xref: /openbmc/linux/net/wireless/reg.c (revision 9c1f8594)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/ctype.h>
43 #include <linux/nl80211.h>
44 #include <linux/platform_device.h>
45 #include <net/cfg80211.h>
46 #include "core.h"
47 #include "reg.h"
48 #include "regdb.h"
49 #include "nl80211.h"
50 
51 #ifdef CONFIG_CFG80211_REG_DEBUG
52 #define REG_DBG_PRINT(format, args...) \
53 	do { \
54 		printk(KERN_DEBUG pr_fmt(format), ##args);	\
55 	} while (0)
56 #else
57 #define REG_DBG_PRINT(args...)
58 #endif
59 
60 /* Receipt of information from last regulatory request */
61 static struct regulatory_request *last_request;
62 
63 /* To trigger userspace events */
64 static struct platform_device *reg_pdev;
65 
66 static struct device_type reg_device_type = {
67 	.uevent = reg_device_uevent,
68 };
69 
70 /*
71  * Central wireless core regulatory domains, we only need two,
72  * the current one and a world regulatory domain in case we have no
73  * information to give us an alpha2
74  */
75 const struct ieee80211_regdomain *cfg80211_regdomain;
76 
77 /*
78  * Protects static reg.c components:
79  *     - cfg80211_world_regdom
80  *     - cfg80211_regdom
81  *     - last_request
82  */
83 static DEFINE_MUTEX(reg_mutex);
84 
85 static inline void assert_reg_lock(void)
86 {
87 	lockdep_assert_held(&reg_mutex);
88 }
89 
90 /* Used to queue up regulatory hints */
91 static LIST_HEAD(reg_requests_list);
92 static spinlock_t reg_requests_lock;
93 
94 /* Used to queue up beacon hints for review */
95 static LIST_HEAD(reg_pending_beacons);
96 static spinlock_t reg_pending_beacons_lock;
97 
98 /* Used to keep track of processed beacon hints */
99 static LIST_HEAD(reg_beacon_list);
100 
101 struct reg_beacon {
102 	struct list_head list;
103 	struct ieee80211_channel chan;
104 };
105 
106 static void reg_todo(struct work_struct *work);
107 static DECLARE_WORK(reg_work, reg_todo);
108 
109 static void reg_timeout_work(struct work_struct *work);
110 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
111 
112 /* We keep a static world regulatory domain in case of the absence of CRDA */
113 static const struct ieee80211_regdomain world_regdom = {
114 	.n_reg_rules = 5,
115 	.alpha2 =  "00",
116 	.reg_rules = {
117 		/* IEEE 802.11b/g, channels 1..11 */
118 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
119 		/* IEEE 802.11b/g, channels 12..13. No HT40
120 		 * channel fits here. */
121 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
122 			NL80211_RRF_PASSIVE_SCAN |
123 			NL80211_RRF_NO_IBSS),
124 		/* IEEE 802.11 channel 14 - Only JP enables
125 		 * this and for 802.11b only */
126 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
127 			NL80211_RRF_PASSIVE_SCAN |
128 			NL80211_RRF_NO_IBSS |
129 			NL80211_RRF_NO_OFDM),
130 		/* IEEE 802.11a, channel 36..48 */
131 		REG_RULE(5180-10, 5240+10, 40, 6, 20,
132                         NL80211_RRF_PASSIVE_SCAN |
133                         NL80211_RRF_NO_IBSS),
134 
135 		/* NB: 5260 MHz - 5700 MHz requies DFS */
136 
137 		/* IEEE 802.11a, channel 149..165 */
138 		REG_RULE(5745-10, 5825+10, 40, 6, 20,
139 			NL80211_RRF_PASSIVE_SCAN |
140 			NL80211_RRF_NO_IBSS),
141 	}
142 };
143 
144 static const struct ieee80211_regdomain *cfg80211_world_regdom =
145 	&world_regdom;
146 
147 static char *ieee80211_regdom = "00";
148 static char user_alpha2[2];
149 
150 module_param(ieee80211_regdom, charp, 0444);
151 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
152 
153 static void reset_regdomains(void)
154 {
155 	/* avoid freeing static information or freeing something twice */
156 	if (cfg80211_regdomain == cfg80211_world_regdom)
157 		cfg80211_regdomain = NULL;
158 	if (cfg80211_world_regdom == &world_regdom)
159 		cfg80211_world_regdom = NULL;
160 	if (cfg80211_regdomain == &world_regdom)
161 		cfg80211_regdomain = NULL;
162 
163 	kfree(cfg80211_regdomain);
164 	kfree(cfg80211_world_regdom);
165 
166 	cfg80211_world_regdom = &world_regdom;
167 	cfg80211_regdomain = NULL;
168 }
169 
170 /*
171  * Dynamic world regulatory domain requested by the wireless
172  * core upon initialization
173  */
174 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
175 {
176 	BUG_ON(!last_request);
177 
178 	reset_regdomains();
179 
180 	cfg80211_world_regdom = rd;
181 	cfg80211_regdomain = rd;
182 }
183 
184 bool is_world_regdom(const char *alpha2)
185 {
186 	if (!alpha2)
187 		return false;
188 	if (alpha2[0] == '0' && alpha2[1] == '0')
189 		return true;
190 	return false;
191 }
192 
193 static bool is_alpha2_set(const char *alpha2)
194 {
195 	if (!alpha2)
196 		return false;
197 	if (alpha2[0] != 0 && alpha2[1] != 0)
198 		return true;
199 	return false;
200 }
201 
202 static bool is_unknown_alpha2(const char *alpha2)
203 {
204 	if (!alpha2)
205 		return false;
206 	/*
207 	 * Special case where regulatory domain was built by driver
208 	 * but a specific alpha2 cannot be determined
209 	 */
210 	if (alpha2[0] == '9' && alpha2[1] == '9')
211 		return true;
212 	return false;
213 }
214 
215 static bool is_intersected_alpha2(const char *alpha2)
216 {
217 	if (!alpha2)
218 		return false;
219 	/*
220 	 * Special case where regulatory domain is the
221 	 * result of an intersection between two regulatory domain
222 	 * structures
223 	 */
224 	if (alpha2[0] == '9' && alpha2[1] == '8')
225 		return true;
226 	return false;
227 }
228 
229 static bool is_an_alpha2(const char *alpha2)
230 {
231 	if (!alpha2)
232 		return false;
233 	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
234 		return true;
235 	return false;
236 }
237 
238 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
239 {
240 	if (!alpha2_x || !alpha2_y)
241 		return false;
242 	if (alpha2_x[0] == alpha2_y[0] &&
243 		alpha2_x[1] == alpha2_y[1])
244 		return true;
245 	return false;
246 }
247 
248 static bool regdom_changes(const char *alpha2)
249 {
250 	assert_cfg80211_lock();
251 
252 	if (!cfg80211_regdomain)
253 		return true;
254 	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
255 		return false;
256 	return true;
257 }
258 
259 /*
260  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
261  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
262  * has ever been issued.
263  */
264 static bool is_user_regdom_saved(void)
265 {
266 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
267 		return false;
268 
269 	/* This would indicate a mistake on the design */
270 	if (WARN((!is_world_regdom(user_alpha2) &&
271 		  !is_an_alpha2(user_alpha2)),
272 		 "Unexpected user alpha2: %c%c\n",
273 		 user_alpha2[0],
274 	         user_alpha2[1]))
275 		return false;
276 
277 	return true;
278 }
279 
280 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
281 			 const struct ieee80211_regdomain *src_regd)
282 {
283 	struct ieee80211_regdomain *regd;
284 	int size_of_regd = 0;
285 	unsigned int i;
286 
287 	size_of_regd = sizeof(struct ieee80211_regdomain) +
288 	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
289 
290 	regd = kzalloc(size_of_regd, GFP_KERNEL);
291 	if (!regd)
292 		return -ENOMEM;
293 
294 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
295 
296 	for (i = 0; i < src_regd->n_reg_rules; i++)
297 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
298 			sizeof(struct ieee80211_reg_rule));
299 
300 	*dst_regd = regd;
301 	return 0;
302 }
303 
304 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
305 struct reg_regdb_search_request {
306 	char alpha2[2];
307 	struct list_head list;
308 };
309 
310 static LIST_HEAD(reg_regdb_search_list);
311 static DEFINE_MUTEX(reg_regdb_search_mutex);
312 
313 static void reg_regdb_search(struct work_struct *work)
314 {
315 	struct reg_regdb_search_request *request;
316 	const struct ieee80211_regdomain *curdom, *regdom;
317 	int i, r;
318 
319 	mutex_lock(&reg_regdb_search_mutex);
320 	while (!list_empty(&reg_regdb_search_list)) {
321 		request = list_first_entry(&reg_regdb_search_list,
322 					   struct reg_regdb_search_request,
323 					   list);
324 		list_del(&request->list);
325 
326 		for (i=0; i<reg_regdb_size; i++) {
327 			curdom = reg_regdb[i];
328 
329 			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
330 				r = reg_copy_regd(&regdom, curdom);
331 				if (r)
332 					break;
333 				mutex_lock(&cfg80211_mutex);
334 				set_regdom(regdom);
335 				mutex_unlock(&cfg80211_mutex);
336 				break;
337 			}
338 		}
339 
340 		kfree(request);
341 	}
342 	mutex_unlock(&reg_regdb_search_mutex);
343 }
344 
345 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
346 
347 static void reg_regdb_query(const char *alpha2)
348 {
349 	struct reg_regdb_search_request *request;
350 
351 	if (!alpha2)
352 		return;
353 
354 	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
355 	if (!request)
356 		return;
357 
358 	memcpy(request->alpha2, alpha2, 2);
359 
360 	mutex_lock(&reg_regdb_search_mutex);
361 	list_add_tail(&request->list, &reg_regdb_search_list);
362 	mutex_unlock(&reg_regdb_search_mutex);
363 
364 	schedule_work(&reg_regdb_work);
365 }
366 #else
367 static inline void reg_regdb_query(const char *alpha2) {}
368 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
369 
370 /*
371  * This lets us keep regulatory code which is updated on a regulatory
372  * basis in userspace. Country information is filled in by
373  * reg_device_uevent
374  */
375 static int call_crda(const char *alpha2)
376 {
377 	if (!is_world_regdom((char *) alpha2))
378 		pr_info("Calling CRDA for country: %c%c\n",
379 			alpha2[0], alpha2[1]);
380 	else
381 		pr_info("Calling CRDA to update world regulatory domain\n");
382 
383 	/* query internal regulatory database (if it exists) */
384 	reg_regdb_query(alpha2);
385 
386 	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
387 }
388 
389 /* Used by nl80211 before kmalloc'ing our regulatory domain */
390 bool reg_is_valid_request(const char *alpha2)
391 {
392 	assert_cfg80211_lock();
393 
394 	if (!last_request)
395 		return false;
396 
397 	return alpha2_equal(last_request->alpha2, alpha2);
398 }
399 
400 /* Sanity check on a regulatory rule */
401 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
402 {
403 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
404 	u32 freq_diff;
405 
406 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
407 		return false;
408 
409 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
410 		return false;
411 
412 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
413 
414 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
415 			freq_range->max_bandwidth_khz > freq_diff)
416 		return false;
417 
418 	return true;
419 }
420 
421 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
422 {
423 	const struct ieee80211_reg_rule *reg_rule = NULL;
424 	unsigned int i;
425 
426 	if (!rd->n_reg_rules)
427 		return false;
428 
429 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
430 		return false;
431 
432 	for (i = 0; i < rd->n_reg_rules; i++) {
433 		reg_rule = &rd->reg_rules[i];
434 		if (!is_valid_reg_rule(reg_rule))
435 			return false;
436 	}
437 
438 	return true;
439 }
440 
441 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
442 			    u32 center_freq_khz,
443 			    u32 bw_khz)
444 {
445 	u32 start_freq_khz, end_freq_khz;
446 
447 	start_freq_khz = center_freq_khz - (bw_khz/2);
448 	end_freq_khz = center_freq_khz + (bw_khz/2);
449 
450 	if (start_freq_khz >= freq_range->start_freq_khz &&
451 	    end_freq_khz <= freq_range->end_freq_khz)
452 		return true;
453 
454 	return false;
455 }
456 
457 /**
458  * freq_in_rule_band - tells us if a frequency is in a frequency band
459  * @freq_range: frequency rule we want to query
460  * @freq_khz: frequency we are inquiring about
461  *
462  * This lets us know if a specific frequency rule is or is not relevant to
463  * a specific frequency's band. Bands are device specific and artificial
464  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
465  * safe for now to assume that a frequency rule should not be part of a
466  * frequency's band if the start freq or end freq are off by more than 2 GHz.
467  * This resolution can be lowered and should be considered as we add
468  * regulatory rule support for other "bands".
469  **/
470 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
471 	u32 freq_khz)
472 {
473 #define ONE_GHZ_IN_KHZ	1000000
474 	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
475 		return true;
476 	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
477 		return true;
478 	return false;
479 #undef ONE_GHZ_IN_KHZ
480 }
481 
482 /*
483  * Helper for regdom_intersect(), this does the real
484  * mathematical intersection fun
485  */
486 static int reg_rules_intersect(
487 	const struct ieee80211_reg_rule *rule1,
488 	const struct ieee80211_reg_rule *rule2,
489 	struct ieee80211_reg_rule *intersected_rule)
490 {
491 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
492 	struct ieee80211_freq_range *freq_range;
493 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
494 	struct ieee80211_power_rule *power_rule;
495 	u32 freq_diff;
496 
497 	freq_range1 = &rule1->freq_range;
498 	freq_range2 = &rule2->freq_range;
499 	freq_range = &intersected_rule->freq_range;
500 
501 	power_rule1 = &rule1->power_rule;
502 	power_rule2 = &rule2->power_rule;
503 	power_rule = &intersected_rule->power_rule;
504 
505 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
506 		freq_range2->start_freq_khz);
507 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
508 		freq_range2->end_freq_khz);
509 	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
510 		freq_range2->max_bandwidth_khz);
511 
512 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
513 	if (freq_range->max_bandwidth_khz > freq_diff)
514 		freq_range->max_bandwidth_khz = freq_diff;
515 
516 	power_rule->max_eirp = min(power_rule1->max_eirp,
517 		power_rule2->max_eirp);
518 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
519 		power_rule2->max_antenna_gain);
520 
521 	intersected_rule->flags = (rule1->flags | rule2->flags);
522 
523 	if (!is_valid_reg_rule(intersected_rule))
524 		return -EINVAL;
525 
526 	return 0;
527 }
528 
529 /**
530  * regdom_intersect - do the intersection between two regulatory domains
531  * @rd1: first regulatory domain
532  * @rd2: second regulatory domain
533  *
534  * Use this function to get the intersection between two regulatory domains.
535  * Once completed we will mark the alpha2 for the rd as intersected, "98",
536  * as no one single alpha2 can represent this regulatory domain.
537  *
538  * Returns a pointer to the regulatory domain structure which will hold the
539  * resulting intersection of rules between rd1 and rd2. We will
540  * kzalloc() this structure for you.
541  */
542 static struct ieee80211_regdomain *regdom_intersect(
543 	const struct ieee80211_regdomain *rd1,
544 	const struct ieee80211_regdomain *rd2)
545 {
546 	int r, size_of_regd;
547 	unsigned int x, y;
548 	unsigned int num_rules = 0, rule_idx = 0;
549 	const struct ieee80211_reg_rule *rule1, *rule2;
550 	struct ieee80211_reg_rule *intersected_rule;
551 	struct ieee80211_regdomain *rd;
552 	/* This is just a dummy holder to help us count */
553 	struct ieee80211_reg_rule irule;
554 
555 	/* Uses the stack temporarily for counter arithmetic */
556 	intersected_rule = &irule;
557 
558 	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
559 
560 	if (!rd1 || !rd2)
561 		return NULL;
562 
563 	/*
564 	 * First we get a count of the rules we'll need, then we actually
565 	 * build them. This is to so we can malloc() and free() a
566 	 * regdomain once. The reason we use reg_rules_intersect() here
567 	 * is it will return -EINVAL if the rule computed makes no sense.
568 	 * All rules that do check out OK are valid.
569 	 */
570 
571 	for (x = 0; x < rd1->n_reg_rules; x++) {
572 		rule1 = &rd1->reg_rules[x];
573 		for (y = 0; y < rd2->n_reg_rules; y++) {
574 			rule2 = &rd2->reg_rules[y];
575 			if (!reg_rules_intersect(rule1, rule2,
576 					intersected_rule))
577 				num_rules++;
578 			memset(intersected_rule, 0,
579 					sizeof(struct ieee80211_reg_rule));
580 		}
581 	}
582 
583 	if (!num_rules)
584 		return NULL;
585 
586 	size_of_regd = sizeof(struct ieee80211_regdomain) +
587 		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
588 
589 	rd = kzalloc(size_of_regd, GFP_KERNEL);
590 	if (!rd)
591 		return NULL;
592 
593 	for (x = 0; x < rd1->n_reg_rules; x++) {
594 		rule1 = &rd1->reg_rules[x];
595 		for (y = 0; y < rd2->n_reg_rules; y++) {
596 			rule2 = &rd2->reg_rules[y];
597 			/*
598 			 * This time around instead of using the stack lets
599 			 * write to the target rule directly saving ourselves
600 			 * a memcpy()
601 			 */
602 			intersected_rule = &rd->reg_rules[rule_idx];
603 			r = reg_rules_intersect(rule1, rule2,
604 				intersected_rule);
605 			/*
606 			 * No need to memset here the intersected rule here as
607 			 * we're not using the stack anymore
608 			 */
609 			if (r)
610 				continue;
611 			rule_idx++;
612 		}
613 	}
614 
615 	if (rule_idx != num_rules) {
616 		kfree(rd);
617 		return NULL;
618 	}
619 
620 	rd->n_reg_rules = num_rules;
621 	rd->alpha2[0] = '9';
622 	rd->alpha2[1] = '8';
623 
624 	return rd;
625 }
626 
627 /*
628  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
629  * want to just have the channel structure use these
630  */
631 static u32 map_regdom_flags(u32 rd_flags)
632 {
633 	u32 channel_flags = 0;
634 	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
635 		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
636 	if (rd_flags & NL80211_RRF_NO_IBSS)
637 		channel_flags |= IEEE80211_CHAN_NO_IBSS;
638 	if (rd_flags & NL80211_RRF_DFS)
639 		channel_flags |= IEEE80211_CHAN_RADAR;
640 	return channel_flags;
641 }
642 
643 static int freq_reg_info_regd(struct wiphy *wiphy,
644 			      u32 center_freq,
645 			      u32 desired_bw_khz,
646 			      const struct ieee80211_reg_rule **reg_rule,
647 			      const struct ieee80211_regdomain *custom_regd)
648 {
649 	int i;
650 	bool band_rule_found = false;
651 	const struct ieee80211_regdomain *regd;
652 	bool bw_fits = false;
653 
654 	if (!desired_bw_khz)
655 		desired_bw_khz = MHZ_TO_KHZ(20);
656 
657 	regd = custom_regd ? custom_regd : cfg80211_regdomain;
658 
659 	/*
660 	 * Follow the driver's regulatory domain, if present, unless a country
661 	 * IE has been processed or a user wants to help complaince further
662 	 */
663 	if (!custom_regd &&
664 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
665 	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
666 	    wiphy->regd)
667 		regd = wiphy->regd;
668 
669 	if (!regd)
670 		return -EINVAL;
671 
672 	for (i = 0; i < regd->n_reg_rules; i++) {
673 		const struct ieee80211_reg_rule *rr;
674 		const struct ieee80211_freq_range *fr = NULL;
675 
676 		rr = &regd->reg_rules[i];
677 		fr = &rr->freq_range;
678 
679 		/*
680 		 * We only need to know if one frequency rule was
681 		 * was in center_freq's band, that's enough, so lets
682 		 * not overwrite it once found
683 		 */
684 		if (!band_rule_found)
685 			band_rule_found = freq_in_rule_band(fr, center_freq);
686 
687 		bw_fits = reg_does_bw_fit(fr,
688 					  center_freq,
689 					  desired_bw_khz);
690 
691 		if (band_rule_found && bw_fits) {
692 			*reg_rule = rr;
693 			return 0;
694 		}
695 	}
696 
697 	if (!band_rule_found)
698 		return -ERANGE;
699 
700 	return -EINVAL;
701 }
702 
703 int freq_reg_info(struct wiphy *wiphy,
704 		  u32 center_freq,
705 		  u32 desired_bw_khz,
706 		  const struct ieee80211_reg_rule **reg_rule)
707 {
708 	assert_cfg80211_lock();
709 	return freq_reg_info_regd(wiphy,
710 				  center_freq,
711 				  desired_bw_khz,
712 				  reg_rule,
713 				  NULL);
714 }
715 EXPORT_SYMBOL(freq_reg_info);
716 
717 #ifdef CONFIG_CFG80211_REG_DEBUG
718 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
719 {
720 	switch (initiator) {
721 	case NL80211_REGDOM_SET_BY_CORE:
722 		return "Set by core";
723 	case NL80211_REGDOM_SET_BY_USER:
724 		return "Set by user";
725 	case NL80211_REGDOM_SET_BY_DRIVER:
726 		return "Set by driver";
727 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
728 		return "Set by country IE";
729 	default:
730 		WARN_ON(1);
731 		return "Set by bug";
732 	}
733 }
734 
735 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
736 				    u32 desired_bw_khz,
737 				    const struct ieee80211_reg_rule *reg_rule)
738 {
739 	const struct ieee80211_power_rule *power_rule;
740 	const struct ieee80211_freq_range *freq_range;
741 	char max_antenna_gain[32];
742 
743 	power_rule = &reg_rule->power_rule;
744 	freq_range = &reg_rule->freq_range;
745 
746 	if (!power_rule->max_antenna_gain)
747 		snprintf(max_antenna_gain, 32, "N/A");
748 	else
749 		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
750 
751 	REG_DBG_PRINT("Updating information on frequency %d MHz "
752 		      "for a %d MHz width channel with regulatory rule:\n",
753 		      chan->center_freq,
754 		      KHZ_TO_MHZ(desired_bw_khz));
755 
756 	REG_DBG_PRINT("%d KHz - %d KHz @  KHz), (%s mBi, %d mBm)\n",
757 		      freq_range->start_freq_khz,
758 		      freq_range->end_freq_khz,
759 		      max_antenna_gain,
760 		      power_rule->max_eirp);
761 }
762 #else
763 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
764 				    u32 desired_bw_khz,
765 				    const struct ieee80211_reg_rule *reg_rule)
766 {
767 	return;
768 }
769 #endif
770 
771 /*
772  * Note that right now we assume the desired channel bandwidth
773  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
774  * per channel, the primary and the extension channel). To support
775  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
776  * new ieee80211_channel.target_bw and re run the regulatory check
777  * on the wiphy with the target_bw specified. Then we can simply use
778  * that below for the desired_bw_khz below.
779  */
780 static void handle_channel(struct wiphy *wiphy,
781 			   enum nl80211_reg_initiator initiator,
782 			   enum ieee80211_band band,
783 			   unsigned int chan_idx)
784 {
785 	int r;
786 	u32 flags, bw_flags = 0;
787 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
788 	const struct ieee80211_reg_rule *reg_rule = NULL;
789 	const struct ieee80211_power_rule *power_rule = NULL;
790 	const struct ieee80211_freq_range *freq_range = NULL;
791 	struct ieee80211_supported_band *sband;
792 	struct ieee80211_channel *chan;
793 	struct wiphy *request_wiphy = NULL;
794 
795 	assert_cfg80211_lock();
796 
797 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
798 
799 	sband = wiphy->bands[band];
800 	BUG_ON(chan_idx >= sband->n_channels);
801 	chan = &sband->channels[chan_idx];
802 
803 	flags = chan->orig_flags;
804 
805 	r = freq_reg_info(wiphy,
806 			  MHZ_TO_KHZ(chan->center_freq),
807 			  desired_bw_khz,
808 			  &reg_rule);
809 
810 	if (r) {
811 		/*
812 		 * We will disable all channels that do not match our
813 		 * received regulatory rule unless the hint is coming
814 		 * from a Country IE and the Country IE had no information
815 		 * about a band. The IEEE 802.11 spec allows for an AP
816 		 * to send only a subset of the regulatory rules allowed,
817 		 * so an AP in the US that only supports 2.4 GHz may only send
818 		 * a country IE with information for the 2.4 GHz band
819 		 * while 5 GHz is still supported.
820 		 */
821 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
822 		    r == -ERANGE)
823 			return;
824 
825 		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
826 		chan->flags = IEEE80211_CHAN_DISABLED;
827 		return;
828 	}
829 
830 	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
831 
832 	power_rule = &reg_rule->power_rule;
833 	freq_range = &reg_rule->freq_range;
834 
835 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
836 		bw_flags = IEEE80211_CHAN_NO_HT40;
837 
838 	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
839 	    request_wiphy && request_wiphy == wiphy &&
840 	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
841 		/*
842 		 * This guarantees the driver's requested regulatory domain
843 		 * will always be used as a base for further regulatory
844 		 * settings
845 		 */
846 		chan->flags = chan->orig_flags =
847 			map_regdom_flags(reg_rule->flags) | bw_flags;
848 		chan->max_antenna_gain = chan->orig_mag =
849 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
850 		chan->max_power = chan->orig_mpwr =
851 			(int) MBM_TO_DBM(power_rule->max_eirp);
852 		return;
853 	}
854 
855 	chan->beacon_found = false;
856 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
857 	chan->max_antenna_gain = min(chan->orig_mag,
858 		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
859 	if (chan->orig_mpwr)
860 		chan->max_power = min(chan->orig_mpwr,
861 			(int) MBM_TO_DBM(power_rule->max_eirp));
862 	else
863 		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
864 }
865 
866 static void handle_band(struct wiphy *wiphy,
867 			enum ieee80211_band band,
868 			enum nl80211_reg_initiator initiator)
869 {
870 	unsigned int i;
871 	struct ieee80211_supported_band *sband;
872 
873 	BUG_ON(!wiphy->bands[band]);
874 	sband = wiphy->bands[band];
875 
876 	for (i = 0; i < sband->n_channels; i++)
877 		handle_channel(wiphy, initiator, band, i);
878 }
879 
880 static bool ignore_reg_update(struct wiphy *wiphy,
881 			      enum nl80211_reg_initiator initiator)
882 {
883 	if (!last_request) {
884 		REG_DBG_PRINT("Ignoring regulatory request %s since "
885 			      "last_request is not set\n",
886 			      reg_initiator_name(initiator));
887 		return true;
888 	}
889 
890 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
891 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
892 		REG_DBG_PRINT("Ignoring regulatory request %s "
893 			      "since the driver uses its own custom "
894 			      "regulatory domain ",
895 			      reg_initiator_name(initiator));
896 		return true;
897 	}
898 
899 	/*
900 	 * wiphy->regd will be set once the device has its own
901 	 * desired regulatory domain set
902 	 */
903 	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
904 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
905 	    !is_world_regdom(last_request->alpha2)) {
906 		REG_DBG_PRINT("Ignoring regulatory request %s "
907 			      "since the driver requires its own regulatory "
908 			      "domain to be set first",
909 			      reg_initiator_name(initiator));
910 		return true;
911 	}
912 
913 	return false;
914 }
915 
916 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
917 {
918 	struct cfg80211_registered_device *rdev;
919 
920 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
921 		wiphy_update_regulatory(&rdev->wiphy, initiator);
922 }
923 
924 static void handle_reg_beacon(struct wiphy *wiphy,
925 			      unsigned int chan_idx,
926 			      struct reg_beacon *reg_beacon)
927 {
928 	struct ieee80211_supported_band *sband;
929 	struct ieee80211_channel *chan;
930 	bool channel_changed = false;
931 	struct ieee80211_channel chan_before;
932 
933 	assert_cfg80211_lock();
934 
935 	sband = wiphy->bands[reg_beacon->chan.band];
936 	chan = &sband->channels[chan_idx];
937 
938 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
939 		return;
940 
941 	if (chan->beacon_found)
942 		return;
943 
944 	chan->beacon_found = true;
945 
946 	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
947 		return;
948 
949 	chan_before.center_freq = chan->center_freq;
950 	chan_before.flags = chan->flags;
951 
952 	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
953 		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
954 		channel_changed = true;
955 	}
956 
957 	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
958 		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
959 		channel_changed = true;
960 	}
961 
962 	if (channel_changed)
963 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
964 }
965 
966 /*
967  * Called when a scan on a wiphy finds a beacon on
968  * new channel
969  */
970 static void wiphy_update_new_beacon(struct wiphy *wiphy,
971 				    struct reg_beacon *reg_beacon)
972 {
973 	unsigned int i;
974 	struct ieee80211_supported_band *sband;
975 
976 	assert_cfg80211_lock();
977 
978 	if (!wiphy->bands[reg_beacon->chan.band])
979 		return;
980 
981 	sband = wiphy->bands[reg_beacon->chan.band];
982 
983 	for (i = 0; i < sband->n_channels; i++)
984 		handle_reg_beacon(wiphy, i, reg_beacon);
985 }
986 
987 /*
988  * Called upon reg changes or a new wiphy is added
989  */
990 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
991 {
992 	unsigned int i;
993 	struct ieee80211_supported_band *sband;
994 	struct reg_beacon *reg_beacon;
995 
996 	assert_cfg80211_lock();
997 
998 	if (list_empty(&reg_beacon_list))
999 		return;
1000 
1001 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1002 		if (!wiphy->bands[reg_beacon->chan.band])
1003 			continue;
1004 		sband = wiphy->bands[reg_beacon->chan.band];
1005 		for (i = 0; i < sband->n_channels; i++)
1006 			handle_reg_beacon(wiphy, i, reg_beacon);
1007 	}
1008 }
1009 
1010 static bool reg_is_world_roaming(struct wiphy *wiphy)
1011 {
1012 	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1013 	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1014 		return true;
1015 	if (last_request &&
1016 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1017 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1018 		return true;
1019 	return false;
1020 }
1021 
1022 /* Reap the advantages of previously found beacons */
1023 static void reg_process_beacons(struct wiphy *wiphy)
1024 {
1025 	/*
1026 	 * Means we are just firing up cfg80211, so no beacons would
1027 	 * have been processed yet.
1028 	 */
1029 	if (!last_request)
1030 		return;
1031 	if (!reg_is_world_roaming(wiphy))
1032 		return;
1033 	wiphy_update_beacon_reg(wiphy);
1034 }
1035 
1036 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1037 {
1038 	if (!chan)
1039 		return true;
1040 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1041 		return true;
1042 	/* This would happen when regulatory rules disallow HT40 completely */
1043 	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1044 		return true;
1045 	return false;
1046 }
1047 
1048 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1049 					 enum ieee80211_band band,
1050 					 unsigned int chan_idx)
1051 {
1052 	struct ieee80211_supported_band *sband;
1053 	struct ieee80211_channel *channel;
1054 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1055 	unsigned int i;
1056 
1057 	assert_cfg80211_lock();
1058 
1059 	sband = wiphy->bands[band];
1060 	BUG_ON(chan_idx >= sband->n_channels);
1061 	channel = &sband->channels[chan_idx];
1062 
1063 	if (is_ht40_not_allowed(channel)) {
1064 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1065 		return;
1066 	}
1067 
1068 	/*
1069 	 * We need to ensure the extension channels exist to
1070 	 * be able to use HT40- or HT40+, this finds them (or not)
1071 	 */
1072 	for (i = 0; i < sband->n_channels; i++) {
1073 		struct ieee80211_channel *c = &sband->channels[i];
1074 		if (c->center_freq == (channel->center_freq - 20))
1075 			channel_before = c;
1076 		if (c->center_freq == (channel->center_freq + 20))
1077 			channel_after = c;
1078 	}
1079 
1080 	/*
1081 	 * Please note that this assumes target bandwidth is 20 MHz,
1082 	 * if that ever changes we also need to change the below logic
1083 	 * to include that as well.
1084 	 */
1085 	if (is_ht40_not_allowed(channel_before))
1086 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1087 	else
1088 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1089 
1090 	if (is_ht40_not_allowed(channel_after))
1091 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1092 	else
1093 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1094 }
1095 
1096 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1097 				      enum ieee80211_band band)
1098 {
1099 	unsigned int i;
1100 	struct ieee80211_supported_band *sband;
1101 
1102 	BUG_ON(!wiphy->bands[band]);
1103 	sband = wiphy->bands[band];
1104 
1105 	for (i = 0; i < sband->n_channels; i++)
1106 		reg_process_ht_flags_channel(wiphy, band, i);
1107 }
1108 
1109 static void reg_process_ht_flags(struct wiphy *wiphy)
1110 {
1111 	enum ieee80211_band band;
1112 
1113 	if (!wiphy)
1114 		return;
1115 
1116 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1117 		if (wiphy->bands[band])
1118 			reg_process_ht_flags_band(wiphy, band);
1119 	}
1120 
1121 }
1122 
1123 void wiphy_update_regulatory(struct wiphy *wiphy,
1124 			     enum nl80211_reg_initiator initiator)
1125 {
1126 	enum ieee80211_band band;
1127 
1128 	if (ignore_reg_update(wiphy, initiator))
1129 		return;
1130 
1131 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1132 		if (wiphy->bands[band])
1133 			handle_band(wiphy, band, initiator);
1134 	}
1135 
1136 	reg_process_beacons(wiphy);
1137 	reg_process_ht_flags(wiphy);
1138 	if (wiphy->reg_notifier)
1139 		wiphy->reg_notifier(wiphy, last_request);
1140 }
1141 
1142 static void handle_channel_custom(struct wiphy *wiphy,
1143 				  enum ieee80211_band band,
1144 				  unsigned int chan_idx,
1145 				  const struct ieee80211_regdomain *regd)
1146 {
1147 	int r;
1148 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
1149 	u32 bw_flags = 0;
1150 	const struct ieee80211_reg_rule *reg_rule = NULL;
1151 	const struct ieee80211_power_rule *power_rule = NULL;
1152 	const struct ieee80211_freq_range *freq_range = NULL;
1153 	struct ieee80211_supported_band *sband;
1154 	struct ieee80211_channel *chan;
1155 
1156 	assert_reg_lock();
1157 
1158 	sband = wiphy->bands[band];
1159 	BUG_ON(chan_idx >= sband->n_channels);
1160 	chan = &sband->channels[chan_idx];
1161 
1162 	r = freq_reg_info_regd(wiphy,
1163 			       MHZ_TO_KHZ(chan->center_freq),
1164 			       desired_bw_khz,
1165 			       &reg_rule,
1166 			       regd);
1167 
1168 	if (r) {
1169 		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1170 			      "regd has no rule that fits a %d MHz "
1171 			      "wide channel\n",
1172 			      chan->center_freq,
1173 			      KHZ_TO_MHZ(desired_bw_khz));
1174 		chan->flags = IEEE80211_CHAN_DISABLED;
1175 		return;
1176 	}
1177 
1178 	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1179 
1180 	power_rule = &reg_rule->power_rule;
1181 	freq_range = &reg_rule->freq_range;
1182 
1183 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1184 		bw_flags = IEEE80211_CHAN_NO_HT40;
1185 
1186 	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1187 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1188 	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1189 }
1190 
1191 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1192 			       const struct ieee80211_regdomain *regd)
1193 {
1194 	unsigned int i;
1195 	struct ieee80211_supported_band *sband;
1196 
1197 	BUG_ON(!wiphy->bands[band]);
1198 	sband = wiphy->bands[band];
1199 
1200 	for (i = 0; i < sband->n_channels; i++)
1201 		handle_channel_custom(wiphy, band, i, regd);
1202 }
1203 
1204 /* Used by drivers prior to wiphy registration */
1205 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1206 				   const struct ieee80211_regdomain *regd)
1207 {
1208 	enum ieee80211_band band;
1209 	unsigned int bands_set = 0;
1210 
1211 	mutex_lock(&reg_mutex);
1212 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1213 		if (!wiphy->bands[band])
1214 			continue;
1215 		handle_band_custom(wiphy, band, regd);
1216 		bands_set++;
1217 	}
1218 	mutex_unlock(&reg_mutex);
1219 
1220 	/*
1221 	 * no point in calling this if it won't have any effect
1222 	 * on your device's supportd bands.
1223 	 */
1224 	WARN_ON(!bands_set);
1225 }
1226 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1227 
1228 /*
1229  * Return value which can be used by ignore_request() to indicate
1230  * it has been determined we should intersect two regulatory domains
1231  */
1232 #define REG_INTERSECT	1
1233 
1234 /* This has the logic which determines when a new request
1235  * should be ignored. */
1236 static int ignore_request(struct wiphy *wiphy,
1237 			  struct regulatory_request *pending_request)
1238 {
1239 	struct wiphy *last_wiphy = NULL;
1240 
1241 	assert_cfg80211_lock();
1242 
1243 	/* All initial requests are respected */
1244 	if (!last_request)
1245 		return 0;
1246 
1247 	switch (pending_request->initiator) {
1248 	case NL80211_REGDOM_SET_BY_CORE:
1249 		return 0;
1250 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1251 
1252 		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1253 
1254 		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1255 			return -EINVAL;
1256 		if (last_request->initiator ==
1257 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1258 			if (last_wiphy != wiphy) {
1259 				/*
1260 				 * Two cards with two APs claiming different
1261 				 * Country IE alpha2s. We could
1262 				 * intersect them, but that seems unlikely
1263 				 * to be correct. Reject second one for now.
1264 				 */
1265 				if (regdom_changes(pending_request->alpha2))
1266 					return -EOPNOTSUPP;
1267 				return -EALREADY;
1268 			}
1269 			/*
1270 			 * Two consecutive Country IE hints on the same wiphy.
1271 			 * This should be picked up early by the driver/stack
1272 			 */
1273 			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1274 				return 0;
1275 			return -EALREADY;
1276 		}
1277 		return 0;
1278 	case NL80211_REGDOM_SET_BY_DRIVER:
1279 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1280 			if (regdom_changes(pending_request->alpha2))
1281 				return 0;
1282 			return -EALREADY;
1283 		}
1284 
1285 		/*
1286 		 * This would happen if you unplug and plug your card
1287 		 * back in or if you add a new device for which the previously
1288 		 * loaded card also agrees on the regulatory domain.
1289 		 */
1290 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1291 		    !regdom_changes(pending_request->alpha2))
1292 			return -EALREADY;
1293 
1294 		return REG_INTERSECT;
1295 	case NL80211_REGDOM_SET_BY_USER:
1296 		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1297 			return REG_INTERSECT;
1298 		/*
1299 		 * If the user knows better the user should set the regdom
1300 		 * to their country before the IE is picked up
1301 		 */
1302 		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1303 			  last_request->intersect)
1304 			return -EOPNOTSUPP;
1305 		/*
1306 		 * Process user requests only after previous user/driver/core
1307 		 * requests have been processed
1308 		 */
1309 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1310 		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1311 		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1312 			if (regdom_changes(last_request->alpha2))
1313 				return -EAGAIN;
1314 		}
1315 
1316 		if (!regdom_changes(pending_request->alpha2))
1317 			return -EALREADY;
1318 
1319 		return 0;
1320 	}
1321 
1322 	return -EINVAL;
1323 }
1324 
1325 static void reg_set_request_processed(void)
1326 {
1327 	bool need_more_processing = false;
1328 
1329 	last_request->processed = true;
1330 
1331 	spin_lock(&reg_requests_lock);
1332 	if (!list_empty(&reg_requests_list))
1333 		need_more_processing = true;
1334 	spin_unlock(&reg_requests_lock);
1335 
1336 	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1337 		cancel_delayed_work_sync(&reg_timeout);
1338 
1339 	if (need_more_processing)
1340 		schedule_work(&reg_work);
1341 }
1342 
1343 /**
1344  * __regulatory_hint - hint to the wireless core a regulatory domain
1345  * @wiphy: if the hint comes from country information from an AP, this
1346  *	is required to be set to the wiphy that received the information
1347  * @pending_request: the regulatory request currently being processed
1348  *
1349  * The Wireless subsystem can use this function to hint to the wireless core
1350  * what it believes should be the current regulatory domain.
1351  *
1352  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1353  * already been set or other standard error codes.
1354  *
1355  * Caller must hold &cfg80211_mutex and &reg_mutex
1356  */
1357 static int __regulatory_hint(struct wiphy *wiphy,
1358 			     struct regulatory_request *pending_request)
1359 {
1360 	bool intersect = false;
1361 	int r = 0;
1362 
1363 	assert_cfg80211_lock();
1364 
1365 	r = ignore_request(wiphy, pending_request);
1366 
1367 	if (r == REG_INTERSECT) {
1368 		if (pending_request->initiator ==
1369 		    NL80211_REGDOM_SET_BY_DRIVER) {
1370 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1371 			if (r) {
1372 				kfree(pending_request);
1373 				return r;
1374 			}
1375 		}
1376 		intersect = true;
1377 	} else if (r) {
1378 		/*
1379 		 * If the regulatory domain being requested by the
1380 		 * driver has already been set just copy it to the
1381 		 * wiphy
1382 		 */
1383 		if (r == -EALREADY &&
1384 		    pending_request->initiator ==
1385 		    NL80211_REGDOM_SET_BY_DRIVER) {
1386 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1387 			if (r) {
1388 				kfree(pending_request);
1389 				return r;
1390 			}
1391 			r = -EALREADY;
1392 			goto new_request;
1393 		}
1394 		kfree(pending_request);
1395 		return r;
1396 	}
1397 
1398 new_request:
1399 	kfree(last_request);
1400 
1401 	last_request = pending_request;
1402 	last_request->intersect = intersect;
1403 
1404 	pending_request = NULL;
1405 
1406 	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1407 		user_alpha2[0] = last_request->alpha2[0];
1408 		user_alpha2[1] = last_request->alpha2[1];
1409 	}
1410 
1411 	/* When r == REG_INTERSECT we do need to call CRDA */
1412 	if (r < 0) {
1413 		/*
1414 		 * Since CRDA will not be called in this case as we already
1415 		 * have applied the requested regulatory domain before we just
1416 		 * inform userspace we have processed the request
1417 		 */
1418 		if (r == -EALREADY) {
1419 			nl80211_send_reg_change_event(last_request);
1420 			reg_set_request_processed();
1421 		}
1422 		return r;
1423 	}
1424 
1425 	return call_crda(last_request->alpha2);
1426 }
1427 
1428 /* This processes *all* regulatory hints */
1429 static void reg_process_hint(struct regulatory_request *reg_request)
1430 {
1431 	int r = 0;
1432 	struct wiphy *wiphy = NULL;
1433 	enum nl80211_reg_initiator initiator = reg_request->initiator;
1434 
1435 	BUG_ON(!reg_request->alpha2);
1436 
1437 	if (wiphy_idx_valid(reg_request->wiphy_idx))
1438 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1439 
1440 	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1441 	    !wiphy) {
1442 		kfree(reg_request);
1443 		return;
1444 	}
1445 
1446 	r = __regulatory_hint(wiphy, reg_request);
1447 	/* This is required so that the orig_* parameters are saved */
1448 	if (r == -EALREADY && wiphy &&
1449 	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1450 		wiphy_update_regulatory(wiphy, initiator);
1451 		return;
1452 	}
1453 
1454 	/*
1455 	 * We only time out user hints, given that they should be the only
1456 	 * source of bogus requests.
1457 	 */
1458 	if (r != -EALREADY &&
1459 	    reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1460 		schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1461 }
1462 
1463 /*
1464  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1465  * Regulatory hints come on a first come first serve basis and we
1466  * must process each one atomically.
1467  */
1468 static void reg_process_pending_hints(void)
1469 {
1470 	struct regulatory_request *reg_request;
1471 
1472 	mutex_lock(&cfg80211_mutex);
1473 	mutex_lock(&reg_mutex);
1474 
1475 	/* When last_request->processed becomes true this will be rescheduled */
1476 	if (last_request && !last_request->processed) {
1477 		REG_DBG_PRINT("Pending regulatory request, waiting "
1478 			      "for it to be processed...");
1479 		goto out;
1480 	}
1481 
1482 	spin_lock(&reg_requests_lock);
1483 
1484 	if (list_empty(&reg_requests_list)) {
1485 		spin_unlock(&reg_requests_lock);
1486 		goto out;
1487 	}
1488 
1489 	reg_request = list_first_entry(&reg_requests_list,
1490 				       struct regulatory_request,
1491 				       list);
1492 	list_del_init(&reg_request->list);
1493 
1494 	spin_unlock(&reg_requests_lock);
1495 
1496 	reg_process_hint(reg_request);
1497 
1498 out:
1499 	mutex_unlock(&reg_mutex);
1500 	mutex_unlock(&cfg80211_mutex);
1501 }
1502 
1503 /* Processes beacon hints -- this has nothing to do with country IEs */
1504 static void reg_process_pending_beacon_hints(void)
1505 {
1506 	struct cfg80211_registered_device *rdev;
1507 	struct reg_beacon *pending_beacon, *tmp;
1508 
1509 	/*
1510 	 * No need to hold the reg_mutex here as we just touch wiphys
1511 	 * and do not read or access regulatory variables.
1512 	 */
1513 	mutex_lock(&cfg80211_mutex);
1514 
1515 	/* This goes through the _pending_ beacon list */
1516 	spin_lock_bh(&reg_pending_beacons_lock);
1517 
1518 	if (list_empty(&reg_pending_beacons)) {
1519 		spin_unlock_bh(&reg_pending_beacons_lock);
1520 		goto out;
1521 	}
1522 
1523 	list_for_each_entry_safe(pending_beacon, tmp,
1524 				 &reg_pending_beacons, list) {
1525 
1526 		list_del_init(&pending_beacon->list);
1527 
1528 		/* Applies the beacon hint to current wiphys */
1529 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1530 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1531 
1532 		/* Remembers the beacon hint for new wiphys or reg changes */
1533 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
1534 	}
1535 
1536 	spin_unlock_bh(&reg_pending_beacons_lock);
1537 out:
1538 	mutex_unlock(&cfg80211_mutex);
1539 }
1540 
1541 static void reg_todo(struct work_struct *work)
1542 {
1543 	reg_process_pending_hints();
1544 	reg_process_pending_beacon_hints();
1545 }
1546 
1547 static void queue_regulatory_request(struct regulatory_request *request)
1548 {
1549 	if (isalpha(request->alpha2[0]))
1550 		request->alpha2[0] = toupper(request->alpha2[0]);
1551 	if (isalpha(request->alpha2[1]))
1552 		request->alpha2[1] = toupper(request->alpha2[1]);
1553 
1554 	spin_lock(&reg_requests_lock);
1555 	list_add_tail(&request->list, &reg_requests_list);
1556 	spin_unlock(&reg_requests_lock);
1557 
1558 	schedule_work(&reg_work);
1559 }
1560 
1561 /*
1562  * Core regulatory hint -- happens during cfg80211_init()
1563  * and when we restore regulatory settings.
1564  */
1565 static int regulatory_hint_core(const char *alpha2)
1566 {
1567 	struct regulatory_request *request;
1568 
1569 	kfree(last_request);
1570 	last_request = NULL;
1571 
1572 	request = kzalloc(sizeof(struct regulatory_request),
1573 			  GFP_KERNEL);
1574 	if (!request)
1575 		return -ENOMEM;
1576 
1577 	request->alpha2[0] = alpha2[0];
1578 	request->alpha2[1] = alpha2[1];
1579 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1580 
1581 	queue_regulatory_request(request);
1582 
1583 	return 0;
1584 }
1585 
1586 /* User hints */
1587 int regulatory_hint_user(const char *alpha2)
1588 {
1589 	struct regulatory_request *request;
1590 
1591 	BUG_ON(!alpha2);
1592 
1593 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1594 	if (!request)
1595 		return -ENOMEM;
1596 
1597 	request->wiphy_idx = WIPHY_IDX_STALE;
1598 	request->alpha2[0] = alpha2[0];
1599 	request->alpha2[1] = alpha2[1];
1600 	request->initiator = NL80211_REGDOM_SET_BY_USER;
1601 
1602 	queue_regulatory_request(request);
1603 
1604 	return 0;
1605 }
1606 
1607 /* Driver hints */
1608 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1609 {
1610 	struct regulatory_request *request;
1611 
1612 	BUG_ON(!alpha2);
1613 	BUG_ON(!wiphy);
1614 
1615 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1616 	if (!request)
1617 		return -ENOMEM;
1618 
1619 	request->wiphy_idx = get_wiphy_idx(wiphy);
1620 
1621 	/* Must have registered wiphy first */
1622 	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1623 
1624 	request->alpha2[0] = alpha2[0];
1625 	request->alpha2[1] = alpha2[1];
1626 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1627 
1628 	queue_regulatory_request(request);
1629 
1630 	return 0;
1631 }
1632 EXPORT_SYMBOL(regulatory_hint);
1633 
1634 /*
1635  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1636  * therefore cannot iterate over the rdev list here.
1637  */
1638 void regulatory_hint_11d(struct wiphy *wiphy,
1639 			 enum ieee80211_band band,
1640 			 u8 *country_ie,
1641 			 u8 country_ie_len)
1642 {
1643 	char alpha2[2];
1644 	enum environment_cap env = ENVIRON_ANY;
1645 	struct regulatory_request *request;
1646 
1647 	mutex_lock(&reg_mutex);
1648 
1649 	if (unlikely(!last_request))
1650 		goto out;
1651 
1652 	/* IE len must be evenly divisible by 2 */
1653 	if (country_ie_len & 0x01)
1654 		goto out;
1655 
1656 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1657 		goto out;
1658 
1659 	alpha2[0] = country_ie[0];
1660 	alpha2[1] = country_ie[1];
1661 
1662 	if (country_ie[2] == 'I')
1663 		env = ENVIRON_INDOOR;
1664 	else if (country_ie[2] == 'O')
1665 		env = ENVIRON_OUTDOOR;
1666 
1667 	/*
1668 	 * We will run this only upon a successful connection on cfg80211.
1669 	 * We leave conflict resolution to the workqueue, where can hold
1670 	 * cfg80211_mutex.
1671 	 */
1672 	if (likely(last_request->initiator ==
1673 	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1674 	    wiphy_idx_valid(last_request->wiphy_idx)))
1675 		goto out;
1676 
1677 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1678 	if (!request)
1679 		goto out;
1680 
1681 	request->wiphy_idx = get_wiphy_idx(wiphy);
1682 	request->alpha2[0] = alpha2[0];
1683 	request->alpha2[1] = alpha2[1];
1684 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1685 	request->country_ie_env = env;
1686 
1687 	mutex_unlock(&reg_mutex);
1688 
1689 	queue_regulatory_request(request);
1690 
1691 	return;
1692 
1693 out:
1694 	mutex_unlock(&reg_mutex);
1695 }
1696 
1697 static void restore_alpha2(char *alpha2, bool reset_user)
1698 {
1699 	/* indicates there is no alpha2 to consider for restoration */
1700 	alpha2[0] = '9';
1701 	alpha2[1] = '7';
1702 
1703 	/* The user setting has precedence over the module parameter */
1704 	if (is_user_regdom_saved()) {
1705 		/* Unless we're asked to ignore it and reset it */
1706 		if (reset_user) {
1707 			REG_DBG_PRINT("Restoring regulatory settings "
1708 			       "including user preference\n");
1709 			user_alpha2[0] = '9';
1710 			user_alpha2[1] = '7';
1711 
1712 			/*
1713 			 * If we're ignoring user settings, we still need to
1714 			 * check the module parameter to ensure we put things
1715 			 * back as they were for a full restore.
1716 			 */
1717 			if (!is_world_regdom(ieee80211_regdom)) {
1718 				REG_DBG_PRINT("Keeping preference on "
1719 				       "module parameter ieee80211_regdom: %c%c\n",
1720 				       ieee80211_regdom[0],
1721 				       ieee80211_regdom[1]);
1722 				alpha2[0] = ieee80211_regdom[0];
1723 				alpha2[1] = ieee80211_regdom[1];
1724 			}
1725 		} else {
1726 			REG_DBG_PRINT("Restoring regulatory settings "
1727 			       "while preserving user preference for: %c%c\n",
1728 			       user_alpha2[0],
1729 			       user_alpha2[1]);
1730 			alpha2[0] = user_alpha2[0];
1731 			alpha2[1] = user_alpha2[1];
1732 		}
1733 	} else if (!is_world_regdom(ieee80211_regdom)) {
1734 		REG_DBG_PRINT("Keeping preference on "
1735 		       "module parameter ieee80211_regdom: %c%c\n",
1736 		       ieee80211_regdom[0],
1737 		       ieee80211_regdom[1]);
1738 		alpha2[0] = ieee80211_regdom[0];
1739 		alpha2[1] = ieee80211_regdom[1];
1740 	} else
1741 		REG_DBG_PRINT("Restoring regulatory settings\n");
1742 }
1743 
1744 /*
1745  * Restoring regulatory settings involves ingoring any
1746  * possibly stale country IE information and user regulatory
1747  * settings if so desired, this includes any beacon hints
1748  * learned as we could have traveled outside to another country
1749  * after disconnection. To restore regulatory settings we do
1750  * exactly what we did at bootup:
1751  *
1752  *   - send a core regulatory hint
1753  *   - send a user regulatory hint if applicable
1754  *
1755  * Device drivers that send a regulatory hint for a specific country
1756  * keep their own regulatory domain on wiphy->regd so that does does
1757  * not need to be remembered.
1758  */
1759 static void restore_regulatory_settings(bool reset_user)
1760 {
1761 	char alpha2[2];
1762 	struct reg_beacon *reg_beacon, *btmp;
1763 	struct regulatory_request *reg_request, *tmp;
1764 	LIST_HEAD(tmp_reg_req_list);
1765 
1766 	mutex_lock(&cfg80211_mutex);
1767 	mutex_lock(&reg_mutex);
1768 
1769 	reset_regdomains();
1770 	restore_alpha2(alpha2, reset_user);
1771 
1772 	/*
1773 	 * If there's any pending requests we simply
1774 	 * stash them to a temporary pending queue and
1775 	 * add then after we've restored regulatory
1776 	 * settings.
1777 	 */
1778 	spin_lock(&reg_requests_lock);
1779 	if (!list_empty(&reg_requests_list)) {
1780 		list_for_each_entry_safe(reg_request, tmp,
1781 					 &reg_requests_list, list) {
1782 			if (reg_request->initiator !=
1783 			    NL80211_REGDOM_SET_BY_USER)
1784 				continue;
1785 			list_del(&reg_request->list);
1786 			list_add_tail(&reg_request->list, &tmp_reg_req_list);
1787 		}
1788 	}
1789 	spin_unlock(&reg_requests_lock);
1790 
1791 	/* Clear beacon hints */
1792 	spin_lock_bh(&reg_pending_beacons_lock);
1793 	if (!list_empty(&reg_pending_beacons)) {
1794 		list_for_each_entry_safe(reg_beacon, btmp,
1795 					 &reg_pending_beacons, list) {
1796 			list_del(&reg_beacon->list);
1797 			kfree(reg_beacon);
1798 		}
1799 	}
1800 	spin_unlock_bh(&reg_pending_beacons_lock);
1801 
1802 	if (!list_empty(&reg_beacon_list)) {
1803 		list_for_each_entry_safe(reg_beacon, btmp,
1804 					 &reg_beacon_list, list) {
1805 			list_del(&reg_beacon->list);
1806 			kfree(reg_beacon);
1807 		}
1808 	}
1809 
1810 	/* First restore to the basic regulatory settings */
1811 	cfg80211_regdomain = cfg80211_world_regdom;
1812 
1813 	mutex_unlock(&reg_mutex);
1814 	mutex_unlock(&cfg80211_mutex);
1815 
1816 	regulatory_hint_core(cfg80211_regdomain->alpha2);
1817 
1818 	/*
1819 	 * This restores the ieee80211_regdom module parameter
1820 	 * preference or the last user requested regulatory
1821 	 * settings, user regulatory settings takes precedence.
1822 	 */
1823 	if (is_an_alpha2(alpha2))
1824 		regulatory_hint_user(user_alpha2);
1825 
1826 	if (list_empty(&tmp_reg_req_list))
1827 		return;
1828 
1829 	mutex_lock(&cfg80211_mutex);
1830 	mutex_lock(&reg_mutex);
1831 
1832 	spin_lock(&reg_requests_lock);
1833 	list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1834 		REG_DBG_PRINT("Adding request for country %c%c back "
1835 			      "into the queue\n",
1836 			      reg_request->alpha2[0],
1837 			      reg_request->alpha2[1]);
1838 		list_del(&reg_request->list);
1839 		list_add_tail(&reg_request->list, &reg_requests_list);
1840 	}
1841 	spin_unlock(&reg_requests_lock);
1842 
1843 	mutex_unlock(&reg_mutex);
1844 	mutex_unlock(&cfg80211_mutex);
1845 
1846 	REG_DBG_PRINT("Kicking the queue\n");
1847 
1848 	schedule_work(&reg_work);
1849 }
1850 
1851 void regulatory_hint_disconnect(void)
1852 {
1853 	REG_DBG_PRINT("All devices are disconnected, going to "
1854 		      "restore regulatory settings\n");
1855 	restore_regulatory_settings(false);
1856 }
1857 
1858 static bool freq_is_chan_12_13_14(u16 freq)
1859 {
1860 	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1861 	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1862 	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1863 		return true;
1864 	return false;
1865 }
1866 
1867 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1868 				 struct ieee80211_channel *beacon_chan,
1869 				 gfp_t gfp)
1870 {
1871 	struct reg_beacon *reg_beacon;
1872 
1873 	if (likely((beacon_chan->beacon_found ||
1874 	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1875 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1876 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1877 		return 0;
1878 
1879 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1880 	if (!reg_beacon)
1881 		return -ENOMEM;
1882 
1883 	REG_DBG_PRINT("Found new beacon on "
1884 		      "frequency: %d MHz (Ch %d) on %s\n",
1885 		      beacon_chan->center_freq,
1886 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
1887 		      wiphy_name(wiphy));
1888 
1889 	memcpy(&reg_beacon->chan, beacon_chan,
1890 		sizeof(struct ieee80211_channel));
1891 
1892 
1893 	/*
1894 	 * Since we can be called from BH or and non-BH context
1895 	 * we must use spin_lock_bh()
1896 	 */
1897 	spin_lock_bh(&reg_pending_beacons_lock);
1898 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1899 	spin_unlock_bh(&reg_pending_beacons_lock);
1900 
1901 	schedule_work(&reg_work);
1902 
1903 	return 0;
1904 }
1905 
1906 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1907 {
1908 	unsigned int i;
1909 	const struct ieee80211_reg_rule *reg_rule = NULL;
1910 	const struct ieee80211_freq_range *freq_range = NULL;
1911 	const struct ieee80211_power_rule *power_rule = NULL;
1912 
1913 	pr_info("    (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1914 
1915 	for (i = 0; i < rd->n_reg_rules; i++) {
1916 		reg_rule = &rd->reg_rules[i];
1917 		freq_range = &reg_rule->freq_range;
1918 		power_rule = &reg_rule->power_rule;
1919 
1920 		/*
1921 		 * There may not be documentation for max antenna gain
1922 		 * in certain regions
1923 		 */
1924 		if (power_rule->max_antenna_gain)
1925 			pr_info("    (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1926 				freq_range->start_freq_khz,
1927 				freq_range->end_freq_khz,
1928 				freq_range->max_bandwidth_khz,
1929 				power_rule->max_antenna_gain,
1930 				power_rule->max_eirp);
1931 		else
1932 			pr_info("    (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1933 				freq_range->start_freq_khz,
1934 				freq_range->end_freq_khz,
1935 				freq_range->max_bandwidth_khz,
1936 				power_rule->max_eirp);
1937 	}
1938 }
1939 
1940 static void print_regdomain(const struct ieee80211_regdomain *rd)
1941 {
1942 
1943 	if (is_intersected_alpha2(rd->alpha2)) {
1944 
1945 		if (last_request->initiator ==
1946 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1947 			struct cfg80211_registered_device *rdev;
1948 			rdev = cfg80211_rdev_by_wiphy_idx(
1949 				last_request->wiphy_idx);
1950 			if (rdev) {
1951 				pr_info("Current regulatory domain updated by AP to: %c%c\n",
1952 					rdev->country_ie_alpha2[0],
1953 					rdev->country_ie_alpha2[1]);
1954 			} else
1955 				pr_info("Current regulatory domain intersected:\n");
1956 		} else
1957 			pr_info("Current regulatory domain intersected:\n");
1958 	} else if (is_world_regdom(rd->alpha2))
1959 		pr_info("World regulatory domain updated:\n");
1960 	else {
1961 		if (is_unknown_alpha2(rd->alpha2))
1962 			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1963 		else
1964 			pr_info("Regulatory domain changed to country: %c%c\n",
1965 				rd->alpha2[0], rd->alpha2[1]);
1966 	}
1967 	print_rd_rules(rd);
1968 }
1969 
1970 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1971 {
1972 	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1973 	print_rd_rules(rd);
1974 }
1975 
1976 /* Takes ownership of rd only if it doesn't fail */
1977 static int __set_regdom(const struct ieee80211_regdomain *rd)
1978 {
1979 	const struct ieee80211_regdomain *intersected_rd = NULL;
1980 	struct cfg80211_registered_device *rdev = NULL;
1981 	struct wiphy *request_wiphy;
1982 	/* Some basic sanity checks first */
1983 
1984 	if (is_world_regdom(rd->alpha2)) {
1985 		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1986 			return -EINVAL;
1987 		update_world_regdomain(rd);
1988 		return 0;
1989 	}
1990 
1991 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1992 			!is_unknown_alpha2(rd->alpha2))
1993 		return -EINVAL;
1994 
1995 	if (!last_request)
1996 		return -EINVAL;
1997 
1998 	/*
1999 	 * Lets only bother proceeding on the same alpha2 if the current
2000 	 * rd is non static (it means CRDA was present and was used last)
2001 	 * and the pending request came in from a country IE
2002 	 */
2003 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2004 		/*
2005 		 * If someone else asked us to change the rd lets only bother
2006 		 * checking if the alpha2 changes if CRDA was already called
2007 		 */
2008 		if (!regdom_changes(rd->alpha2))
2009 			return -EINVAL;
2010 	}
2011 
2012 	/*
2013 	 * Now lets set the regulatory domain, update all driver channels
2014 	 * and finally inform them of what we have done, in case they want
2015 	 * to review or adjust their own settings based on their own
2016 	 * internal EEPROM data
2017 	 */
2018 
2019 	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2020 		return -EINVAL;
2021 
2022 	if (!is_valid_rd(rd)) {
2023 		pr_err("Invalid regulatory domain detected:\n");
2024 		print_regdomain_info(rd);
2025 		return -EINVAL;
2026 	}
2027 
2028 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2029 
2030 	if (!last_request->intersect) {
2031 		int r;
2032 
2033 		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2034 			reset_regdomains();
2035 			cfg80211_regdomain = rd;
2036 			return 0;
2037 		}
2038 
2039 		/*
2040 		 * For a driver hint, lets copy the regulatory domain the
2041 		 * driver wanted to the wiphy to deal with conflicts
2042 		 */
2043 
2044 		/*
2045 		 * Userspace could have sent two replies with only
2046 		 * one kernel request.
2047 		 */
2048 		if (request_wiphy->regd)
2049 			return -EALREADY;
2050 
2051 		r = reg_copy_regd(&request_wiphy->regd, rd);
2052 		if (r)
2053 			return r;
2054 
2055 		reset_regdomains();
2056 		cfg80211_regdomain = rd;
2057 		return 0;
2058 	}
2059 
2060 	/* Intersection requires a bit more work */
2061 
2062 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2063 
2064 		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2065 		if (!intersected_rd)
2066 			return -EINVAL;
2067 
2068 		/*
2069 		 * We can trash what CRDA provided now.
2070 		 * However if a driver requested this specific regulatory
2071 		 * domain we keep it for its private use
2072 		 */
2073 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2074 			request_wiphy->regd = rd;
2075 		else
2076 			kfree(rd);
2077 
2078 		rd = NULL;
2079 
2080 		reset_regdomains();
2081 		cfg80211_regdomain = intersected_rd;
2082 
2083 		return 0;
2084 	}
2085 
2086 	if (!intersected_rd)
2087 		return -EINVAL;
2088 
2089 	rdev = wiphy_to_dev(request_wiphy);
2090 
2091 	rdev->country_ie_alpha2[0] = rd->alpha2[0];
2092 	rdev->country_ie_alpha2[1] = rd->alpha2[1];
2093 	rdev->env = last_request->country_ie_env;
2094 
2095 	BUG_ON(intersected_rd == rd);
2096 
2097 	kfree(rd);
2098 	rd = NULL;
2099 
2100 	reset_regdomains();
2101 	cfg80211_regdomain = intersected_rd;
2102 
2103 	return 0;
2104 }
2105 
2106 
2107 /*
2108  * Use this call to set the current regulatory domain. Conflicts with
2109  * multiple drivers can be ironed out later. Caller must've already
2110  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2111  */
2112 int set_regdom(const struct ieee80211_regdomain *rd)
2113 {
2114 	int r;
2115 
2116 	assert_cfg80211_lock();
2117 
2118 	mutex_lock(&reg_mutex);
2119 
2120 	/* Note that this doesn't update the wiphys, this is done below */
2121 	r = __set_regdom(rd);
2122 	if (r) {
2123 		kfree(rd);
2124 		mutex_unlock(&reg_mutex);
2125 		return r;
2126 	}
2127 
2128 	/* This would make this whole thing pointless */
2129 	if (!last_request->intersect)
2130 		BUG_ON(rd != cfg80211_regdomain);
2131 
2132 	/* update all wiphys now with the new established regulatory domain */
2133 	update_all_wiphy_regulatory(last_request->initiator);
2134 
2135 	print_regdomain(cfg80211_regdomain);
2136 
2137 	nl80211_send_reg_change_event(last_request);
2138 
2139 	reg_set_request_processed();
2140 
2141 	mutex_unlock(&reg_mutex);
2142 
2143 	return r;
2144 }
2145 
2146 #ifdef CONFIG_HOTPLUG
2147 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2148 {
2149 	if (last_request && !last_request->processed) {
2150 		if (add_uevent_var(env, "COUNTRY=%c%c",
2151 				   last_request->alpha2[0],
2152 				   last_request->alpha2[1]))
2153 			return -ENOMEM;
2154 	}
2155 
2156 	return 0;
2157 }
2158 #else
2159 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2160 {
2161 	return -ENODEV;
2162 }
2163 #endif /* CONFIG_HOTPLUG */
2164 
2165 /* Caller must hold cfg80211_mutex */
2166 void reg_device_remove(struct wiphy *wiphy)
2167 {
2168 	struct wiphy *request_wiphy = NULL;
2169 
2170 	assert_cfg80211_lock();
2171 
2172 	mutex_lock(&reg_mutex);
2173 
2174 	kfree(wiphy->regd);
2175 
2176 	if (last_request)
2177 		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2178 
2179 	if (!request_wiphy || request_wiphy != wiphy)
2180 		goto out;
2181 
2182 	last_request->wiphy_idx = WIPHY_IDX_STALE;
2183 	last_request->country_ie_env = ENVIRON_ANY;
2184 out:
2185 	mutex_unlock(&reg_mutex);
2186 }
2187 
2188 static void reg_timeout_work(struct work_struct *work)
2189 {
2190 	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2191 		      "restoring regulatory settings");
2192 	restore_regulatory_settings(true);
2193 }
2194 
2195 int __init regulatory_init(void)
2196 {
2197 	int err = 0;
2198 
2199 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2200 	if (IS_ERR(reg_pdev))
2201 		return PTR_ERR(reg_pdev);
2202 
2203 	reg_pdev->dev.type = &reg_device_type;
2204 
2205 	spin_lock_init(&reg_requests_lock);
2206 	spin_lock_init(&reg_pending_beacons_lock);
2207 
2208 	cfg80211_regdomain = cfg80211_world_regdom;
2209 
2210 	user_alpha2[0] = '9';
2211 	user_alpha2[1] = '7';
2212 
2213 	/* We always try to get an update for the static regdomain */
2214 	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2215 	if (err) {
2216 		if (err == -ENOMEM)
2217 			return err;
2218 		/*
2219 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
2220 		 * memory which is handled and propagated appropriately above
2221 		 * but it can also fail during a netlink_broadcast() or during
2222 		 * early boot for call_usermodehelper(). For now treat these
2223 		 * errors as non-fatal.
2224 		 */
2225 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2226 #ifdef CONFIG_CFG80211_REG_DEBUG
2227 		/* We want to find out exactly why when debugging */
2228 		WARN_ON(err);
2229 #endif
2230 	}
2231 
2232 	/*
2233 	 * Finally, if the user set the module parameter treat it
2234 	 * as a user hint.
2235 	 */
2236 	if (!is_world_regdom(ieee80211_regdom))
2237 		regulatory_hint_user(ieee80211_regdom);
2238 
2239 	return 0;
2240 }
2241 
2242 void /* __init_or_exit */ regulatory_exit(void)
2243 {
2244 	struct regulatory_request *reg_request, *tmp;
2245 	struct reg_beacon *reg_beacon, *btmp;
2246 
2247 	cancel_work_sync(&reg_work);
2248 	cancel_delayed_work_sync(&reg_timeout);
2249 
2250 	mutex_lock(&cfg80211_mutex);
2251 	mutex_lock(&reg_mutex);
2252 
2253 	reset_regdomains();
2254 
2255 	kfree(last_request);
2256 
2257 	platform_device_unregister(reg_pdev);
2258 
2259 	spin_lock_bh(&reg_pending_beacons_lock);
2260 	if (!list_empty(&reg_pending_beacons)) {
2261 		list_for_each_entry_safe(reg_beacon, btmp,
2262 					 &reg_pending_beacons, list) {
2263 			list_del(&reg_beacon->list);
2264 			kfree(reg_beacon);
2265 		}
2266 	}
2267 	spin_unlock_bh(&reg_pending_beacons_lock);
2268 
2269 	if (!list_empty(&reg_beacon_list)) {
2270 		list_for_each_entry_safe(reg_beacon, btmp,
2271 					 &reg_beacon_list, list) {
2272 			list_del(&reg_beacon->list);
2273 			kfree(reg_beacon);
2274 		}
2275 	}
2276 
2277 	spin_lock(&reg_requests_lock);
2278 	if (!list_empty(&reg_requests_list)) {
2279 		list_for_each_entry_safe(reg_request, tmp,
2280 					 &reg_requests_list, list) {
2281 			list_del(&reg_request->list);
2282 			kfree(reg_request);
2283 		}
2284 	}
2285 	spin_unlock(&reg_requests_lock);
2286 
2287 	mutex_unlock(&reg_mutex);
2288 	mutex_unlock(&cfg80211_mutex);
2289 }
2290