1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 21 /** 22 * DOC: Wireless regulatory infrastructure 23 * 24 * The usual implementation is for a driver to read a device EEPROM to 25 * determine which regulatory domain it should be operating under, then 26 * looking up the allowable channels in a driver-local table and finally 27 * registering those channels in the wiphy structure. 28 * 29 * Another set of compliance enforcement is for drivers to use their 30 * own compliance limits which can be stored on the EEPROM. The host 31 * driver or firmware may ensure these are used. 32 * 33 * In addition to all this we provide an extra layer of regulatory 34 * conformance. For drivers which do not have any regulatory 35 * information CRDA provides the complete regulatory solution. 36 * For others it provides a community effort on further restrictions 37 * to enhance compliance. 38 * 39 * Note: When number of rules --> infinity we will not be able to 40 * index on alpha2 any more, instead we'll probably have to 41 * rely on some SHA1 checksum of the regdomain for example. 42 * 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/kernel.h> 48 #include <linux/export.h> 49 #include <linux/slab.h> 50 #include <linux/list.h> 51 #include <linux/ctype.h> 52 #include <linux/nl80211.h> 53 #include <linux/platform_device.h> 54 #include <linux/moduleparam.h> 55 #include <net/cfg80211.h> 56 #include "core.h" 57 #include "reg.h" 58 #include "regdb.h" 59 #include "nl80211.h" 60 61 #ifdef CONFIG_CFG80211_REG_DEBUG 62 #define REG_DBG_PRINT(format, args...) \ 63 printk(KERN_DEBUG pr_fmt(format), ##args) 64 #else 65 #define REG_DBG_PRINT(args...) 66 #endif 67 68 enum reg_request_treatment { 69 REG_REQ_OK, 70 REG_REQ_IGNORE, 71 REG_REQ_INTERSECT, 72 REG_REQ_ALREADY_SET, 73 }; 74 75 static struct regulatory_request core_request_world = { 76 .initiator = NL80211_REGDOM_SET_BY_CORE, 77 .alpha2[0] = '0', 78 .alpha2[1] = '0', 79 .intersect = false, 80 .processed = true, 81 .country_ie_env = ENVIRON_ANY, 82 }; 83 84 /* 85 * Receipt of information from last regulatory request, 86 * protected by RTNL (and can be accessed with RCU protection) 87 */ 88 static struct regulatory_request __rcu *last_request = 89 (void __rcu *)&core_request_world; 90 91 /* To trigger userspace events */ 92 static struct platform_device *reg_pdev; 93 94 static struct device_type reg_device_type = { 95 .uevent = reg_device_uevent, 96 }; 97 98 /* 99 * Central wireless core regulatory domains, we only need two, 100 * the current one and a world regulatory domain in case we have no 101 * information to give us an alpha2. 102 * (protected by RTNL, can be read under RCU) 103 */ 104 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 105 106 /* 107 * Number of devices that registered to the core 108 * that support cellular base station regulatory hints 109 * (protected by RTNL) 110 */ 111 static int reg_num_devs_support_basehint; 112 113 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 114 { 115 return rtnl_dereference(cfg80211_regdomain); 116 } 117 118 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 119 { 120 return rtnl_dereference(wiphy->regd); 121 } 122 123 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 124 { 125 if (!r) 126 return; 127 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 128 } 129 130 static struct regulatory_request *get_last_request(void) 131 { 132 return rcu_dereference_rtnl(last_request); 133 } 134 135 /* Used to queue up regulatory hints */ 136 static LIST_HEAD(reg_requests_list); 137 static spinlock_t reg_requests_lock; 138 139 /* Used to queue up beacon hints for review */ 140 static LIST_HEAD(reg_pending_beacons); 141 static spinlock_t reg_pending_beacons_lock; 142 143 /* Used to keep track of processed beacon hints */ 144 static LIST_HEAD(reg_beacon_list); 145 146 struct reg_beacon { 147 struct list_head list; 148 struct ieee80211_channel chan; 149 }; 150 151 static void reg_todo(struct work_struct *work); 152 static DECLARE_WORK(reg_work, reg_todo); 153 154 static void reg_timeout_work(struct work_struct *work); 155 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work); 156 157 /* We keep a static world regulatory domain in case of the absence of CRDA */ 158 static const struct ieee80211_regdomain world_regdom = { 159 .n_reg_rules = 6, 160 .alpha2 = "00", 161 .reg_rules = { 162 /* IEEE 802.11b/g, channels 1..11 */ 163 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 164 /* IEEE 802.11b/g, channels 12..13. */ 165 REG_RULE(2467-10, 2472+10, 40, 6, 20, 166 NL80211_RRF_PASSIVE_SCAN | 167 NL80211_RRF_NO_IBSS), 168 /* IEEE 802.11 channel 14 - Only JP enables 169 * this and for 802.11b only */ 170 REG_RULE(2484-10, 2484+10, 20, 6, 20, 171 NL80211_RRF_PASSIVE_SCAN | 172 NL80211_RRF_NO_IBSS | 173 NL80211_RRF_NO_OFDM), 174 /* IEEE 802.11a, channel 36..48 */ 175 REG_RULE(5180-10, 5240+10, 160, 6, 20, 176 NL80211_RRF_PASSIVE_SCAN | 177 NL80211_RRF_NO_IBSS), 178 179 /* IEEE 802.11a, channel 52..64 - DFS required */ 180 REG_RULE(5260-10, 5320+10, 160, 6, 20, 181 NL80211_RRF_PASSIVE_SCAN | 182 NL80211_RRF_NO_IBSS | 183 NL80211_RRF_DFS), 184 185 /* IEEE 802.11a, channel 100..144 - DFS required */ 186 REG_RULE(5500-10, 5720+10, 160, 6, 20, 187 NL80211_RRF_PASSIVE_SCAN | 188 NL80211_RRF_NO_IBSS | 189 NL80211_RRF_DFS), 190 191 /* IEEE 802.11a, channel 149..165 */ 192 REG_RULE(5745-10, 5825+10, 80, 6, 20, 193 NL80211_RRF_PASSIVE_SCAN | 194 NL80211_RRF_NO_IBSS), 195 196 /* IEEE 802.11ad (60gHz), channels 1..3 */ 197 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 198 } 199 }; 200 201 /* protected by RTNL */ 202 static const struct ieee80211_regdomain *cfg80211_world_regdom = 203 &world_regdom; 204 205 static char *ieee80211_regdom = "00"; 206 static char user_alpha2[2]; 207 208 module_param(ieee80211_regdom, charp, 0444); 209 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 210 211 static void reset_regdomains(bool full_reset, 212 const struct ieee80211_regdomain *new_regdom) 213 { 214 const struct ieee80211_regdomain *r; 215 struct regulatory_request *lr; 216 217 ASSERT_RTNL(); 218 219 r = get_cfg80211_regdom(); 220 221 /* avoid freeing static information or freeing something twice */ 222 if (r == cfg80211_world_regdom) 223 r = NULL; 224 if (cfg80211_world_regdom == &world_regdom) 225 cfg80211_world_regdom = NULL; 226 if (r == &world_regdom) 227 r = NULL; 228 229 rcu_free_regdom(r); 230 rcu_free_regdom(cfg80211_world_regdom); 231 232 cfg80211_world_regdom = &world_regdom; 233 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 234 235 if (!full_reset) 236 return; 237 238 lr = get_last_request(); 239 if (lr != &core_request_world && lr) 240 kfree_rcu(lr, rcu_head); 241 rcu_assign_pointer(last_request, &core_request_world); 242 } 243 244 /* 245 * Dynamic world regulatory domain requested by the wireless 246 * core upon initialization 247 */ 248 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 249 { 250 struct regulatory_request *lr; 251 252 lr = get_last_request(); 253 254 WARN_ON(!lr); 255 256 reset_regdomains(false, rd); 257 258 cfg80211_world_regdom = rd; 259 } 260 261 bool is_world_regdom(const char *alpha2) 262 { 263 if (!alpha2) 264 return false; 265 return alpha2[0] == '0' && alpha2[1] == '0'; 266 } 267 268 static bool is_alpha2_set(const char *alpha2) 269 { 270 if (!alpha2) 271 return false; 272 return alpha2[0] && alpha2[1]; 273 } 274 275 static bool is_unknown_alpha2(const char *alpha2) 276 { 277 if (!alpha2) 278 return false; 279 /* 280 * Special case where regulatory domain was built by driver 281 * but a specific alpha2 cannot be determined 282 */ 283 return alpha2[0] == '9' && alpha2[1] == '9'; 284 } 285 286 static bool is_intersected_alpha2(const char *alpha2) 287 { 288 if (!alpha2) 289 return false; 290 /* 291 * Special case where regulatory domain is the 292 * result of an intersection between two regulatory domain 293 * structures 294 */ 295 return alpha2[0] == '9' && alpha2[1] == '8'; 296 } 297 298 static bool is_an_alpha2(const char *alpha2) 299 { 300 if (!alpha2) 301 return false; 302 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 303 } 304 305 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 306 { 307 if (!alpha2_x || !alpha2_y) 308 return false; 309 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 310 } 311 312 static bool regdom_changes(const char *alpha2) 313 { 314 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 315 316 if (!r) 317 return true; 318 return !alpha2_equal(r->alpha2, alpha2); 319 } 320 321 /* 322 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 323 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 324 * has ever been issued. 325 */ 326 static bool is_user_regdom_saved(void) 327 { 328 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 329 return false; 330 331 /* This would indicate a mistake on the design */ 332 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 333 "Unexpected user alpha2: %c%c\n", 334 user_alpha2[0], user_alpha2[1])) 335 return false; 336 337 return true; 338 } 339 340 static const struct ieee80211_regdomain * 341 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 342 { 343 struct ieee80211_regdomain *regd; 344 int size_of_regd; 345 unsigned int i; 346 347 size_of_regd = 348 sizeof(struct ieee80211_regdomain) + 349 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); 350 351 regd = kzalloc(size_of_regd, GFP_KERNEL); 352 if (!regd) 353 return ERR_PTR(-ENOMEM); 354 355 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 356 357 for (i = 0; i < src_regd->n_reg_rules; i++) 358 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 359 sizeof(struct ieee80211_reg_rule)); 360 361 return regd; 362 } 363 364 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 365 struct reg_regdb_search_request { 366 char alpha2[2]; 367 struct list_head list; 368 }; 369 370 static LIST_HEAD(reg_regdb_search_list); 371 static DEFINE_MUTEX(reg_regdb_search_mutex); 372 373 static void reg_regdb_search(struct work_struct *work) 374 { 375 struct reg_regdb_search_request *request; 376 const struct ieee80211_regdomain *curdom, *regdom = NULL; 377 int i; 378 379 rtnl_lock(); 380 381 mutex_lock(®_regdb_search_mutex); 382 while (!list_empty(®_regdb_search_list)) { 383 request = list_first_entry(®_regdb_search_list, 384 struct reg_regdb_search_request, 385 list); 386 list_del(&request->list); 387 388 for (i = 0; i < reg_regdb_size; i++) { 389 curdom = reg_regdb[i]; 390 391 if (alpha2_equal(request->alpha2, curdom->alpha2)) { 392 regdom = reg_copy_regd(curdom); 393 break; 394 } 395 } 396 397 kfree(request); 398 } 399 mutex_unlock(®_regdb_search_mutex); 400 401 if (!IS_ERR_OR_NULL(regdom)) 402 set_regdom(regdom); 403 404 rtnl_unlock(); 405 } 406 407 static DECLARE_WORK(reg_regdb_work, reg_regdb_search); 408 409 static void reg_regdb_query(const char *alpha2) 410 { 411 struct reg_regdb_search_request *request; 412 413 if (!alpha2) 414 return; 415 416 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL); 417 if (!request) 418 return; 419 420 memcpy(request->alpha2, alpha2, 2); 421 422 mutex_lock(®_regdb_search_mutex); 423 list_add_tail(&request->list, ®_regdb_search_list); 424 mutex_unlock(®_regdb_search_mutex); 425 426 schedule_work(®_regdb_work); 427 } 428 429 /* Feel free to add any other sanity checks here */ 430 static void reg_regdb_size_check(void) 431 { 432 /* We should ideally BUILD_BUG_ON() but then random builds would fail */ 433 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it..."); 434 } 435 #else 436 static inline void reg_regdb_size_check(void) {} 437 static inline void reg_regdb_query(const char *alpha2) {} 438 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 439 440 /* 441 * This lets us keep regulatory code which is updated on a regulatory 442 * basis in userspace. Country information is filled in by 443 * reg_device_uevent 444 */ 445 static int call_crda(const char *alpha2) 446 { 447 if (!is_world_regdom((char *) alpha2)) 448 pr_info("Calling CRDA for country: %c%c\n", 449 alpha2[0], alpha2[1]); 450 else 451 pr_info("Calling CRDA to update world regulatory domain\n"); 452 453 /* query internal regulatory database (if it exists) */ 454 reg_regdb_query(alpha2); 455 456 return kobject_uevent(®_pdev->dev.kobj, KOBJ_CHANGE); 457 } 458 459 static bool reg_is_valid_request(const char *alpha2) 460 { 461 struct regulatory_request *lr = get_last_request(); 462 463 if (!lr || lr->processed) 464 return false; 465 466 return alpha2_equal(lr->alpha2, alpha2); 467 } 468 469 /* Sanity check on a regulatory rule */ 470 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 471 { 472 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 473 u32 freq_diff; 474 475 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 476 return false; 477 478 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 479 return false; 480 481 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 482 483 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 484 freq_range->max_bandwidth_khz > freq_diff) 485 return false; 486 487 return true; 488 } 489 490 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 491 { 492 const struct ieee80211_reg_rule *reg_rule = NULL; 493 unsigned int i; 494 495 if (!rd->n_reg_rules) 496 return false; 497 498 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 499 return false; 500 501 for (i = 0; i < rd->n_reg_rules; i++) { 502 reg_rule = &rd->reg_rules[i]; 503 if (!is_valid_reg_rule(reg_rule)) 504 return false; 505 } 506 507 return true; 508 } 509 510 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 511 u32 center_freq_khz, u32 bw_khz) 512 { 513 u32 start_freq_khz, end_freq_khz; 514 515 start_freq_khz = center_freq_khz - (bw_khz/2); 516 end_freq_khz = center_freq_khz + (bw_khz/2); 517 518 if (start_freq_khz >= freq_range->start_freq_khz && 519 end_freq_khz <= freq_range->end_freq_khz) 520 return true; 521 522 return false; 523 } 524 525 /** 526 * freq_in_rule_band - tells us if a frequency is in a frequency band 527 * @freq_range: frequency rule we want to query 528 * @freq_khz: frequency we are inquiring about 529 * 530 * This lets us know if a specific frequency rule is or is not relevant to 531 * a specific frequency's band. Bands are device specific and artificial 532 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 533 * however it is safe for now to assume that a frequency rule should not be 534 * part of a frequency's band if the start freq or end freq are off by more 535 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the 536 * 60 GHz band. 537 * This resolution can be lowered and should be considered as we add 538 * regulatory rule support for other "bands". 539 **/ 540 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 541 u32 freq_khz) 542 { 543 #define ONE_GHZ_IN_KHZ 1000000 544 /* 545 * From 802.11ad: directional multi-gigabit (DMG): 546 * Pertaining to operation in a frequency band containing a channel 547 * with the Channel starting frequency above 45 GHz. 548 */ 549 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 550 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 551 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 552 return true; 553 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 554 return true; 555 return false; 556 #undef ONE_GHZ_IN_KHZ 557 } 558 559 /* 560 * Helper for regdom_intersect(), this does the real 561 * mathematical intersection fun 562 */ 563 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1, 564 const struct ieee80211_reg_rule *rule2, 565 struct ieee80211_reg_rule *intersected_rule) 566 { 567 const struct ieee80211_freq_range *freq_range1, *freq_range2; 568 struct ieee80211_freq_range *freq_range; 569 const struct ieee80211_power_rule *power_rule1, *power_rule2; 570 struct ieee80211_power_rule *power_rule; 571 u32 freq_diff; 572 573 freq_range1 = &rule1->freq_range; 574 freq_range2 = &rule2->freq_range; 575 freq_range = &intersected_rule->freq_range; 576 577 power_rule1 = &rule1->power_rule; 578 power_rule2 = &rule2->power_rule; 579 power_rule = &intersected_rule->power_rule; 580 581 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 582 freq_range2->start_freq_khz); 583 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 584 freq_range2->end_freq_khz); 585 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz, 586 freq_range2->max_bandwidth_khz); 587 588 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 589 if (freq_range->max_bandwidth_khz > freq_diff) 590 freq_range->max_bandwidth_khz = freq_diff; 591 592 power_rule->max_eirp = min(power_rule1->max_eirp, 593 power_rule2->max_eirp); 594 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 595 power_rule2->max_antenna_gain); 596 597 intersected_rule->flags = rule1->flags | rule2->flags; 598 599 if (!is_valid_reg_rule(intersected_rule)) 600 return -EINVAL; 601 602 return 0; 603 } 604 605 /** 606 * regdom_intersect - do the intersection between two regulatory domains 607 * @rd1: first regulatory domain 608 * @rd2: second regulatory domain 609 * 610 * Use this function to get the intersection between two regulatory domains. 611 * Once completed we will mark the alpha2 for the rd as intersected, "98", 612 * as no one single alpha2 can represent this regulatory domain. 613 * 614 * Returns a pointer to the regulatory domain structure which will hold the 615 * resulting intersection of rules between rd1 and rd2. We will 616 * kzalloc() this structure for you. 617 */ 618 static struct ieee80211_regdomain * 619 regdom_intersect(const struct ieee80211_regdomain *rd1, 620 const struct ieee80211_regdomain *rd2) 621 { 622 int r, size_of_regd; 623 unsigned int x, y; 624 unsigned int num_rules = 0, rule_idx = 0; 625 const struct ieee80211_reg_rule *rule1, *rule2; 626 struct ieee80211_reg_rule *intersected_rule; 627 struct ieee80211_regdomain *rd; 628 /* This is just a dummy holder to help us count */ 629 struct ieee80211_reg_rule dummy_rule; 630 631 if (!rd1 || !rd2) 632 return NULL; 633 634 /* 635 * First we get a count of the rules we'll need, then we actually 636 * build them. This is to so we can malloc() and free() a 637 * regdomain once. The reason we use reg_rules_intersect() here 638 * is it will return -EINVAL if the rule computed makes no sense. 639 * All rules that do check out OK are valid. 640 */ 641 642 for (x = 0; x < rd1->n_reg_rules; x++) { 643 rule1 = &rd1->reg_rules[x]; 644 for (y = 0; y < rd2->n_reg_rules; y++) { 645 rule2 = &rd2->reg_rules[y]; 646 if (!reg_rules_intersect(rule1, rule2, &dummy_rule)) 647 num_rules++; 648 } 649 } 650 651 if (!num_rules) 652 return NULL; 653 654 size_of_regd = sizeof(struct ieee80211_regdomain) + 655 num_rules * sizeof(struct ieee80211_reg_rule); 656 657 rd = kzalloc(size_of_regd, GFP_KERNEL); 658 if (!rd) 659 return NULL; 660 661 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) { 662 rule1 = &rd1->reg_rules[x]; 663 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) { 664 rule2 = &rd2->reg_rules[y]; 665 /* 666 * This time around instead of using the stack lets 667 * write to the target rule directly saving ourselves 668 * a memcpy() 669 */ 670 intersected_rule = &rd->reg_rules[rule_idx]; 671 r = reg_rules_intersect(rule1, rule2, intersected_rule); 672 /* 673 * No need to memset here the intersected rule here as 674 * we're not using the stack anymore 675 */ 676 if (r) 677 continue; 678 rule_idx++; 679 } 680 } 681 682 if (rule_idx != num_rules) { 683 kfree(rd); 684 return NULL; 685 } 686 687 rd->n_reg_rules = num_rules; 688 rd->alpha2[0] = '9'; 689 rd->alpha2[1] = '8'; 690 691 return rd; 692 } 693 694 /* 695 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 696 * want to just have the channel structure use these 697 */ 698 static u32 map_regdom_flags(u32 rd_flags) 699 { 700 u32 channel_flags = 0; 701 if (rd_flags & NL80211_RRF_PASSIVE_SCAN) 702 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN; 703 if (rd_flags & NL80211_RRF_NO_IBSS) 704 channel_flags |= IEEE80211_CHAN_NO_IBSS; 705 if (rd_flags & NL80211_RRF_DFS) 706 channel_flags |= IEEE80211_CHAN_RADAR; 707 if (rd_flags & NL80211_RRF_NO_OFDM) 708 channel_flags |= IEEE80211_CHAN_NO_OFDM; 709 return channel_flags; 710 } 711 712 static const struct ieee80211_reg_rule * 713 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq, 714 const struct ieee80211_regdomain *regd) 715 { 716 int i; 717 bool band_rule_found = false; 718 bool bw_fits = false; 719 720 if (!regd) 721 return ERR_PTR(-EINVAL); 722 723 for (i = 0; i < regd->n_reg_rules; i++) { 724 const struct ieee80211_reg_rule *rr; 725 const struct ieee80211_freq_range *fr = NULL; 726 727 rr = ®d->reg_rules[i]; 728 fr = &rr->freq_range; 729 730 /* 731 * We only need to know if one frequency rule was 732 * was in center_freq's band, that's enough, so lets 733 * not overwrite it once found 734 */ 735 if (!band_rule_found) 736 band_rule_found = freq_in_rule_band(fr, center_freq); 737 738 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20)); 739 740 if (band_rule_found && bw_fits) 741 return rr; 742 } 743 744 if (!band_rule_found) 745 return ERR_PTR(-ERANGE); 746 747 return ERR_PTR(-EINVAL); 748 } 749 750 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 751 u32 center_freq) 752 { 753 const struct ieee80211_regdomain *regd; 754 struct regulatory_request *lr = get_last_request(); 755 756 /* 757 * Follow the driver's regulatory domain, if present, unless a country 758 * IE has been processed or a user wants to help complaince further 759 */ 760 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 761 lr->initiator != NL80211_REGDOM_SET_BY_USER && 762 wiphy->regd) 763 regd = get_wiphy_regdom(wiphy); 764 else 765 regd = get_cfg80211_regdom(); 766 767 return freq_reg_info_regd(wiphy, center_freq, regd); 768 } 769 EXPORT_SYMBOL(freq_reg_info); 770 771 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 772 { 773 switch (initiator) { 774 case NL80211_REGDOM_SET_BY_CORE: 775 return "core"; 776 case NL80211_REGDOM_SET_BY_USER: 777 return "user"; 778 case NL80211_REGDOM_SET_BY_DRIVER: 779 return "driver"; 780 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 781 return "country IE"; 782 default: 783 WARN_ON(1); 784 return "bug"; 785 } 786 } 787 EXPORT_SYMBOL(reg_initiator_name); 788 789 #ifdef CONFIG_CFG80211_REG_DEBUG 790 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 791 const struct ieee80211_reg_rule *reg_rule) 792 { 793 const struct ieee80211_power_rule *power_rule; 794 const struct ieee80211_freq_range *freq_range; 795 char max_antenna_gain[32]; 796 797 power_rule = ®_rule->power_rule; 798 freq_range = ®_rule->freq_range; 799 800 if (!power_rule->max_antenna_gain) 801 snprintf(max_antenna_gain, 32, "N/A"); 802 else 803 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain); 804 805 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n", 806 chan->center_freq); 807 808 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n", 809 freq_range->start_freq_khz, freq_range->end_freq_khz, 810 freq_range->max_bandwidth_khz, max_antenna_gain, 811 power_rule->max_eirp); 812 } 813 #else 814 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 815 const struct ieee80211_reg_rule *reg_rule) 816 { 817 return; 818 } 819 #endif 820 821 /* 822 * Note that right now we assume the desired channel bandwidth 823 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 824 * per channel, the primary and the extension channel). 825 */ 826 static void handle_channel(struct wiphy *wiphy, 827 enum nl80211_reg_initiator initiator, 828 struct ieee80211_channel *chan) 829 { 830 u32 flags, bw_flags = 0; 831 const struct ieee80211_reg_rule *reg_rule = NULL; 832 const struct ieee80211_power_rule *power_rule = NULL; 833 const struct ieee80211_freq_range *freq_range = NULL; 834 struct wiphy *request_wiphy = NULL; 835 struct regulatory_request *lr = get_last_request(); 836 837 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 838 839 flags = chan->orig_flags; 840 841 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 842 if (IS_ERR(reg_rule)) { 843 /* 844 * We will disable all channels that do not match our 845 * received regulatory rule unless the hint is coming 846 * from a Country IE and the Country IE had no information 847 * about a band. The IEEE 802.11 spec allows for an AP 848 * to send only a subset of the regulatory rules allowed, 849 * so an AP in the US that only supports 2.4 GHz may only send 850 * a country IE with information for the 2.4 GHz band 851 * while 5 GHz is still supported. 852 */ 853 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 854 PTR_ERR(reg_rule) == -ERANGE) 855 return; 856 857 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq); 858 chan->flags |= IEEE80211_CHAN_DISABLED; 859 return; 860 } 861 862 chan_reg_rule_print_dbg(chan, reg_rule); 863 864 power_rule = ®_rule->power_rule; 865 freq_range = ®_rule->freq_range; 866 867 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 868 bw_flags = IEEE80211_CHAN_NO_HT40; 869 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80)) 870 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 871 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160)) 872 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 873 874 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 875 request_wiphy && request_wiphy == wiphy && 876 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { 877 /* 878 * This guarantees the driver's requested regulatory domain 879 * will always be used as a base for further regulatory 880 * settings 881 */ 882 chan->flags = chan->orig_flags = 883 map_regdom_flags(reg_rule->flags) | bw_flags; 884 chan->max_antenna_gain = chan->orig_mag = 885 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 886 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 887 (int) MBM_TO_DBM(power_rule->max_eirp); 888 return; 889 } 890 891 chan->dfs_state = NL80211_DFS_USABLE; 892 chan->dfs_state_entered = jiffies; 893 894 chan->beacon_found = false; 895 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 896 chan->max_antenna_gain = 897 min_t(int, chan->orig_mag, 898 MBI_TO_DBI(power_rule->max_antenna_gain)); 899 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 900 if (chan->orig_mpwr) { 901 /* 902 * Devices that have their own custom regulatory domain 903 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the 904 * passed country IE power settings. 905 */ 906 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 907 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY && 908 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) 909 chan->max_power = chan->max_reg_power; 910 else 911 chan->max_power = min(chan->orig_mpwr, 912 chan->max_reg_power); 913 } else 914 chan->max_power = chan->max_reg_power; 915 } 916 917 static void handle_band(struct wiphy *wiphy, 918 enum nl80211_reg_initiator initiator, 919 struct ieee80211_supported_band *sband) 920 { 921 unsigned int i; 922 923 if (!sband) 924 return; 925 926 for (i = 0; i < sband->n_channels; i++) 927 handle_channel(wiphy, initiator, &sband->channels[i]); 928 } 929 930 static bool reg_request_cell_base(struct regulatory_request *request) 931 { 932 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 933 return false; 934 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 935 } 936 937 bool reg_last_request_cell_base(void) 938 { 939 return reg_request_cell_base(get_last_request()); 940 } 941 942 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS 943 /* Core specific check */ 944 static enum reg_request_treatment 945 reg_ignore_cell_hint(struct regulatory_request *pending_request) 946 { 947 struct regulatory_request *lr = get_last_request(); 948 949 if (!reg_num_devs_support_basehint) 950 return REG_REQ_IGNORE; 951 952 if (reg_request_cell_base(lr) && 953 !regdom_changes(pending_request->alpha2)) 954 return REG_REQ_ALREADY_SET; 955 956 return REG_REQ_OK; 957 } 958 959 /* Device specific check */ 960 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 961 { 962 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 963 } 964 #else 965 static int reg_ignore_cell_hint(struct regulatory_request *pending_request) 966 { 967 return REG_REQ_IGNORE; 968 } 969 970 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 971 { 972 return true; 973 } 974 #endif 975 976 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 977 { 978 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && 979 !(wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)) 980 return true; 981 return false; 982 } 983 984 static bool ignore_reg_update(struct wiphy *wiphy, 985 enum nl80211_reg_initiator initiator) 986 { 987 struct regulatory_request *lr = get_last_request(); 988 989 if (!lr) { 990 REG_DBG_PRINT("Ignoring regulatory request set by %s " 991 "since last_request is not set\n", 992 reg_initiator_name(initiator)); 993 return true; 994 } 995 996 if (initiator == NL80211_REGDOM_SET_BY_CORE && 997 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) { 998 REG_DBG_PRINT("Ignoring regulatory request set by %s " 999 "since the driver uses its own custom " 1000 "regulatory domain\n", 1001 reg_initiator_name(initiator)); 1002 return true; 1003 } 1004 1005 /* 1006 * wiphy->regd will be set once the device has its own 1007 * desired regulatory domain set 1008 */ 1009 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1010 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1011 !is_world_regdom(lr->alpha2)) { 1012 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1013 "since the driver requires its own regulatory " 1014 "domain to be set first\n", 1015 reg_initiator_name(initiator)); 1016 return true; 1017 } 1018 1019 if (reg_request_cell_base(lr)) 1020 return reg_dev_ignore_cell_hint(wiphy); 1021 1022 return false; 1023 } 1024 1025 static bool reg_is_world_roaming(struct wiphy *wiphy) 1026 { 1027 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1028 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1029 struct regulatory_request *lr = get_last_request(); 1030 1031 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1032 return true; 1033 1034 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1035 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) 1036 return true; 1037 1038 return false; 1039 } 1040 1041 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1042 struct reg_beacon *reg_beacon) 1043 { 1044 struct ieee80211_supported_band *sband; 1045 struct ieee80211_channel *chan; 1046 bool channel_changed = false; 1047 struct ieee80211_channel chan_before; 1048 1049 sband = wiphy->bands[reg_beacon->chan.band]; 1050 chan = &sband->channels[chan_idx]; 1051 1052 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1053 return; 1054 1055 if (chan->beacon_found) 1056 return; 1057 1058 chan->beacon_found = true; 1059 1060 if (!reg_is_world_roaming(wiphy)) 1061 return; 1062 1063 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS) 1064 return; 1065 1066 chan_before.center_freq = chan->center_freq; 1067 chan_before.flags = chan->flags; 1068 1069 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) { 1070 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN; 1071 channel_changed = true; 1072 } 1073 1074 if (chan->flags & IEEE80211_CHAN_NO_IBSS) { 1075 chan->flags &= ~IEEE80211_CHAN_NO_IBSS; 1076 channel_changed = true; 1077 } 1078 1079 if (channel_changed) 1080 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1081 } 1082 1083 /* 1084 * Called when a scan on a wiphy finds a beacon on 1085 * new channel 1086 */ 1087 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1088 struct reg_beacon *reg_beacon) 1089 { 1090 unsigned int i; 1091 struct ieee80211_supported_band *sband; 1092 1093 if (!wiphy->bands[reg_beacon->chan.band]) 1094 return; 1095 1096 sband = wiphy->bands[reg_beacon->chan.band]; 1097 1098 for (i = 0; i < sband->n_channels; i++) 1099 handle_reg_beacon(wiphy, i, reg_beacon); 1100 } 1101 1102 /* 1103 * Called upon reg changes or a new wiphy is added 1104 */ 1105 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1106 { 1107 unsigned int i; 1108 struct ieee80211_supported_band *sband; 1109 struct reg_beacon *reg_beacon; 1110 1111 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1112 if (!wiphy->bands[reg_beacon->chan.band]) 1113 continue; 1114 sband = wiphy->bands[reg_beacon->chan.band]; 1115 for (i = 0; i < sband->n_channels; i++) 1116 handle_reg_beacon(wiphy, i, reg_beacon); 1117 } 1118 } 1119 1120 /* Reap the advantages of previously found beacons */ 1121 static void reg_process_beacons(struct wiphy *wiphy) 1122 { 1123 /* 1124 * Means we are just firing up cfg80211, so no beacons would 1125 * have been processed yet. 1126 */ 1127 if (!last_request) 1128 return; 1129 wiphy_update_beacon_reg(wiphy); 1130 } 1131 1132 static bool is_ht40_allowed(struct ieee80211_channel *chan) 1133 { 1134 if (!chan) 1135 return false; 1136 if (chan->flags & IEEE80211_CHAN_DISABLED) 1137 return false; 1138 /* This would happen when regulatory rules disallow HT40 completely */ 1139 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 1140 return false; 1141 return true; 1142 } 1143 1144 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1145 struct ieee80211_channel *channel) 1146 { 1147 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 1148 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1149 unsigned int i; 1150 1151 if (!is_ht40_allowed(channel)) { 1152 channel->flags |= IEEE80211_CHAN_NO_HT40; 1153 return; 1154 } 1155 1156 /* 1157 * We need to ensure the extension channels exist to 1158 * be able to use HT40- or HT40+, this finds them (or not) 1159 */ 1160 for (i = 0; i < sband->n_channels; i++) { 1161 struct ieee80211_channel *c = &sband->channels[i]; 1162 1163 if (c->center_freq == (channel->center_freq - 20)) 1164 channel_before = c; 1165 if (c->center_freq == (channel->center_freq + 20)) 1166 channel_after = c; 1167 } 1168 1169 /* 1170 * Please note that this assumes target bandwidth is 20 MHz, 1171 * if that ever changes we also need to change the below logic 1172 * to include that as well. 1173 */ 1174 if (!is_ht40_allowed(channel_before)) 1175 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1176 else 1177 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1178 1179 if (!is_ht40_allowed(channel_after)) 1180 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1181 else 1182 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1183 } 1184 1185 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1186 struct ieee80211_supported_band *sband) 1187 { 1188 unsigned int i; 1189 1190 if (!sband) 1191 return; 1192 1193 for (i = 0; i < sband->n_channels; i++) 1194 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 1195 } 1196 1197 static void reg_process_ht_flags(struct wiphy *wiphy) 1198 { 1199 enum ieee80211_band band; 1200 1201 if (!wiphy) 1202 return; 1203 1204 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1205 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 1206 } 1207 1208 static void wiphy_update_regulatory(struct wiphy *wiphy, 1209 enum nl80211_reg_initiator initiator) 1210 { 1211 enum ieee80211_band band; 1212 struct regulatory_request *lr = get_last_request(); 1213 1214 if (ignore_reg_update(wiphy, initiator)) 1215 return; 1216 1217 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 1218 1219 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1220 handle_band(wiphy, initiator, wiphy->bands[band]); 1221 1222 reg_process_beacons(wiphy); 1223 reg_process_ht_flags(wiphy); 1224 1225 if (wiphy->reg_notifier) 1226 wiphy->reg_notifier(wiphy, lr); 1227 } 1228 1229 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 1230 { 1231 struct cfg80211_registered_device *rdev; 1232 struct wiphy *wiphy; 1233 1234 ASSERT_RTNL(); 1235 1236 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1237 wiphy = &rdev->wiphy; 1238 wiphy_update_regulatory(wiphy, initiator); 1239 /* 1240 * Regulatory updates set by CORE are ignored for custom 1241 * regulatory cards. Let us notify the changes to the driver, 1242 * as some drivers used this to restore its orig_* reg domain. 1243 */ 1244 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1245 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY && 1246 wiphy->reg_notifier) 1247 wiphy->reg_notifier(wiphy, get_last_request()); 1248 } 1249 } 1250 1251 static void handle_channel_custom(struct wiphy *wiphy, 1252 struct ieee80211_channel *chan, 1253 const struct ieee80211_regdomain *regd) 1254 { 1255 u32 bw_flags = 0; 1256 const struct ieee80211_reg_rule *reg_rule = NULL; 1257 const struct ieee80211_power_rule *power_rule = NULL; 1258 const struct ieee80211_freq_range *freq_range = NULL; 1259 1260 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq), 1261 regd); 1262 1263 if (IS_ERR(reg_rule)) { 1264 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n", 1265 chan->center_freq); 1266 chan->flags = IEEE80211_CHAN_DISABLED; 1267 return; 1268 } 1269 1270 chan_reg_rule_print_dbg(chan, reg_rule); 1271 1272 power_rule = ®_rule->power_rule; 1273 freq_range = ®_rule->freq_range; 1274 1275 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 1276 bw_flags = IEEE80211_CHAN_NO_HT40; 1277 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80)) 1278 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1279 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160)) 1280 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1281 1282 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1283 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1284 chan->max_reg_power = chan->max_power = 1285 (int) MBM_TO_DBM(power_rule->max_eirp); 1286 } 1287 1288 static void handle_band_custom(struct wiphy *wiphy, 1289 struct ieee80211_supported_band *sband, 1290 const struct ieee80211_regdomain *regd) 1291 { 1292 unsigned int i; 1293 1294 if (!sband) 1295 return; 1296 1297 for (i = 0; i < sband->n_channels; i++) 1298 handle_channel_custom(wiphy, &sband->channels[i], regd); 1299 } 1300 1301 /* Used by drivers prior to wiphy registration */ 1302 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1303 const struct ieee80211_regdomain *regd) 1304 { 1305 enum ieee80211_band band; 1306 unsigned int bands_set = 0; 1307 1308 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1309 if (!wiphy->bands[band]) 1310 continue; 1311 handle_band_custom(wiphy, wiphy->bands[band], regd); 1312 bands_set++; 1313 } 1314 1315 /* 1316 * no point in calling this if it won't have any effect 1317 * on your device's supported bands. 1318 */ 1319 WARN_ON(!bands_set); 1320 } 1321 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1322 1323 /* This has the logic which determines when a new request 1324 * should be ignored. */ 1325 static enum reg_request_treatment 1326 get_reg_request_treatment(struct wiphy *wiphy, 1327 struct regulatory_request *pending_request) 1328 { 1329 struct wiphy *last_wiphy = NULL; 1330 struct regulatory_request *lr = get_last_request(); 1331 1332 /* All initial requests are respected */ 1333 if (!lr) 1334 return REG_REQ_OK; 1335 1336 switch (pending_request->initiator) { 1337 case NL80211_REGDOM_SET_BY_CORE: 1338 return REG_REQ_OK; 1339 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1340 if (reg_request_cell_base(lr)) { 1341 /* Trust a Cell base station over the AP's country IE */ 1342 if (regdom_changes(pending_request->alpha2)) 1343 return REG_REQ_IGNORE; 1344 return REG_REQ_ALREADY_SET; 1345 } 1346 1347 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1348 1349 if (unlikely(!is_an_alpha2(pending_request->alpha2))) 1350 return -EINVAL; 1351 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1352 if (last_wiphy != wiphy) { 1353 /* 1354 * Two cards with two APs claiming different 1355 * Country IE alpha2s. We could 1356 * intersect them, but that seems unlikely 1357 * to be correct. Reject second one for now. 1358 */ 1359 if (regdom_changes(pending_request->alpha2)) 1360 return REG_REQ_IGNORE; 1361 return REG_REQ_ALREADY_SET; 1362 } 1363 /* 1364 * Two consecutive Country IE hints on the same wiphy. 1365 * This should be picked up early by the driver/stack 1366 */ 1367 if (WARN_ON(regdom_changes(pending_request->alpha2))) 1368 return REG_REQ_OK; 1369 return REG_REQ_ALREADY_SET; 1370 } 1371 return REG_REQ_OK; 1372 case NL80211_REGDOM_SET_BY_DRIVER: 1373 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 1374 if (regdom_changes(pending_request->alpha2)) 1375 return REG_REQ_OK; 1376 return REG_REQ_ALREADY_SET; 1377 } 1378 1379 /* 1380 * This would happen if you unplug and plug your card 1381 * back in or if you add a new device for which the previously 1382 * loaded card also agrees on the regulatory domain. 1383 */ 1384 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1385 !regdom_changes(pending_request->alpha2)) 1386 return REG_REQ_ALREADY_SET; 1387 1388 return REG_REQ_INTERSECT; 1389 case NL80211_REGDOM_SET_BY_USER: 1390 if (reg_request_cell_base(pending_request)) 1391 return reg_ignore_cell_hint(pending_request); 1392 1393 if (reg_request_cell_base(lr)) 1394 return REG_REQ_IGNORE; 1395 1396 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1397 return REG_REQ_INTERSECT; 1398 /* 1399 * If the user knows better the user should set the regdom 1400 * to their country before the IE is picked up 1401 */ 1402 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 1403 lr->intersect) 1404 return REG_REQ_IGNORE; 1405 /* 1406 * Process user requests only after previous user/driver/core 1407 * requests have been processed 1408 */ 1409 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 1410 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1411 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 1412 regdom_changes(lr->alpha2)) 1413 return REG_REQ_IGNORE; 1414 1415 if (!regdom_changes(pending_request->alpha2)) 1416 return REG_REQ_ALREADY_SET; 1417 1418 return REG_REQ_OK; 1419 } 1420 1421 return REG_REQ_IGNORE; 1422 } 1423 1424 static void reg_set_request_processed(void) 1425 { 1426 bool need_more_processing = false; 1427 struct regulatory_request *lr = get_last_request(); 1428 1429 lr->processed = true; 1430 1431 spin_lock(®_requests_lock); 1432 if (!list_empty(®_requests_list)) 1433 need_more_processing = true; 1434 spin_unlock(®_requests_lock); 1435 1436 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 1437 cancel_delayed_work(®_timeout); 1438 1439 if (need_more_processing) 1440 schedule_work(®_work); 1441 } 1442 1443 /** 1444 * __regulatory_hint - hint to the wireless core a regulatory domain 1445 * @wiphy: if the hint comes from country information from an AP, this 1446 * is required to be set to the wiphy that received the information 1447 * @pending_request: the regulatory request currently being processed 1448 * 1449 * The Wireless subsystem can use this function to hint to the wireless core 1450 * what it believes should be the current regulatory domain. 1451 * 1452 * Returns one of the different reg request treatment values. 1453 */ 1454 static enum reg_request_treatment 1455 __regulatory_hint(struct wiphy *wiphy, 1456 struct regulatory_request *pending_request) 1457 { 1458 const struct ieee80211_regdomain *regd; 1459 bool intersect = false; 1460 enum reg_request_treatment treatment; 1461 struct regulatory_request *lr; 1462 1463 treatment = get_reg_request_treatment(wiphy, pending_request); 1464 1465 switch (treatment) { 1466 case REG_REQ_INTERSECT: 1467 if (pending_request->initiator == 1468 NL80211_REGDOM_SET_BY_DRIVER) { 1469 regd = reg_copy_regd(get_cfg80211_regdom()); 1470 if (IS_ERR(regd)) { 1471 kfree(pending_request); 1472 return PTR_ERR(regd); 1473 } 1474 rcu_assign_pointer(wiphy->regd, regd); 1475 } 1476 intersect = true; 1477 break; 1478 case REG_REQ_OK: 1479 break; 1480 default: 1481 /* 1482 * If the regulatory domain being requested by the 1483 * driver has already been set just copy it to the 1484 * wiphy 1485 */ 1486 if (treatment == REG_REQ_ALREADY_SET && 1487 pending_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) { 1488 regd = reg_copy_regd(get_cfg80211_regdom()); 1489 if (IS_ERR(regd)) { 1490 kfree(pending_request); 1491 return REG_REQ_IGNORE; 1492 } 1493 treatment = REG_REQ_ALREADY_SET; 1494 rcu_assign_pointer(wiphy->regd, regd); 1495 goto new_request; 1496 } 1497 kfree(pending_request); 1498 return treatment; 1499 } 1500 1501 new_request: 1502 lr = get_last_request(); 1503 if (lr != &core_request_world && lr) 1504 kfree_rcu(lr, rcu_head); 1505 1506 pending_request->intersect = intersect; 1507 pending_request->processed = false; 1508 rcu_assign_pointer(last_request, pending_request); 1509 lr = pending_request; 1510 1511 pending_request = NULL; 1512 1513 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) { 1514 user_alpha2[0] = lr->alpha2[0]; 1515 user_alpha2[1] = lr->alpha2[1]; 1516 } 1517 1518 /* When r == REG_REQ_INTERSECT we do need to call CRDA */ 1519 if (treatment != REG_REQ_OK && treatment != REG_REQ_INTERSECT) { 1520 /* 1521 * Since CRDA will not be called in this case as we already 1522 * have applied the requested regulatory domain before we just 1523 * inform userspace we have processed the request 1524 */ 1525 if (treatment == REG_REQ_ALREADY_SET) { 1526 nl80211_send_reg_change_event(lr); 1527 reg_set_request_processed(); 1528 } 1529 return treatment; 1530 } 1531 1532 if (call_crda(lr->alpha2)) 1533 return REG_REQ_IGNORE; 1534 return REG_REQ_OK; 1535 } 1536 1537 /* This processes *all* regulatory hints */ 1538 static void reg_process_hint(struct regulatory_request *reg_request, 1539 enum nl80211_reg_initiator reg_initiator) 1540 { 1541 struct wiphy *wiphy = NULL; 1542 1543 if (WARN_ON(!reg_request->alpha2)) 1544 return; 1545 1546 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 1547 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 1548 1549 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) { 1550 kfree(reg_request); 1551 return; 1552 } 1553 1554 switch (__regulatory_hint(wiphy, reg_request)) { 1555 case REG_REQ_ALREADY_SET: 1556 /* This is required so that the orig_* parameters are saved */ 1557 if (wiphy && wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) 1558 wiphy_update_regulatory(wiphy, reg_initiator); 1559 break; 1560 default: 1561 if (reg_initiator == NL80211_REGDOM_SET_BY_USER) 1562 schedule_delayed_work(®_timeout, 1563 msecs_to_jiffies(3142)); 1564 break; 1565 } 1566 } 1567 1568 /* 1569 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 1570 * Regulatory hints come on a first come first serve basis and we 1571 * must process each one atomically. 1572 */ 1573 static void reg_process_pending_hints(void) 1574 { 1575 struct regulatory_request *reg_request, *lr; 1576 1577 lr = get_last_request(); 1578 1579 /* When last_request->processed becomes true this will be rescheduled */ 1580 if (lr && !lr->processed) { 1581 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n"); 1582 return; 1583 } 1584 1585 spin_lock(®_requests_lock); 1586 1587 if (list_empty(®_requests_list)) { 1588 spin_unlock(®_requests_lock); 1589 return; 1590 } 1591 1592 reg_request = list_first_entry(®_requests_list, 1593 struct regulatory_request, 1594 list); 1595 list_del_init(®_request->list); 1596 1597 spin_unlock(®_requests_lock); 1598 1599 reg_process_hint(reg_request, reg_request->initiator); 1600 } 1601 1602 /* Processes beacon hints -- this has nothing to do with country IEs */ 1603 static void reg_process_pending_beacon_hints(void) 1604 { 1605 struct cfg80211_registered_device *rdev; 1606 struct reg_beacon *pending_beacon, *tmp; 1607 1608 /* This goes through the _pending_ beacon list */ 1609 spin_lock_bh(®_pending_beacons_lock); 1610 1611 list_for_each_entry_safe(pending_beacon, tmp, 1612 ®_pending_beacons, list) { 1613 list_del_init(&pending_beacon->list); 1614 1615 /* Applies the beacon hint to current wiphys */ 1616 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1617 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 1618 1619 /* Remembers the beacon hint for new wiphys or reg changes */ 1620 list_add_tail(&pending_beacon->list, ®_beacon_list); 1621 } 1622 1623 spin_unlock_bh(®_pending_beacons_lock); 1624 } 1625 1626 static void reg_todo(struct work_struct *work) 1627 { 1628 rtnl_lock(); 1629 reg_process_pending_hints(); 1630 reg_process_pending_beacon_hints(); 1631 rtnl_unlock(); 1632 } 1633 1634 static void queue_regulatory_request(struct regulatory_request *request) 1635 { 1636 request->alpha2[0] = toupper(request->alpha2[0]); 1637 request->alpha2[1] = toupper(request->alpha2[1]); 1638 1639 spin_lock(®_requests_lock); 1640 list_add_tail(&request->list, ®_requests_list); 1641 spin_unlock(®_requests_lock); 1642 1643 schedule_work(®_work); 1644 } 1645 1646 /* 1647 * Core regulatory hint -- happens during cfg80211_init() 1648 * and when we restore regulatory settings. 1649 */ 1650 static int regulatory_hint_core(const char *alpha2) 1651 { 1652 struct regulatory_request *request; 1653 1654 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1655 if (!request) 1656 return -ENOMEM; 1657 1658 request->alpha2[0] = alpha2[0]; 1659 request->alpha2[1] = alpha2[1]; 1660 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1661 1662 queue_regulatory_request(request); 1663 1664 return 0; 1665 } 1666 1667 /* User hints */ 1668 int regulatory_hint_user(const char *alpha2, 1669 enum nl80211_user_reg_hint_type user_reg_hint_type) 1670 { 1671 struct regulatory_request *request; 1672 1673 if (WARN_ON(!alpha2)) 1674 return -EINVAL; 1675 1676 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1677 if (!request) 1678 return -ENOMEM; 1679 1680 request->wiphy_idx = WIPHY_IDX_INVALID; 1681 request->alpha2[0] = alpha2[0]; 1682 request->alpha2[1] = alpha2[1]; 1683 request->initiator = NL80211_REGDOM_SET_BY_USER; 1684 request->user_reg_hint_type = user_reg_hint_type; 1685 1686 queue_regulatory_request(request); 1687 1688 return 0; 1689 } 1690 1691 /* Driver hints */ 1692 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 1693 { 1694 struct regulatory_request *request; 1695 1696 if (WARN_ON(!alpha2 || !wiphy)) 1697 return -EINVAL; 1698 1699 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1700 if (!request) 1701 return -ENOMEM; 1702 1703 request->wiphy_idx = get_wiphy_idx(wiphy); 1704 1705 request->alpha2[0] = alpha2[0]; 1706 request->alpha2[1] = alpha2[1]; 1707 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 1708 1709 queue_regulatory_request(request); 1710 1711 return 0; 1712 } 1713 EXPORT_SYMBOL(regulatory_hint); 1714 1715 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band, 1716 const u8 *country_ie, u8 country_ie_len) 1717 { 1718 char alpha2[2]; 1719 enum environment_cap env = ENVIRON_ANY; 1720 struct regulatory_request *request = NULL, *lr; 1721 1722 /* IE len must be evenly divisible by 2 */ 1723 if (country_ie_len & 0x01) 1724 return; 1725 1726 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 1727 return; 1728 1729 request = kzalloc(sizeof(*request), GFP_KERNEL); 1730 if (!request) 1731 return; 1732 1733 alpha2[0] = country_ie[0]; 1734 alpha2[1] = country_ie[1]; 1735 1736 if (country_ie[2] == 'I') 1737 env = ENVIRON_INDOOR; 1738 else if (country_ie[2] == 'O') 1739 env = ENVIRON_OUTDOOR; 1740 1741 rcu_read_lock(); 1742 lr = get_last_request(); 1743 1744 if (unlikely(!lr)) 1745 goto out; 1746 1747 /* 1748 * We will run this only upon a successful connection on cfg80211. 1749 * We leave conflict resolution to the workqueue, where can hold 1750 * the RTNL. 1751 */ 1752 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1753 lr->wiphy_idx != WIPHY_IDX_INVALID) 1754 goto out; 1755 1756 request->wiphy_idx = get_wiphy_idx(wiphy); 1757 request->alpha2[0] = alpha2[0]; 1758 request->alpha2[1] = alpha2[1]; 1759 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 1760 request->country_ie_env = env; 1761 1762 queue_regulatory_request(request); 1763 request = NULL; 1764 out: 1765 kfree(request); 1766 rcu_read_unlock(); 1767 } 1768 1769 static void restore_alpha2(char *alpha2, bool reset_user) 1770 { 1771 /* indicates there is no alpha2 to consider for restoration */ 1772 alpha2[0] = '9'; 1773 alpha2[1] = '7'; 1774 1775 /* The user setting has precedence over the module parameter */ 1776 if (is_user_regdom_saved()) { 1777 /* Unless we're asked to ignore it and reset it */ 1778 if (reset_user) { 1779 REG_DBG_PRINT("Restoring regulatory settings including user preference\n"); 1780 user_alpha2[0] = '9'; 1781 user_alpha2[1] = '7'; 1782 1783 /* 1784 * If we're ignoring user settings, we still need to 1785 * check the module parameter to ensure we put things 1786 * back as they were for a full restore. 1787 */ 1788 if (!is_world_regdom(ieee80211_regdom)) { 1789 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 1790 ieee80211_regdom[0], ieee80211_regdom[1]); 1791 alpha2[0] = ieee80211_regdom[0]; 1792 alpha2[1] = ieee80211_regdom[1]; 1793 } 1794 } else { 1795 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n", 1796 user_alpha2[0], user_alpha2[1]); 1797 alpha2[0] = user_alpha2[0]; 1798 alpha2[1] = user_alpha2[1]; 1799 } 1800 } else if (!is_world_regdom(ieee80211_regdom)) { 1801 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 1802 ieee80211_regdom[0], ieee80211_regdom[1]); 1803 alpha2[0] = ieee80211_regdom[0]; 1804 alpha2[1] = ieee80211_regdom[1]; 1805 } else 1806 REG_DBG_PRINT("Restoring regulatory settings\n"); 1807 } 1808 1809 static void restore_custom_reg_settings(struct wiphy *wiphy) 1810 { 1811 struct ieee80211_supported_band *sband; 1812 enum ieee80211_band band; 1813 struct ieee80211_channel *chan; 1814 int i; 1815 1816 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1817 sband = wiphy->bands[band]; 1818 if (!sband) 1819 continue; 1820 for (i = 0; i < sband->n_channels; i++) { 1821 chan = &sband->channels[i]; 1822 chan->flags = chan->orig_flags; 1823 chan->max_antenna_gain = chan->orig_mag; 1824 chan->max_power = chan->orig_mpwr; 1825 chan->beacon_found = false; 1826 } 1827 } 1828 } 1829 1830 /* 1831 * Restoring regulatory settings involves ingoring any 1832 * possibly stale country IE information and user regulatory 1833 * settings if so desired, this includes any beacon hints 1834 * learned as we could have traveled outside to another country 1835 * after disconnection. To restore regulatory settings we do 1836 * exactly what we did at bootup: 1837 * 1838 * - send a core regulatory hint 1839 * - send a user regulatory hint if applicable 1840 * 1841 * Device drivers that send a regulatory hint for a specific country 1842 * keep their own regulatory domain on wiphy->regd so that does does 1843 * not need to be remembered. 1844 */ 1845 static void restore_regulatory_settings(bool reset_user) 1846 { 1847 char alpha2[2]; 1848 char world_alpha2[2]; 1849 struct reg_beacon *reg_beacon, *btmp; 1850 struct regulatory_request *reg_request, *tmp; 1851 LIST_HEAD(tmp_reg_req_list); 1852 struct cfg80211_registered_device *rdev; 1853 1854 ASSERT_RTNL(); 1855 1856 reset_regdomains(true, &world_regdom); 1857 restore_alpha2(alpha2, reset_user); 1858 1859 /* 1860 * If there's any pending requests we simply 1861 * stash them to a temporary pending queue and 1862 * add then after we've restored regulatory 1863 * settings. 1864 */ 1865 spin_lock(®_requests_lock); 1866 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 1867 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER) 1868 continue; 1869 list_move_tail(®_request->list, &tmp_reg_req_list); 1870 } 1871 spin_unlock(®_requests_lock); 1872 1873 /* Clear beacon hints */ 1874 spin_lock_bh(®_pending_beacons_lock); 1875 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 1876 list_del(®_beacon->list); 1877 kfree(reg_beacon); 1878 } 1879 spin_unlock_bh(®_pending_beacons_lock); 1880 1881 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 1882 list_del(®_beacon->list); 1883 kfree(reg_beacon); 1884 } 1885 1886 /* First restore to the basic regulatory settings */ 1887 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 1888 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 1889 1890 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1891 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY) 1892 restore_custom_reg_settings(&rdev->wiphy); 1893 } 1894 1895 regulatory_hint_core(world_alpha2); 1896 1897 /* 1898 * This restores the ieee80211_regdom module parameter 1899 * preference or the last user requested regulatory 1900 * settings, user regulatory settings takes precedence. 1901 */ 1902 if (is_an_alpha2(alpha2)) 1903 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER); 1904 1905 spin_lock(®_requests_lock); 1906 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 1907 spin_unlock(®_requests_lock); 1908 1909 REG_DBG_PRINT("Kicking the queue\n"); 1910 1911 schedule_work(®_work); 1912 } 1913 1914 void regulatory_hint_disconnect(void) 1915 { 1916 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n"); 1917 restore_regulatory_settings(false); 1918 } 1919 1920 static bool freq_is_chan_12_13_14(u16 freq) 1921 { 1922 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || 1923 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || 1924 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) 1925 return true; 1926 return false; 1927 } 1928 1929 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 1930 { 1931 struct reg_beacon *pending_beacon; 1932 1933 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 1934 if (beacon_chan->center_freq == 1935 pending_beacon->chan.center_freq) 1936 return true; 1937 return false; 1938 } 1939 1940 int regulatory_hint_found_beacon(struct wiphy *wiphy, 1941 struct ieee80211_channel *beacon_chan, 1942 gfp_t gfp) 1943 { 1944 struct reg_beacon *reg_beacon; 1945 bool processing; 1946 1947 if (beacon_chan->beacon_found || 1948 beacon_chan->flags & IEEE80211_CHAN_RADAR || 1949 (beacon_chan->band == IEEE80211_BAND_2GHZ && 1950 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 1951 return 0; 1952 1953 spin_lock_bh(®_pending_beacons_lock); 1954 processing = pending_reg_beacon(beacon_chan); 1955 spin_unlock_bh(®_pending_beacons_lock); 1956 1957 if (processing) 1958 return 0; 1959 1960 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 1961 if (!reg_beacon) 1962 return -ENOMEM; 1963 1964 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 1965 beacon_chan->center_freq, 1966 ieee80211_frequency_to_channel(beacon_chan->center_freq), 1967 wiphy_name(wiphy)); 1968 1969 memcpy(®_beacon->chan, beacon_chan, 1970 sizeof(struct ieee80211_channel)); 1971 1972 /* 1973 * Since we can be called from BH or and non-BH context 1974 * we must use spin_lock_bh() 1975 */ 1976 spin_lock_bh(®_pending_beacons_lock); 1977 list_add_tail(®_beacon->list, ®_pending_beacons); 1978 spin_unlock_bh(®_pending_beacons_lock); 1979 1980 schedule_work(®_work); 1981 1982 return 0; 1983 } 1984 1985 static void print_rd_rules(const struct ieee80211_regdomain *rd) 1986 { 1987 unsigned int i; 1988 const struct ieee80211_reg_rule *reg_rule = NULL; 1989 const struct ieee80211_freq_range *freq_range = NULL; 1990 const struct ieee80211_power_rule *power_rule = NULL; 1991 1992 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n"); 1993 1994 for (i = 0; i < rd->n_reg_rules; i++) { 1995 reg_rule = &rd->reg_rules[i]; 1996 freq_range = ®_rule->freq_range; 1997 power_rule = ®_rule->power_rule; 1998 1999 /* 2000 * There may not be documentation for max antenna gain 2001 * in certain regions 2002 */ 2003 if (power_rule->max_antenna_gain) 2004 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n", 2005 freq_range->start_freq_khz, 2006 freq_range->end_freq_khz, 2007 freq_range->max_bandwidth_khz, 2008 power_rule->max_antenna_gain, 2009 power_rule->max_eirp); 2010 else 2011 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n", 2012 freq_range->start_freq_khz, 2013 freq_range->end_freq_khz, 2014 freq_range->max_bandwidth_khz, 2015 power_rule->max_eirp); 2016 } 2017 } 2018 2019 bool reg_supported_dfs_region(u8 dfs_region) 2020 { 2021 switch (dfs_region) { 2022 case NL80211_DFS_UNSET: 2023 case NL80211_DFS_FCC: 2024 case NL80211_DFS_ETSI: 2025 case NL80211_DFS_JP: 2026 return true; 2027 default: 2028 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n", 2029 dfs_region); 2030 return false; 2031 } 2032 } 2033 2034 static void print_dfs_region(u8 dfs_region) 2035 { 2036 if (!dfs_region) 2037 return; 2038 2039 switch (dfs_region) { 2040 case NL80211_DFS_FCC: 2041 pr_info(" DFS Master region FCC"); 2042 break; 2043 case NL80211_DFS_ETSI: 2044 pr_info(" DFS Master region ETSI"); 2045 break; 2046 case NL80211_DFS_JP: 2047 pr_info(" DFS Master region JP"); 2048 break; 2049 default: 2050 pr_info(" DFS Master region Unknown"); 2051 break; 2052 } 2053 } 2054 2055 static void print_regdomain(const struct ieee80211_regdomain *rd) 2056 { 2057 struct regulatory_request *lr = get_last_request(); 2058 2059 if (is_intersected_alpha2(rd->alpha2)) { 2060 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2061 struct cfg80211_registered_device *rdev; 2062 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 2063 if (rdev) { 2064 pr_info("Current regulatory domain updated by AP to: %c%c\n", 2065 rdev->country_ie_alpha2[0], 2066 rdev->country_ie_alpha2[1]); 2067 } else 2068 pr_info("Current regulatory domain intersected:\n"); 2069 } else 2070 pr_info("Current regulatory domain intersected:\n"); 2071 } else if (is_world_regdom(rd->alpha2)) { 2072 pr_info("World regulatory domain updated:\n"); 2073 } else { 2074 if (is_unknown_alpha2(rd->alpha2)) 2075 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); 2076 else { 2077 if (reg_request_cell_base(lr)) 2078 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n", 2079 rd->alpha2[0], rd->alpha2[1]); 2080 else 2081 pr_info("Regulatory domain changed to country: %c%c\n", 2082 rd->alpha2[0], rd->alpha2[1]); 2083 } 2084 } 2085 2086 print_dfs_region(rd->dfs_region); 2087 print_rd_rules(rd); 2088 } 2089 2090 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 2091 { 2092 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 2093 print_rd_rules(rd); 2094 } 2095 2096 /* Takes ownership of rd only if it doesn't fail */ 2097 static int __set_regdom(const struct ieee80211_regdomain *rd) 2098 { 2099 const struct ieee80211_regdomain *regd; 2100 const struct ieee80211_regdomain *intersected_rd = NULL; 2101 struct wiphy *request_wiphy; 2102 struct regulatory_request *lr = get_last_request(); 2103 2104 /* Some basic sanity checks first */ 2105 2106 if (!reg_is_valid_request(rd->alpha2)) 2107 return -EINVAL; 2108 2109 if (is_world_regdom(rd->alpha2)) { 2110 update_world_regdomain(rd); 2111 return 0; 2112 } 2113 2114 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 2115 !is_unknown_alpha2(rd->alpha2)) 2116 return -EINVAL; 2117 2118 /* 2119 * Lets only bother proceeding on the same alpha2 if the current 2120 * rd is non static (it means CRDA was present and was used last) 2121 * and the pending request came in from a country IE 2122 */ 2123 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2124 /* 2125 * If someone else asked us to change the rd lets only bother 2126 * checking if the alpha2 changes if CRDA was already called 2127 */ 2128 if (!regdom_changes(rd->alpha2)) 2129 return -EALREADY; 2130 } 2131 2132 /* 2133 * Now lets set the regulatory domain, update all driver channels 2134 * and finally inform them of what we have done, in case they want 2135 * to review or adjust their own settings based on their own 2136 * internal EEPROM data 2137 */ 2138 2139 if (!is_valid_rd(rd)) { 2140 pr_err("Invalid regulatory domain detected:\n"); 2141 print_regdomain_info(rd); 2142 return -EINVAL; 2143 } 2144 2145 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2146 if (!request_wiphy && 2147 (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2148 lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) { 2149 schedule_delayed_work(®_timeout, 0); 2150 return -ENODEV; 2151 } 2152 2153 if (!lr->intersect) { 2154 if (lr->initiator != NL80211_REGDOM_SET_BY_DRIVER) { 2155 reset_regdomains(false, rd); 2156 return 0; 2157 } 2158 2159 /* 2160 * For a driver hint, lets copy the regulatory domain the 2161 * driver wanted to the wiphy to deal with conflicts 2162 */ 2163 2164 /* 2165 * Userspace could have sent two replies with only 2166 * one kernel request. 2167 */ 2168 if (request_wiphy->regd) 2169 return -EALREADY; 2170 2171 regd = reg_copy_regd(rd); 2172 if (IS_ERR(regd)) 2173 return PTR_ERR(regd); 2174 2175 rcu_assign_pointer(request_wiphy->regd, regd); 2176 reset_regdomains(false, rd); 2177 return 0; 2178 } 2179 2180 /* Intersection requires a bit more work */ 2181 2182 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2183 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2184 if (!intersected_rd) 2185 return -EINVAL; 2186 2187 /* 2188 * We can trash what CRDA provided now. 2189 * However if a driver requested this specific regulatory 2190 * domain we keep it for its private use 2191 */ 2192 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER) { 2193 const struct ieee80211_regdomain *tmp; 2194 2195 tmp = get_wiphy_regdom(request_wiphy); 2196 rcu_assign_pointer(request_wiphy->regd, rd); 2197 rcu_free_regdom(tmp); 2198 } else { 2199 kfree(rd); 2200 } 2201 2202 rd = NULL; 2203 2204 reset_regdomains(false, intersected_rd); 2205 2206 return 0; 2207 } 2208 2209 return -EINVAL; 2210 } 2211 2212 2213 /* 2214 * Use this call to set the current regulatory domain. Conflicts with 2215 * multiple drivers can be ironed out later. Caller must've already 2216 * kmalloc'd the rd structure. 2217 */ 2218 int set_regdom(const struct ieee80211_regdomain *rd) 2219 { 2220 struct regulatory_request *lr; 2221 int r; 2222 2223 lr = get_last_request(); 2224 2225 /* Note that this doesn't update the wiphys, this is done below */ 2226 r = __set_regdom(rd); 2227 if (r) { 2228 if (r == -EALREADY) 2229 reg_set_request_processed(); 2230 2231 kfree(rd); 2232 return r; 2233 } 2234 2235 /* This would make this whole thing pointless */ 2236 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 2237 return -EINVAL; 2238 2239 /* update all wiphys now with the new established regulatory domain */ 2240 update_all_wiphy_regulatory(lr->initiator); 2241 2242 print_regdomain(get_cfg80211_regdom()); 2243 2244 nl80211_send_reg_change_event(lr); 2245 2246 reg_set_request_processed(); 2247 2248 return 0; 2249 } 2250 2251 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) 2252 { 2253 struct regulatory_request *lr; 2254 u8 alpha2[2]; 2255 bool add = false; 2256 2257 rcu_read_lock(); 2258 lr = get_last_request(); 2259 if (lr && !lr->processed) { 2260 memcpy(alpha2, lr->alpha2, 2); 2261 add = true; 2262 } 2263 rcu_read_unlock(); 2264 2265 if (add) 2266 return add_uevent_var(env, "COUNTRY=%c%c", 2267 alpha2[0], alpha2[1]); 2268 return 0; 2269 } 2270 2271 void wiphy_regulatory_register(struct wiphy *wiphy) 2272 { 2273 struct regulatory_request *lr; 2274 2275 if (!reg_dev_ignore_cell_hint(wiphy)) 2276 reg_num_devs_support_basehint++; 2277 2278 lr = get_last_request(); 2279 wiphy_update_regulatory(wiphy, lr->initiator); 2280 } 2281 2282 void wiphy_regulatory_deregister(struct wiphy *wiphy) 2283 { 2284 struct wiphy *request_wiphy = NULL; 2285 struct regulatory_request *lr; 2286 2287 lr = get_last_request(); 2288 2289 if (!reg_dev_ignore_cell_hint(wiphy)) 2290 reg_num_devs_support_basehint--; 2291 2292 rcu_free_regdom(get_wiphy_regdom(wiphy)); 2293 rcu_assign_pointer(wiphy->regd, NULL); 2294 2295 if (lr) 2296 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2297 2298 if (!request_wiphy || request_wiphy != wiphy) 2299 return; 2300 2301 lr->wiphy_idx = WIPHY_IDX_INVALID; 2302 lr->country_ie_env = ENVIRON_ANY; 2303 } 2304 2305 static void reg_timeout_work(struct work_struct *work) 2306 { 2307 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 2308 rtnl_lock(); 2309 restore_regulatory_settings(true); 2310 rtnl_unlock(); 2311 } 2312 2313 int __init regulatory_init(void) 2314 { 2315 int err = 0; 2316 2317 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 2318 if (IS_ERR(reg_pdev)) 2319 return PTR_ERR(reg_pdev); 2320 2321 reg_pdev->dev.type = ®_device_type; 2322 2323 spin_lock_init(®_requests_lock); 2324 spin_lock_init(®_pending_beacons_lock); 2325 2326 reg_regdb_size_check(); 2327 2328 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 2329 2330 user_alpha2[0] = '9'; 2331 user_alpha2[1] = '7'; 2332 2333 /* We always try to get an update for the static regdomain */ 2334 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 2335 if (err) { 2336 if (err == -ENOMEM) 2337 return err; 2338 /* 2339 * N.B. kobject_uevent_env() can fail mainly for when we're out 2340 * memory which is handled and propagated appropriately above 2341 * but it can also fail during a netlink_broadcast() or during 2342 * early boot for call_usermodehelper(). For now treat these 2343 * errors as non-fatal. 2344 */ 2345 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 2346 } 2347 2348 /* 2349 * Finally, if the user set the module parameter treat it 2350 * as a user hint. 2351 */ 2352 if (!is_world_regdom(ieee80211_regdom)) 2353 regulatory_hint_user(ieee80211_regdom, 2354 NL80211_USER_REG_HINT_USER); 2355 2356 return 0; 2357 } 2358 2359 void regulatory_exit(void) 2360 { 2361 struct regulatory_request *reg_request, *tmp; 2362 struct reg_beacon *reg_beacon, *btmp; 2363 2364 cancel_work_sync(®_work); 2365 cancel_delayed_work_sync(®_timeout); 2366 2367 /* Lock to suppress warnings */ 2368 rtnl_lock(); 2369 reset_regdomains(true, NULL); 2370 rtnl_unlock(); 2371 2372 dev_set_uevent_suppress(®_pdev->dev, true); 2373 2374 platform_device_unregister(reg_pdev); 2375 2376 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 2377 list_del(®_beacon->list); 2378 kfree(reg_beacon); 2379 } 2380 2381 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 2382 list_del(®_beacon->list); 2383 kfree(reg_beacon); 2384 } 2385 2386 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 2387 list_del(®_request->list); 2388 kfree(reg_request); 2389 } 2390 } 2391