1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2019 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static spinlock_t reg_indoor_lock; 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user, bool cached); 135 static void print_regdomain(const struct ieee80211_regdomain *rd); 136 137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 138 { 139 return rcu_dereference_rtnl(cfg80211_regdomain); 140 } 141 142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 143 { 144 return rcu_dereference_rtnl(wiphy->regd); 145 } 146 147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 148 { 149 switch (dfs_region) { 150 case NL80211_DFS_UNSET: 151 return "unset"; 152 case NL80211_DFS_FCC: 153 return "FCC"; 154 case NL80211_DFS_ETSI: 155 return "ETSI"; 156 case NL80211_DFS_JP: 157 return "JP"; 158 } 159 return "Unknown"; 160 } 161 162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 163 { 164 const struct ieee80211_regdomain *regd = NULL; 165 const struct ieee80211_regdomain *wiphy_regd = NULL; 166 167 regd = get_cfg80211_regdom(); 168 if (!wiphy) 169 goto out; 170 171 wiphy_regd = get_wiphy_regdom(wiphy); 172 if (!wiphy_regd) 173 goto out; 174 175 if (wiphy_regd->dfs_region == regd->dfs_region) 176 goto out; 177 178 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 179 dev_name(&wiphy->dev), 180 reg_dfs_region_str(wiphy_regd->dfs_region), 181 reg_dfs_region_str(regd->dfs_region)); 182 183 out: 184 return regd->dfs_region; 185 } 186 187 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 188 { 189 if (!r) 190 return; 191 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 192 } 193 194 static struct regulatory_request *get_last_request(void) 195 { 196 return rcu_dereference_rtnl(last_request); 197 } 198 199 /* Used to queue up regulatory hints */ 200 static LIST_HEAD(reg_requests_list); 201 static spinlock_t reg_requests_lock; 202 203 /* Used to queue up beacon hints for review */ 204 static LIST_HEAD(reg_pending_beacons); 205 static spinlock_t reg_pending_beacons_lock; 206 207 /* Used to keep track of processed beacon hints */ 208 static LIST_HEAD(reg_beacon_list); 209 210 struct reg_beacon { 211 struct list_head list; 212 struct ieee80211_channel chan; 213 }; 214 215 static void reg_check_chans_work(struct work_struct *work); 216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 217 218 static void reg_todo(struct work_struct *work); 219 static DECLARE_WORK(reg_work, reg_todo); 220 221 /* We keep a static world regulatory domain in case of the absence of CRDA */ 222 static const struct ieee80211_regdomain world_regdom = { 223 .n_reg_rules = 8, 224 .alpha2 = "00", 225 .reg_rules = { 226 /* IEEE 802.11b/g, channels 1..11 */ 227 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 228 /* IEEE 802.11b/g, channels 12..13. */ 229 REG_RULE(2467-10, 2472+10, 20, 6, 20, 230 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 231 /* IEEE 802.11 channel 14 - Only JP enables 232 * this and for 802.11b only */ 233 REG_RULE(2484-10, 2484+10, 20, 6, 20, 234 NL80211_RRF_NO_IR | 235 NL80211_RRF_NO_OFDM), 236 /* IEEE 802.11a, channel 36..48 */ 237 REG_RULE(5180-10, 5240+10, 80, 6, 20, 238 NL80211_RRF_NO_IR | 239 NL80211_RRF_AUTO_BW), 240 241 /* IEEE 802.11a, channel 52..64 - DFS required */ 242 REG_RULE(5260-10, 5320+10, 80, 6, 20, 243 NL80211_RRF_NO_IR | 244 NL80211_RRF_AUTO_BW | 245 NL80211_RRF_DFS), 246 247 /* IEEE 802.11a, channel 100..144 - DFS required */ 248 REG_RULE(5500-10, 5720+10, 160, 6, 20, 249 NL80211_RRF_NO_IR | 250 NL80211_RRF_DFS), 251 252 /* IEEE 802.11a, channel 149..165 */ 253 REG_RULE(5745-10, 5825+10, 80, 6, 20, 254 NL80211_RRF_NO_IR), 255 256 /* IEEE 802.11ad (60GHz), channels 1..3 */ 257 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 258 } 259 }; 260 261 /* protected by RTNL */ 262 static const struct ieee80211_regdomain *cfg80211_world_regdom = 263 &world_regdom; 264 265 static char *ieee80211_regdom = "00"; 266 static char user_alpha2[2]; 267 static const struct ieee80211_regdomain *cfg80211_user_regdom; 268 269 module_param(ieee80211_regdom, charp, 0444); 270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 271 272 static void reg_free_request(struct regulatory_request *request) 273 { 274 if (request == &core_request_world) 275 return; 276 277 if (request != get_last_request()) 278 kfree(request); 279 } 280 281 static void reg_free_last_request(void) 282 { 283 struct regulatory_request *lr = get_last_request(); 284 285 if (lr != &core_request_world && lr) 286 kfree_rcu(lr, rcu_head); 287 } 288 289 static void reg_update_last_request(struct regulatory_request *request) 290 { 291 struct regulatory_request *lr; 292 293 lr = get_last_request(); 294 if (lr == request) 295 return; 296 297 reg_free_last_request(); 298 rcu_assign_pointer(last_request, request); 299 } 300 301 static void reset_regdomains(bool full_reset, 302 const struct ieee80211_regdomain *new_regdom) 303 { 304 const struct ieee80211_regdomain *r; 305 306 ASSERT_RTNL(); 307 308 r = get_cfg80211_regdom(); 309 310 /* avoid freeing static information or freeing something twice */ 311 if (r == cfg80211_world_regdom) 312 r = NULL; 313 if (cfg80211_world_regdom == &world_regdom) 314 cfg80211_world_regdom = NULL; 315 if (r == &world_regdom) 316 r = NULL; 317 318 rcu_free_regdom(r); 319 rcu_free_regdom(cfg80211_world_regdom); 320 321 cfg80211_world_regdom = &world_regdom; 322 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 323 324 if (!full_reset) 325 return; 326 327 reg_update_last_request(&core_request_world); 328 } 329 330 /* 331 * Dynamic world regulatory domain requested by the wireless 332 * core upon initialization 333 */ 334 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 335 { 336 struct regulatory_request *lr; 337 338 lr = get_last_request(); 339 340 WARN_ON(!lr); 341 342 reset_regdomains(false, rd); 343 344 cfg80211_world_regdom = rd; 345 } 346 347 bool is_world_regdom(const char *alpha2) 348 { 349 if (!alpha2) 350 return false; 351 return alpha2[0] == '0' && alpha2[1] == '0'; 352 } 353 354 static bool is_alpha2_set(const char *alpha2) 355 { 356 if (!alpha2) 357 return false; 358 return alpha2[0] && alpha2[1]; 359 } 360 361 static bool is_unknown_alpha2(const char *alpha2) 362 { 363 if (!alpha2) 364 return false; 365 /* 366 * Special case where regulatory domain was built by driver 367 * but a specific alpha2 cannot be determined 368 */ 369 return alpha2[0] == '9' && alpha2[1] == '9'; 370 } 371 372 static bool is_intersected_alpha2(const char *alpha2) 373 { 374 if (!alpha2) 375 return false; 376 /* 377 * Special case where regulatory domain is the 378 * result of an intersection between two regulatory domain 379 * structures 380 */ 381 return alpha2[0] == '9' && alpha2[1] == '8'; 382 } 383 384 static bool is_an_alpha2(const char *alpha2) 385 { 386 if (!alpha2) 387 return false; 388 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 389 } 390 391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 392 { 393 if (!alpha2_x || !alpha2_y) 394 return false; 395 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 396 } 397 398 static bool regdom_changes(const char *alpha2) 399 { 400 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 401 402 if (!r) 403 return true; 404 return !alpha2_equal(r->alpha2, alpha2); 405 } 406 407 /* 408 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 409 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 410 * has ever been issued. 411 */ 412 static bool is_user_regdom_saved(void) 413 { 414 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 415 return false; 416 417 /* This would indicate a mistake on the design */ 418 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 419 "Unexpected user alpha2: %c%c\n", 420 user_alpha2[0], user_alpha2[1])) 421 return false; 422 423 return true; 424 } 425 426 static const struct ieee80211_regdomain * 427 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 428 { 429 struct ieee80211_regdomain *regd; 430 unsigned int i; 431 432 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 433 GFP_KERNEL); 434 if (!regd) 435 return ERR_PTR(-ENOMEM); 436 437 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 438 439 for (i = 0; i < src_regd->n_reg_rules; i++) 440 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 441 sizeof(struct ieee80211_reg_rule)); 442 443 return regd; 444 } 445 446 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 447 { 448 ASSERT_RTNL(); 449 450 if (!IS_ERR(cfg80211_user_regdom)) 451 kfree(cfg80211_user_regdom); 452 cfg80211_user_regdom = reg_copy_regd(rd); 453 } 454 455 struct reg_regdb_apply_request { 456 struct list_head list; 457 const struct ieee80211_regdomain *regdom; 458 }; 459 460 static LIST_HEAD(reg_regdb_apply_list); 461 static DEFINE_MUTEX(reg_regdb_apply_mutex); 462 463 static void reg_regdb_apply(struct work_struct *work) 464 { 465 struct reg_regdb_apply_request *request; 466 467 rtnl_lock(); 468 469 mutex_lock(®_regdb_apply_mutex); 470 while (!list_empty(®_regdb_apply_list)) { 471 request = list_first_entry(®_regdb_apply_list, 472 struct reg_regdb_apply_request, 473 list); 474 list_del(&request->list); 475 476 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 477 kfree(request); 478 } 479 mutex_unlock(®_regdb_apply_mutex); 480 481 rtnl_unlock(); 482 } 483 484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 485 486 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 487 { 488 struct reg_regdb_apply_request *request; 489 490 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 491 if (!request) { 492 kfree(regdom); 493 return -ENOMEM; 494 } 495 496 request->regdom = regdom; 497 498 mutex_lock(®_regdb_apply_mutex); 499 list_add_tail(&request->list, ®_regdb_apply_list); 500 mutex_unlock(®_regdb_apply_mutex); 501 502 schedule_work(®_regdb_work); 503 return 0; 504 } 505 506 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 507 /* Max number of consecutive attempts to communicate with CRDA */ 508 #define REG_MAX_CRDA_TIMEOUTS 10 509 510 static u32 reg_crda_timeouts; 511 512 static void crda_timeout_work(struct work_struct *work); 513 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 514 515 static void crda_timeout_work(struct work_struct *work) 516 { 517 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 518 rtnl_lock(); 519 reg_crda_timeouts++; 520 restore_regulatory_settings(true, false); 521 rtnl_unlock(); 522 } 523 524 static void cancel_crda_timeout(void) 525 { 526 cancel_delayed_work(&crda_timeout); 527 } 528 529 static void cancel_crda_timeout_sync(void) 530 { 531 cancel_delayed_work_sync(&crda_timeout); 532 } 533 534 static void reset_crda_timeouts(void) 535 { 536 reg_crda_timeouts = 0; 537 } 538 539 /* 540 * This lets us keep regulatory code which is updated on a regulatory 541 * basis in userspace. 542 */ 543 static int call_crda(const char *alpha2) 544 { 545 char country[12]; 546 char *env[] = { country, NULL }; 547 int ret; 548 549 snprintf(country, sizeof(country), "COUNTRY=%c%c", 550 alpha2[0], alpha2[1]); 551 552 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 553 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 554 return -EINVAL; 555 } 556 557 if (!is_world_regdom((char *) alpha2)) 558 pr_debug("Calling CRDA for country: %c%c\n", 559 alpha2[0], alpha2[1]); 560 else 561 pr_debug("Calling CRDA to update world regulatory domain\n"); 562 563 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 564 if (ret) 565 return ret; 566 567 queue_delayed_work(system_power_efficient_wq, 568 &crda_timeout, msecs_to_jiffies(3142)); 569 return 0; 570 } 571 #else 572 static inline void cancel_crda_timeout(void) {} 573 static inline void cancel_crda_timeout_sync(void) {} 574 static inline void reset_crda_timeouts(void) {} 575 static inline int call_crda(const char *alpha2) 576 { 577 return -ENODATA; 578 } 579 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 580 581 /* code to directly load a firmware database through request_firmware */ 582 static const struct fwdb_header *regdb; 583 584 struct fwdb_country { 585 u8 alpha2[2]; 586 __be16 coll_ptr; 587 /* this struct cannot be extended */ 588 } __packed __aligned(4); 589 590 struct fwdb_collection { 591 u8 len; 592 u8 n_rules; 593 u8 dfs_region; 594 /* no optional data yet */ 595 /* aligned to 2, then followed by __be16 array of rule pointers */ 596 } __packed __aligned(4); 597 598 enum fwdb_flags { 599 FWDB_FLAG_NO_OFDM = BIT(0), 600 FWDB_FLAG_NO_OUTDOOR = BIT(1), 601 FWDB_FLAG_DFS = BIT(2), 602 FWDB_FLAG_NO_IR = BIT(3), 603 FWDB_FLAG_AUTO_BW = BIT(4), 604 }; 605 606 struct fwdb_wmm_ac { 607 u8 ecw; 608 u8 aifsn; 609 __be16 cot; 610 } __packed; 611 612 struct fwdb_wmm_rule { 613 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 614 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 615 } __packed; 616 617 struct fwdb_rule { 618 u8 len; 619 u8 flags; 620 __be16 max_eirp; 621 __be32 start, end, max_bw; 622 /* start of optional data */ 623 __be16 cac_timeout; 624 __be16 wmm_ptr; 625 } __packed __aligned(4); 626 627 #define FWDB_MAGIC 0x52474442 628 #define FWDB_VERSION 20 629 630 struct fwdb_header { 631 __be32 magic; 632 __be32 version; 633 struct fwdb_country country[]; 634 } __packed __aligned(4); 635 636 static int ecw2cw(int ecw) 637 { 638 return (1 << ecw) - 1; 639 } 640 641 static bool valid_wmm(struct fwdb_wmm_rule *rule) 642 { 643 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 644 int i; 645 646 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 647 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 648 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 649 u8 aifsn = ac[i].aifsn; 650 651 if (cw_min >= cw_max) 652 return false; 653 654 if (aifsn < 1) 655 return false; 656 } 657 658 return true; 659 } 660 661 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 662 { 663 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 664 665 if ((u8 *)rule + sizeof(rule->len) > data + size) 666 return false; 667 668 /* mandatory fields */ 669 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 670 return false; 671 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 672 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 673 struct fwdb_wmm_rule *wmm; 674 675 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 676 return false; 677 678 wmm = (void *)(data + wmm_ptr); 679 680 if (!valid_wmm(wmm)) 681 return false; 682 } 683 return true; 684 } 685 686 static bool valid_country(const u8 *data, unsigned int size, 687 const struct fwdb_country *country) 688 { 689 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 690 struct fwdb_collection *coll = (void *)(data + ptr); 691 __be16 *rules_ptr; 692 unsigned int i; 693 694 /* make sure we can read len/n_rules */ 695 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 696 return false; 697 698 /* make sure base struct and all rules fit */ 699 if ((u8 *)coll + ALIGN(coll->len, 2) + 700 (coll->n_rules * 2) > data + size) 701 return false; 702 703 /* mandatory fields must exist */ 704 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 705 return false; 706 707 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 708 709 for (i = 0; i < coll->n_rules; i++) { 710 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 711 712 if (!valid_rule(data, size, rule_ptr)) 713 return false; 714 } 715 716 return true; 717 } 718 719 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 720 static struct key *builtin_regdb_keys; 721 722 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen) 723 { 724 const u8 *end = p + buflen; 725 size_t plen; 726 key_ref_t key; 727 728 while (p < end) { 729 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more 730 * than 256 bytes in size. 731 */ 732 if (end - p < 4) 733 goto dodgy_cert; 734 if (p[0] != 0x30 && 735 p[1] != 0x82) 736 goto dodgy_cert; 737 plen = (p[2] << 8) | p[3]; 738 plen += 4; 739 if (plen > end - p) 740 goto dodgy_cert; 741 742 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1), 743 "asymmetric", NULL, p, plen, 744 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 745 KEY_USR_VIEW | KEY_USR_READ), 746 KEY_ALLOC_NOT_IN_QUOTA | 747 KEY_ALLOC_BUILT_IN | 748 KEY_ALLOC_BYPASS_RESTRICTION); 749 if (IS_ERR(key)) { 750 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n", 751 PTR_ERR(key)); 752 } else { 753 pr_notice("Loaded X.509 cert '%s'\n", 754 key_ref_to_ptr(key)->description); 755 key_ref_put(key); 756 } 757 p += plen; 758 } 759 760 return; 761 762 dodgy_cert: 763 pr_err("Problem parsing in-kernel X.509 certificate list\n"); 764 } 765 766 static int __init load_builtin_regdb_keys(void) 767 { 768 builtin_regdb_keys = 769 keyring_alloc(".builtin_regdb_keys", 770 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 771 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 772 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 773 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 774 if (IS_ERR(builtin_regdb_keys)) 775 return PTR_ERR(builtin_regdb_keys); 776 777 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 778 779 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 780 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len); 781 #endif 782 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 783 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 784 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len); 785 #endif 786 787 return 0; 788 } 789 790 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 791 { 792 const struct firmware *sig; 793 bool result; 794 795 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 796 return false; 797 798 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 799 builtin_regdb_keys, 800 VERIFYING_UNSPECIFIED_SIGNATURE, 801 NULL, NULL) == 0; 802 803 release_firmware(sig); 804 805 return result; 806 } 807 808 static void free_regdb_keyring(void) 809 { 810 key_put(builtin_regdb_keys); 811 } 812 #else 813 static int load_builtin_regdb_keys(void) 814 { 815 return 0; 816 } 817 818 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 819 { 820 return true; 821 } 822 823 static void free_regdb_keyring(void) 824 { 825 } 826 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 827 828 static bool valid_regdb(const u8 *data, unsigned int size) 829 { 830 const struct fwdb_header *hdr = (void *)data; 831 const struct fwdb_country *country; 832 833 if (size < sizeof(*hdr)) 834 return false; 835 836 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 837 return false; 838 839 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 840 return false; 841 842 if (!regdb_has_valid_signature(data, size)) 843 return false; 844 845 country = &hdr->country[0]; 846 while ((u8 *)(country + 1) <= data + size) { 847 if (!country->coll_ptr) 848 break; 849 if (!valid_country(data, size, country)) 850 return false; 851 country++; 852 } 853 854 return true; 855 } 856 857 static void set_wmm_rule(const struct fwdb_header *db, 858 const struct fwdb_country *country, 859 const struct fwdb_rule *rule, 860 struct ieee80211_reg_rule *rrule) 861 { 862 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 863 struct fwdb_wmm_rule *wmm; 864 unsigned int i, wmm_ptr; 865 866 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 867 wmm = (void *)((u8 *)db + wmm_ptr); 868 869 if (!valid_wmm(wmm)) { 870 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 871 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 872 country->alpha2[0], country->alpha2[1]); 873 return; 874 } 875 876 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 877 wmm_rule->client[i].cw_min = 878 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 879 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 880 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 881 wmm_rule->client[i].cot = 882 1000 * be16_to_cpu(wmm->client[i].cot); 883 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 884 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 885 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 886 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 887 } 888 889 rrule->has_wmm = true; 890 } 891 892 static int __regdb_query_wmm(const struct fwdb_header *db, 893 const struct fwdb_country *country, int freq, 894 struct ieee80211_reg_rule *rrule) 895 { 896 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 897 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 898 int i; 899 900 for (i = 0; i < coll->n_rules; i++) { 901 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 902 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 903 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 904 905 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 906 continue; 907 908 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 909 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 910 set_wmm_rule(db, country, rule, rrule); 911 return 0; 912 } 913 } 914 915 return -ENODATA; 916 } 917 918 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 919 { 920 const struct fwdb_header *hdr = regdb; 921 const struct fwdb_country *country; 922 923 if (!regdb) 924 return -ENODATA; 925 926 if (IS_ERR(regdb)) 927 return PTR_ERR(regdb); 928 929 country = &hdr->country[0]; 930 while (country->coll_ptr) { 931 if (alpha2_equal(alpha2, country->alpha2)) 932 return __regdb_query_wmm(regdb, country, freq, rule); 933 934 country++; 935 } 936 937 return -ENODATA; 938 } 939 EXPORT_SYMBOL(reg_query_regdb_wmm); 940 941 static int regdb_query_country(const struct fwdb_header *db, 942 const struct fwdb_country *country) 943 { 944 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 945 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 946 struct ieee80211_regdomain *regdom; 947 unsigned int i; 948 949 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 950 GFP_KERNEL); 951 if (!regdom) 952 return -ENOMEM; 953 954 regdom->n_reg_rules = coll->n_rules; 955 regdom->alpha2[0] = country->alpha2[0]; 956 regdom->alpha2[1] = country->alpha2[1]; 957 regdom->dfs_region = coll->dfs_region; 958 959 for (i = 0; i < regdom->n_reg_rules; i++) { 960 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 961 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 962 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 963 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 964 965 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 966 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 967 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 968 969 rrule->power_rule.max_antenna_gain = 0; 970 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 971 972 rrule->flags = 0; 973 if (rule->flags & FWDB_FLAG_NO_OFDM) 974 rrule->flags |= NL80211_RRF_NO_OFDM; 975 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 976 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 977 if (rule->flags & FWDB_FLAG_DFS) 978 rrule->flags |= NL80211_RRF_DFS; 979 if (rule->flags & FWDB_FLAG_NO_IR) 980 rrule->flags |= NL80211_RRF_NO_IR; 981 if (rule->flags & FWDB_FLAG_AUTO_BW) 982 rrule->flags |= NL80211_RRF_AUTO_BW; 983 984 rrule->dfs_cac_ms = 0; 985 986 /* handle optional data */ 987 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 988 rrule->dfs_cac_ms = 989 1000 * be16_to_cpu(rule->cac_timeout); 990 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 991 set_wmm_rule(db, country, rule, rrule); 992 } 993 994 return reg_schedule_apply(regdom); 995 } 996 997 static int query_regdb(const char *alpha2) 998 { 999 const struct fwdb_header *hdr = regdb; 1000 const struct fwdb_country *country; 1001 1002 ASSERT_RTNL(); 1003 1004 if (IS_ERR(regdb)) 1005 return PTR_ERR(regdb); 1006 1007 country = &hdr->country[0]; 1008 while (country->coll_ptr) { 1009 if (alpha2_equal(alpha2, country->alpha2)) 1010 return regdb_query_country(regdb, country); 1011 country++; 1012 } 1013 1014 return -ENODATA; 1015 } 1016 1017 static void regdb_fw_cb(const struct firmware *fw, void *context) 1018 { 1019 int set_error = 0; 1020 bool restore = true; 1021 void *db; 1022 1023 if (!fw) { 1024 pr_info("failed to load regulatory.db\n"); 1025 set_error = -ENODATA; 1026 } else if (!valid_regdb(fw->data, fw->size)) { 1027 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1028 set_error = -EINVAL; 1029 } 1030 1031 rtnl_lock(); 1032 if (regdb && !IS_ERR(regdb)) { 1033 /* negative case - a bug 1034 * positive case - can happen due to race in case of multiple cb's in 1035 * queue, due to usage of asynchronous callback 1036 * 1037 * Either case, just restore and free new db. 1038 */ 1039 } else if (set_error) { 1040 regdb = ERR_PTR(set_error); 1041 } else if (fw) { 1042 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1043 if (db) { 1044 regdb = db; 1045 restore = context && query_regdb(context); 1046 } else { 1047 restore = true; 1048 } 1049 } 1050 1051 if (restore) 1052 restore_regulatory_settings(true, false); 1053 1054 rtnl_unlock(); 1055 1056 kfree(context); 1057 1058 release_firmware(fw); 1059 } 1060 1061 static int query_regdb_file(const char *alpha2) 1062 { 1063 ASSERT_RTNL(); 1064 1065 if (regdb) 1066 return query_regdb(alpha2); 1067 1068 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1069 if (!alpha2) 1070 return -ENOMEM; 1071 1072 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1073 ®_pdev->dev, GFP_KERNEL, 1074 (void *)alpha2, regdb_fw_cb); 1075 } 1076 1077 int reg_reload_regdb(void) 1078 { 1079 const struct firmware *fw; 1080 void *db; 1081 int err; 1082 1083 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1084 if (err) 1085 return err; 1086 1087 if (!valid_regdb(fw->data, fw->size)) { 1088 err = -ENODATA; 1089 goto out; 1090 } 1091 1092 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1093 if (!db) { 1094 err = -ENOMEM; 1095 goto out; 1096 } 1097 1098 rtnl_lock(); 1099 if (!IS_ERR_OR_NULL(regdb)) 1100 kfree(regdb); 1101 regdb = db; 1102 rtnl_unlock(); 1103 1104 out: 1105 release_firmware(fw); 1106 return err; 1107 } 1108 1109 static bool reg_query_database(struct regulatory_request *request) 1110 { 1111 if (query_regdb_file(request->alpha2) == 0) 1112 return true; 1113 1114 if (call_crda(request->alpha2) == 0) 1115 return true; 1116 1117 return false; 1118 } 1119 1120 bool reg_is_valid_request(const char *alpha2) 1121 { 1122 struct regulatory_request *lr = get_last_request(); 1123 1124 if (!lr || lr->processed) 1125 return false; 1126 1127 return alpha2_equal(lr->alpha2, alpha2); 1128 } 1129 1130 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1131 { 1132 struct regulatory_request *lr = get_last_request(); 1133 1134 /* 1135 * Follow the driver's regulatory domain, if present, unless a country 1136 * IE has been processed or a user wants to help complaince further 1137 */ 1138 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1139 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1140 wiphy->regd) 1141 return get_wiphy_regdom(wiphy); 1142 1143 return get_cfg80211_regdom(); 1144 } 1145 1146 static unsigned int 1147 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1148 const struct ieee80211_reg_rule *rule) 1149 { 1150 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1151 const struct ieee80211_freq_range *freq_range_tmp; 1152 const struct ieee80211_reg_rule *tmp; 1153 u32 start_freq, end_freq, idx, no; 1154 1155 for (idx = 0; idx < rd->n_reg_rules; idx++) 1156 if (rule == &rd->reg_rules[idx]) 1157 break; 1158 1159 if (idx == rd->n_reg_rules) 1160 return 0; 1161 1162 /* get start_freq */ 1163 no = idx; 1164 1165 while (no) { 1166 tmp = &rd->reg_rules[--no]; 1167 freq_range_tmp = &tmp->freq_range; 1168 1169 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1170 break; 1171 1172 freq_range = freq_range_tmp; 1173 } 1174 1175 start_freq = freq_range->start_freq_khz; 1176 1177 /* get end_freq */ 1178 freq_range = &rule->freq_range; 1179 no = idx; 1180 1181 while (no < rd->n_reg_rules - 1) { 1182 tmp = &rd->reg_rules[++no]; 1183 freq_range_tmp = &tmp->freq_range; 1184 1185 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1186 break; 1187 1188 freq_range = freq_range_tmp; 1189 } 1190 1191 end_freq = freq_range->end_freq_khz; 1192 1193 return end_freq - start_freq; 1194 } 1195 1196 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1197 const struct ieee80211_reg_rule *rule) 1198 { 1199 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1200 1201 if (rule->flags & NL80211_RRF_NO_160MHZ) 1202 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1203 if (rule->flags & NL80211_RRF_NO_80MHZ) 1204 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1205 1206 /* 1207 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1208 * are not allowed. 1209 */ 1210 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1211 rule->flags & NL80211_RRF_NO_HT40PLUS) 1212 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1213 1214 return bw; 1215 } 1216 1217 /* Sanity check on a regulatory rule */ 1218 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1219 { 1220 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1221 u32 freq_diff; 1222 1223 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1224 return false; 1225 1226 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1227 return false; 1228 1229 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1230 1231 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1232 freq_range->max_bandwidth_khz > freq_diff) 1233 return false; 1234 1235 return true; 1236 } 1237 1238 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1239 { 1240 const struct ieee80211_reg_rule *reg_rule = NULL; 1241 unsigned int i; 1242 1243 if (!rd->n_reg_rules) 1244 return false; 1245 1246 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1247 return false; 1248 1249 for (i = 0; i < rd->n_reg_rules; i++) { 1250 reg_rule = &rd->reg_rules[i]; 1251 if (!is_valid_reg_rule(reg_rule)) 1252 return false; 1253 } 1254 1255 return true; 1256 } 1257 1258 /** 1259 * freq_in_rule_band - tells us if a frequency is in a frequency band 1260 * @freq_range: frequency rule we want to query 1261 * @freq_khz: frequency we are inquiring about 1262 * 1263 * This lets us know if a specific frequency rule is or is not relevant to 1264 * a specific frequency's band. Bands are device specific and artificial 1265 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1266 * however it is safe for now to assume that a frequency rule should not be 1267 * part of a frequency's band if the start freq or end freq are off by more 1268 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1269 * 60 GHz band. 1270 * This resolution can be lowered and should be considered as we add 1271 * regulatory rule support for other "bands". 1272 **/ 1273 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1274 u32 freq_khz) 1275 { 1276 #define ONE_GHZ_IN_KHZ 1000000 1277 /* 1278 * From 802.11ad: directional multi-gigabit (DMG): 1279 * Pertaining to operation in a frequency band containing a channel 1280 * with the Channel starting frequency above 45 GHz. 1281 */ 1282 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1283 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1284 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1285 return true; 1286 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1287 return true; 1288 return false; 1289 #undef ONE_GHZ_IN_KHZ 1290 } 1291 1292 /* 1293 * Later on we can perhaps use the more restrictive DFS 1294 * region but we don't have information for that yet so 1295 * for now simply disallow conflicts. 1296 */ 1297 static enum nl80211_dfs_regions 1298 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1299 const enum nl80211_dfs_regions dfs_region2) 1300 { 1301 if (dfs_region1 != dfs_region2) 1302 return NL80211_DFS_UNSET; 1303 return dfs_region1; 1304 } 1305 1306 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1307 const struct ieee80211_wmm_ac *wmm_ac2, 1308 struct ieee80211_wmm_ac *intersect) 1309 { 1310 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1311 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1312 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1313 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1314 } 1315 1316 /* 1317 * Helper for regdom_intersect(), this does the real 1318 * mathematical intersection fun 1319 */ 1320 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1321 const struct ieee80211_regdomain *rd2, 1322 const struct ieee80211_reg_rule *rule1, 1323 const struct ieee80211_reg_rule *rule2, 1324 struct ieee80211_reg_rule *intersected_rule) 1325 { 1326 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1327 struct ieee80211_freq_range *freq_range; 1328 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1329 struct ieee80211_power_rule *power_rule; 1330 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1331 struct ieee80211_wmm_rule *wmm_rule; 1332 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1333 1334 freq_range1 = &rule1->freq_range; 1335 freq_range2 = &rule2->freq_range; 1336 freq_range = &intersected_rule->freq_range; 1337 1338 power_rule1 = &rule1->power_rule; 1339 power_rule2 = &rule2->power_rule; 1340 power_rule = &intersected_rule->power_rule; 1341 1342 wmm_rule1 = &rule1->wmm_rule; 1343 wmm_rule2 = &rule2->wmm_rule; 1344 wmm_rule = &intersected_rule->wmm_rule; 1345 1346 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1347 freq_range2->start_freq_khz); 1348 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1349 freq_range2->end_freq_khz); 1350 1351 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1352 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1353 1354 if (rule1->flags & NL80211_RRF_AUTO_BW) 1355 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1356 if (rule2->flags & NL80211_RRF_AUTO_BW) 1357 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1358 1359 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1360 1361 intersected_rule->flags = rule1->flags | rule2->flags; 1362 1363 /* 1364 * In case NL80211_RRF_AUTO_BW requested for both rules 1365 * set AUTO_BW in intersected rule also. Next we will 1366 * calculate BW correctly in handle_channel function. 1367 * In other case remove AUTO_BW flag while we calculate 1368 * maximum bandwidth correctly and auto calculation is 1369 * not required. 1370 */ 1371 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1372 (rule2->flags & NL80211_RRF_AUTO_BW)) 1373 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1374 else 1375 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1376 1377 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1378 if (freq_range->max_bandwidth_khz > freq_diff) 1379 freq_range->max_bandwidth_khz = freq_diff; 1380 1381 power_rule->max_eirp = min(power_rule1->max_eirp, 1382 power_rule2->max_eirp); 1383 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1384 power_rule2->max_antenna_gain); 1385 1386 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1387 rule2->dfs_cac_ms); 1388 1389 if (rule1->has_wmm && rule2->has_wmm) { 1390 u8 ac; 1391 1392 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1393 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1394 &wmm_rule2->client[ac], 1395 &wmm_rule->client[ac]); 1396 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1397 &wmm_rule2->ap[ac], 1398 &wmm_rule->ap[ac]); 1399 } 1400 1401 intersected_rule->has_wmm = true; 1402 } else if (rule1->has_wmm) { 1403 *wmm_rule = *wmm_rule1; 1404 intersected_rule->has_wmm = true; 1405 } else if (rule2->has_wmm) { 1406 *wmm_rule = *wmm_rule2; 1407 intersected_rule->has_wmm = true; 1408 } else { 1409 intersected_rule->has_wmm = false; 1410 } 1411 1412 if (!is_valid_reg_rule(intersected_rule)) 1413 return -EINVAL; 1414 1415 return 0; 1416 } 1417 1418 /* check whether old rule contains new rule */ 1419 static bool rule_contains(struct ieee80211_reg_rule *r1, 1420 struct ieee80211_reg_rule *r2) 1421 { 1422 /* for simplicity, currently consider only same flags */ 1423 if (r1->flags != r2->flags) 1424 return false; 1425 1426 /* verify r1 is more restrictive */ 1427 if ((r1->power_rule.max_antenna_gain > 1428 r2->power_rule.max_antenna_gain) || 1429 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1430 return false; 1431 1432 /* make sure r2's range is contained within r1 */ 1433 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1434 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1435 return false; 1436 1437 /* and finally verify that r1.max_bw >= r2.max_bw */ 1438 if (r1->freq_range.max_bandwidth_khz < 1439 r2->freq_range.max_bandwidth_khz) 1440 return false; 1441 1442 return true; 1443 } 1444 1445 /* add or extend current rules. do nothing if rule is already contained */ 1446 static void add_rule(struct ieee80211_reg_rule *rule, 1447 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1448 { 1449 struct ieee80211_reg_rule *tmp_rule; 1450 int i; 1451 1452 for (i = 0; i < *n_rules; i++) { 1453 tmp_rule = ®_rules[i]; 1454 /* rule is already contained - do nothing */ 1455 if (rule_contains(tmp_rule, rule)) 1456 return; 1457 1458 /* extend rule if possible */ 1459 if (rule_contains(rule, tmp_rule)) { 1460 memcpy(tmp_rule, rule, sizeof(*rule)); 1461 return; 1462 } 1463 } 1464 1465 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1466 (*n_rules)++; 1467 } 1468 1469 /** 1470 * regdom_intersect - do the intersection between two regulatory domains 1471 * @rd1: first regulatory domain 1472 * @rd2: second regulatory domain 1473 * 1474 * Use this function to get the intersection between two regulatory domains. 1475 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1476 * as no one single alpha2 can represent this regulatory domain. 1477 * 1478 * Returns a pointer to the regulatory domain structure which will hold the 1479 * resulting intersection of rules between rd1 and rd2. We will 1480 * kzalloc() this structure for you. 1481 */ 1482 static struct ieee80211_regdomain * 1483 regdom_intersect(const struct ieee80211_regdomain *rd1, 1484 const struct ieee80211_regdomain *rd2) 1485 { 1486 int r; 1487 unsigned int x, y; 1488 unsigned int num_rules = 0; 1489 const struct ieee80211_reg_rule *rule1, *rule2; 1490 struct ieee80211_reg_rule intersected_rule; 1491 struct ieee80211_regdomain *rd; 1492 1493 if (!rd1 || !rd2) 1494 return NULL; 1495 1496 /* 1497 * First we get a count of the rules we'll need, then we actually 1498 * build them. This is to so we can malloc() and free() a 1499 * regdomain once. The reason we use reg_rules_intersect() here 1500 * is it will return -EINVAL if the rule computed makes no sense. 1501 * All rules that do check out OK are valid. 1502 */ 1503 1504 for (x = 0; x < rd1->n_reg_rules; x++) { 1505 rule1 = &rd1->reg_rules[x]; 1506 for (y = 0; y < rd2->n_reg_rules; y++) { 1507 rule2 = &rd2->reg_rules[y]; 1508 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1509 &intersected_rule)) 1510 num_rules++; 1511 } 1512 } 1513 1514 if (!num_rules) 1515 return NULL; 1516 1517 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1518 if (!rd) 1519 return NULL; 1520 1521 for (x = 0; x < rd1->n_reg_rules; x++) { 1522 rule1 = &rd1->reg_rules[x]; 1523 for (y = 0; y < rd2->n_reg_rules; y++) { 1524 rule2 = &rd2->reg_rules[y]; 1525 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1526 &intersected_rule); 1527 /* 1528 * No need to memset here the intersected rule here as 1529 * we're not using the stack anymore 1530 */ 1531 if (r) 1532 continue; 1533 1534 add_rule(&intersected_rule, rd->reg_rules, 1535 &rd->n_reg_rules); 1536 } 1537 } 1538 1539 rd->alpha2[0] = '9'; 1540 rd->alpha2[1] = '8'; 1541 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1542 rd2->dfs_region); 1543 1544 return rd; 1545 } 1546 1547 /* 1548 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1549 * want to just have the channel structure use these 1550 */ 1551 static u32 map_regdom_flags(u32 rd_flags) 1552 { 1553 u32 channel_flags = 0; 1554 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1555 channel_flags |= IEEE80211_CHAN_NO_IR; 1556 if (rd_flags & NL80211_RRF_DFS) 1557 channel_flags |= IEEE80211_CHAN_RADAR; 1558 if (rd_flags & NL80211_RRF_NO_OFDM) 1559 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1560 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1561 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1562 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1563 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1564 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1565 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1566 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1567 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1568 if (rd_flags & NL80211_RRF_NO_80MHZ) 1569 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1570 if (rd_flags & NL80211_RRF_NO_160MHZ) 1571 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1572 if (rd_flags & NL80211_RRF_NO_HE) 1573 channel_flags |= IEEE80211_CHAN_NO_HE; 1574 return channel_flags; 1575 } 1576 1577 static const struct ieee80211_reg_rule * 1578 freq_reg_info_regd(u32 center_freq, 1579 const struct ieee80211_regdomain *regd, u32 bw) 1580 { 1581 int i; 1582 bool band_rule_found = false; 1583 bool bw_fits = false; 1584 1585 if (!regd) 1586 return ERR_PTR(-EINVAL); 1587 1588 for (i = 0; i < regd->n_reg_rules; i++) { 1589 const struct ieee80211_reg_rule *rr; 1590 const struct ieee80211_freq_range *fr = NULL; 1591 1592 rr = ®d->reg_rules[i]; 1593 fr = &rr->freq_range; 1594 1595 /* 1596 * We only need to know if one frequency rule was 1597 * was in center_freq's band, that's enough, so lets 1598 * not overwrite it once found 1599 */ 1600 if (!band_rule_found) 1601 band_rule_found = freq_in_rule_band(fr, center_freq); 1602 1603 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1604 1605 if (band_rule_found && bw_fits) 1606 return rr; 1607 } 1608 1609 if (!band_rule_found) 1610 return ERR_PTR(-ERANGE); 1611 1612 return ERR_PTR(-EINVAL); 1613 } 1614 1615 static const struct ieee80211_reg_rule * 1616 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1617 { 1618 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1619 const struct ieee80211_reg_rule *reg_rule = NULL; 1620 u32 bw; 1621 1622 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 1623 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1624 if (!IS_ERR(reg_rule)) 1625 return reg_rule; 1626 } 1627 1628 return reg_rule; 1629 } 1630 1631 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1632 u32 center_freq) 1633 { 1634 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20)); 1635 } 1636 EXPORT_SYMBOL(freq_reg_info); 1637 1638 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1639 { 1640 switch (initiator) { 1641 case NL80211_REGDOM_SET_BY_CORE: 1642 return "core"; 1643 case NL80211_REGDOM_SET_BY_USER: 1644 return "user"; 1645 case NL80211_REGDOM_SET_BY_DRIVER: 1646 return "driver"; 1647 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1648 return "country element"; 1649 default: 1650 WARN_ON(1); 1651 return "bug"; 1652 } 1653 } 1654 EXPORT_SYMBOL(reg_initiator_name); 1655 1656 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1657 const struct ieee80211_reg_rule *reg_rule, 1658 const struct ieee80211_channel *chan) 1659 { 1660 const struct ieee80211_freq_range *freq_range = NULL; 1661 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0; 1662 1663 freq_range = ®_rule->freq_range; 1664 1665 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1666 center_freq_khz = ieee80211_channel_to_khz(chan); 1667 /* Check if auto calculation requested */ 1668 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1669 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1670 1671 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1672 if (!cfg80211_does_bw_fit_range(freq_range, 1673 center_freq_khz, 1674 MHZ_TO_KHZ(10))) 1675 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1676 if (!cfg80211_does_bw_fit_range(freq_range, 1677 center_freq_khz, 1678 MHZ_TO_KHZ(20))) 1679 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1680 1681 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1682 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1683 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1684 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1685 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1686 bw_flags |= IEEE80211_CHAN_NO_HT40; 1687 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1688 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1689 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1690 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1691 return bw_flags; 1692 } 1693 1694 /* 1695 * Note that right now we assume the desired channel bandwidth 1696 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1697 * per channel, the primary and the extension channel). 1698 */ 1699 static void handle_channel(struct wiphy *wiphy, 1700 enum nl80211_reg_initiator initiator, 1701 struct ieee80211_channel *chan) 1702 { 1703 u32 flags, bw_flags = 0; 1704 const struct ieee80211_reg_rule *reg_rule = NULL; 1705 const struct ieee80211_power_rule *power_rule = NULL; 1706 struct wiphy *request_wiphy = NULL; 1707 struct regulatory_request *lr = get_last_request(); 1708 const struct ieee80211_regdomain *regd; 1709 1710 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1711 1712 flags = chan->orig_flags; 1713 1714 reg_rule = freq_reg_info(wiphy, ieee80211_channel_to_khz(chan)); 1715 if (IS_ERR(reg_rule)) { 1716 /* 1717 * We will disable all channels that do not match our 1718 * received regulatory rule unless the hint is coming 1719 * from a Country IE and the Country IE had no information 1720 * about a band. The IEEE 802.11 spec allows for an AP 1721 * to send only a subset of the regulatory rules allowed, 1722 * so an AP in the US that only supports 2.4 GHz may only send 1723 * a country IE with information for the 2.4 GHz band 1724 * while 5 GHz is still supported. 1725 */ 1726 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1727 PTR_ERR(reg_rule) == -ERANGE) 1728 return; 1729 1730 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1731 request_wiphy && request_wiphy == wiphy && 1732 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1733 pr_debug("Disabling freq %d.%03d MHz for good\n", 1734 chan->center_freq, chan->freq_offset); 1735 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1736 chan->flags = chan->orig_flags; 1737 } else { 1738 pr_debug("Disabling freq %d.%03d MHz\n", 1739 chan->center_freq, chan->freq_offset); 1740 chan->flags |= IEEE80211_CHAN_DISABLED; 1741 } 1742 return; 1743 } 1744 1745 regd = reg_get_regdomain(wiphy); 1746 1747 power_rule = ®_rule->power_rule; 1748 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1749 1750 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1751 request_wiphy && request_wiphy == wiphy && 1752 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1753 /* 1754 * This guarantees the driver's requested regulatory domain 1755 * will always be used as a base for further regulatory 1756 * settings 1757 */ 1758 chan->flags = chan->orig_flags = 1759 map_regdom_flags(reg_rule->flags) | bw_flags; 1760 chan->max_antenna_gain = chan->orig_mag = 1761 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1762 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1763 (int) MBM_TO_DBM(power_rule->max_eirp); 1764 1765 if (chan->flags & IEEE80211_CHAN_RADAR) { 1766 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1767 if (reg_rule->dfs_cac_ms) 1768 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1769 } 1770 1771 return; 1772 } 1773 1774 chan->dfs_state = NL80211_DFS_USABLE; 1775 chan->dfs_state_entered = jiffies; 1776 1777 chan->beacon_found = false; 1778 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1779 chan->max_antenna_gain = 1780 min_t(int, chan->orig_mag, 1781 MBI_TO_DBI(power_rule->max_antenna_gain)); 1782 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1783 1784 if (chan->flags & IEEE80211_CHAN_RADAR) { 1785 if (reg_rule->dfs_cac_ms) 1786 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1787 else 1788 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1789 } 1790 1791 if (chan->orig_mpwr) { 1792 /* 1793 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1794 * will always follow the passed country IE power settings. 1795 */ 1796 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1797 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1798 chan->max_power = chan->max_reg_power; 1799 else 1800 chan->max_power = min(chan->orig_mpwr, 1801 chan->max_reg_power); 1802 } else 1803 chan->max_power = chan->max_reg_power; 1804 } 1805 1806 static void handle_band(struct wiphy *wiphy, 1807 enum nl80211_reg_initiator initiator, 1808 struct ieee80211_supported_band *sband) 1809 { 1810 unsigned int i; 1811 1812 if (!sband) 1813 return; 1814 1815 for (i = 0; i < sband->n_channels; i++) 1816 handle_channel(wiphy, initiator, &sband->channels[i]); 1817 } 1818 1819 static bool reg_request_cell_base(struct regulatory_request *request) 1820 { 1821 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1822 return false; 1823 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 1824 } 1825 1826 bool reg_last_request_cell_base(void) 1827 { 1828 return reg_request_cell_base(get_last_request()); 1829 } 1830 1831 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 1832 /* Core specific check */ 1833 static enum reg_request_treatment 1834 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1835 { 1836 struct regulatory_request *lr = get_last_request(); 1837 1838 if (!reg_num_devs_support_basehint) 1839 return REG_REQ_IGNORE; 1840 1841 if (reg_request_cell_base(lr) && 1842 !regdom_changes(pending_request->alpha2)) 1843 return REG_REQ_ALREADY_SET; 1844 1845 return REG_REQ_OK; 1846 } 1847 1848 /* Device specific check */ 1849 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1850 { 1851 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 1852 } 1853 #else 1854 static enum reg_request_treatment 1855 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1856 { 1857 return REG_REQ_IGNORE; 1858 } 1859 1860 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1861 { 1862 return true; 1863 } 1864 #endif 1865 1866 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 1867 { 1868 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 1869 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 1870 return true; 1871 return false; 1872 } 1873 1874 static bool ignore_reg_update(struct wiphy *wiphy, 1875 enum nl80211_reg_initiator initiator) 1876 { 1877 struct regulatory_request *lr = get_last_request(); 1878 1879 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 1880 return true; 1881 1882 if (!lr) { 1883 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 1884 reg_initiator_name(initiator)); 1885 return true; 1886 } 1887 1888 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1889 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 1890 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 1891 reg_initiator_name(initiator)); 1892 return true; 1893 } 1894 1895 /* 1896 * wiphy->regd will be set once the device has its own 1897 * desired regulatory domain set 1898 */ 1899 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1900 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1901 !is_world_regdom(lr->alpha2)) { 1902 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 1903 reg_initiator_name(initiator)); 1904 return true; 1905 } 1906 1907 if (reg_request_cell_base(lr)) 1908 return reg_dev_ignore_cell_hint(wiphy); 1909 1910 return false; 1911 } 1912 1913 static bool reg_is_world_roaming(struct wiphy *wiphy) 1914 { 1915 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1916 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1917 struct regulatory_request *lr = get_last_request(); 1918 1919 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1920 return true; 1921 1922 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1923 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1924 return true; 1925 1926 return false; 1927 } 1928 1929 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1930 struct reg_beacon *reg_beacon) 1931 { 1932 struct ieee80211_supported_band *sband; 1933 struct ieee80211_channel *chan; 1934 bool channel_changed = false; 1935 struct ieee80211_channel chan_before; 1936 1937 sband = wiphy->bands[reg_beacon->chan.band]; 1938 chan = &sband->channels[chan_idx]; 1939 1940 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan))) 1941 return; 1942 1943 if (chan->beacon_found) 1944 return; 1945 1946 chan->beacon_found = true; 1947 1948 if (!reg_is_world_roaming(wiphy)) 1949 return; 1950 1951 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 1952 return; 1953 1954 chan_before = *chan; 1955 1956 if (chan->flags & IEEE80211_CHAN_NO_IR) { 1957 chan->flags &= ~IEEE80211_CHAN_NO_IR; 1958 channel_changed = true; 1959 } 1960 1961 if (channel_changed) 1962 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1963 } 1964 1965 /* 1966 * Called when a scan on a wiphy finds a beacon on 1967 * new channel 1968 */ 1969 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1970 struct reg_beacon *reg_beacon) 1971 { 1972 unsigned int i; 1973 struct ieee80211_supported_band *sband; 1974 1975 if (!wiphy->bands[reg_beacon->chan.band]) 1976 return; 1977 1978 sband = wiphy->bands[reg_beacon->chan.band]; 1979 1980 for (i = 0; i < sband->n_channels; i++) 1981 handle_reg_beacon(wiphy, i, reg_beacon); 1982 } 1983 1984 /* 1985 * Called upon reg changes or a new wiphy is added 1986 */ 1987 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1988 { 1989 unsigned int i; 1990 struct ieee80211_supported_band *sband; 1991 struct reg_beacon *reg_beacon; 1992 1993 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1994 if (!wiphy->bands[reg_beacon->chan.band]) 1995 continue; 1996 sband = wiphy->bands[reg_beacon->chan.band]; 1997 for (i = 0; i < sband->n_channels; i++) 1998 handle_reg_beacon(wiphy, i, reg_beacon); 1999 } 2000 } 2001 2002 /* Reap the advantages of previously found beacons */ 2003 static void reg_process_beacons(struct wiphy *wiphy) 2004 { 2005 /* 2006 * Means we are just firing up cfg80211, so no beacons would 2007 * have been processed yet. 2008 */ 2009 if (!last_request) 2010 return; 2011 wiphy_update_beacon_reg(wiphy); 2012 } 2013 2014 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2015 { 2016 if (!chan) 2017 return false; 2018 if (chan->flags & IEEE80211_CHAN_DISABLED) 2019 return false; 2020 /* This would happen when regulatory rules disallow HT40 completely */ 2021 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2022 return false; 2023 return true; 2024 } 2025 2026 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2027 struct ieee80211_channel *channel) 2028 { 2029 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2030 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2031 const struct ieee80211_regdomain *regd; 2032 unsigned int i; 2033 u32 flags; 2034 2035 if (!is_ht40_allowed(channel)) { 2036 channel->flags |= IEEE80211_CHAN_NO_HT40; 2037 return; 2038 } 2039 2040 /* 2041 * We need to ensure the extension channels exist to 2042 * be able to use HT40- or HT40+, this finds them (or not) 2043 */ 2044 for (i = 0; i < sband->n_channels; i++) { 2045 struct ieee80211_channel *c = &sband->channels[i]; 2046 2047 if (c->center_freq == (channel->center_freq - 20)) 2048 channel_before = c; 2049 if (c->center_freq == (channel->center_freq + 20)) 2050 channel_after = c; 2051 } 2052 2053 flags = 0; 2054 regd = get_wiphy_regdom(wiphy); 2055 if (regd) { 2056 const struct ieee80211_reg_rule *reg_rule = 2057 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2058 regd, MHZ_TO_KHZ(20)); 2059 2060 if (!IS_ERR(reg_rule)) 2061 flags = reg_rule->flags; 2062 } 2063 2064 /* 2065 * Please note that this assumes target bandwidth is 20 MHz, 2066 * if that ever changes we also need to change the below logic 2067 * to include that as well. 2068 */ 2069 if (!is_ht40_allowed(channel_before) || 2070 flags & NL80211_RRF_NO_HT40MINUS) 2071 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2072 else 2073 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2074 2075 if (!is_ht40_allowed(channel_after) || 2076 flags & NL80211_RRF_NO_HT40PLUS) 2077 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2078 else 2079 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2080 } 2081 2082 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2083 struct ieee80211_supported_band *sband) 2084 { 2085 unsigned int i; 2086 2087 if (!sband) 2088 return; 2089 2090 for (i = 0; i < sband->n_channels; i++) 2091 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2092 } 2093 2094 static void reg_process_ht_flags(struct wiphy *wiphy) 2095 { 2096 enum nl80211_band band; 2097 2098 if (!wiphy) 2099 return; 2100 2101 for (band = 0; band < NUM_NL80211_BANDS; band++) 2102 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2103 } 2104 2105 static void reg_call_notifier(struct wiphy *wiphy, 2106 struct regulatory_request *request) 2107 { 2108 if (wiphy->reg_notifier) 2109 wiphy->reg_notifier(wiphy, request); 2110 } 2111 2112 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2113 { 2114 struct cfg80211_chan_def chandef = {}; 2115 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2116 enum nl80211_iftype iftype; 2117 2118 wdev_lock(wdev); 2119 iftype = wdev->iftype; 2120 2121 /* make sure the interface is active */ 2122 if (!wdev->netdev || !netif_running(wdev->netdev)) 2123 goto wdev_inactive_unlock; 2124 2125 switch (iftype) { 2126 case NL80211_IFTYPE_AP: 2127 case NL80211_IFTYPE_P2P_GO: 2128 if (!wdev->beacon_interval) 2129 goto wdev_inactive_unlock; 2130 chandef = wdev->chandef; 2131 break; 2132 case NL80211_IFTYPE_ADHOC: 2133 if (!wdev->ssid_len) 2134 goto wdev_inactive_unlock; 2135 chandef = wdev->chandef; 2136 break; 2137 case NL80211_IFTYPE_STATION: 2138 case NL80211_IFTYPE_P2P_CLIENT: 2139 if (!wdev->current_bss || 2140 !wdev->current_bss->pub.channel) 2141 goto wdev_inactive_unlock; 2142 2143 if (!rdev->ops->get_channel || 2144 rdev_get_channel(rdev, wdev, &chandef)) 2145 cfg80211_chandef_create(&chandef, 2146 wdev->current_bss->pub.channel, 2147 NL80211_CHAN_NO_HT); 2148 break; 2149 case NL80211_IFTYPE_MONITOR: 2150 case NL80211_IFTYPE_AP_VLAN: 2151 case NL80211_IFTYPE_P2P_DEVICE: 2152 /* no enforcement required */ 2153 break; 2154 default: 2155 /* others not implemented for now */ 2156 WARN_ON(1); 2157 break; 2158 } 2159 2160 wdev_unlock(wdev); 2161 2162 switch (iftype) { 2163 case NL80211_IFTYPE_AP: 2164 case NL80211_IFTYPE_P2P_GO: 2165 case NL80211_IFTYPE_ADHOC: 2166 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 2167 case NL80211_IFTYPE_STATION: 2168 case NL80211_IFTYPE_P2P_CLIENT: 2169 return cfg80211_chandef_usable(wiphy, &chandef, 2170 IEEE80211_CHAN_DISABLED); 2171 default: 2172 break; 2173 } 2174 2175 return true; 2176 2177 wdev_inactive_unlock: 2178 wdev_unlock(wdev); 2179 return true; 2180 } 2181 2182 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2183 { 2184 struct wireless_dev *wdev; 2185 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2186 2187 ASSERT_RTNL(); 2188 2189 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2190 if (!reg_wdev_chan_valid(wiphy, wdev)) 2191 cfg80211_leave(rdev, wdev); 2192 } 2193 2194 static void reg_check_chans_work(struct work_struct *work) 2195 { 2196 struct cfg80211_registered_device *rdev; 2197 2198 pr_debug("Verifying active interfaces after reg change\n"); 2199 rtnl_lock(); 2200 2201 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2202 if (!(rdev->wiphy.regulatory_flags & 2203 REGULATORY_IGNORE_STALE_KICKOFF)) 2204 reg_leave_invalid_chans(&rdev->wiphy); 2205 2206 rtnl_unlock(); 2207 } 2208 2209 static void reg_check_channels(void) 2210 { 2211 /* 2212 * Give usermode a chance to do something nicer (move to another 2213 * channel, orderly disconnection), before forcing a disconnection. 2214 */ 2215 mod_delayed_work(system_power_efficient_wq, 2216 ®_check_chans, 2217 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2218 } 2219 2220 static void wiphy_update_regulatory(struct wiphy *wiphy, 2221 enum nl80211_reg_initiator initiator) 2222 { 2223 enum nl80211_band band; 2224 struct regulatory_request *lr = get_last_request(); 2225 2226 if (ignore_reg_update(wiphy, initiator)) { 2227 /* 2228 * Regulatory updates set by CORE are ignored for custom 2229 * regulatory cards. Let us notify the changes to the driver, 2230 * as some drivers used this to restore its orig_* reg domain. 2231 */ 2232 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2233 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2234 !(wiphy->regulatory_flags & 2235 REGULATORY_WIPHY_SELF_MANAGED)) 2236 reg_call_notifier(wiphy, lr); 2237 return; 2238 } 2239 2240 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2241 2242 for (band = 0; band < NUM_NL80211_BANDS; band++) 2243 handle_band(wiphy, initiator, wiphy->bands[band]); 2244 2245 reg_process_beacons(wiphy); 2246 reg_process_ht_flags(wiphy); 2247 reg_call_notifier(wiphy, lr); 2248 } 2249 2250 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2251 { 2252 struct cfg80211_registered_device *rdev; 2253 struct wiphy *wiphy; 2254 2255 ASSERT_RTNL(); 2256 2257 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2258 wiphy = &rdev->wiphy; 2259 wiphy_update_regulatory(wiphy, initiator); 2260 } 2261 2262 reg_check_channels(); 2263 } 2264 2265 static void handle_channel_custom(struct wiphy *wiphy, 2266 struct ieee80211_channel *chan, 2267 const struct ieee80211_regdomain *regd, 2268 u32 min_bw) 2269 { 2270 u32 bw_flags = 0; 2271 const struct ieee80211_reg_rule *reg_rule = NULL; 2272 const struct ieee80211_power_rule *power_rule = NULL; 2273 u32 bw, center_freq_khz; 2274 2275 center_freq_khz = ieee80211_channel_to_khz(chan); 2276 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 2277 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw); 2278 if (!IS_ERR(reg_rule)) 2279 break; 2280 } 2281 2282 if (IS_ERR_OR_NULL(reg_rule)) { 2283 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n", 2284 chan->center_freq, chan->freq_offset); 2285 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2286 chan->flags |= IEEE80211_CHAN_DISABLED; 2287 } else { 2288 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2289 chan->flags = chan->orig_flags; 2290 } 2291 return; 2292 } 2293 2294 power_rule = ®_rule->power_rule; 2295 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2296 2297 chan->dfs_state_entered = jiffies; 2298 chan->dfs_state = NL80211_DFS_USABLE; 2299 2300 chan->beacon_found = false; 2301 2302 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2303 chan->flags = chan->orig_flags | bw_flags | 2304 map_regdom_flags(reg_rule->flags); 2305 else 2306 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2307 2308 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2309 chan->max_reg_power = chan->max_power = 2310 (int) MBM_TO_DBM(power_rule->max_eirp); 2311 2312 if (chan->flags & IEEE80211_CHAN_RADAR) { 2313 if (reg_rule->dfs_cac_ms) 2314 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2315 else 2316 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2317 } 2318 2319 chan->max_power = chan->max_reg_power; 2320 } 2321 2322 static void handle_band_custom(struct wiphy *wiphy, 2323 struct ieee80211_supported_band *sband, 2324 const struct ieee80211_regdomain *regd) 2325 { 2326 unsigned int i; 2327 2328 if (!sband) 2329 return; 2330 2331 /* 2332 * We currently assume that you always want at least 20 MHz, 2333 * otherwise channel 12 might get enabled if this rule is 2334 * compatible to US, which permits 2402 - 2472 MHz. 2335 */ 2336 for (i = 0; i < sband->n_channels; i++) 2337 handle_channel_custom(wiphy, &sband->channels[i], regd, 2338 MHZ_TO_KHZ(20)); 2339 } 2340 2341 /* Used by drivers prior to wiphy registration */ 2342 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2343 const struct ieee80211_regdomain *regd) 2344 { 2345 enum nl80211_band band; 2346 unsigned int bands_set = 0; 2347 2348 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2349 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2350 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2351 2352 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2353 if (!wiphy->bands[band]) 2354 continue; 2355 handle_band_custom(wiphy, wiphy->bands[band], regd); 2356 bands_set++; 2357 } 2358 2359 /* 2360 * no point in calling this if it won't have any effect 2361 * on your device's supported bands. 2362 */ 2363 WARN_ON(!bands_set); 2364 } 2365 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2366 2367 static void reg_set_request_processed(void) 2368 { 2369 bool need_more_processing = false; 2370 struct regulatory_request *lr = get_last_request(); 2371 2372 lr->processed = true; 2373 2374 spin_lock(®_requests_lock); 2375 if (!list_empty(®_requests_list)) 2376 need_more_processing = true; 2377 spin_unlock(®_requests_lock); 2378 2379 cancel_crda_timeout(); 2380 2381 if (need_more_processing) 2382 schedule_work(®_work); 2383 } 2384 2385 /** 2386 * reg_process_hint_core - process core regulatory requests 2387 * @pending_request: a pending core regulatory request 2388 * 2389 * The wireless subsystem can use this function to process 2390 * a regulatory request issued by the regulatory core. 2391 */ 2392 static enum reg_request_treatment 2393 reg_process_hint_core(struct regulatory_request *core_request) 2394 { 2395 if (reg_query_database(core_request)) { 2396 core_request->intersect = false; 2397 core_request->processed = false; 2398 reg_update_last_request(core_request); 2399 return REG_REQ_OK; 2400 } 2401 2402 return REG_REQ_IGNORE; 2403 } 2404 2405 static enum reg_request_treatment 2406 __reg_process_hint_user(struct regulatory_request *user_request) 2407 { 2408 struct regulatory_request *lr = get_last_request(); 2409 2410 if (reg_request_cell_base(user_request)) 2411 return reg_ignore_cell_hint(user_request); 2412 2413 if (reg_request_cell_base(lr)) 2414 return REG_REQ_IGNORE; 2415 2416 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2417 return REG_REQ_INTERSECT; 2418 /* 2419 * If the user knows better the user should set the regdom 2420 * to their country before the IE is picked up 2421 */ 2422 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2423 lr->intersect) 2424 return REG_REQ_IGNORE; 2425 /* 2426 * Process user requests only after previous user/driver/core 2427 * requests have been processed 2428 */ 2429 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2430 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2431 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2432 regdom_changes(lr->alpha2)) 2433 return REG_REQ_IGNORE; 2434 2435 if (!regdom_changes(user_request->alpha2)) 2436 return REG_REQ_ALREADY_SET; 2437 2438 return REG_REQ_OK; 2439 } 2440 2441 /** 2442 * reg_process_hint_user - process user regulatory requests 2443 * @user_request: a pending user regulatory request 2444 * 2445 * The wireless subsystem can use this function to process 2446 * a regulatory request initiated by userspace. 2447 */ 2448 static enum reg_request_treatment 2449 reg_process_hint_user(struct regulatory_request *user_request) 2450 { 2451 enum reg_request_treatment treatment; 2452 2453 treatment = __reg_process_hint_user(user_request); 2454 if (treatment == REG_REQ_IGNORE || 2455 treatment == REG_REQ_ALREADY_SET) 2456 return REG_REQ_IGNORE; 2457 2458 user_request->intersect = treatment == REG_REQ_INTERSECT; 2459 user_request->processed = false; 2460 2461 if (reg_query_database(user_request)) { 2462 reg_update_last_request(user_request); 2463 user_alpha2[0] = user_request->alpha2[0]; 2464 user_alpha2[1] = user_request->alpha2[1]; 2465 return REG_REQ_OK; 2466 } 2467 2468 return REG_REQ_IGNORE; 2469 } 2470 2471 static enum reg_request_treatment 2472 __reg_process_hint_driver(struct regulatory_request *driver_request) 2473 { 2474 struct regulatory_request *lr = get_last_request(); 2475 2476 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2477 if (regdom_changes(driver_request->alpha2)) 2478 return REG_REQ_OK; 2479 return REG_REQ_ALREADY_SET; 2480 } 2481 2482 /* 2483 * This would happen if you unplug and plug your card 2484 * back in or if you add a new device for which the previously 2485 * loaded card also agrees on the regulatory domain. 2486 */ 2487 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2488 !regdom_changes(driver_request->alpha2)) 2489 return REG_REQ_ALREADY_SET; 2490 2491 return REG_REQ_INTERSECT; 2492 } 2493 2494 /** 2495 * reg_process_hint_driver - process driver regulatory requests 2496 * @driver_request: a pending driver regulatory request 2497 * 2498 * The wireless subsystem can use this function to process 2499 * a regulatory request issued by an 802.11 driver. 2500 * 2501 * Returns one of the different reg request treatment values. 2502 */ 2503 static enum reg_request_treatment 2504 reg_process_hint_driver(struct wiphy *wiphy, 2505 struct regulatory_request *driver_request) 2506 { 2507 const struct ieee80211_regdomain *regd, *tmp; 2508 enum reg_request_treatment treatment; 2509 2510 treatment = __reg_process_hint_driver(driver_request); 2511 2512 switch (treatment) { 2513 case REG_REQ_OK: 2514 break; 2515 case REG_REQ_IGNORE: 2516 return REG_REQ_IGNORE; 2517 case REG_REQ_INTERSECT: 2518 case REG_REQ_ALREADY_SET: 2519 regd = reg_copy_regd(get_cfg80211_regdom()); 2520 if (IS_ERR(regd)) 2521 return REG_REQ_IGNORE; 2522 2523 tmp = get_wiphy_regdom(wiphy); 2524 rcu_assign_pointer(wiphy->regd, regd); 2525 rcu_free_regdom(tmp); 2526 } 2527 2528 2529 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2530 driver_request->processed = false; 2531 2532 /* 2533 * Since CRDA will not be called in this case as we already 2534 * have applied the requested regulatory domain before we just 2535 * inform userspace we have processed the request 2536 */ 2537 if (treatment == REG_REQ_ALREADY_SET) { 2538 nl80211_send_reg_change_event(driver_request); 2539 reg_update_last_request(driver_request); 2540 reg_set_request_processed(); 2541 return REG_REQ_ALREADY_SET; 2542 } 2543 2544 if (reg_query_database(driver_request)) { 2545 reg_update_last_request(driver_request); 2546 return REG_REQ_OK; 2547 } 2548 2549 return REG_REQ_IGNORE; 2550 } 2551 2552 static enum reg_request_treatment 2553 __reg_process_hint_country_ie(struct wiphy *wiphy, 2554 struct regulatory_request *country_ie_request) 2555 { 2556 struct wiphy *last_wiphy = NULL; 2557 struct regulatory_request *lr = get_last_request(); 2558 2559 if (reg_request_cell_base(lr)) { 2560 /* Trust a Cell base station over the AP's country IE */ 2561 if (regdom_changes(country_ie_request->alpha2)) 2562 return REG_REQ_IGNORE; 2563 return REG_REQ_ALREADY_SET; 2564 } else { 2565 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2566 return REG_REQ_IGNORE; 2567 } 2568 2569 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2570 return -EINVAL; 2571 2572 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2573 return REG_REQ_OK; 2574 2575 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2576 2577 if (last_wiphy != wiphy) { 2578 /* 2579 * Two cards with two APs claiming different 2580 * Country IE alpha2s. We could 2581 * intersect them, but that seems unlikely 2582 * to be correct. Reject second one for now. 2583 */ 2584 if (regdom_changes(country_ie_request->alpha2)) 2585 return REG_REQ_IGNORE; 2586 return REG_REQ_ALREADY_SET; 2587 } 2588 2589 if (regdom_changes(country_ie_request->alpha2)) 2590 return REG_REQ_OK; 2591 return REG_REQ_ALREADY_SET; 2592 } 2593 2594 /** 2595 * reg_process_hint_country_ie - process regulatory requests from country IEs 2596 * @country_ie_request: a regulatory request from a country IE 2597 * 2598 * The wireless subsystem can use this function to process 2599 * a regulatory request issued by a country Information Element. 2600 * 2601 * Returns one of the different reg request treatment values. 2602 */ 2603 static enum reg_request_treatment 2604 reg_process_hint_country_ie(struct wiphy *wiphy, 2605 struct regulatory_request *country_ie_request) 2606 { 2607 enum reg_request_treatment treatment; 2608 2609 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2610 2611 switch (treatment) { 2612 case REG_REQ_OK: 2613 break; 2614 case REG_REQ_IGNORE: 2615 return REG_REQ_IGNORE; 2616 case REG_REQ_ALREADY_SET: 2617 reg_free_request(country_ie_request); 2618 return REG_REQ_ALREADY_SET; 2619 case REG_REQ_INTERSECT: 2620 /* 2621 * This doesn't happen yet, not sure we 2622 * ever want to support it for this case. 2623 */ 2624 WARN_ONCE(1, "Unexpected intersection for country elements"); 2625 return REG_REQ_IGNORE; 2626 } 2627 2628 country_ie_request->intersect = false; 2629 country_ie_request->processed = false; 2630 2631 if (reg_query_database(country_ie_request)) { 2632 reg_update_last_request(country_ie_request); 2633 return REG_REQ_OK; 2634 } 2635 2636 return REG_REQ_IGNORE; 2637 } 2638 2639 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2640 { 2641 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2642 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2643 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2644 bool dfs_domain_same; 2645 2646 rcu_read_lock(); 2647 2648 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2649 wiphy1_regd = rcu_dereference(wiphy1->regd); 2650 if (!wiphy1_regd) 2651 wiphy1_regd = cfg80211_regd; 2652 2653 wiphy2_regd = rcu_dereference(wiphy2->regd); 2654 if (!wiphy2_regd) 2655 wiphy2_regd = cfg80211_regd; 2656 2657 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2658 2659 rcu_read_unlock(); 2660 2661 return dfs_domain_same; 2662 } 2663 2664 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2665 struct ieee80211_channel *src_chan) 2666 { 2667 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2668 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2669 return; 2670 2671 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2672 src_chan->flags & IEEE80211_CHAN_DISABLED) 2673 return; 2674 2675 if (src_chan->center_freq == dst_chan->center_freq && 2676 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2677 dst_chan->dfs_state = src_chan->dfs_state; 2678 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2679 } 2680 } 2681 2682 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2683 struct wiphy *src_wiphy) 2684 { 2685 struct ieee80211_supported_band *src_sband, *dst_sband; 2686 struct ieee80211_channel *src_chan, *dst_chan; 2687 int i, j, band; 2688 2689 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2690 return; 2691 2692 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2693 dst_sband = dst_wiphy->bands[band]; 2694 src_sband = src_wiphy->bands[band]; 2695 if (!dst_sband || !src_sband) 2696 continue; 2697 2698 for (i = 0; i < dst_sband->n_channels; i++) { 2699 dst_chan = &dst_sband->channels[i]; 2700 for (j = 0; j < src_sband->n_channels; j++) { 2701 src_chan = &src_sband->channels[j]; 2702 reg_copy_dfs_chan_state(dst_chan, src_chan); 2703 } 2704 } 2705 } 2706 } 2707 2708 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2709 { 2710 struct cfg80211_registered_device *rdev; 2711 2712 ASSERT_RTNL(); 2713 2714 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2715 if (wiphy == &rdev->wiphy) 2716 continue; 2717 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2718 } 2719 } 2720 2721 /* This processes *all* regulatory hints */ 2722 static void reg_process_hint(struct regulatory_request *reg_request) 2723 { 2724 struct wiphy *wiphy = NULL; 2725 enum reg_request_treatment treatment; 2726 enum nl80211_reg_initiator initiator = reg_request->initiator; 2727 2728 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2729 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2730 2731 switch (initiator) { 2732 case NL80211_REGDOM_SET_BY_CORE: 2733 treatment = reg_process_hint_core(reg_request); 2734 break; 2735 case NL80211_REGDOM_SET_BY_USER: 2736 treatment = reg_process_hint_user(reg_request); 2737 break; 2738 case NL80211_REGDOM_SET_BY_DRIVER: 2739 if (!wiphy) 2740 goto out_free; 2741 treatment = reg_process_hint_driver(wiphy, reg_request); 2742 break; 2743 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2744 if (!wiphy) 2745 goto out_free; 2746 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2747 break; 2748 default: 2749 WARN(1, "invalid initiator %d\n", initiator); 2750 goto out_free; 2751 } 2752 2753 if (treatment == REG_REQ_IGNORE) 2754 goto out_free; 2755 2756 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 2757 "unexpected treatment value %d\n", treatment); 2758 2759 /* This is required so that the orig_* parameters are saved. 2760 * NOTE: treatment must be set for any case that reaches here! 2761 */ 2762 if (treatment == REG_REQ_ALREADY_SET && wiphy && 2763 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2764 wiphy_update_regulatory(wiphy, initiator); 2765 wiphy_all_share_dfs_chan_state(wiphy); 2766 reg_check_channels(); 2767 } 2768 2769 return; 2770 2771 out_free: 2772 reg_free_request(reg_request); 2773 } 2774 2775 static void notify_self_managed_wiphys(struct regulatory_request *request) 2776 { 2777 struct cfg80211_registered_device *rdev; 2778 struct wiphy *wiphy; 2779 2780 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2781 wiphy = &rdev->wiphy; 2782 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 2783 request->initiator == NL80211_REGDOM_SET_BY_USER) 2784 reg_call_notifier(wiphy, request); 2785 } 2786 } 2787 2788 /* 2789 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 2790 * Regulatory hints come on a first come first serve basis and we 2791 * must process each one atomically. 2792 */ 2793 static void reg_process_pending_hints(void) 2794 { 2795 struct regulatory_request *reg_request, *lr; 2796 2797 lr = get_last_request(); 2798 2799 /* When last_request->processed becomes true this will be rescheduled */ 2800 if (lr && !lr->processed) { 2801 pr_debug("Pending regulatory request, waiting for it to be processed...\n"); 2802 return; 2803 } 2804 2805 spin_lock(®_requests_lock); 2806 2807 if (list_empty(®_requests_list)) { 2808 spin_unlock(®_requests_lock); 2809 return; 2810 } 2811 2812 reg_request = list_first_entry(®_requests_list, 2813 struct regulatory_request, 2814 list); 2815 list_del_init(®_request->list); 2816 2817 spin_unlock(®_requests_lock); 2818 2819 notify_self_managed_wiphys(reg_request); 2820 2821 reg_process_hint(reg_request); 2822 2823 lr = get_last_request(); 2824 2825 spin_lock(®_requests_lock); 2826 if (!list_empty(®_requests_list) && lr && lr->processed) 2827 schedule_work(®_work); 2828 spin_unlock(®_requests_lock); 2829 } 2830 2831 /* Processes beacon hints -- this has nothing to do with country IEs */ 2832 static void reg_process_pending_beacon_hints(void) 2833 { 2834 struct cfg80211_registered_device *rdev; 2835 struct reg_beacon *pending_beacon, *tmp; 2836 2837 /* This goes through the _pending_ beacon list */ 2838 spin_lock_bh(®_pending_beacons_lock); 2839 2840 list_for_each_entry_safe(pending_beacon, tmp, 2841 ®_pending_beacons, list) { 2842 list_del_init(&pending_beacon->list); 2843 2844 /* Applies the beacon hint to current wiphys */ 2845 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2846 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 2847 2848 /* Remembers the beacon hint for new wiphys or reg changes */ 2849 list_add_tail(&pending_beacon->list, ®_beacon_list); 2850 } 2851 2852 spin_unlock_bh(®_pending_beacons_lock); 2853 } 2854 2855 static void reg_process_self_managed_hints(void) 2856 { 2857 struct cfg80211_registered_device *rdev; 2858 struct wiphy *wiphy; 2859 const struct ieee80211_regdomain *tmp; 2860 const struct ieee80211_regdomain *regd; 2861 enum nl80211_band band; 2862 struct regulatory_request request = {}; 2863 2864 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2865 wiphy = &rdev->wiphy; 2866 2867 spin_lock(®_requests_lock); 2868 regd = rdev->requested_regd; 2869 rdev->requested_regd = NULL; 2870 spin_unlock(®_requests_lock); 2871 2872 if (regd == NULL) 2873 continue; 2874 2875 tmp = get_wiphy_regdom(wiphy); 2876 rcu_assign_pointer(wiphy->regd, regd); 2877 rcu_free_regdom(tmp); 2878 2879 for (band = 0; band < NUM_NL80211_BANDS; band++) 2880 handle_band_custom(wiphy, wiphy->bands[band], regd); 2881 2882 reg_process_ht_flags(wiphy); 2883 2884 request.wiphy_idx = get_wiphy_idx(wiphy); 2885 request.alpha2[0] = regd->alpha2[0]; 2886 request.alpha2[1] = regd->alpha2[1]; 2887 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 2888 2889 nl80211_send_wiphy_reg_change_event(&request); 2890 } 2891 2892 reg_check_channels(); 2893 } 2894 2895 static void reg_todo(struct work_struct *work) 2896 { 2897 rtnl_lock(); 2898 reg_process_pending_hints(); 2899 reg_process_pending_beacon_hints(); 2900 reg_process_self_managed_hints(); 2901 rtnl_unlock(); 2902 } 2903 2904 static void queue_regulatory_request(struct regulatory_request *request) 2905 { 2906 request->alpha2[0] = toupper(request->alpha2[0]); 2907 request->alpha2[1] = toupper(request->alpha2[1]); 2908 2909 spin_lock(®_requests_lock); 2910 list_add_tail(&request->list, ®_requests_list); 2911 spin_unlock(®_requests_lock); 2912 2913 schedule_work(®_work); 2914 } 2915 2916 /* 2917 * Core regulatory hint -- happens during cfg80211_init() 2918 * and when we restore regulatory settings. 2919 */ 2920 static int regulatory_hint_core(const char *alpha2) 2921 { 2922 struct regulatory_request *request; 2923 2924 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2925 if (!request) 2926 return -ENOMEM; 2927 2928 request->alpha2[0] = alpha2[0]; 2929 request->alpha2[1] = alpha2[1]; 2930 request->initiator = NL80211_REGDOM_SET_BY_CORE; 2931 request->wiphy_idx = WIPHY_IDX_INVALID; 2932 2933 queue_regulatory_request(request); 2934 2935 return 0; 2936 } 2937 2938 /* User hints */ 2939 int regulatory_hint_user(const char *alpha2, 2940 enum nl80211_user_reg_hint_type user_reg_hint_type) 2941 { 2942 struct regulatory_request *request; 2943 2944 if (WARN_ON(!alpha2)) 2945 return -EINVAL; 2946 2947 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2948 if (!request) 2949 return -ENOMEM; 2950 2951 request->wiphy_idx = WIPHY_IDX_INVALID; 2952 request->alpha2[0] = alpha2[0]; 2953 request->alpha2[1] = alpha2[1]; 2954 request->initiator = NL80211_REGDOM_SET_BY_USER; 2955 request->user_reg_hint_type = user_reg_hint_type; 2956 2957 /* Allow calling CRDA again */ 2958 reset_crda_timeouts(); 2959 2960 queue_regulatory_request(request); 2961 2962 return 0; 2963 } 2964 2965 int regulatory_hint_indoor(bool is_indoor, u32 portid) 2966 { 2967 spin_lock(®_indoor_lock); 2968 2969 /* It is possible that more than one user space process is trying to 2970 * configure the indoor setting. To handle such cases, clear the indoor 2971 * setting in case that some process does not think that the device 2972 * is operating in an indoor environment. In addition, if a user space 2973 * process indicates that it is controlling the indoor setting, save its 2974 * portid, i.e., make it the owner. 2975 */ 2976 reg_is_indoor = is_indoor; 2977 if (reg_is_indoor) { 2978 if (!reg_is_indoor_portid) 2979 reg_is_indoor_portid = portid; 2980 } else { 2981 reg_is_indoor_portid = 0; 2982 } 2983 2984 spin_unlock(®_indoor_lock); 2985 2986 if (!is_indoor) 2987 reg_check_channels(); 2988 2989 return 0; 2990 } 2991 2992 void regulatory_netlink_notify(u32 portid) 2993 { 2994 spin_lock(®_indoor_lock); 2995 2996 if (reg_is_indoor_portid != portid) { 2997 spin_unlock(®_indoor_lock); 2998 return; 2999 } 3000 3001 reg_is_indoor = false; 3002 reg_is_indoor_portid = 0; 3003 3004 spin_unlock(®_indoor_lock); 3005 3006 reg_check_channels(); 3007 } 3008 3009 /* Driver hints */ 3010 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3011 { 3012 struct regulatory_request *request; 3013 3014 if (WARN_ON(!alpha2 || !wiphy)) 3015 return -EINVAL; 3016 3017 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3018 3019 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3020 if (!request) 3021 return -ENOMEM; 3022 3023 request->wiphy_idx = get_wiphy_idx(wiphy); 3024 3025 request->alpha2[0] = alpha2[0]; 3026 request->alpha2[1] = alpha2[1]; 3027 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3028 3029 /* Allow calling CRDA again */ 3030 reset_crda_timeouts(); 3031 3032 queue_regulatory_request(request); 3033 3034 return 0; 3035 } 3036 EXPORT_SYMBOL(regulatory_hint); 3037 3038 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3039 const u8 *country_ie, u8 country_ie_len) 3040 { 3041 char alpha2[2]; 3042 enum environment_cap env = ENVIRON_ANY; 3043 struct regulatory_request *request = NULL, *lr; 3044 3045 /* IE len must be evenly divisible by 2 */ 3046 if (country_ie_len & 0x01) 3047 return; 3048 3049 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3050 return; 3051 3052 request = kzalloc(sizeof(*request), GFP_KERNEL); 3053 if (!request) 3054 return; 3055 3056 alpha2[0] = country_ie[0]; 3057 alpha2[1] = country_ie[1]; 3058 3059 if (country_ie[2] == 'I') 3060 env = ENVIRON_INDOOR; 3061 else if (country_ie[2] == 'O') 3062 env = ENVIRON_OUTDOOR; 3063 3064 rcu_read_lock(); 3065 lr = get_last_request(); 3066 3067 if (unlikely(!lr)) 3068 goto out; 3069 3070 /* 3071 * We will run this only upon a successful connection on cfg80211. 3072 * We leave conflict resolution to the workqueue, where can hold 3073 * the RTNL. 3074 */ 3075 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3076 lr->wiphy_idx != WIPHY_IDX_INVALID) 3077 goto out; 3078 3079 request->wiphy_idx = get_wiphy_idx(wiphy); 3080 request->alpha2[0] = alpha2[0]; 3081 request->alpha2[1] = alpha2[1]; 3082 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3083 request->country_ie_env = env; 3084 3085 /* Allow calling CRDA again */ 3086 reset_crda_timeouts(); 3087 3088 queue_regulatory_request(request); 3089 request = NULL; 3090 out: 3091 kfree(request); 3092 rcu_read_unlock(); 3093 } 3094 3095 static void restore_alpha2(char *alpha2, bool reset_user) 3096 { 3097 /* indicates there is no alpha2 to consider for restoration */ 3098 alpha2[0] = '9'; 3099 alpha2[1] = '7'; 3100 3101 /* The user setting has precedence over the module parameter */ 3102 if (is_user_regdom_saved()) { 3103 /* Unless we're asked to ignore it and reset it */ 3104 if (reset_user) { 3105 pr_debug("Restoring regulatory settings including user preference\n"); 3106 user_alpha2[0] = '9'; 3107 user_alpha2[1] = '7'; 3108 3109 /* 3110 * If we're ignoring user settings, we still need to 3111 * check the module parameter to ensure we put things 3112 * back as they were for a full restore. 3113 */ 3114 if (!is_world_regdom(ieee80211_regdom)) { 3115 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3116 ieee80211_regdom[0], ieee80211_regdom[1]); 3117 alpha2[0] = ieee80211_regdom[0]; 3118 alpha2[1] = ieee80211_regdom[1]; 3119 } 3120 } else { 3121 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3122 user_alpha2[0], user_alpha2[1]); 3123 alpha2[0] = user_alpha2[0]; 3124 alpha2[1] = user_alpha2[1]; 3125 } 3126 } else if (!is_world_regdom(ieee80211_regdom)) { 3127 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3128 ieee80211_regdom[0], ieee80211_regdom[1]); 3129 alpha2[0] = ieee80211_regdom[0]; 3130 alpha2[1] = ieee80211_regdom[1]; 3131 } else 3132 pr_debug("Restoring regulatory settings\n"); 3133 } 3134 3135 static void restore_custom_reg_settings(struct wiphy *wiphy) 3136 { 3137 struct ieee80211_supported_band *sband; 3138 enum nl80211_band band; 3139 struct ieee80211_channel *chan; 3140 int i; 3141 3142 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3143 sband = wiphy->bands[band]; 3144 if (!sband) 3145 continue; 3146 for (i = 0; i < sband->n_channels; i++) { 3147 chan = &sband->channels[i]; 3148 chan->flags = chan->orig_flags; 3149 chan->max_antenna_gain = chan->orig_mag; 3150 chan->max_power = chan->orig_mpwr; 3151 chan->beacon_found = false; 3152 } 3153 } 3154 } 3155 3156 /* 3157 * Restoring regulatory settings involves ingoring any 3158 * possibly stale country IE information and user regulatory 3159 * settings if so desired, this includes any beacon hints 3160 * learned as we could have traveled outside to another country 3161 * after disconnection. To restore regulatory settings we do 3162 * exactly what we did at bootup: 3163 * 3164 * - send a core regulatory hint 3165 * - send a user regulatory hint if applicable 3166 * 3167 * Device drivers that send a regulatory hint for a specific country 3168 * keep their own regulatory domain on wiphy->regd so that does does 3169 * not need to be remembered. 3170 */ 3171 static void restore_regulatory_settings(bool reset_user, bool cached) 3172 { 3173 char alpha2[2]; 3174 char world_alpha2[2]; 3175 struct reg_beacon *reg_beacon, *btmp; 3176 LIST_HEAD(tmp_reg_req_list); 3177 struct cfg80211_registered_device *rdev; 3178 3179 ASSERT_RTNL(); 3180 3181 /* 3182 * Clear the indoor setting in case that it is not controlled by user 3183 * space, as otherwise there is no guarantee that the device is still 3184 * operating in an indoor environment. 3185 */ 3186 spin_lock(®_indoor_lock); 3187 if (reg_is_indoor && !reg_is_indoor_portid) { 3188 reg_is_indoor = false; 3189 reg_check_channels(); 3190 } 3191 spin_unlock(®_indoor_lock); 3192 3193 reset_regdomains(true, &world_regdom); 3194 restore_alpha2(alpha2, reset_user); 3195 3196 /* 3197 * If there's any pending requests we simply 3198 * stash them to a temporary pending queue and 3199 * add then after we've restored regulatory 3200 * settings. 3201 */ 3202 spin_lock(®_requests_lock); 3203 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3204 spin_unlock(®_requests_lock); 3205 3206 /* Clear beacon hints */ 3207 spin_lock_bh(®_pending_beacons_lock); 3208 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3209 list_del(®_beacon->list); 3210 kfree(reg_beacon); 3211 } 3212 spin_unlock_bh(®_pending_beacons_lock); 3213 3214 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3215 list_del(®_beacon->list); 3216 kfree(reg_beacon); 3217 } 3218 3219 /* First restore to the basic regulatory settings */ 3220 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3221 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3222 3223 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3224 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3225 continue; 3226 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3227 restore_custom_reg_settings(&rdev->wiphy); 3228 } 3229 3230 if (cached && (!is_an_alpha2(alpha2) || 3231 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3232 reset_regdomains(false, cfg80211_world_regdom); 3233 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3234 print_regdomain(get_cfg80211_regdom()); 3235 nl80211_send_reg_change_event(&core_request_world); 3236 reg_set_request_processed(); 3237 3238 if (is_an_alpha2(alpha2) && 3239 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3240 struct regulatory_request *ureq; 3241 3242 spin_lock(®_requests_lock); 3243 ureq = list_last_entry(®_requests_list, 3244 struct regulatory_request, 3245 list); 3246 list_del(&ureq->list); 3247 spin_unlock(®_requests_lock); 3248 3249 notify_self_managed_wiphys(ureq); 3250 reg_update_last_request(ureq); 3251 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3252 REGD_SOURCE_CACHED); 3253 } 3254 } else { 3255 regulatory_hint_core(world_alpha2); 3256 3257 /* 3258 * This restores the ieee80211_regdom module parameter 3259 * preference or the last user requested regulatory 3260 * settings, user regulatory settings takes precedence. 3261 */ 3262 if (is_an_alpha2(alpha2)) 3263 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3264 } 3265 3266 spin_lock(®_requests_lock); 3267 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3268 spin_unlock(®_requests_lock); 3269 3270 pr_debug("Kicking the queue\n"); 3271 3272 schedule_work(®_work); 3273 } 3274 3275 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3276 { 3277 struct cfg80211_registered_device *rdev; 3278 struct wireless_dev *wdev; 3279 3280 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3281 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3282 wdev_lock(wdev); 3283 if (!(wdev->wiphy->regulatory_flags & flag)) { 3284 wdev_unlock(wdev); 3285 return false; 3286 } 3287 wdev_unlock(wdev); 3288 } 3289 } 3290 3291 return true; 3292 } 3293 3294 void regulatory_hint_disconnect(void) 3295 { 3296 /* Restore of regulatory settings is not required when wiphy(s) 3297 * ignore IE from connected access point but clearance of beacon hints 3298 * is required when wiphy(s) supports beacon hints. 3299 */ 3300 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3301 struct reg_beacon *reg_beacon, *btmp; 3302 3303 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3304 return; 3305 3306 spin_lock_bh(®_pending_beacons_lock); 3307 list_for_each_entry_safe(reg_beacon, btmp, 3308 ®_pending_beacons, list) { 3309 list_del(®_beacon->list); 3310 kfree(reg_beacon); 3311 } 3312 spin_unlock_bh(®_pending_beacons_lock); 3313 3314 list_for_each_entry_safe(reg_beacon, btmp, 3315 ®_beacon_list, list) { 3316 list_del(®_beacon->list); 3317 kfree(reg_beacon); 3318 } 3319 3320 return; 3321 } 3322 3323 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3324 restore_regulatory_settings(false, true); 3325 } 3326 3327 static bool freq_is_chan_12_13_14(u32 freq) 3328 { 3329 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3330 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3331 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3332 return true; 3333 return false; 3334 } 3335 3336 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3337 { 3338 struct reg_beacon *pending_beacon; 3339 3340 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3341 if (ieee80211_channel_equal(beacon_chan, 3342 &pending_beacon->chan)) 3343 return true; 3344 return false; 3345 } 3346 3347 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3348 struct ieee80211_channel *beacon_chan, 3349 gfp_t gfp) 3350 { 3351 struct reg_beacon *reg_beacon; 3352 bool processing; 3353 3354 if (beacon_chan->beacon_found || 3355 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3356 (beacon_chan->band == NL80211_BAND_2GHZ && 3357 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3358 return 0; 3359 3360 spin_lock_bh(®_pending_beacons_lock); 3361 processing = pending_reg_beacon(beacon_chan); 3362 spin_unlock_bh(®_pending_beacons_lock); 3363 3364 if (processing) 3365 return 0; 3366 3367 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3368 if (!reg_beacon) 3369 return -ENOMEM; 3370 3371 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n", 3372 beacon_chan->center_freq, beacon_chan->freq_offset, 3373 ieee80211_freq_khz_to_channel( 3374 ieee80211_channel_to_khz(beacon_chan)), 3375 wiphy_name(wiphy)); 3376 3377 memcpy(®_beacon->chan, beacon_chan, 3378 sizeof(struct ieee80211_channel)); 3379 3380 /* 3381 * Since we can be called from BH or and non-BH context 3382 * we must use spin_lock_bh() 3383 */ 3384 spin_lock_bh(®_pending_beacons_lock); 3385 list_add_tail(®_beacon->list, ®_pending_beacons); 3386 spin_unlock_bh(®_pending_beacons_lock); 3387 3388 schedule_work(®_work); 3389 3390 return 0; 3391 } 3392 3393 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3394 { 3395 unsigned int i; 3396 const struct ieee80211_reg_rule *reg_rule = NULL; 3397 const struct ieee80211_freq_range *freq_range = NULL; 3398 const struct ieee80211_power_rule *power_rule = NULL; 3399 char bw[32], cac_time[32]; 3400 3401 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3402 3403 for (i = 0; i < rd->n_reg_rules; i++) { 3404 reg_rule = &rd->reg_rules[i]; 3405 freq_range = ®_rule->freq_range; 3406 power_rule = ®_rule->power_rule; 3407 3408 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3409 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 3410 freq_range->max_bandwidth_khz, 3411 reg_get_max_bandwidth(rd, reg_rule)); 3412 else 3413 snprintf(bw, sizeof(bw), "%d KHz", 3414 freq_range->max_bandwidth_khz); 3415 3416 if (reg_rule->flags & NL80211_RRF_DFS) 3417 scnprintf(cac_time, sizeof(cac_time), "%u s", 3418 reg_rule->dfs_cac_ms/1000); 3419 else 3420 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3421 3422 3423 /* 3424 * There may not be documentation for max antenna gain 3425 * in certain regions 3426 */ 3427 if (power_rule->max_antenna_gain) 3428 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3429 freq_range->start_freq_khz, 3430 freq_range->end_freq_khz, 3431 bw, 3432 power_rule->max_antenna_gain, 3433 power_rule->max_eirp, 3434 cac_time); 3435 else 3436 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3437 freq_range->start_freq_khz, 3438 freq_range->end_freq_khz, 3439 bw, 3440 power_rule->max_eirp, 3441 cac_time); 3442 } 3443 } 3444 3445 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3446 { 3447 switch (dfs_region) { 3448 case NL80211_DFS_UNSET: 3449 case NL80211_DFS_FCC: 3450 case NL80211_DFS_ETSI: 3451 case NL80211_DFS_JP: 3452 return true; 3453 default: 3454 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3455 return false; 3456 } 3457 } 3458 3459 static void print_regdomain(const struct ieee80211_regdomain *rd) 3460 { 3461 struct regulatory_request *lr = get_last_request(); 3462 3463 if (is_intersected_alpha2(rd->alpha2)) { 3464 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3465 struct cfg80211_registered_device *rdev; 3466 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3467 if (rdev) { 3468 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3469 rdev->country_ie_alpha2[0], 3470 rdev->country_ie_alpha2[1]); 3471 } else 3472 pr_debug("Current regulatory domain intersected:\n"); 3473 } else 3474 pr_debug("Current regulatory domain intersected:\n"); 3475 } else if (is_world_regdom(rd->alpha2)) { 3476 pr_debug("World regulatory domain updated:\n"); 3477 } else { 3478 if (is_unknown_alpha2(rd->alpha2)) 3479 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3480 else { 3481 if (reg_request_cell_base(lr)) 3482 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3483 rd->alpha2[0], rd->alpha2[1]); 3484 else 3485 pr_debug("Regulatory domain changed to country: %c%c\n", 3486 rd->alpha2[0], rd->alpha2[1]); 3487 } 3488 } 3489 3490 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3491 print_rd_rules(rd); 3492 } 3493 3494 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3495 { 3496 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3497 print_rd_rules(rd); 3498 } 3499 3500 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3501 { 3502 if (!is_world_regdom(rd->alpha2)) 3503 return -EINVAL; 3504 update_world_regdomain(rd); 3505 return 0; 3506 } 3507 3508 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3509 struct regulatory_request *user_request) 3510 { 3511 const struct ieee80211_regdomain *intersected_rd = NULL; 3512 3513 if (!regdom_changes(rd->alpha2)) 3514 return -EALREADY; 3515 3516 if (!is_valid_rd(rd)) { 3517 pr_err("Invalid regulatory domain detected: %c%c\n", 3518 rd->alpha2[0], rd->alpha2[1]); 3519 print_regdomain_info(rd); 3520 return -EINVAL; 3521 } 3522 3523 if (!user_request->intersect) { 3524 reset_regdomains(false, rd); 3525 return 0; 3526 } 3527 3528 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3529 if (!intersected_rd) 3530 return -EINVAL; 3531 3532 kfree(rd); 3533 rd = NULL; 3534 reset_regdomains(false, intersected_rd); 3535 3536 return 0; 3537 } 3538 3539 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3540 struct regulatory_request *driver_request) 3541 { 3542 const struct ieee80211_regdomain *regd; 3543 const struct ieee80211_regdomain *intersected_rd = NULL; 3544 const struct ieee80211_regdomain *tmp; 3545 struct wiphy *request_wiphy; 3546 3547 if (is_world_regdom(rd->alpha2)) 3548 return -EINVAL; 3549 3550 if (!regdom_changes(rd->alpha2)) 3551 return -EALREADY; 3552 3553 if (!is_valid_rd(rd)) { 3554 pr_err("Invalid regulatory domain detected: %c%c\n", 3555 rd->alpha2[0], rd->alpha2[1]); 3556 print_regdomain_info(rd); 3557 return -EINVAL; 3558 } 3559 3560 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3561 if (!request_wiphy) 3562 return -ENODEV; 3563 3564 if (!driver_request->intersect) { 3565 if (request_wiphy->regd) 3566 return -EALREADY; 3567 3568 regd = reg_copy_regd(rd); 3569 if (IS_ERR(regd)) 3570 return PTR_ERR(regd); 3571 3572 rcu_assign_pointer(request_wiphy->regd, regd); 3573 reset_regdomains(false, rd); 3574 return 0; 3575 } 3576 3577 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3578 if (!intersected_rd) 3579 return -EINVAL; 3580 3581 /* 3582 * We can trash what CRDA provided now. 3583 * However if a driver requested this specific regulatory 3584 * domain we keep it for its private use 3585 */ 3586 tmp = get_wiphy_regdom(request_wiphy); 3587 rcu_assign_pointer(request_wiphy->regd, rd); 3588 rcu_free_regdom(tmp); 3589 3590 rd = NULL; 3591 3592 reset_regdomains(false, intersected_rd); 3593 3594 return 0; 3595 } 3596 3597 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3598 struct regulatory_request *country_ie_request) 3599 { 3600 struct wiphy *request_wiphy; 3601 3602 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3603 !is_unknown_alpha2(rd->alpha2)) 3604 return -EINVAL; 3605 3606 /* 3607 * Lets only bother proceeding on the same alpha2 if the current 3608 * rd is non static (it means CRDA was present and was used last) 3609 * and the pending request came in from a country IE 3610 */ 3611 3612 if (!is_valid_rd(rd)) { 3613 pr_err("Invalid regulatory domain detected: %c%c\n", 3614 rd->alpha2[0], rd->alpha2[1]); 3615 print_regdomain_info(rd); 3616 return -EINVAL; 3617 } 3618 3619 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3620 if (!request_wiphy) 3621 return -ENODEV; 3622 3623 if (country_ie_request->intersect) 3624 return -EINVAL; 3625 3626 reset_regdomains(false, rd); 3627 return 0; 3628 } 3629 3630 /* 3631 * Use this call to set the current regulatory domain. Conflicts with 3632 * multiple drivers can be ironed out later. Caller must've already 3633 * kmalloc'd the rd structure. 3634 */ 3635 int set_regdom(const struct ieee80211_regdomain *rd, 3636 enum ieee80211_regd_source regd_src) 3637 { 3638 struct regulatory_request *lr; 3639 bool user_reset = false; 3640 int r; 3641 3642 if (IS_ERR_OR_NULL(rd)) 3643 return -ENODATA; 3644 3645 if (!reg_is_valid_request(rd->alpha2)) { 3646 kfree(rd); 3647 return -EINVAL; 3648 } 3649 3650 if (regd_src == REGD_SOURCE_CRDA) 3651 reset_crda_timeouts(); 3652 3653 lr = get_last_request(); 3654 3655 /* Note that this doesn't update the wiphys, this is done below */ 3656 switch (lr->initiator) { 3657 case NL80211_REGDOM_SET_BY_CORE: 3658 r = reg_set_rd_core(rd); 3659 break; 3660 case NL80211_REGDOM_SET_BY_USER: 3661 cfg80211_save_user_regdom(rd); 3662 r = reg_set_rd_user(rd, lr); 3663 user_reset = true; 3664 break; 3665 case NL80211_REGDOM_SET_BY_DRIVER: 3666 r = reg_set_rd_driver(rd, lr); 3667 break; 3668 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3669 r = reg_set_rd_country_ie(rd, lr); 3670 break; 3671 default: 3672 WARN(1, "invalid initiator %d\n", lr->initiator); 3673 kfree(rd); 3674 return -EINVAL; 3675 } 3676 3677 if (r) { 3678 switch (r) { 3679 case -EALREADY: 3680 reg_set_request_processed(); 3681 break; 3682 default: 3683 /* Back to world regulatory in case of errors */ 3684 restore_regulatory_settings(user_reset, false); 3685 } 3686 3687 kfree(rd); 3688 return r; 3689 } 3690 3691 /* This would make this whole thing pointless */ 3692 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3693 return -EINVAL; 3694 3695 /* update all wiphys now with the new established regulatory domain */ 3696 update_all_wiphy_regulatory(lr->initiator); 3697 3698 print_regdomain(get_cfg80211_regdom()); 3699 3700 nl80211_send_reg_change_event(lr); 3701 3702 reg_set_request_processed(); 3703 3704 return 0; 3705 } 3706 3707 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 3708 struct ieee80211_regdomain *rd) 3709 { 3710 const struct ieee80211_regdomain *regd; 3711 const struct ieee80211_regdomain *prev_regd; 3712 struct cfg80211_registered_device *rdev; 3713 3714 if (WARN_ON(!wiphy || !rd)) 3715 return -EINVAL; 3716 3717 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 3718 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 3719 return -EPERM; 3720 3721 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { 3722 print_regdomain_info(rd); 3723 return -EINVAL; 3724 } 3725 3726 regd = reg_copy_regd(rd); 3727 if (IS_ERR(regd)) 3728 return PTR_ERR(regd); 3729 3730 rdev = wiphy_to_rdev(wiphy); 3731 3732 spin_lock(®_requests_lock); 3733 prev_regd = rdev->requested_regd; 3734 rdev->requested_regd = regd; 3735 spin_unlock(®_requests_lock); 3736 3737 kfree(prev_regd); 3738 return 0; 3739 } 3740 3741 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 3742 struct ieee80211_regdomain *rd) 3743 { 3744 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 3745 3746 if (ret) 3747 return ret; 3748 3749 schedule_work(®_work); 3750 return 0; 3751 } 3752 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 3753 3754 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, 3755 struct ieee80211_regdomain *rd) 3756 { 3757 int ret; 3758 3759 ASSERT_RTNL(); 3760 3761 ret = __regulatory_set_wiphy_regd(wiphy, rd); 3762 if (ret) 3763 return ret; 3764 3765 /* process the request immediately */ 3766 reg_process_self_managed_hints(); 3767 return 0; 3768 } 3769 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); 3770 3771 void wiphy_regulatory_register(struct wiphy *wiphy) 3772 { 3773 struct regulatory_request *lr = get_last_request(); 3774 3775 /* self-managed devices ignore beacon hints and country IE */ 3776 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 3777 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 3778 REGULATORY_COUNTRY_IE_IGNORE; 3779 3780 /* 3781 * The last request may have been received before this 3782 * registration call. Call the driver notifier if 3783 * initiator is USER. 3784 */ 3785 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 3786 reg_call_notifier(wiphy, lr); 3787 } 3788 3789 if (!reg_dev_ignore_cell_hint(wiphy)) 3790 reg_num_devs_support_basehint++; 3791 3792 wiphy_update_regulatory(wiphy, lr->initiator); 3793 wiphy_all_share_dfs_chan_state(wiphy); 3794 } 3795 3796 void wiphy_regulatory_deregister(struct wiphy *wiphy) 3797 { 3798 struct wiphy *request_wiphy = NULL; 3799 struct regulatory_request *lr; 3800 3801 lr = get_last_request(); 3802 3803 if (!reg_dev_ignore_cell_hint(wiphy)) 3804 reg_num_devs_support_basehint--; 3805 3806 rcu_free_regdom(get_wiphy_regdom(wiphy)); 3807 RCU_INIT_POINTER(wiphy->regd, NULL); 3808 3809 if (lr) 3810 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 3811 3812 if (!request_wiphy || request_wiphy != wiphy) 3813 return; 3814 3815 lr->wiphy_idx = WIPHY_IDX_INVALID; 3816 lr->country_ie_env = ENVIRON_ANY; 3817 } 3818 3819 /* 3820 * See FCC notices for UNII band definitions 3821 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii 3822 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0 3823 */ 3824 int cfg80211_get_unii(int freq) 3825 { 3826 /* UNII-1 */ 3827 if (freq >= 5150 && freq <= 5250) 3828 return 0; 3829 3830 /* UNII-2A */ 3831 if (freq > 5250 && freq <= 5350) 3832 return 1; 3833 3834 /* UNII-2B */ 3835 if (freq > 5350 && freq <= 5470) 3836 return 2; 3837 3838 /* UNII-2C */ 3839 if (freq > 5470 && freq <= 5725) 3840 return 3; 3841 3842 /* UNII-3 */ 3843 if (freq > 5725 && freq <= 5825) 3844 return 4; 3845 3846 /* UNII-5 */ 3847 if (freq > 5925 && freq <= 6425) 3848 return 5; 3849 3850 /* UNII-6 */ 3851 if (freq > 6425 && freq <= 6525) 3852 return 6; 3853 3854 /* UNII-7 */ 3855 if (freq > 6525 && freq <= 6875) 3856 return 7; 3857 3858 /* UNII-8 */ 3859 if (freq > 6875 && freq <= 7125) 3860 return 8; 3861 3862 return -EINVAL; 3863 } 3864 3865 bool regulatory_indoor_allowed(void) 3866 { 3867 return reg_is_indoor; 3868 } 3869 3870 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 3871 { 3872 const struct ieee80211_regdomain *regd = NULL; 3873 const struct ieee80211_regdomain *wiphy_regd = NULL; 3874 bool pre_cac_allowed = false; 3875 3876 rcu_read_lock(); 3877 3878 regd = rcu_dereference(cfg80211_regdomain); 3879 wiphy_regd = rcu_dereference(wiphy->regd); 3880 if (!wiphy_regd) { 3881 if (regd->dfs_region == NL80211_DFS_ETSI) 3882 pre_cac_allowed = true; 3883 3884 rcu_read_unlock(); 3885 3886 return pre_cac_allowed; 3887 } 3888 3889 if (regd->dfs_region == wiphy_regd->dfs_region && 3890 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 3891 pre_cac_allowed = true; 3892 3893 rcu_read_unlock(); 3894 3895 return pre_cac_allowed; 3896 } 3897 EXPORT_SYMBOL(regulatory_pre_cac_allowed); 3898 3899 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev) 3900 { 3901 struct wireless_dev *wdev; 3902 /* If we finished CAC or received radar, we should end any 3903 * CAC running on the same channels. 3904 * the check !cfg80211_chandef_dfs_usable contain 2 options: 3905 * either all channels are available - those the CAC_FINISHED 3906 * event has effected another wdev state, or there is a channel 3907 * in unavailable state in wdev chandef - those the RADAR_DETECTED 3908 * event has effected another wdev state. 3909 * In both cases we should end the CAC on the wdev. 3910 */ 3911 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3912 if (wdev->cac_started && 3913 !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef)) 3914 rdev_end_cac(rdev, wdev->netdev); 3915 } 3916 } 3917 3918 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 3919 struct cfg80211_chan_def *chandef, 3920 enum nl80211_dfs_state dfs_state, 3921 enum nl80211_radar_event event) 3922 { 3923 struct cfg80211_registered_device *rdev; 3924 3925 ASSERT_RTNL(); 3926 3927 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 3928 return; 3929 3930 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3931 if (wiphy == &rdev->wiphy) 3932 continue; 3933 3934 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 3935 continue; 3936 3937 if (!ieee80211_get_channel(&rdev->wiphy, 3938 chandef->chan->center_freq)) 3939 continue; 3940 3941 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 3942 3943 if (event == NL80211_RADAR_DETECTED || 3944 event == NL80211_RADAR_CAC_FINISHED) { 3945 cfg80211_sched_dfs_chan_update(rdev); 3946 cfg80211_check_and_end_cac(rdev); 3947 } 3948 3949 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 3950 } 3951 } 3952 3953 static int __init regulatory_init_db(void) 3954 { 3955 int err; 3956 3957 /* 3958 * It's possible that - due to other bugs/issues - cfg80211 3959 * never called regulatory_init() below, or that it failed; 3960 * in that case, don't try to do any further work here as 3961 * it's doomed to lead to crashes. 3962 */ 3963 if (IS_ERR_OR_NULL(reg_pdev)) 3964 return -EINVAL; 3965 3966 err = load_builtin_regdb_keys(); 3967 if (err) 3968 return err; 3969 3970 /* We always try to get an update for the static regdomain */ 3971 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 3972 if (err) { 3973 if (err == -ENOMEM) { 3974 platform_device_unregister(reg_pdev); 3975 return err; 3976 } 3977 /* 3978 * N.B. kobject_uevent_env() can fail mainly for when we're out 3979 * memory which is handled and propagated appropriately above 3980 * but it can also fail during a netlink_broadcast() or during 3981 * early boot for call_usermodehelper(). For now treat these 3982 * errors as non-fatal. 3983 */ 3984 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 3985 } 3986 3987 /* 3988 * Finally, if the user set the module parameter treat it 3989 * as a user hint. 3990 */ 3991 if (!is_world_regdom(ieee80211_regdom)) 3992 regulatory_hint_user(ieee80211_regdom, 3993 NL80211_USER_REG_HINT_USER); 3994 3995 return 0; 3996 } 3997 #ifndef MODULE 3998 late_initcall(regulatory_init_db); 3999 #endif 4000 4001 int __init regulatory_init(void) 4002 { 4003 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 4004 if (IS_ERR(reg_pdev)) 4005 return PTR_ERR(reg_pdev); 4006 4007 spin_lock_init(®_requests_lock); 4008 spin_lock_init(®_pending_beacons_lock); 4009 spin_lock_init(®_indoor_lock); 4010 4011 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 4012 4013 user_alpha2[0] = '9'; 4014 user_alpha2[1] = '7'; 4015 4016 #ifdef MODULE 4017 return regulatory_init_db(); 4018 #else 4019 return 0; 4020 #endif 4021 } 4022 4023 void regulatory_exit(void) 4024 { 4025 struct regulatory_request *reg_request, *tmp; 4026 struct reg_beacon *reg_beacon, *btmp; 4027 4028 cancel_work_sync(®_work); 4029 cancel_crda_timeout_sync(); 4030 cancel_delayed_work_sync(®_check_chans); 4031 4032 /* Lock to suppress warnings */ 4033 rtnl_lock(); 4034 reset_regdomains(true, NULL); 4035 rtnl_unlock(); 4036 4037 dev_set_uevent_suppress(®_pdev->dev, true); 4038 4039 platform_device_unregister(reg_pdev); 4040 4041 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 4042 list_del(®_beacon->list); 4043 kfree(reg_beacon); 4044 } 4045 4046 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 4047 list_del(®_beacon->list); 4048 kfree(reg_beacon); 4049 } 4050 4051 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4052 list_del(®_request->list); 4053 kfree(reg_request); 4054 } 4055 4056 if (!IS_ERR_OR_NULL(regdb)) 4057 kfree(regdb); 4058 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4059 kfree(cfg80211_user_regdom); 4060 4061 free_regdb_keyring(); 4062 } 4063