xref: /openbmc/linux/net/wireless/reg.c (revision 927a8e38)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2023 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137 
138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140 	return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142 
143 /*
144  * Returns the regulatory domain associated with the wiphy.
145  *
146  * Requires any of RTNL, wiphy mutex or RCU protection.
147  */
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150 	return rcu_dereference_check(wiphy->regd,
151 				     lockdep_is_held(&wiphy->mtx) ||
152 				     lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155 
156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158 	switch (dfs_region) {
159 	case NL80211_DFS_UNSET:
160 		return "unset";
161 	case NL80211_DFS_FCC:
162 		return "FCC";
163 	case NL80211_DFS_ETSI:
164 		return "ETSI";
165 	case NL80211_DFS_JP:
166 		return "JP";
167 	}
168 	return "Unknown";
169 }
170 
171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173 	const struct ieee80211_regdomain *regd = NULL;
174 	const struct ieee80211_regdomain *wiphy_regd = NULL;
175 	enum nl80211_dfs_regions dfs_region;
176 
177 	rcu_read_lock();
178 	regd = get_cfg80211_regdom();
179 	dfs_region = regd->dfs_region;
180 
181 	if (!wiphy)
182 		goto out;
183 
184 	wiphy_regd = get_wiphy_regdom(wiphy);
185 	if (!wiphy_regd)
186 		goto out;
187 
188 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 		dfs_region = wiphy_regd->dfs_region;
190 		goto out;
191 	}
192 
193 	if (wiphy_regd->dfs_region == regd->dfs_region)
194 		goto out;
195 
196 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 		 dev_name(&wiphy->dev),
198 		 reg_dfs_region_str(wiphy_regd->dfs_region),
199 		 reg_dfs_region_str(regd->dfs_region));
200 
201 out:
202 	rcu_read_unlock();
203 
204 	return dfs_region;
205 }
206 
207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209 	if (!r)
210 		return;
211 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213 
214 static struct regulatory_request *get_last_request(void)
215 {
216 	return rcu_dereference_rtnl(last_request);
217 }
218 
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222 
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226 
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229 
230 struct reg_beacon {
231 	struct list_head list;
232 	struct ieee80211_channel chan;
233 };
234 
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237 
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240 
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243 	.n_reg_rules = 8,
244 	.alpha2 =  "00",
245 	.reg_rules = {
246 		/* IEEE 802.11b/g, channels 1..11 */
247 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 		/* IEEE 802.11b/g, channels 12..13. */
249 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 		/* IEEE 802.11 channel 14 - Only JP enables
252 		 * this and for 802.11b only */
253 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 			NL80211_RRF_NO_IR |
255 			NL80211_RRF_NO_OFDM),
256 		/* IEEE 802.11a, channel 36..48 */
257 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
258                         NL80211_RRF_NO_IR |
259                         NL80211_RRF_AUTO_BW),
260 
261 		/* IEEE 802.11a, channel 52..64 - DFS required */
262 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 			NL80211_RRF_NO_IR |
264 			NL80211_RRF_AUTO_BW |
265 			NL80211_RRF_DFS),
266 
267 		/* IEEE 802.11a, channel 100..144 - DFS required */
268 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 			NL80211_RRF_NO_IR |
270 			NL80211_RRF_DFS),
271 
272 		/* IEEE 802.11a, channel 149..165 */
273 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 			NL80211_RRF_NO_IR),
275 
276 		/* IEEE 802.11ad (60GHz), channels 1..3 */
277 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 	}
279 };
280 
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 	&world_regdom;
284 
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288 
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291 
292 static void reg_free_request(struct regulatory_request *request)
293 {
294 	if (request == &core_request_world)
295 		return;
296 
297 	if (request != get_last_request())
298 		kfree(request);
299 }
300 
301 static void reg_free_last_request(void)
302 {
303 	struct regulatory_request *lr = get_last_request();
304 
305 	if (lr != &core_request_world && lr)
306 		kfree_rcu(lr, rcu_head);
307 }
308 
309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311 	struct regulatory_request *lr;
312 
313 	lr = get_last_request();
314 	if (lr == request)
315 		return;
316 
317 	reg_free_last_request();
318 	rcu_assign_pointer(last_request, request);
319 }
320 
321 static void reset_regdomains(bool full_reset,
322 			     const struct ieee80211_regdomain *new_regdom)
323 {
324 	const struct ieee80211_regdomain *r;
325 
326 	ASSERT_RTNL();
327 
328 	r = get_cfg80211_regdom();
329 
330 	/* avoid freeing static information or freeing something twice */
331 	if (r == cfg80211_world_regdom)
332 		r = NULL;
333 	if (cfg80211_world_regdom == &world_regdom)
334 		cfg80211_world_regdom = NULL;
335 	if (r == &world_regdom)
336 		r = NULL;
337 
338 	rcu_free_regdom(r);
339 	rcu_free_regdom(cfg80211_world_regdom);
340 
341 	cfg80211_world_regdom = &world_regdom;
342 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343 
344 	if (!full_reset)
345 		return;
346 
347 	reg_update_last_request(&core_request_world);
348 }
349 
350 /*
351  * Dynamic world regulatory domain requested by the wireless
352  * core upon initialization
353  */
354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356 	struct regulatory_request *lr;
357 
358 	lr = get_last_request();
359 
360 	WARN_ON(!lr);
361 
362 	reset_regdomains(false, rd);
363 
364 	cfg80211_world_regdom = rd;
365 }
366 
367 bool is_world_regdom(const char *alpha2)
368 {
369 	if (!alpha2)
370 		return false;
371 	return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373 
374 static bool is_alpha2_set(const char *alpha2)
375 {
376 	if (!alpha2)
377 		return false;
378 	return alpha2[0] && alpha2[1];
379 }
380 
381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383 	if (!alpha2)
384 		return false;
385 	/*
386 	 * Special case where regulatory domain was built by driver
387 	 * but a specific alpha2 cannot be determined
388 	 */
389 	return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391 
392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394 	if (!alpha2)
395 		return false;
396 	/*
397 	 * Special case where regulatory domain is the
398 	 * result of an intersection between two regulatory domain
399 	 * structures
400 	 */
401 	return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403 
404 static bool is_an_alpha2(const char *alpha2)
405 {
406 	if (!alpha2)
407 		return false;
408 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410 
411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413 	if (!alpha2_x || !alpha2_y)
414 		return false;
415 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417 
418 static bool regdom_changes(const char *alpha2)
419 {
420 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421 
422 	if (!r)
423 		return true;
424 	return !alpha2_equal(r->alpha2, alpha2);
425 }
426 
427 /*
428  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430  * has ever been issued.
431  */
432 static bool is_user_regdom_saved(void)
433 {
434 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435 		return false;
436 
437 	/* This would indicate a mistake on the design */
438 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 		 "Unexpected user alpha2: %c%c\n",
440 		 user_alpha2[0], user_alpha2[1]))
441 		return false;
442 
443 	return true;
444 }
445 
446 static const struct ieee80211_regdomain *
447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449 	struct ieee80211_regdomain *regd;
450 	unsigned int i;
451 
452 	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453 		       GFP_KERNEL);
454 	if (!regd)
455 		return ERR_PTR(-ENOMEM);
456 
457 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458 
459 	for (i = 0; i < src_regd->n_reg_rules; i++)
460 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
461 		       sizeof(struct ieee80211_reg_rule));
462 
463 	return regd;
464 }
465 
466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468 	ASSERT_RTNL();
469 
470 	if (!IS_ERR(cfg80211_user_regdom))
471 		kfree(cfg80211_user_regdom);
472 	cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474 
475 struct reg_regdb_apply_request {
476 	struct list_head list;
477 	const struct ieee80211_regdomain *regdom;
478 };
479 
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482 
483 static void reg_regdb_apply(struct work_struct *work)
484 {
485 	struct reg_regdb_apply_request *request;
486 
487 	rtnl_lock();
488 
489 	mutex_lock(&reg_regdb_apply_mutex);
490 	while (!list_empty(&reg_regdb_apply_list)) {
491 		request = list_first_entry(&reg_regdb_apply_list,
492 					   struct reg_regdb_apply_request,
493 					   list);
494 		list_del(&request->list);
495 
496 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497 		kfree(request);
498 	}
499 	mutex_unlock(&reg_regdb_apply_mutex);
500 
501 	rtnl_unlock();
502 }
503 
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505 
506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508 	struct reg_regdb_apply_request *request;
509 
510 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511 	if (!request) {
512 		kfree(regdom);
513 		return -ENOMEM;
514 	}
515 
516 	request->regdom = regdom;
517 
518 	mutex_lock(&reg_regdb_apply_mutex);
519 	list_add_tail(&request->list, &reg_regdb_apply_list);
520 	mutex_unlock(&reg_regdb_apply_mutex);
521 
522 	schedule_work(&reg_regdb_work);
523 	return 0;
524 }
525 
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529 
530 static u32 reg_crda_timeouts;
531 
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534 
535 static void crda_timeout_work(struct work_struct *work)
536 {
537 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 	rtnl_lock();
539 	reg_crda_timeouts++;
540 	restore_regulatory_settings(true, false);
541 	rtnl_unlock();
542 }
543 
544 static void cancel_crda_timeout(void)
545 {
546 	cancel_delayed_work(&crda_timeout);
547 }
548 
549 static void cancel_crda_timeout_sync(void)
550 {
551 	cancel_delayed_work_sync(&crda_timeout);
552 }
553 
554 static void reset_crda_timeouts(void)
555 {
556 	reg_crda_timeouts = 0;
557 }
558 
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
563 static int call_crda(const char *alpha2)
564 {
565 	char country[12];
566 	char *env[] = { country, NULL };
567 	int ret;
568 
569 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 		 alpha2[0], alpha2[1]);
571 
572 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 		return -EINVAL;
575 	}
576 
577 	if (!is_world_regdom((char *) alpha2))
578 		pr_debug("Calling CRDA for country: %c%c\n",
579 			 alpha2[0], alpha2[1]);
580 	else
581 		pr_debug("Calling CRDA to update world regulatory domain\n");
582 
583 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584 	if (ret)
585 		return ret;
586 
587 	queue_delayed_work(system_power_efficient_wq,
588 			   &crda_timeout, msecs_to_jiffies(3142));
589 	return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597 	return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600 
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603 
604 struct fwdb_country {
605 	u8 alpha2[2];
606 	__be16 coll_ptr;
607 	/* this struct cannot be extended */
608 } __packed __aligned(4);
609 
610 struct fwdb_collection {
611 	u8 len;
612 	u8 n_rules;
613 	u8 dfs_region;
614 	/* no optional data yet */
615 	/* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617 
618 enum fwdb_flags {
619 	FWDB_FLAG_NO_OFDM	= BIT(0),
620 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
621 	FWDB_FLAG_DFS		= BIT(2),
622 	FWDB_FLAG_NO_IR		= BIT(3),
623 	FWDB_FLAG_AUTO_BW	= BIT(4),
624 };
625 
626 struct fwdb_wmm_ac {
627 	u8 ecw;
628 	u8 aifsn;
629 	__be16 cot;
630 } __packed;
631 
632 struct fwdb_wmm_rule {
633 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636 
637 struct fwdb_rule {
638 	u8 len;
639 	u8 flags;
640 	__be16 max_eirp;
641 	__be32 start, end, max_bw;
642 	/* start of optional data */
643 	__be16 cac_timeout;
644 	__be16 wmm_ptr;
645 } __packed __aligned(4);
646 
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649 
650 struct fwdb_header {
651 	__be32 magic;
652 	__be32 version;
653 	struct fwdb_country country[];
654 } __packed __aligned(4);
655 
656 static int ecw2cw(int ecw)
657 {
658 	return (1 << ecw) - 1;
659 }
660 
661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664 	int i;
665 
666 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 		u8 aifsn = ac[i].aifsn;
670 
671 		if (cw_min >= cw_max)
672 			return false;
673 
674 		if (aifsn < 1)
675 			return false;
676 	}
677 
678 	return true;
679 }
680 
681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684 
685 	if ((u8 *)rule + sizeof(rule->len) > data + size)
686 		return false;
687 
688 	/* mandatory fields */
689 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690 		return false;
691 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 		struct fwdb_wmm_rule *wmm;
694 
695 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696 			return false;
697 
698 		wmm = (void *)(data + wmm_ptr);
699 
700 		if (!valid_wmm(wmm))
701 			return false;
702 	}
703 	return true;
704 }
705 
706 static bool valid_country(const u8 *data, unsigned int size,
707 			  const struct fwdb_country *country)
708 {
709 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 	struct fwdb_collection *coll = (void *)(data + ptr);
711 	__be16 *rules_ptr;
712 	unsigned int i;
713 
714 	/* make sure we can read len/n_rules */
715 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716 		return false;
717 
718 	/* make sure base struct and all rules fit */
719 	if ((u8 *)coll + ALIGN(coll->len, 2) +
720 	    (coll->n_rules * 2) > data + size)
721 		return false;
722 
723 	/* mandatory fields must exist */
724 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725 		return false;
726 
727 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728 
729 	for (i = 0; i < coll->n_rules; i++) {
730 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731 
732 		if (!valid_rule(data, size, rule_ptr))
733 			return false;
734 	}
735 
736 	return true;
737 }
738 
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 #include <keys/asymmetric-type.h>
741 
742 static struct key *builtin_regdb_keys;
743 
744 static int __init load_builtin_regdb_keys(void)
745 {
746 	builtin_regdb_keys =
747 		keyring_alloc(".builtin_regdb_keys",
748 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
749 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
750 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
751 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
752 	if (IS_ERR(builtin_regdb_keys))
753 		return PTR_ERR(builtin_regdb_keys);
754 
755 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
756 
757 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
758 	x509_load_certificate_list(shipped_regdb_certs,
759 				   shipped_regdb_certs_len,
760 				   builtin_regdb_keys);
761 #endif
762 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
763 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
764 		x509_load_certificate_list(extra_regdb_certs,
765 					   extra_regdb_certs_len,
766 					   builtin_regdb_keys);
767 #endif
768 
769 	return 0;
770 }
771 
772 MODULE_FIRMWARE("regulatory.db.p7s");
773 
774 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
775 {
776 	const struct firmware *sig;
777 	bool result;
778 
779 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
780 		return false;
781 
782 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
783 					builtin_regdb_keys,
784 					VERIFYING_UNSPECIFIED_SIGNATURE,
785 					NULL, NULL) == 0;
786 
787 	release_firmware(sig);
788 
789 	return result;
790 }
791 
792 static void free_regdb_keyring(void)
793 {
794 	key_put(builtin_regdb_keys);
795 }
796 #else
797 static int load_builtin_regdb_keys(void)
798 {
799 	return 0;
800 }
801 
802 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
803 {
804 	return true;
805 }
806 
807 static void free_regdb_keyring(void)
808 {
809 }
810 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
811 
812 static bool valid_regdb(const u8 *data, unsigned int size)
813 {
814 	const struct fwdb_header *hdr = (void *)data;
815 	const struct fwdb_country *country;
816 
817 	if (size < sizeof(*hdr))
818 		return false;
819 
820 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
821 		return false;
822 
823 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
824 		return false;
825 
826 	if (!regdb_has_valid_signature(data, size))
827 		return false;
828 
829 	country = &hdr->country[0];
830 	while ((u8 *)(country + 1) <= data + size) {
831 		if (!country->coll_ptr)
832 			break;
833 		if (!valid_country(data, size, country))
834 			return false;
835 		country++;
836 	}
837 
838 	return true;
839 }
840 
841 static void set_wmm_rule(const struct fwdb_header *db,
842 			 const struct fwdb_country *country,
843 			 const struct fwdb_rule *rule,
844 			 struct ieee80211_reg_rule *rrule)
845 {
846 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
847 	struct fwdb_wmm_rule *wmm;
848 	unsigned int i, wmm_ptr;
849 
850 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
851 	wmm = (void *)((u8 *)db + wmm_ptr);
852 
853 	if (!valid_wmm(wmm)) {
854 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
855 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
856 		       country->alpha2[0], country->alpha2[1]);
857 		return;
858 	}
859 
860 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
861 		wmm_rule->client[i].cw_min =
862 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
863 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
864 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
865 		wmm_rule->client[i].cot =
866 			1000 * be16_to_cpu(wmm->client[i].cot);
867 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
868 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
869 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
870 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
871 	}
872 
873 	rrule->has_wmm = true;
874 }
875 
876 static int __regdb_query_wmm(const struct fwdb_header *db,
877 			     const struct fwdb_country *country, int freq,
878 			     struct ieee80211_reg_rule *rrule)
879 {
880 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
881 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
882 	int i;
883 
884 	for (i = 0; i < coll->n_rules; i++) {
885 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
886 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
887 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
888 
889 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
890 			continue;
891 
892 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
893 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
894 			set_wmm_rule(db, country, rule, rrule);
895 			return 0;
896 		}
897 	}
898 
899 	return -ENODATA;
900 }
901 
902 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
903 {
904 	const struct fwdb_header *hdr = regdb;
905 	const struct fwdb_country *country;
906 
907 	if (!regdb)
908 		return -ENODATA;
909 
910 	if (IS_ERR(regdb))
911 		return PTR_ERR(regdb);
912 
913 	country = &hdr->country[0];
914 	while (country->coll_ptr) {
915 		if (alpha2_equal(alpha2, country->alpha2))
916 			return __regdb_query_wmm(regdb, country, freq, rule);
917 
918 		country++;
919 	}
920 
921 	return -ENODATA;
922 }
923 EXPORT_SYMBOL(reg_query_regdb_wmm);
924 
925 static int regdb_query_country(const struct fwdb_header *db,
926 			       const struct fwdb_country *country)
927 {
928 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
929 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
930 	struct ieee80211_regdomain *regdom;
931 	unsigned int i;
932 
933 	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
934 			 GFP_KERNEL);
935 	if (!regdom)
936 		return -ENOMEM;
937 
938 	regdom->n_reg_rules = coll->n_rules;
939 	regdom->alpha2[0] = country->alpha2[0];
940 	regdom->alpha2[1] = country->alpha2[1];
941 	regdom->dfs_region = coll->dfs_region;
942 
943 	for (i = 0; i < regdom->n_reg_rules; i++) {
944 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
945 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
946 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
947 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
948 
949 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
950 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
951 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
952 
953 		rrule->power_rule.max_antenna_gain = 0;
954 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
955 
956 		rrule->flags = 0;
957 		if (rule->flags & FWDB_FLAG_NO_OFDM)
958 			rrule->flags |= NL80211_RRF_NO_OFDM;
959 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
960 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
961 		if (rule->flags & FWDB_FLAG_DFS)
962 			rrule->flags |= NL80211_RRF_DFS;
963 		if (rule->flags & FWDB_FLAG_NO_IR)
964 			rrule->flags |= NL80211_RRF_NO_IR;
965 		if (rule->flags & FWDB_FLAG_AUTO_BW)
966 			rrule->flags |= NL80211_RRF_AUTO_BW;
967 
968 		rrule->dfs_cac_ms = 0;
969 
970 		/* handle optional data */
971 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
972 			rrule->dfs_cac_ms =
973 				1000 * be16_to_cpu(rule->cac_timeout);
974 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
975 			set_wmm_rule(db, country, rule, rrule);
976 	}
977 
978 	return reg_schedule_apply(regdom);
979 }
980 
981 static int query_regdb(const char *alpha2)
982 {
983 	const struct fwdb_header *hdr = regdb;
984 	const struct fwdb_country *country;
985 
986 	ASSERT_RTNL();
987 
988 	if (IS_ERR(regdb))
989 		return PTR_ERR(regdb);
990 
991 	country = &hdr->country[0];
992 	while (country->coll_ptr) {
993 		if (alpha2_equal(alpha2, country->alpha2))
994 			return regdb_query_country(regdb, country);
995 		country++;
996 	}
997 
998 	return -ENODATA;
999 }
1000 
1001 static void regdb_fw_cb(const struct firmware *fw, void *context)
1002 {
1003 	int set_error = 0;
1004 	bool restore = true;
1005 	void *db;
1006 
1007 	if (!fw) {
1008 		pr_info("failed to load regulatory.db\n");
1009 		set_error = -ENODATA;
1010 	} else if (!valid_regdb(fw->data, fw->size)) {
1011 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1012 		set_error = -EINVAL;
1013 	}
1014 
1015 	rtnl_lock();
1016 	if (regdb && !IS_ERR(regdb)) {
1017 		/* negative case - a bug
1018 		 * positive case - can happen due to race in case of multiple cb's in
1019 		 * queue, due to usage of asynchronous callback
1020 		 *
1021 		 * Either case, just restore and free new db.
1022 		 */
1023 	} else if (set_error) {
1024 		regdb = ERR_PTR(set_error);
1025 	} else if (fw) {
1026 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1027 		if (db) {
1028 			regdb = db;
1029 			restore = context && query_regdb(context);
1030 		} else {
1031 			restore = true;
1032 		}
1033 	}
1034 
1035 	if (restore)
1036 		restore_regulatory_settings(true, false);
1037 
1038 	rtnl_unlock();
1039 
1040 	kfree(context);
1041 
1042 	release_firmware(fw);
1043 }
1044 
1045 MODULE_FIRMWARE("regulatory.db");
1046 
1047 static int query_regdb_file(const char *alpha2)
1048 {
1049 	int err;
1050 
1051 	ASSERT_RTNL();
1052 
1053 	if (regdb)
1054 		return query_regdb(alpha2);
1055 
1056 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1057 	if (!alpha2)
1058 		return -ENOMEM;
1059 
1060 	err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1061 				      &reg_pdev->dev, GFP_KERNEL,
1062 				      (void *)alpha2, regdb_fw_cb);
1063 	if (err)
1064 		kfree(alpha2);
1065 
1066 	return err;
1067 }
1068 
1069 int reg_reload_regdb(void)
1070 {
1071 	const struct firmware *fw;
1072 	void *db;
1073 	int err;
1074 	const struct ieee80211_regdomain *current_regdomain;
1075 	struct regulatory_request *request;
1076 
1077 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1078 	if (err)
1079 		return err;
1080 
1081 	if (!valid_regdb(fw->data, fw->size)) {
1082 		err = -ENODATA;
1083 		goto out;
1084 	}
1085 
1086 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1087 	if (!db) {
1088 		err = -ENOMEM;
1089 		goto out;
1090 	}
1091 
1092 	rtnl_lock();
1093 	if (!IS_ERR_OR_NULL(regdb))
1094 		kfree(regdb);
1095 	regdb = db;
1096 
1097 	/* reset regulatory domain */
1098 	current_regdomain = get_cfg80211_regdom();
1099 
1100 	request = kzalloc(sizeof(*request), GFP_KERNEL);
1101 	if (!request) {
1102 		err = -ENOMEM;
1103 		goto out_unlock;
1104 	}
1105 
1106 	request->wiphy_idx = WIPHY_IDX_INVALID;
1107 	request->alpha2[0] = current_regdomain->alpha2[0];
1108 	request->alpha2[1] = current_regdomain->alpha2[1];
1109 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1110 	request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1111 
1112 	reg_process_hint(request);
1113 
1114 out_unlock:
1115 	rtnl_unlock();
1116  out:
1117 	release_firmware(fw);
1118 	return err;
1119 }
1120 
1121 static bool reg_query_database(struct regulatory_request *request)
1122 {
1123 	if (query_regdb_file(request->alpha2) == 0)
1124 		return true;
1125 
1126 	if (call_crda(request->alpha2) == 0)
1127 		return true;
1128 
1129 	return false;
1130 }
1131 
1132 bool reg_is_valid_request(const char *alpha2)
1133 {
1134 	struct regulatory_request *lr = get_last_request();
1135 
1136 	if (!lr || lr->processed)
1137 		return false;
1138 
1139 	return alpha2_equal(lr->alpha2, alpha2);
1140 }
1141 
1142 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143 {
1144 	struct regulatory_request *lr = get_last_request();
1145 
1146 	/*
1147 	 * Follow the driver's regulatory domain, if present, unless a country
1148 	 * IE has been processed or a user wants to help complaince further
1149 	 */
1150 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152 	    wiphy->regd)
1153 		return get_wiphy_regdom(wiphy);
1154 
1155 	return get_cfg80211_regdom();
1156 }
1157 
1158 static unsigned int
1159 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160 				 const struct ieee80211_reg_rule *rule)
1161 {
1162 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163 	const struct ieee80211_freq_range *freq_range_tmp;
1164 	const struct ieee80211_reg_rule *tmp;
1165 	u32 start_freq, end_freq, idx, no;
1166 
1167 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1168 		if (rule == &rd->reg_rules[idx])
1169 			break;
1170 
1171 	if (idx == rd->n_reg_rules)
1172 		return 0;
1173 
1174 	/* get start_freq */
1175 	no = idx;
1176 
1177 	while (no) {
1178 		tmp = &rd->reg_rules[--no];
1179 		freq_range_tmp = &tmp->freq_range;
1180 
1181 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182 			break;
1183 
1184 		freq_range = freq_range_tmp;
1185 	}
1186 
1187 	start_freq = freq_range->start_freq_khz;
1188 
1189 	/* get end_freq */
1190 	freq_range = &rule->freq_range;
1191 	no = idx;
1192 
1193 	while (no < rd->n_reg_rules - 1) {
1194 		tmp = &rd->reg_rules[++no];
1195 		freq_range_tmp = &tmp->freq_range;
1196 
1197 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198 			break;
1199 
1200 		freq_range = freq_range_tmp;
1201 	}
1202 
1203 	end_freq = freq_range->end_freq_khz;
1204 
1205 	return end_freq - start_freq;
1206 }
1207 
1208 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209 				   const struct ieee80211_reg_rule *rule)
1210 {
1211 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212 
1213 	if (rule->flags & NL80211_RRF_NO_320MHZ)
1214 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1215 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1216 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1217 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1218 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1219 
1220 	/*
1221 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1222 	 * are not allowed.
1223 	 */
1224 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1225 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1226 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1227 
1228 	return bw;
1229 }
1230 
1231 /* Sanity check on a regulatory rule */
1232 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1233 {
1234 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1235 	u32 freq_diff;
1236 
1237 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1238 		return false;
1239 
1240 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1241 		return false;
1242 
1243 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1244 
1245 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1246 	    freq_range->max_bandwidth_khz > freq_diff)
1247 		return false;
1248 
1249 	return true;
1250 }
1251 
1252 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1253 {
1254 	const struct ieee80211_reg_rule *reg_rule = NULL;
1255 	unsigned int i;
1256 
1257 	if (!rd->n_reg_rules)
1258 		return false;
1259 
1260 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1261 		return false;
1262 
1263 	for (i = 0; i < rd->n_reg_rules; i++) {
1264 		reg_rule = &rd->reg_rules[i];
1265 		if (!is_valid_reg_rule(reg_rule))
1266 			return false;
1267 	}
1268 
1269 	return true;
1270 }
1271 
1272 /**
1273  * freq_in_rule_band - tells us if a frequency is in a frequency band
1274  * @freq_range: frequency rule we want to query
1275  * @freq_khz: frequency we are inquiring about
1276  *
1277  * This lets us know if a specific frequency rule is or is not relevant to
1278  * a specific frequency's band. Bands are device specific and artificial
1279  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1280  * however it is safe for now to assume that a frequency rule should not be
1281  * part of a frequency's band if the start freq or end freq are off by more
1282  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1283  * 60 GHz band.
1284  * This resolution can be lowered and should be considered as we add
1285  * regulatory rule support for other "bands".
1286  **/
1287 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1288 			      u32 freq_khz)
1289 {
1290 #define ONE_GHZ_IN_KHZ	1000000
1291 	/*
1292 	 * From 802.11ad: directional multi-gigabit (DMG):
1293 	 * Pertaining to operation in a frequency band containing a channel
1294 	 * with the Channel starting frequency above 45 GHz.
1295 	 */
1296 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1297 			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1298 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1299 		return true;
1300 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1301 		return true;
1302 	return false;
1303 #undef ONE_GHZ_IN_KHZ
1304 }
1305 
1306 /*
1307  * Later on we can perhaps use the more restrictive DFS
1308  * region but we don't have information for that yet so
1309  * for now simply disallow conflicts.
1310  */
1311 static enum nl80211_dfs_regions
1312 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1313 			 const enum nl80211_dfs_regions dfs_region2)
1314 {
1315 	if (dfs_region1 != dfs_region2)
1316 		return NL80211_DFS_UNSET;
1317 	return dfs_region1;
1318 }
1319 
1320 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1321 				    const struct ieee80211_wmm_ac *wmm_ac2,
1322 				    struct ieee80211_wmm_ac *intersect)
1323 {
1324 	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1325 	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1326 	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1327 	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1328 }
1329 
1330 /*
1331  * Helper for regdom_intersect(), this does the real
1332  * mathematical intersection fun
1333  */
1334 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1335 			       const struct ieee80211_regdomain *rd2,
1336 			       const struct ieee80211_reg_rule *rule1,
1337 			       const struct ieee80211_reg_rule *rule2,
1338 			       struct ieee80211_reg_rule *intersected_rule)
1339 {
1340 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1341 	struct ieee80211_freq_range *freq_range;
1342 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1343 	struct ieee80211_power_rule *power_rule;
1344 	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1345 	struct ieee80211_wmm_rule *wmm_rule;
1346 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1347 
1348 	freq_range1 = &rule1->freq_range;
1349 	freq_range2 = &rule2->freq_range;
1350 	freq_range = &intersected_rule->freq_range;
1351 
1352 	power_rule1 = &rule1->power_rule;
1353 	power_rule2 = &rule2->power_rule;
1354 	power_rule = &intersected_rule->power_rule;
1355 
1356 	wmm_rule1 = &rule1->wmm_rule;
1357 	wmm_rule2 = &rule2->wmm_rule;
1358 	wmm_rule = &intersected_rule->wmm_rule;
1359 
1360 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1361 					 freq_range2->start_freq_khz);
1362 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1363 				       freq_range2->end_freq_khz);
1364 
1365 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1366 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1367 
1368 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1369 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1370 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1371 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1372 
1373 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1374 
1375 	intersected_rule->flags = rule1->flags | rule2->flags;
1376 
1377 	/*
1378 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1379 	 * set AUTO_BW in intersected rule also. Next we will
1380 	 * calculate BW correctly in handle_channel function.
1381 	 * In other case remove AUTO_BW flag while we calculate
1382 	 * maximum bandwidth correctly and auto calculation is
1383 	 * not required.
1384 	 */
1385 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1386 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1387 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1388 	else
1389 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1390 
1391 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1392 	if (freq_range->max_bandwidth_khz > freq_diff)
1393 		freq_range->max_bandwidth_khz = freq_diff;
1394 
1395 	power_rule->max_eirp = min(power_rule1->max_eirp,
1396 		power_rule2->max_eirp);
1397 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1398 		power_rule2->max_antenna_gain);
1399 
1400 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1401 					   rule2->dfs_cac_ms);
1402 
1403 	if (rule1->has_wmm && rule2->has_wmm) {
1404 		u8 ac;
1405 
1406 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1407 			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1408 						&wmm_rule2->client[ac],
1409 						&wmm_rule->client[ac]);
1410 			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1411 						&wmm_rule2->ap[ac],
1412 						&wmm_rule->ap[ac]);
1413 		}
1414 
1415 		intersected_rule->has_wmm = true;
1416 	} else if (rule1->has_wmm) {
1417 		*wmm_rule = *wmm_rule1;
1418 		intersected_rule->has_wmm = true;
1419 	} else if (rule2->has_wmm) {
1420 		*wmm_rule = *wmm_rule2;
1421 		intersected_rule->has_wmm = true;
1422 	} else {
1423 		intersected_rule->has_wmm = false;
1424 	}
1425 
1426 	if (!is_valid_reg_rule(intersected_rule))
1427 		return -EINVAL;
1428 
1429 	return 0;
1430 }
1431 
1432 /* check whether old rule contains new rule */
1433 static bool rule_contains(struct ieee80211_reg_rule *r1,
1434 			  struct ieee80211_reg_rule *r2)
1435 {
1436 	/* for simplicity, currently consider only same flags */
1437 	if (r1->flags != r2->flags)
1438 		return false;
1439 
1440 	/* verify r1 is more restrictive */
1441 	if ((r1->power_rule.max_antenna_gain >
1442 	     r2->power_rule.max_antenna_gain) ||
1443 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1444 		return false;
1445 
1446 	/* make sure r2's range is contained within r1 */
1447 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1448 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1449 		return false;
1450 
1451 	/* and finally verify that r1.max_bw >= r2.max_bw */
1452 	if (r1->freq_range.max_bandwidth_khz <
1453 	    r2->freq_range.max_bandwidth_khz)
1454 		return false;
1455 
1456 	return true;
1457 }
1458 
1459 /* add or extend current rules. do nothing if rule is already contained */
1460 static void add_rule(struct ieee80211_reg_rule *rule,
1461 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1462 {
1463 	struct ieee80211_reg_rule *tmp_rule;
1464 	int i;
1465 
1466 	for (i = 0; i < *n_rules; i++) {
1467 		tmp_rule = &reg_rules[i];
1468 		/* rule is already contained - do nothing */
1469 		if (rule_contains(tmp_rule, rule))
1470 			return;
1471 
1472 		/* extend rule if possible */
1473 		if (rule_contains(rule, tmp_rule)) {
1474 			memcpy(tmp_rule, rule, sizeof(*rule));
1475 			return;
1476 		}
1477 	}
1478 
1479 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1480 	(*n_rules)++;
1481 }
1482 
1483 /**
1484  * regdom_intersect - do the intersection between two regulatory domains
1485  * @rd1: first regulatory domain
1486  * @rd2: second regulatory domain
1487  *
1488  * Use this function to get the intersection between two regulatory domains.
1489  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1490  * as no one single alpha2 can represent this regulatory domain.
1491  *
1492  * Returns a pointer to the regulatory domain structure which will hold the
1493  * resulting intersection of rules between rd1 and rd2. We will
1494  * kzalloc() this structure for you.
1495  */
1496 static struct ieee80211_regdomain *
1497 regdom_intersect(const struct ieee80211_regdomain *rd1,
1498 		 const struct ieee80211_regdomain *rd2)
1499 {
1500 	int r;
1501 	unsigned int x, y;
1502 	unsigned int num_rules = 0;
1503 	const struct ieee80211_reg_rule *rule1, *rule2;
1504 	struct ieee80211_reg_rule intersected_rule;
1505 	struct ieee80211_regdomain *rd;
1506 
1507 	if (!rd1 || !rd2)
1508 		return NULL;
1509 
1510 	/*
1511 	 * First we get a count of the rules we'll need, then we actually
1512 	 * build them. This is to so we can malloc() and free() a
1513 	 * regdomain once. The reason we use reg_rules_intersect() here
1514 	 * is it will return -EINVAL if the rule computed makes no sense.
1515 	 * All rules that do check out OK are valid.
1516 	 */
1517 
1518 	for (x = 0; x < rd1->n_reg_rules; x++) {
1519 		rule1 = &rd1->reg_rules[x];
1520 		for (y = 0; y < rd2->n_reg_rules; y++) {
1521 			rule2 = &rd2->reg_rules[y];
1522 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1523 						 &intersected_rule))
1524 				num_rules++;
1525 		}
1526 	}
1527 
1528 	if (!num_rules)
1529 		return NULL;
1530 
1531 	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1532 	if (!rd)
1533 		return NULL;
1534 
1535 	for (x = 0; x < rd1->n_reg_rules; x++) {
1536 		rule1 = &rd1->reg_rules[x];
1537 		for (y = 0; y < rd2->n_reg_rules; y++) {
1538 			rule2 = &rd2->reg_rules[y];
1539 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1540 						&intersected_rule);
1541 			/*
1542 			 * No need to memset here the intersected rule here as
1543 			 * we're not using the stack anymore
1544 			 */
1545 			if (r)
1546 				continue;
1547 
1548 			add_rule(&intersected_rule, rd->reg_rules,
1549 				 &rd->n_reg_rules);
1550 		}
1551 	}
1552 
1553 	rd->alpha2[0] = '9';
1554 	rd->alpha2[1] = '8';
1555 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1556 						  rd2->dfs_region);
1557 
1558 	return rd;
1559 }
1560 
1561 /*
1562  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1563  * want to just have the channel structure use these
1564  */
1565 static u32 map_regdom_flags(u32 rd_flags)
1566 {
1567 	u32 channel_flags = 0;
1568 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1569 		channel_flags |= IEEE80211_CHAN_NO_IR;
1570 	if (rd_flags & NL80211_RRF_DFS)
1571 		channel_flags |= IEEE80211_CHAN_RADAR;
1572 	if (rd_flags & NL80211_RRF_NO_OFDM)
1573 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1574 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1575 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1576 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1577 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1578 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1579 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1580 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1581 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1582 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1583 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1584 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1585 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1586 	if (rd_flags & NL80211_RRF_NO_HE)
1587 		channel_flags |= IEEE80211_CHAN_NO_HE;
1588 	if (rd_flags & NL80211_RRF_NO_320MHZ)
1589 		channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1590 	if (rd_flags & NL80211_RRF_NO_EHT)
1591 		channel_flags |= IEEE80211_CHAN_NO_EHT;
1592 	return channel_flags;
1593 }
1594 
1595 static const struct ieee80211_reg_rule *
1596 freq_reg_info_regd(u32 center_freq,
1597 		   const struct ieee80211_regdomain *regd, u32 bw)
1598 {
1599 	int i;
1600 	bool band_rule_found = false;
1601 	bool bw_fits = false;
1602 
1603 	if (!regd)
1604 		return ERR_PTR(-EINVAL);
1605 
1606 	for (i = 0; i < regd->n_reg_rules; i++) {
1607 		const struct ieee80211_reg_rule *rr;
1608 		const struct ieee80211_freq_range *fr = NULL;
1609 
1610 		rr = &regd->reg_rules[i];
1611 		fr = &rr->freq_range;
1612 
1613 		/*
1614 		 * We only need to know if one frequency rule was
1615 		 * in center_freq's band, that's enough, so let's
1616 		 * not overwrite it once found
1617 		 */
1618 		if (!band_rule_found)
1619 			band_rule_found = freq_in_rule_band(fr, center_freq);
1620 
1621 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1622 
1623 		if (band_rule_found && bw_fits)
1624 			return rr;
1625 	}
1626 
1627 	if (!band_rule_found)
1628 		return ERR_PTR(-ERANGE);
1629 
1630 	return ERR_PTR(-EINVAL);
1631 }
1632 
1633 static const struct ieee80211_reg_rule *
1634 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1635 {
1636 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1637 	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1638 	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1639 	int i = ARRAY_SIZE(bws) - 1;
1640 	u32 bw;
1641 
1642 	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1643 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1644 		if (!IS_ERR(reg_rule))
1645 			return reg_rule;
1646 	}
1647 
1648 	return reg_rule;
1649 }
1650 
1651 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1652 					       u32 center_freq)
1653 {
1654 	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1655 
1656 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1657 }
1658 EXPORT_SYMBOL(freq_reg_info);
1659 
1660 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1661 {
1662 	switch (initiator) {
1663 	case NL80211_REGDOM_SET_BY_CORE:
1664 		return "core";
1665 	case NL80211_REGDOM_SET_BY_USER:
1666 		return "user";
1667 	case NL80211_REGDOM_SET_BY_DRIVER:
1668 		return "driver";
1669 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1670 		return "country element";
1671 	default:
1672 		WARN_ON(1);
1673 		return "bug";
1674 	}
1675 }
1676 EXPORT_SYMBOL(reg_initiator_name);
1677 
1678 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1679 					  const struct ieee80211_reg_rule *reg_rule,
1680 					  const struct ieee80211_channel *chan)
1681 {
1682 	const struct ieee80211_freq_range *freq_range = NULL;
1683 	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1684 	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1685 
1686 	freq_range = &reg_rule->freq_range;
1687 
1688 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1689 	center_freq_khz = ieee80211_channel_to_khz(chan);
1690 	/* Check if auto calculation requested */
1691 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1692 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1693 
1694 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1695 	if (!cfg80211_does_bw_fit_range(freq_range,
1696 					center_freq_khz,
1697 					MHZ_TO_KHZ(10)))
1698 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1699 	if (!cfg80211_does_bw_fit_range(freq_range,
1700 					center_freq_khz,
1701 					MHZ_TO_KHZ(20)))
1702 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1703 
1704 	if (is_s1g) {
1705 		/* S1G is strict about non overlapping channels. We can
1706 		 * calculate which bandwidth is allowed per channel by finding
1707 		 * the largest bandwidth which cleanly divides the freq_range.
1708 		 */
1709 		int edge_offset;
1710 		int ch_bw = max_bandwidth_khz;
1711 
1712 		while (ch_bw) {
1713 			edge_offset = (center_freq_khz - ch_bw / 2) -
1714 				      freq_range->start_freq_khz;
1715 			if (edge_offset % ch_bw == 0) {
1716 				switch (KHZ_TO_MHZ(ch_bw)) {
1717 				case 1:
1718 					bw_flags |= IEEE80211_CHAN_1MHZ;
1719 					break;
1720 				case 2:
1721 					bw_flags |= IEEE80211_CHAN_2MHZ;
1722 					break;
1723 				case 4:
1724 					bw_flags |= IEEE80211_CHAN_4MHZ;
1725 					break;
1726 				case 8:
1727 					bw_flags |= IEEE80211_CHAN_8MHZ;
1728 					break;
1729 				case 16:
1730 					bw_flags |= IEEE80211_CHAN_16MHZ;
1731 					break;
1732 				default:
1733 					/* If we got here, no bandwidths fit on
1734 					 * this frequency, ie. band edge.
1735 					 */
1736 					bw_flags |= IEEE80211_CHAN_DISABLED;
1737 					break;
1738 				}
1739 				break;
1740 			}
1741 			ch_bw /= 2;
1742 		}
1743 	} else {
1744 		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1745 			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1746 		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1747 			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1748 		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1749 			bw_flags |= IEEE80211_CHAN_NO_HT40;
1750 		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1751 			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1752 		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1753 			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1754 		if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1755 			bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1756 	}
1757 	return bw_flags;
1758 }
1759 
1760 static void handle_channel_single_rule(struct wiphy *wiphy,
1761 				       enum nl80211_reg_initiator initiator,
1762 				       struct ieee80211_channel *chan,
1763 				       u32 flags,
1764 				       struct regulatory_request *lr,
1765 				       struct wiphy *request_wiphy,
1766 				       const struct ieee80211_reg_rule *reg_rule)
1767 {
1768 	u32 bw_flags = 0;
1769 	const struct ieee80211_power_rule *power_rule = NULL;
1770 	const struct ieee80211_regdomain *regd;
1771 
1772 	regd = reg_get_regdomain(wiphy);
1773 
1774 	power_rule = &reg_rule->power_rule;
1775 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1776 
1777 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1778 	    request_wiphy && request_wiphy == wiphy &&
1779 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1780 		/*
1781 		 * This guarantees the driver's requested regulatory domain
1782 		 * will always be used as a base for further regulatory
1783 		 * settings
1784 		 */
1785 		chan->flags = chan->orig_flags =
1786 			map_regdom_flags(reg_rule->flags) | bw_flags;
1787 		chan->max_antenna_gain = chan->orig_mag =
1788 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1789 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1790 			(int) MBM_TO_DBM(power_rule->max_eirp);
1791 
1792 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1793 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1794 			if (reg_rule->dfs_cac_ms)
1795 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1796 		}
1797 
1798 		return;
1799 	}
1800 
1801 	chan->dfs_state = NL80211_DFS_USABLE;
1802 	chan->dfs_state_entered = jiffies;
1803 
1804 	chan->beacon_found = false;
1805 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1806 	chan->max_antenna_gain =
1807 		min_t(int, chan->orig_mag,
1808 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1809 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1810 
1811 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1812 		if (reg_rule->dfs_cac_ms)
1813 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1814 		else
1815 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1816 	}
1817 
1818 	if (chan->orig_mpwr) {
1819 		/*
1820 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1821 		 * will always follow the passed country IE power settings.
1822 		 */
1823 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1824 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1825 			chan->max_power = chan->max_reg_power;
1826 		else
1827 			chan->max_power = min(chan->orig_mpwr,
1828 					      chan->max_reg_power);
1829 	} else
1830 		chan->max_power = chan->max_reg_power;
1831 }
1832 
1833 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1834 					  enum nl80211_reg_initiator initiator,
1835 					  struct ieee80211_channel *chan,
1836 					  u32 flags,
1837 					  struct regulatory_request *lr,
1838 					  struct wiphy *request_wiphy,
1839 					  const struct ieee80211_reg_rule *rrule1,
1840 					  const struct ieee80211_reg_rule *rrule2,
1841 					  struct ieee80211_freq_range *comb_range)
1842 {
1843 	u32 bw_flags1 = 0;
1844 	u32 bw_flags2 = 0;
1845 	const struct ieee80211_power_rule *power_rule1 = NULL;
1846 	const struct ieee80211_power_rule *power_rule2 = NULL;
1847 	const struct ieee80211_regdomain *regd;
1848 
1849 	regd = reg_get_regdomain(wiphy);
1850 
1851 	power_rule1 = &rrule1->power_rule;
1852 	power_rule2 = &rrule2->power_rule;
1853 	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1854 	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1855 
1856 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1857 	    request_wiphy && request_wiphy == wiphy &&
1858 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1859 		/* This guarantees the driver's requested regulatory domain
1860 		 * will always be used as a base for further regulatory
1861 		 * settings
1862 		 */
1863 		chan->flags =
1864 			map_regdom_flags(rrule1->flags) |
1865 			map_regdom_flags(rrule2->flags) |
1866 			bw_flags1 |
1867 			bw_flags2;
1868 		chan->orig_flags = chan->flags;
1869 		chan->max_antenna_gain =
1870 			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1871 			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1872 		chan->orig_mag = chan->max_antenna_gain;
1873 		chan->max_reg_power =
1874 			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1875 			      MBM_TO_DBM(power_rule2->max_eirp));
1876 		chan->max_power = chan->max_reg_power;
1877 		chan->orig_mpwr = chan->max_reg_power;
1878 
1879 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1880 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1881 			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1882 				chan->dfs_cac_ms = max_t(unsigned int,
1883 							 rrule1->dfs_cac_ms,
1884 							 rrule2->dfs_cac_ms);
1885 		}
1886 
1887 		return;
1888 	}
1889 
1890 	chan->dfs_state = NL80211_DFS_USABLE;
1891 	chan->dfs_state_entered = jiffies;
1892 
1893 	chan->beacon_found = false;
1894 	chan->flags = flags | bw_flags1 | bw_flags2 |
1895 		      map_regdom_flags(rrule1->flags) |
1896 		      map_regdom_flags(rrule2->flags);
1897 
1898 	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1899 	 * (otherwise no adj. rule case), recheck therefore
1900 	 */
1901 	if (cfg80211_does_bw_fit_range(comb_range,
1902 				       ieee80211_channel_to_khz(chan),
1903 				       MHZ_TO_KHZ(10)))
1904 		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1905 	if (cfg80211_does_bw_fit_range(comb_range,
1906 				       ieee80211_channel_to_khz(chan),
1907 				       MHZ_TO_KHZ(20)))
1908 		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1909 
1910 	chan->max_antenna_gain =
1911 		min_t(int, chan->orig_mag,
1912 		      min_t(int,
1913 			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1914 			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1915 	chan->max_reg_power = min_t(int,
1916 				    MBM_TO_DBM(power_rule1->max_eirp),
1917 				    MBM_TO_DBM(power_rule2->max_eirp));
1918 
1919 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1920 		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1921 			chan->dfs_cac_ms = max_t(unsigned int,
1922 						 rrule1->dfs_cac_ms,
1923 						 rrule2->dfs_cac_ms);
1924 		else
1925 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1926 	}
1927 
1928 	if (chan->orig_mpwr) {
1929 		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1930 		 * will always follow the passed country IE power settings.
1931 		 */
1932 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1933 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1934 			chan->max_power = chan->max_reg_power;
1935 		else
1936 			chan->max_power = min(chan->orig_mpwr,
1937 					      chan->max_reg_power);
1938 	} else {
1939 		chan->max_power = chan->max_reg_power;
1940 	}
1941 }
1942 
1943 /* Note that right now we assume the desired channel bandwidth
1944  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1945  * per channel, the primary and the extension channel).
1946  */
1947 static void handle_channel(struct wiphy *wiphy,
1948 			   enum nl80211_reg_initiator initiator,
1949 			   struct ieee80211_channel *chan)
1950 {
1951 	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1952 	struct regulatory_request *lr = get_last_request();
1953 	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1954 	const struct ieee80211_reg_rule *rrule = NULL;
1955 	const struct ieee80211_reg_rule *rrule1 = NULL;
1956 	const struct ieee80211_reg_rule *rrule2 = NULL;
1957 
1958 	u32 flags = chan->orig_flags;
1959 
1960 	rrule = freq_reg_info(wiphy, orig_chan_freq);
1961 	if (IS_ERR(rrule)) {
1962 		/* check for adjacent match, therefore get rules for
1963 		 * chan - 20 MHz and chan + 20 MHz and test
1964 		 * if reg rules are adjacent
1965 		 */
1966 		rrule1 = freq_reg_info(wiphy,
1967 				       orig_chan_freq - MHZ_TO_KHZ(20));
1968 		rrule2 = freq_reg_info(wiphy,
1969 				       orig_chan_freq + MHZ_TO_KHZ(20));
1970 		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1971 			struct ieee80211_freq_range comb_range;
1972 
1973 			if (rrule1->freq_range.end_freq_khz !=
1974 			    rrule2->freq_range.start_freq_khz)
1975 				goto disable_chan;
1976 
1977 			comb_range.start_freq_khz =
1978 				rrule1->freq_range.start_freq_khz;
1979 			comb_range.end_freq_khz =
1980 				rrule2->freq_range.end_freq_khz;
1981 			comb_range.max_bandwidth_khz =
1982 				min_t(u32,
1983 				      rrule1->freq_range.max_bandwidth_khz,
1984 				      rrule2->freq_range.max_bandwidth_khz);
1985 
1986 			if (!cfg80211_does_bw_fit_range(&comb_range,
1987 							orig_chan_freq,
1988 							MHZ_TO_KHZ(20)))
1989 				goto disable_chan;
1990 
1991 			handle_channel_adjacent_rules(wiphy, initiator, chan,
1992 						      flags, lr, request_wiphy,
1993 						      rrule1, rrule2,
1994 						      &comb_range);
1995 			return;
1996 		}
1997 
1998 disable_chan:
1999 		/* We will disable all channels that do not match our
2000 		 * received regulatory rule unless the hint is coming
2001 		 * from a Country IE and the Country IE had no information
2002 		 * about a band. The IEEE 802.11 spec allows for an AP
2003 		 * to send only a subset of the regulatory rules allowed,
2004 		 * so an AP in the US that only supports 2.4 GHz may only send
2005 		 * a country IE with information for the 2.4 GHz band
2006 		 * while 5 GHz is still supported.
2007 		 */
2008 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2009 		    PTR_ERR(rrule) == -ERANGE)
2010 			return;
2011 
2012 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2013 		    request_wiphy && request_wiphy == wiphy &&
2014 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2015 			pr_debug("Disabling freq %d.%03d MHz for good\n",
2016 				 chan->center_freq, chan->freq_offset);
2017 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2018 			chan->flags = chan->orig_flags;
2019 		} else {
2020 			pr_debug("Disabling freq %d.%03d MHz\n",
2021 				 chan->center_freq, chan->freq_offset);
2022 			chan->flags |= IEEE80211_CHAN_DISABLED;
2023 		}
2024 		return;
2025 	}
2026 
2027 	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2028 				   request_wiphy, rrule);
2029 }
2030 
2031 static void handle_band(struct wiphy *wiphy,
2032 			enum nl80211_reg_initiator initiator,
2033 			struct ieee80211_supported_band *sband)
2034 {
2035 	unsigned int i;
2036 
2037 	if (!sband)
2038 		return;
2039 
2040 	for (i = 0; i < sband->n_channels; i++)
2041 		handle_channel(wiphy, initiator, &sband->channels[i]);
2042 }
2043 
2044 static bool reg_request_cell_base(struct regulatory_request *request)
2045 {
2046 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2047 		return false;
2048 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2049 }
2050 
2051 bool reg_last_request_cell_base(void)
2052 {
2053 	return reg_request_cell_base(get_last_request());
2054 }
2055 
2056 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2057 /* Core specific check */
2058 static enum reg_request_treatment
2059 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2060 {
2061 	struct regulatory_request *lr = get_last_request();
2062 
2063 	if (!reg_num_devs_support_basehint)
2064 		return REG_REQ_IGNORE;
2065 
2066 	if (reg_request_cell_base(lr) &&
2067 	    !regdom_changes(pending_request->alpha2))
2068 		return REG_REQ_ALREADY_SET;
2069 
2070 	return REG_REQ_OK;
2071 }
2072 
2073 /* Device specific check */
2074 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2075 {
2076 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2077 }
2078 #else
2079 static enum reg_request_treatment
2080 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2081 {
2082 	return REG_REQ_IGNORE;
2083 }
2084 
2085 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2086 {
2087 	return true;
2088 }
2089 #endif
2090 
2091 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2092 {
2093 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2094 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2095 		return true;
2096 	return false;
2097 }
2098 
2099 static bool ignore_reg_update(struct wiphy *wiphy,
2100 			      enum nl80211_reg_initiator initiator)
2101 {
2102 	struct regulatory_request *lr = get_last_request();
2103 
2104 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2105 		return true;
2106 
2107 	if (!lr) {
2108 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2109 			 reg_initiator_name(initiator));
2110 		return true;
2111 	}
2112 
2113 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2114 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2115 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2116 			 reg_initiator_name(initiator));
2117 		return true;
2118 	}
2119 
2120 	/*
2121 	 * wiphy->regd will be set once the device has its own
2122 	 * desired regulatory domain set
2123 	 */
2124 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2125 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2126 	    !is_world_regdom(lr->alpha2)) {
2127 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2128 			 reg_initiator_name(initiator));
2129 		return true;
2130 	}
2131 
2132 	if (reg_request_cell_base(lr))
2133 		return reg_dev_ignore_cell_hint(wiphy);
2134 
2135 	return false;
2136 }
2137 
2138 static bool reg_is_world_roaming(struct wiphy *wiphy)
2139 {
2140 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2141 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2142 	struct regulatory_request *lr = get_last_request();
2143 
2144 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2145 		return true;
2146 
2147 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2148 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2149 		return true;
2150 
2151 	return false;
2152 }
2153 
2154 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2155 			      struct reg_beacon *reg_beacon)
2156 {
2157 	struct ieee80211_supported_band *sband;
2158 	struct ieee80211_channel *chan;
2159 	bool channel_changed = false;
2160 	struct ieee80211_channel chan_before;
2161 
2162 	sband = wiphy->bands[reg_beacon->chan.band];
2163 	chan = &sband->channels[chan_idx];
2164 
2165 	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2166 		return;
2167 
2168 	if (chan->beacon_found)
2169 		return;
2170 
2171 	chan->beacon_found = true;
2172 
2173 	if (!reg_is_world_roaming(wiphy))
2174 		return;
2175 
2176 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2177 		return;
2178 
2179 	chan_before = *chan;
2180 
2181 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2182 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2183 		channel_changed = true;
2184 	}
2185 
2186 	if (channel_changed)
2187 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2188 }
2189 
2190 /*
2191  * Called when a scan on a wiphy finds a beacon on
2192  * new channel
2193  */
2194 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2195 				    struct reg_beacon *reg_beacon)
2196 {
2197 	unsigned int i;
2198 	struct ieee80211_supported_band *sband;
2199 
2200 	if (!wiphy->bands[reg_beacon->chan.band])
2201 		return;
2202 
2203 	sband = wiphy->bands[reg_beacon->chan.band];
2204 
2205 	for (i = 0; i < sband->n_channels; i++)
2206 		handle_reg_beacon(wiphy, i, reg_beacon);
2207 }
2208 
2209 /*
2210  * Called upon reg changes or a new wiphy is added
2211  */
2212 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2213 {
2214 	unsigned int i;
2215 	struct ieee80211_supported_band *sband;
2216 	struct reg_beacon *reg_beacon;
2217 
2218 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2219 		if (!wiphy->bands[reg_beacon->chan.band])
2220 			continue;
2221 		sband = wiphy->bands[reg_beacon->chan.band];
2222 		for (i = 0; i < sband->n_channels; i++)
2223 			handle_reg_beacon(wiphy, i, reg_beacon);
2224 	}
2225 }
2226 
2227 /* Reap the advantages of previously found beacons */
2228 static void reg_process_beacons(struct wiphy *wiphy)
2229 {
2230 	/*
2231 	 * Means we are just firing up cfg80211, so no beacons would
2232 	 * have been processed yet.
2233 	 */
2234 	if (!last_request)
2235 		return;
2236 	wiphy_update_beacon_reg(wiphy);
2237 }
2238 
2239 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2240 {
2241 	if (!chan)
2242 		return false;
2243 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2244 		return false;
2245 	/* This would happen when regulatory rules disallow HT40 completely */
2246 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2247 		return false;
2248 	return true;
2249 }
2250 
2251 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2252 					 struct ieee80211_channel *channel)
2253 {
2254 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2255 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2256 	const struct ieee80211_regdomain *regd;
2257 	unsigned int i;
2258 	u32 flags;
2259 
2260 	if (!is_ht40_allowed(channel)) {
2261 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2262 		return;
2263 	}
2264 
2265 	/*
2266 	 * We need to ensure the extension channels exist to
2267 	 * be able to use HT40- or HT40+, this finds them (or not)
2268 	 */
2269 	for (i = 0; i < sband->n_channels; i++) {
2270 		struct ieee80211_channel *c = &sband->channels[i];
2271 
2272 		if (c->center_freq == (channel->center_freq - 20))
2273 			channel_before = c;
2274 		if (c->center_freq == (channel->center_freq + 20))
2275 			channel_after = c;
2276 	}
2277 
2278 	flags = 0;
2279 	regd = get_wiphy_regdom(wiphy);
2280 	if (regd) {
2281 		const struct ieee80211_reg_rule *reg_rule =
2282 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2283 					   regd, MHZ_TO_KHZ(20));
2284 
2285 		if (!IS_ERR(reg_rule))
2286 			flags = reg_rule->flags;
2287 	}
2288 
2289 	/*
2290 	 * Please note that this assumes target bandwidth is 20 MHz,
2291 	 * if that ever changes we also need to change the below logic
2292 	 * to include that as well.
2293 	 */
2294 	if (!is_ht40_allowed(channel_before) ||
2295 	    flags & NL80211_RRF_NO_HT40MINUS)
2296 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2297 	else
2298 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2299 
2300 	if (!is_ht40_allowed(channel_after) ||
2301 	    flags & NL80211_RRF_NO_HT40PLUS)
2302 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2303 	else
2304 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2305 }
2306 
2307 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2308 				      struct ieee80211_supported_band *sband)
2309 {
2310 	unsigned int i;
2311 
2312 	if (!sband)
2313 		return;
2314 
2315 	for (i = 0; i < sband->n_channels; i++)
2316 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2317 }
2318 
2319 static void reg_process_ht_flags(struct wiphy *wiphy)
2320 {
2321 	enum nl80211_band band;
2322 
2323 	if (!wiphy)
2324 		return;
2325 
2326 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2327 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2328 }
2329 
2330 static void reg_call_notifier(struct wiphy *wiphy,
2331 			      struct regulatory_request *request)
2332 {
2333 	if (wiphy->reg_notifier)
2334 		wiphy->reg_notifier(wiphy, request);
2335 }
2336 
2337 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2338 {
2339 	struct cfg80211_chan_def chandef = {};
2340 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2341 	enum nl80211_iftype iftype;
2342 	bool ret;
2343 	int link;
2344 
2345 	wdev_lock(wdev);
2346 	iftype = wdev->iftype;
2347 
2348 	/* make sure the interface is active */
2349 	if (!wdev->netdev || !netif_running(wdev->netdev))
2350 		goto wdev_inactive_unlock;
2351 
2352 	for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2353 		struct ieee80211_channel *chan;
2354 
2355 		if (!wdev->valid_links && link > 0)
2356 			break;
2357 		if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2358 			continue;
2359 		switch (iftype) {
2360 		case NL80211_IFTYPE_AP:
2361 		case NL80211_IFTYPE_P2P_GO:
2362 			if (!wdev->links[link].ap.beacon_interval)
2363 				continue;
2364 			chandef = wdev->links[link].ap.chandef;
2365 			break;
2366 		case NL80211_IFTYPE_MESH_POINT:
2367 			if (!wdev->u.mesh.beacon_interval)
2368 				continue;
2369 			chandef = wdev->u.mesh.chandef;
2370 			break;
2371 		case NL80211_IFTYPE_ADHOC:
2372 			if (!wdev->u.ibss.ssid_len)
2373 				continue;
2374 			chandef = wdev->u.ibss.chandef;
2375 			break;
2376 		case NL80211_IFTYPE_STATION:
2377 		case NL80211_IFTYPE_P2P_CLIENT:
2378 			/* Maybe we could consider disabling that link only? */
2379 			if (!wdev->links[link].client.current_bss)
2380 				continue;
2381 
2382 			chan = wdev->links[link].client.current_bss->pub.channel;
2383 			if (!chan)
2384 				continue;
2385 
2386 			if (!rdev->ops->get_channel ||
2387 			    rdev_get_channel(rdev, wdev, link, &chandef))
2388 				cfg80211_chandef_create(&chandef, chan,
2389 							NL80211_CHAN_NO_HT);
2390 			break;
2391 		case NL80211_IFTYPE_MONITOR:
2392 		case NL80211_IFTYPE_AP_VLAN:
2393 		case NL80211_IFTYPE_P2P_DEVICE:
2394 			/* no enforcement required */
2395 			break;
2396 		case NL80211_IFTYPE_OCB:
2397 			if (!wdev->u.ocb.chandef.chan)
2398 				continue;
2399 			chandef = wdev->u.ocb.chandef;
2400 			break;
2401 		case NL80211_IFTYPE_NAN:
2402 			/* we have no info, but NAN is also pretty universal */
2403 			continue;
2404 		default:
2405 			/* others not implemented for now */
2406 			WARN_ON_ONCE(1);
2407 			break;
2408 		}
2409 
2410 		wdev_unlock(wdev);
2411 
2412 		switch (iftype) {
2413 		case NL80211_IFTYPE_AP:
2414 		case NL80211_IFTYPE_P2P_GO:
2415 		case NL80211_IFTYPE_ADHOC:
2416 		case NL80211_IFTYPE_MESH_POINT:
2417 			ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2418 							    iftype);
2419 			if (!ret)
2420 				return ret;
2421 			break;
2422 		case NL80211_IFTYPE_STATION:
2423 		case NL80211_IFTYPE_P2P_CLIENT:
2424 			ret = cfg80211_chandef_usable(wiphy, &chandef,
2425 						      IEEE80211_CHAN_DISABLED);
2426 			if (!ret)
2427 				return ret;
2428 			break;
2429 		default:
2430 			break;
2431 		}
2432 
2433 		wdev_lock(wdev);
2434 	}
2435 
2436 	wdev_unlock(wdev);
2437 
2438 	return true;
2439 
2440 wdev_inactive_unlock:
2441 	wdev_unlock(wdev);
2442 	return true;
2443 }
2444 
2445 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2446 {
2447 	struct wireless_dev *wdev;
2448 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2449 
2450 	wiphy_lock(wiphy);
2451 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2452 		if (!reg_wdev_chan_valid(wiphy, wdev))
2453 			cfg80211_leave(rdev, wdev);
2454 	wiphy_unlock(wiphy);
2455 }
2456 
2457 static void reg_check_chans_work(struct work_struct *work)
2458 {
2459 	struct cfg80211_registered_device *rdev;
2460 
2461 	pr_debug("Verifying active interfaces after reg change\n");
2462 	rtnl_lock();
2463 
2464 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2465 		reg_leave_invalid_chans(&rdev->wiphy);
2466 
2467 	rtnl_unlock();
2468 }
2469 
2470 static void reg_check_channels(void)
2471 {
2472 	/*
2473 	 * Give usermode a chance to do something nicer (move to another
2474 	 * channel, orderly disconnection), before forcing a disconnection.
2475 	 */
2476 	mod_delayed_work(system_power_efficient_wq,
2477 			 &reg_check_chans,
2478 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2479 }
2480 
2481 static void wiphy_update_regulatory(struct wiphy *wiphy,
2482 				    enum nl80211_reg_initiator initiator)
2483 {
2484 	enum nl80211_band band;
2485 	struct regulatory_request *lr = get_last_request();
2486 
2487 	if (ignore_reg_update(wiphy, initiator)) {
2488 		/*
2489 		 * Regulatory updates set by CORE are ignored for custom
2490 		 * regulatory cards. Let us notify the changes to the driver,
2491 		 * as some drivers used this to restore its orig_* reg domain.
2492 		 */
2493 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2494 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2495 		    !(wiphy->regulatory_flags &
2496 		      REGULATORY_WIPHY_SELF_MANAGED))
2497 			reg_call_notifier(wiphy, lr);
2498 		return;
2499 	}
2500 
2501 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2502 
2503 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2504 		handle_band(wiphy, initiator, wiphy->bands[band]);
2505 
2506 	reg_process_beacons(wiphy);
2507 	reg_process_ht_flags(wiphy);
2508 	reg_call_notifier(wiphy, lr);
2509 }
2510 
2511 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2512 {
2513 	struct cfg80211_registered_device *rdev;
2514 	struct wiphy *wiphy;
2515 
2516 	ASSERT_RTNL();
2517 
2518 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2519 		wiphy = &rdev->wiphy;
2520 		wiphy_update_regulatory(wiphy, initiator);
2521 	}
2522 
2523 	reg_check_channels();
2524 }
2525 
2526 static void handle_channel_custom(struct wiphy *wiphy,
2527 				  struct ieee80211_channel *chan,
2528 				  const struct ieee80211_regdomain *regd,
2529 				  u32 min_bw)
2530 {
2531 	u32 bw_flags = 0;
2532 	const struct ieee80211_reg_rule *reg_rule = NULL;
2533 	const struct ieee80211_power_rule *power_rule = NULL;
2534 	u32 bw, center_freq_khz;
2535 
2536 	center_freq_khz = ieee80211_channel_to_khz(chan);
2537 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2538 		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2539 		if (!IS_ERR(reg_rule))
2540 			break;
2541 	}
2542 
2543 	if (IS_ERR_OR_NULL(reg_rule)) {
2544 		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2545 			 chan->center_freq, chan->freq_offset);
2546 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2547 			chan->flags |= IEEE80211_CHAN_DISABLED;
2548 		} else {
2549 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2550 			chan->flags = chan->orig_flags;
2551 		}
2552 		return;
2553 	}
2554 
2555 	power_rule = &reg_rule->power_rule;
2556 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2557 
2558 	chan->dfs_state_entered = jiffies;
2559 	chan->dfs_state = NL80211_DFS_USABLE;
2560 
2561 	chan->beacon_found = false;
2562 
2563 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2564 		chan->flags = chan->orig_flags | bw_flags |
2565 			      map_regdom_flags(reg_rule->flags);
2566 	else
2567 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2568 
2569 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2570 	chan->max_reg_power = chan->max_power =
2571 		(int) MBM_TO_DBM(power_rule->max_eirp);
2572 
2573 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2574 		if (reg_rule->dfs_cac_ms)
2575 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2576 		else
2577 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2578 	}
2579 
2580 	chan->max_power = chan->max_reg_power;
2581 }
2582 
2583 static void handle_band_custom(struct wiphy *wiphy,
2584 			       struct ieee80211_supported_band *sband,
2585 			       const struct ieee80211_regdomain *regd)
2586 {
2587 	unsigned int i;
2588 
2589 	if (!sband)
2590 		return;
2591 
2592 	/*
2593 	 * We currently assume that you always want at least 20 MHz,
2594 	 * otherwise channel 12 might get enabled if this rule is
2595 	 * compatible to US, which permits 2402 - 2472 MHz.
2596 	 */
2597 	for (i = 0; i < sband->n_channels; i++)
2598 		handle_channel_custom(wiphy, &sband->channels[i], regd,
2599 				      MHZ_TO_KHZ(20));
2600 }
2601 
2602 /* Used by drivers prior to wiphy registration */
2603 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2604 				   const struct ieee80211_regdomain *regd)
2605 {
2606 	const struct ieee80211_regdomain *new_regd, *tmp;
2607 	enum nl80211_band band;
2608 	unsigned int bands_set = 0;
2609 
2610 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2611 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2612 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2613 
2614 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2615 		if (!wiphy->bands[band])
2616 			continue;
2617 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2618 		bands_set++;
2619 	}
2620 
2621 	/*
2622 	 * no point in calling this if it won't have any effect
2623 	 * on your device's supported bands.
2624 	 */
2625 	WARN_ON(!bands_set);
2626 	new_regd = reg_copy_regd(regd);
2627 	if (IS_ERR(new_regd))
2628 		return;
2629 
2630 	rtnl_lock();
2631 	wiphy_lock(wiphy);
2632 
2633 	tmp = get_wiphy_regdom(wiphy);
2634 	rcu_assign_pointer(wiphy->regd, new_regd);
2635 	rcu_free_regdom(tmp);
2636 
2637 	wiphy_unlock(wiphy);
2638 	rtnl_unlock();
2639 }
2640 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2641 
2642 static void reg_set_request_processed(void)
2643 {
2644 	bool need_more_processing = false;
2645 	struct regulatory_request *lr = get_last_request();
2646 
2647 	lr->processed = true;
2648 
2649 	spin_lock(&reg_requests_lock);
2650 	if (!list_empty(&reg_requests_list))
2651 		need_more_processing = true;
2652 	spin_unlock(&reg_requests_lock);
2653 
2654 	cancel_crda_timeout();
2655 
2656 	if (need_more_processing)
2657 		schedule_work(&reg_work);
2658 }
2659 
2660 /**
2661  * reg_process_hint_core - process core regulatory requests
2662  * @core_request: a pending core regulatory request
2663  *
2664  * The wireless subsystem can use this function to process
2665  * a regulatory request issued by the regulatory core.
2666  */
2667 static enum reg_request_treatment
2668 reg_process_hint_core(struct regulatory_request *core_request)
2669 {
2670 	if (reg_query_database(core_request)) {
2671 		core_request->intersect = false;
2672 		core_request->processed = false;
2673 		reg_update_last_request(core_request);
2674 		return REG_REQ_OK;
2675 	}
2676 
2677 	return REG_REQ_IGNORE;
2678 }
2679 
2680 static enum reg_request_treatment
2681 __reg_process_hint_user(struct regulatory_request *user_request)
2682 {
2683 	struct regulatory_request *lr = get_last_request();
2684 
2685 	if (reg_request_cell_base(user_request))
2686 		return reg_ignore_cell_hint(user_request);
2687 
2688 	if (reg_request_cell_base(lr))
2689 		return REG_REQ_IGNORE;
2690 
2691 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2692 		return REG_REQ_INTERSECT;
2693 	/*
2694 	 * If the user knows better the user should set the regdom
2695 	 * to their country before the IE is picked up
2696 	 */
2697 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2698 	    lr->intersect)
2699 		return REG_REQ_IGNORE;
2700 	/*
2701 	 * Process user requests only after previous user/driver/core
2702 	 * requests have been processed
2703 	 */
2704 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2705 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2706 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2707 	    regdom_changes(lr->alpha2))
2708 		return REG_REQ_IGNORE;
2709 
2710 	if (!regdom_changes(user_request->alpha2))
2711 		return REG_REQ_ALREADY_SET;
2712 
2713 	return REG_REQ_OK;
2714 }
2715 
2716 /**
2717  * reg_process_hint_user - process user regulatory requests
2718  * @user_request: a pending user regulatory request
2719  *
2720  * The wireless subsystem can use this function to process
2721  * a regulatory request initiated by userspace.
2722  */
2723 static enum reg_request_treatment
2724 reg_process_hint_user(struct regulatory_request *user_request)
2725 {
2726 	enum reg_request_treatment treatment;
2727 
2728 	treatment = __reg_process_hint_user(user_request);
2729 	if (treatment == REG_REQ_IGNORE ||
2730 	    treatment == REG_REQ_ALREADY_SET)
2731 		return REG_REQ_IGNORE;
2732 
2733 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2734 	user_request->processed = false;
2735 
2736 	if (reg_query_database(user_request)) {
2737 		reg_update_last_request(user_request);
2738 		user_alpha2[0] = user_request->alpha2[0];
2739 		user_alpha2[1] = user_request->alpha2[1];
2740 		return REG_REQ_OK;
2741 	}
2742 
2743 	return REG_REQ_IGNORE;
2744 }
2745 
2746 static enum reg_request_treatment
2747 __reg_process_hint_driver(struct regulatory_request *driver_request)
2748 {
2749 	struct regulatory_request *lr = get_last_request();
2750 
2751 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2752 		if (regdom_changes(driver_request->alpha2))
2753 			return REG_REQ_OK;
2754 		return REG_REQ_ALREADY_SET;
2755 	}
2756 
2757 	/*
2758 	 * This would happen if you unplug and plug your card
2759 	 * back in or if you add a new device for which the previously
2760 	 * loaded card also agrees on the regulatory domain.
2761 	 */
2762 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2763 	    !regdom_changes(driver_request->alpha2))
2764 		return REG_REQ_ALREADY_SET;
2765 
2766 	return REG_REQ_INTERSECT;
2767 }
2768 
2769 /**
2770  * reg_process_hint_driver - process driver regulatory requests
2771  * @wiphy: the wireless device for the regulatory request
2772  * @driver_request: a pending driver regulatory request
2773  *
2774  * The wireless subsystem can use this function to process
2775  * a regulatory request issued by an 802.11 driver.
2776  *
2777  * Returns one of the different reg request treatment values.
2778  */
2779 static enum reg_request_treatment
2780 reg_process_hint_driver(struct wiphy *wiphy,
2781 			struct regulatory_request *driver_request)
2782 {
2783 	const struct ieee80211_regdomain *regd, *tmp;
2784 	enum reg_request_treatment treatment;
2785 
2786 	treatment = __reg_process_hint_driver(driver_request);
2787 
2788 	switch (treatment) {
2789 	case REG_REQ_OK:
2790 		break;
2791 	case REG_REQ_IGNORE:
2792 		return REG_REQ_IGNORE;
2793 	case REG_REQ_INTERSECT:
2794 	case REG_REQ_ALREADY_SET:
2795 		regd = reg_copy_regd(get_cfg80211_regdom());
2796 		if (IS_ERR(regd))
2797 			return REG_REQ_IGNORE;
2798 
2799 		tmp = get_wiphy_regdom(wiphy);
2800 		ASSERT_RTNL();
2801 		wiphy_lock(wiphy);
2802 		rcu_assign_pointer(wiphy->regd, regd);
2803 		wiphy_unlock(wiphy);
2804 		rcu_free_regdom(tmp);
2805 	}
2806 
2807 
2808 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2809 	driver_request->processed = false;
2810 
2811 	/*
2812 	 * Since CRDA will not be called in this case as we already
2813 	 * have applied the requested regulatory domain before we just
2814 	 * inform userspace we have processed the request
2815 	 */
2816 	if (treatment == REG_REQ_ALREADY_SET) {
2817 		nl80211_send_reg_change_event(driver_request);
2818 		reg_update_last_request(driver_request);
2819 		reg_set_request_processed();
2820 		return REG_REQ_ALREADY_SET;
2821 	}
2822 
2823 	if (reg_query_database(driver_request)) {
2824 		reg_update_last_request(driver_request);
2825 		return REG_REQ_OK;
2826 	}
2827 
2828 	return REG_REQ_IGNORE;
2829 }
2830 
2831 static enum reg_request_treatment
2832 __reg_process_hint_country_ie(struct wiphy *wiphy,
2833 			      struct regulatory_request *country_ie_request)
2834 {
2835 	struct wiphy *last_wiphy = NULL;
2836 	struct regulatory_request *lr = get_last_request();
2837 
2838 	if (reg_request_cell_base(lr)) {
2839 		/* Trust a Cell base station over the AP's country IE */
2840 		if (regdom_changes(country_ie_request->alpha2))
2841 			return REG_REQ_IGNORE;
2842 		return REG_REQ_ALREADY_SET;
2843 	} else {
2844 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2845 			return REG_REQ_IGNORE;
2846 	}
2847 
2848 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2849 		return -EINVAL;
2850 
2851 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2852 		return REG_REQ_OK;
2853 
2854 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2855 
2856 	if (last_wiphy != wiphy) {
2857 		/*
2858 		 * Two cards with two APs claiming different
2859 		 * Country IE alpha2s. We could
2860 		 * intersect them, but that seems unlikely
2861 		 * to be correct. Reject second one for now.
2862 		 */
2863 		if (regdom_changes(country_ie_request->alpha2))
2864 			return REG_REQ_IGNORE;
2865 		return REG_REQ_ALREADY_SET;
2866 	}
2867 
2868 	if (regdom_changes(country_ie_request->alpha2))
2869 		return REG_REQ_OK;
2870 	return REG_REQ_ALREADY_SET;
2871 }
2872 
2873 /**
2874  * reg_process_hint_country_ie - process regulatory requests from country IEs
2875  * @wiphy: the wireless device for the regulatory request
2876  * @country_ie_request: a regulatory request from a country IE
2877  *
2878  * The wireless subsystem can use this function to process
2879  * a regulatory request issued by a country Information Element.
2880  *
2881  * Returns one of the different reg request treatment values.
2882  */
2883 static enum reg_request_treatment
2884 reg_process_hint_country_ie(struct wiphy *wiphy,
2885 			    struct regulatory_request *country_ie_request)
2886 {
2887 	enum reg_request_treatment treatment;
2888 
2889 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2890 
2891 	switch (treatment) {
2892 	case REG_REQ_OK:
2893 		break;
2894 	case REG_REQ_IGNORE:
2895 		return REG_REQ_IGNORE;
2896 	case REG_REQ_ALREADY_SET:
2897 		reg_free_request(country_ie_request);
2898 		return REG_REQ_ALREADY_SET;
2899 	case REG_REQ_INTERSECT:
2900 		/*
2901 		 * This doesn't happen yet, not sure we
2902 		 * ever want to support it for this case.
2903 		 */
2904 		WARN_ONCE(1, "Unexpected intersection for country elements");
2905 		return REG_REQ_IGNORE;
2906 	}
2907 
2908 	country_ie_request->intersect = false;
2909 	country_ie_request->processed = false;
2910 
2911 	if (reg_query_database(country_ie_request)) {
2912 		reg_update_last_request(country_ie_request);
2913 		return REG_REQ_OK;
2914 	}
2915 
2916 	return REG_REQ_IGNORE;
2917 }
2918 
2919 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2920 {
2921 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2922 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2923 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2924 	bool dfs_domain_same;
2925 
2926 	rcu_read_lock();
2927 
2928 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2929 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2930 	if (!wiphy1_regd)
2931 		wiphy1_regd = cfg80211_regd;
2932 
2933 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2934 	if (!wiphy2_regd)
2935 		wiphy2_regd = cfg80211_regd;
2936 
2937 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2938 
2939 	rcu_read_unlock();
2940 
2941 	return dfs_domain_same;
2942 }
2943 
2944 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2945 				    struct ieee80211_channel *src_chan)
2946 {
2947 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2948 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2949 		return;
2950 
2951 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2952 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2953 		return;
2954 
2955 	if (src_chan->center_freq == dst_chan->center_freq &&
2956 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2957 		dst_chan->dfs_state = src_chan->dfs_state;
2958 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2959 	}
2960 }
2961 
2962 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2963 				       struct wiphy *src_wiphy)
2964 {
2965 	struct ieee80211_supported_band *src_sband, *dst_sband;
2966 	struct ieee80211_channel *src_chan, *dst_chan;
2967 	int i, j, band;
2968 
2969 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2970 		return;
2971 
2972 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2973 		dst_sband = dst_wiphy->bands[band];
2974 		src_sband = src_wiphy->bands[band];
2975 		if (!dst_sband || !src_sband)
2976 			continue;
2977 
2978 		for (i = 0; i < dst_sband->n_channels; i++) {
2979 			dst_chan = &dst_sband->channels[i];
2980 			for (j = 0; j < src_sband->n_channels; j++) {
2981 				src_chan = &src_sband->channels[j];
2982 				reg_copy_dfs_chan_state(dst_chan, src_chan);
2983 			}
2984 		}
2985 	}
2986 }
2987 
2988 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2989 {
2990 	struct cfg80211_registered_device *rdev;
2991 
2992 	ASSERT_RTNL();
2993 
2994 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2995 		if (wiphy == &rdev->wiphy)
2996 			continue;
2997 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2998 	}
2999 }
3000 
3001 /* This processes *all* regulatory hints */
3002 static void reg_process_hint(struct regulatory_request *reg_request)
3003 {
3004 	struct wiphy *wiphy = NULL;
3005 	enum reg_request_treatment treatment;
3006 	enum nl80211_reg_initiator initiator = reg_request->initiator;
3007 
3008 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3009 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3010 
3011 	switch (initiator) {
3012 	case NL80211_REGDOM_SET_BY_CORE:
3013 		treatment = reg_process_hint_core(reg_request);
3014 		break;
3015 	case NL80211_REGDOM_SET_BY_USER:
3016 		treatment = reg_process_hint_user(reg_request);
3017 		break;
3018 	case NL80211_REGDOM_SET_BY_DRIVER:
3019 		if (!wiphy)
3020 			goto out_free;
3021 		treatment = reg_process_hint_driver(wiphy, reg_request);
3022 		break;
3023 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3024 		if (!wiphy)
3025 			goto out_free;
3026 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
3027 		break;
3028 	default:
3029 		WARN(1, "invalid initiator %d\n", initiator);
3030 		goto out_free;
3031 	}
3032 
3033 	if (treatment == REG_REQ_IGNORE)
3034 		goto out_free;
3035 
3036 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3037 	     "unexpected treatment value %d\n", treatment);
3038 
3039 	/* This is required so that the orig_* parameters are saved.
3040 	 * NOTE: treatment must be set for any case that reaches here!
3041 	 */
3042 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3043 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3044 		wiphy_update_regulatory(wiphy, initiator);
3045 		wiphy_all_share_dfs_chan_state(wiphy);
3046 		reg_check_channels();
3047 	}
3048 
3049 	return;
3050 
3051 out_free:
3052 	reg_free_request(reg_request);
3053 }
3054 
3055 static void notify_self_managed_wiphys(struct regulatory_request *request)
3056 {
3057 	struct cfg80211_registered_device *rdev;
3058 	struct wiphy *wiphy;
3059 
3060 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3061 		wiphy = &rdev->wiphy;
3062 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3063 		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3064 			reg_call_notifier(wiphy, request);
3065 	}
3066 }
3067 
3068 /*
3069  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3070  * Regulatory hints come on a first come first serve basis and we
3071  * must process each one atomically.
3072  */
3073 static void reg_process_pending_hints(void)
3074 {
3075 	struct regulatory_request *reg_request, *lr;
3076 
3077 	lr = get_last_request();
3078 
3079 	/* When last_request->processed becomes true this will be rescheduled */
3080 	if (lr && !lr->processed) {
3081 		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3082 		return;
3083 	}
3084 
3085 	spin_lock(&reg_requests_lock);
3086 
3087 	if (list_empty(&reg_requests_list)) {
3088 		spin_unlock(&reg_requests_lock);
3089 		return;
3090 	}
3091 
3092 	reg_request = list_first_entry(&reg_requests_list,
3093 				       struct regulatory_request,
3094 				       list);
3095 	list_del_init(&reg_request->list);
3096 
3097 	spin_unlock(&reg_requests_lock);
3098 
3099 	notify_self_managed_wiphys(reg_request);
3100 
3101 	reg_process_hint(reg_request);
3102 
3103 	lr = get_last_request();
3104 
3105 	spin_lock(&reg_requests_lock);
3106 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3107 		schedule_work(&reg_work);
3108 	spin_unlock(&reg_requests_lock);
3109 }
3110 
3111 /* Processes beacon hints -- this has nothing to do with country IEs */
3112 static void reg_process_pending_beacon_hints(void)
3113 {
3114 	struct cfg80211_registered_device *rdev;
3115 	struct reg_beacon *pending_beacon, *tmp;
3116 
3117 	/* This goes through the _pending_ beacon list */
3118 	spin_lock_bh(&reg_pending_beacons_lock);
3119 
3120 	list_for_each_entry_safe(pending_beacon, tmp,
3121 				 &reg_pending_beacons, list) {
3122 		list_del_init(&pending_beacon->list);
3123 
3124 		/* Applies the beacon hint to current wiphys */
3125 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3126 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3127 
3128 		/* Remembers the beacon hint for new wiphys or reg changes */
3129 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3130 	}
3131 
3132 	spin_unlock_bh(&reg_pending_beacons_lock);
3133 }
3134 
3135 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3136 {
3137 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3138 	const struct ieee80211_regdomain *tmp;
3139 	const struct ieee80211_regdomain *regd;
3140 	enum nl80211_band band;
3141 	struct regulatory_request request = {};
3142 
3143 	ASSERT_RTNL();
3144 	lockdep_assert_wiphy(wiphy);
3145 
3146 	spin_lock(&reg_requests_lock);
3147 	regd = rdev->requested_regd;
3148 	rdev->requested_regd = NULL;
3149 	spin_unlock(&reg_requests_lock);
3150 
3151 	if (!regd)
3152 		return;
3153 
3154 	tmp = get_wiphy_regdom(wiphy);
3155 	rcu_assign_pointer(wiphy->regd, regd);
3156 	rcu_free_regdom(tmp);
3157 
3158 	for (band = 0; band < NUM_NL80211_BANDS; band++)
3159 		handle_band_custom(wiphy, wiphy->bands[band], regd);
3160 
3161 	reg_process_ht_flags(wiphy);
3162 
3163 	request.wiphy_idx = get_wiphy_idx(wiphy);
3164 	request.alpha2[0] = regd->alpha2[0];
3165 	request.alpha2[1] = regd->alpha2[1];
3166 	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3167 
3168 	if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3169 		reg_call_notifier(wiphy, &request);
3170 
3171 	nl80211_send_wiphy_reg_change_event(&request);
3172 }
3173 
3174 static void reg_process_self_managed_hints(void)
3175 {
3176 	struct cfg80211_registered_device *rdev;
3177 
3178 	ASSERT_RTNL();
3179 
3180 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3181 		wiphy_lock(&rdev->wiphy);
3182 		reg_process_self_managed_hint(&rdev->wiphy);
3183 		wiphy_unlock(&rdev->wiphy);
3184 	}
3185 
3186 	reg_check_channels();
3187 }
3188 
3189 static void reg_todo(struct work_struct *work)
3190 {
3191 	rtnl_lock();
3192 	reg_process_pending_hints();
3193 	reg_process_pending_beacon_hints();
3194 	reg_process_self_managed_hints();
3195 	rtnl_unlock();
3196 }
3197 
3198 static void queue_regulatory_request(struct regulatory_request *request)
3199 {
3200 	request->alpha2[0] = toupper(request->alpha2[0]);
3201 	request->alpha2[1] = toupper(request->alpha2[1]);
3202 
3203 	spin_lock(&reg_requests_lock);
3204 	list_add_tail(&request->list, &reg_requests_list);
3205 	spin_unlock(&reg_requests_lock);
3206 
3207 	schedule_work(&reg_work);
3208 }
3209 
3210 /*
3211  * Core regulatory hint -- happens during cfg80211_init()
3212  * and when we restore regulatory settings.
3213  */
3214 static int regulatory_hint_core(const char *alpha2)
3215 {
3216 	struct regulatory_request *request;
3217 
3218 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3219 	if (!request)
3220 		return -ENOMEM;
3221 
3222 	request->alpha2[0] = alpha2[0];
3223 	request->alpha2[1] = alpha2[1];
3224 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3225 	request->wiphy_idx = WIPHY_IDX_INVALID;
3226 
3227 	queue_regulatory_request(request);
3228 
3229 	return 0;
3230 }
3231 
3232 /* User hints */
3233 int regulatory_hint_user(const char *alpha2,
3234 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3235 {
3236 	struct regulatory_request *request;
3237 
3238 	if (WARN_ON(!alpha2))
3239 		return -EINVAL;
3240 
3241 	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3242 		return -EINVAL;
3243 
3244 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3245 	if (!request)
3246 		return -ENOMEM;
3247 
3248 	request->wiphy_idx = WIPHY_IDX_INVALID;
3249 	request->alpha2[0] = alpha2[0];
3250 	request->alpha2[1] = alpha2[1];
3251 	request->initiator = NL80211_REGDOM_SET_BY_USER;
3252 	request->user_reg_hint_type = user_reg_hint_type;
3253 
3254 	/* Allow calling CRDA again */
3255 	reset_crda_timeouts();
3256 
3257 	queue_regulatory_request(request);
3258 
3259 	return 0;
3260 }
3261 
3262 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3263 {
3264 	spin_lock(&reg_indoor_lock);
3265 
3266 	/* It is possible that more than one user space process is trying to
3267 	 * configure the indoor setting. To handle such cases, clear the indoor
3268 	 * setting in case that some process does not think that the device
3269 	 * is operating in an indoor environment. In addition, if a user space
3270 	 * process indicates that it is controlling the indoor setting, save its
3271 	 * portid, i.e., make it the owner.
3272 	 */
3273 	reg_is_indoor = is_indoor;
3274 	if (reg_is_indoor) {
3275 		if (!reg_is_indoor_portid)
3276 			reg_is_indoor_portid = portid;
3277 	} else {
3278 		reg_is_indoor_portid = 0;
3279 	}
3280 
3281 	spin_unlock(&reg_indoor_lock);
3282 
3283 	if (!is_indoor)
3284 		reg_check_channels();
3285 
3286 	return 0;
3287 }
3288 
3289 void regulatory_netlink_notify(u32 portid)
3290 {
3291 	spin_lock(&reg_indoor_lock);
3292 
3293 	if (reg_is_indoor_portid != portid) {
3294 		spin_unlock(&reg_indoor_lock);
3295 		return;
3296 	}
3297 
3298 	reg_is_indoor = false;
3299 	reg_is_indoor_portid = 0;
3300 
3301 	spin_unlock(&reg_indoor_lock);
3302 
3303 	reg_check_channels();
3304 }
3305 
3306 /* Driver hints */
3307 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3308 {
3309 	struct regulatory_request *request;
3310 
3311 	if (WARN_ON(!alpha2 || !wiphy))
3312 		return -EINVAL;
3313 
3314 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3315 
3316 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3317 	if (!request)
3318 		return -ENOMEM;
3319 
3320 	request->wiphy_idx = get_wiphy_idx(wiphy);
3321 
3322 	request->alpha2[0] = alpha2[0];
3323 	request->alpha2[1] = alpha2[1];
3324 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3325 
3326 	/* Allow calling CRDA again */
3327 	reset_crda_timeouts();
3328 
3329 	queue_regulatory_request(request);
3330 
3331 	return 0;
3332 }
3333 EXPORT_SYMBOL(regulatory_hint);
3334 
3335 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3336 				const u8 *country_ie, u8 country_ie_len)
3337 {
3338 	char alpha2[2];
3339 	enum environment_cap env = ENVIRON_ANY;
3340 	struct regulatory_request *request = NULL, *lr;
3341 
3342 	/* IE len must be evenly divisible by 2 */
3343 	if (country_ie_len & 0x01)
3344 		return;
3345 
3346 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3347 		return;
3348 
3349 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3350 	if (!request)
3351 		return;
3352 
3353 	alpha2[0] = country_ie[0];
3354 	alpha2[1] = country_ie[1];
3355 
3356 	if (country_ie[2] == 'I')
3357 		env = ENVIRON_INDOOR;
3358 	else if (country_ie[2] == 'O')
3359 		env = ENVIRON_OUTDOOR;
3360 
3361 	rcu_read_lock();
3362 	lr = get_last_request();
3363 
3364 	if (unlikely(!lr))
3365 		goto out;
3366 
3367 	/*
3368 	 * We will run this only upon a successful connection on cfg80211.
3369 	 * We leave conflict resolution to the workqueue, where can hold
3370 	 * the RTNL.
3371 	 */
3372 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3373 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3374 		goto out;
3375 
3376 	request->wiphy_idx = get_wiphy_idx(wiphy);
3377 	request->alpha2[0] = alpha2[0];
3378 	request->alpha2[1] = alpha2[1];
3379 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3380 	request->country_ie_env = env;
3381 
3382 	/* Allow calling CRDA again */
3383 	reset_crda_timeouts();
3384 
3385 	queue_regulatory_request(request);
3386 	request = NULL;
3387 out:
3388 	kfree(request);
3389 	rcu_read_unlock();
3390 }
3391 
3392 static void restore_alpha2(char *alpha2, bool reset_user)
3393 {
3394 	/* indicates there is no alpha2 to consider for restoration */
3395 	alpha2[0] = '9';
3396 	alpha2[1] = '7';
3397 
3398 	/* The user setting has precedence over the module parameter */
3399 	if (is_user_regdom_saved()) {
3400 		/* Unless we're asked to ignore it and reset it */
3401 		if (reset_user) {
3402 			pr_debug("Restoring regulatory settings including user preference\n");
3403 			user_alpha2[0] = '9';
3404 			user_alpha2[1] = '7';
3405 
3406 			/*
3407 			 * If we're ignoring user settings, we still need to
3408 			 * check the module parameter to ensure we put things
3409 			 * back as they were for a full restore.
3410 			 */
3411 			if (!is_world_regdom(ieee80211_regdom)) {
3412 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3413 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3414 				alpha2[0] = ieee80211_regdom[0];
3415 				alpha2[1] = ieee80211_regdom[1];
3416 			}
3417 		} else {
3418 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3419 				 user_alpha2[0], user_alpha2[1]);
3420 			alpha2[0] = user_alpha2[0];
3421 			alpha2[1] = user_alpha2[1];
3422 		}
3423 	} else if (!is_world_regdom(ieee80211_regdom)) {
3424 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3425 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3426 		alpha2[0] = ieee80211_regdom[0];
3427 		alpha2[1] = ieee80211_regdom[1];
3428 	} else
3429 		pr_debug("Restoring regulatory settings\n");
3430 }
3431 
3432 static void restore_custom_reg_settings(struct wiphy *wiphy)
3433 {
3434 	struct ieee80211_supported_band *sband;
3435 	enum nl80211_band band;
3436 	struct ieee80211_channel *chan;
3437 	int i;
3438 
3439 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3440 		sband = wiphy->bands[band];
3441 		if (!sband)
3442 			continue;
3443 		for (i = 0; i < sband->n_channels; i++) {
3444 			chan = &sband->channels[i];
3445 			chan->flags = chan->orig_flags;
3446 			chan->max_antenna_gain = chan->orig_mag;
3447 			chan->max_power = chan->orig_mpwr;
3448 			chan->beacon_found = false;
3449 		}
3450 	}
3451 }
3452 
3453 /*
3454  * Restoring regulatory settings involves ignoring any
3455  * possibly stale country IE information and user regulatory
3456  * settings if so desired, this includes any beacon hints
3457  * learned as we could have traveled outside to another country
3458  * after disconnection. To restore regulatory settings we do
3459  * exactly what we did at bootup:
3460  *
3461  *   - send a core regulatory hint
3462  *   - send a user regulatory hint if applicable
3463  *
3464  * Device drivers that send a regulatory hint for a specific country
3465  * keep their own regulatory domain on wiphy->regd so that does
3466  * not need to be remembered.
3467  */
3468 static void restore_regulatory_settings(bool reset_user, bool cached)
3469 {
3470 	char alpha2[2];
3471 	char world_alpha2[2];
3472 	struct reg_beacon *reg_beacon, *btmp;
3473 	LIST_HEAD(tmp_reg_req_list);
3474 	struct cfg80211_registered_device *rdev;
3475 
3476 	ASSERT_RTNL();
3477 
3478 	/*
3479 	 * Clear the indoor setting in case that it is not controlled by user
3480 	 * space, as otherwise there is no guarantee that the device is still
3481 	 * operating in an indoor environment.
3482 	 */
3483 	spin_lock(&reg_indoor_lock);
3484 	if (reg_is_indoor && !reg_is_indoor_portid) {
3485 		reg_is_indoor = false;
3486 		reg_check_channels();
3487 	}
3488 	spin_unlock(&reg_indoor_lock);
3489 
3490 	reset_regdomains(true, &world_regdom);
3491 	restore_alpha2(alpha2, reset_user);
3492 
3493 	/*
3494 	 * If there's any pending requests we simply
3495 	 * stash them to a temporary pending queue and
3496 	 * add then after we've restored regulatory
3497 	 * settings.
3498 	 */
3499 	spin_lock(&reg_requests_lock);
3500 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3501 	spin_unlock(&reg_requests_lock);
3502 
3503 	/* Clear beacon hints */
3504 	spin_lock_bh(&reg_pending_beacons_lock);
3505 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3506 		list_del(&reg_beacon->list);
3507 		kfree(reg_beacon);
3508 	}
3509 	spin_unlock_bh(&reg_pending_beacons_lock);
3510 
3511 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3512 		list_del(&reg_beacon->list);
3513 		kfree(reg_beacon);
3514 	}
3515 
3516 	/* First restore to the basic regulatory settings */
3517 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3518 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3519 
3520 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3521 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3522 			continue;
3523 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3524 			restore_custom_reg_settings(&rdev->wiphy);
3525 	}
3526 
3527 	if (cached && (!is_an_alpha2(alpha2) ||
3528 		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3529 		reset_regdomains(false, cfg80211_world_regdom);
3530 		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3531 		print_regdomain(get_cfg80211_regdom());
3532 		nl80211_send_reg_change_event(&core_request_world);
3533 		reg_set_request_processed();
3534 
3535 		if (is_an_alpha2(alpha2) &&
3536 		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3537 			struct regulatory_request *ureq;
3538 
3539 			spin_lock(&reg_requests_lock);
3540 			ureq = list_last_entry(&reg_requests_list,
3541 					       struct regulatory_request,
3542 					       list);
3543 			list_del(&ureq->list);
3544 			spin_unlock(&reg_requests_lock);
3545 
3546 			notify_self_managed_wiphys(ureq);
3547 			reg_update_last_request(ureq);
3548 			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3549 				   REGD_SOURCE_CACHED);
3550 		}
3551 	} else {
3552 		regulatory_hint_core(world_alpha2);
3553 
3554 		/*
3555 		 * This restores the ieee80211_regdom module parameter
3556 		 * preference or the last user requested regulatory
3557 		 * settings, user regulatory settings takes precedence.
3558 		 */
3559 		if (is_an_alpha2(alpha2))
3560 			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3561 	}
3562 
3563 	spin_lock(&reg_requests_lock);
3564 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3565 	spin_unlock(&reg_requests_lock);
3566 
3567 	pr_debug("Kicking the queue\n");
3568 
3569 	schedule_work(&reg_work);
3570 }
3571 
3572 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3573 {
3574 	struct cfg80211_registered_device *rdev;
3575 	struct wireless_dev *wdev;
3576 
3577 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3578 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3579 			wdev_lock(wdev);
3580 			if (!(wdev->wiphy->regulatory_flags & flag)) {
3581 				wdev_unlock(wdev);
3582 				return false;
3583 			}
3584 			wdev_unlock(wdev);
3585 		}
3586 	}
3587 
3588 	return true;
3589 }
3590 
3591 void regulatory_hint_disconnect(void)
3592 {
3593 	/* Restore of regulatory settings is not required when wiphy(s)
3594 	 * ignore IE from connected access point but clearance of beacon hints
3595 	 * is required when wiphy(s) supports beacon hints.
3596 	 */
3597 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3598 		struct reg_beacon *reg_beacon, *btmp;
3599 
3600 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3601 			return;
3602 
3603 		spin_lock_bh(&reg_pending_beacons_lock);
3604 		list_for_each_entry_safe(reg_beacon, btmp,
3605 					 &reg_pending_beacons, list) {
3606 			list_del(&reg_beacon->list);
3607 			kfree(reg_beacon);
3608 		}
3609 		spin_unlock_bh(&reg_pending_beacons_lock);
3610 
3611 		list_for_each_entry_safe(reg_beacon, btmp,
3612 					 &reg_beacon_list, list) {
3613 			list_del(&reg_beacon->list);
3614 			kfree(reg_beacon);
3615 		}
3616 
3617 		return;
3618 	}
3619 
3620 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3621 	restore_regulatory_settings(false, true);
3622 }
3623 
3624 static bool freq_is_chan_12_13_14(u32 freq)
3625 {
3626 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3627 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3628 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3629 		return true;
3630 	return false;
3631 }
3632 
3633 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3634 {
3635 	struct reg_beacon *pending_beacon;
3636 
3637 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3638 		if (ieee80211_channel_equal(beacon_chan,
3639 					    &pending_beacon->chan))
3640 			return true;
3641 	return false;
3642 }
3643 
3644 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3645 				 struct ieee80211_channel *beacon_chan,
3646 				 gfp_t gfp)
3647 {
3648 	struct reg_beacon *reg_beacon;
3649 	bool processing;
3650 
3651 	if (beacon_chan->beacon_found ||
3652 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3653 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3654 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3655 		return 0;
3656 
3657 	spin_lock_bh(&reg_pending_beacons_lock);
3658 	processing = pending_reg_beacon(beacon_chan);
3659 	spin_unlock_bh(&reg_pending_beacons_lock);
3660 
3661 	if (processing)
3662 		return 0;
3663 
3664 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3665 	if (!reg_beacon)
3666 		return -ENOMEM;
3667 
3668 	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3669 		 beacon_chan->center_freq, beacon_chan->freq_offset,
3670 		 ieee80211_freq_khz_to_channel(
3671 			 ieee80211_channel_to_khz(beacon_chan)),
3672 		 wiphy_name(wiphy));
3673 
3674 	memcpy(&reg_beacon->chan, beacon_chan,
3675 	       sizeof(struct ieee80211_channel));
3676 
3677 	/*
3678 	 * Since we can be called from BH or and non-BH context
3679 	 * we must use spin_lock_bh()
3680 	 */
3681 	spin_lock_bh(&reg_pending_beacons_lock);
3682 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3683 	spin_unlock_bh(&reg_pending_beacons_lock);
3684 
3685 	schedule_work(&reg_work);
3686 
3687 	return 0;
3688 }
3689 
3690 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3691 {
3692 	unsigned int i;
3693 	const struct ieee80211_reg_rule *reg_rule = NULL;
3694 	const struct ieee80211_freq_range *freq_range = NULL;
3695 	const struct ieee80211_power_rule *power_rule = NULL;
3696 	char bw[32], cac_time[32];
3697 
3698 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3699 
3700 	for (i = 0; i < rd->n_reg_rules; i++) {
3701 		reg_rule = &rd->reg_rules[i];
3702 		freq_range = &reg_rule->freq_range;
3703 		power_rule = &reg_rule->power_rule;
3704 
3705 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3706 			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3707 				 freq_range->max_bandwidth_khz,
3708 				 reg_get_max_bandwidth(rd, reg_rule));
3709 		else
3710 			snprintf(bw, sizeof(bw), "%d KHz",
3711 				 freq_range->max_bandwidth_khz);
3712 
3713 		if (reg_rule->flags & NL80211_RRF_DFS)
3714 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3715 				  reg_rule->dfs_cac_ms/1000);
3716 		else
3717 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3718 
3719 
3720 		/*
3721 		 * There may not be documentation for max antenna gain
3722 		 * in certain regions
3723 		 */
3724 		if (power_rule->max_antenna_gain)
3725 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3726 				freq_range->start_freq_khz,
3727 				freq_range->end_freq_khz,
3728 				bw,
3729 				power_rule->max_antenna_gain,
3730 				power_rule->max_eirp,
3731 				cac_time);
3732 		else
3733 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3734 				freq_range->start_freq_khz,
3735 				freq_range->end_freq_khz,
3736 				bw,
3737 				power_rule->max_eirp,
3738 				cac_time);
3739 	}
3740 }
3741 
3742 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3743 {
3744 	switch (dfs_region) {
3745 	case NL80211_DFS_UNSET:
3746 	case NL80211_DFS_FCC:
3747 	case NL80211_DFS_ETSI:
3748 	case NL80211_DFS_JP:
3749 		return true;
3750 	default:
3751 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3752 		return false;
3753 	}
3754 }
3755 
3756 static void print_regdomain(const struct ieee80211_regdomain *rd)
3757 {
3758 	struct regulatory_request *lr = get_last_request();
3759 
3760 	if (is_intersected_alpha2(rd->alpha2)) {
3761 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3762 			struct cfg80211_registered_device *rdev;
3763 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3764 			if (rdev) {
3765 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3766 					rdev->country_ie_alpha2[0],
3767 					rdev->country_ie_alpha2[1]);
3768 			} else
3769 				pr_debug("Current regulatory domain intersected:\n");
3770 		} else
3771 			pr_debug("Current regulatory domain intersected:\n");
3772 	} else if (is_world_regdom(rd->alpha2)) {
3773 		pr_debug("World regulatory domain updated:\n");
3774 	} else {
3775 		if (is_unknown_alpha2(rd->alpha2))
3776 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3777 		else {
3778 			if (reg_request_cell_base(lr))
3779 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3780 					rd->alpha2[0], rd->alpha2[1]);
3781 			else
3782 				pr_debug("Regulatory domain changed to country: %c%c\n",
3783 					rd->alpha2[0], rd->alpha2[1]);
3784 		}
3785 	}
3786 
3787 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3788 	print_rd_rules(rd);
3789 }
3790 
3791 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3792 {
3793 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3794 	print_rd_rules(rd);
3795 }
3796 
3797 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3798 {
3799 	if (!is_world_regdom(rd->alpha2))
3800 		return -EINVAL;
3801 	update_world_regdomain(rd);
3802 	return 0;
3803 }
3804 
3805 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3806 			   struct regulatory_request *user_request)
3807 {
3808 	const struct ieee80211_regdomain *intersected_rd = NULL;
3809 
3810 	if (!regdom_changes(rd->alpha2))
3811 		return -EALREADY;
3812 
3813 	if (!is_valid_rd(rd)) {
3814 		pr_err("Invalid regulatory domain detected: %c%c\n",
3815 		       rd->alpha2[0], rd->alpha2[1]);
3816 		print_regdomain_info(rd);
3817 		return -EINVAL;
3818 	}
3819 
3820 	if (!user_request->intersect) {
3821 		reset_regdomains(false, rd);
3822 		return 0;
3823 	}
3824 
3825 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3826 	if (!intersected_rd)
3827 		return -EINVAL;
3828 
3829 	kfree(rd);
3830 	rd = NULL;
3831 	reset_regdomains(false, intersected_rd);
3832 
3833 	return 0;
3834 }
3835 
3836 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3837 			     struct regulatory_request *driver_request)
3838 {
3839 	const struct ieee80211_regdomain *regd;
3840 	const struct ieee80211_regdomain *intersected_rd = NULL;
3841 	const struct ieee80211_regdomain *tmp;
3842 	struct wiphy *request_wiphy;
3843 
3844 	if (is_world_regdom(rd->alpha2))
3845 		return -EINVAL;
3846 
3847 	if (!regdom_changes(rd->alpha2))
3848 		return -EALREADY;
3849 
3850 	if (!is_valid_rd(rd)) {
3851 		pr_err("Invalid regulatory domain detected: %c%c\n",
3852 		       rd->alpha2[0], rd->alpha2[1]);
3853 		print_regdomain_info(rd);
3854 		return -EINVAL;
3855 	}
3856 
3857 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3858 	if (!request_wiphy)
3859 		return -ENODEV;
3860 
3861 	if (!driver_request->intersect) {
3862 		ASSERT_RTNL();
3863 		wiphy_lock(request_wiphy);
3864 		if (request_wiphy->regd) {
3865 			wiphy_unlock(request_wiphy);
3866 			return -EALREADY;
3867 		}
3868 
3869 		regd = reg_copy_regd(rd);
3870 		if (IS_ERR(regd)) {
3871 			wiphy_unlock(request_wiphy);
3872 			return PTR_ERR(regd);
3873 		}
3874 
3875 		rcu_assign_pointer(request_wiphy->regd, regd);
3876 		wiphy_unlock(request_wiphy);
3877 		reset_regdomains(false, rd);
3878 		return 0;
3879 	}
3880 
3881 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3882 	if (!intersected_rd)
3883 		return -EINVAL;
3884 
3885 	/*
3886 	 * We can trash what CRDA provided now.
3887 	 * However if a driver requested this specific regulatory
3888 	 * domain we keep it for its private use
3889 	 */
3890 	tmp = get_wiphy_regdom(request_wiphy);
3891 	rcu_assign_pointer(request_wiphy->regd, rd);
3892 	rcu_free_regdom(tmp);
3893 
3894 	rd = NULL;
3895 
3896 	reset_regdomains(false, intersected_rd);
3897 
3898 	return 0;
3899 }
3900 
3901 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3902 				 struct regulatory_request *country_ie_request)
3903 {
3904 	struct wiphy *request_wiphy;
3905 
3906 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3907 	    !is_unknown_alpha2(rd->alpha2))
3908 		return -EINVAL;
3909 
3910 	/*
3911 	 * Lets only bother proceeding on the same alpha2 if the current
3912 	 * rd is non static (it means CRDA was present and was used last)
3913 	 * and the pending request came in from a country IE
3914 	 */
3915 
3916 	if (!is_valid_rd(rd)) {
3917 		pr_err("Invalid regulatory domain detected: %c%c\n",
3918 		       rd->alpha2[0], rd->alpha2[1]);
3919 		print_regdomain_info(rd);
3920 		return -EINVAL;
3921 	}
3922 
3923 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3924 	if (!request_wiphy)
3925 		return -ENODEV;
3926 
3927 	if (country_ie_request->intersect)
3928 		return -EINVAL;
3929 
3930 	reset_regdomains(false, rd);
3931 	return 0;
3932 }
3933 
3934 /*
3935  * Use this call to set the current regulatory domain. Conflicts with
3936  * multiple drivers can be ironed out later. Caller must've already
3937  * kmalloc'd the rd structure.
3938  */
3939 int set_regdom(const struct ieee80211_regdomain *rd,
3940 	       enum ieee80211_regd_source regd_src)
3941 {
3942 	struct regulatory_request *lr;
3943 	bool user_reset = false;
3944 	int r;
3945 
3946 	if (IS_ERR_OR_NULL(rd))
3947 		return -ENODATA;
3948 
3949 	if (!reg_is_valid_request(rd->alpha2)) {
3950 		kfree(rd);
3951 		return -EINVAL;
3952 	}
3953 
3954 	if (regd_src == REGD_SOURCE_CRDA)
3955 		reset_crda_timeouts();
3956 
3957 	lr = get_last_request();
3958 
3959 	/* Note that this doesn't update the wiphys, this is done below */
3960 	switch (lr->initiator) {
3961 	case NL80211_REGDOM_SET_BY_CORE:
3962 		r = reg_set_rd_core(rd);
3963 		break;
3964 	case NL80211_REGDOM_SET_BY_USER:
3965 		cfg80211_save_user_regdom(rd);
3966 		r = reg_set_rd_user(rd, lr);
3967 		user_reset = true;
3968 		break;
3969 	case NL80211_REGDOM_SET_BY_DRIVER:
3970 		r = reg_set_rd_driver(rd, lr);
3971 		break;
3972 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3973 		r = reg_set_rd_country_ie(rd, lr);
3974 		break;
3975 	default:
3976 		WARN(1, "invalid initiator %d\n", lr->initiator);
3977 		kfree(rd);
3978 		return -EINVAL;
3979 	}
3980 
3981 	if (r) {
3982 		switch (r) {
3983 		case -EALREADY:
3984 			reg_set_request_processed();
3985 			break;
3986 		default:
3987 			/* Back to world regulatory in case of errors */
3988 			restore_regulatory_settings(user_reset, false);
3989 		}
3990 
3991 		kfree(rd);
3992 		return r;
3993 	}
3994 
3995 	/* This would make this whole thing pointless */
3996 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3997 		return -EINVAL;
3998 
3999 	/* update all wiphys now with the new established regulatory domain */
4000 	update_all_wiphy_regulatory(lr->initiator);
4001 
4002 	print_regdomain(get_cfg80211_regdom());
4003 
4004 	nl80211_send_reg_change_event(lr);
4005 
4006 	reg_set_request_processed();
4007 
4008 	return 0;
4009 }
4010 
4011 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4012 				       struct ieee80211_regdomain *rd)
4013 {
4014 	const struct ieee80211_regdomain *regd;
4015 	const struct ieee80211_regdomain *prev_regd;
4016 	struct cfg80211_registered_device *rdev;
4017 
4018 	if (WARN_ON(!wiphy || !rd))
4019 		return -EINVAL;
4020 
4021 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4022 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4023 		return -EPERM;
4024 
4025 	if (WARN(!is_valid_rd(rd),
4026 		 "Invalid regulatory domain detected: %c%c\n",
4027 		 rd->alpha2[0], rd->alpha2[1])) {
4028 		print_regdomain_info(rd);
4029 		return -EINVAL;
4030 	}
4031 
4032 	regd = reg_copy_regd(rd);
4033 	if (IS_ERR(regd))
4034 		return PTR_ERR(regd);
4035 
4036 	rdev = wiphy_to_rdev(wiphy);
4037 
4038 	spin_lock(&reg_requests_lock);
4039 	prev_regd = rdev->requested_regd;
4040 	rdev->requested_regd = regd;
4041 	spin_unlock(&reg_requests_lock);
4042 
4043 	kfree(prev_regd);
4044 	return 0;
4045 }
4046 
4047 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4048 			      struct ieee80211_regdomain *rd)
4049 {
4050 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4051 
4052 	if (ret)
4053 		return ret;
4054 
4055 	schedule_work(&reg_work);
4056 	return 0;
4057 }
4058 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4059 
4060 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4061 				   struct ieee80211_regdomain *rd)
4062 {
4063 	int ret;
4064 
4065 	ASSERT_RTNL();
4066 
4067 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4068 	if (ret)
4069 		return ret;
4070 
4071 	/* process the request immediately */
4072 	reg_process_self_managed_hint(wiphy);
4073 	reg_check_channels();
4074 	return 0;
4075 }
4076 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4077 
4078 void wiphy_regulatory_register(struct wiphy *wiphy)
4079 {
4080 	struct regulatory_request *lr = get_last_request();
4081 
4082 	/* self-managed devices ignore beacon hints and country IE */
4083 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4084 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4085 					   REGULATORY_COUNTRY_IE_IGNORE;
4086 
4087 		/*
4088 		 * The last request may have been received before this
4089 		 * registration call. Call the driver notifier if
4090 		 * initiator is USER.
4091 		 */
4092 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4093 			reg_call_notifier(wiphy, lr);
4094 	}
4095 
4096 	if (!reg_dev_ignore_cell_hint(wiphy))
4097 		reg_num_devs_support_basehint++;
4098 
4099 	wiphy_update_regulatory(wiphy, lr->initiator);
4100 	wiphy_all_share_dfs_chan_state(wiphy);
4101 	reg_process_self_managed_hints();
4102 }
4103 
4104 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4105 {
4106 	struct wiphy *request_wiphy = NULL;
4107 	struct regulatory_request *lr;
4108 
4109 	lr = get_last_request();
4110 
4111 	if (!reg_dev_ignore_cell_hint(wiphy))
4112 		reg_num_devs_support_basehint--;
4113 
4114 	rcu_free_regdom(get_wiphy_regdom(wiphy));
4115 	RCU_INIT_POINTER(wiphy->regd, NULL);
4116 
4117 	if (lr)
4118 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4119 
4120 	if (!request_wiphy || request_wiphy != wiphy)
4121 		return;
4122 
4123 	lr->wiphy_idx = WIPHY_IDX_INVALID;
4124 	lr->country_ie_env = ENVIRON_ANY;
4125 }
4126 
4127 /*
4128  * See FCC notices for UNII band definitions
4129  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4130  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4131  */
4132 int cfg80211_get_unii(int freq)
4133 {
4134 	/* UNII-1 */
4135 	if (freq >= 5150 && freq <= 5250)
4136 		return 0;
4137 
4138 	/* UNII-2A */
4139 	if (freq > 5250 && freq <= 5350)
4140 		return 1;
4141 
4142 	/* UNII-2B */
4143 	if (freq > 5350 && freq <= 5470)
4144 		return 2;
4145 
4146 	/* UNII-2C */
4147 	if (freq > 5470 && freq <= 5725)
4148 		return 3;
4149 
4150 	/* UNII-3 */
4151 	if (freq > 5725 && freq <= 5825)
4152 		return 4;
4153 
4154 	/* UNII-5 */
4155 	if (freq > 5925 && freq <= 6425)
4156 		return 5;
4157 
4158 	/* UNII-6 */
4159 	if (freq > 6425 && freq <= 6525)
4160 		return 6;
4161 
4162 	/* UNII-7 */
4163 	if (freq > 6525 && freq <= 6875)
4164 		return 7;
4165 
4166 	/* UNII-8 */
4167 	if (freq > 6875 && freq <= 7125)
4168 		return 8;
4169 
4170 	return -EINVAL;
4171 }
4172 
4173 bool regulatory_indoor_allowed(void)
4174 {
4175 	return reg_is_indoor;
4176 }
4177 
4178 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4179 {
4180 	const struct ieee80211_regdomain *regd = NULL;
4181 	const struct ieee80211_regdomain *wiphy_regd = NULL;
4182 	bool pre_cac_allowed = false;
4183 
4184 	rcu_read_lock();
4185 
4186 	regd = rcu_dereference(cfg80211_regdomain);
4187 	wiphy_regd = rcu_dereference(wiphy->regd);
4188 	if (!wiphy_regd) {
4189 		if (regd->dfs_region == NL80211_DFS_ETSI)
4190 			pre_cac_allowed = true;
4191 
4192 		rcu_read_unlock();
4193 
4194 		return pre_cac_allowed;
4195 	}
4196 
4197 	if (regd->dfs_region == wiphy_regd->dfs_region &&
4198 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4199 		pre_cac_allowed = true;
4200 
4201 	rcu_read_unlock();
4202 
4203 	return pre_cac_allowed;
4204 }
4205 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4206 
4207 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4208 {
4209 	struct wireless_dev *wdev;
4210 	/* If we finished CAC or received radar, we should end any
4211 	 * CAC running on the same channels.
4212 	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4213 	 * either all channels are available - those the CAC_FINISHED
4214 	 * event has effected another wdev state, or there is a channel
4215 	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4216 	 * event has effected another wdev state.
4217 	 * In both cases we should end the CAC on the wdev.
4218 	 */
4219 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4220 		struct cfg80211_chan_def *chandef;
4221 
4222 		if (!wdev->cac_started)
4223 			continue;
4224 
4225 		/* FIXME: radar detection is tied to link 0 for now */
4226 		chandef = wdev_chandef(wdev, 0);
4227 		if (!chandef)
4228 			continue;
4229 
4230 		if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4231 			rdev_end_cac(rdev, wdev->netdev);
4232 	}
4233 }
4234 
4235 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4236 				    struct cfg80211_chan_def *chandef,
4237 				    enum nl80211_dfs_state dfs_state,
4238 				    enum nl80211_radar_event event)
4239 {
4240 	struct cfg80211_registered_device *rdev;
4241 
4242 	ASSERT_RTNL();
4243 
4244 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4245 		return;
4246 
4247 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4248 		if (wiphy == &rdev->wiphy)
4249 			continue;
4250 
4251 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4252 			continue;
4253 
4254 		if (!ieee80211_get_channel(&rdev->wiphy,
4255 					   chandef->chan->center_freq))
4256 			continue;
4257 
4258 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4259 
4260 		if (event == NL80211_RADAR_DETECTED ||
4261 		    event == NL80211_RADAR_CAC_FINISHED) {
4262 			cfg80211_sched_dfs_chan_update(rdev);
4263 			cfg80211_check_and_end_cac(rdev);
4264 		}
4265 
4266 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4267 	}
4268 }
4269 
4270 static int __init regulatory_init_db(void)
4271 {
4272 	int err;
4273 
4274 	/*
4275 	 * It's possible that - due to other bugs/issues - cfg80211
4276 	 * never called regulatory_init() below, or that it failed;
4277 	 * in that case, don't try to do any further work here as
4278 	 * it's doomed to lead to crashes.
4279 	 */
4280 	if (IS_ERR_OR_NULL(reg_pdev))
4281 		return -EINVAL;
4282 
4283 	err = load_builtin_regdb_keys();
4284 	if (err) {
4285 		platform_device_unregister(reg_pdev);
4286 		return err;
4287 	}
4288 
4289 	/* We always try to get an update for the static regdomain */
4290 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4291 	if (err) {
4292 		if (err == -ENOMEM) {
4293 			platform_device_unregister(reg_pdev);
4294 			return err;
4295 		}
4296 		/*
4297 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4298 		 * memory which is handled and propagated appropriately above
4299 		 * but it can also fail during a netlink_broadcast() or during
4300 		 * early boot for call_usermodehelper(). For now treat these
4301 		 * errors as non-fatal.
4302 		 */
4303 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4304 	}
4305 
4306 	/*
4307 	 * Finally, if the user set the module parameter treat it
4308 	 * as a user hint.
4309 	 */
4310 	if (!is_world_regdom(ieee80211_regdom))
4311 		regulatory_hint_user(ieee80211_regdom,
4312 				     NL80211_USER_REG_HINT_USER);
4313 
4314 	return 0;
4315 }
4316 #ifndef MODULE
4317 late_initcall(regulatory_init_db);
4318 #endif
4319 
4320 int __init regulatory_init(void)
4321 {
4322 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4323 	if (IS_ERR(reg_pdev))
4324 		return PTR_ERR(reg_pdev);
4325 
4326 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4327 
4328 	user_alpha2[0] = '9';
4329 	user_alpha2[1] = '7';
4330 
4331 #ifdef MODULE
4332 	return regulatory_init_db();
4333 #else
4334 	return 0;
4335 #endif
4336 }
4337 
4338 void regulatory_exit(void)
4339 {
4340 	struct regulatory_request *reg_request, *tmp;
4341 	struct reg_beacon *reg_beacon, *btmp;
4342 
4343 	cancel_work_sync(&reg_work);
4344 	cancel_crda_timeout_sync();
4345 	cancel_delayed_work_sync(&reg_check_chans);
4346 
4347 	/* Lock to suppress warnings */
4348 	rtnl_lock();
4349 	reset_regdomains(true, NULL);
4350 	rtnl_unlock();
4351 
4352 	dev_set_uevent_suppress(&reg_pdev->dev, true);
4353 
4354 	platform_device_unregister(reg_pdev);
4355 
4356 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4357 		list_del(&reg_beacon->list);
4358 		kfree(reg_beacon);
4359 	}
4360 
4361 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4362 		list_del(&reg_beacon->list);
4363 		kfree(reg_beacon);
4364 	}
4365 
4366 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4367 		list_del(&reg_request->list);
4368 		kfree(reg_request);
4369 	}
4370 
4371 	if (!IS_ERR_OR_NULL(regdb))
4372 		kfree(regdb);
4373 	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4374 		kfree(cfg80211_user_regdom);
4375 
4376 	free_regdb_keyring();
4377 }
4378