1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2019 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static spinlock_t reg_indoor_lock; 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user, bool cached); 135 static void print_regdomain(const struct ieee80211_regdomain *rd); 136 137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 138 { 139 return rcu_dereference_rtnl(cfg80211_regdomain); 140 } 141 142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 143 { 144 return rcu_dereference_rtnl(wiphy->regd); 145 } 146 147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 148 { 149 switch (dfs_region) { 150 case NL80211_DFS_UNSET: 151 return "unset"; 152 case NL80211_DFS_FCC: 153 return "FCC"; 154 case NL80211_DFS_ETSI: 155 return "ETSI"; 156 case NL80211_DFS_JP: 157 return "JP"; 158 } 159 return "Unknown"; 160 } 161 162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 163 { 164 const struct ieee80211_regdomain *regd = NULL; 165 const struct ieee80211_regdomain *wiphy_regd = NULL; 166 167 regd = get_cfg80211_regdom(); 168 if (!wiphy) 169 goto out; 170 171 wiphy_regd = get_wiphy_regdom(wiphy); 172 if (!wiphy_regd) 173 goto out; 174 175 if (wiphy_regd->dfs_region == regd->dfs_region) 176 goto out; 177 178 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 179 dev_name(&wiphy->dev), 180 reg_dfs_region_str(wiphy_regd->dfs_region), 181 reg_dfs_region_str(regd->dfs_region)); 182 183 out: 184 return regd->dfs_region; 185 } 186 187 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 188 { 189 if (!r) 190 return; 191 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 192 } 193 194 static struct regulatory_request *get_last_request(void) 195 { 196 return rcu_dereference_rtnl(last_request); 197 } 198 199 /* Used to queue up regulatory hints */ 200 static LIST_HEAD(reg_requests_list); 201 static spinlock_t reg_requests_lock; 202 203 /* Used to queue up beacon hints for review */ 204 static LIST_HEAD(reg_pending_beacons); 205 static spinlock_t reg_pending_beacons_lock; 206 207 /* Used to keep track of processed beacon hints */ 208 static LIST_HEAD(reg_beacon_list); 209 210 struct reg_beacon { 211 struct list_head list; 212 struct ieee80211_channel chan; 213 }; 214 215 static void reg_check_chans_work(struct work_struct *work); 216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 217 218 static void reg_todo(struct work_struct *work); 219 static DECLARE_WORK(reg_work, reg_todo); 220 221 /* We keep a static world regulatory domain in case of the absence of CRDA */ 222 static const struct ieee80211_regdomain world_regdom = { 223 .n_reg_rules = 8, 224 .alpha2 = "00", 225 .reg_rules = { 226 /* IEEE 802.11b/g, channels 1..11 */ 227 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 228 /* IEEE 802.11b/g, channels 12..13. */ 229 REG_RULE(2467-10, 2472+10, 20, 6, 20, 230 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 231 /* IEEE 802.11 channel 14 - Only JP enables 232 * this and for 802.11b only */ 233 REG_RULE(2484-10, 2484+10, 20, 6, 20, 234 NL80211_RRF_NO_IR | 235 NL80211_RRF_NO_OFDM), 236 /* IEEE 802.11a, channel 36..48 */ 237 REG_RULE(5180-10, 5240+10, 80, 6, 20, 238 NL80211_RRF_NO_IR | 239 NL80211_RRF_AUTO_BW), 240 241 /* IEEE 802.11a, channel 52..64 - DFS required */ 242 REG_RULE(5260-10, 5320+10, 80, 6, 20, 243 NL80211_RRF_NO_IR | 244 NL80211_RRF_AUTO_BW | 245 NL80211_RRF_DFS), 246 247 /* IEEE 802.11a, channel 100..144 - DFS required */ 248 REG_RULE(5500-10, 5720+10, 160, 6, 20, 249 NL80211_RRF_NO_IR | 250 NL80211_RRF_DFS), 251 252 /* IEEE 802.11a, channel 149..165 */ 253 REG_RULE(5745-10, 5825+10, 80, 6, 20, 254 NL80211_RRF_NO_IR), 255 256 /* IEEE 802.11ad (60GHz), channels 1..3 */ 257 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 258 } 259 }; 260 261 /* protected by RTNL */ 262 static const struct ieee80211_regdomain *cfg80211_world_regdom = 263 &world_regdom; 264 265 static char *ieee80211_regdom = "00"; 266 static char user_alpha2[2]; 267 static const struct ieee80211_regdomain *cfg80211_user_regdom; 268 269 module_param(ieee80211_regdom, charp, 0444); 270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 271 272 static void reg_free_request(struct regulatory_request *request) 273 { 274 if (request == &core_request_world) 275 return; 276 277 if (request != get_last_request()) 278 kfree(request); 279 } 280 281 static void reg_free_last_request(void) 282 { 283 struct regulatory_request *lr = get_last_request(); 284 285 if (lr != &core_request_world && lr) 286 kfree_rcu(lr, rcu_head); 287 } 288 289 static void reg_update_last_request(struct regulatory_request *request) 290 { 291 struct regulatory_request *lr; 292 293 lr = get_last_request(); 294 if (lr == request) 295 return; 296 297 reg_free_last_request(); 298 rcu_assign_pointer(last_request, request); 299 } 300 301 static void reset_regdomains(bool full_reset, 302 const struct ieee80211_regdomain *new_regdom) 303 { 304 const struct ieee80211_regdomain *r; 305 306 ASSERT_RTNL(); 307 308 r = get_cfg80211_regdom(); 309 310 /* avoid freeing static information or freeing something twice */ 311 if (r == cfg80211_world_regdom) 312 r = NULL; 313 if (cfg80211_world_regdom == &world_regdom) 314 cfg80211_world_regdom = NULL; 315 if (r == &world_regdom) 316 r = NULL; 317 318 rcu_free_regdom(r); 319 rcu_free_regdom(cfg80211_world_regdom); 320 321 cfg80211_world_regdom = &world_regdom; 322 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 323 324 if (!full_reset) 325 return; 326 327 reg_update_last_request(&core_request_world); 328 } 329 330 /* 331 * Dynamic world regulatory domain requested by the wireless 332 * core upon initialization 333 */ 334 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 335 { 336 struct regulatory_request *lr; 337 338 lr = get_last_request(); 339 340 WARN_ON(!lr); 341 342 reset_regdomains(false, rd); 343 344 cfg80211_world_regdom = rd; 345 } 346 347 bool is_world_regdom(const char *alpha2) 348 { 349 if (!alpha2) 350 return false; 351 return alpha2[0] == '0' && alpha2[1] == '0'; 352 } 353 354 static bool is_alpha2_set(const char *alpha2) 355 { 356 if (!alpha2) 357 return false; 358 return alpha2[0] && alpha2[1]; 359 } 360 361 static bool is_unknown_alpha2(const char *alpha2) 362 { 363 if (!alpha2) 364 return false; 365 /* 366 * Special case where regulatory domain was built by driver 367 * but a specific alpha2 cannot be determined 368 */ 369 return alpha2[0] == '9' && alpha2[1] == '9'; 370 } 371 372 static bool is_intersected_alpha2(const char *alpha2) 373 { 374 if (!alpha2) 375 return false; 376 /* 377 * Special case where regulatory domain is the 378 * result of an intersection between two regulatory domain 379 * structures 380 */ 381 return alpha2[0] == '9' && alpha2[1] == '8'; 382 } 383 384 static bool is_an_alpha2(const char *alpha2) 385 { 386 if (!alpha2) 387 return false; 388 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 389 } 390 391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 392 { 393 if (!alpha2_x || !alpha2_y) 394 return false; 395 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 396 } 397 398 static bool regdom_changes(const char *alpha2) 399 { 400 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 401 402 if (!r) 403 return true; 404 return !alpha2_equal(r->alpha2, alpha2); 405 } 406 407 /* 408 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 409 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 410 * has ever been issued. 411 */ 412 static bool is_user_regdom_saved(void) 413 { 414 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 415 return false; 416 417 /* This would indicate a mistake on the design */ 418 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 419 "Unexpected user alpha2: %c%c\n", 420 user_alpha2[0], user_alpha2[1])) 421 return false; 422 423 return true; 424 } 425 426 static const struct ieee80211_regdomain * 427 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 428 { 429 struct ieee80211_regdomain *regd; 430 unsigned int i; 431 432 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 433 GFP_KERNEL); 434 if (!regd) 435 return ERR_PTR(-ENOMEM); 436 437 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 438 439 for (i = 0; i < src_regd->n_reg_rules; i++) 440 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 441 sizeof(struct ieee80211_reg_rule)); 442 443 return regd; 444 } 445 446 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 447 { 448 ASSERT_RTNL(); 449 450 if (!IS_ERR(cfg80211_user_regdom)) 451 kfree(cfg80211_user_regdom); 452 cfg80211_user_regdom = reg_copy_regd(rd); 453 } 454 455 struct reg_regdb_apply_request { 456 struct list_head list; 457 const struct ieee80211_regdomain *regdom; 458 }; 459 460 static LIST_HEAD(reg_regdb_apply_list); 461 static DEFINE_MUTEX(reg_regdb_apply_mutex); 462 463 static void reg_regdb_apply(struct work_struct *work) 464 { 465 struct reg_regdb_apply_request *request; 466 467 rtnl_lock(); 468 469 mutex_lock(®_regdb_apply_mutex); 470 while (!list_empty(®_regdb_apply_list)) { 471 request = list_first_entry(®_regdb_apply_list, 472 struct reg_regdb_apply_request, 473 list); 474 list_del(&request->list); 475 476 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 477 kfree(request); 478 } 479 mutex_unlock(®_regdb_apply_mutex); 480 481 rtnl_unlock(); 482 } 483 484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 485 486 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 487 { 488 struct reg_regdb_apply_request *request; 489 490 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 491 if (!request) { 492 kfree(regdom); 493 return -ENOMEM; 494 } 495 496 request->regdom = regdom; 497 498 mutex_lock(®_regdb_apply_mutex); 499 list_add_tail(&request->list, ®_regdb_apply_list); 500 mutex_unlock(®_regdb_apply_mutex); 501 502 schedule_work(®_regdb_work); 503 return 0; 504 } 505 506 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 507 /* Max number of consecutive attempts to communicate with CRDA */ 508 #define REG_MAX_CRDA_TIMEOUTS 10 509 510 static u32 reg_crda_timeouts; 511 512 static void crda_timeout_work(struct work_struct *work); 513 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 514 515 static void crda_timeout_work(struct work_struct *work) 516 { 517 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 518 rtnl_lock(); 519 reg_crda_timeouts++; 520 restore_regulatory_settings(true, false); 521 rtnl_unlock(); 522 } 523 524 static void cancel_crda_timeout(void) 525 { 526 cancel_delayed_work(&crda_timeout); 527 } 528 529 static void cancel_crda_timeout_sync(void) 530 { 531 cancel_delayed_work_sync(&crda_timeout); 532 } 533 534 static void reset_crda_timeouts(void) 535 { 536 reg_crda_timeouts = 0; 537 } 538 539 /* 540 * This lets us keep regulatory code which is updated on a regulatory 541 * basis in userspace. 542 */ 543 static int call_crda(const char *alpha2) 544 { 545 char country[12]; 546 char *env[] = { country, NULL }; 547 int ret; 548 549 snprintf(country, sizeof(country), "COUNTRY=%c%c", 550 alpha2[0], alpha2[1]); 551 552 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 553 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 554 return -EINVAL; 555 } 556 557 if (!is_world_regdom((char *) alpha2)) 558 pr_debug("Calling CRDA for country: %c%c\n", 559 alpha2[0], alpha2[1]); 560 else 561 pr_debug("Calling CRDA to update world regulatory domain\n"); 562 563 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 564 if (ret) 565 return ret; 566 567 queue_delayed_work(system_power_efficient_wq, 568 &crda_timeout, msecs_to_jiffies(3142)); 569 return 0; 570 } 571 #else 572 static inline void cancel_crda_timeout(void) {} 573 static inline void cancel_crda_timeout_sync(void) {} 574 static inline void reset_crda_timeouts(void) {} 575 static inline int call_crda(const char *alpha2) 576 { 577 return -ENODATA; 578 } 579 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 580 581 /* code to directly load a firmware database through request_firmware */ 582 static const struct fwdb_header *regdb; 583 584 struct fwdb_country { 585 u8 alpha2[2]; 586 __be16 coll_ptr; 587 /* this struct cannot be extended */ 588 } __packed __aligned(4); 589 590 struct fwdb_collection { 591 u8 len; 592 u8 n_rules; 593 u8 dfs_region; 594 /* no optional data yet */ 595 /* aligned to 2, then followed by __be16 array of rule pointers */ 596 } __packed __aligned(4); 597 598 enum fwdb_flags { 599 FWDB_FLAG_NO_OFDM = BIT(0), 600 FWDB_FLAG_NO_OUTDOOR = BIT(1), 601 FWDB_FLAG_DFS = BIT(2), 602 FWDB_FLAG_NO_IR = BIT(3), 603 FWDB_FLAG_AUTO_BW = BIT(4), 604 }; 605 606 struct fwdb_wmm_ac { 607 u8 ecw; 608 u8 aifsn; 609 __be16 cot; 610 } __packed; 611 612 struct fwdb_wmm_rule { 613 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 614 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 615 } __packed; 616 617 struct fwdb_rule { 618 u8 len; 619 u8 flags; 620 __be16 max_eirp; 621 __be32 start, end, max_bw; 622 /* start of optional data */ 623 __be16 cac_timeout; 624 __be16 wmm_ptr; 625 } __packed __aligned(4); 626 627 #define FWDB_MAGIC 0x52474442 628 #define FWDB_VERSION 20 629 630 struct fwdb_header { 631 __be32 magic; 632 __be32 version; 633 struct fwdb_country country[]; 634 } __packed __aligned(4); 635 636 static int ecw2cw(int ecw) 637 { 638 return (1 << ecw) - 1; 639 } 640 641 static bool valid_wmm(struct fwdb_wmm_rule *rule) 642 { 643 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 644 int i; 645 646 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 647 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 648 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 649 u8 aifsn = ac[i].aifsn; 650 651 if (cw_min >= cw_max) 652 return false; 653 654 if (aifsn < 1) 655 return false; 656 } 657 658 return true; 659 } 660 661 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 662 { 663 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 664 665 if ((u8 *)rule + sizeof(rule->len) > data + size) 666 return false; 667 668 /* mandatory fields */ 669 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 670 return false; 671 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 672 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 673 struct fwdb_wmm_rule *wmm; 674 675 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 676 return false; 677 678 wmm = (void *)(data + wmm_ptr); 679 680 if (!valid_wmm(wmm)) 681 return false; 682 } 683 return true; 684 } 685 686 static bool valid_country(const u8 *data, unsigned int size, 687 const struct fwdb_country *country) 688 { 689 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 690 struct fwdb_collection *coll = (void *)(data + ptr); 691 __be16 *rules_ptr; 692 unsigned int i; 693 694 /* make sure we can read len/n_rules */ 695 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 696 return false; 697 698 /* make sure base struct and all rules fit */ 699 if ((u8 *)coll + ALIGN(coll->len, 2) + 700 (coll->n_rules * 2) > data + size) 701 return false; 702 703 /* mandatory fields must exist */ 704 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 705 return false; 706 707 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 708 709 for (i = 0; i < coll->n_rules; i++) { 710 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 711 712 if (!valid_rule(data, size, rule_ptr)) 713 return false; 714 } 715 716 return true; 717 } 718 719 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 720 static struct key *builtin_regdb_keys; 721 722 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen) 723 { 724 const u8 *end = p + buflen; 725 size_t plen; 726 key_ref_t key; 727 728 while (p < end) { 729 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more 730 * than 256 bytes in size. 731 */ 732 if (end - p < 4) 733 goto dodgy_cert; 734 if (p[0] != 0x30 && 735 p[1] != 0x82) 736 goto dodgy_cert; 737 plen = (p[2] << 8) | p[3]; 738 plen += 4; 739 if (plen > end - p) 740 goto dodgy_cert; 741 742 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1), 743 "asymmetric", NULL, p, plen, 744 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 745 KEY_USR_VIEW | KEY_USR_READ), 746 KEY_ALLOC_NOT_IN_QUOTA | 747 KEY_ALLOC_BUILT_IN | 748 KEY_ALLOC_BYPASS_RESTRICTION); 749 if (IS_ERR(key)) { 750 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n", 751 PTR_ERR(key)); 752 } else { 753 pr_notice("Loaded X.509 cert '%s'\n", 754 key_ref_to_ptr(key)->description); 755 key_ref_put(key); 756 } 757 p += plen; 758 } 759 760 return; 761 762 dodgy_cert: 763 pr_err("Problem parsing in-kernel X.509 certificate list\n"); 764 } 765 766 static int __init load_builtin_regdb_keys(void) 767 { 768 builtin_regdb_keys = 769 keyring_alloc(".builtin_regdb_keys", 770 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 771 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 772 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 773 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 774 if (IS_ERR(builtin_regdb_keys)) 775 return PTR_ERR(builtin_regdb_keys); 776 777 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 778 779 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 780 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len); 781 #endif 782 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 783 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 784 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len); 785 #endif 786 787 return 0; 788 } 789 790 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 791 { 792 const struct firmware *sig; 793 bool result; 794 795 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 796 return false; 797 798 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 799 builtin_regdb_keys, 800 VERIFYING_UNSPECIFIED_SIGNATURE, 801 NULL, NULL) == 0; 802 803 release_firmware(sig); 804 805 return result; 806 } 807 808 static void free_regdb_keyring(void) 809 { 810 key_put(builtin_regdb_keys); 811 } 812 #else 813 static int load_builtin_regdb_keys(void) 814 { 815 return 0; 816 } 817 818 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 819 { 820 return true; 821 } 822 823 static void free_regdb_keyring(void) 824 { 825 } 826 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 827 828 static bool valid_regdb(const u8 *data, unsigned int size) 829 { 830 const struct fwdb_header *hdr = (void *)data; 831 const struct fwdb_country *country; 832 833 if (size < sizeof(*hdr)) 834 return false; 835 836 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 837 return false; 838 839 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 840 return false; 841 842 if (!regdb_has_valid_signature(data, size)) 843 return false; 844 845 country = &hdr->country[0]; 846 while ((u8 *)(country + 1) <= data + size) { 847 if (!country->coll_ptr) 848 break; 849 if (!valid_country(data, size, country)) 850 return false; 851 country++; 852 } 853 854 return true; 855 } 856 857 static void set_wmm_rule(const struct fwdb_header *db, 858 const struct fwdb_country *country, 859 const struct fwdb_rule *rule, 860 struct ieee80211_reg_rule *rrule) 861 { 862 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 863 struct fwdb_wmm_rule *wmm; 864 unsigned int i, wmm_ptr; 865 866 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 867 wmm = (void *)((u8 *)db + wmm_ptr); 868 869 if (!valid_wmm(wmm)) { 870 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 871 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 872 country->alpha2[0], country->alpha2[1]); 873 return; 874 } 875 876 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 877 wmm_rule->client[i].cw_min = 878 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 879 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 880 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 881 wmm_rule->client[i].cot = 882 1000 * be16_to_cpu(wmm->client[i].cot); 883 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 884 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 885 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 886 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 887 } 888 889 rrule->has_wmm = true; 890 } 891 892 static int __regdb_query_wmm(const struct fwdb_header *db, 893 const struct fwdb_country *country, int freq, 894 struct ieee80211_reg_rule *rrule) 895 { 896 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 897 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 898 int i; 899 900 for (i = 0; i < coll->n_rules; i++) { 901 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 902 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 903 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 904 905 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 906 continue; 907 908 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 909 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 910 set_wmm_rule(db, country, rule, rrule); 911 return 0; 912 } 913 } 914 915 return -ENODATA; 916 } 917 918 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 919 { 920 const struct fwdb_header *hdr = regdb; 921 const struct fwdb_country *country; 922 923 if (!regdb) 924 return -ENODATA; 925 926 if (IS_ERR(regdb)) 927 return PTR_ERR(regdb); 928 929 country = &hdr->country[0]; 930 while (country->coll_ptr) { 931 if (alpha2_equal(alpha2, country->alpha2)) 932 return __regdb_query_wmm(regdb, country, freq, rule); 933 934 country++; 935 } 936 937 return -ENODATA; 938 } 939 EXPORT_SYMBOL(reg_query_regdb_wmm); 940 941 static int regdb_query_country(const struct fwdb_header *db, 942 const struct fwdb_country *country) 943 { 944 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 945 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 946 struct ieee80211_regdomain *regdom; 947 unsigned int i; 948 949 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 950 GFP_KERNEL); 951 if (!regdom) 952 return -ENOMEM; 953 954 regdom->n_reg_rules = coll->n_rules; 955 regdom->alpha2[0] = country->alpha2[0]; 956 regdom->alpha2[1] = country->alpha2[1]; 957 regdom->dfs_region = coll->dfs_region; 958 959 for (i = 0; i < regdom->n_reg_rules; i++) { 960 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 961 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 962 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 963 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 964 965 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 966 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 967 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 968 969 rrule->power_rule.max_antenna_gain = 0; 970 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 971 972 rrule->flags = 0; 973 if (rule->flags & FWDB_FLAG_NO_OFDM) 974 rrule->flags |= NL80211_RRF_NO_OFDM; 975 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 976 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 977 if (rule->flags & FWDB_FLAG_DFS) 978 rrule->flags |= NL80211_RRF_DFS; 979 if (rule->flags & FWDB_FLAG_NO_IR) 980 rrule->flags |= NL80211_RRF_NO_IR; 981 if (rule->flags & FWDB_FLAG_AUTO_BW) 982 rrule->flags |= NL80211_RRF_AUTO_BW; 983 984 rrule->dfs_cac_ms = 0; 985 986 /* handle optional data */ 987 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 988 rrule->dfs_cac_ms = 989 1000 * be16_to_cpu(rule->cac_timeout); 990 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 991 set_wmm_rule(db, country, rule, rrule); 992 } 993 994 return reg_schedule_apply(regdom); 995 } 996 997 static int query_regdb(const char *alpha2) 998 { 999 const struct fwdb_header *hdr = regdb; 1000 const struct fwdb_country *country; 1001 1002 ASSERT_RTNL(); 1003 1004 if (IS_ERR(regdb)) 1005 return PTR_ERR(regdb); 1006 1007 country = &hdr->country[0]; 1008 while (country->coll_ptr) { 1009 if (alpha2_equal(alpha2, country->alpha2)) 1010 return regdb_query_country(regdb, country); 1011 country++; 1012 } 1013 1014 return -ENODATA; 1015 } 1016 1017 static void regdb_fw_cb(const struct firmware *fw, void *context) 1018 { 1019 int set_error = 0; 1020 bool restore = true; 1021 void *db; 1022 1023 if (!fw) { 1024 pr_info("failed to load regulatory.db\n"); 1025 set_error = -ENODATA; 1026 } else if (!valid_regdb(fw->data, fw->size)) { 1027 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1028 set_error = -EINVAL; 1029 } 1030 1031 rtnl_lock(); 1032 if (regdb && !IS_ERR(regdb)) { 1033 /* negative case - a bug 1034 * positive case - can happen due to race in case of multiple cb's in 1035 * queue, due to usage of asynchronous callback 1036 * 1037 * Either case, just restore and free new db. 1038 */ 1039 } else if (set_error) { 1040 regdb = ERR_PTR(set_error); 1041 } else if (fw) { 1042 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1043 if (db) { 1044 regdb = db; 1045 restore = context && query_regdb(context); 1046 } else { 1047 restore = true; 1048 } 1049 } 1050 1051 if (restore) 1052 restore_regulatory_settings(true, false); 1053 1054 rtnl_unlock(); 1055 1056 kfree(context); 1057 1058 release_firmware(fw); 1059 } 1060 1061 static int query_regdb_file(const char *alpha2) 1062 { 1063 ASSERT_RTNL(); 1064 1065 if (regdb) 1066 return query_regdb(alpha2); 1067 1068 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1069 if (!alpha2) 1070 return -ENOMEM; 1071 1072 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1073 ®_pdev->dev, GFP_KERNEL, 1074 (void *)alpha2, regdb_fw_cb); 1075 } 1076 1077 int reg_reload_regdb(void) 1078 { 1079 const struct firmware *fw; 1080 void *db; 1081 int err; 1082 1083 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1084 if (err) 1085 return err; 1086 1087 if (!valid_regdb(fw->data, fw->size)) { 1088 err = -ENODATA; 1089 goto out; 1090 } 1091 1092 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1093 if (!db) { 1094 err = -ENOMEM; 1095 goto out; 1096 } 1097 1098 rtnl_lock(); 1099 if (!IS_ERR_OR_NULL(regdb)) 1100 kfree(regdb); 1101 regdb = db; 1102 rtnl_unlock(); 1103 1104 out: 1105 release_firmware(fw); 1106 return err; 1107 } 1108 1109 static bool reg_query_database(struct regulatory_request *request) 1110 { 1111 if (query_regdb_file(request->alpha2) == 0) 1112 return true; 1113 1114 if (call_crda(request->alpha2) == 0) 1115 return true; 1116 1117 return false; 1118 } 1119 1120 bool reg_is_valid_request(const char *alpha2) 1121 { 1122 struct regulatory_request *lr = get_last_request(); 1123 1124 if (!lr || lr->processed) 1125 return false; 1126 1127 return alpha2_equal(lr->alpha2, alpha2); 1128 } 1129 1130 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1131 { 1132 struct regulatory_request *lr = get_last_request(); 1133 1134 /* 1135 * Follow the driver's regulatory domain, if present, unless a country 1136 * IE has been processed or a user wants to help complaince further 1137 */ 1138 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1139 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1140 wiphy->regd) 1141 return get_wiphy_regdom(wiphy); 1142 1143 return get_cfg80211_regdom(); 1144 } 1145 1146 static unsigned int 1147 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1148 const struct ieee80211_reg_rule *rule) 1149 { 1150 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1151 const struct ieee80211_freq_range *freq_range_tmp; 1152 const struct ieee80211_reg_rule *tmp; 1153 u32 start_freq, end_freq, idx, no; 1154 1155 for (idx = 0; idx < rd->n_reg_rules; idx++) 1156 if (rule == &rd->reg_rules[idx]) 1157 break; 1158 1159 if (idx == rd->n_reg_rules) 1160 return 0; 1161 1162 /* get start_freq */ 1163 no = idx; 1164 1165 while (no) { 1166 tmp = &rd->reg_rules[--no]; 1167 freq_range_tmp = &tmp->freq_range; 1168 1169 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1170 break; 1171 1172 freq_range = freq_range_tmp; 1173 } 1174 1175 start_freq = freq_range->start_freq_khz; 1176 1177 /* get end_freq */ 1178 freq_range = &rule->freq_range; 1179 no = idx; 1180 1181 while (no < rd->n_reg_rules - 1) { 1182 tmp = &rd->reg_rules[++no]; 1183 freq_range_tmp = &tmp->freq_range; 1184 1185 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1186 break; 1187 1188 freq_range = freq_range_tmp; 1189 } 1190 1191 end_freq = freq_range->end_freq_khz; 1192 1193 return end_freq - start_freq; 1194 } 1195 1196 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1197 const struct ieee80211_reg_rule *rule) 1198 { 1199 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1200 1201 if (rule->flags & NL80211_RRF_NO_160MHZ) 1202 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1203 if (rule->flags & NL80211_RRF_NO_80MHZ) 1204 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1205 1206 /* 1207 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1208 * are not allowed. 1209 */ 1210 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1211 rule->flags & NL80211_RRF_NO_HT40PLUS) 1212 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1213 1214 return bw; 1215 } 1216 1217 /* Sanity check on a regulatory rule */ 1218 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1219 { 1220 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1221 u32 freq_diff; 1222 1223 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1224 return false; 1225 1226 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1227 return false; 1228 1229 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1230 1231 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1232 freq_range->max_bandwidth_khz > freq_diff) 1233 return false; 1234 1235 return true; 1236 } 1237 1238 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1239 { 1240 const struct ieee80211_reg_rule *reg_rule = NULL; 1241 unsigned int i; 1242 1243 if (!rd->n_reg_rules) 1244 return false; 1245 1246 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1247 return false; 1248 1249 for (i = 0; i < rd->n_reg_rules; i++) { 1250 reg_rule = &rd->reg_rules[i]; 1251 if (!is_valid_reg_rule(reg_rule)) 1252 return false; 1253 } 1254 1255 return true; 1256 } 1257 1258 /** 1259 * freq_in_rule_band - tells us if a frequency is in a frequency band 1260 * @freq_range: frequency rule we want to query 1261 * @freq_khz: frequency we are inquiring about 1262 * 1263 * This lets us know if a specific frequency rule is or is not relevant to 1264 * a specific frequency's band. Bands are device specific and artificial 1265 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1266 * however it is safe for now to assume that a frequency rule should not be 1267 * part of a frequency's band if the start freq or end freq are off by more 1268 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1269 * 60 GHz band. 1270 * This resolution can be lowered and should be considered as we add 1271 * regulatory rule support for other "bands". 1272 **/ 1273 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1274 u32 freq_khz) 1275 { 1276 #define ONE_GHZ_IN_KHZ 1000000 1277 /* 1278 * From 802.11ad: directional multi-gigabit (DMG): 1279 * Pertaining to operation in a frequency band containing a channel 1280 * with the Channel starting frequency above 45 GHz. 1281 */ 1282 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1283 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1284 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1285 return true; 1286 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1287 return true; 1288 return false; 1289 #undef ONE_GHZ_IN_KHZ 1290 } 1291 1292 /* 1293 * Later on we can perhaps use the more restrictive DFS 1294 * region but we don't have information for that yet so 1295 * for now simply disallow conflicts. 1296 */ 1297 static enum nl80211_dfs_regions 1298 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1299 const enum nl80211_dfs_regions dfs_region2) 1300 { 1301 if (dfs_region1 != dfs_region2) 1302 return NL80211_DFS_UNSET; 1303 return dfs_region1; 1304 } 1305 1306 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1307 const struct ieee80211_wmm_ac *wmm_ac2, 1308 struct ieee80211_wmm_ac *intersect) 1309 { 1310 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1311 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1312 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1313 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1314 } 1315 1316 /* 1317 * Helper for regdom_intersect(), this does the real 1318 * mathematical intersection fun 1319 */ 1320 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1321 const struct ieee80211_regdomain *rd2, 1322 const struct ieee80211_reg_rule *rule1, 1323 const struct ieee80211_reg_rule *rule2, 1324 struct ieee80211_reg_rule *intersected_rule) 1325 { 1326 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1327 struct ieee80211_freq_range *freq_range; 1328 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1329 struct ieee80211_power_rule *power_rule; 1330 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1331 struct ieee80211_wmm_rule *wmm_rule; 1332 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1333 1334 freq_range1 = &rule1->freq_range; 1335 freq_range2 = &rule2->freq_range; 1336 freq_range = &intersected_rule->freq_range; 1337 1338 power_rule1 = &rule1->power_rule; 1339 power_rule2 = &rule2->power_rule; 1340 power_rule = &intersected_rule->power_rule; 1341 1342 wmm_rule1 = &rule1->wmm_rule; 1343 wmm_rule2 = &rule2->wmm_rule; 1344 wmm_rule = &intersected_rule->wmm_rule; 1345 1346 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1347 freq_range2->start_freq_khz); 1348 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1349 freq_range2->end_freq_khz); 1350 1351 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1352 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1353 1354 if (rule1->flags & NL80211_RRF_AUTO_BW) 1355 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1356 if (rule2->flags & NL80211_RRF_AUTO_BW) 1357 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1358 1359 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1360 1361 intersected_rule->flags = rule1->flags | rule2->flags; 1362 1363 /* 1364 * In case NL80211_RRF_AUTO_BW requested for both rules 1365 * set AUTO_BW in intersected rule also. Next we will 1366 * calculate BW correctly in handle_channel function. 1367 * In other case remove AUTO_BW flag while we calculate 1368 * maximum bandwidth correctly and auto calculation is 1369 * not required. 1370 */ 1371 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1372 (rule2->flags & NL80211_RRF_AUTO_BW)) 1373 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1374 else 1375 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1376 1377 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1378 if (freq_range->max_bandwidth_khz > freq_diff) 1379 freq_range->max_bandwidth_khz = freq_diff; 1380 1381 power_rule->max_eirp = min(power_rule1->max_eirp, 1382 power_rule2->max_eirp); 1383 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1384 power_rule2->max_antenna_gain); 1385 1386 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1387 rule2->dfs_cac_ms); 1388 1389 if (rule1->has_wmm && rule2->has_wmm) { 1390 u8 ac; 1391 1392 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1393 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1394 &wmm_rule2->client[ac], 1395 &wmm_rule->client[ac]); 1396 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1397 &wmm_rule2->ap[ac], 1398 &wmm_rule->ap[ac]); 1399 } 1400 1401 intersected_rule->has_wmm = true; 1402 } else if (rule1->has_wmm) { 1403 *wmm_rule = *wmm_rule1; 1404 intersected_rule->has_wmm = true; 1405 } else if (rule2->has_wmm) { 1406 *wmm_rule = *wmm_rule2; 1407 intersected_rule->has_wmm = true; 1408 } else { 1409 intersected_rule->has_wmm = false; 1410 } 1411 1412 if (!is_valid_reg_rule(intersected_rule)) 1413 return -EINVAL; 1414 1415 return 0; 1416 } 1417 1418 /* check whether old rule contains new rule */ 1419 static bool rule_contains(struct ieee80211_reg_rule *r1, 1420 struct ieee80211_reg_rule *r2) 1421 { 1422 /* for simplicity, currently consider only same flags */ 1423 if (r1->flags != r2->flags) 1424 return false; 1425 1426 /* verify r1 is more restrictive */ 1427 if ((r1->power_rule.max_antenna_gain > 1428 r2->power_rule.max_antenna_gain) || 1429 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1430 return false; 1431 1432 /* make sure r2's range is contained within r1 */ 1433 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1434 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1435 return false; 1436 1437 /* and finally verify that r1.max_bw >= r2.max_bw */ 1438 if (r1->freq_range.max_bandwidth_khz < 1439 r2->freq_range.max_bandwidth_khz) 1440 return false; 1441 1442 return true; 1443 } 1444 1445 /* add or extend current rules. do nothing if rule is already contained */ 1446 static void add_rule(struct ieee80211_reg_rule *rule, 1447 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1448 { 1449 struct ieee80211_reg_rule *tmp_rule; 1450 int i; 1451 1452 for (i = 0; i < *n_rules; i++) { 1453 tmp_rule = ®_rules[i]; 1454 /* rule is already contained - do nothing */ 1455 if (rule_contains(tmp_rule, rule)) 1456 return; 1457 1458 /* extend rule if possible */ 1459 if (rule_contains(rule, tmp_rule)) { 1460 memcpy(tmp_rule, rule, sizeof(*rule)); 1461 return; 1462 } 1463 } 1464 1465 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1466 (*n_rules)++; 1467 } 1468 1469 /** 1470 * regdom_intersect - do the intersection between two regulatory domains 1471 * @rd1: first regulatory domain 1472 * @rd2: second regulatory domain 1473 * 1474 * Use this function to get the intersection between two regulatory domains. 1475 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1476 * as no one single alpha2 can represent this regulatory domain. 1477 * 1478 * Returns a pointer to the regulatory domain structure which will hold the 1479 * resulting intersection of rules between rd1 and rd2. We will 1480 * kzalloc() this structure for you. 1481 */ 1482 static struct ieee80211_regdomain * 1483 regdom_intersect(const struct ieee80211_regdomain *rd1, 1484 const struct ieee80211_regdomain *rd2) 1485 { 1486 int r; 1487 unsigned int x, y; 1488 unsigned int num_rules = 0; 1489 const struct ieee80211_reg_rule *rule1, *rule2; 1490 struct ieee80211_reg_rule intersected_rule; 1491 struct ieee80211_regdomain *rd; 1492 1493 if (!rd1 || !rd2) 1494 return NULL; 1495 1496 /* 1497 * First we get a count of the rules we'll need, then we actually 1498 * build them. This is to so we can malloc() and free() a 1499 * regdomain once. The reason we use reg_rules_intersect() here 1500 * is it will return -EINVAL if the rule computed makes no sense. 1501 * All rules that do check out OK are valid. 1502 */ 1503 1504 for (x = 0; x < rd1->n_reg_rules; x++) { 1505 rule1 = &rd1->reg_rules[x]; 1506 for (y = 0; y < rd2->n_reg_rules; y++) { 1507 rule2 = &rd2->reg_rules[y]; 1508 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1509 &intersected_rule)) 1510 num_rules++; 1511 } 1512 } 1513 1514 if (!num_rules) 1515 return NULL; 1516 1517 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1518 if (!rd) 1519 return NULL; 1520 1521 for (x = 0; x < rd1->n_reg_rules; x++) { 1522 rule1 = &rd1->reg_rules[x]; 1523 for (y = 0; y < rd2->n_reg_rules; y++) { 1524 rule2 = &rd2->reg_rules[y]; 1525 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1526 &intersected_rule); 1527 /* 1528 * No need to memset here the intersected rule here as 1529 * we're not using the stack anymore 1530 */ 1531 if (r) 1532 continue; 1533 1534 add_rule(&intersected_rule, rd->reg_rules, 1535 &rd->n_reg_rules); 1536 } 1537 } 1538 1539 rd->alpha2[0] = '9'; 1540 rd->alpha2[1] = '8'; 1541 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1542 rd2->dfs_region); 1543 1544 return rd; 1545 } 1546 1547 /* 1548 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1549 * want to just have the channel structure use these 1550 */ 1551 static u32 map_regdom_flags(u32 rd_flags) 1552 { 1553 u32 channel_flags = 0; 1554 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1555 channel_flags |= IEEE80211_CHAN_NO_IR; 1556 if (rd_flags & NL80211_RRF_DFS) 1557 channel_flags |= IEEE80211_CHAN_RADAR; 1558 if (rd_flags & NL80211_RRF_NO_OFDM) 1559 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1560 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1561 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1562 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1563 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1564 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1565 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1566 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1567 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1568 if (rd_flags & NL80211_RRF_NO_80MHZ) 1569 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1570 if (rd_flags & NL80211_RRF_NO_160MHZ) 1571 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1572 if (rd_flags & NL80211_RRF_NO_HE) 1573 channel_flags |= IEEE80211_CHAN_NO_HE; 1574 return channel_flags; 1575 } 1576 1577 static const struct ieee80211_reg_rule * 1578 freq_reg_info_regd(u32 center_freq, 1579 const struct ieee80211_regdomain *regd, u32 bw) 1580 { 1581 int i; 1582 bool band_rule_found = false; 1583 bool bw_fits = false; 1584 1585 if (!regd) 1586 return ERR_PTR(-EINVAL); 1587 1588 for (i = 0; i < regd->n_reg_rules; i++) { 1589 const struct ieee80211_reg_rule *rr; 1590 const struct ieee80211_freq_range *fr = NULL; 1591 1592 rr = ®d->reg_rules[i]; 1593 fr = &rr->freq_range; 1594 1595 /* 1596 * We only need to know if one frequency rule was 1597 * in center_freq's band, that's enough, so let's 1598 * not overwrite it once found 1599 */ 1600 if (!band_rule_found) 1601 band_rule_found = freq_in_rule_band(fr, center_freq); 1602 1603 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1604 1605 if (band_rule_found && bw_fits) 1606 return rr; 1607 } 1608 1609 if (!band_rule_found) 1610 return ERR_PTR(-ERANGE); 1611 1612 return ERR_PTR(-EINVAL); 1613 } 1614 1615 static const struct ieee80211_reg_rule * 1616 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1617 { 1618 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1619 const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20}; 1620 const struct ieee80211_reg_rule *reg_rule; 1621 int i = ARRAY_SIZE(bws) - 1; 1622 u32 bw; 1623 1624 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) { 1625 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1626 if (!IS_ERR(reg_rule)) 1627 return reg_rule; 1628 } 1629 1630 return reg_rule; 1631 } 1632 1633 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1634 u32 center_freq) 1635 { 1636 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20; 1637 1638 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw)); 1639 } 1640 EXPORT_SYMBOL(freq_reg_info); 1641 1642 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1643 { 1644 switch (initiator) { 1645 case NL80211_REGDOM_SET_BY_CORE: 1646 return "core"; 1647 case NL80211_REGDOM_SET_BY_USER: 1648 return "user"; 1649 case NL80211_REGDOM_SET_BY_DRIVER: 1650 return "driver"; 1651 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1652 return "country element"; 1653 default: 1654 WARN_ON(1); 1655 return "bug"; 1656 } 1657 } 1658 EXPORT_SYMBOL(reg_initiator_name); 1659 1660 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1661 const struct ieee80211_reg_rule *reg_rule, 1662 const struct ieee80211_channel *chan) 1663 { 1664 const struct ieee80211_freq_range *freq_range = NULL; 1665 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0; 1666 bool is_s1g = chan->band == NL80211_BAND_S1GHZ; 1667 1668 freq_range = ®_rule->freq_range; 1669 1670 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1671 center_freq_khz = ieee80211_channel_to_khz(chan); 1672 /* Check if auto calculation requested */ 1673 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1674 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1675 1676 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1677 if (!cfg80211_does_bw_fit_range(freq_range, 1678 center_freq_khz, 1679 MHZ_TO_KHZ(10))) 1680 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1681 if (!cfg80211_does_bw_fit_range(freq_range, 1682 center_freq_khz, 1683 MHZ_TO_KHZ(20))) 1684 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1685 1686 if (is_s1g) { 1687 /* S1G is strict about non overlapping channels. We can 1688 * calculate which bandwidth is allowed per channel by finding 1689 * the largest bandwidth which cleanly divides the freq_range. 1690 */ 1691 int edge_offset; 1692 int ch_bw = max_bandwidth_khz; 1693 1694 while (ch_bw) { 1695 edge_offset = (center_freq_khz - ch_bw / 2) - 1696 freq_range->start_freq_khz; 1697 if (edge_offset % ch_bw == 0) { 1698 switch (KHZ_TO_MHZ(ch_bw)) { 1699 case 1: 1700 bw_flags |= IEEE80211_CHAN_1MHZ; 1701 break; 1702 case 2: 1703 bw_flags |= IEEE80211_CHAN_2MHZ; 1704 break; 1705 case 4: 1706 bw_flags |= IEEE80211_CHAN_4MHZ; 1707 break; 1708 case 8: 1709 bw_flags |= IEEE80211_CHAN_8MHZ; 1710 break; 1711 case 16: 1712 bw_flags |= IEEE80211_CHAN_16MHZ; 1713 break; 1714 default: 1715 /* If we got here, no bandwidths fit on 1716 * this frequency, ie. band edge. 1717 */ 1718 bw_flags |= IEEE80211_CHAN_DISABLED; 1719 break; 1720 } 1721 break; 1722 } 1723 ch_bw /= 2; 1724 } 1725 } else { 1726 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1727 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1728 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1729 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1730 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1731 bw_flags |= IEEE80211_CHAN_NO_HT40; 1732 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1733 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1734 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1735 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1736 } 1737 return bw_flags; 1738 } 1739 1740 static void handle_channel_single_rule(struct wiphy *wiphy, 1741 enum nl80211_reg_initiator initiator, 1742 struct ieee80211_channel *chan, 1743 u32 flags, 1744 struct regulatory_request *lr, 1745 struct wiphy *request_wiphy, 1746 const struct ieee80211_reg_rule *reg_rule) 1747 { 1748 u32 bw_flags = 0; 1749 const struct ieee80211_power_rule *power_rule = NULL; 1750 const struct ieee80211_regdomain *regd; 1751 1752 regd = reg_get_regdomain(wiphy); 1753 1754 power_rule = ®_rule->power_rule; 1755 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1756 1757 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1758 request_wiphy && request_wiphy == wiphy && 1759 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1760 /* 1761 * This guarantees the driver's requested regulatory domain 1762 * will always be used as a base for further regulatory 1763 * settings 1764 */ 1765 chan->flags = chan->orig_flags = 1766 map_regdom_flags(reg_rule->flags) | bw_flags; 1767 chan->max_antenna_gain = chan->orig_mag = 1768 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1769 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1770 (int) MBM_TO_DBM(power_rule->max_eirp); 1771 1772 if (chan->flags & IEEE80211_CHAN_RADAR) { 1773 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1774 if (reg_rule->dfs_cac_ms) 1775 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1776 } 1777 1778 return; 1779 } 1780 1781 chan->dfs_state = NL80211_DFS_USABLE; 1782 chan->dfs_state_entered = jiffies; 1783 1784 chan->beacon_found = false; 1785 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1786 chan->max_antenna_gain = 1787 min_t(int, chan->orig_mag, 1788 MBI_TO_DBI(power_rule->max_antenna_gain)); 1789 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1790 1791 if (chan->flags & IEEE80211_CHAN_RADAR) { 1792 if (reg_rule->dfs_cac_ms) 1793 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1794 else 1795 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1796 } 1797 1798 if (chan->orig_mpwr) { 1799 /* 1800 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1801 * will always follow the passed country IE power settings. 1802 */ 1803 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1804 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1805 chan->max_power = chan->max_reg_power; 1806 else 1807 chan->max_power = min(chan->orig_mpwr, 1808 chan->max_reg_power); 1809 } else 1810 chan->max_power = chan->max_reg_power; 1811 } 1812 1813 static void handle_channel_adjacent_rules(struct wiphy *wiphy, 1814 enum nl80211_reg_initiator initiator, 1815 struct ieee80211_channel *chan, 1816 u32 flags, 1817 struct regulatory_request *lr, 1818 struct wiphy *request_wiphy, 1819 const struct ieee80211_reg_rule *rrule1, 1820 const struct ieee80211_reg_rule *rrule2, 1821 struct ieee80211_freq_range *comb_range) 1822 { 1823 u32 bw_flags1 = 0; 1824 u32 bw_flags2 = 0; 1825 const struct ieee80211_power_rule *power_rule1 = NULL; 1826 const struct ieee80211_power_rule *power_rule2 = NULL; 1827 const struct ieee80211_regdomain *regd; 1828 1829 regd = reg_get_regdomain(wiphy); 1830 1831 power_rule1 = &rrule1->power_rule; 1832 power_rule2 = &rrule2->power_rule; 1833 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan); 1834 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan); 1835 1836 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1837 request_wiphy && request_wiphy == wiphy && 1838 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1839 /* This guarantees the driver's requested regulatory domain 1840 * will always be used as a base for further regulatory 1841 * settings 1842 */ 1843 chan->flags = 1844 map_regdom_flags(rrule1->flags) | 1845 map_regdom_flags(rrule2->flags) | 1846 bw_flags1 | 1847 bw_flags2; 1848 chan->orig_flags = chan->flags; 1849 chan->max_antenna_gain = 1850 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain), 1851 MBI_TO_DBI(power_rule2->max_antenna_gain)); 1852 chan->orig_mag = chan->max_antenna_gain; 1853 chan->max_reg_power = 1854 min_t(int, MBM_TO_DBM(power_rule1->max_eirp), 1855 MBM_TO_DBM(power_rule2->max_eirp)); 1856 chan->max_power = chan->max_reg_power; 1857 chan->orig_mpwr = chan->max_reg_power; 1858 1859 if (chan->flags & IEEE80211_CHAN_RADAR) { 1860 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1861 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1862 chan->dfs_cac_ms = max_t(unsigned int, 1863 rrule1->dfs_cac_ms, 1864 rrule2->dfs_cac_ms); 1865 } 1866 1867 return; 1868 } 1869 1870 chan->dfs_state = NL80211_DFS_USABLE; 1871 chan->dfs_state_entered = jiffies; 1872 1873 chan->beacon_found = false; 1874 chan->flags = flags | bw_flags1 | bw_flags2 | 1875 map_regdom_flags(rrule1->flags) | 1876 map_regdom_flags(rrule2->flags); 1877 1878 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz 1879 * (otherwise no adj. rule case), recheck therefore 1880 */ 1881 if (cfg80211_does_bw_fit_range(comb_range, 1882 ieee80211_channel_to_khz(chan), 1883 MHZ_TO_KHZ(10))) 1884 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ; 1885 if (cfg80211_does_bw_fit_range(comb_range, 1886 ieee80211_channel_to_khz(chan), 1887 MHZ_TO_KHZ(20))) 1888 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ; 1889 1890 chan->max_antenna_gain = 1891 min_t(int, chan->orig_mag, 1892 min_t(int, 1893 MBI_TO_DBI(power_rule1->max_antenna_gain), 1894 MBI_TO_DBI(power_rule2->max_antenna_gain))); 1895 chan->max_reg_power = min_t(int, 1896 MBM_TO_DBM(power_rule1->max_eirp), 1897 MBM_TO_DBM(power_rule2->max_eirp)); 1898 1899 if (chan->flags & IEEE80211_CHAN_RADAR) { 1900 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1901 chan->dfs_cac_ms = max_t(unsigned int, 1902 rrule1->dfs_cac_ms, 1903 rrule2->dfs_cac_ms); 1904 else 1905 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1906 } 1907 1908 if (chan->orig_mpwr) { 1909 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1910 * will always follow the passed country IE power settings. 1911 */ 1912 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1913 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1914 chan->max_power = chan->max_reg_power; 1915 else 1916 chan->max_power = min(chan->orig_mpwr, 1917 chan->max_reg_power); 1918 } else { 1919 chan->max_power = chan->max_reg_power; 1920 } 1921 } 1922 1923 /* Note that right now we assume the desired channel bandwidth 1924 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1925 * per channel, the primary and the extension channel). 1926 */ 1927 static void handle_channel(struct wiphy *wiphy, 1928 enum nl80211_reg_initiator initiator, 1929 struct ieee80211_channel *chan) 1930 { 1931 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan); 1932 struct regulatory_request *lr = get_last_request(); 1933 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1934 const struct ieee80211_reg_rule *rrule = NULL; 1935 const struct ieee80211_reg_rule *rrule1 = NULL; 1936 const struct ieee80211_reg_rule *rrule2 = NULL; 1937 1938 u32 flags = chan->orig_flags; 1939 1940 rrule = freq_reg_info(wiphy, orig_chan_freq); 1941 if (IS_ERR(rrule)) { 1942 /* check for adjacent match, therefore get rules for 1943 * chan - 20 MHz and chan + 20 MHz and test 1944 * if reg rules are adjacent 1945 */ 1946 rrule1 = freq_reg_info(wiphy, 1947 orig_chan_freq - MHZ_TO_KHZ(20)); 1948 rrule2 = freq_reg_info(wiphy, 1949 orig_chan_freq + MHZ_TO_KHZ(20)); 1950 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) { 1951 struct ieee80211_freq_range comb_range; 1952 1953 if (rrule1->freq_range.end_freq_khz != 1954 rrule2->freq_range.start_freq_khz) 1955 goto disable_chan; 1956 1957 comb_range.start_freq_khz = 1958 rrule1->freq_range.start_freq_khz; 1959 comb_range.end_freq_khz = 1960 rrule2->freq_range.end_freq_khz; 1961 comb_range.max_bandwidth_khz = 1962 min_t(u32, 1963 rrule1->freq_range.max_bandwidth_khz, 1964 rrule2->freq_range.max_bandwidth_khz); 1965 1966 if (!cfg80211_does_bw_fit_range(&comb_range, 1967 orig_chan_freq, 1968 MHZ_TO_KHZ(20))) 1969 goto disable_chan; 1970 1971 handle_channel_adjacent_rules(wiphy, initiator, chan, 1972 flags, lr, request_wiphy, 1973 rrule1, rrule2, 1974 &comb_range); 1975 return; 1976 } 1977 1978 disable_chan: 1979 /* We will disable all channels that do not match our 1980 * received regulatory rule unless the hint is coming 1981 * from a Country IE and the Country IE had no information 1982 * about a band. The IEEE 802.11 spec allows for an AP 1983 * to send only a subset of the regulatory rules allowed, 1984 * so an AP in the US that only supports 2.4 GHz may only send 1985 * a country IE with information for the 2.4 GHz band 1986 * while 5 GHz is still supported. 1987 */ 1988 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1989 PTR_ERR(rrule) == -ERANGE) 1990 return; 1991 1992 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1993 request_wiphy && request_wiphy == wiphy && 1994 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1995 pr_debug("Disabling freq %d.%03d MHz for good\n", 1996 chan->center_freq, chan->freq_offset); 1997 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1998 chan->flags = chan->orig_flags; 1999 } else { 2000 pr_debug("Disabling freq %d.%03d MHz\n", 2001 chan->center_freq, chan->freq_offset); 2002 chan->flags |= IEEE80211_CHAN_DISABLED; 2003 } 2004 return; 2005 } 2006 2007 handle_channel_single_rule(wiphy, initiator, chan, flags, lr, 2008 request_wiphy, rrule); 2009 } 2010 2011 static void handle_band(struct wiphy *wiphy, 2012 enum nl80211_reg_initiator initiator, 2013 struct ieee80211_supported_band *sband) 2014 { 2015 unsigned int i; 2016 2017 if (!sband) 2018 return; 2019 2020 for (i = 0; i < sband->n_channels; i++) 2021 handle_channel(wiphy, initiator, &sband->channels[i]); 2022 } 2023 2024 static bool reg_request_cell_base(struct regulatory_request *request) 2025 { 2026 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 2027 return false; 2028 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 2029 } 2030 2031 bool reg_last_request_cell_base(void) 2032 { 2033 return reg_request_cell_base(get_last_request()); 2034 } 2035 2036 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 2037 /* Core specific check */ 2038 static enum reg_request_treatment 2039 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2040 { 2041 struct regulatory_request *lr = get_last_request(); 2042 2043 if (!reg_num_devs_support_basehint) 2044 return REG_REQ_IGNORE; 2045 2046 if (reg_request_cell_base(lr) && 2047 !regdom_changes(pending_request->alpha2)) 2048 return REG_REQ_ALREADY_SET; 2049 2050 return REG_REQ_OK; 2051 } 2052 2053 /* Device specific check */ 2054 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2055 { 2056 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 2057 } 2058 #else 2059 static enum reg_request_treatment 2060 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2061 { 2062 return REG_REQ_IGNORE; 2063 } 2064 2065 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2066 { 2067 return true; 2068 } 2069 #endif 2070 2071 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 2072 { 2073 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 2074 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 2075 return true; 2076 return false; 2077 } 2078 2079 static bool ignore_reg_update(struct wiphy *wiphy, 2080 enum nl80211_reg_initiator initiator) 2081 { 2082 struct regulatory_request *lr = get_last_request(); 2083 2084 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2085 return true; 2086 2087 if (!lr) { 2088 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 2089 reg_initiator_name(initiator)); 2090 return true; 2091 } 2092 2093 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2094 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 2095 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 2096 reg_initiator_name(initiator)); 2097 return true; 2098 } 2099 2100 /* 2101 * wiphy->regd will be set once the device has its own 2102 * desired regulatory domain set 2103 */ 2104 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 2105 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2106 !is_world_regdom(lr->alpha2)) { 2107 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 2108 reg_initiator_name(initiator)); 2109 return true; 2110 } 2111 2112 if (reg_request_cell_base(lr)) 2113 return reg_dev_ignore_cell_hint(wiphy); 2114 2115 return false; 2116 } 2117 2118 static bool reg_is_world_roaming(struct wiphy *wiphy) 2119 { 2120 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 2121 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 2122 struct regulatory_request *lr = get_last_request(); 2123 2124 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 2125 return true; 2126 2127 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2128 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2129 return true; 2130 2131 return false; 2132 } 2133 2134 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 2135 struct reg_beacon *reg_beacon) 2136 { 2137 struct ieee80211_supported_band *sband; 2138 struct ieee80211_channel *chan; 2139 bool channel_changed = false; 2140 struct ieee80211_channel chan_before; 2141 2142 sband = wiphy->bands[reg_beacon->chan.band]; 2143 chan = &sband->channels[chan_idx]; 2144 2145 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan))) 2146 return; 2147 2148 if (chan->beacon_found) 2149 return; 2150 2151 chan->beacon_found = true; 2152 2153 if (!reg_is_world_roaming(wiphy)) 2154 return; 2155 2156 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 2157 return; 2158 2159 chan_before = *chan; 2160 2161 if (chan->flags & IEEE80211_CHAN_NO_IR) { 2162 chan->flags &= ~IEEE80211_CHAN_NO_IR; 2163 channel_changed = true; 2164 } 2165 2166 if (channel_changed) 2167 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 2168 } 2169 2170 /* 2171 * Called when a scan on a wiphy finds a beacon on 2172 * new channel 2173 */ 2174 static void wiphy_update_new_beacon(struct wiphy *wiphy, 2175 struct reg_beacon *reg_beacon) 2176 { 2177 unsigned int i; 2178 struct ieee80211_supported_band *sband; 2179 2180 if (!wiphy->bands[reg_beacon->chan.band]) 2181 return; 2182 2183 sband = wiphy->bands[reg_beacon->chan.band]; 2184 2185 for (i = 0; i < sband->n_channels; i++) 2186 handle_reg_beacon(wiphy, i, reg_beacon); 2187 } 2188 2189 /* 2190 * Called upon reg changes or a new wiphy is added 2191 */ 2192 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 2193 { 2194 unsigned int i; 2195 struct ieee80211_supported_band *sband; 2196 struct reg_beacon *reg_beacon; 2197 2198 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 2199 if (!wiphy->bands[reg_beacon->chan.band]) 2200 continue; 2201 sband = wiphy->bands[reg_beacon->chan.band]; 2202 for (i = 0; i < sband->n_channels; i++) 2203 handle_reg_beacon(wiphy, i, reg_beacon); 2204 } 2205 } 2206 2207 /* Reap the advantages of previously found beacons */ 2208 static void reg_process_beacons(struct wiphy *wiphy) 2209 { 2210 /* 2211 * Means we are just firing up cfg80211, so no beacons would 2212 * have been processed yet. 2213 */ 2214 if (!last_request) 2215 return; 2216 wiphy_update_beacon_reg(wiphy); 2217 } 2218 2219 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2220 { 2221 if (!chan) 2222 return false; 2223 if (chan->flags & IEEE80211_CHAN_DISABLED) 2224 return false; 2225 /* This would happen when regulatory rules disallow HT40 completely */ 2226 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2227 return false; 2228 return true; 2229 } 2230 2231 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2232 struct ieee80211_channel *channel) 2233 { 2234 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2235 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2236 const struct ieee80211_regdomain *regd; 2237 unsigned int i; 2238 u32 flags; 2239 2240 if (!is_ht40_allowed(channel)) { 2241 channel->flags |= IEEE80211_CHAN_NO_HT40; 2242 return; 2243 } 2244 2245 /* 2246 * We need to ensure the extension channels exist to 2247 * be able to use HT40- or HT40+, this finds them (or not) 2248 */ 2249 for (i = 0; i < sband->n_channels; i++) { 2250 struct ieee80211_channel *c = &sband->channels[i]; 2251 2252 if (c->center_freq == (channel->center_freq - 20)) 2253 channel_before = c; 2254 if (c->center_freq == (channel->center_freq + 20)) 2255 channel_after = c; 2256 } 2257 2258 flags = 0; 2259 regd = get_wiphy_regdom(wiphy); 2260 if (regd) { 2261 const struct ieee80211_reg_rule *reg_rule = 2262 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2263 regd, MHZ_TO_KHZ(20)); 2264 2265 if (!IS_ERR(reg_rule)) 2266 flags = reg_rule->flags; 2267 } 2268 2269 /* 2270 * Please note that this assumes target bandwidth is 20 MHz, 2271 * if that ever changes we also need to change the below logic 2272 * to include that as well. 2273 */ 2274 if (!is_ht40_allowed(channel_before) || 2275 flags & NL80211_RRF_NO_HT40MINUS) 2276 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2277 else 2278 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2279 2280 if (!is_ht40_allowed(channel_after) || 2281 flags & NL80211_RRF_NO_HT40PLUS) 2282 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2283 else 2284 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2285 } 2286 2287 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2288 struct ieee80211_supported_band *sband) 2289 { 2290 unsigned int i; 2291 2292 if (!sband) 2293 return; 2294 2295 for (i = 0; i < sband->n_channels; i++) 2296 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2297 } 2298 2299 static void reg_process_ht_flags(struct wiphy *wiphy) 2300 { 2301 enum nl80211_band band; 2302 2303 if (!wiphy) 2304 return; 2305 2306 for (band = 0; band < NUM_NL80211_BANDS; band++) 2307 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2308 } 2309 2310 static void reg_call_notifier(struct wiphy *wiphy, 2311 struct regulatory_request *request) 2312 { 2313 if (wiphy->reg_notifier) 2314 wiphy->reg_notifier(wiphy, request); 2315 } 2316 2317 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2318 { 2319 struct cfg80211_chan_def chandef = {}; 2320 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2321 enum nl80211_iftype iftype; 2322 2323 wdev_lock(wdev); 2324 iftype = wdev->iftype; 2325 2326 /* make sure the interface is active */ 2327 if (!wdev->netdev || !netif_running(wdev->netdev)) 2328 goto wdev_inactive_unlock; 2329 2330 switch (iftype) { 2331 case NL80211_IFTYPE_AP: 2332 case NL80211_IFTYPE_P2P_GO: 2333 if (!wdev->beacon_interval) 2334 goto wdev_inactive_unlock; 2335 chandef = wdev->chandef; 2336 break; 2337 case NL80211_IFTYPE_ADHOC: 2338 if (!wdev->ssid_len) 2339 goto wdev_inactive_unlock; 2340 chandef = wdev->chandef; 2341 break; 2342 case NL80211_IFTYPE_STATION: 2343 case NL80211_IFTYPE_P2P_CLIENT: 2344 if (!wdev->current_bss || 2345 !wdev->current_bss->pub.channel) 2346 goto wdev_inactive_unlock; 2347 2348 if (!rdev->ops->get_channel || 2349 rdev_get_channel(rdev, wdev, &chandef)) 2350 cfg80211_chandef_create(&chandef, 2351 wdev->current_bss->pub.channel, 2352 NL80211_CHAN_NO_HT); 2353 break; 2354 case NL80211_IFTYPE_MONITOR: 2355 case NL80211_IFTYPE_AP_VLAN: 2356 case NL80211_IFTYPE_P2P_DEVICE: 2357 /* no enforcement required */ 2358 break; 2359 default: 2360 /* others not implemented for now */ 2361 WARN_ON(1); 2362 break; 2363 } 2364 2365 wdev_unlock(wdev); 2366 2367 switch (iftype) { 2368 case NL80211_IFTYPE_AP: 2369 case NL80211_IFTYPE_P2P_GO: 2370 case NL80211_IFTYPE_ADHOC: 2371 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 2372 case NL80211_IFTYPE_STATION: 2373 case NL80211_IFTYPE_P2P_CLIENT: 2374 return cfg80211_chandef_usable(wiphy, &chandef, 2375 IEEE80211_CHAN_DISABLED); 2376 default: 2377 break; 2378 } 2379 2380 return true; 2381 2382 wdev_inactive_unlock: 2383 wdev_unlock(wdev); 2384 return true; 2385 } 2386 2387 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2388 { 2389 struct wireless_dev *wdev; 2390 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2391 2392 ASSERT_RTNL(); 2393 2394 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2395 if (!reg_wdev_chan_valid(wiphy, wdev)) 2396 cfg80211_leave(rdev, wdev); 2397 } 2398 2399 static void reg_check_chans_work(struct work_struct *work) 2400 { 2401 struct cfg80211_registered_device *rdev; 2402 2403 pr_debug("Verifying active interfaces after reg change\n"); 2404 rtnl_lock(); 2405 2406 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2407 if (!(rdev->wiphy.regulatory_flags & 2408 REGULATORY_IGNORE_STALE_KICKOFF)) 2409 reg_leave_invalid_chans(&rdev->wiphy); 2410 2411 rtnl_unlock(); 2412 } 2413 2414 static void reg_check_channels(void) 2415 { 2416 /* 2417 * Give usermode a chance to do something nicer (move to another 2418 * channel, orderly disconnection), before forcing a disconnection. 2419 */ 2420 mod_delayed_work(system_power_efficient_wq, 2421 ®_check_chans, 2422 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2423 } 2424 2425 static void wiphy_update_regulatory(struct wiphy *wiphy, 2426 enum nl80211_reg_initiator initiator) 2427 { 2428 enum nl80211_band band; 2429 struct regulatory_request *lr = get_last_request(); 2430 2431 if (ignore_reg_update(wiphy, initiator)) { 2432 /* 2433 * Regulatory updates set by CORE are ignored for custom 2434 * regulatory cards. Let us notify the changes to the driver, 2435 * as some drivers used this to restore its orig_* reg domain. 2436 */ 2437 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2438 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2439 !(wiphy->regulatory_flags & 2440 REGULATORY_WIPHY_SELF_MANAGED)) 2441 reg_call_notifier(wiphy, lr); 2442 return; 2443 } 2444 2445 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2446 2447 for (band = 0; band < NUM_NL80211_BANDS; band++) 2448 handle_band(wiphy, initiator, wiphy->bands[band]); 2449 2450 reg_process_beacons(wiphy); 2451 reg_process_ht_flags(wiphy); 2452 reg_call_notifier(wiphy, lr); 2453 } 2454 2455 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2456 { 2457 struct cfg80211_registered_device *rdev; 2458 struct wiphy *wiphy; 2459 2460 ASSERT_RTNL(); 2461 2462 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2463 wiphy = &rdev->wiphy; 2464 wiphy_update_regulatory(wiphy, initiator); 2465 } 2466 2467 reg_check_channels(); 2468 } 2469 2470 static void handle_channel_custom(struct wiphy *wiphy, 2471 struct ieee80211_channel *chan, 2472 const struct ieee80211_regdomain *regd, 2473 u32 min_bw) 2474 { 2475 u32 bw_flags = 0; 2476 const struct ieee80211_reg_rule *reg_rule = NULL; 2477 const struct ieee80211_power_rule *power_rule = NULL; 2478 u32 bw, center_freq_khz; 2479 2480 center_freq_khz = ieee80211_channel_to_khz(chan); 2481 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 2482 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw); 2483 if (!IS_ERR(reg_rule)) 2484 break; 2485 } 2486 2487 if (IS_ERR_OR_NULL(reg_rule)) { 2488 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n", 2489 chan->center_freq, chan->freq_offset); 2490 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2491 chan->flags |= IEEE80211_CHAN_DISABLED; 2492 } else { 2493 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2494 chan->flags = chan->orig_flags; 2495 } 2496 return; 2497 } 2498 2499 power_rule = ®_rule->power_rule; 2500 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2501 2502 chan->dfs_state_entered = jiffies; 2503 chan->dfs_state = NL80211_DFS_USABLE; 2504 2505 chan->beacon_found = false; 2506 2507 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2508 chan->flags = chan->orig_flags | bw_flags | 2509 map_regdom_flags(reg_rule->flags); 2510 else 2511 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2512 2513 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2514 chan->max_reg_power = chan->max_power = 2515 (int) MBM_TO_DBM(power_rule->max_eirp); 2516 2517 if (chan->flags & IEEE80211_CHAN_RADAR) { 2518 if (reg_rule->dfs_cac_ms) 2519 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2520 else 2521 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2522 } 2523 2524 chan->max_power = chan->max_reg_power; 2525 } 2526 2527 static void handle_band_custom(struct wiphy *wiphy, 2528 struct ieee80211_supported_band *sband, 2529 const struct ieee80211_regdomain *regd) 2530 { 2531 unsigned int i; 2532 2533 if (!sband) 2534 return; 2535 2536 /* 2537 * We currently assume that you always want at least 20 MHz, 2538 * otherwise channel 12 might get enabled if this rule is 2539 * compatible to US, which permits 2402 - 2472 MHz. 2540 */ 2541 for (i = 0; i < sband->n_channels; i++) 2542 handle_channel_custom(wiphy, &sband->channels[i], regd, 2543 MHZ_TO_KHZ(20)); 2544 } 2545 2546 /* Used by drivers prior to wiphy registration */ 2547 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2548 const struct ieee80211_regdomain *regd) 2549 { 2550 enum nl80211_band band; 2551 unsigned int bands_set = 0; 2552 2553 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2554 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2555 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2556 2557 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2558 if (!wiphy->bands[band]) 2559 continue; 2560 handle_band_custom(wiphy, wiphy->bands[band], regd); 2561 bands_set++; 2562 } 2563 2564 /* 2565 * no point in calling this if it won't have any effect 2566 * on your device's supported bands. 2567 */ 2568 WARN_ON(!bands_set); 2569 } 2570 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2571 2572 static void reg_set_request_processed(void) 2573 { 2574 bool need_more_processing = false; 2575 struct regulatory_request *lr = get_last_request(); 2576 2577 lr->processed = true; 2578 2579 spin_lock(®_requests_lock); 2580 if (!list_empty(®_requests_list)) 2581 need_more_processing = true; 2582 spin_unlock(®_requests_lock); 2583 2584 cancel_crda_timeout(); 2585 2586 if (need_more_processing) 2587 schedule_work(®_work); 2588 } 2589 2590 /** 2591 * reg_process_hint_core - process core regulatory requests 2592 * @core_request: a pending core regulatory request 2593 * 2594 * The wireless subsystem can use this function to process 2595 * a regulatory request issued by the regulatory core. 2596 */ 2597 static enum reg_request_treatment 2598 reg_process_hint_core(struct regulatory_request *core_request) 2599 { 2600 if (reg_query_database(core_request)) { 2601 core_request->intersect = false; 2602 core_request->processed = false; 2603 reg_update_last_request(core_request); 2604 return REG_REQ_OK; 2605 } 2606 2607 return REG_REQ_IGNORE; 2608 } 2609 2610 static enum reg_request_treatment 2611 __reg_process_hint_user(struct regulatory_request *user_request) 2612 { 2613 struct regulatory_request *lr = get_last_request(); 2614 2615 if (reg_request_cell_base(user_request)) 2616 return reg_ignore_cell_hint(user_request); 2617 2618 if (reg_request_cell_base(lr)) 2619 return REG_REQ_IGNORE; 2620 2621 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2622 return REG_REQ_INTERSECT; 2623 /* 2624 * If the user knows better the user should set the regdom 2625 * to their country before the IE is picked up 2626 */ 2627 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2628 lr->intersect) 2629 return REG_REQ_IGNORE; 2630 /* 2631 * Process user requests only after previous user/driver/core 2632 * requests have been processed 2633 */ 2634 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2635 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2636 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2637 regdom_changes(lr->alpha2)) 2638 return REG_REQ_IGNORE; 2639 2640 if (!regdom_changes(user_request->alpha2)) 2641 return REG_REQ_ALREADY_SET; 2642 2643 return REG_REQ_OK; 2644 } 2645 2646 /** 2647 * reg_process_hint_user - process user regulatory requests 2648 * @user_request: a pending user regulatory request 2649 * 2650 * The wireless subsystem can use this function to process 2651 * a regulatory request initiated by userspace. 2652 */ 2653 static enum reg_request_treatment 2654 reg_process_hint_user(struct regulatory_request *user_request) 2655 { 2656 enum reg_request_treatment treatment; 2657 2658 treatment = __reg_process_hint_user(user_request); 2659 if (treatment == REG_REQ_IGNORE || 2660 treatment == REG_REQ_ALREADY_SET) 2661 return REG_REQ_IGNORE; 2662 2663 user_request->intersect = treatment == REG_REQ_INTERSECT; 2664 user_request->processed = false; 2665 2666 if (reg_query_database(user_request)) { 2667 reg_update_last_request(user_request); 2668 user_alpha2[0] = user_request->alpha2[0]; 2669 user_alpha2[1] = user_request->alpha2[1]; 2670 return REG_REQ_OK; 2671 } 2672 2673 return REG_REQ_IGNORE; 2674 } 2675 2676 static enum reg_request_treatment 2677 __reg_process_hint_driver(struct regulatory_request *driver_request) 2678 { 2679 struct regulatory_request *lr = get_last_request(); 2680 2681 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2682 if (regdom_changes(driver_request->alpha2)) 2683 return REG_REQ_OK; 2684 return REG_REQ_ALREADY_SET; 2685 } 2686 2687 /* 2688 * This would happen if you unplug and plug your card 2689 * back in or if you add a new device for which the previously 2690 * loaded card also agrees on the regulatory domain. 2691 */ 2692 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2693 !regdom_changes(driver_request->alpha2)) 2694 return REG_REQ_ALREADY_SET; 2695 2696 return REG_REQ_INTERSECT; 2697 } 2698 2699 /** 2700 * reg_process_hint_driver - process driver regulatory requests 2701 * @wiphy: the wireless device for the regulatory request 2702 * @driver_request: a pending driver regulatory request 2703 * 2704 * The wireless subsystem can use this function to process 2705 * a regulatory request issued by an 802.11 driver. 2706 * 2707 * Returns one of the different reg request treatment values. 2708 */ 2709 static enum reg_request_treatment 2710 reg_process_hint_driver(struct wiphy *wiphy, 2711 struct regulatory_request *driver_request) 2712 { 2713 const struct ieee80211_regdomain *regd, *tmp; 2714 enum reg_request_treatment treatment; 2715 2716 treatment = __reg_process_hint_driver(driver_request); 2717 2718 switch (treatment) { 2719 case REG_REQ_OK: 2720 break; 2721 case REG_REQ_IGNORE: 2722 return REG_REQ_IGNORE; 2723 case REG_REQ_INTERSECT: 2724 case REG_REQ_ALREADY_SET: 2725 regd = reg_copy_regd(get_cfg80211_regdom()); 2726 if (IS_ERR(regd)) 2727 return REG_REQ_IGNORE; 2728 2729 tmp = get_wiphy_regdom(wiphy); 2730 rcu_assign_pointer(wiphy->regd, regd); 2731 rcu_free_regdom(tmp); 2732 } 2733 2734 2735 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2736 driver_request->processed = false; 2737 2738 /* 2739 * Since CRDA will not be called in this case as we already 2740 * have applied the requested regulatory domain before we just 2741 * inform userspace we have processed the request 2742 */ 2743 if (treatment == REG_REQ_ALREADY_SET) { 2744 nl80211_send_reg_change_event(driver_request); 2745 reg_update_last_request(driver_request); 2746 reg_set_request_processed(); 2747 return REG_REQ_ALREADY_SET; 2748 } 2749 2750 if (reg_query_database(driver_request)) { 2751 reg_update_last_request(driver_request); 2752 return REG_REQ_OK; 2753 } 2754 2755 return REG_REQ_IGNORE; 2756 } 2757 2758 static enum reg_request_treatment 2759 __reg_process_hint_country_ie(struct wiphy *wiphy, 2760 struct regulatory_request *country_ie_request) 2761 { 2762 struct wiphy *last_wiphy = NULL; 2763 struct regulatory_request *lr = get_last_request(); 2764 2765 if (reg_request_cell_base(lr)) { 2766 /* Trust a Cell base station over the AP's country IE */ 2767 if (regdom_changes(country_ie_request->alpha2)) 2768 return REG_REQ_IGNORE; 2769 return REG_REQ_ALREADY_SET; 2770 } else { 2771 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2772 return REG_REQ_IGNORE; 2773 } 2774 2775 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2776 return -EINVAL; 2777 2778 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2779 return REG_REQ_OK; 2780 2781 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2782 2783 if (last_wiphy != wiphy) { 2784 /* 2785 * Two cards with two APs claiming different 2786 * Country IE alpha2s. We could 2787 * intersect them, but that seems unlikely 2788 * to be correct. Reject second one for now. 2789 */ 2790 if (regdom_changes(country_ie_request->alpha2)) 2791 return REG_REQ_IGNORE; 2792 return REG_REQ_ALREADY_SET; 2793 } 2794 2795 if (regdom_changes(country_ie_request->alpha2)) 2796 return REG_REQ_OK; 2797 return REG_REQ_ALREADY_SET; 2798 } 2799 2800 /** 2801 * reg_process_hint_country_ie - process regulatory requests from country IEs 2802 * @wiphy: the wireless device for the regulatory request 2803 * @country_ie_request: a regulatory request from a country IE 2804 * 2805 * The wireless subsystem can use this function to process 2806 * a regulatory request issued by a country Information Element. 2807 * 2808 * Returns one of the different reg request treatment values. 2809 */ 2810 static enum reg_request_treatment 2811 reg_process_hint_country_ie(struct wiphy *wiphy, 2812 struct regulatory_request *country_ie_request) 2813 { 2814 enum reg_request_treatment treatment; 2815 2816 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2817 2818 switch (treatment) { 2819 case REG_REQ_OK: 2820 break; 2821 case REG_REQ_IGNORE: 2822 return REG_REQ_IGNORE; 2823 case REG_REQ_ALREADY_SET: 2824 reg_free_request(country_ie_request); 2825 return REG_REQ_ALREADY_SET; 2826 case REG_REQ_INTERSECT: 2827 /* 2828 * This doesn't happen yet, not sure we 2829 * ever want to support it for this case. 2830 */ 2831 WARN_ONCE(1, "Unexpected intersection for country elements"); 2832 return REG_REQ_IGNORE; 2833 } 2834 2835 country_ie_request->intersect = false; 2836 country_ie_request->processed = false; 2837 2838 if (reg_query_database(country_ie_request)) { 2839 reg_update_last_request(country_ie_request); 2840 return REG_REQ_OK; 2841 } 2842 2843 return REG_REQ_IGNORE; 2844 } 2845 2846 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2847 { 2848 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2849 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2850 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2851 bool dfs_domain_same; 2852 2853 rcu_read_lock(); 2854 2855 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2856 wiphy1_regd = rcu_dereference(wiphy1->regd); 2857 if (!wiphy1_regd) 2858 wiphy1_regd = cfg80211_regd; 2859 2860 wiphy2_regd = rcu_dereference(wiphy2->regd); 2861 if (!wiphy2_regd) 2862 wiphy2_regd = cfg80211_regd; 2863 2864 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2865 2866 rcu_read_unlock(); 2867 2868 return dfs_domain_same; 2869 } 2870 2871 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2872 struct ieee80211_channel *src_chan) 2873 { 2874 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2875 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2876 return; 2877 2878 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2879 src_chan->flags & IEEE80211_CHAN_DISABLED) 2880 return; 2881 2882 if (src_chan->center_freq == dst_chan->center_freq && 2883 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2884 dst_chan->dfs_state = src_chan->dfs_state; 2885 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2886 } 2887 } 2888 2889 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2890 struct wiphy *src_wiphy) 2891 { 2892 struct ieee80211_supported_band *src_sband, *dst_sband; 2893 struct ieee80211_channel *src_chan, *dst_chan; 2894 int i, j, band; 2895 2896 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2897 return; 2898 2899 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2900 dst_sband = dst_wiphy->bands[band]; 2901 src_sband = src_wiphy->bands[band]; 2902 if (!dst_sband || !src_sband) 2903 continue; 2904 2905 for (i = 0; i < dst_sband->n_channels; i++) { 2906 dst_chan = &dst_sband->channels[i]; 2907 for (j = 0; j < src_sband->n_channels; j++) { 2908 src_chan = &src_sband->channels[j]; 2909 reg_copy_dfs_chan_state(dst_chan, src_chan); 2910 } 2911 } 2912 } 2913 } 2914 2915 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2916 { 2917 struct cfg80211_registered_device *rdev; 2918 2919 ASSERT_RTNL(); 2920 2921 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2922 if (wiphy == &rdev->wiphy) 2923 continue; 2924 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2925 } 2926 } 2927 2928 /* This processes *all* regulatory hints */ 2929 static void reg_process_hint(struct regulatory_request *reg_request) 2930 { 2931 struct wiphy *wiphy = NULL; 2932 enum reg_request_treatment treatment; 2933 enum nl80211_reg_initiator initiator = reg_request->initiator; 2934 2935 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2936 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2937 2938 switch (initiator) { 2939 case NL80211_REGDOM_SET_BY_CORE: 2940 treatment = reg_process_hint_core(reg_request); 2941 break; 2942 case NL80211_REGDOM_SET_BY_USER: 2943 treatment = reg_process_hint_user(reg_request); 2944 break; 2945 case NL80211_REGDOM_SET_BY_DRIVER: 2946 if (!wiphy) 2947 goto out_free; 2948 treatment = reg_process_hint_driver(wiphy, reg_request); 2949 break; 2950 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2951 if (!wiphy) 2952 goto out_free; 2953 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2954 break; 2955 default: 2956 WARN(1, "invalid initiator %d\n", initiator); 2957 goto out_free; 2958 } 2959 2960 if (treatment == REG_REQ_IGNORE) 2961 goto out_free; 2962 2963 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 2964 "unexpected treatment value %d\n", treatment); 2965 2966 /* This is required so that the orig_* parameters are saved. 2967 * NOTE: treatment must be set for any case that reaches here! 2968 */ 2969 if (treatment == REG_REQ_ALREADY_SET && wiphy && 2970 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2971 wiphy_update_regulatory(wiphy, initiator); 2972 wiphy_all_share_dfs_chan_state(wiphy); 2973 reg_check_channels(); 2974 } 2975 2976 return; 2977 2978 out_free: 2979 reg_free_request(reg_request); 2980 } 2981 2982 static void notify_self_managed_wiphys(struct regulatory_request *request) 2983 { 2984 struct cfg80211_registered_device *rdev; 2985 struct wiphy *wiphy; 2986 2987 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2988 wiphy = &rdev->wiphy; 2989 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 2990 request->initiator == NL80211_REGDOM_SET_BY_USER) 2991 reg_call_notifier(wiphy, request); 2992 } 2993 } 2994 2995 /* 2996 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 2997 * Regulatory hints come on a first come first serve basis and we 2998 * must process each one atomically. 2999 */ 3000 static void reg_process_pending_hints(void) 3001 { 3002 struct regulatory_request *reg_request, *lr; 3003 3004 lr = get_last_request(); 3005 3006 /* When last_request->processed becomes true this will be rescheduled */ 3007 if (lr && !lr->processed) { 3008 pr_debug("Pending regulatory request, waiting for it to be processed...\n"); 3009 return; 3010 } 3011 3012 spin_lock(®_requests_lock); 3013 3014 if (list_empty(®_requests_list)) { 3015 spin_unlock(®_requests_lock); 3016 return; 3017 } 3018 3019 reg_request = list_first_entry(®_requests_list, 3020 struct regulatory_request, 3021 list); 3022 list_del_init(®_request->list); 3023 3024 spin_unlock(®_requests_lock); 3025 3026 notify_self_managed_wiphys(reg_request); 3027 3028 reg_process_hint(reg_request); 3029 3030 lr = get_last_request(); 3031 3032 spin_lock(®_requests_lock); 3033 if (!list_empty(®_requests_list) && lr && lr->processed) 3034 schedule_work(®_work); 3035 spin_unlock(®_requests_lock); 3036 } 3037 3038 /* Processes beacon hints -- this has nothing to do with country IEs */ 3039 static void reg_process_pending_beacon_hints(void) 3040 { 3041 struct cfg80211_registered_device *rdev; 3042 struct reg_beacon *pending_beacon, *tmp; 3043 3044 /* This goes through the _pending_ beacon list */ 3045 spin_lock_bh(®_pending_beacons_lock); 3046 3047 list_for_each_entry_safe(pending_beacon, tmp, 3048 ®_pending_beacons, list) { 3049 list_del_init(&pending_beacon->list); 3050 3051 /* Applies the beacon hint to current wiphys */ 3052 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 3053 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 3054 3055 /* Remembers the beacon hint for new wiphys or reg changes */ 3056 list_add_tail(&pending_beacon->list, ®_beacon_list); 3057 } 3058 3059 spin_unlock_bh(®_pending_beacons_lock); 3060 } 3061 3062 static void reg_process_self_managed_hints(void) 3063 { 3064 struct cfg80211_registered_device *rdev; 3065 struct wiphy *wiphy; 3066 const struct ieee80211_regdomain *tmp; 3067 const struct ieee80211_regdomain *regd; 3068 enum nl80211_band band; 3069 struct regulatory_request request = {}; 3070 3071 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3072 wiphy = &rdev->wiphy; 3073 3074 spin_lock(®_requests_lock); 3075 regd = rdev->requested_regd; 3076 rdev->requested_regd = NULL; 3077 spin_unlock(®_requests_lock); 3078 3079 if (regd == NULL) 3080 continue; 3081 3082 tmp = get_wiphy_regdom(wiphy); 3083 rcu_assign_pointer(wiphy->regd, regd); 3084 rcu_free_regdom(tmp); 3085 3086 for (band = 0; band < NUM_NL80211_BANDS; band++) 3087 handle_band_custom(wiphy, wiphy->bands[band], regd); 3088 3089 reg_process_ht_flags(wiphy); 3090 3091 request.wiphy_idx = get_wiphy_idx(wiphy); 3092 request.alpha2[0] = regd->alpha2[0]; 3093 request.alpha2[1] = regd->alpha2[1]; 3094 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 3095 3096 nl80211_send_wiphy_reg_change_event(&request); 3097 } 3098 3099 reg_check_channels(); 3100 } 3101 3102 static void reg_todo(struct work_struct *work) 3103 { 3104 rtnl_lock(); 3105 reg_process_pending_hints(); 3106 reg_process_pending_beacon_hints(); 3107 reg_process_self_managed_hints(); 3108 rtnl_unlock(); 3109 } 3110 3111 static void queue_regulatory_request(struct regulatory_request *request) 3112 { 3113 request->alpha2[0] = toupper(request->alpha2[0]); 3114 request->alpha2[1] = toupper(request->alpha2[1]); 3115 3116 spin_lock(®_requests_lock); 3117 list_add_tail(&request->list, ®_requests_list); 3118 spin_unlock(®_requests_lock); 3119 3120 schedule_work(®_work); 3121 } 3122 3123 /* 3124 * Core regulatory hint -- happens during cfg80211_init() 3125 * and when we restore regulatory settings. 3126 */ 3127 static int regulatory_hint_core(const char *alpha2) 3128 { 3129 struct regulatory_request *request; 3130 3131 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3132 if (!request) 3133 return -ENOMEM; 3134 3135 request->alpha2[0] = alpha2[0]; 3136 request->alpha2[1] = alpha2[1]; 3137 request->initiator = NL80211_REGDOM_SET_BY_CORE; 3138 request->wiphy_idx = WIPHY_IDX_INVALID; 3139 3140 queue_regulatory_request(request); 3141 3142 return 0; 3143 } 3144 3145 /* User hints */ 3146 int regulatory_hint_user(const char *alpha2, 3147 enum nl80211_user_reg_hint_type user_reg_hint_type) 3148 { 3149 struct regulatory_request *request; 3150 3151 if (WARN_ON(!alpha2)) 3152 return -EINVAL; 3153 3154 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2)) 3155 return -EINVAL; 3156 3157 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3158 if (!request) 3159 return -ENOMEM; 3160 3161 request->wiphy_idx = WIPHY_IDX_INVALID; 3162 request->alpha2[0] = alpha2[0]; 3163 request->alpha2[1] = alpha2[1]; 3164 request->initiator = NL80211_REGDOM_SET_BY_USER; 3165 request->user_reg_hint_type = user_reg_hint_type; 3166 3167 /* Allow calling CRDA again */ 3168 reset_crda_timeouts(); 3169 3170 queue_regulatory_request(request); 3171 3172 return 0; 3173 } 3174 3175 int regulatory_hint_indoor(bool is_indoor, u32 portid) 3176 { 3177 spin_lock(®_indoor_lock); 3178 3179 /* It is possible that more than one user space process is trying to 3180 * configure the indoor setting. To handle such cases, clear the indoor 3181 * setting in case that some process does not think that the device 3182 * is operating in an indoor environment. In addition, if a user space 3183 * process indicates that it is controlling the indoor setting, save its 3184 * portid, i.e., make it the owner. 3185 */ 3186 reg_is_indoor = is_indoor; 3187 if (reg_is_indoor) { 3188 if (!reg_is_indoor_portid) 3189 reg_is_indoor_portid = portid; 3190 } else { 3191 reg_is_indoor_portid = 0; 3192 } 3193 3194 spin_unlock(®_indoor_lock); 3195 3196 if (!is_indoor) 3197 reg_check_channels(); 3198 3199 return 0; 3200 } 3201 3202 void regulatory_netlink_notify(u32 portid) 3203 { 3204 spin_lock(®_indoor_lock); 3205 3206 if (reg_is_indoor_portid != portid) { 3207 spin_unlock(®_indoor_lock); 3208 return; 3209 } 3210 3211 reg_is_indoor = false; 3212 reg_is_indoor_portid = 0; 3213 3214 spin_unlock(®_indoor_lock); 3215 3216 reg_check_channels(); 3217 } 3218 3219 /* Driver hints */ 3220 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3221 { 3222 struct regulatory_request *request; 3223 3224 if (WARN_ON(!alpha2 || !wiphy)) 3225 return -EINVAL; 3226 3227 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3228 3229 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3230 if (!request) 3231 return -ENOMEM; 3232 3233 request->wiphy_idx = get_wiphy_idx(wiphy); 3234 3235 request->alpha2[0] = alpha2[0]; 3236 request->alpha2[1] = alpha2[1]; 3237 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3238 3239 /* Allow calling CRDA again */ 3240 reset_crda_timeouts(); 3241 3242 queue_regulatory_request(request); 3243 3244 return 0; 3245 } 3246 EXPORT_SYMBOL(regulatory_hint); 3247 3248 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3249 const u8 *country_ie, u8 country_ie_len) 3250 { 3251 char alpha2[2]; 3252 enum environment_cap env = ENVIRON_ANY; 3253 struct regulatory_request *request = NULL, *lr; 3254 3255 /* IE len must be evenly divisible by 2 */ 3256 if (country_ie_len & 0x01) 3257 return; 3258 3259 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3260 return; 3261 3262 request = kzalloc(sizeof(*request), GFP_KERNEL); 3263 if (!request) 3264 return; 3265 3266 alpha2[0] = country_ie[0]; 3267 alpha2[1] = country_ie[1]; 3268 3269 if (country_ie[2] == 'I') 3270 env = ENVIRON_INDOOR; 3271 else if (country_ie[2] == 'O') 3272 env = ENVIRON_OUTDOOR; 3273 3274 rcu_read_lock(); 3275 lr = get_last_request(); 3276 3277 if (unlikely(!lr)) 3278 goto out; 3279 3280 /* 3281 * We will run this only upon a successful connection on cfg80211. 3282 * We leave conflict resolution to the workqueue, where can hold 3283 * the RTNL. 3284 */ 3285 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3286 lr->wiphy_idx != WIPHY_IDX_INVALID) 3287 goto out; 3288 3289 request->wiphy_idx = get_wiphy_idx(wiphy); 3290 request->alpha2[0] = alpha2[0]; 3291 request->alpha2[1] = alpha2[1]; 3292 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3293 request->country_ie_env = env; 3294 3295 /* Allow calling CRDA again */ 3296 reset_crda_timeouts(); 3297 3298 queue_regulatory_request(request); 3299 request = NULL; 3300 out: 3301 kfree(request); 3302 rcu_read_unlock(); 3303 } 3304 3305 static void restore_alpha2(char *alpha2, bool reset_user) 3306 { 3307 /* indicates there is no alpha2 to consider for restoration */ 3308 alpha2[0] = '9'; 3309 alpha2[1] = '7'; 3310 3311 /* The user setting has precedence over the module parameter */ 3312 if (is_user_regdom_saved()) { 3313 /* Unless we're asked to ignore it and reset it */ 3314 if (reset_user) { 3315 pr_debug("Restoring regulatory settings including user preference\n"); 3316 user_alpha2[0] = '9'; 3317 user_alpha2[1] = '7'; 3318 3319 /* 3320 * If we're ignoring user settings, we still need to 3321 * check the module parameter to ensure we put things 3322 * back as they were for a full restore. 3323 */ 3324 if (!is_world_regdom(ieee80211_regdom)) { 3325 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3326 ieee80211_regdom[0], ieee80211_regdom[1]); 3327 alpha2[0] = ieee80211_regdom[0]; 3328 alpha2[1] = ieee80211_regdom[1]; 3329 } 3330 } else { 3331 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3332 user_alpha2[0], user_alpha2[1]); 3333 alpha2[0] = user_alpha2[0]; 3334 alpha2[1] = user_alpha2[1]; 3335 } 3336 } else if (!is_world_regdom(ieee80211_regdom)) { 3337 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3338 ieee80211_regdom[0], ieee80211_regdom[1]); 3339 alpha2[0] = ieee80211_regdom[0]; 3340 alpha2[1] = ieee80211_regdom[1]; 3341 } else 3342 pr_debug("Restoring regulatory settings\n"); 3343 } 3344 3345 static void restore_custom_reg_settings(struct wiphy *wiphy) 3346 { 3347 struct ieee80211_supported_band *sband; 3348 enum nl80211_band band; 3349 struct ieee80211_channel *chan; 3350 int i; 3351 3352 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3353 sband = wiphy->bands[band]; 3354 if (!sband) 3355 continue; 3356 for (i = 0; i < sband->n_channels; i++) { 3357 chan = &sband->channels[i]; 3358 chan->flags = chan->orig_flags; 3359 chan->max_antenna_gain = chan->orig_mag; 3360 chan->max_power = chan->orig_mpwr; 3361 chan->beacon_found = false; 3362 } 3363 } 3364 } 3365 3366 /* 3367 * Restoring regulatory settings involves ingoring any 3368 * possibly stale country IE information and user regulatory 3369 * settings if so desired, this includes any beacon hints 3370 * learned as we could have traveled outside to another country 3371 * after disconnection. To restore regulatory settings we do 3372 * exactly what we did at bootup: 3373 * 3374 * - send a core regulatory hint 3375 * - send a user regulatory hint if applicable 3376 * 3377 * Device drivers that send a regulatory hint for a specific country 3378 * keep their own regulatory domain on wiphy->regd so that does 3379 * not need to be remembered. 3380 */ 3381 static void restore_regulatory_settings(bool reset_user, bool cached) 3382 { 3383 char alpha2[2]; 3384 char world_alpha2[2]; 3385 struct reg_beacon *reg_beacon, *btmp; 3386 LIST_HEAD(tmp_reg_req_list); 3387 struct cfg80211_registered_device *rdev; 3388 3389 ASSERT_RTNL(); 3390 3391 /* 3392 * Clear the indoor setting in case that it is not controlled by user 3393 * space, as otherwise there is no guarantee that the device is still 3394 * operating in an indoor environment. 3395 */ 3396 spin_lock(®_indoor_lock); 3397 if (reg_is_indoor && !reg_is_indoor_portid) { 3398 reg_is_indoor = false; 3399 reg_check_channels(); 3400 } 3401 spin_unlock(®_indoor_lock); 3402 3403 reset_regdomains(true, &world_regdom); 3404 restore_alpha2(alpha2, reset_user); 3405 3406 /* 3407 * If there's any pending requests we simply 3408 * stash them to a temporary pending queue and 3409 * add then after we've restored regulatory 3410 * settings. 3411 */ 3412 spin_lock(®_requests_lock); 3413 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3414 spin_unlock(®_requests_lock); 3415 3416 /* Clear beacon hints */ 3417 spin_lock_bh(®_pending_beacons_lock); 3418 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3419 list_del(®_beacon->list); 3420 kfree(reg_beacon); 3421 } 3422 spin_unlock_bh(®_pending_beacons_lock); 3423 3424 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3425 list_del(®_beacon->list); 3426 kfree(reg_beacon); 3427 } 3428 3429 /* First restore to the basic regulatory settings */ 3430 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3431 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3432 3433 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3434 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3435 continue; 3436 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3437 restore_custom_reg_settings(&rdev->wiphy); 3438 } 3439 3440 if (cached && (!is_an_alpha2(alpha2) || 3441 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3442 reset_regdomains(false, cfg80211_world_regdom); 3443 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3444 print_regdomain(get_cfg80211_regdom()); 3445 nl80211_send_reg_change_event(&core_request_world); 3446 reg_set_request_processed(); 3447 3448 if (is_an_alpha2(alpha2) && 3449 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3450 struct regulatory_request *ureq; 3451 3452 spin_lock(®_requests_lock); 3453 ureq = list_last_entry(®_requests_list, 3454 struct regulatory_request, 3455 list); 3456 list_del(&ureq->list); 3457 spin_unlock(®_requests_lock); 3458 3459 notify_self_managed_wiphys(ureq); 3460 reg_update_last_request(ureq); 3461 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3462 REGD_SOURCE_CACHED); 3463 } 3464 } else { 3465 regulatory_hint_core(world_alpha2); 3466 3467 /* 3468 * This restores the ieee80211_regdom module parameter 3469 * preference or the last user requested regulatory 3470 * settings, user regulatory settings takes precedence. 3471 */ 3472 if (is_an_alpha2(alpha2)) 3473 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3474 } 3475 3476 spin_lock(®_requests_lock); 3477 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3478 spin_unlock(®_requests_lock); 3479 3480 pr_debug("Kicking the queue\n"); 3481 3482 schedule_work(®_work); 3483 } 3484 3485 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3486 { 3487 struct cfg80211_registered_device *rdev; 3488 struct wireless_dev *wdev; 3489 3490 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3491 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3492 wdev_lock(wdev); 3493 if (!(wdev->wiphy->regulatory_flags & flag)) { 3494 wdev_unlock(wdev); 3495 return false; 3496 } 3497 wdev_unlock(wdev); 3498 } 3499 } 3500 3501 return true; 3502 } 3503 3504 void regulatory_hint_disconnect(void) 3505 { 3506 /* Restore of regulatory settings is not required when wiphy(s) 3507 * ignore IE from connected access point but clearance of beacon hints 3508 * is required when wiphy(s) supports beacon hints. 3509 */ 3510 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3511 struct reg_beacon *reg_beacon, *btmp; 3512 3513 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3514 return; 3515 3516 spin_lock_bh(®_pending_beacons_lock); 3517 list_for_each_entry_safe(reg_beacon, btmp, 3518 ®_pending_beacons, list) { 3519 list_del(®_beacon->list); 3520 kfree(reg_beacon); 3521 } 3522 spin_unlock_bh(®_pending_beacons_lock); 3523 3524 list_for_each_entry_safe(reg_beacon, btmp, 3525 ®_beacon_list, list) { 3526 list_del(®_beacon->list); 3527 kfree(reg_beacon); 3528 } 3529 3530 return; 3531 } 3532 3533 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3534 restore_regulatory_settings(false, true); 3535 } 3536 3537 static bool freq_is_chan_12_13_14(u32 freq) 3538 { 3539 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3540 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3541 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3542 return true; 3543 return false; 3544 } 3545 3546 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3547 { 3548 struct reg_beacon *pending_beacon; 3549 3550 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3551 if (ieee80211_channel_equal(beacon_chan, 3552 &pending_beacon->chan)) 3553 return true; 3554 return false; 3555 } 3556 3557 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3558 struct ieee80211_channel *beacon_chan, 3559 gfp_t gfp) 3560 { 3561 struct reg_beacon *reg_beacon; 3562 bool processing; 3563 3564 if (beacon_chan->beacon_found || 3565 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3566 (beacon_chan->band == NL80211_BAND_2GHZ && 3567 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3568 return 0; 3569 3570 spin_lock_bh(®_pending_beacons_lock); 3571 processing = pending_reg_beacon(beacon_chan); 3572 spin_unlock_bh(®_pending_beacons_lock); 3573 3574 if (processing) 3575 return 0; 3576 3577 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3578 if (!reg_beacon) 3579 return -ENOMEM; 3580 3581 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n", 3582 beacon_chan->center_freq, beacon_chan->freq_offset, 3583 ieee80211_freq_khz_to_channel( 3584 ieee80211_channel_to_khz(beacon_chan)), 3585 wiphy_name(wiphy)); 3586 3587 memcpy(®_beacon->chan, beacon_chan, 3588 sizeof(struct ieee80211_channel)); 3589 3590 /* 3591 * Since we can be called from BH or and non-BH context 3592 * we must use spin_lock_bh() 3593 */ 3594 spin_lock_bh(®_pending_beacons_lock); 3595 list_add_tail(®_beacon->list, ®_pending_beacons); 3596 spin_unlock_bh(®_pending_beacons_lock); 3597 3598 schedule_work(®_work); 3599 3600 return 0; 3601 } 3602 3603 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3604 { 3605 unsigned int i; 3606 const struct ieee80211_reg_rule *reg_rule = NULL; 3607 const struct ieee80211_freq_range *freq_range = NULL; 3608 const struct ieee80211_power_rule *power_rule = NULL; 3609 char bw[32], cac_time[32]; 3610 3611 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3612 3613 for (i = 0; i < rd->n_reg_rules; i++) { 3614 reg_rule = &rd->reg_rules[i]; 3615 freq_range = ®_rule->freq_range; 3616 power_rule = ®_rule->power_rule; 3617 3618 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3619 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 3620 freq_range->max_bandwidth_khz, 3621 reg_get_max_bandwidth(rd, reg_rule)); 3622 else 3623 snprintf(bw, sizeof(bw), "%d KHz", 3624 freq_range->max_bandwidth_khz); 3625 3626 if (reg_rule->flags & NL80211_RRF_DFS) 3627 scnprintf(cac_time, sizeof(cac_time), "%u s", 3628 reg_rule->dfs_cac_ms/1000); 3629 else 3630 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3631 3632 3633 /* 3634 * There may not be documentation for max antenna gain 3635 * in certain regions 3636 */ 3637 if (power_rule->max_antenna_gain) 3638 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3639 freq_range->start_freq_khz, 3640 freq_range->end_freq_khz, 3641 bw, 3642 power_rule->max_antenna_gain, 3643 power_rule->max_eirp, 3644 cac_time); 3645 else 3646 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3647 freq_range->start_freq_khz, 3648 freq_range->end_freq_khz, 3649 bw, 3650 power_rule->max_eirp, 3651 cac_time); 3652 } 3653 } 3654 3655 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3656 { 3657 switch (dfs_region) { 3658 case NL80211_DFS_UNSET: 3659 case NL80211_DFS_FCC: 3660 case NL80211_DFS_ETSI: 3661 case NL80211_DFS_JP: 3662 return true; 3663 default: 3664 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3665 return false; 3666 } 3667 } 3668 3669 static void print_regdomain(const struct ieee80211_regdomain *rd) 3670 { 3671 struct regulatory_request *lr = get_last_request(); 3672 3673 if (is_intersected_alpha2(rd->alpha2)) { 3674 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3675 struct cfg80211_registered_device *rdev; 3676 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3677 if (rdev) { 3678 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3679 rdev->country_ie_alpha2[0], 3680 rdev->country_ie_alpha2[1]); 3681 } else 3682 pr_debug("Current regulatory domain intersected:\n"); 3683 } else 3684 pr_debug("Current regulatory domain intersected:\n"); 3685 } else if (is_world_regdom(rd->alpha2)) { 3686 pr_debug("World regulatory domain updated:\n"); 3687 } else { 3688 if (is_unknown_alpha2(rd->alpha2)) 3689 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3690 else { 3691 if (reg_request_cell_base(lr)) 3692 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3693 rd->alpha2[0], rd->alpha2[1]); 3694 else 3695 pr_debug("Regulatory domain changed to country: %c%c\n", 3696 rd->alpha2[0], rd->alpha2[1]); 3697 } 3698 } 3699 3700 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3701 print_rd_rules(rd); 3702 } 3703 3704 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3705 { 3706 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3707 print_rd_rules(rd); 3708 } 3709 3710 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3711 { 3712 if (!is_world_regdom(rd->alpha2)) 3713 return -EINVAL; 3714 update_world_regdomain(rd); 3715 return 0; 3716 } 3717 3718 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3719 struct regulatory_request *user_request) 3720 { 3721 const struct ieee80211_regdomain *intersected_rd = NULL; 3722 3723 if (!regdom_changes(rd->alpha2)) 3724 return -EALREADY; 3725 3726 if (!is_valid_rd(rd)) { 3727 pr_err("Invalid regulatory domain detected: %c%c\n", 3728 rd->alpha2[0], rd->alpha2[1]); 3729 print_regdomain_info(rd); 3730 return -EINVAL; 3731 } 3732 3733 if (!user_request->intersect) { 3734 reset_regdomains(false, rd); 3735 return 0; 3736 } 3737 3738 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3739 if (!intersected_rd) 3740 return -EINVAL; 3741 3742 kfree(rd); 3743 rd = NULL; 3744 reset_regdomains(false, intersected_rd); 3745 3746 return 0; 3747 } 3748 3749 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3750 struct regulatory_request *driver_request) 3751 { 3752 const struct ieee80211_regdomain *regd; 3753 const struct ieee80211_regdomain *intersected_rd = NULL; 3754 const struct ieee80211_regdomain *tmp; 3755 struct wiphy *request_wiphy; 3756 3757 if (is_world_regdom(rd->alpha2)) 3758 return -EINVAL; 3759 3760 if (!regdom_changes(rd->alpha2)) 3761 return -EALREADY; 3762 3763 if (!is_valid_rd(rd)) { 3764 pr_err("Invalid regulatory domain detected: %c%c\n", 3765 rd->alpha2[0], rd->alpha2[1]); 3766 print_regdomain_info(rd); 3767 return -EINVAL; 3768 } 3769 3770 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3771 if (!request_wiphy) 3772 return -ENODEV; 3773 3774 if (!driver_request->intersect) { 3775 if (request_wiphy->regd) 3776 return -EALREADY; 3777 3778 regd = reg_copy_regd(rd); 3779 if (IS_ERR(regd)) 3780 return PTR_ERR(regd); 3781 3782 rcu_assign_pointer(request_wiphy->regd, regd); 3783 reset_regdomains(false, rd); 3784 return 0; 3785 } 3786 3787 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3788 if (!intersected_rd) 3789 return -EINVAL; 3790 3791 /* 3792 * We can trash what CRDA provided now. 3793 * However if a driver requested this specific regulatory 3794 * domain we keep it for its private use 3795 */ 3796 tmp = get_wiphy_regdom(request_wiphy); 3797 rcu_assign_pointer(request_wiphy->regd, rd); 3798 rcu_free_regdom(tmp); 3799 3800 rd = NULL; 3801 3802 reset_regdomains(false, intersected_rd); 3803 3804 return 0; 3805 } 3806 3807 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3808 struct regulatory_request *country_ie_request) 3809 { 3810 struct wiphy *request_wiphy; 3811 3812 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3813 !is_unknown_alpha2(rd->alpha2)) 3814 return -EINVAL; 3815 3816 /* 3817 * Lets only bother proceeding on the same alpha2 if the current 3818 * rd is non static (it means CRDA was present and was used last) 3819 * and the pending request came in from a country IE 3820 */ 3821 3822 if (!is_valid_rd(rd)) { 3823 pr_err("Invalid regulatory domain detected: %c%c\n", 3824 rd->alpha2[0], rd->alpha2[1]); 3825 print_regdomain_info(rd); 3826 return -EINVAL; 3827 } 3828 3829 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3830 if (!request_wiphy) 3831 return -ENODEV; 3832 3833 if (country_ie_request->intersect) 3834 return -EINVAL; 3835 3836 reset_regdomains(false, rd); 3837 return 0; 3838 } 3839 3840 /* 3841 * Use this call to set the current regulatory domain. Conflicts with 3842 * multiple drivers can be ironed out later. Caller must've already 3843 * kmalloc'd the rd structure. 3844 */ 3845 int set_regdom(const struct ieee80211_regdomain *rd, 3846 enum ieee80211_regd_source regd_src) 3847 { 3848 struct regulatory_request *lr; 3849 bool user_reset = false; 3850 int r; 3851 3852 if (IS_ERR_OR_NULL(rd)) 3853 return -ENODATA; 3854 3855 if (!reg_is_valid_request(rd->alpha2)) { 3856 kfree(rd); 3857 return -EINVAL; 3858 } 3859 3860 if (regd_src == REGD_SOURCE_CRDA) 3861 reset_crda_timeouts(); 3862 3863 lr = get_last_request(); 3864 3865 /* Note that this doesn't update the wiphys, this is done below */ 3866 switch (lr->initiator) { 3867 case NL80211_REGDOM_SET_BY_CORE: 3868 r = reg_set_rd_core(rd); 3869 break; 3870 case NL80211_REGDOM_SET_BY_USER: 3871 cfg80211_save_user_regdom(rd); 3872 r = reg_set_rd_user(rd, lr); 3873 user_reset = true; 3874 break; 3875 case NL80211_REGDOM_SET_BY_DRIVER: 3876 r = reg_set_rd_driver(rd, lr); 3877 break; 3878 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3879 r = reg_set_rd_country_ie(rd, lr); 3880 break; 3881 default: 3882 WARN(1, "invalid initiator %d\n", lr->initiator); 3883 kfree(rd); 3884 return -EINVAL; 3885 } 3886 3887 if (r) { 3888 switch (r) { 3889 case -EALREADY: 3890 reg_set_request_processed(); 3891 break; 3892 default: 3893 /* Back to world regulatory in case of errors */ 3894 restore_regulatory_settings(user_reset, false); 3895 } 3896 3897 kfree(rd); 3898 return r; 3899 } 3900 3901 /* This would make this whole thing pointless */ 3902 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3903 return -EINVAL; 3904 3905 /* update all wiphys now with the new established regulatory domain */ 3906 update_all_wiphy_regulatory(lr->initiator); 3907 3908 print_regdomain(get_cfg80211_regdom()); 3909 3910 nl80211_send_reg_change_event(lr); 3911 3912 reg_set_request_processed(); 3913 3914 return 0; 3915 } 3916 3917 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 3918 struct ieee80211_regdomain *rd) 3919 { 3920 const struct ieee80211_regdomain *regd; 3921 const struct ieee80211_regdomain *prev_regd; 3922 struct cfg80211_registered_device *rdev; 3923 3924 if (WARN_ON(!wiphy || !rd)) 3925 return -EINVAL; 3926 3927 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 3928 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 3929 return -EPERM; 3930 3931 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { 3932 print_regdomain_info(rd); 3933 return -EINVAL; 3934 } 3935 3936 regd = reg_copy_regd(rd); 3937 if (IS_ERR(regd)) 3938 return PTR_ERR(regd); 3939 3940 rdev = wiphy_to_rdev(wiphy); 3941 3942 spin_lock(®_requests_lock); 3943 prev_regd = rdev->requested_regd; 3944 rdev->requested_regd = regd; 3945 spin_unlock(®_requests_lock); 3946 3947 kfree(prev_regd); 3948 return 0; 3949 } 3950 3951 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 3952 struct ieee80211_regdomain *rd) 3953 { 3954 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 3955 3956 if (ret) 3957 return ret; 3958 3959 schedule_work(®_work); 3960 return 0; 3961 } 3962 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 3963 3964 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, 3965 struct ieee80211_regdomain *rd) 3966 { 3967 int ret; 3968 3969 ASSERT_RTNL(); 3970 3971 ret = __regulatory_set_wiphy_regd(wiphy, rd); 3972 if (ret) 3973 return ret; 3974 3975 /* process the request immediately */ 3976 reg_process_self_managed_hints(); 3977 return 0; 3978 } 3979 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); 3980 3981 void wiphy_regulatory_register(struct wiphy *wiphy) 3982 { 3983 struct regulatory_request *lr = get_last_request(); 3984 3985 /* self-managed devices ignore beacon hints and country IE */ 3986 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 3987 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 3988 REGULATORY_COUNTRY_IE_IGNORE; 3989 3990 /* 3991 * The last request may have been received before this 3992 * registration call. Call the driver notifier if 3993 * initiator is USER. 3994 */ 3995 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 3996 reg_call_notifier(wiphy, lr); 3997 } 3998 3999 if (!reg_dev_ignore_cell_hint(wiphy)) 4000 reg_num_devs_support_basehint++; 4001 4002 wiphy_update_regulatory(wiphy, lr->initiator); 4003 wiphy_all_share_dfs_chan_state(wiphy); 4004 } 4005 4006 void wiphy_regulatory_deregister(struct wiphy *wiphy) 4007 { 4008 struct wiphy *request_wiphy = NULL; 4009 struct regulatory_request *lr; 4010 4011 lr = get_last_request(); 4012 4013 if (!reg_dev_ignore_cell_hint(wiphy)) 4014 reg_num_devs_support_basehint--; 4015 4016 rcu_free_regdom(get_wiphy_regdom(wiphy)); 4017 RCU_INIT_POINTER(wiphy->regd, NULL); 4018 4019 if (lr) 4020 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 4021 4022 if (!request_wiphy || request_wiphy != wiphy) 4023 return; 4024 4025 lr->wiphy_idx = WIPHY_IDX_INVALID; 4026 lr->country_ie_env = ENVIRON_ANY; 4027 } 4028 4029 /* 4030 * See FCC notices for UNII band definitions 4031 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii 4032 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0 4033 */ 4034 int cfg80211_get_unii(int freq) 4035 { 4036 /* UNII-1 */ 4037 if (freq >= 5150 && freq <= 5250) 4038 return 0; 4039 4040 /* UNII-2A */ 4041 if (freq > 5250 && freq <= 5350) 4042 return 1; 4043 4044 /* UNII-2B */ 4045 if (freq > 5350 && freq <= 5470) 4046 return 2; 4047 4048 /* UNII-2C */ 4049 if (freq > 5470 && freq <= 5725) 4050 return 3; 4051 4052 /* UNII-3 */ 4053 if (freq > 5725 && freq <= 5825) 4054 return 4; 4055 4056 /* UNII-5 */ 4057 if (freq > 5925 && freq <= 6425) 4058 return 5; 4059 4060 /* UNII-6 */ 4061 if (freq > 6425 && freq <= 6525) 4062 return 6; 4063 4064 /* UNII-7 */ 4065 if (freq > 6525 && freq <= 6875) 4066 return 7; 4067 4068 /* UNII-8 */ 4069 if (freq > 6875 && freq <= 7125) 4070 return 8; 4071 4072 return -EINVAL; 4073 } 4074 4075 bool regulatory_indoor_allowed(void) 4076 { 4077 return reg_is_indoor; 4078 } 4079 4080 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 4081 { 4082 const struct ieee80211_regdomain *regd = NULL; 4083 const struct ieee80211_regdomain *wiphy_regd = NULL; 4084 bool pre_cac_allowed = false; 4085 4086 rcu_read_lock(); 4087 4088 regd = rcu_dereference(cfg80211_regdomain); 4089 wiphy_regd = rcu_dereference(wiphy->regd); 4090 if (!wiphy_regd) { 4091 if (regd->dfs_region == NL80211_DFS_ETSI) 4092 pre_cac_allowed = true; 4093 4094 rcu_read_unlock(); 4095 4096 return pre_cac_allowed; 4097 } 4098 4099 if (regd->dfs_region == wiphy_regd->dfs_region && 4100 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 4101 pre_cac_allowed = true; 4102 4103 rcu_read_unlock(); 4104 4105 return pre_cac_allowed; 4106 } 4107 EXPORT_SYMBOL(regulatory_pre_cac_allowed); 4108 4109 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev) 4110 { 4111 struct wireless_dev *wdev; 4112 /* If we finished CAC or received radar, we should end any 4113 * CAC running on the same channels. 4114 * the check !cfg80211_chandef_dfs_usable contain 2 options: 4115 * either all channels are available - those the CAC_FINISHED 4116 * event has effected another wdev state, or there is a channel 4117 * in unavailable state in wdev chandef - those the RADAR_DETECTED 4118 * event has effected another wdev state. 4119 * In both cases we should end the CAC on the wdev. 4120 */ 4121 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 4122 if (wdev->cac_started && 4123 !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef)) 4124 rdev_end_cac(rdev, wdev->netdev); 4125 } 4126 } 4127 4128 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 4129 struct cfg80211_chan_def *chandef, 4130 enum nl80211_dfs_state dfs_state, 4131 enum nl80211_radar_event event) 4132 { 4133 struct cfg80211_registered_device *rdev; 4134 4135 ASSERT_RTNL(); 4136 4137 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 4138 return; 4139 4140 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 4141 if (wiphy == &rdev->wiphy) 4142 continue; 4143 4144 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 4145 continue; 4146 4147 if (!ieee80211_get_channel(&rdev->wiphy, 4148 chandef->chan->center_freq)) 4149 continue; 4150 4151 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 4152 4153 if (event == NL80211_RADAR_DETECTED || 4154 event == NL80211_RADAR_CAC_FINISHED) { 4155 cfg80211_sched_dfs_chan_update(rdev); 4156 cfg80211_check_and_end_cac(rdev); 4157 } 4158 4159 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 4160 } 4161 } 4162 4163 static int __init regulatory_init_db(void) 4164 { 4165 int err; 4166 4167 /* 4168 * It's possible that - due to other bugs/issues - cfg80211 4169 * never called regulatory_init() below, or that it failed; 4170 * in that case, don't try to do any further work here as 4171 * it's doomed to lead to crashes. 4172 */ 4173 if (IS_ERR_OR_NULL(reg_pdev)) 4174 return -EINVAL; 4175 4176 err = load_builtin_regdb_keys(); 4177 if (err) 4178 return err; 4179 4180 /* We always try to get an update for the static regdomain */ 4181 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 4182 if (err) { 4183 if (err == -ENOMEM) { 4184 platform_device_unregister(reg_pdev); 4185 return err; 4186 } 4187 /* 4188 * N.B. kobject_uevent_env() can fail mainly for when we're out 4189 * memory which is handled and propagated appropriately above 4190 * but it can also fail during a netlink_broadcast() or during 4191 * early boot for call_usermodehelper(). For now treat these 4192 * errors as non-fatal. 4193 */ 4194 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 4195 } 4196 4197 /* 4198 * Finally, if the user set the module parameter treat it 4199 * as a user hint. 4200 */ 4201 if (!is_world_regdom(ieee80211_regdom)) 4202 regulatory_hint_user(ieee80211_regdom, 4203 NL80211_USER_REG_HINT_USER); 4204 4205 return 0; 4206 } 4207 #ifndef MODULE 4208 late_initcall(regulatory_init_db); 4209 #endif 4210 4211 int __init regulatory_init(void) 4212 { 4213 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 4214 if (IS_ERR(reg_pdev)) 4215 return PTR_ERR(reg_pdev); 4216 4217 spin_lock_init(®_requests_lock); 4218 spin_lock_init(®_pending_beacons_lock); 4219 spin_lock_init(®_indoor_lock); 4220 4221 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 4222 4223 user_alpha2[0] = '9'; 4224 user_alpha2[1] = '7'; 4225 4226 #ifdef MODULE 4227 return regulatory_init_db(); 4228 #else 4229 return 0; 4230 #endif 4231 } 4232 4233 void regulatory_exit(void) 4234 { 4235 struct regulatory_request *reg_request, *tmp; 4236 struct reg_beacon *reg_beacon, *btmp; 4237 4238 cancel_work_sync(®_work); 4239 cancel_crda_timeout_sync(); 4240 cancel_delayed_work_sync(®_check_chans); 4241 4242 /* Lock to suppress warnings */ 4243 rtnl_lock(); 4244 reset_regdomains(true, NULL); 4245 rtnl_unlock(); 4246 4247 dev_set_uevent_suppress(®_pdev->dev, true); 4248 4249 platform_device_unregister(reg_pdev); 4250 4251 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 4252 list_del(®_beacon->list); 4253 kfree(reg_beacon); 4254 } 4255 4256 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 4257 list_del(®_beacon->list); 4258 kfree(reg_beacon); 4259 } 4260 4261 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4262 list_del(®_request->list); 4263 kfree(reg_request); 4264 } 4265 4266 if (!IS_ERR_OR_NULL(regdb)) 4267 kfree(regdb); 4268 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4269 kfree(cfg80211_user_regdom); 4270 4271 free_regdb_keyring(); 4272 } 4273