xref: /openbmc/linux/net/wireless/reg.c (revision 930beb5a)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60 
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...)			\
63 	printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67 
68 enum reg_request_treatment {
69 	REG_REQ_OK,
70 	REG_REQ_IGNORE,
71 	REG_REQ_INTERSECT,
72 	REG_REQ_ALREADY_SET,
73 };
74 
75 static struct regulatory_request core_request_world = {
76 	.initiator = NL80211_REGDOM_SET_BY_CORE,
77 	.alpha2[0] = '0',
78 	.alpha2[1] = '0',
79 	.intersect = false,
80 	.processed = true,
81 	.country_ie_env = ENVIRON_ANY,
82 };
83 
84 /*
85  * Receipt of information from last regulatory request,
86  * protected by RTNL (and can be accessed with RCU protection)
87  */
88 static struct regulatory_request __rcu *last_request =
89 	(void __rcu *)&core_request_world;
90 
91 /* To trigger userspace events */
92 static struct platform_device *reg_pdev;
93 
94 static struct device_type reg_device_type = {
95 	.uevent = reg_device_uevent,
96 };
97 
98 /*
99  * Central wireless core regulatory domains, we only need two,
100  * the current one and a world regulatory domain in case we have no
101  * information to give us an alpha2.
102  * (protected by RTNL, can be read under RCU)
103  */
104 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
105 
106 /*
107  * Number of devices that registered to the core
108  * that support cellular base station regulatory hints
109  * (protected by RTNL)
110  */
111 static int reg_num_devs_support_basehint;
112 
113 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
114 {
115 	return rtnl_dereference(cfg80211_regdomain);
116 }
117 
118 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
119 {
120 	return rtnl_dereference(wiphy->regd);
121 }
122 
123 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
124 {
125 	if (!r)
126 		return;
127 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
128 }
129 
130 static struct regulatory_request *get_last_request(void)
131 {
132 	return rcu_dereference_rtnl(last_request);
133 }
134 
135 /* Used to queue up regulatory hints */
136 static LIST_HEAD(reg_requests_list);
137 static spinlock_t reg_requests_lock;
138 
139 /* Used to queue up beacon hints for review */
140 static LIST_HEAD(reg_pending_beacons);
141 static spinlock_t reg_pending_beacons_lock;
142 
143 /* Used to keep track of processed beacon hints */
144 static LIST_HEAD(reg_beacon_list);
145 
146 struct reg_beacon {
147 	struct list_head list;
148 	struct ieee80211_channel chan;
149 };
150 
151 static void reg_todo(struct work_struct *work);
152 static DECLARE_WORK(reg_work, reg_todo);
153 
154 static void reg_timeout_work(struct work_struct *work);
155 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
156 
157 /* We keep a static world regulatory domain in case of the absence of CRDA */
158 static const struct ieee80211_regdomain world_regdom = {
159 	.n_reg_rules = 6,
160 	.alpha2 =  "00",
161 	.reg_rules = {
162 		/* IEEE 802.11b/g, channels 1..11 */
163 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
164 		/* IEEE 802.11b/g, channels 12..13. */
165 		REG_RULE(2467-10, 2472+10, 40, 6, 20,
166 			NL80211_RRF_PASSIVE_SCAN |
167 			NL80211_RRF_NO_IBSS),
168 		/* IEEE 802.11 channel 14 - Only JP enables
169 		 * this and for 802.11b only */
170 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
171 			NL80211_RRF_PASSIVE_SCAN |
172 			NL80211_RRF_NO_IBSS |
173 			NL80211_RRF_NO_OFDM),
174 		/* IEEE 802.11a, channel 36..48 */
175 		REG_RULE(5180-10, 5240+10, 160, 6, 20,
176                         NL80211_RRF_PASSIVE_SCAN |
177                         NL80211_RRF_NO_IBSS),
178 
179 		/* IEEE 802.11a, channel 52..64 - DFS required */
180 		REG_RULE(5260-10, 5320+10, 160, 6, 20,
181 			NL80211_RRF_PASSIVE_SCAN |
182 			NL80211_RRF_NO_IBSS |
183 			NL80211_RRF_DFS),
184 
185 		/* IEEE 802.11a, channel 100..144 - DFS required */
186 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
187 			NL80211_RRF_PASSIVE_SCAN |
188 			NL80211_RRF_NO_IBSS |
189 			NL80211_RRF_DFS),
190 
191 		/* IEEE 802.11a, channel 149..165 */
192 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
193 			NL80211_RRF_PASSIVE_SCAN |
194 			NL80211_RRF_NO_IBSS),
195 
196 		/* IEEE 802.11ad (60gHz), channels 1..3 */
197 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
198 	}
199 };
200 
201 /* protected by RTNL */
202 static const struct ieee80211_regdomain *cfg80211_world_regdom =
203 	&world_regdom;
204 
205 static char *ieee80211_regdom = "00";
206 static char user_alpha2[2];
207 
208 module_param(ieee80211_regdom, charp, 0444);
209 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
210 
211 static void reset_regdomains(bool full_reset,
212 			     const struct ieee80211_regdomain *new_regdom)
213 {
214 	const struct ieee80211_regdomain *r;
215 	struct regulatory_request *lr;
216 
217 	ASSERT_RTNL();
218 
219 	r = get_cfg80211_regdom();
220 
221 	/* avoid freeing static information or freeing something twice */
222 	if (r == cfg80211_world_regdom)
223 		r = NULL;
224 	if (cfg80211_world_regdom == &world_regdom)
225 		cfg80211_world_regdom = NULL;
226 	if (r == &world_regdom)
227 		r = NULL;
228 
229 	rcu_free_regdom(r);
230 	rcu_free_regdom(cfg80211_world_regdom);
231 
232 	cfg80211_world_regdom = &world_regdom;
233 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
234 
235 	if (!full_reset)
236 		return;
237 
238 	lr = get_last_request();
239 	if (lr != &core_request_world && lr)
240 		kfree_rcu(lr, rcu_head);
241 	rcu_assign_pointer(last_request, &core_request_world);
242 }
243 
244 /*
245  * Dynamic world regulatory domain requested by the wireless
246  * core upon initialization
247  */
248 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
249 {
250 	struct regulatory_request *lr;
251 
252 	lr = get_last_request();
253 
254 	WARN_ON(!lr);
255 
256 	reset_regdomains(false, rd);
257 
258 	cfg80211_world_regdom = rd;
259 }
260 
261 bool is_world_regdom(const char *alpha2)
262 {
263 	if (!alpha2)
264 		return false;
265 	return alpha2[0] == '0' && alpha2[1] == '0';
266 }
267 
268 static bool is_alpha2_set(const char *alpha2)
269 {
270 	if (!alpha2)
271 		return false;
272 	return alpha2[0] && alpha2[1];
273 }
274 
275 static bool is_unknown_alpha2(const char *alpha2)
276 {
277 	if (!alpha2)
278 		return false;
279 	/*
280 	 * Special case where regulatory domain was built by driver
281 	 * but a specific alpha2 cannot be determined
282 	 */
283 	return alpha2[0] == '9' && alpha2[1] == '9';
284 }
285 
286 static bool is_intersected_alpha2(const char *alpha2)
287 {
288 	if (!alpha2)
289 		return false;
290 	/*
291 	 * Special case where regulatory domain is the
292 	 * result of an intersection between two regulatory domain
293 	 * structures
294 	 */
295 	return alpha2[0] == '9' && alpha2[1] == '8';
296 }
297 
298 static bool is_an_alpha2(const char *alpha2)
299 {
300 	if (!alpha2)
301 		return false;
302 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
303 }
304 
305 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
306 {
307 	if (!alpha2_x || !alpha2_y)
308 		return false;
309 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
310 }
311 
312 static bool regdom_changes(const char *alpha2)
313 {
314 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
315 
316 	if (!r)
317 		return true;
318 	return !alpha2_equal(r->alpha2, alpha2);
319 }
320 
321 /*
322  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
323  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
324  * has ever been issued.
325  */
326 static bool is_user_regdom_saved(void)
327 {
328 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
329 		return false;
330 
331 	/* This would indicate a mistake on the design */
332 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
333 		 "Unexpected user alpha2: %c%c\n",
334 		 user_alpha2[0], user_alpha2[1]))
335 		return false;
336 
337 	return true;
338 }
339 
340 static const struct ieee80211_regdomain *
341 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
342 {
343 	struct ieee80211_regdomain *regd;
344 	int size_of_regd;
345 	unsigned int i;
346 
347 	size_of_regd =
348 		sizeof(struct ieee80211_regdomain) +
349 		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
350 
351 	regd = kzalloc(size_of_regd, GFP_KERNEL);
352 	if (!regd)
353 		return ERR_PTR(-ENOMEM);
354 
355 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
356 
357 	for (i = 0; i < src_regd->n_reg_rules; i++)
358 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
359 		       sizeof(struct ieee80211_reg_rule));
360 
361 	return regd;
362 }
363 
364 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
365 struct reg_regdb_search_request {
366 	char alpha2[2];
367 	struct list_head list;
368 };
369 
370 static LIST_HEAD(reg_regdb_search_list);
371 static DEFINE_MUTEX(reg_regdb_search_mutex);
372 
373 static void reg_regdb_search(struct work_struct *work)
374 {
375 	struct reg_regdb_search_request *request;
376 	const struct ieee80211_regdomain *curdom, *regdom = NULL;
377 	int i;
378 
379 	rtnl_lock();
380 
381 	mutex_lock(&reg_regdb_search_mutex);
382 	while (!list_empty(&reg_regdb_search_list)) {
383 		request = list_first_entry(&reg_regdb_search_list,
384 					   struct reg_regdb_search_request,
385 					   list);
386 		list_del(&request->list);
387 
388 		for (i = 0; i < reg_regdb_size; i++) {
389 			curdom = reg_regdb[i];
390 
391 			if (alpha2_equal(request->alpha2, curdom->alpha2)) {
392 				regdom = reg_copy_regd(curdom);
393 				break;
394 			}
395 		}
396 
397 		kfree(request);
398 	}
399 	mutex_unlock(&reg_regdb_search_mutex);
400 
401 	if (!IS_ERR_OR_NULL(regdom))
402 		set_regdom(regdom);
403 
404 	rtnl_unlock();
405 }
406 
407 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
408 
409 static void reg_regdb_query(const char *alpha2)
410 {
411 	struct reg_regdb_search_request *request;
412 
413 	if (!alpha2)
414 		return;
415 
416 	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
417 	if (!request)
418 		return;
419 
420 	memcpy(request->alpha2, alpha2, 2);
421 
422 	mutex_lock(&reg_regdb_search_mutex);
423 	list_add_tail(&request->list, &reg_regdb_search_list);
424 	mutex_unlock(&reg_regdb_search_mutex);
425 
426 	schedule_work(&reg_regdb_work);
427 }
428 
429 /* Feel free to add any other sanity checks here */
430 static void reg_regdb_size_check(void)
431 {
432 	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
433 	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
434 }
435 #else
436 static inline void reg_regdb_size_check(void) {}
437 static inline void reg_regdb_query(const char *alpha2) {}
438 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
439 
440 /*
441  * This lets us keep regulatory code which is updated on a regulatory
442  * basis in userspace. Country information is filled in by
443  * reg_device_uevent
444  */
445 static int call_crda(const char *alpha2)
446 {
447 	if (!is_world_regdom((char *) alpha2))
448 		pr_info("Calling CRDA for country: %c%c\n",
449 			alpha2[0], alpha2[1]);
450 	else
451 		pr_info("Calling CRDA to update world regulatory domain\n");
452 
453 	/* query internal regulatory database (if it exists) */
454 	reg_regdb_query(alpha2);
455 
456 	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
457 }
458 
459 static bool reg_is_valid_request(const char *alpha2)
460 {
461 	struct regulatory_request *lr = get_last_request();
462 
463 	if (!lr || lr->processed)
464 		return false;
465 
466 	return alpha2_equal(lr->alpha2, alpha2);
467 }
468 
469 /* Sanity check on a regulatory rule */
470 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
471 {
472 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
473 	u32 freq_diff;
474 
475 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
476 		return false;
477 
478 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
479 		return false;
480 
481 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
482 
483 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
484 	    freq_range->max_bandwidth_khz > freq_diff)
485 		return false;
486 
487 	return true;
488 }
489 
490 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
491 {
492 	const struct ieee80211_reg_rule *reg_rule = NULL;
493 	unsigned int i;
494 
495 	if (!rd->n_reg_rules)
496 		return false;
497 
498 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
499 		return false;
500 
501 	for (i = 0; i < rd->n_reg_rules; i++) {
502 		reg_rule = &rd->reg_rules[i];
503 		if (!is_valid_reg_rule(reg_rule))
504 			return false;
505 	}
506 
507 	return true;
508 }
509 
510 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
511 			    u32 center_freq_khz, u32 bw_khz)
512 {
513 	u32 start_freq_khz, end_freq_khz;
514 
515 	start_freq_khz = center_freq_khz - (bw_khz/2);
516 	end_freq_khz = center_freq_khz + (bw_khz/2);
517 
518 	if (start_freq_khz >= freq_range->start_freq_khz &&
519 	    end_freq_khz <= freq_range->end_freq_khz)
520 		return true;
521 
522 	return false;
523 }
524 
525 /**
526  * freq_in_rule_band - tells us if a frequency is in a frequency band
527  * @freq_range: frequency rule we want to query
528  * @freq_khz: frequency we are inquiring about
529  *
530  * This lets us know if a specific frequency rule is or is not relevant to
531  * a specific frequency's band. Bands are device specific and artificial
532  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
533  * however it is safe for now to assume that a frequency rule should not be
534  * part of a frequency's band if the start freq or end freq are off by more
535  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
536  * 60 GHz band.
537  * This resolution can be lowered and should be considered as we add
538  * regulatory rule support for other "bands".
539  **/
540 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
541 			      u32 freq_khz)
542 {
543 #define ONE_GHZ_IN_KHZ	1000000
544 	/*
545 	 * From 802.11ad: directional multi-gigabit (DMG):
546 	 * Pertaining to operation in a frequency band containing a channel
547 	 * with the Channel starting frequency above 45 GHz.
548 	 */
549 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
550 			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
551 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
552 		return true;
553 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
554 		return true;
555 	return false;
556 #undef ONE_GHZ_IN_KHZ
557 }
558 
559 /*
560  * Helper for regdom_intersect(), this does the real
561  * mathematical intersection fun
562  */
563 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
564 			       const struct ieee80211_reg_rule *rule2,
565 			       struct ieee80211_reg_rule *intersected_rule)
566 {
567 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
568 	struct ieee80211_freq_range *freq_range;
569 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
570 	struct ieee80211_power_rule *power_rule;
571 	u32 freq_diff;
572 
573 	freq_range1 = &rule1->freq_range;
574 	freq_range2 = &rule2->freq_range;
575 	freq_range = &intersected_rule->freq_range;
576 
577 	power_rule1 = &rule1->power_rule;
578 	power_rule2 = &rule2->power_rule;
579 	power_rule = &intersected_rule->power_rule;
580 
581 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
582 					 freq_range2->start_freq_khz);
583 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
584 				       freq_range2->end_freq_khz);
585 	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
586 					    freq_range2->max_bandwidth_khz);
587 
588 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
589 	if (freq_range->max_bandwidth_khz > freq_diff)
590 		freq_range->max_bandwidth_khz = freq_diff;
591 
592 	power_rule->max_eirp = min(power_rule1->max_eirp,
593 		power_rule2->max_eirp);
594 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
595 		power_rule2->max_antenna_gain);
596 
597 	intersected_rule->flags = rule1->flags | rule2->flags;
598 
599 	if (!is_valid_reg_rule(intersected_rule))
600 		return -EINVAL;
601 
602 	return 0;
603 }
604 
605 /**
606  * regdom_intersect - do the intersection between two regulatory domains
607  * @rd1: first regulatory domain
608  * @rd2: second regulatory domain
609  *
610  * Use this function to get the intersection between two regulatory domains.
611  * Once completed we will mark the alpha2 for the rd as intersected, "98",
612  * as no one single alpha2 can represent this regulatory domain.
613  *
614  * Returns a pointer to the regulatory domain structure which will hold the
615  * resulting intersection of rules between rd1 and rd2. We will
616  * kzalloc() this structure for you.
617  */
618 static struct ieee80211_regdomain *
619 regdom_intersect(const struct ieee80211_regdomain *rd1,
620 		 const struct ieee80211_regdomain *rd2)
621 {
622 	int r, size_of_regd;
623 	unsigned int x, y;
624 	unsigned int num_rules = 0, rule_idx = 0;
625 	const struct ieee80211_reg_rule *rule1, *rule2;
626 	struct ieee80211_reg_rule *intersected_rule;
627 	struct ieee80211_regdomain *rd;
628 	/* This is just a dummy holder to help us count */
629 	struct ieee80211_reg_rule dummy_rule;
630 
631 	if (!rd1 || !rd2)
632 		return NULL;
633 
634 	/*
635 	 * First we get a count of the rules we'll need, then we actually
636 	 * build them. This is to so we can malloc() and free() a
637 	 * regdomain once. The reason we use reg_rules_intersect() here
638 	 * is it will return -EINVAL if the rule computed makes no sense.
639 	 * All rules that do check out OK are valid.
640 	 */
641 
642 	for (x = 0; x < rd1->n_reg_rules; x++) {
643 		rule1 = &rd1->reg_rules[x];
644 		for (y = 0; y < rd2->n_reg_rules; y++) {
645 			rule2 = &rd2->reg_rules[y];
646 			if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
647 				num_rules++;
648 		}
649 	}
650 
651 	if (!num_rules)
652 		return NULL;
653 
654 	size_of_regd = sizeof(struct ieee80211_regdomain) +
655 		       num_rules * sizeof(struct ieee80211_reg_rule);
656 
657 	rd = kzalloc(size_of_regd, GFP_KERNEL);
658 	if (!rd)
659 		return NULL;
660 
661 	for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
662 		rule1 = &rd1->reg_rules[x];
663 		for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
664 			rule2 = &rd2->reg_rules[y];
665 			/*
666 			 * This time around instead of using the stack lets
667 			 * write to the target rule directly saving ourselves
668 			 * a memcpy()
669 			 */
670 			intersected_rule = &rd->reg_rules[rule_idx];
671 			r = reg_rules_intersect(rule1, rule2, intersected_rule);
672 			/*
673 			 * No need to memset here the intersected rule here as
674 			 * we're not using the stack anymore
675 			 */
676 			if (r)
677 				continue;
678 			rule_idx++;
679 		}
680 	}
681 
682 	if (rule_idx != num_rules) {
683 		kfree(rd);
684 		return NULL;
685 	}
686 
687 	rd->n_reg_rules = num_rules;
688 	rd->alpha2[0] = '9';
689 	rd->alpha2[1] = '8';
690 
691 	return rd;
692 }
693 
694 /*
695  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
696  * want to just have the channel structure use these
697  */
698 static u32 map_regdom_flags(u32 rd_flags)
699 {
700 	u32 channel_flags = 0;
701 	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
702 		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
703 	if (rd_flags & NL80211_RRF_NO_IBSS)
704 		channel_flags |= IEEE80211_CHAN_NO_IBSS;
705 	if (rd_flags & NL80211_RRF_DFS)
706 		channel_flags |= IEEE80211_CHAN_RADAR;
707 	if (rd_flags & NL80211_RRF_NO_OFDM)
708 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
709 	return channel_flags;
710 }
711 
712 static const struct ieee80211_reg_rule *
713 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
714 		   const struct ieee80211_regdomain *regd)
715 {
716 	int i;
717 	bool band_rule_found = false;
718 	bool bw_fits = false;
719 
720 	if (!regd)
721 		return ERR_PTR(-EINVAL);
722 
723 	for (i = 0; i < regd->n_reg_rules; i++) {
724 		const struct ieee80211_reg_rule *rr;
725 		const struct ieee80211_freq_range *fr = NULL;
726 
727 		rr = &regd->reg_rules[i];
728 		fr = &rr->freq_range;
729 
730 		/*
731 		 * We only need to know if one frequency rule was
732 		 * was in center_freq's band, that's enough, so lets
733 		 * not overwrite it once found
734 		 */
735 		if (!band_rule_found)
736 			band_rule_found = freq_in_rule_band(fr, center_freq);
737 
738 		bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
739 
740 		if (band_rule_found && bw_fits)
741 			return rr;
742 	}
743 
744 	if (!band_rule_found)
745 		return ERR_PTR(-ERANGE);
746 
747 	return ERR_PTR(-EINVAL);
748 }
749 
750 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
751 					       u32 center_freq)
752 {
753 	const struct ieee80211_regdomain *regd;
754 	struct regulatory_request *lr = get_last_request();
755 
756 	/*
757 	 * Follow the driver's regulatory domain, if present, unless a country
758 	 * IE has been processed or a user wants to help complaince further
759 	 */
760 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
761 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
762 	    wiphy->regd)
763 		regd = get_wiphy_regdom(wiphy);
764 	else
765 		regd = get_cfg80211_regdom();
766 
767 	return freq_reg_info_regd(wiphy, center_freq, regd);
768 }
769 EXPORT_SYMBOL(freq_reg_info);
770 
771 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
772 {
773 	switch (initiator) {
774 	case NL80211_REGDOM_SET_BY_CORE:
775 		return "core";
776 	case NL80211_REGDOM_SET_BY_USER:
777 		return "user";
778 	case NL80211_REGDOM_SET_BY_DRIVER:
779 		return "driver";
780 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
781 		return "country IE";
782 	default:
783 		WARN_ON(1);
784 		return "bug";
785 	}
786 }
787 EXPORT_SYMBOL(reg_initiator_name);
788 
789 #ifdef CONFIG_CFG80211_REG_DEBUG
790 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
791 				    const struct ieee80211_reg_rule *reg_rule)
792 {
793 	const struct ieee80211_power_rule *power_rule;
794 	const struct ieee80211_freq_range *freq_range;
795 	char max_antenna_gain[32];
796 
797 	power_rule = &reg_rule->power_rule;
798 	freq_range = &reg_rule->freq_range;
799 
800 	if (!power_rule->max_antenna_gain)
801 		snprintf(max_antenna_gain, 32, "N/A");
802 	else
803 		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
804 
805 	REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
806 		      chan->center_freq);
807 
808 	REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
809 		      freq_range->start_freq_khz, freq_range->end_freq_khz,
810 		      freq_range->max_bandwidth_khz, max_antenna_gain,
811 		      power_rule->max_eirp);
812 }
813 #else
814 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
815 				    const struct ieee80211_reg_rule *reg_rule)
816 {
817 	return;
818 }
819 #endif
820 
821 /*
822  * Note that right now we assume the desired channel bandwidth
823  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
824  * per channel, the primary and the extension channel).
825  */
826 static void handle_channel(struct wiphy *wiphy,
827 			   enum nl80211_reg_initiator initiator,
828 			   struct ieee80211_channel *chan)
829 {
830 	u32 flags, bw_flags = 0;
831 	const struct ieee80211_reg_rule *reg_rule = NULL;
832 	const struct ieee80211_power_rule *power_rule = NULL;
833 	const struct ieee80211_freq_range *freq_range = NULL;
834 	struct wiphy *request_wiphy = NULL;
835 	struct regulatory_request *lr = get_last_request();
836 
837 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
838 
839 	flags = chan->orig_flags;
840 
841 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
842 	if (IS_ERR(reg_rule)) {
843 		/*
844 		 * We will disable all channels that do not match our
845 		 * received regulatory rule unless the hint is coming
846 		 * from a Country IE and the Country IE had no information
847 		 * about a band. The IEEE 802.11 spec allows for an AP
848 		 * to send only a subset of the regulatory rules allowed,
849 		 * so an AP in the US that only supports 2.4 GHz may only send
850 		 * a country IE with information for the 2.4 GHz band
851 		 * while 5 GHz is still supported.
852 		 */
853 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
854 		    PTR_ERR(reg_rule) == -ERANGE)
855 			return;
856 
857 		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
858 		chan->flags |= IEEE80211_CHAN_DISABLED;
859 		return;
860 	}
861 
862 	chan_reg_rule_print_dbg(chan, reg_rule);
863 
864 	power_rule = &reg_rule->power_rule;
865 	freq_range = &reg_rule->freq_range;
866 
867 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
868 		bw_flags = IEEE80211_CHAN_NO_HT40;
869 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
870 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
871 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
872 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
873 
874 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
875 	    request_wiphy && request_wiphy == wiphy &&
876 	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
877 		/*
878 		 * This guarantees the driver's requested regulatory domain
879 		 * will always be used as a base for further regulatory
880 		 * settings
881 		 */
882 		chan->flags = chan->orig_flags =
883 			map_regdom_flags(reg_rule->flags) | bw_flags;
884 		chan->max_antenna_gain = chan->orig_mag =
885 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
886 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
887 			(int) MBM_TO_DBM(power_rule->max_eirp);
888 		return;
889 	}
890 
891 	chan->dfs_state = NL80211_DFS_USABLE;
892 	chan->dfs_state_entered = jiffies;
893 
894 	chan->beacon_found = false;
895 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
896 	chan->max_antenna_gain =
897 		min_t(int, chan->orig_mag,
898 		      MBI_TO_DBI(power_rule->max_antenna_gain));
899 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
900 	if (chan->orig_mpwr) {
901 		/*
902 		 * Devices that have their own custom regulatory domain
903 		 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
904 		 * passed country IE power settings.
905 		 */
906 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
907 		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
908 		    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
909 			chan->max_power = chan->max_reg_power;
910 		else
911 			chan->max_power = min(chan->orig_mpwr,
912 					      chan->max_reg_power);
913 	} else
914 		chan->max_power = chan->max_reg_power;
915 }
916 
917 static void handle_band(struct wiphy *wiphy,
918 			enum nl80211_reg_initiator initiator,
919 			struct ieee80211_supported_band *sband)
920 {
921 	unsigned int i;
922 
923 	if (!sband)
924 		return;
925 
926 	for (i = 0; i < sband->n_channels; i++)
927 		handle_channel(wiphy, initiator, &sband->channels[i]);
928 }
929 
930 static bool reg_request_cell_base(struct regulatory_request *request)
931 {
932 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
933 		return false;
934 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
935 }
936 
937 bool reg_last_request_cell_base(void)
938 {
939 	return reg_request_cell_base(get_last_request());
940 }
941 
942 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
943 /* Core specific check */
944 static enum reg_request_treatment
945 reg_ignore_cell_hint(struct regulatory_request *pending_request)
946 {
947 	struct regulatory_request *lr = get_last_request();
948 
949 	if (!reg_num_devs_support_basehint)
950 		return REG_REQ_IGNORE;
951 
952 	if (reg_request_cell_base(lr) &&
953 	    !regdom_changes(pending_request->alpha2))
954 		return REG_REQ_ALREADY_SET;
955 
956 	return REG_REQ_OK;
957 }
958 
959 /* Device specific check */
960 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
961 {
962 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
963 }
964 #else
965 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
966 {
967 	return REG_REQ_IGNORE;
968 }
969 
970 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
971 {
972 	return true;
973 }
974 #endif
975 
976 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
977 {
978 	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY &&
979 	    !(wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY))
980 		return true;
981 	return false;
982 }
983 
984 static bool ignore_reg_update(struct wiphy *wiphy,
985 			      enum nl80211_reg_initiator initiator)
986 {
987 	struct regulatory_request *lr = get_last_request();
988 
989 	if (!lr) {
990 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
991 			      "since last_request is not set\n",
992 			      reg_initiator_name(initiator));
993 		return true;
994 	}
995 
996 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
997 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
998 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
999 			      "since the driver uses its own custom "
1000 			      "regulatory domain\n",
1001 			      reg_initiator_name(initiator));
1002 		return true;
1003 	}
1004 
1005 	/*
1006 	 * wiphy->regd will be set once the device has its own
1007 	 * desired regulatory domain set
1008 	 */
1009 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1010 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1011 	    !is_world_regdom(lr->alpha2)) {
1012 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1013 			      "since the driver requires its own regulatory "
1014 			      "domain to be set first\n",
1015 			      reg_initiator_name(initiator));
1016 		return true;
1017 	}
1018 
1019 	if (reg_request_cell_base(lr))
1020 		return reg_dev_ignore_cell_hint(wiphy);
1021 
1022 	return false;
1023 }
1024 
1025 static bool reg_is_world_roaming(struct wiphy *wiphy)
1026 {
1027 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1028 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1029 	struct regulatory_request *lr = get_last_request();
1030 
1031 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1032 		return true;
1033 
1034 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1035 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1036 		return true;
1037 
1038 	return false;
1039 }
1040 
1041 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1042 			      struct reg_beacon *reg_beacon)
1043 {
1044 	struct ieee80211_supported_band *sband;
1045 	struct ieee80211_channel *chan;
1046 	bool channel_changed = false;
1047 	struct ieee80211_channel chan_before;
1048 
1049 	sband = wiphy->bands[reg_beacon->chan.band];
1050 	chan = &sband->channels[chan_idx];
1051 
1052 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1053 		return;
1054 
1055 	if (chan->beacon_found)
1056 		return;
1057 
1058 	chan->beacon_found = true;
1059 
1060 	if (!reg_is_world_roaming(wiphy))
1061 		return;
1062 
1063 	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1064 		return;
1065 
1066 	chan_before.center_freq = chan->center_freq;
1067 	chan_before.flags = chan->flags;
1068 
1069 	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1070 		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1071 		channel_changed = true;
1072 	}
1073 
1074 	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1075 		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1076 		channel_changed = true;
1077 	}
1078 
1079 	if (channel_changed)
1080 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1081 }
1082 
1083 /*
1084  * Called when a scan on a wiphy finds a beacon on
1085  * new channel
1086  */
1087 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1088 				    struct reg_beacon *reg_beacon)
1089 {
1090 	unsigned int i;
1091 	struct ieee80211_supported_band *sband;
1092 
1093 	if (!wiphy->bands[reg_beacon->chan.band])
1094 		return;
1095 
1096 	sband = wiphy->bands[reg_beacon->chan.band];
1097 
1098 	for (i = 0; i < sband->n_channels; i++)
1099 		handle_reg_beacon(wiphy, i, reg_beacon);
1100 }
1101 
1102 /*
1103  * Called upon reg changes or a new wiphy is added
1104  */
1105 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1106 {
1107 	unsigned int i;
1108 	struct ieee80211_supported_band *sband;
1109 	struct reg_beacon *reg_beacon;
1110 
1111 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1112 		if (!wiphy->bands[reg_beacon->chan.band])
1113 			continue;
1114 		sband = wiphy->bands[reg_beacon->chan.band];
1115 		for (i = 0; i < sband->n_channels; i++)
1116 			handle_reg_beacon(wiphy, i, reg_beacon);
1117 	}
1118 }
1119 
1120 /* Reap the advantages of previously found beacons */
1121 static void reg_process_beacons(struct wiphy *wiphy)
1122 {
1123 	/*
1124 	 * Means we are just firing up cfg80211, so no beacons would
1125 	 * have been processed yet.
1126 	 */
1127 	if (!last_request)
1128 		return;
1129 	wiphy_update_beacon_reg(wiphy);
1130 }
1131 
1132 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1133 {
1134 	if (!chan)
1135 		return false;
1136 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1137 		return false;
1138 	/* This would happen when regulatory rules disallow HT40 completely */
1139 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1140 		return false;
1141 	return true;
1142 }
1143 
1144 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1145 					 struct ieee80211_channel *channel)
1146 {
1147 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1148 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1149 	unsigned int i;
1150 
1151 	if (!is_ht40_allowed(channel)) {
1152 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1153 		return;
1154 	}
1155 
1156 	/*
1157 	 * We need to ensure the extension channels exist to
1158 	 * be able to use HT40- or HT40+, this finds them (or not)
1159 	 */
1160 	for (i = 0; i < sband->n_channels; i++) {
1161 		struct ieee80211_channel *c = &sband->channels[i];
1162 
1163 		if (c->center_freq == (channel->center_freq - 20))
1164 			channel_before = c;
1165 		if (c->center_freq == (channel->center_freq + 20))
1166 			channel_after = c;
1167 	}
1168 
1169 	/*
1170 	 * Please note that this assumes target bandwidth is 20 MHz,
1171 	 * if that ever changes we also need to change the below logic
1172 	 * to include that as well.
1173 	 */
1174 	if (!is_ht40_allowed(channel_before))
1175 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1176 	else
1177 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1178 
1179 	if (!is_ht40_allowed(channel_after))
1180 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1181 	else
1182 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1183 }
1184 
1185 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1186 				      struct ieee80211_supported_band *sband)
1187 {
1188 	unsigned int i;
1189 
1190 	if (!sband)
1191 		return;
1192 
1193 	for (i = 0; i < sband->n_channels; i++)
1194 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1195 }
1196 
1197 static void reg_process_ht_flags(struct wiphy *wiphy)
1198 {
1199 	enum ieee80211_band band;
1200 
1201 	if (!wiphy)
1202 		return;
1203 
1204 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1205 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1206 }
1207 
1208 static void wiphy_update_regulatory(struct wiphy *wiphy,
1209 				    enum nl80211_reg_initiator initiator)
1210 {
1211 	enum ieee80211_band band;
1212 	struct regulatory_request *lr = get_last_request();
1213 
1214 	if (ignore_reg_update(wiphy, initiator))
1215 		return;
1216 
1217 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1218 
1219 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1220 		handle_band(wiphy, initiator, wiphy->bands[band]);
1221 
1222 	reg_process_beacons(wiphy);
1223 	reg_process_ht_flags(wiphy);
1224 
1225 	if (wiphy->reg_notifier)
1226 		wiphy->reg_notifier(wiphy, lr);
1227 }
1228 
1229 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1230 {
1231 	struct cfg80211_registered_device *rdev;
1232 	struct wiphy *wiphy;
1233 
1234 	ASSERT_RTNL();
1235 
1236 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1237 		wiphy = &rdev->wiphy;
1238 		wiphy_update_regulatory(wiphy, initiator);
1239 		/*
1240 		 * Regulatory updates set by CORE are ignored for custom
1241 		 * regulatory cards. Let us notify the changes to the driver,
1242 		 * as some drivers used this to restore its orig_* reg domain.
1243 		 */
1244 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1245 		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1246 		    wiphy->reg_notifier)
1247 			wiphy->reg_notifier(wiphy, get_last_request());
1248 	}
1249 }
1250 
1251 static void handle_channel_custom(struct wiphy *wiphy,
1252 				  struct ieee80211_channel *chan,
1253 				  const struct ieee80211_regdomain *regd)
1254 {
1255 	u32 bw_flags = 0;
1256 	const struct ieee80211_reg_rule *reg_rule = NULL;
1257 	const struct ieee80211_power_rule *power_rule = NULL;
1258 	const struct ieee80211_freq_range *freq_range = NULL;
1259 
1260 	reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1261 				      regd);
1262 
1263 	if (IS_ERR(reg_rule)) {
1264 		REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1265 			      chan->center_freq);
1266 		chan->flags = IEEE80211_CHAN_DISABLED;
1267 		return;
1268 	}
1269 
1270 	chan_reg_rule_print_dbg(chan, reg_rule);
1271 
1272 	power_rule = &reg_rule->power_rule;
1273 	freq_range = &reg_rule->freq_range;
1274 
1275 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1276 		bw_flags = IEEE80211_CHAN_NO_HT40;
1277 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
1278 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1279 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
1280 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1281 
1282 	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1283 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1284 	chan->max_reg_power = chan->max_power =
1285 		(int) MBM_TO_DBM(power_rule->max_eirp);
1286 }
1287 
1288 static void handle_band_custom(struct wiphy *wiphy,
1289 			       struct ieee80211_supported_band *sband,
1290 			       const struct ieee80211_regdomain *regd)
1291 {
1292 	unsigned int i;
1293 
1294 	if (!sband)
1295 		return;
1296 
1297 	for (i = 0; i < sband->n_channels; i++)
1298 		handle_channel_custom(wiphy, &sband->channels[i], regd);
1299 }
1300 
1301 /* Used by drivers prior to wiphy registration */
1302 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1303 				   const struct ieee80211_regdomain *regd)
1304 {
1305 	enum ieee80211_band band;
1306 	unsigned int bands_set = 0;
1307 
1308 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1309 		if (!wiphy->bands[band])
1310 			continue;
1311 		handle_band_custom(wiphy, wiphy->bands[band], regd);
1312 		bands_set++;
1313 	}
1314 
1315 	/*
1316 	 * no point in calling this if it won't have any effect
1317 	 * on your device's supported bands.
1318 	 */
1319 	WARN_ON(!bands_set);
1320 }
1321 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1322 
1323 /* This has the logic which determines when a new request
1324  * should be ignored. */
1325 static enum reg_request_treatment
1326 get_reg_request_treatment(struct wiphy *wiphy,
1327 			  struct regulatory_request *pending_request)
1328 {
1329 	struct wiphy *last_wiphy = NULL;
1330 	struct regulatory_request *lr = get_last_request();
1331 
1332 	/* All initial requests are respected */
1333 	if (!lr)
1334 		return REG_REQ_OK;
1335 
1336 	switch (pending_request->initiator) {
1337 	case NL80211_REGDOM_SET_BY_CORE:
1338 		return REG_REQ_OK;
1339 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1340 		if (reg_request_cell_base(lr)) {
1341 			/* Trust a Cell base station over the AP's country IE */
1342 			if (regdom_changes(pending_request->alpha2))
1343 				return REG_REQ_IGNORE;
1344 			return REG_REQ_ALREADY_SET;
1345 		}
1346 
1347 		last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1348 
1349 		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1350 			return -EINVAL;
1351 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1352 			if (last_wiphy != wiphy) {
1353 				/*
1354 				 * Two cards with two APs claiming different
1355 				 * Country IE alpha2s. We could
1356 				 * intersect them, but that seems unlikely
1357 				 * to be correct. Reject second one for now.
1358 				 */
1359 				if (regdom_changes(pending_request->alpha2))
1360 					return REG_REQ_IGNORE;
1361 				return REG_REQ_ALREADY_SET;
1362 			}
1363 			/*
1364 			 * Two consecutive Country IE hints on the same wiphy.
1365 			 * This should be picked up early by the driver/stack
1366 			 */
1367 			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1368 				return REG_REQ_OK;
1369 			return REG_REQ_ALREADY_SET;
1370 		}
1371 		return REG_REQ_OK;
1372 	case NL80211_REGDOM_SET_BY_DRIVER:
1373 		if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1374 			if (regdom_changes(pending_request->alpha2))
1375 				return REG_REQ_OK;
1376 			return REG_REQ_ALREADY_SET;
1377 		}
1378 
1379 		/*
1380 		 * This would happen if you unplug and plug your card
1381 		 * back in or if you add a new device for which the previously
1382 		 * loaded card also agrees on the regulatory domain.
1383 		 */
1384 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1385 		    !regdom_changes(pending_request->alpha2))
1386 			return REG_REQ_ALREADY_SET;
1387 
1388 		return REG_REQ_INTERSECT;
1389 	case NL80211_REGDOM_SET_BY_USER:
1390 		if (reg_request_cell_base(pending_request))
1391 			return reg_ignore_cell_hint(pending_request);
1392 
1393 		if (reg_request_cell_base(lr))
1394 			return REG_REQ_IGNORE;
1395 
1396 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1397 			return REG_REQ_INTERSECT;
1398 		/*
1399 		 * If the user knows better the user should set the regdom
1400 		 * to their country before the IE is picked up
1401 		 */
1402 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1403 		    lr->intersect)
1404 			return REG_REQ_IGNORE;
1405 		/*
1406 		 * Process user requests only after previous user/driver/core
1407 		 * requests have been processed
1408 		 */
1409 		if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1410 		     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1411 		     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1412 		    regdom_changes(lr->alpha2))
1413 			return REG_REQ_IGNORE;
1414 
1415 		if (!regdom_changes(pending_request->alpha2))
1416 			return REG_REQ_ALREADY_SET;
1417 
1418 		return REG_REQ_OK;
1419 	}
1420 
1421 	return REG_REQ_IGNORE;
1422 }
1423 
1424 static void reg_set_request_processed(void)
1425 {
1426 	bool need_more_processing = false;
1427 	struct regulatory_request *lr = get_last_request();
1428 
1429 	lr->processed = true;
1430 
1431 	spin_lock(&reg_requests_lock);
1432 	if (!list_empty(&reg_requests_list))
1433 		need_more_processing = true;
1434 	spin_unlock(&reg_requests_lock);
1435 
1436 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1437 		cancel_delayed_work(&reg_timeout);
1438 
1439 	if (need_more_processing)
1440 		schedule_work(&reg_work);
1441 }
1442 
1443 /**
1444  * __regulatory_hint - hint to the wireless core a regulatory domain
1445  * @wiphy: if the hint comes from country information from an AP, this
1446  *	is required to be set to the wiphy that received the information
1447  * @pending_request: the regulatory request currently being processed
1448  *
1449  * The Wireless subsystem can use this function to hint to the wireless core
1450  * what it believes should be the current regulatory domain.
1451  *
1452  * Returns one of the different reg request treatment values.
1453  */
1454 static enum reg_request_treatment
1455 __regulatory_hint(struct wiphy *wiphy,
1456 		  struct regulatory_request *pending_request)
1457 {
1458 	const struct ieee80211_regdomain *regd;
1459 	bool intersect = false;
1460 	enum reg_request_treatment treatment;
1461 	struct regulatory_request *lr;
1462 
1463 	treatment = get_reg_request_treatment(wiphy, pending_request);
1464 
1465 	switch (treatment) {
1466 	case REG_REQ_INTERSECT:
1467 		if (pending_request->initiator ==
1468 		    NL80211_REGDOM_SET_BY_DRIVER) {
1469 			regd = reg_copy_regd(get_cfg80211_regdom());
1470 			if (IS_ERR(regd)) {
1471 				kfree(pending_request);
1472 				return PTR_ERR(regd);
1473 			}
1474 			rcu_assign_pointer(wiphy->regd, regd);
1475 		}
1476 		intersect = true;
1477 		break;
1478 	case REG_REQ_OK:
1479 		break;
1480 	default:
1481 		/*
1482 		 * If the regulatory domain being requested by the
1483 		 * driver has already been set just copy it to the
1484 		 * wiphy
1485 		 */
1486 		if (treatment == REG_REQ_ALREADY_SET &&
1487 		    pending_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
1488 			regd = reg_copy_regd(get_cfg80211_regdom());
1489 			if (IS_ERR(regd)) {
1490 				kfree(pending_request);
1491 				return REG_REQ_IGNORE;
1492 			}
1493 			treatment = REG_REQ_ALREADY_SET;
1494 			rcu_assign_pointer(wiphy->regd, regd);
1495 			goto new_request;
1496 		}
1497 		kfree(pending_request);
1498 		return treatment;
1499 	}
1500 
1501 new_request:
1502 	lr = get_last_request();
1503 	if (lr != &core_request_world && lr)
1504 		kfree_rcu(lr, rcu_head);
1505 
1506 	pending_request->intersect = intersect;
1507 	pending_request->processed = false;
1508 	rcu_assign_pointer(last_request, pending_request);
1509 	lr = pending_request;
1510 
1511 	pending_request = NULL;
1512 
1513 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER) {
1514 		user_alpha2[0] = lr->alpha2[0];
1515 		user_alpha2[1] = lr->alpha2[1];
1516 	}
1517 
1518 	/* When r == REG_REQ_INTERSECT we do need to call CRDA */
1519 	if (treatment != REG_REQ_OK && treatment != REG_REQ_INTERSECT) {
1520 		/*
1521 		 * Since CRDA will not be called in this case as we already
1522 		 * have applied the requested regulatory domain before we just
1523 		 * inform userspace we have processed the request
1524 		 */
1525 		if (treatment == REG_REQ_ALREADY_SET) {
1526 			nl80211_send_reg_change_event(lr);
1527 			reg_set_request_processed();
1528 		}
1529 		return treatment;
1530 	}
1531 
1532 	if (call_crda(lr->alpha2))
1533 		return REG_REQ_IGNORE;
1534 	return REG_REQ_OK;
1535 }
1536 
1537 /* This processes *all* regulatory hints */
1538 static void reg_process_hint(struct regulatory_request *reg_request,
1539 			     enum nl80211_reg_initiator reg_initiator)
1540 {
1541 	struct wiphy *wiphy = NULL;
1542 
1543 	if (WARN_ON(!reg_request->alpha2))
1544 		return;
1545 
1546 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1547 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1548 
1549 	if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) {
1550 		kfree(reg_request);
1551 		return;
1552 	}
1553 
1554 	switch (__regulatory_hint(wiphy, reg_request)) {
1555 	case REG_REQ_ALREADY_SET:
1556 		/* This is required so that the orig_* parameters are saved */
1557 		if (wiphy && wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1558 			wiphy_update_regulatory(wiphy, reg_initiator);
1559 		break;
1560 	default:
1561 		if (reg_initiator == NL80211_REGDOM_SET_BY_USER)
1562 			schedule_delayed_work(&reg_timeout,
1563 					      msecs_to_jiffies(3142));
1564 		break;
1565 	}
1566 }
1567 
1568 /*
1569  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1570  * Regulatory hints come on a first come first serve basis and we
1571  * must process each one atomically.
1572  */
1573 static void reg_process_pending_hints(void)
1574 {
1575 	struct regulatory_request *reg_request, *lr;
1576 
1577 	lr = get_last_request();
1578 
1579 	/* When last_request->processed becomes true this will be rescheduled */
1580 	if (lr && !lr->processed) {
1581 		REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1582 		return;
1583 	}
1584 
1585 	spin_lock(&reg_requests_lock);
1586 
1587 	if (list_empty(&reg_requests_list)) {
1588 		spin_unlock(&reg_requests_lock);
1589 		return;
1590 	}
1591 
1592 	reg_request = list_first_entry(&reg_requests_list,
1593 				       struct regulatory_request,
1594 				       list);
1595 	list_del_init(&reg_request->list);
1596 
1597 	spin_unlock(&reg_requests_lock);
1598 
1599 	reg_process_hint(reg_request, reg_request->initiator);
1600 }
1601 
1602 /* Processes beacon hints -- this has nothing to do with country IEs */
1603 static void reg_process_pending_beacon_hints(void)
1604 {
1605 	struct cfg80211_registered_device *rdev;
1606 	struct reg_beacon *pending_beacon, *tmp;
1607 
1608 	/* This goes through the _pending_ beacon list */
1609 	spin_lock_bh(&reg_pending_beacons_lock);
1610 
1611 	list_for_each_entry_safe(pending_beacon, tmp,
1612 				 &reg_pending_beacons, list) {
1613 		list_del_init(&pending_beacon->list);
1614 
1615 		/* Applies the beacon hint to current wiphys */
1616 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1617 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1618 
1619 		/* Remembers the beacon hint for new wiphys or reg changes */
1620 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
1621 	}
1622 
1623 	spin_unlock_bh(&reg_pending_beacons_lock);
1624 }
1625 
1626 static void reg_todo(struct work_struct *work)
1627 {
1628 	rtnl_lock();
1629 	reg_process_pending_hints();
1630 	reg_process_pending_beacon_hints();
1631 	rtnl_unlock();
1632 }
1633 
1634 static void queue_regulatory_request(struct regulatory_request *request)
1635 {
1636 	request->alpha2[0] = toupper(request->alpha2[0]);
1637 	request->alpha2[1] = toupper(request->alpha2[1]);
1638 
1639 	spin_lock(&reg_requests_lock);
1640 	list_add_tail(&request->list, &reg_requests_list);
1641 	spin_unlock(&reg_requests_lock);
1642 
1643 	schedule_work(&reg_work);
1644 }
1645 
1646 /*
1647  * Core regulatory hint -- happens during cfg80211_init()
1648  * and when we restore regulatory settings.
1649  */
1650 static int regulatory_hint_core(const char *alpha2)
1651 {
1652 	struct regulatory_request *request;
1653 
1654 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1655 	if (!request)
1656 		return -ENOMEM;
1657 
1658 	request->alpha2[0] = alpha2[0];
1659 	request->alpha2[1] = alpha2[1];
1660 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1661 
1662 	queue_regulatory_request(request);
1663 
1664 	return 0;
1665 }
1666 
1667 /* User hints */
1668 int regulatory_hint_user(const char *alpha2,
1669 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
1670 {
1671 	struct regulatory_request *request;
1672 
1673 	if (WARN_ON(!alpha2))
1674 		return -EINVAL;
1675 
1676 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1677 	if (!request)
1678 		return -ENOMEM;
1679 
1680 	request->wiphy_idx = WIPHY_IDX_INVALID;
1681 	request->alpha2[0] = alpha2[0];
1682 	request->alpha2[1] = alpha2[1];
1683 	request->initiator = NL80211_REGDOM_SET_BY_USER;
1684 	request->user_reg_hint_type = user_reg_hint_type;
1685 
1686 	queue_regulatory_request(request);
1687 
1688 	return 0;
1689 }
1690 
1691 /* Driver hints */
1692 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1693 {
1694 	struct regulatory_request *request;
1695 
1696 	if (WARN_ON(!alpha2 || !wiphy))
1697 		return -EINVAL;
1698 
1699 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1700 	if (!request)
1701 		return -ENOMEM;
1702 
1703 	request->wiphy_idx = get_wiphy_idx(wiphy);
1704 
1705 	request->alpha2[0] = alpha2[0];
1706 	request->alpha2[1] = alpha2[1];
1707 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1708 
1709 	queue_regulatory_request(request);
1710 
1711 	return 0;
1712 }
1713 EXPORT_SYMBOL(regulatory_hint);
1714 
1715 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
1716 				const u8 *country_ie, u8 country_ie_len)
1717 {
1718 	char alpha2[2];
1719 	enum environment_cap env = ENVIRON_ANY;
1720 	struct regulatory_request *request = NULL, *lr;
1721 
1722 	/* IE len must be evenly divisible by 2 */
1723 	if (country_ie_len & 0x01)
1724 		return;
1725 
1726 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1727 		return;
1728 
1729 	request = kzalloc(sizeof(*request), GFP_KERNEL);
1730 	if (!request)
1731 		return;
1732 
1733 	alpha2[0] = country_ie[0];
1734 	alpha2[1] = country_ie[1];
1735 
1736 	if (country_ie[2] == 'I')
1737 		env = ENVIRON_INDOOR;
1738 	else if (country_ie[2] == 'O')
1739 		env = ENVIRON_OUTDOOR;
1740 
1741 	rcu_read_lock();
1742 	lr = get_last_request();
1743 
1744 	if (unlikely(!lr))
1745 		goto out;
1746 
1747 	/*
1748 	 * We will run this only upon a successful connection on cfg80211.
1749 	 * We leave conflict resolution to the workqueue, where can hold
1750 	 * the RTNL.
1751 	 */
1752 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1753 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
1754 		goto out;
1755 
1756 	request->wiphy_idx = get_wiphy_idx(wiphy);
1757 	request->alpha2[0] = alpha2[0];
1758 	request->alpha2[1] = alpha2[1];
1759 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1760 	request->country_ie_env = env;
1761 
1762 	queue_regulatory_request(request);
1763 	request = NULL;
1764 out:
1765 	kfree(request);
1766 	rcu_read_unlock();
1767 }
1768 
1769 static void restore_alpha2(char *alpha2, bool reset_user)
1770 {
1771 	/* indicates there is no alpha2 to consider for restoration */
1772 	alpha2[0] = '9';
1773 	alpha2[1] = '7';
1774 
1775 	/* The user setting has precedence over the module parameter */
1776 	if (is_user_regdom_saved()) {
1777 		/* Unless we're asked to ignore it and reset it */
1778 		if (reset_user) {
1779 			REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1780 			user_alpha2[0] = '9';
1781 			user_alpha2[1] = '7';
1782 
1783 			/*
1784 			 * If we're ignoring user settings, we still need to
1785 			 * check the module parameter to ensure we put things
1786 			 * back as they were for a full restore.
1787 			 */
1788 			if (!is_world_regdom(ieee80211_regdom)) {
1789 				REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1790 					      ieee80211_regdom[0], ieee80211_regdom[1]);
1791 				alpha2[0] = ieee80211_regdom[0];
1792 				alpha2[1] = ieee80211_regdom[1];
1793 			}
1794 		} else {
1795 			REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1796 				      user_alpha2[0], user_alpha2[1]);
1797 			alpha2[0] = user_alpha2[0];
1798 			alpha2[1] = user_alpha2[1];
1799 		}
1800 	} else if (!is_world_regdom(ieee80211_regdom)) {
1801 		REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1802 			      ieee80211_regdom[0], ieee80211_regdom[1]);
1803 		alpha2[0] = ieee80211_regdom[0];
1804 		alpha2[1] = ieee80211_regdom[1];
1805 	} else
1806 		REG_DBG_PRINT("Restoring regulatory settings\n");
1807 }
1808 
1809 static void restore_custom_reg_settings(struct wiphy *wiphy)
1810 {
1811 	struct ieee80211_supported_band *sband;
1812 	enum ieee80211_band band;
1813 	struct ieee80211_channel *chan;
1814 	int i;
1815 
1816 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1817 		sband = wiphy->bands[band];
1818 		if (!sband)
1819 			continue;
1820 		for (i = 0; i < sband->n_channels; i++) {
1821 			chan = &sband->channels[i];
1822 			chan->flags = chan->orig_flags;
1823 			chan->max_antenna_gain = chan->orig_mag;
1824 			chan->max_power = chan->orig_mpwr;
1825 			chan->beacon_found = false;
1826 		}
1827 	}
1828 }
1829 
1830 /*
1831  * Restoring regulatory settings involves ingoring any
1832  * possibly stale country IE information and user regulatory
1833  * settings if so desired, this includes any beacon hints
1834  * learned as we could have traveled outside to another country
1835  * after disconnection. To restore regulatory settings we do
1836  * exactly what we did at bootup:
1837  *
1838  *   - send a core regulatory hint
1839  *   - send a user regulatory hint if applicable
1840  *
1841  * Device drivers that send a regulatory hint for a specific country
1842  * keep their own regulatory domain on wiphy->regd so that does does
1843  * not need to be remembered.
1844  */
1845 static void restore_regulatory_settings(bool reset_user)
1846 {
1847 	char alpha2[2];
1848 	char world_alpha2[2];
1849 	struct reg_beacon *reg_beacon, *btmp;
1850 	struct regulatory_request *reg_request, *tmp;
1851 	LIST_HEAD(tmp_reg_req_list);
1852 	struct cfg80211_registered_device *rdev;
1853 
1854 	ASSERT_RTNL();
1855 
1856 	reset_regdomains(true, &world_regdom);
1857 	restore_alpha2(alpha2, reset_user);
1858 
1859 	/*
1860 	 * If there's any pending requests we simply
1861 	 * stash them to a temporary pending queue and
1862 	 * add then after we've restored regulatory
1863 	 * settings.
1864 	 */
1865 	spin_lock(&reg_requests_lock);
1866 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
1867 		if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
1868 			continue;
1869 		list_move_tail(&reg_request->list, &tmp_reg_req_list);
1870 	}
1871 	spin_unlock(&reg_requests_lock);
1872 
1873 	/* Clear beacon hints */
1874 	spin_lock_bh(&reg_pending_beacons_lock);
1875 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
1876 		list_del(&reg_beacon->list);
1877 		kfree(reg_beacon);
1878 	}
1879 	spin_unlock_bh(&reg_pending_beacons_lock);
1880 
1881 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
1882 		list_del(&reg_beacon->list);
1883 		kfree(reg_beacon);
1884 	}
1885 
1886 	/* First restore to the basic regulatory settings */
1887 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
1888 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
1889 
1890 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1891 		if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1892 			restore_custom_reg_settings(&rdev->wiphy);
1893 	}
1894 
1895 	regulatory_hint_core(world_alpha2);
1896 
1897 	/*
1898 	 * This restores the ieee80211_regdom module parameter
1899 	 * preference or the last user requested regulatory
1900 	 * settings, user regulatory settings takes precedence.
1901 	 */
1902 	if (is_an_alpha2(alpha2))
1903 		regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1904 
1905 	spin_lock(&reg_requests_lock);
1906 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
1907 	spin_unlock(&reg_requests_lock);
1908 
1909 	REG_DBG_PRINT("Kicking the queue\n");
1910 
1911 	schedule_work(&reg_work);
1912 }
1913 
1914 void regulatory_hint_disconnect(void)
1915 {
1916 	REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
1917 	restore_regulatory_settings(false);
1918 }
1919 
1920 static bool freq_is_chan_12_13_14(u16 freq)
1921 {
1922 	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1923 	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1924 	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1925 		return true;
1926 	return false;
1927 }
1928 
1929 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
1930 {
1931 	struct reg_beacon *pending_beacon;
1932 
1933 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
1934 		if (beacon_chan->center_freq ==
1935 		    pending_beacon->chan.center_freq)
1936 			return true;
1937 	return false;
1938 }
1939 
1940 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1941 				 struct ieee80211_channel *beacon_chan,
1942 				 gfp_t gfp)
1943 {
1944 	struct reg_beacon *reg_beacon;
1945 	bool processing;
1946 
1947 	if (beacon_chan->beacon_found ||
1948 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
1949 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1950 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
1951 		return 0;
1952 
1953 	spin_lock_bh(&reg_pending_beacons_lock);
1954 	processing = pending_reg_beacon(beacon_chan);
1955 	spin_unlock_bh(&reg_pending_beacons_lock);
1956 
1957 	if (processing)
1958 		return 0;
1959 
1960 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1961 	if (!reg_beacon)
1962 		return -ENOMEM;
1963 
1964 	REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
1965 		      beacon_chan->center_freq,
1966 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
1967 		      wiphy_name(wiphy));
1968 
1969 	memcpy(&reg_beacon->chan, beacon_chan,
1970 	       sizeof(struct ieee80211_channel));
1971 
1972 	/*
1973 	 * Since we can be called from BH or and non-BH context
1974 	 * we must use spin_lock_bh()
1975 	 */
1976 	spin_lock_bh(&reg_pending_beacons_lock);
1977 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1978 	spin_unlock_bh(&reg_pending_beacons_lock);
1979 
1980 	schedule_work(&reg_work);
1981 
1982 	return 0;
1983 }
1984 
1985 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1986 {
1987 	unsigned int i;
1988 	const struct ieee80211_reg_rule *reg_rule = NULL;
1989 	const struct ieee80211_freq_range *freq_range = NULL;
1990 	const struct ieee80211_power_rule *power_rule = NULL;
1991 
1992 	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1993 
1994 	for (i = 0; i < rd->n_reg_rules; i++) {
1995 		reg_rule = &rd->reg_rules[i];
1996 		freq_range = &reg_rule->freq_range;
1997 		power_rule = &reg_rule->power_rule;
1998 
1999 		/*
2000 		 * There may not be documentation for max antenna gain
2001 		 * in certain regions
2002 		 */
2003 		if (power_rule->max_antenna_gain)
2004 			pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2005 				freq_range->start_freq_khz,
2006 				freq_range->end_freq_khz,
2007 				freq_range->max_bandwidth_khz,
2008 				power_rule->max_antenna_gain,
2009 				power_rule->max_eirp);
2010 		else
2011 			pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2012 				freq_range->start_freq_khz,
2013 				freq_range->end_freq_khz,
2014 				freq_range->max_bandwidth_khz,
2015 				power_rule->max_eirp);
2016 	}
2017 }
2018 
2019 bool reg_supported_dfs_region(u8 dfs_region)
2020 {
2021 	switch (dfs_region) {
2022 	case NL80211_DFS_UNSET:
2023 	case NL80211_DFS_FCC:
2024 	case NL80211_DFS_ETSI:
2025 	case NL80211_DFS_JP:
2026 		return true;
2027 	default:
2028 		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2029 			      dfs_region);
2030 		return false;
2031 	}
2032 }
2033 
2034 static void print_dfs_region(u8 dfs_region)
2035 {
2036 	if (!dfs_region)
2037 		return;
2038 
2039 	switch (dfs_region) {
2040 	case NL80211_DFS_FCC:
2041 		pr_info(" DFS Master region FCC");
2042 		break;
2043 	case NL80211_DFS_ETSI:
2044 		pr_info(" DFS Master region ETSI");
2045 		break;
2046 	case NL80211_DFS_JP:
2047 		pr_info(" DFS Master region JP");
2048 		break;
2049 	default:
2050 		pr_info(" DFS Master region Unknown");
2051 		break;
2052 	}
2053 }
2054 
2055 static void print_regdomain(const struct ieee80211_regdomain *rd)
2056 {
2057 	struct regulatory_request *lr = get_last_request();
2058 
2059 	if (is_intersected_alpha2(rd->alpha2)) {
2060 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2061 			struct cfg80211_registered_device *rdev;
2062 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2063 			if (rdev) {
2064 				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2065 					rdev->country_ie_alpha2[0],
2066 					rdev->country_ie_alpha2[1]);
2067 			} else
2068 				pr_info("Current regulatory domain intersected:\n");
2069 		} else
2070 			pr_info("Current regulatory domain intersected:\n");
2071 	} else if (is_world_regdom(rd->alpha2)) {
2072 		pr_info("World regulatory domain updated:\n");
2073 	} else {
2074 		if (is_unknown_alpha2(rd->alpha2))
2075 			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2076 		else {
2077 			if (reg_request_cell_base(lr))
2078 				pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2079 					rd->alpha2[0], rd->alpha2[1]);
2080 			else
2081 				pr_info("Regulatory domain changed to country: %c%c\n",
2082 					rd->alpha2[0], rd->alpha2[1]);
2083 		}
2084 	}
2085 
2086 	print_dfs_region(rd->dfs_region);
2087 	print_rd_rules(rd);
2088 }
2089 
2090 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2091 {
2092 	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2093 	print_rd_rules(rd);
2094 }
2095 
2096 /* Takes ownership of rd only if it doesn't fail */
2097 static int __set_regdom(const struct ieee80211_regdomain *rd)
2098 {
2099 	const struct ieee80211_regdomain *regd;
2100 	const struct ieee80211_regdomain *intersected_rd = NULL;
2101 	struct wiphy *request_wiphy;
2102 	struct regulatory_request *lr = get_last_request();
2103 
2104 	/* Some basic sanity checks first */
2105 
2106 	if (!reg_is_valid_request(rd->alpha2))
2107 		return -EINVAL;
2108 
2109 	if (is_world_regdom(rd->alpha2)) {
2110 		update_world_regdomain(rd);
2111 		return 0;
2112 	}
2113 
2114 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2115 	    !is_unknown_alpha2(rd->alpha2))
2116 		return -EINVAL;
2117 
2118 	/*
2119 	 * Lets only bother proceeding on the same alpha2 if the current
2120 	 * rd is non static (it means CRDA was present and was used last)
2121 	 * and the pending request came in from a country IE
2122 	 */
2123 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2124 		/*
2125 		 * If someone else asked us to change the rd lets only bother
2126 		 * checking if the alpha2 changes if CRDA was already called
2127 		 */
2128 		if (!regdom_changes(rd->alpha2))
2129 			return -EALREADY;
2130 	}
2131 
2132 	/*
2133 	 * Now lets set the regulatory domain, update all driver channels
2134 	 * and finally inform them of what we have done, in case they want
2135 	 * to review or adjust their own settings based on their own
2136 	 * internal EEPROM data
2137 	 */
2138 
2139 	if (!is_valid_rd(rd)) {
2140 		pr_err("Invalid regulatory domain detected:\n");
2141 		print_regdomain_info(rd);
2142 		return -EINVAL;
2143 	}
2144 
2145 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2146 	if (!request_wiphy &&
2147 	    (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2148 	     lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2149 		schedule_delayed_work(&reg_timeout, 0);
2150 		return -ENODEV;
2151 	}
2152 
2153 	if (!lr->intersect) {
2154 		if (lr->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2155 			reset_regdomains(false, rd);
2156 			return 0;
2157 		}
2158 
2159 		/*
2160 		 * For a driver hint, lets copy the regulatory domain the
2161 		 * driver wanted to the wiphy to deal with conflicts
2162 		 */
2163 
2164 		/*
2165 		 * Userspace could have sent two replies with only
2166 		 * one kernel request.
2167 		 */
2168 		if (request_wiphy->regd)
2169 			return -EALREADY;
2170 
2171 		regd = reg_copy_regd(rd);
2172 		if (IS_ERR(regd))
2173 			return PTR_ERR(regd);
2174 
2175 		rcu_assign_pointer(request_wiphy->regd, regd);
2176 		reset_regdomains(false, rd);
2177 		return 0;
2178 	}
2179 
2180 	/* Intersection requires a bit more work */
2181 
2182 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2183 		intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2184 		if (!intersected_rd)
2185 			return -EINVAL;
2186 
2187 		/*
2188 		 * We can trash what CRDA provided now.
2189 		 * However if a driver requested this specific regulatory
2190 		 * domain we keep it for its private use
2191 		 */
2192 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
2193 			const struct ieee80211_regdomain *tmp;
2194 
2195 			tmp = get_wiphy_regdom(request_wiphy);
2196 			rcu_assign_pointer(request_wiphy->regd, rd);
2197 			rcu_free_regdom(tmp);
2198 		} else {
2199 			kfree(rd);
2200 		}
2201 
2202 		rd = NULL;
2203 
2204 		reset_regdomains(false, intersected_rd);
2205 
2206 		return 0;
2207 	}
2208 
2209 	return -EINVAL;
2210 }
2211 
2212 
2213 /*
2214  * Use this call to set the current regulatory domain. Conflicts with
2215  * multiple drivers can be ironed out later. Caller must've already
2216  * kmalloc'd the rd structure.
2217  */
2218 int set_regdom(const struct ieee80211_regdomain *rd)
2219 {
2220 	struct regulatory_request *lr;
2221 	int r;
2222 
2223 	lr = get_last_request();
2224 
2225 	/* Note that this doesn't update the wiphys, this is done below */
2226 	r = __set_regdom(rd);
2227 	if (r) {
2228 		if (r == -EALREADY)
2229 			reg_set_request_processed();
2230 
2231 		kfree(rd);
2232 		return r;
2233 	}
2234 
2235 	/* This would make this whole thing pointless */
2236 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2237 		return -EINVAL;
2238 
2239 	/* update all wiphys now with the new established regulatory domain */
2240 	update_all_wiphy_regulatory(lr->initiator);
2241 
2242 	print_regdomain(get_cfg80211_regdom());
2243 
2244 	nl80211_send_reg_change_event(lr);
2245 
2246 	reg_set_request_processed();
2247 
2248 	return 0;
2249 }
2250 
2251 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2252 {
2253 	struct regulatory_request *lr;
2254 	u8 alpha2[2];
2255 	bool add = false;
2256 
2257 	rcu_read_lock();
2258 	lr = get_last_request();
2259 	if (lr && !lr->processed) {
2260 		memcpy(alpha2, lr->alpha2, 2);
2261 		add = true;
2262 	}
2263 	rcu_read_unlock();
2264 
2265 	if (add)
2266 		return add_uevent_var(env, "COUNTRY=%c%c",
2267 				      alpha2[0], alpha2[1]);
2268 	return 0;
2269 }
2270 
2271 void wiphy_regulatory_register(struct wiphy *wiphy)
2272 {
2273 	struct regulatory_request *lr;
2274 
2275 	if (!reg_dev_ignore_cell_hint(wiphy))
2276 		reg_num_devs_support_basehint++;
2277 
2278 	lr = get_last_request();
2279 	wiphy_update_regulatory(wiphy, lr->initiator);
2280 }
2281 
2282 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2283 {
2284 	struct wiphy *request_wiphy = NULL;
2285 	struct regulatory_request *lr;
2286 
2287 	lr = get_last_request();
2288 
2289 	if (!reg_dev_ignore_cell_hint(wiphy))
2290 		reg_num_devs_support_basehint--;
2291 
2292 	rcu_free_regdom(get_wiphy_regdom(wiphy));
2293 	rcu_assign_pointer(wiphy->regd, NULL);
2294 
2295 	if (lr)
2296 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2297 
2298 	if (!request_wiphy || request_wiphy != wiphy)
2299 		return;
2300 
2301 	lr->wiphy_idx = WIPHY_IDX_INVALID;
2302 	lr->country_ie_env = ENVIRON_ANY;
2303 }
2304 
2305 static void reg_timeout_work(struct work_struct *work)
2306 {
2307 	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2308 	rtnl_lock();
2309 	restore_regulatory_settings(true);
2310 	rtnl_unlock();
2311 }
2312 
2313 int __init regulatory_init(void)
2314 {
2315 	int err = 0;
2316 
2317 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2318 	if (IS_ERR(reg_pdev))
2319 		return PTR_ERR(reg_pdev);
2320 
2321 	reg_pdev->dev.type = &reg_device_type;
2322 
2323 	spin_lock_init(&reg_requests_lock);
2324 	spin_lock_init(&reg_pending_beacons_lock);
2325 
2326 	reg_regdb_size_check();
2327 
2328 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2329 
2330 	user_alpha2[0] = '9';
2331 	user_alpha2[1] = '7';
2332 
2333 	/* We always try to get an update for the static regdomain */
2334 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2335 	if (err) {
2336 		if (err == -ENOMEM)
2337 			return err;
2338 		/*
2339 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
2340 		 * memory which is handled and propagated appropriately above
2341 		 * but it can also fail during a netlink_broadcast() or during
2342 		 * early boot for call_usermodehelper(). For now treat these
2343 		 * errors as non-fatal.
2344 		 */
2345 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2346 	}
2347 
2348 	/*
2349 	 * Finally, if the user set the module parameter treat it
2350 	 * as a user hint.
2351 	 */
2352 	if (!is_world_regdom(ieee80211_regdom))
2353 		regulatory_hint_user(ieee80211_regdom,
2354 				     NL80211_USER_REG_HINT_USER);
2355 
2356 	return 0;
2357 }
2358 
2359 void regulatory_exit(void)
2360 {
2361 	struct regulatory_request *reg_request, *tmp;
2362 	struct reg_beacon *reg_beacon, *btmp;
2363 
2364 	cancel_work_sync(&reg_work);
2365 	cancel_delayed_work_sync(&reg_timeout);
2366 
2367 	/* Lock to suppress warnings */
2368 	rtnl_lock();
2369 	reset_regdomains(true, NULL);
2370 	rtnl_unlock();
2371 
2372 	dev_set_uevent_suppress(&reg_pdev->dev, true);
2373 
2374 	platform_device_unregister(reg_pdev);
2375 
2376 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2377 		list_del(&reg_beacon->list);
2378 		kfree(reg_beacon);
2379 	}
2380 
2381 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2382 		list_del(&reg_beacon->list);
2383 		kfree(reg_beacon);
2384 	}
2385 
2386 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2387 		list_del(&reg_request->list);
2388 		kfree(reg_request);
2389 	}
2390 }
2391