *last_request; 62 63 /* To trigger userspace events */ 64 static struct platform_device *reg_pdev; 65 66 static struct device_type reg_device_type = { 67 .uevent = reg_device_uevent, 68 }; 69 70 /* 71 * Central wireless core regulatory domains, we only need two, 72 * the current one and a world regulatory domain in case we have no 73 * information to give us an alpha2 74 */ 75 const struct ieee80211_regdomain *cfg80211_regdomain; 76 77 /* 78 * Protects static reg.c components: 79 * - cfg80211_world_regdom 80 * - cfg80211_regdom 81 * - last_request 82 */ 83 static DEFINE_MUTEX(reg_mutex); 84 85 static inline void assert_reg_lock(void) 86 { 87 lockdep_assert_held(®_mutex); 88 } 89 90 /* Used to queue up regulatory hints */ 91 static LIST_HEAD(reg_requests_list); 92 static spinlock_t reg_requests_lock; 93 94 /* Used to queue up beacon hints for review */ 95 static LIST_HEAD(reg_pending_beacons); 96 static spinlock_t reg_pending_beacons_lock; 97 98 /* Used to keep track of processed beacon hints */ 99 static LIST_HEAD(reg_beacon_list); 100 101 struct reg_beacon { 102 struct list_head list; 103 struct ieee80211_channel chan; 104 }; 105 106 static void reg_todo(struct work_struct *work); 107 static DECLARE_WORK(reg_work, reg_todo); 108 109 static void reg_timeout_work(struct work_struct *work); 110 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work); 111 112 /* We keep a static world regulatory domain in case of the absence of CRDA */ 113 static const struct ieee80211_regdomain world_regdom = { 114 .n_reg_rules = 5, 115 .alpha2 = "00", 116 .reg_rules = { 117 /* IEEE 802.11b/g, channels 1..11 */ 118 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 119 /* IEEE 802.11b/g, channels 12..13. No HT40 120 * channel fits here. */ 121 REG_RULE(2467-10, 2472+10, 20, 6, 20, 122 NL80211_RRF_PASSIVE_SCAN | 123 NL80211_RRF_NO_IBSS), 124 /* IEEE 802.11 channel 14 - Only JP enables 125 * this and for 802.11b only */ 126 REG_RULE(2484-10, 2484+10, 20, 6, 20, 127 NL80211_RRF_PASSIVE_SCAN | 128 NL80211_RRF_NO_IBSS | 129 NL80211_RRF_NO_OFDM), 130 /* IEEE 802.11a, channel 36..48 */ 131 REG_RULE(5180-10, 5240+10, 40, 6, 20, 132 NL80211_RRF_PASSIVE_SCAN | 133 NL80211_RRF_NO_IBSS), 134 135 /* NB: 5260 MHz - 5700 MHz requies DFS */ 136 137 /* IEEE 802.11a, channel 149..165 */ 138 REG_RULE(5745-10, 5825+10, 40, 6, 20, 139 NL80211_RRF_PASSIVE_SCAN | 140 NL80211_RRF_NO_IBSS), 141 } 142 }; 143 144 static const struct ieee80211_regdomain *cfg80211_world_regdom = 145 &world_regdom; 146 147 static char *ieee80211_regdom = "00"; 148 static char user_alpha2[2]; 149 150 module_param(ieee80211_regdom, charp, 0444); 151 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 152 153 static void reset_regdomains(void) 154 { 155 /* avoid freeing static information or freeing something twice */ 156 if (cfg80211_regdomain == cfg80211_world_regdom) 157 cfg80211_regdomain = NULL; 158 if (cfg80211_world_regdom == &world_regdom) 159 cfg80211_world_regdom = NULL; 160 if (cfg80211_regdomain == &world_regdom) 161 cfg80211_regdomain = NULL; 162 163 kfree(cfg80211_regdomain); 164 kfree(cfg80211_world_regdom); 165 166 cfg80211_world_regdom = &world_regdom; 167 cfg80211_regdomain = NULL; 168 } 169 170 /* 171 * Dynamic world regulatory domain requested by the wireless 172 * core upon initialization 173 */ 174 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 175 { 176 BUG_ON(!last_request); 177 178 reset_regdomains(); 179 180 cfg80211_world_regdom = rd; 181 cfg80211_regdomain = rd; 182 } 183 184 bool is_world_regdom(const char *alpha2) 185 { 186 if (!alpha2) 187 return false; 188 if (alpha2[0] == '0' && alpha2[1] == '0') 189 return true; 190 return false; 191 } 192 193 static bool is_alpha2_set(const char *alpha2) 194 { 195 if (!alpha2) 196 return false; 197 if (alpha2[0] != 0 && alpha2[1] != 0) 198 return true; 199 return false; 200 } 201 202 static bool is_unknown_alpha2(const char *alpha2) 203 { 204 if (!alpha2) 205 return false; 206 /* 207 * Special case where regulatory domain was built by driver 208 * but a specific alpha2 cannot be determined 209 */ 210 if (alpha2[0] == '9' && alpha2[1] == '9') 211 return true; 212 return false; 213 } 214 215 static bool is_intersected_alpha2(const char *alpha2) 216 { 217 if (!alpha2) 218 return false; 219 /* 220 * Special case where regulatory domain is the 221 * result of an intersection between two regulatory domain 222 * structures 223 */ 224 if (alpha2[0] == '9' && alpha2[1] == '8') 225 return true; 226 return false; 227 } 228 229 static bool is_an_alpha2(const char *alpha2) 230 { 231 if (!alpha2) 232 return false; 233 if (isalpha(alpha2[0]) && isalpha(alpha2[1])) 234 return true; 235 return false; 236 } 237 238 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 239 { 240 if (!alpha2_x || !alpha2_y) 241 return false; 242 if (alpha2_x[0] == alpha2_y[0] && 243 alpha2_x[1] == alpha2_y[1]) 244 return true; 245 return false; 246 } 247 248 static bool regdom_changes(const char *alpha2) 249 { 250 assert_cfg80211_lock(); 251 252 if (!cfg80211_regdomain) 253 return true; 254 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2)) 255 return false; 256 return true; 257 } 258 259 /* 260 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 261 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 262 * has ever been issued. 263 */ 264 static bool is_user_regdom_saved(void) 265 { 266 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 267 return false; 268 269 /* This would indicate a mistake on the design */ 270 if (WARN((!is_world_regdom(user_alpha2) && 271 !is_an_alpha2(user_alpha2)), 272 "Unexpected user alpha2: %c%c\n", 273 user_alpha2[0], 274 user_alpha2[1])) 275 return false; 276 277 return true; 278 } 279 280 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd, 281 const struct ieee80211_regdomain *src_regd) 282 { 283 struct ieee80211_regdomain *regd; 284 int size_of_regd = 0; 285 unsigned int i; 286 287 size_of_regd = sizeof(struct ieee80211_regdomain) + 288 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule)); 289 290 regd = kzalloc(size_of_regd, GFP_KERNEL); 291 if (!regd) 292 return -ENOMEM; 293 294 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 295 296 for (i = 0; i < src_regd->n_reg_rules; i++) 297 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 298 sizeof(struct ieee80211_reg_rule)); 299 300 *dst_regd = regd; 301 return 0; 302 } 303 304 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 305 struct reg_regdb_search_request { 306 char alpha2[2]; 307 struct list_head list; 308 }; 309 310 static LIST_HEAD(reg_regdb_search_list); 311 static DEFINE_MUTEX(reg_regdb_search_mutex); 312 313 static void reg_regdb_search(struct work_struct *work) 314 { 315 struct reg_regdb_search_request *request; 316 const struct ieee80211_regdomain *curdom, *regdom; 317 int i, r; 318 319 mutex_lock(®_regdb_search_mutex); 320 while (!list_empty(®_regdb_search_list)) { 321 request = list_first_entry(®_regdb_search_list, 322 struct reg_regdb_search_request, 323 list); 324 list_del(&request->list); 325 326 for (i=0; i<reg_regdb_size; i++) { 327 curdom = reg_regdb[i]; 328 329 if (!memcmp(request->alpha2, curdom->alpha2, 2)) { 330 r = reg_copy_regd(®dom, curdom); 331 if (r) 332 break; 333 mutex_lock(&cfg80211_mutex); 334 set_regdom(regdom); 335 mutex_unlock(&cfg80211_mutex); 336 break; 337 } 338 } 339 340 kfree(request); 341 } 342 mutex_unlock(®_regdb_search_mutex); 343 } 344 345 static DECLARE_WORK(reg_regdb_work, reg_regdb_search); 346 347 static void reg_regdb_query(const char *alpha2) 348 { 349 struct reg_regdb_search_request *request; 350 351 if (!alpha2) 352 return; 353 354 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL); 355 if (!request) 356 return; 357 358 memcpy(request->alpha2, alpha2, 2); 359 360 mutex_lock(®_regdb_search_mutex); 361 list_add_tail(&request->list, ®_regdb_search_list); 362 mutex_unlock(®_regdb_search_mutex); 363 364 schedule_work(®_regdb_work); 365 } 366 #else 367 static inline void reg_regdb_query(const char *alpha2) {} 368 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 369 370 /* 371 * This lets us keep regulatory code which is updated on a regulatory 372 * basis in userspace. Country information is filled in by 373 * reg_device_uevent 374 */ 375 static int call_crda(const char *alpha2) 376 { 377 if (!is_world_regdom((char *) alpha2)) 378 pr_info("Calling CRDA for country: %c%c\n", 379 alpha2[0], alpha2[1]); 380 else 381 pr_info("Calling CRDA to update world regulatory domain\n"); 382 383 /* query internal regulatory database (if it exists) */ 384 reg_regdb_query(alpha2); 385 386 return kobject_uevent(®_pdev->dev.kobj, KOBJ_CHANGE); 387 } 388 389 /* Used by nl80211 before kmalloc'ing our regulatory domain */ 390 bool reg_is_valid_request(const char *alpha2) 391 { 392 assert_cfg80211_lock(); 393 394 if (!last_request) 395 return false; 396 397 return alpha2_equal(last_request->alpha2, alpha2); 398 } 399 400 /* Sanity check on a regulatory rule */ 401 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 402 { 403 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 404 u32 freq_diff; 405 406 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 407 return false; 408 409 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 410 return false; 411 412 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 413 414 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 415 freq_range->max_bandwidth_khz > freq_diff) 416 return false; 417 418 return true; 419 } 420 421 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 422 { 423 const struct ieee80211_reg_rule *reg_rule = NULL; 424 unsigned int i; 425 426 if (!rd->n_reg_rules) 427 return false; 428 429 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 430 return false; 431 432 for (i = 0; i < rd->n_reg_rules; i++) { 433 reg_rule = &rd->reg_rules[i]; 434 if (!is_valid_reg_rule(reg_rule)) 435 return false; 436 } 437 438 return true; 439 } 440 441 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 442 u32 center_freq_khz, 443 u32 bw_khz) 444 { 445 u32 start_freq_khz, end_freq_khz; 446 447 start_freq_khz = center_freq_khz - (bw_khz/2); 448 end_freq_khz = center_freq_khz + (bw_khz/2); 449 450 if (start_freq_khz >= freq_range->start_freq_khz && 451 end_freq_khz <= freq_range->end_freq_khz) 452 return true; 453 454 return false; 455 } 456 457 /** 458 * freq_in_rule_band - tells us if a frequency is in a frequency band 459 * @freq_range: frequency rule we want to query 460 * @freq_khz: frequency we are inquiring about 461 * 462 * This lets us know if a specific frequency rule is or is not relevant to 463 * a specific frequency's band. Bands are device specific and artificial 464 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is 465 * safe for now to assume that a frequency rule should not be part of a 466 * frequency's band if the start freq or end freq are off by more than 2 GHz. 467 * This resolution can be lowered and should be considered as we add 468 * regulatory rule support for other "bands". 469 **/ 470 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 471 u32 freq_khz) 472 { 473 #define ONE_GHZ_IN_KHZ 1000000 474 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) 475 return true; 476 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) 477 return true; 478 return false; 479 #undef ONE_GHZ_IN_KHZ 480 } 481 482 /* 483 * Helper for regdom_intersect(), this does the real 484 * mathematical intersection fun 485 */ 486 static int reg_rules_intersect( 487 const struct ieee80211_reg_rule *rule1, 488 const struct ieee80211_reg_rule *rule2, 489 struct ieee80211_reg_rule *intersected_rule) 490 { 491 const struct ieee80211_freq_range *freq_range1, *freq_range2; 492 struct ieee80211_freq_range *freq_range; 493 const struct ieee80211_power_rule *power_rule1, *power_rule2; 494 struct ieee80211_power_rule *power_rule; 495 u32 freq_diff; 496 497 freq_range1 = &rule1->freq_range; 498 freq_range2 = &rule2->freq_range; 499 freq_range = &intersected_rule->freq_range; 500 501 power_rule1 = &rule1->power_rule; 502 power_rule2 = &rule2->power_rule; 503 power_rule = &intersected_rule->power_rule; 504 505 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 506 freq_range2->start_freq_khz); 507 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 508 freq_range2->end_freq_khz); 509 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz, 510 freq_range2->max_bandwidth_khz); 511 512 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 513 if (freq_range->max_bandwidth_khz > freq_diff) 514 freq_range->max_bandwidth_khz = freq_diff; 515 516 power_rule->max_eirp = min(power_rule1->max_eirp, 517 power_rule2->max_eirp); 518 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 519 power_rule2->max_antenna_gain); 520 521 intersected_rule->flags = (rule1->flags | rule2->flags); 522 523 if (!is_valid_reg_rule(intersected_rule)) 524 return -EINVAL; 525 526 return 0; 527 } 528 529 /** 530 * regdom_intersect - do the intersection between two regulatory domains 531 * @rd1: first regulatory domain 532 * @rd2: second regulatory domain 533 * 534 * Use this function to get the intersection between two regulatory domains. 535 * Once completed we will mark the alpha2 for the rd as intersected, "98", 536 * as no one single alpha2 can represent this regulatory domain. 537 * 538 * Returns a pointer to the regulatory domain structure which will hold the 539 * resulting intersection of rules between rd1 and rd2. We will 540 * kzalloc() this structure for you. 541 */ 542 static struct ieee80211_regdomain *regdom_intersect( 543 const struct ieee80211_regdomain *rd1, 544 const struct ieee80211_regdomain *rd2) 545 { 546 int r, size_of_regd; 547 unsigned int x, y; 548 unsigned int num_rules = 0, rule_idx = 0; 549 const struct ieee80211_reg_rule *rule1, *rule2; 550 struct ieee80211_reg_rule *intersected_rule; 551 struct ieee80211_regdomain *rd; 552 /* This is just a dummy holder to help us count */ 553 struct ieee80211_reg_rule irule; 554 555 /* Uses the stack temporarily for counter arithmetic */ 556 intersected_rule = &irule; 557 558 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule)); 559 560 if (!rd1 || !rd2) 561 return NULL; 562 563 /* 564 * First we get a count of the rules we'll need, then we actually 565 * build them. This is to so we can malloc() and free() a 566 * regdomain once. The reason we use reg_rules_intersect() here 567 * is it will return -EINVAL if the rule computed makes no sense. 568 * All rules that do check out OK are valid. 569 */ 570 571 for (x = 0; x < rd1->n_reg_rules; x++) { 572 rule1 = &rd1->reg_rules[x]; 573 for (y = 0; y < rd2->n_reg_rules; y++) { 574 rule2 = &rd2->reg_rules[y]; 575 if (!reg_rules_intersect(rule1, rule2, 576 intersected_rule)) 577 num_rules++; 578 memset(intersected_rule, 0, 579 sizeof(struct ieee80211_reg_rule)); 580 } 581 } 582 583 if (!num_rules) 584 return NULL; 585 586 size_of_regd = sizeof(struct ieee80211_regdomain) + 587 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule)); 588 589 rd = kzalloc(size_of_regd, GFP_KERNEL); 590 if (!rd) 591 return NULL; 592 593 for (x = 0; x < rd1->n_reg_rules; x++) { 594 rule1 = &rd1->reg_rules[x]; 595 for (y = 0; y < rd2->n_reg_rules; y++) { 596 rule2 = &rd2->reg_rules[y]; 597 /* 598 * This time around instead of using the stack lets 599 * write to the target rule directly saving ourselves 600 * a memcpy() 601 */ 602 intersected_rule = &rd->reg_rules[rule_idx]; 603 r = reg_rules_intersect(rule1, rule2, 604 intersected_rule); 605 /* 606 * No need to memset here the intersected rule here as 607 * we're not using the stack anymore 608 */ 609 if (r) 610 continue; 611 rule_idx++; 612 } 613 } 614 615 if (rule_idx != num_rules) { 616 kfree(rd); 617 return NULL; 618 } 619 620 rd->n_reg_rules = num_rules; 621 rd->alpha2[0] = '9'; 622 rd->alpha2[1] = '8'; 623 624 return rd; 625 } 626 627 /* 628 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 629 * want to just have the channel structure use these 630 */ 631 static u32 map_regdom_flags(u32 rd_flags) 632 { 633 u32 channel_flags = 0; 634 if (rd_flags & NL80211_RRF_PASSIVE_SCAN) 635 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN; 636 if (rd_flags & NL80211_RRF_NO_IBSS) 637 channel_flags |= IEEE80211_CHAN_NO_IBSS; 638 if (rd_flags & NL80211_RRF_DFS) 639 channel_flags |= IEEE80211_CHAN_RADAR; 640 return channel_flags; 641 } 642 643 static int freq_reg_info_regd(struct wiphy *wiphy, 644 u32 center_freq, 645 u32 desired_bw_khz, 646 const struct ieee80211_reg_rule **reg_rule, 647 const struct ieee80211_regdomain *custom_regd) 648 { 649 int i; 650 bool band_rule_found = false; 651 const struct ieee80211_regdomain *regd; 652 bool bw_fits = false; 653 654 if (!desired_bw_khz) 655 desired_bw_khz = MHZ_TO_KHZ(20); 656 657 regd = custom_regd ? custom_regd : cfg80211_regdomain; 658 659 /* 660 * Follow the driver's regulatory domain, if present, unless a country 661 * IE has been processed or a user wants to help complaince further 662 */ 663 if (!custom_regd && 664 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 665 last_request->initiator != NL80211_REGDOM_SET_BY_USER && 666 wiphy->regd) 667 regd = wiphy->regd; 668 669 if (!regd) 670 return -EINVAL; 671 672 for (i = 0; i < regd->n_reg_rules; i++) { 673 const struct ieee80211_reg_rule *rr; 674 const struct ieee80211_freq_range *fr = NULL; 675 676 rr = ®d->reg_rules[i]; 677 fr = &rr->freq_range; 678 679 /* 680 * We only need to know if one frequency rule was 681 * was in center_freq's band, that's enough, so lets 682 * not overwrite it once found 683 */ 684 if (!band_rule_found) 685 band_rule_found = freq_in_rule_band(fr, center_freq); 686 687 bw_fits = reg_does_bw_fit(fr, 688 center_freq, 689 desired_bw_khz); 690 691 if (band_rule_found && bw_fits) { 692 *reg_rule = rr; 693 return 0; 694 } 695 } 696 697 if (!band_rule_found) 698 return -ERANGE; 699 700 return -EINVAL; 701 } 702 703 int freq_reg_info(struct wiphy *wiphy, 704 u32 center_freq, 705 u32 desired_bw_khz, 706 const struct ieee80211_reg_rule **reg_rule) 707 { 708 assert_cfg80211_lock(); 709 return freq_reg_info_regd(wiphy, 710 center_freq, 711 desired_bw_khz, 712 reg_rule, 713 NULL); 714 } 715 EXPORT_SYMBOL(freq_reg_info); 716 717 #ifdef CONFIG_CFG80211_REG_DEBUG 718 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 719 { 720 switch (initiator) { 721 case NL80211_REGDOM_SET_BY_CORE: 722 return "Set by core"; 723 case NL80211_REGDOM_SET_BY_USER: 724 return "Set by user"; 725 case NL80211_REGDOM_SET_BY_DRIVER: 726 return "Set by driver"; 727 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 728 return "Set by country IE"; 729 default: 730 WARN_ON(1); 731 return "Set by bug"; 732 } 733 } 734 735 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 736 u32 desired_bw_khz, 737 const struct ieee80211_reg_rule *reg_rule) 738 { 739 const struct ieee80211_power_rule *power_rule; 740 const struct ieee80211_freq_range *freq_range; 741 char max_antenna_gain[32]; 742 743 power_rule = ®_rule->power_rule; 744 freq_range = ®_rule->freq_range; 745 746 if (!power_rule->max_antenna_gain) 747 snprintf(max_antenna_gain, 32, "N/A"); 748 else 749 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain); 750 751 REG_DBG_PRINT("Updating information on frequency %d MHz " 752 "for a %d MHz width channel with regulatory rule:\n", 753 chan->center_freq, 754 KHZ_TO_MHZ(desired_bw_khz)); 755 756 REG_DBG_PRINT("%d KHz - %d KHz @ KHz), (%s mBi, %d mBm)\n", 757 freq_range->start_freq_khz, 758 freq_range->end_freq_khz, 759 max_antenna_gain, 760 power_rule->max_eirp); 761 } 762 #else 763 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 764 u32 desired_bw_khz, 765 const struct ieee80211_reg_rule *reg_rule) 766 { 767 return; 768 } 769 #endif 770 771 /* 772 * Note that right now we assume the desired channel bandwidth 773 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 774 * per channel, the primary and the extension channel). To support 775 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a 776 * new ieee80211_channel.target_bw and re run the regulatory check 777 * on the wiphy with the target_bw specified. Then we can simply use 778 * that below for the desired_bw_khz below. 779 */ 780 static void handle_channel(struct wiphy *wiphy, 781 enum nl80211_reg_initiator initiator, 782 enum ieee80211_band band, 783 unsigned int chan_idx) 784 { 785 int r; 786 u32 flags, bw_flags = 0; 787 u32 desired_bw_khz = MHZ_TO_KHZ(20); 788 const struct ieee80211_reg_rule *reg_rule = NULL; 789 const struct ieee80211_power_rule *power_rule = NULL; 790 const struct ieee80211_freq_range *freq_range = NULL; 791 struct ieee80211_supported_band *sband; 792 struct ieee80211_channel *chan; 793 struct wiphy *request_wiphy = NULL; 794 795 assert_cfg80211_lock(); 796 797 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 798 799 sband = wiphy->bands[band]; 800 BUG_ON(chan_idx >= sband->n_channels); 801 chan = &sband->channels[chan_idx]; 802 803 flags = chan->orig_flags; 804 805 r = freq_reg_info(wiphy, 806 MHZ_TO_KHZ(chan->center_freq), 807 desired_bw_khz, 808 ®_rule); 809 810 if (r) { 811 /* 812 * We will disable all channels that do not match our 813 * received regulatory rule unless the hint is coming 814 * from a Country IE and the Country IE had no information 815 * about a band. The IEEE 802.11 spec allows for an AP 816 * to send only a subset of the regulatory rules allowed, 817 * so an AP in the US that only supports 2.4 GHz may only send 818 * a country IE with information for the 2.4 GHz band 819 * while 5 GHz is still supported. 820 */ 821 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 822 r == -ERANGE) 823 return; 824 825 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq); 826 chan->flags = IEEE80211_CHAN_DISABLED; 827 return; 828 } 829 830 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule); 831 832 power_rule = ®_rule->power_rule; 833 freq_range = ®_rule->freq_range; 834 835 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 836 bw_flags = IEEE80211_CHAN_NO_HT40; 837 838 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 839 request_wiphy && request_wiphy == wiphy && 840 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { 841 /* 842 * This guarantees the driver's requested regulatory domain 843 * will always be used as a base for further regulatory 844 * settings 845 */ 846 chan->flags = chan->orig_flags = 847 map_regdom_flags(reg_rule->flags) | bw_flags; 848 chan->max_antenna_gain = chan->orig_mag = 849 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 850 chan->max_power = chan->orig_mpwr = 851 (int) MBM_TO_DBM(power_rule->max_eirp); 852 return; 853 } 854 855 chan->beacon_found = false; 856 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 857 chan->max_antenna_gain = min(chan->orig_mag, 858 (int) MBI_TO_DBI(power_rule->max_antenna_gain)); 859 if (chan->orig_mpwr) 860 chan->max_power = min(chan->orig_mpwr, 861 (int) MBM_TO_DBM(power_rule->max_eirp)); 862 else 863 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); 864 } 865 866 static void handle_band(struct wiphy *wiphy, 867 enum ieee80211_band band, 868 enum nl80211_reg_initiator initiator) 869 { 870 unsigned int i; 871 struct ieee80211_supported_band *sband; 872 873 BUG_ON(!wiphy->bands[band]); 874 sband = wiphy->bands[band]; 875 876 for (i = 0; i < sband->n_channels; i++) 877 handle_channel(wiphy, initiator, band, i); 878 } 879 880 static bool ignore_reg_update(struct wiphy *wiphy, 881 enum nl80211_reg_initiator initiator) 882 { 883 if (!last_request) { 884 REG_DBG_PRINT("Ignoring regulatory request %s since " 885 "last_request is not set\n", 886 reg_initiator_name(initiator)); 887 return true; 888 } 889 890 if (initiator == NL80211_REGDOM_SET_BY_CORE && 891 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) { 892 REG_DBG_PRINT("Ignoring regulatory request %s " 893 "since the driver uses its own custom " 894 "regulatory domain ", 895 reg_initiator_name(initiator)); 896 return true; 897 } 898 899 /* 900 * wiphy->regd will be set once the device has its own 901 * desired regulatory domain set 902 */ 903 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd && 904 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 905 !is_world_regdom(last_request->alpha2)) { 906 REG_DBG_PRINT("Ignoring regulatory request %s " 907 "since the driver requires its own regulatory " 908 "domain to be set first", 909 reg_initiator_name(initiator)); 910 return true; 911 } 912 913 return false; 914 } 915 916 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 917 { 918 struct cfg80211_registered_device *rdev; 919 920 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 921 wiphy_update_regulatory(&rdev->wiphy, initiator); 922 } 923 924 static void handle_reg_beacon(struct wiphy *wiphy, 925 unsigned int chan_idx, 926 struct reg_beacon *reg_beacon) 927 { 928 struct ieee80211_supported_band *sband; 929 struct ieee80211_channel *chan; 930 bool channel_changed = false; 931 struct ieee80211_channel chan_before; 932 933 assert_cfg80211_lock(); 934 935 sband = wiphy->bands[reg_beacon->chan.band]; 936 chan = &sband->channels[chan_idx]; 937 938 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 939 return; 940 941 if (chan->beacon_found) 942 return; 943 944 chan->beacon_found = true; 945 946 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS) 947 return; 948 949 chan_before.center_freq = chan->center_freq; 950 chan_before.flags = chan->flags; 951 952 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) { 953 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN; 954 channel_changed = true; 955 } 956 957 if (chan->flags & IEEE80211_CHAN_NO_IBSS) { 958 chan->flags &= ~IEEE80211_CHAN_NO_IBSS; 959 channel_changed = true; 960 } 961 962 if (channel_changed) 963 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 964 } 965 966 /* 967 * Called when a scan on a wiphy finds a beacon on 968 * new channel 969 */ 970 static void wiphy_update_new_beacon(struct wiphy *wiphy, 971 struct reg_beacon *reg_beacon) 972 { 973 unsigned int i; 974 struct ieee80211_supported_band *sband; 975 976 assert_cfg80211_lock(); 977 978 if (!wiphy->bands[reg_beacon->chan.band]) 979 return; 980 981 sband = wiphy->bands[reg_beacon->chan.band]; 982 983 for (i = 0; i < sband->n_channels; i++) 984 handle_reg_beacon(wiphy, i, reg_beacon); 985 } 986 987 /* 988 * Called upon reg changes or a new wiphy is added 989 */ 990 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 991 { 992 unsigned int i; 993 struct ieee80211_supported_band *sband; 994 struct reg_beacon *reg_beacon; 995 996 assert_cfg80211_lock(); 997 998 if (list_empty(®_beacon_list)) 999 return; 1000 1001 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1002 if (!wiphy->bands[reg_beacon->chan.band]) 1003 continue; 1004 sband = wiphy->bands[reg_beacon->chan.band]; 1005 for (i = 0; i < sband->n_channels; i++) 1006 handle_reg_beacon(wiphy, i, reg_beacon); 1007 } 1008 } 1009 1010 static bool reg_is_world_roaming(struct wiphy *wiphy) 1011 { 1012 if (is_world_regdom(cfg80211_regdomain->alpha2) || 1013 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2))) 1014 return true; 1015 if (last_request && 1016 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1017 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) 1018 return true; 1019 return false; 1020 } 1021 1022 /* Reap the advantages of previously found beacons */ 1023 static void reg_process_beacons(struct wiphy *wiphy) 1024 { 1025 /* 1026 * Means we are just firing up cfg80211, so no beacons would 1027 * have been processed yet. 1028 */ 1029 if (!last_request) 1030 return; 1031 if (!reg_is_world_roaming(wiphy)) 1032 return; 1033 wiphy_update_beacon_reg(wiphy); 1034 } 1035 1036 static bool is_ht40_not_allowed(struct ieee80211_channel *chan) 1037 { 1038 if (!chan) 1039 return true; 1040 if (chan->flags & IEEE80211_CHAN_DISABLED) 1041 return true; 1042 /* This would happen when regulatory rules disallow HT40 completely */ 1043 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40))) 1044 return true; 1045 return false; 1046 } 1047 1048 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1049 enum ieee80211_band band, 1050 unsigned int chan_idx) 1051 { 1052 struct ieee80211_supported_band *sband; 1053 struct ieee80211_channel *channel; 1054 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1055 unsigned int i; 1056 1057 assert_cfg80211_lock(); 1058 1059 sband = wiphy->bands[band]; 1060 BUG_ON(chan_idx >= sband->n_channels); 1061 channel = &sband->channels[chan_idx]; 1062 1063 if (is_ht40_not_allowed(channel)) { 1064 channel->flags |= IEEE80211_CHAN_NO_HT40; 1065 return; 1066 } 1067 1068 /* 1069 * We need to ensure the extension channels exist to 1070 * be able to use HT40- or HT40+, this finds them (or not) 1071 */ 1072 for (i = 0; i < sband->n_channels; i++) { 1073 struct ieee80211_channel *c = &sband->channels[i]; 1074 if (c->center_freq == (channel->center_freq - 20)) 1075 channel_before = c; 1076 if (c->center_freq == (channel->center_freq + 20)) 1077 channel_after = c; 1078 } 1079 1080 /* 1081 * Please note that this assumes target bandwidth is 20 MHz, 1082 * if that ever changes we also need to change the below logic 1083 * to include that as well. 1084 */ 1085 if (is_ht40_not_allowed(channel_before)) 1086 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1087 else 1088 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1089 1090 if (is_ht40_not_allowed(channel_after)) 1091 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1092 else 1093 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1094 } 1095 1096 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1097 enum ieee80211_band band) 1098 { 1099 unsigned int i; 1100 struct ieee80211_supported_band *sband; 1101 1102 BUG_ON(!wiphy->bands[band]); 1103 sband = wiphy->bands[band]; 1104 1105 for (i = 0; i < sband->n_channels; i++) 1106 reg_process_ht_flags_channel(wiphy, band, i); 1107 } 1108 1109 static void reg_process_ht_flags(struct wiphy *wiphy) 1110 { 1111 enum ieee80211_band band; 1112 1113 if (!wiphy) 1114 return; 1115 1116 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1117 if (wiphy->bands[band]) 1118 reg_process_ht_flags_band(wiphy, band); 1119 } 1120 1121 } 1122 1123 void wiphy_update_regulatory(struct wiphy *wiphy, 1124 enum nl80211_reg_initiator initiator) 1125 { 1126 enum ieee80211_band band; 1127 1128 if (ignore_reg_update(wiphy, initiator)) 1129 return; 1130 1131 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1132 if (wiphy->bands[band]) 1133 handle_band(wiphy, band, initiator); 1134 } 1135 1136 reg_process_beacons(wiphy); 1137 reg_process_ht_flags(wiphy); 1138 if (wiphy->reg_notifier) 1139 wiphy->reg_notifier(wiphy, last_request); 1140 } 1141 1142 static void handle_channel_custom(struct wiphy *wiphy, 1143 enum ieee80211_band band, 1144 unsigned int chan_idx, 1145 const struct ieee80211_regdomain *regd) 1146 { 1147 int r; 1148 u32 desired_bw_khz = MHZ_TO_KHZ(20); 1149 u32 bw_flags = 0; 1150 const struct ieee80211_reg_rule *reg_rule = NULL; 1151 const struct ieee80211_power_rule *power_rule = NULL; 1152 const struct ieee80211_freq_range *freq_range = NULL; 1153 struct ieee80211_supported_band *sband; 1154 struct ieee80211_channel *chan; 1155 1156 assert_reg_lock(); 1157 1158 sband = wiphy->bands[band]; 1159 BUG_ON(chan_idx >= sband->n_channels); 1160 chan = &sband->channels[chan_idx]; 1161 1162 r = freq_reg_info_regd(wiphy, 1163 MHZ_TO_KHZ(chan->center_freq), 1164 desired_bw_khz, 1165 ®_rule, 1166 regd); 1167 1168 if (r) { 1169 REG_DBG_PRINT("Disabling freq %d MHz as custom " 1170 "regd has no rule that fits a %d MHz " 1171 "wide channel\n", 1172 chan->center_freq, 1173 KHZ_TO_MHZ(desired_bw_khz)); 1174 chan->flags = IEEE80211_CHAN_DISABLED; 1175 return; 1176 } 1177 1178 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule); 1179 1180 power_rule = ®_rule->power_rule; 1181 freq_range = ®_rule->freq_range; 1182 1183 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 1184 bw_flags = IEEE80211_CHAN_NO_HT40; 1185 1186 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1187 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1188 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1189 } 1190 1191 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band, 1192 const struct ieee80211_regdomain *regd) 1193 { 1194 unsigned int i; 1195 struct ieee80211_supported_band *sband; 1196 1197 BUG_ON(!wiphy->bands[band]); 1198 sband = wiphy->bands[band]; 1199 1200 for (i = 0; i < sband->n_channels; i++) 1201 handle_channel_custom(wiphy, band, i, regd); 1202 } 1203 1204 /* Used by drivers prior to wiphy registration */ 1205 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1206 const struct ieee80211_regdomain *regd) 1207 { 1208 enum ieee80211_band band; 1209 unsigned int bands_set = 0; 1210 1211 mutex_lock(®_mutex); 1212 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1213 if (!wiphy->bands[band]) 1214 continue; 1215 handle_band_custom(wiphy, band, regd); 1216 bands_set++; 1217 } 1218 mutex_unlock(®_mutex); 1219 1220 /* 1221 * no point in calling this if it won't have any effect 1222 * on your device's supportd bands. 1223 */ 1224 WARN_ON(!bands_set); 1225 } 1226 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1227 1228 /* 1229 * Return value which can be used by ignore_request() to indicate 1230 * it has been determined we should intersect two regulatory domains 1231 */ 1232 #define REG_INTERSECT 1 1233 1234 /* This has the logic which determines when a new request 1235 * should be ignored. */ 1236 static int ignore_request(struct wiphy *wiphy, 1237 struct regulatory_request *pending_request) 1238 { 1239 struct wiphy *last_wiphy = NULL; 1240 1241 assert_cfg80211_lock(); 1242 1243 /* All initial requests are respected */ 1244 if (!last_request) 1245 return 0; 1246 1247 switch (pending_request->initiator) { 1248 case NL80211_REGDOM_SET_BY_CORE: 1249 return 0; 1250 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1251 1252 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 1253 1254 if (unlikely(!is_an_alpha2(pending_request->alpha2))) 1255 return -EINVAL; 1256 if (last_request->initiator == 1257 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1258 if (last_wiphy != wiphy) { 1259 /* 1260 * Two cards with two APs claiming different 1261 * Country IE alpha2s. We could 1262 * intersect them, but that seems unlikely 1263 * to be correct. Reject second one for now. 1264 */ 1265 if (regdom_changes(pending_request->alpha2)) 1266 return -EOPNOTSUPP; 1267 return -EALREADY; 1268 } 1269 /* 1270 * Two consecutive Country IE hints on the same wiphy. 1271 * This should be picked up early by the driver/stack 1272 */ 1273 if (WARN_ON(regdom_changes(pending_request->alpha2))) 1274 return 0; 1275 return -EALREADY; 1276 } 1277 return 0; 1278 case NL80211_REGDOM_SET_BY_DRIVER: 1279 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) { 1280 if (regdom_changes(pending_request->alpha2)) 1281 return 0; 1282 return -EALREADY; 1283 } 1284 1285 /* 1286 * This would happen if you unplug and plug your card 1287 * back in or if you add a new device for which the previously 1288 * loaded card also agrees on the regulatory domain. 1289 */ 1290 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1291 !regdom_changes(pending_request->alpha2)) 1292 return -EALREADY; 1293 1294 return REG_INTERSECT; 1295 case NL80211_REGDOM_SET_BY_USER: 1296 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1297 return REG_INTERSECT; 1298 /* 1299 * If the user knows better the user should set the regdom 1300 * to their country before the IE is picked up 1301 */ 1302 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER && 1303 last_request->intersect) 1304 return -EOPNOTSUPP; 1305 /* 1306 * Process user requests only after previous user/driver/core 1307 * requests have been processed 1308 */ 1309 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE || 1310 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1311 last_request->initiator == NL80211_REGDOM_SET_BY_USER) { 1312 if (regdom_changes(last_request->alpha2)) 1313 return -EAGAIN; 1314 } 1315 1316 if (!regdom_changes(pending_request->alpha2)) 1317 return -EALREADY; 1318 1319 return 0; 1320 } 1321 1322 return -EINVAL; 1323 } 1324 1325 static void reg_set_request_processed(void) 1326 { 1327 bool need_more_processing = false; 1328 1329 last_request->processed = true; 1330 1331 spin_lock(®_requests_lock); 1332 if (!list_empty(®_requests_list)) 1333 need_more_processing = true; 1334 spin_unlock(®_requests_lock); 1335 1336 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) 1337 cancel_delayed_work_sync(®_timeout); 1338 1339 if (need_more_processing) 1340 schedule_work(®_work); 1341 } 1342 1343 /** 1344 * __regulatory_hint - hint to the wireless core a regulatory domain 1345 * @wiphy: if the hint comes from country information from an AP, this 1346 * is required to be set to the wiphy that received the information 1347 * @pending_request: the regulatory request currently being processed 1348 * 1349 * The Wireless subsystem can use this function to hint to the wireless core 1350 * what it believes should be the current regulatory domain. 1351 * 1352 * Returns zero if all went fine, %-EALREADY if a regulatory domain had 1353 * already been set or other standard error codes. 1354 * 1355 * Caller must hold &cfg80211_mutex and ®_mutex 1356 */ 1357 static int __regulatory_hint(struct wiphy *wiphy, 1358 struct regulatory_request *pending_request) 1359 { 1360 bool intersect = false; 1361 int r = 0; 1362 1363 assert_cfg80211_lock(); 1364 1365 r = ignore_request(wiphy, pending_request); 1366 1367 if (r == REG_INTERSECT) { 1368 if (pending_request->initiator == 1369 NL80211_REGDOM_SET_BY_DRIVER) { 1370 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); 1371 if (r) { 1372 kfree(pending_request); 1373 return r; 1374 } 1375 } 1376 intersect = true; 1377 } else if (r) { 1378 /* 1379 * If the regulatory domain being requested by the 1380 * driver has already been set just copy it to the 1381 * wiphy 1382 */ 1383 if (r == -EALREADY && 1384 pending_request->initiator == 1385 NL80211_REGDOM_SET_BY_DRIVER) { 1386 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); 1387 if (r) { 1388 kfree(pending_request); 1389 return r; 1390 } 1391 r = -EALREADY; 1392 goto new_request; 1393 } 1394 kfree(pending_request); 1395 return r; 1396 } 1397 1398 new_request: 1399 kfree(last_request); 1400 1401 last_request = pending_request; 1402 last_request->intersect = intersect; 1403 1404 pending_request = NULL; 1405 1406 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) { 1407 user_alpha2[0] = last_request->alpha2[0]; 1408 user_alpha2[1] = last_request->alpha2[1]; 1409 } 1410 1411 /* When r == REG_INTERSECT we do need to call CRDA */ 1412 if (r < 0) { 1413 /* 1414 * Since CRDA will not be called in this case as we already 1415 * have applied the requested regulatory domain before we just 1416 * inform userspace we have processed the request 1417 */ 1418 if (r == -EALREADY) { 1419 nl80211_send_reg_change_event(last_request); 1420 reg_set_request_processed(); 1421 } 1422 return r; 1423 } 1424 1425 return call_crda(last_request->alpha2); 1426 } 1427 1428 /* This processes *all* regulatory hints */ 1429 static void reg_process_hint(struct regulatory_request *reg_request) 1430 { 1431 int r = 0; 1432 struct wiphy *wiphy = NULL; 1433 enum nl80211_reg_initiator initiator = reg_request->initiator; 1434 1435 BUG_ON(!reg_request->alpha2); 1436 1437 if (wiphy_idx_valid(reg_request->wiphy_idx)) 1438 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 1439 1440 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1441 !wiphy) { 1442 kfree(reg_request); 1443 return; 1444 } 1445 1446 r = __regulatory_hint(wiphy, reg_request); 1447 /* This is required so that the orig_* parameters are saved */ 1448 if (r == -EALREADY && wiphy && 1449 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { 1450 wiphy_update_regulatory(wiphy, initiator); 1451 return; 1452 } 1453 1454 /* 1455 * We only time out user hints, given that they should be the only 1456 * source of bogus requests. 1457 */ 1458 if (r != -EALREADY && 1459 reg_request->initiator == NL80211_REGDOM_SET_BY_USER) 1460 schedule_delayed_work(®_timeout, msecs_to_jiffies(3142)); 1461 } 1462 1463 /* 1464 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 1465 * Regulatory hints come on a first come first serve basis and we 1466 * must process each one atomically. 1467 */ 1468 static void reg_process_pending_hints(void) 1469 { 1470 struct regulatory_request *reg_request; 1471 1472 mutex_lock(&cfg80211_mutex); 1473 mutex_lock(®_mutex); 1474 1475 /* When last_request->processed becomes true this will be rescheduled */ 1476 if (last_request && !last_request->processed) { 1477 REG_DBG_PRINT("Pending regulatory request, waiting " 1478 "for it to be processed..."); 1479 goto out; 1480 } 1481 1482 spin_lock(®_requests_lock); 1483 1484 if (list_empty(®_requests_list)) { 1485 spin_unlock(®_requests_lock); 1486 goto out; 1487 } 1488 1489 reg_request = list_first_entry(®_requests_list, 1490 struct regulatory_request, 1491 list); 1492 list_del_init(®_request->list); 1493 1494 spin_unlock(®_requests_lock); 1495 1496 reg_process_hint(reg_request); 1497 1498 out: 1499 mutex_unlock(®_mutex); 1500 mutex_unlock(&cfg80211_mutex); 1501 } 1502 1503 /* Processes beacon hints -- this has nothing to do with country IEs */ 1504 static void reg_process_pending_beacon_hints(void) 1505 { 1506 struct cfg80211_registered_device *rdev; 1507 struct reg_beacon *pending_beacon, *tmp; 1508 1509 /* 1510 * No need to hold the reg_mutex here as we just touch wiphys 1511 * and do not read or access regulatory variables. 1512 */ 1513 mutex_lock(&cfg80211_mutex); 1514 1515 /* This goes through the _pending_ beacon list */ 1516 spin_lock_bh(®_pending_beacons_lock); 1517 1518 if (list_empty(®_pending_beacons)) { 1519 spin_unlock_bh(®_pending_beacons_lock); 1520 goto out; 1521 } 1522 1523 list_for_each_entry_safe(pending_beacon, tmp, 1524 ®_pending_beacons, list) { 1525 1526 list_del_init(&pending_beacon->list); 1527 1528 /* Applies the beacon hint to current wiphys */ 1529 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1530 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 1531 1532 /* Remembers the beacon hint for new wiphys or reg changes */ 1533 list_add_tail(&pending_beacon->list, ®_beacon_list); 1534 } 1535 1536 spin_unlock_bh(®_pending_beacons_lock); 1537 out: 1538 mutex_unlock(&cfg80211_mutex); 1539 } 1540 1541 static void reg_todo(struct work_struct *work) 1542 { 1543 reg_process_pending_hints(); 1544 reg_process_pending_beacon_hints(); 1545 } 1546 1547 static void queue_regulatory_request(struct regulatory_request *request) 1548 { 1549 if (isalpha(request->alpha2[0])) 1550 request->alpha2[0] = toupper(request->alpha2[0]); 1551 if (isalpha(request->alpha2[1])) 1552 request->alpha2[1] = toupper(request->alpha2[1]); 1553 1554 spin_lock(®_requests_lock); 1555 list_add_tail(&request->list, ®_requests_list); 1556 spin_unlock(®_requests_lock); 1557 1558 schedule_work(®_work); 1559 } 1560 1561 /* 1562 * Core regulatory hint -- happens during cfg80211_init() 1563 * and when we restore regulatory settings. 1564 */ 1565 static int regulatory_hint_core(const char *alpha2) 1566 { 1567 struct regulatory_request *request; 1568 1569 kfree(last_request); 1570 last_request = NULL; 1571 1572 request = kzalloc(sizeof(struct regulatory_request), 1573 GFP_KERNEL); 1574 if (!request) 1575 return -ENOMEM; 1576 1577 request->alpha2[0] = alpha2[0]; 1578 request->alpha2[1] = alpha2[1]; 1579 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1580 1581 queue_regulatory_request(request); 1582 1583 return 0; 1584 } 1585 1586 /* User hints */ 1587 int regulatory_hint_user(const char *alpha2) 1588 { 1589 struct regulatory_request *request; 1590 1591 BUG_ON(!alpha2); 1592 1593 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1594 if (!request) 1595 return -ENOMEM; 1596 1597 request->wiphy_idx = WIPHY_IDX_STALE; 1598 request->alpha2[0] = alpha2[0]; 1599 request->alpha2[1] = alpha2[1]; 1600 request->initiator = NL80211_REGDOM_SET_BY_USER; 1601 1602 queue_regulatory_request(request); 1603 1604 return 0; 1605 } 1606 1607 /* Driver hints */ 1608 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 1609 { 1610 struct regulatory_request *request; 1611 1612 BUG_ON(!alpha2); 1613 BUG_ON(!wiphy); 1614 1615 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1616 if (!request) 1617 return -ENOMEM; 1618 1619 request->wiphy_idx = get_wiphy_idx(wiphy); 1620 1621 /* Must have registered wiphy first */ 1622 BUG_ON(!wiphy_idx_valid(request->wiphy_idx)); 1623 1624 request->alpha2[0] = alpha2[0]; 1625 request->alpha2[1] = alpha2[1]; 1626 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 1627 1628 queue_regulatory_request(request); 1629 1630 return 0; 1631 } 1632 EXPORT_SYMBOL(regulatory_hint); 1633 1634 /* 1635 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and 1636 * therefore cannot iterate over the rdev list here. 1637 */ 1638 void regulatory_hint_11d(struct wiphy *wiphy, 1639 enum ieee80211_band band, 1640 u8 *country_ie, 1641 u8 country_ie_len) 1642 { 1643 char alpha2[2]; 1644 enum environment_cap env = ENVIRON_ANY; 1645 struct regulatory_request *request; 1646 1647 mutex_lock(®_mutex); 1648 1649 if (unlikely(!last_request)) 1650 goto out; 1651 1652 /* IE len must be evenly divisible by 2 */ 1653 if (country_ie_len & 0x01) 1654 goto out; 1655 1656 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 1657 goto out; 1658 1659 alpha2[0] = country_ie[0]; 1660 alpha2[1] = country_ie[1]; 1661 1662 if (country_ie[2] == 'I') 1663 env = ENVIRON_INDOOR; 1664 else if (country_ie[2] == 'O') 1665 env = ENVIRON_OUTDOOR; 1666 1667 /* 1668 * We will run this only upon a successful connection on cfg80211. 1669 * We leave conflict resolution to the workqueue, where can hold 1670 * cfg80211_mutex. 1671 */ 1672 if (likely(last_request->initiator == 1673 NL80211_REGDOM_SET_BY_COUNTRY_IE && 1674 wiphy_idx_valid(last_request->wiphy_idx))) 1675 goto out; 1676 1677 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1678 if (!request) 1679 goto out; 1680 1681 request->wiphy_idx = get_wiphy_idx(wiphy); 1682 request->alpha2[0] = alpha2[0]; 1683 request->alpha2[1] = alpha2[1]; 1684 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 1685 request->country_ie_env = env; 1686 1687 mutex_unlock(®_mutex); 1688 1689 queue_regulatory_request(request); 1690 1691 return; 1692 1693 out: 1694 mutex_unlock(®_mutex); 1695 } 1696 1697 static void restore_alpha2(char *alpha2, bool reset_user) 1698 { 1699 /* indicates there is no alpha2 to consider for restoration */ 1700 alpha2[0] = '9'; 1701 alpha2[1] = '7'; 1702 1703 /* The user setting has precedence over the module parameter */ 1704 if (is_user_regdom_saved()) { 1705 /* Unless we're asked to ignore it and reset it */ 1706 if (reset_user) { 1707 REG_DBG_PRINT("Restoring regulatory settings " 1708 "including user preference\n"); 1709 user_alpha2[0] = '9'; 1710 user_alpha2[1] = '7'; 1711 1712 /* 1713 * If we're ignoring user settings, we still need to 1714 * check the module parameter to ensure we put things 1715 * back as they were for a full restore. 1716 */ 1717 if (!is_world_regdom(ieee80211_regdom)) { 1718 REG_DBG_PRINT("Keeping preference on " 1719 "module parameter ieee80211_regdom: %c%c\n", 1720 ieee80211_regdom[0], 1721 ieee80211_regdom[1]); 1722 alpha2[0] = ieee80211_regdom[0]; 1723 alpha2[1] = ieee80211_regdom[1]; 1724 } 1725 } else { 1726 REG_DBG_PRINT("Restoring regulatory settings " 1727 "while preserving user preference for: %c%c\n", 1728 user_alpha2[0], 1729 user_alpha2[1]); 1730 alpha2[0] = user_alpha2[0]; 1731 alpha2[1] = user_alpha2[1]; 1732 } 1733 } else if (!is_world_regdom(ieee80211_regdom)) { 1734 REG_DBG_PRINT("Keeping preference on " 1735 "module parameter ieee80211_regdom: %c%c\n", 1736 ieee80211_regdom[0], 1737 ieee80211_regdom[1]); 1738 alpha2[0] = ieee80211_regdom[0]; 1739 alpha2[1] = ieee80211_regdom[1]; 1740 } else 1741 REG_DBG_PRINT("Restoring regulatory settings\n"); 1742 } 1743 1744 /* 1745 * Restoring regulatory settings involves ingoring any 1746 * possibly stale country IE information and user regulatory 1747 * settings if so desired, this includes any beacon hints 1748 * learned as we could have traveled outside to another country 1749 * after disconnection. To restore regulatory settings we do 1750 * exactly what we did at bootup: 1751 * 1752 * - send a core regulatory hint 1753 * - send a user regulatory hint if applicable 1754 * 1755 * Device drivers that send a regulatory hint for a specific country 1756 * keep their own regulatory domain on wiphy->regd so that does does 1757 * not need to be remembered. 1758 */ 1759 static void restore_regulatory_settings(bool reset_user) 1760 { 1761 char alpha2[2]; 1762 struct reg_beacon *reg_beacon, *btmp; 1763 struct regulatory_request *reg_request, *tmp; 1764 LIST_HEAD(tmp_reg_req_list); 1765 1766 mutex_lock(&cfg80211_mutex); 1767 mutex_lock(®_mutex); 1768 1769 reset_regdomains(); 1770 restore_alpha2(alpha2, reset_user); 1771 1772 /* 1773 * If there's any pending requests we simply 1774 * stash them to a temporary pending queue and 1775 * add then after we've restored regulatory 1776 * settings. 1777 */ 1778 spin_lock(®_requests_lock); 1779 if (!list_empty(®_requests_list)) { 1780 list_for_each_entry_safe(reg_request, tmp, 1781 ®_requests_list, list) { 1782 if (reg_request->initiator != 1783 NL80211_REGDOM_SET_BY_USER) 1784 continue; 1785 list_del(®_request->list); 1786 list_add_tail(®_request->list, &tmp_reg_req_list); 1787 } 1788 } 1789 spin_unlock(®_requests_lock); 1790 1791 /* Clear beacon hints */ 1792 spin_lock_bh(®_pending_beacons_lock); 1793 if (!list_empty(®_pending_beacons)) { 1794 list_for_each_entry_safe(reg_beacon, btmp, 1795 ®_pending_beacons, list) { 1796 list_del(®_beacon->list); 1797 kfree(reg_beacon); 1798 } 1799 } 1800 spin_unlock_bh(®_pending_beacons_lock); 1801 1802 if (!list_empty(®_beacon_list)) { 1803 list_for_each_entry_safe(reg_beacon, btmp, 1804 ®_beacon_list, list) { 1805 list_del(®_beacon->list); 1806 kfree(reg_beacon); 1807 } 1808 } 1809 1810 /* First restore to the basic regulatory settings */ 1811 cfg80211_regdomain = cfg80211_world_regdom; 1812 1813 mutex_unlock(®_mutex); 1814 mutex_unlock(&cfg80211_mutex); 1815 1816 regulatory_hint_core(cfg80211_regdomain->alpha2); 1817 1818 /* 1819 * This restores the ieee80211_regdom module parameter 1820 * preference or the last user requested regulatory 1821 * settings, user regulatory settings takes precedence. 1822 */ 1823 if (is_an_alpha2(alpha2)) 1824 regulatory_hint_user(user_alpha2); 1825 1826 if (list_empty(&tmp_reg_req_list)) 1827 return; 1828 1829 mutex_lock(&cfg80211_mutex); 1830 mutex_lock(®_mutex); 1831 1832 spin_lock(®_requests_lock); 1833 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) { 1834 REG_DBG_PRINT("Adding request for country %c%c back " 1835 "into the queue\n", 1836 reg_request->alpha2[0], 1837 reg_request->alpha2[1]); 1838 list_del(®_request->list); 1839 list_add_tail(®_request->list, ®_requests_list); 1840 } 1841 spin_unlock(®_requests_lock); 1842 1843 mutex_unlock(®_mutex); 1844 mutex_unlock(&cfg80211_mutex); 1845 1846 REG_DBG_PRINT("Kicking the queue\n"); 1847 1848 schedule_work(®_work); 1849 } 1850 1851 void regulatory_hint_disconnect(void) 1852 { 1853 REG_DBG_PRINT("All devices are disconnected, going to " 1854 "restore regulatory settings\n"); 1855 restore_regulatory_settings(false); 1856 } 1857 1858 static bool freq_is_chan_12_13_14(u16 freq) 1859 { 1860 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || 1861 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || 1862 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) 1863 return true; 1864 return false; 1865 } 1866 1867 int regulatory_hint_found_beacon(struct wiphy *wiphy, 1868 struct ieee80211_channel *beacon_chan, 1869 gfp_t gfp) 1870 { 1871 struct reg_beacon *reg_beacon; 1872 1873 if (likely((beacon_chan->beacon_found || 1874 (beacon_chan->flags & IEEE80211_CHAN_RADAR) || 1875 (beacon_chan->band == IEEE80211_BAND_2GHZ && 1876 !freq_is_chan_12_13_14(beacon_chan->center_freq))))) 1877 return 0; 1878 1879 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 1880 if (!reg_beacon) 1881 return -ENOMEM; 1882 1883 REG_DBG_PRINT("Found new beacon on " 1884 "frequency: %d MHz (Ch %d) on %s\n", 1885 beacon_chan->center_freq, 1886 ieee80211_frequency_to_channel(beacon_chan->center_freq), 1887 wiphy_name(wiphy)); 1888 1889 memcpy(®_beacon->chan, beacon_chan, 1890 sizeof(struct ieee80211_channel)); 1891 1892 1893 /* 1894 * Since we can be called from BH or and non-BH context 1895 * we must use spin_lock_bh() 1896 */ 1897 spin_lock_bh(®_pending_beacons_lock); 1898 list_add_tail(®_beacon->list, ®_pending_beacons); 1899 spin_unlock_bh(®_pending_beacons_lock); 1900 1901 schedule_work(®_work); 1902 1903 return 0; 1904 } 1905 1906 static void print_rd_rules(const struct ieee80211_regdomain *rd) 1907 { 1908 unsigned int i; 1909 const struct ieee80211_reg_rule *reg_rule = NULL; 1910 const struct ieee80211_freq_range *freq_range = NULL; 1911 const struct ieee80211_power_rule *power_rule = NULL; 1912 1913 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n"); 1914 1915 for (i = 0; i < rd->n_reg_rules; i++) { 1916 reg_rule = &rd->reg_rules[i]; 1917 freq_range = ®_rule->freq_range; 1918 power_rule = ®_rule->power_rule; 1919 1920 /* 1921 * There may not be documentation for max antenna gain 1922 * in certain regions 1923 */ 1924 if (power_rule->max_antenna_gain) 1925 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n", 1926 freq_range->start_freq_khz, 1927 freq_range->end_freq_khz, 1928 freq_range->max_bandwidth_khz, 1929 power_rule->max_antenna_gain, 1930 power_rule->max_eirp); 1931 else 1932 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n", 1933 freq_range->start_freq_khz, 1934 freq_range->end_freq_khz, 1935 freq_range->max_bandwidth_khz, 1936 power_rule->max_eirp); 1937 } 1938 } 1939 1940 static void print_regdomain(const struct ieee80211_regdomain *rd) 1941 { 1942 1943 if (is_intersected_alpha2(rd->alpha2)) { 1944 1945 if (last_request->initiator == 1946 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1947 struct cfg80211_registered_device *rdev; 1948 rdev = cfg80211_rdev_by_wiphy_idx( 1949 last_request->wiphy_idx); 1950 if (rdev) { 1951 pr_info("Current regulatory domain updated by AP to: %c%c\n", 1952 rdev->country_ie_alpha2[0], 1953 rdev->country_ie_alpha2[1]); 1954 } else 1955 pr_info("Current regulatory domain intersected:\n"); 1956 } else 1957 pr_info("Current regulatory domain intersected:\n"); 1958 } else if (is_world_regdom(rd->alpha2)) 1959 pr_info("World regulatory domain updated:\n"); 1960 else { 1961 if (is_unknown_alpha2(rd->alpha2)) 1962 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); 1963 else 1964 pr_info("Regulatory domain changed to country: %c%c\n", 1965 rd->alpha2[0], rd->alpha2[1]); 1966 } 1967 print_rd_rules(rd); 1968 } 1969 1970 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 1971 { 1972 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 1973 print_rd_rules(rd); 1974 } 1975 1976 /* Takes ownership of rd only if it doesn't fail */ 1977 static int __set_regdom(const struct ieee80211_regdomain *rd) 1978 { 1979 const struct ieee80211_regdomain *intersected_rd = NULL; 1980 struct cfg80211_registered_device *rdev = NULL; 1981 struct wiphy *request_wiphy; 1982 /* Some basic sanity checks first */ 1983 1984 if (is_world_regdom(rd->alpha2)) { 1985 if (WARN_ON(!reg_is_valid_request(rd->alpha2))) 1986 return -EINVAL; 1987 update_world_regdomain(rd); 1988 return 0; 1989 } 1990 1991 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 1992 !is_unknown_alpha2(rd->alpha2)) 1993 return -EINVAL; 1994 1995 if (!last_request) 1996 return -EINVAL; 1997 1998 /* 1999 * Lets only bother proceeding on the same alpha2 if the current 2000 * rd is non static (it means CRDA was present and was used last) 2001 * and the pending request came in from a country IE 2002 */ 2003 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2004 /* 2005 * If someone else asked us to change the rd lets only bother 2006 * checking if the alpha2 changes if CRDA was already called 2007 */ 2008 if (!regdom_changes(rd->alpha2)) 2009 return -EINVAL; 2010 } 2011 2012 /* 2013 * Now lets set the regulatory domain, update all driver channels 2014 * and finally inform them of what we have done, in case they want 2015 * to review or adjust their own settings based on their own 2016 * internal EEPROM data 2017 */ 2018 2019 if (WARN_ON(!reg_is_valid_request(rd->alpha2))) 2020 return -EINVAL; 2021 2022 if (!is_valid_rd(rd)) { 2023 pr_err("Invalid regulatory domain detected:\n"); 2024 print_regdomain_info(rd); 2025 return -EINVAL; 2026 } 2027 2028 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 2029 2030 if (!last_request->intersect) { 2031 int r; 2032 2033 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) { 2034 reset_regdomains(); 2035 cfg80211_regdomain = rd; 2036 return 0; 2037 } 2038 2039 /* 2040 * For a driver hint, lets copy the regulatory domain the 2041 * driver wanted to the wiphy to deal with conflicts 2042 */ 2043 2044 /* 2045 * Userspace could have sent two replies with only 2046 * one kernel request. 2047 */ 2048 if (request_wiphy->regd) 2049 return -EALREADY; 2050 2051 r = reg_copy_regd(&request_wiphy->regd, rd); 2052 if (r) 2053 return r; 2054 2055 reset_regdomains(); 2056 cfg80211_regdomain = rd; 2057 return 0; 2058 } 2059 2060 /* Intersection requires a bit more work */ 2061 2062 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2063 2064 intersected_rd = regdom_intersect(rd, cfg80211_regdomain); 2065 if (!intersected_rd) 2066 return -EINVAL; 2067 2068 /* 2069 * We can trash what CRDA provided now. 2070 * However if a driver requested this specific regulatory 2071 * domain we keep it for its private use 2072 */ 2073 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) 2074 request_wiphy->regd = rd; 2075 else 2076 kfree(rd); 2077 2078 rd = NULL; 2079 2080 reset_regdomains(); 2081 cfg80211_regdomain = intersected_rd; 2082 2083 return 0; 2084 } 2085 2086 if (!intersected_rd) 2087 return -EINVAL; 2088 2089 rdev = wiphy_to_dev(request_wiphy); 2090 2091 rdev->country_ie_alpha2[0] = rd->alpha2[0]; 2092 rdev->country_ie_alpha2[1] = rd->alpha2[1]; 2093 rdev->env = last_request->country_ie_env; 2094 2095 BUG_ON(intersected_rd == rd); 2096 2097 kfree(rd); 2098 rd = NULL; 2099 2100 reset_regdomains(); 2101 cfg80211_regdomain = intersected_rd; 2102 2103 return 0; 2104 } 2105 2106 2107 /* 2108 * Use this call to set the current regulatory domain. Conflicts with 2109 * multiple drivers can be ironed out later. Caller must've already 2110 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex 2111 */ 2112 int set_regdom(const struct ieee80211_regdomain *rd) 2113 { 2114 int r; 2115 2116 assert_cfg80211_lock(); 2117 2118 mutex_lock(®_mutex); 2119 2120 /* Note that this doesn't update the wiphys, this is done below */ 2121 r = __set_regdom(rd); 2122 if (r) { 2123 kfree(rd); 2124 mutex_unlock(®_mutex); 2125 return r; 2126 } 2127 2128 /* This would make this whole thing pointless */ 2129 if (!last_request->intersect) 2130 BUG_ON(rd != cfg80211_regdomain); 2131 2132 /* update all wiphys now with the new established regulatory domain */ 2133 update_all_wiphy_regulatory(last_request->initiator); 2134 2135 print_regdomain(cfg80211_regdomain); 2136 2137 nl80211_send_reg_change_event(last_request); 2138 2139 reg_set_request_processed(); 2140 2141 mutex_unlock(®_mutex); 2142 2143 return r; 2144 } 2145 2146 #ifdef CONFIG_HOTPLUG 2147 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) 2148 { 2149 if (last_request && !last_request->processed) { 2150 if (add_uevent_var(env, "COUNTRY=%c%c", 2151 last_request->alpha2[0], 2152 last_request->alpha2[1])) 2153 return -ENOMEM; 2154 } 2155 2156 return 0; 2157 } 2158 #else 2159 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) 2160 { 2161 return -ENODEV; 2162 } 2163 #endif /* CONFIG_HOTPLUG */ 2164 2165 /* Caller must hold cfg80211_mutex */ 2166 void reg_device_remove(struct wiphy *wiphy) 2167 { 2168 struct wiphy *request_wiphy = NULL; 2169 2170 assert_cfg80211_lock(); 2171 2172 mutex_lock(®_mutex); 2173 2174 kfree(wiphy->regd); 2175 2176 if (last_request) 2177 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 2178 2179 if (!request_wiphy || request_wiphy != wiphy) 2180 goto out; 2181 2182 last_request->wiphy_idx = WIPHY_IDX_STALE; 2183 last_request->country_ie_env = ENVIRON_ANY; 2184 out: 2185 mutex_unlock(®_mutex); 2186 } 2187 2188 static void reg_timeout_work(struct work_struct *work) 2189 { 2190 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, " 2191 "restoring regulatory settings"); 2192 restore_regulatory_settings(true); 2193 } 2194 2195 int __init regulatory_init(void) 2196 { 2197 int err = 0; 2198 2199 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 2200 if (IS_ERR(reg_pdev)) 2201 return PTR_ERR(reg_pdev); 2202 2203 reg_pdev->dev.type = ®_device_type; 2204 2205 spin_lock_init(®_requests_lock); 2206 spin_lock_init(®_pending_beacons_lock); 2207 2208 cfg80211_regdomain = cfg80211_world_regdom; 2209 2210 user_alpha2[0] = '9'; 2211 user_alpha2[1] = '7'; 2212 2213 /* We always try to get an update for the static regdomain */ 2214 err = regulatory_hint_core(cfg80211_regdomain->alpha2); 2215 if (err) { 2216 if (err == -ENOMEM) 2217 return err; 2218 /* 2219 * N.B. kobject_uevent_env() can fail mainly for when we're out 2220 * memory which is handled and propagated appropriately above 2221 * but it can also fail during a netlink_broadcast() or during 2222 * early boot for call_usermodehelper(). For now treat these 2223 * errors as non-fatal. 2224 */ 2225 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 2226 #ifdef CONFIG_CFG80211_REG_DEBUG 2227 /* We want to find out exactly why when debugging */ 2228 WARN_ON(err); 2229 #endif 2230 } 2231 2232 /* 2233 * Finally, if the user set the module parameter treat it 2234 * as a user hint. 2235 */ 2236 if (!is_world_regdom(ieee80211_regdom)) 2237 regulatory_hint_user(ieee80211_regdom); 2238 2239 return 0; 2240 } 2241 2242 void /* __init_or_exit */ regulatory_exit(void) 2243 { 2244 struct regulatory_request *reg_request, *tmp; 2245 struct reg_beacon *reg_beacon, *btmp; 2246 2247 cancel_work_sync(®_work); 2248 cancel_delayed_work_sync(®_timeout); 2249 2250 mutex_lock(&cfg80211_mutex); 2251 mutex_lock(®_mutex); 2252 2253 reset_regdomains(); 2254 2255 kfree(last_request); 2256 2257 platform_device_unregister(reg_pdev); 2258 2259 spin_lock_bh(®_pending_beacons_lock); 2260 if (!list_empty(®_pending_beacons)) { 2261 list_for_each_entry_safe(reg_beacon, btmp, 2262 ®_pending_beacons, list) { 2263 list_del(®_beacon->list); 2264 kfree(reg_beacon); 2265 } 2266 } 2267 spin_unlock_bh(®_pending_beacons_lock); 2268 2269 if (!list_empty(®_beacon_list)) { 2270 list_for_each_entry_safe(reg_beacon, btmp, 2271 ®_beacon_list, list) { 2272 list_del(®_beacon->list); 2273 kfree(reg_beacon); 2274 } 2275 } 2276 2277 spin_lock(®_requests_lock); 2278 if (!list_empty(®_requests_list)) { 2279 list_for_each_entry_safe(reg_request, tmp, 2280 ®_requests_list, list) { 2281 list_del(®_request->list); 2282 kfree(reg_request); 2283 } 2284 } 2285 spin_unlock(®_requests_lock); 2286 2287 mutex_unlock(®_mutex); 2288 mutex_unlock(&cfg80211_mutex); 2289 } 2290