1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * 9 * Permission to use, copy, modify, and/or distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 23 /** 24 * DOC: Wireless regulatory infrastructure 25 * 26 * The usual implementation is for a driver to read a device EEPROM to 27 * determine which regulatory domain it should be operating under, then 28 * looking up the allowable channels in a driver-local table and finally 29 * registering those channels in the wiphy structure. 30 * 31 * Another set of compliance enforcement is for drivers to use their 32 * own compliance limits which can be stored on the EEPROM. The host 33 * driver or firmware may ensure these are used. 34 * 35 * In addition to all this we provide an extra layer of regulatory 36 * conformance. For drivers which do not have any regulatory 37 * information CRDA provides the complete regulatory solution. 38 * For others it provides a community effort on further restrictions 39 * to enhance compliance. 40 * 41 * Note: When number of rules --> infinity we will not be able to 42 * index on alpha2 any more, instead we'll probably have to 43 * rely on some SHA1 checksum of the regdomain for example. 44 * 45 */ 46 47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 48 49 #include <linux/kernel.h> 50 #include <linux/export.h> 51 #include <linux/slab.h> 52 #include <linux/list.h> 53 #include <linux/ctype.h> 54 #include <linux/nl80211.h> 55 #include <linux/platform_device.h> 56 #include <linux/verification.h> 57 #include <linux/moduleparam.h> 58 #include <linux/firmware.h> 59 #include <net/cfg80211.h> 60 #include "core.h" 61 #include "reg.h" 62 #include "rdev-ops.h" 63 #include "nl80211.h" 64 65 /* 66 * Grace period we give before making sure all current interfaces reside on 67 * channels allowed by the current regulatory domain. 68 */ 69 #define REG_ENFORCE_GRACE_MS 60000 70 71 /** 72 * enum reg_request_treatment - regulatory request treatment 73 * 74 * @REG_REQ_OK: continue processing the regulatory request 75 * @REG_REQ_IGNORE: ignore the regulatory request 76 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 77 * be intersected with the current one. 78 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 79 * regulatory settings, and no further processing is required. 80 */ 81 enum reg_request_treatment { 82 REG_REQ_OK, 83 REG_REQ_IGNORE, 84 REG_REQ_INTERSECT, 85 REG_REQ_ALREADY_SET, 86 }; 87 88 static struct regulatory_request core_request_world = { 89 .initiator = NL80211_REGDOM_SET_BY_CORE, 90 .alpha2[0] = '0', 91 .alpha2[1] = '0', 92 .intersect = false, 93 .processed = true, 94 .country_ie_env = ENVIRON_ANY, 95 }; 96 97 /* 98 * Receipt of information from last regulatory request, 99 * protected by RTNL (and can be accessed with RCU protection) 100 */ 101 static struct regulatory_request __rcu *last_request = 102 (void __force __rcu *)&core_request_world; 103 104 /* To trigger userspace events and load firmware */ 105 static struct platform_device *reg_pdev; 106 107 /* 108 * Central wireless core regulatory domains, we only need two, 109 * the current one and a world regulatory domain in case we have no 110 * information to give us an alpha2. 111 * (protected by RTNL, can be read under RCU) 112 */ 113 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 114 115 /* 116 * Number of devices that registered to the core 117 * that support cellular base station regulatory hints 118 * (protected by RTNL) 119 */ 120 static int reg_num_devs_support_basehint; 121 122 /* 123 * State variable indicating if the platform on which the devices 124 * are attached is operating in an indoor environment. The state variable 125 * is relevant for all registered devices. 126 */ 127 static bool reg_is_indoor; 128 static spinlock_t reg_indoor_lock; 129 130 /* Used to track the userspace process controlling the indoor setting */ 131 static u32 reg_is_indoor_portid; 132 133 static void restore_regulatory_settings(bool reset_user); 134 135 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 136 { 137 return rtnl_dereference(cfg80211_regdomain); 138 } 139 140 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 141 { 142 return rtnl_dereference(wiphy->regd); 143 } 144 145 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 146 { 147 switch (dfs_region) { 148 case NL80211_DFS_UNSET: 149 return "unset"; 150 case NL80211_DFS_FCC: 151 return "FCC"; 152 case NL80211_DFS_ETSI: 153 return "ETSI"; 154 case NL80211_DFS_JP: 155 return "JP"; 156 } 157 return "Unknown"; 158 } 159 160 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 161 { 162 const struct ieee80211_regdomain *regd = NULL; 163 const struct ieee80211_regdomain *wiphy_regd = NULL; 164 165 regd = get_cfg80211_regdom(); 166 if (!wiphy) 167 goto out; 168 169 wiphy_regd = get_wiphy_regdom(wiphy); 170 if (!wiphy_regd) 171 goto out; 172 173 if (wiphy_regd->dfs_region == regd->dfs_region) 174 goto out; 175 176 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 177 dev_name(&wiphy->dev), 178 reg_dfs_region_str(wiphy_regd->dfs_region), 179 reg_dfs_region_str(regd->dfs_region)); 180 181 out: 182 return regd->dfs_region; 183 } 184 185 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 186 { 187 if (!r) 188 return; 189 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 190 } 191 192 static struct regulatory_request *get_last_request(void) 193 { 194 return rcu_dereference_rtnl(last_request); 195 } 196 197 /* Used to queue up regulatory hints */ 198 static LIST_HEAD(reg_requests_list); 199 static spinlock_t reg_requests_lock; 200 201 /* Used to queue up beacon hints for review */ 202 static LIST_HEAD(reg_pending_beacons); 203 static spinlock_t reg_pending_beacons_lock; 204 205 /* Used to keep track of processed beacon hints */ 206 static LIST_HEAD(reg_beacon_list); 207 208 struct reg_beacon { 209 struct list_head list; 210 struct ieee80211_channel chan; 211 }; 212 213 static void reg_check_chans_work(struct work_struct *work); 214 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 215 216 static void reg_todo(struct work_struct *work); 217 static DECLARE_WORK(reg_work, reg_todo); 218 219 /* We keep a static world regulatory domain in case of the absence of CRDA */ 220 static const struct ieee80211_regdomain world_regdom = { 221 .n_reg_rules = 8, 222 .alpha2 = "00", 223 .reg_rules = { 224 /* IEEE 802.11b/g, channels 1..11 */ 225 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 226 /* IEEE 802.11b/g, channels 12..13. */ 227 REG_RULE(2467-10, 2472+10, 20, 6, 20, 228 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 229 /* IEEE 802.11 channel 14 - Only JP enables 230 * this and for 802.11b only */ 231 REG_RULE(2484-10, 2484+10, 20, 6, 20, 232 NL80211_RRF_NO_IR | 233 NL80211_RRF_NO_OFDM), 234 /* IEEE 802.11a, channel 36..48 */ 235 REG_RULE(5180-10, 5240+10, 80, 6, 20, 236 NL80211_RRF_NO_IR | 237 NL80211_RRF_AUTO_BW), 238 239 /* IEEE 802.11a, channel 52..64 - DFS required */ 240 REG_RULE(5260-10, 5320+10, 80, 6, 20, 241 NL80211_RRF_NO_IR | 242 NL80211_RRF_AUTO_BW | 243 NL80211_RRF_DFS), 244 245 /* IEEE 802.11a, channel 100..144 - DFS required */ 246 REG_RULE(5500-10, 5720+10, 160, 6, 20, 247 NL80211_RRF_NO_IR | 248 NL80211_RRF_DFS), 249 250 /* IEEE 802.11a, channel 149..165 */ 251 REG_RULE(5745-10, 5825+10, 80, 6, 20, 252 NL80211_RRF_NO_IR), 253 254 /* IEEE 802.11ad (60GHz), channels 1..3 */ 255 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 256 } 257 }; 258 259 /* protected by RTNL */ 260 static const struct ieee80211_regdomain *cfg80211_world_regdom = 261 &world_regdom; 262 263 static char *ieee80211_regdom = "00"; 264 static char user_alpha2[2]; 265 266 module_param(ieee80211_regdom, charp, 0444); 267 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 268 269 static void reg_free_request(struct regulatory_request *request) 270 { 271 if (request == &core_request_world) 272 return; 273 274 if (request != get_last_request()) 275 kfree(request); 276 } 277 278 static void reg_free_last_request(void) 279 { 280 struct regulatory_request *lr = get_last_request(); 281 282 if (lr != &core_request_world && lr) 283 kfree_rcu(lr, rcu_head); 284 } 285 286 static void reg_update_last_request(struct regulatory_request *request) 287 { 288 struct regulatory_request *lr; 289 290 lr = get_last_request(); 291 if (lr == request) 292 return; 293 294 reg_free_last_request(); 295 rcu_assign_pointer(last_request, request); 296 } 297 298 static void reset_regdomains(bool full_reset, 299 const struct ieee80211_regdomain *new_regdom) 300 { 301 const struct ieee80211_regdomain *r; 302 303 ASSERT_RTNL(); 304 305 r = get_cfg80211_regdom(); 306 307 /* avoid freeing static information or freeing something twice */ 308 if (r == cfg80211_world_regdom) 309 r = NULL; 310 if (cfg80211_world_regdom == &world_regdom) 311 cfg80211_world_regdom = NULL; 312 if (r == &world_regdom) 313 r = NULL; 314 315 rcu_free_regdom(r); 316 rcu_free_regdom(cfg80211_world_regdom); 317 318 cfg80211_world_regdom = &world_regdom; 319 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 320 321 if (!full_reset) 322 return; 323 324 reg_update_last_request(&core_request_world); 325 } 326 327 /* 328 * Dynamic world regulatory domain requested by the wireless 329 * core upon initialization 330 */ 331 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 332 { 333 struct regulatory_request *lr; 334 335 lr = get_last_request(); 336 337 WARN_ON(!lr); 338 339 reset_regdomains(false, rd); 340 341 cfg80211_world_regdom = rd; 342 } 343 344 bool is_world_regdom(const char *alpha2) 345 { 346 if (!alpha2) 347 return false; 348 return alpha2[0] == '0' && alpha2[1] == '0'; 349 } 350 351 static bool is_alpha2_set(const char *alpha2) 352 { 353 if (!alpha2) 354 return false; 355 return alpha2[0] && alpha2[1]; 356 } 357 358 static bool is_unknown_alpha2(const char *alpha2) 359 { 360 if (!alpha2) 361 return false; 362 /* 363 * Special case where regulatory domain was built by driver 364 * but a specific alpha2 cannot be determined 365 */ 366 return alpha2[0] == '9' && alpha2[1] == '9'; 367 } 368 369 static bool is_intersected_alpha2(const char *alpha2) 370 { 371 if (!alpha2) 372 return false; 373 /* 374 * Special case where regulatory domain is the 375 * result of an intersection between two regulatory domain 376 * structures 377 */ 378 return alpha2[0] == '9' && alpha2[1] == '8'; 379 } 380 381 static bool is_an_alpha2(const char *alpha2) 382 { 383 if (!alpha2) 384 return false; 385 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 386 } 387 388 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 389 { 390 if (!alpha2_x || !alpha2_y) 391 return false; 392 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 393 } 394 395 static bool regdom_changes(const char *alpha2) 396 { 397 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 398 399 if (!r) 400 return true; 401 return !alpha2_equal(r->alpha2, alpha2); 402 } 403 404 /* 405 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 406 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 407 * has ever been issued. 408 */ 409 static bool is_user_regdom_saved(void) 410 { 411 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 412 return false; 413 414 /* This would indicate a mistake on the design */ 415 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 416 "Unexpected user alpha2: %c%c\n", 417 user_alpha2[0], user_alpha2[1])) 418 return false; 419 420 return true; 421 } 422 423 static const struct ieee80211_regdomain * 424 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 425 { 426 struct ieee80211_regdomain *regd; 427 int size_of_regd; 428 unsigned int i; 429 430 size_of_regd = 431 sizeof(struct ieee80211_regdomain) + 432 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); 433 434 regd = kzalloc(size_of_regd, GFP_KERNEL); 435 if (!regd) 436 return ERR_PTR(-ENOMEM); 437 438 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 439 440 for (i = 0; i < src_regd->n_reg_rules; i++) 441 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 442 sizeof(struct ieee80211_reg_rule)); 443 444 return regd; 445 } 446 447 struct reg_regdb_apply_request { 448 struct list_head list; 449 const struct ieee80211_regdomain *regdom; 450 }; 451 452 static LIST_HEAD(reg_regdb_apply_list); 453 static DEFINE_MUTEX(reg_regdb_apply_mutex); 454 455 static void reg_regdb_apply(struct work_struct *work) 456 { 457 struct reg_regdb_apply_request *request; 458 459 rtnl_lock(); 460 461 mutex_lock(®_regdb_apply_mutex); 462 while (!list_empty(®_regdb_apply_list)) { 463 request = list_first_entry(®_regdb_apply_list, 464 struct reg_regdb_apply_request, 465 list); 466 list_del(&request->list); 467 468 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 469 kfree(request); 470 } 471 mutex_unlock(®_regdb_apply_mutex); 472 473 rtnl_unlock(); 474 } 475 476 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 477 478 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 479 { 480 struct reg_regdb_apply_request *request; 481 482 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 483 if (!request) { 484 kfree(regdom); 485 return -ENOMEM; 486 } 487 488 request->regdom = regdom; 489 490 mutex_lock(®_regdb_apply_mutex); 491 list_add_tail(&request->list, ®_regdb_apply_list); 492 mutex_unlock(®_regdb_apply_mutex); 493 494 schedule_work(®_regdb_work); 495 return 0; 496 } 497 498 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 499 /* Max number of consecutive attempts to communicate with CRDA */ 500 #define REG_MAX_CRDA_TIMEOUTS 10 501 502 static u32 reg_crda_timeouts; 503 504 static void crda_timeout_work(struct work_struct *work); 505 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 506 507 static void crda_timeout_work(struct work_struct *work) 508 { 509 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 510 rtnl_lock(); 511 reg_crda_timeouts++; 512 restore_regulatory_settings(true); 513 rtnl_unlock(); 514 } 515 516 static void cancel_crda_timeout(void) 517 { 518 cancel_delayed_work(&crda_timeout); 519 } 520 521 static void cancel_crda_timeout_sync(void) 522 { 523 cancel_delayed_work_sync(&crda_timeout); 524 } 525 526 static void reset_crda_timeouts(void) 527 { 528 reg_crda_timeouts = 0; 529 } 530 531 /* 532 * This lets us keep regulatory code which is updated on a regulatory 533 * basis in userspace. 534 */ 535 static int call_crda(const char *alpha2) 536 { 537 char country[12]; 538 char *env[] = { country, NULL }; 539 int ret; 540 541 snprintf(country, sizeof(country), "COUNTRY=%c%c", 542 alpha2[0], alpha2[1]); 543 544 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 545 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 546 return -EINVAL; 547 } 548 549 if (!is_world_regdom((char *) alpha2)) 550 pr_debug("Calling CRDA for country: %c%c\n", 551 alpha2[0], alpha2[1]); 552 else 553 pr_debug("Calling CRDA to update world regulatory domain\n"); 554 555 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 556 if (ret) 557 return ret; 558 559 queue_delayed_work(system_power_efficient_wq, 560 &crda_timeout, msecs_to_jiffies(3142)); 561 return 0; 562 } 563 #else 564 static inline void cancel_crda_timeout(void) {} 565 static inline void cancel_crda_timeout_sync(void) {} 566 static inline void reset_crda_timeouts(void) {} 567 static inline int call_crda(const char *alpha2) 568 { 569 return -ENODATA; 570 } 571 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 572 573 /* code to directly load a firmware database through request_firmware */ 574 static const struct fwdb_header *regdb; 575 576 struct fwdb_country { 577 u8 alpha2[2]; 578 __be16 coll_ptr; 579 /* this struct cannot be extended */ 580 } __packed __aligned(4); 581 582 struct fwdb_collection { 583 u8 len; 584 u8 n_rules; 585 u8 dfs_region; 586 /* no optional data yet */ 587 /* aligned to 2, then followed by __be16 array of rule pointers */ 588 } __packed __aligned(4); 589 590 enum fwdb_flags { 591 FWDB_FLAG_NO_OFDM = BIT(0), 592 FWDB_FLAG_NO_OUTDOOR = BIT(1), 593 FWDB_FLAG_DFS = BIT(2), 594 FWDB_FLAG_NO_IR = BIT(3), 595 FWDB_FLAG_AUTO_BW = BIT(4), 596 }; 597 598 struct fwdb_rule { 599 u8 len; 600 u8 flags; 601 __be16 max_eirp; 602 __be32 start, end, max_bw; 603 /* start of optional data */ 604 __be16 cac_timeout; 605 } __packed __aligned(4); 606 607 #define FWDB_MAGIC 0x52474442 608 #define FWDB_VERSION 20 609 610 struct fwdb_header { 611 __be32 magic; 612 __be32 version; 613 struct fwdb_country country[]; 614 } __packed __aligned(4); 615 616 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 617 { 618 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 619 620 if ((u8 *)rule + sizeof(rule->len) > data + size) 621 return false; 622 623 /* mandatory fields */ 624 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 625 return false; 626 627 return true; 628 } 629 630 static bool valid_country(const u8 *data, unsigned int size, 631 const struct fwdb_country *country) 632 { 633 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 634 struct fwdb_collection *coll = (void *)(data + ptr); 635 __be16 *rules_ptr; 636 unsigned int i; 637 638 /* make sure we can read len/n_rules */ 639 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 640 return false; 641 642 /* make sure base struct and all rules fit */ 643 if ((u8 *)coll + ALIGN(coll->len, 2) + 644 (coll->n_rules * 2) > data + size) 645 return false; 646 647 /* mandatory fields must exist */ 648 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 649 return false; 650 651 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 652 653 for (i = 0; i < coll->n_rules; i++) { 654 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 655 656 if (!valid_rule(data, size, rule_ptr)) 657 return false; 658 } 659 660 return true; 661 } 662 663 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 664 static struct key *builtin_regdb_keys; 665 666 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen) 667 { 668 const u8 *end = p + buflen; 669 size_t plen; 670 key_ref_t key; 671 672 while (p < end) { 673 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more 674 * than 256 bytes in size. 675 */ 676 if (end - p < 4) 677 goto dodgy_cert; 678 if (p[0] != 0x30 && 679 p[1] != 0x82) 680 goto dodgy_cert; 681 plen = (p[2] << 8) | p[3]; 682 plen += 4; 683 if (plen > end - p) 684 goto dodgy_cert; 685 686 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1), 687 "asymmetric", NULL, p, plen, 688 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 689 KEY_USR_VIEW | KEY_USR_READ), 690 KEY_ALLOC_NOT_IN_QUOTA | 691 KEY_ALLOC_BUILT_IN | 692 KEY_ALLOC_BYPASS_RESTRICTION); 693 if (IS_ERR(key)) { 694 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n", 695 PTR_ERR(key)); 696 } else { 697 pr_notice("Loaded X.509 cert '%s'\n", 698 key_ref_to_ptr(key)->description); 699 key_ref_put(key); 700 } 701 p += plen; 702 } 703 704 return; 705 706 dodgy_cert: 707 pr_err("Problem parsing in-kernel X.509 certificate list\n"); 708 } 709 710 static int __init load_builtin_regdb_keys(void) 711 { 712 builtin_regdb_keys = 713 keyring_alloc(".builtin_regdb_keys", 714 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 715 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 716 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 717 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 718 if (IS_ERR(builtin_regdb_keys)) 719 return PTR_ERR(builtin_regdb_keys); 720 721 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 722 723 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 724 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len); 725 #endif 726 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 727 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 728 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len); 729 #endif 730 731 return 0; 732 } 733 734 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 735 { 736 const struct firmware *sig; 737 bool result; 738 739 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 740 return false; 741 742 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 743 builtin_regdb_keys, 744 VERIFYING_UNSPECIFIED_SIGNATURE, 745 NULL, NULL) == 0; 746 747 release_firmware(sig); 748 749 return result; 750 } 751 752 static void free_regdb_keyring(void) 753 { 754 key_put(builtin_regdb_keys); 755 } 756 #else 757 static int load_builtin_regdb_keys(void) 758 { 759 return 0; 760 } 761 762 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 763 { 764 return true; 765 } 766 767 static void free_regdb_keyring(void) 768 { 769 } 770 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 771 772 static bool valid_regdb(const u8 *data, unsigned int size) 773 { 774 const struct fwdb_header *hdr = (void *)data; 775 const struct fwdb_country *country; 776 777 if (size < sizeof(*hdr)) 778 return false; 779 780 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 781 return false; 782 783 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 784 return false; 785 786 if (!regdb_has_valid_signature(data, size)) 787 return false; 788 789 country = &hdr->country[0]; 790 while ((u8 *)(country + 1) <= data + size) { 791 if (!country->coll_ptr) 792 break; 793 if (!valid_country(data, size, country)) 794 return false; 795 country++; 796 } 797 798 return true; 799 } 800 801 static int regdb_query_country(const struct fwdb_header *db, 802 const struct fwdb_country *country) 803 { 804 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 805 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 806 struct ieee80211_regdomain *regdom; 807 unsigned int size_of_regd; 808 unsigned int i; 809 810 size_of_regd = 811 sizeof(struct ieee80211_regdomain) + 812 coll->n_rules * sizeof(struct ieee80211_reg_rule); 813 814 regdom = kzalloc(size_of_regd, GFP_KERNEL); 815 if (!regdom) 816 return -ENOMEM; 817 818 regdom->n_reg_rules = coll->n_rules; 819 regdom->alpha2[0] = country->alpha2[0]; 820 regdom->alpha2[1] = country->alpha2[1]; 821 regdom->dfs_region = coll->dfs_region; 822 823 for (i = 0; i < regdom->n_reg_rules; i++) { 824 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 825 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 826 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 827 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 828 829 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 830 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 831 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 832 833 rrule->power_rule.max_antenna_gain = 0; 834 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 835 836 rrule->flags = 0; 837 if (rule->flags & FWDB_FLAG_NO_OFDM) 838 rrule->flags |= NL80211_RRF_NO_OFDM; 839 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 840 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 841 if (rule->flags & FWDB_FLAG_DFS) 842 rrule->flags |= NL80211_RRF_DFS; 843 if (rule->flags & FWDB_FLAG_NO_IR) 844 rrule->flags |= NL80211_RRF_NO_IR; 845 if (rule->flags & FWDB_FLAG_AUTO_BW) 846 rrule->flags |= NL80211_RRF_AUTO_BW; 847 848 rrule->dfs_cac_ms = 0; 849 850 /* handle optional data */ 851 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 852 rrule->dfs_cac_ms = 853 1000 * be16_to_cpu(rule->cac_timeout); 854 } 855 856 return reg_schedule_apply(regdom); 857 } 858 859 static int query_regdb(const char *alpha2) 860 { 861 const struct fwdb_header *hdr = regdb; 862 const struct fwdb_country *country; 863 864 ASSERT_RTNL(); 865 866 if (IS_ERR(regdb)) 867 return PTR_ERR(regdb); 868 869 country = &hdr->country[0]; 870 while (country->coll_ptr) { 871 if (alpha2_equal(alpha2, country->alpha2)) 872 return regdb_query_country(regdb, country); 873 country++; 874 } 875 876 return -ENODATA; 877 } 878 879 static void regdb_fw_cb(const struct firmware *fw, void *context) 880 { 881 int set_error = 0; 882 bool restore = true; 883 void *db; 884 885 if (!fw) { 886 pr_info("failed to load regulatory.db\n"); 887 set_error = -ENODATA; 888 } else if (!valid_regdb(fw->data, fw->size)) { 889 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 890 set_error = -EINVAL; 891 } 892 893 rtnl_lock(); 894 if (WARN_ON(regdb && !IS_ERR(regdb))) { 895 /* just restore and free new db */ 896 } else if (set_error) { 897 regdb = ERR_PTR(set_error); 898 } else if (fw) { 899 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 900 if (db) { 901 regdb = db; 902 restore = context && query_regdb(context); 903 } else { 904 restore = true; 905 } 906 } 907 908 if (restore) 909 restore_regulatory_settings(true); 910 911 rtnl_unlock(); 912 913 kfree(context); 914 915 release_firmware(fw); 916 } 917 918 static int query_regdb_file(const char *alpha2) 919 { 920 ASSERT_RTNL(); 921 922 if (regdb) 923 return query_regdb(alpha2); 924 925 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 926 if (!alpha2) 927 return -ENOMEM; 928 929 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 930 ®_pdev->dev, GFP_KERNEL, 931 (void *)alpha2, regdb_fw_cb); 932 } 933 934 int reg_reload_regdb(void) 935 { 936 const struct firmware *fw; 937 void *db; 938 int err; 939 940 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 941 if (err) 942 return err; 943 944 if (!valid_regdb(fw->data, fw->size)) { 945 err = -ENODATA; 946 goto out; 947 } 948 949 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 950 if (!db) { 951 err = -ENOMEM; 952 goto out; 953 } 954 955 rtnl_lock(); 956 if (!IS_ERR_OR_NULL(regdb)) 957 kfree(regdb); 958 regdb = db; 959 rtnl_unlock(); 960 961 out: 962 release_firmware(fw); 963 return err; 964 } 965 966 static bool reg_query_database(struct regulatory_request *request) 967 { 968 if (query_regdb_file(request->alpha2) == 0) 969 return true; 970 971 if (call_crda(request->alpha2) == 0) 972 return true; 973 974 return false; 975 } 976 977 bool reg_is_valid_request(const char *alpha2) 978 { 979 struct regulatory_request *lr = get_last_request(); 980 981 if (!lr || lr->processed) 982 return false; 983 984 return alpha2_equal(lr->alpha2, alpha2); 985 } 986 987 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 988 { 989 struct regulatory_request *lr = get_last_request(); 990 991 /* 992 * Follow the driver's regulatory domain, if present, unless a country 993 * IE has been processed or a user wants to help complaince further 994 */ 995 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 996 lr->initiator != NL80211_REGDOM_SET_BY_USER && 997 wiphy->regd) 998 return get_wiphy_regdom(wiphy); 999 1000 return get_cfg80211_regdom(); 1001 } 1002 1003 static unsigned int 1004 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1005 const struct ieee80211_reg_rule *rule) 1006 { 1007 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1008 const struct ieee80211_freq_range *freq_range_tmp; 1009 const struct ieee80211_reg_rule *tmp; 1010 u32 start_freq, end_freq, idx, no; 1011 1012 for (idx = 0; idx < rd->n_reg_rules; idx++) 1013 if (rule == &rd->reg_rules[idx]) 1014 break; 1015 1016 if (idx == rd->n_reg_rules) 1017 return 0; 1018 1019 /* get start_freq */ 1020 no = idx; 1021 1022 while (no) { 1023 tmp = &rd->reg_rules[--no]; 1024 freq_range_tmp = &tmp->freq_range; 1025 1026 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1027 break; 1028 1029 freq_range = freq_range_tmp; 1030 } 1031 1032 start_freq = freq_range->start_freq_khz; 1033 1034 /* get end_freq */ 1035 freq_range = &rule->freq_range; 1036 no = idx; 1037 1038 while (no < rd->n_reg_rules - 1) { 1039 tmp = &rd->reg_rules[++no]; 1040 freq_range_tmp = &tmp->freq_range; 1041 1042 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1043 break; 1044 1045 freq_range = freq_range_tmp; 1046 } 1047 1048 end_freq = freq_range->end_freq_khz; 1049 1050 return end_freq - start_freq; 1051 } 1052 1053 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1054 const struct ieee80211_reg_rule *rule) 1055 { 1056 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1057 1058 if (rule->flags & NL80211_RRF_NO_160MHZ) 1059 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1060 if (rule->flags & NL80211_RRF_NO_80MHZ) 1061 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1062 1063 /* 1064 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1065 * are not allowed. 1066 */ 1067 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1068 rule->flags & NL80211_RRF_NO_HT40PLUS) 1069 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1070 1071 return bw; 1072 } 1073 1074 /* Sanity check on a regulatory rule */ 1075 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1076 { 1077 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1078 u32 freq_diff; 1079 1080 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1081 return false; 1082 1083 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1084 return false; 1085 1086 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1087 1088 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1089 freq_range->max_bandwidth_khz > freq_diff) 1090 return false; 1091 1092 return true; 1093 } 1094 1095 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1096 { 1097 const struct ieee80211_reg_rule *reg_rule = NULL; 1098 unsigned int i; 1099 1100 if (!rd->n_reg_rules) 1101 return false; 1102 1103 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1104 return false; 1105 1106 for (i = 0; i < rd->n_reg_rules; i++) { 1107 reg_rule = &rd->reg_rules[i]; 1108 if (!is_valid_reg_rule(reg_rule)) 1109 return false; 1110 } 1111 1112 return true; 1113 } 1114 1115 /** 1116 * freq_in_rule_band - tells us if a frequency is in a frequency band 1117 * @freq_range: frequency rule we want to query 1118 * @freq_khz: frequency we are inquiring about 1119 * 1120 * This lets us know if a specific frequency rule is or is not relevant to 1121 * a specific frequency's band. Bands are device specific and artificial 1122 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1123 * however it is safe for now to assume that a frequency rule should not be 1124 * part of a frequency's band if the start freq or end freq are off by more 1125 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the 1126 * 60 GHz band. 1127 * This resolution can be lowered and should be considered as we add 1128 * regulatory rule support for other "bands". 1129 **/ 1130 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1131 u32 freq_khz) 1132 { 1133 #define ONE_GHZ_IN_KHZ 1000000 1134 /* 1135 * From 802.11ad: directional multi-gigabit (DMG): 1136 * Pertaining to operation in a frequency band containing a channel 1137 * with the Channel starting frequency above 45 GHz. 1138 */ 1139 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1140 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1141 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1142 return true; 1143 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1144 return true; 1145 return false; 1146 #undef ONE_GHZ_IN_KHZ 1147 } 1148 1149 /* 1150 * Later on we can perhaps use the more restrictive DFS 1151 * region but we don't have information for that yet so 1152 * for now simply disallow conflicts. 1153 */ 1154 static enum nl80211_dfs_regions 1155 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1156 const enum nl80211_dfs_regions dfs_region2) 1157 { 1158 if (dfs_region1 != dfs_region2) 1159 return NL80211_DFS_UNSET; 1160 return dfs_region1; 1161 } 1162 1163 /* 1164 * Helper for regdom_intersect(), this does the real 1165 * mathematical intersection fun 1166 */ 1167 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1168 const struct ieee80211_regdomain *rd2, 1169 const struct ieee80211_reg_rule *rule1, 1170 const struct ieee80211_reg_rule *rule2, 1171 struct ieee80211_reg_rule *intersected_rule) 1172 { 1173 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1174 struct ieee80211_freq_range *freq_range; 1175 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1176 struct ieee80211_power_rule *power_rule; 1177 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1178 1179 freq_range1 = &rule1->freq_range; 1180 freq_range2 = &rule2->freq_range; 1181 freq_range = &intersected_rule->freq_range; 1182 1183 power_rule1 = &rule1->power_rule; 1184 power_rule2 = &rule2->power_rule; 1185 power_rule = &intersected_rule->power_rule; 1186 1187 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1188 freq_range2->start_freq_khz); 1189 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1190 freq_range2->end_freq_khz); 1191 1192 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1193 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1194 1195 if (rule1->flags & NL80211_RRF_AUTO_BW) 1196 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1197 if (rule2->flags & NL80211_RRF_AUTO_BW) 1198 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1199 1200 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1201 1202 intersected_rule->flags = rule1->flags | rule2->flags; 1203 1204 /* 1205 * In case NL80211_RRF_AUTO_BW requested for both rules 1206 * set AUTO_BW in intersected rule also. Next we will 1207 * calculate BW correctly in handle_channel function. 1208 * In other case remove AUTO_BW flag while we calculate 1209 * maximum bandwidth correctly and auto calculation is 1210 * not required. 1211 */ 1212 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1213 (rule2->flags & NL80211_RRF_AUTO_BW)) 1214 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1215 else 1216 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1217 1218 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1219 if (freq_range->max_bandwidth_khz > freq_diff) 1220 freq_range->max_bandwidth_khz = freq_diff; 1221 1222 power_rule->max_eirp = min(power_rule1->max_eirp, 1223 power_rule2->max_eirp); 1224 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1225 power_rule2->max_antenna_gain); 1226 1227 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1228 rule2->dfs_cac_ms); 1229 1230 if (!is_valid_reg_rule(intersected_rule)) 1231 return -EINVAL; 1232 1233 return 0; 1234 } 1235 1236 /* check whether old rule contains new rule */ 1237 static bool rule_contains(struct ieee80211_reg_rule *r1, 1238 struct ieee80211_reg_rule *r2) 1239 { 1240 /* for simplicity, currently consider only same flags */ 1241 if (r1->flags != r2->flags) 1242 return false; 1243 1244 /* verify r1 is more restrictive */ 1245 if ((r1->power_rule.max_antenna_gain > 1246 r2->power_rule.max_antenna_gain) || 1247 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1248 return false; 1249 1250 /* make sure r2's range is contained within r1 */ 1251 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1252 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1253 return false; 1254 1255 /* and finally verify that r1.max_bw >= r2.max_bw */ 1256 if (r1->freq_range.max_bandwidth_khz < 1257 r2->freq_range.max_bandwidth_khz) 1258 return false; 1259 1260 return true; 1261 } 1262 1263 /* add or extend current rules. do nothing if rule is already contained */ 1264 static void add_rule(struct ieee80211_reg_rule *rule, 1265 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1266 { 1267 struct ieee80211_reg_rule *tmp_rule; 1268 int i; 1269 1270 for (i = 0; i < *n_rules; i++) { 1271 tmp_rule = ®_rules[i]; 1272 /* rule is already contained - do nothing */ 1273 if (rule_contains(tmp_rule, rule)) 1274 return; 1275 1276 /* extend rule if possible */ 1277 if (rule_contains(rule, tmp_rule)) { 1278 memcpy(tmp_rule, rule, sizeof(*rule)); 1279 return; 1280 } 1281 } 1282 1283 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1284 (*n_rules)++; 1285 } 1286 1287 /** 1288 * regdom_intersect - do the intersection between two regulatory domains 1289 * @rd1: first regulatory domain 1290 * @rd2: second regulatory domain 1291 * 1292 * Use this function to get the intersection between two regulatory domains. 1293 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1294 * as no one single alpha2 can represent this regulatory domain. 1295 * 1296 * Returns a pointer to the regulatory domain structure which will hold the 1297 * resulting intersection of rules between rd1 and rd2. We will 1298 * kzalloc() this structure for you. 1299 */ 1300 static struct ieee80211_regdomain * 1301 regdom_intersect(const struct ieee80211_regdomain *rd1, 1302 const struct ieee80211_regdomain *rd2) 1303 { 1304 int r, size_of_regd; 1305 unsigned int x, y; 1306 unsigned int num_rules = 0; 1307 const struct ieee80211_reg_rule *rule1, *rule2; 1308 struct ieee80211_reg_rule intersected_rule; 1309 struct ieee80211_regdomain *rd; 1310 1311 if (!rd1 || !rd2) 1312 return NULL; 1313 1314 /* 1315 * First we get a count of the rules we'll need, then we actually 1316 * build them. This is to so we can malloc() and free() a 1317 * regdomain once. The reason we use reg_rules_intersect() here 1318 * is it will return -EINVAL if the rule computed makes no sense. 1319 * All rules that do check out OK are valid. 1320 */ 1321 1322 for (x = 0; x < rd1->n_reg_rules; x++) { 1323 rule1 = &rd1->reg_rules[x]; 1324 for (y = 0; y < rd2->n_reg_rules; y++) { 1325 rule2 = &rd2->reg_rules[y]; 1326 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1327 &intersected_rule)) 1328 num_rules++; 1329 } 1330 } 1331 1332 if (!num_rules) 1333 return NULL; 1334 1335 size_of_regd = sizeof(struct ieee80211_regdomain) + 1336 num_rules * sizeof(struct ieee80211_reg_rule); 1337 1338 rd = kzalloc(size_of_regd, GFP_KERNEL); 1339 if (!rd) 1340 return NULL; 1341 1342 for (x = 0; x < rd1->n_reg_rules; x++) { 1343 rule1 = &rd1->reg_rules[x]; 1344 for (y = 0; y < rd2->n_reg_rules; y++) { 1345 rule2 = &rd2->reg_rules[y]; 1346 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1347 &intersected_rule); 1348 /* 1349 * No need to memset here the intersected rule here as 1350 * we're not using the stack anymore 1351 */ 1352 if (r) 1353 continue; 1354 1355 add_rule(&intersected_rule, rd->reg_rules, 1356 &rd->n_reg_rules); 1357 } 1358 } 1359 1360 rd->alpha2[0] = '9'; 1361 rd->alpha2[1] = '8'; 1362 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1363 rd2->dfs_region); 1364 1365 return rd; 1366 } 1367 1368 /* 1369 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1370 * want to just have the channel structure use these 1371 */ 1372 static u32 map_regdom_flags(u32 rd_flags) 1373 { 1374 u32 channel_flags = 0; 1375 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1376 channel_flags |= IEEE80211_CHAN_NO_IR; 1377 if (rd_flags & NL80211_RRF_DFS) 1378 channel_flags |= IEEE80211_CHAN_RADAR; 1379 if (rd_flags & NL80211_RRF_NO_OFDM) 1380 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1381 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1382 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1383 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1384 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1385 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1386 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1387 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1388 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1389 if (rd_flags & NL80211_RRF_NO_80MHZ) 1390 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1391 if (rd_flags & NL80211_RRF_NO_160MHZ) 1392 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1393 return channel_flags; 1394 } 1395 1396 static const struct ieee80211_reg_rule * 1397 freq_reg_info_regd(u32 center_freq, 1398 const struct ieee80211_regdomain *regd, u32 bw) 1399 { 1400 int i; 1401 bool band_rule_found = false; 1402 bool bw_fits = false; 1403 1404 if (!regd) 1405 return ERR_PTR(-EINVAL); 1406 1407 for (i = 0; i < regd->n_reg_rules; i++) { 1408 const struct ieee80211_reg_rule *rr; 1409 const struct ieee80211_freq_range *fr = NULL; 1410 1411 rr = ®d->reg_rules[i]; 1412 fr = &rr->freq_range; 1413 1414 /* 1415 * We only need to know if one frequency rule was 1416 * was in center_freq's band, that's enough, so lets 1417 * not overwrite it once found 1418 */ 1419 if (!band_rule_found) 1420 band_rule_found = freq_in_rule_band(fr, center_freq); 1421 1422 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1423 1424 if (band_rule_found && bw_fits) 1425 return rr; 1426 } 1427 1428 if (!band_rule_found) 1429 return ERR_PTR(-ERANGE); 1430 1431 return ERR_PTR(-EINVAL); 1432 } 1433 1434 static const struct ieee80211_reg_rule * 1435 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1436 { 1437 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1438 const struct ieee80211_reg_rule *reg_rule = NULL; 1439 u32 bw; 1440 1441 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 1442 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1443 if (!IS_ERR(reg_rule)) 1444 return reg_rule; 1445 } 1446 1447 return reg_rule; 1448 } 1449 1450 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1451 u32 center_freq) 1452 { 1453 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20)); 1454 } 1455 EXPORT_SYMBOL(freq_reg_info); 1456 1457 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1458 { 1459 switch (initiator) { 1460 case NL80211_REGDOM_SET_BY_CORE: 1461 return "core"; 1462 case NL80211_REGDOM_SET_BY_USER: 1463 return "user"; 1464 case NL80211_REGDOM_SET_BY_DRIVER: 1465 return "driver"; 1466 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1467 return "country IE"; 1468 default: 1469 WARN_ON(1); 1470 return "bug"; 1471 } 1472 } 1473 EXPORT_SYMBOL(reg_initiator_name); 1474 1475 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1476 const struct ieee80211_reg_rule *reg_rule, 1477 const struct ieee80211_channel *chan) 1478 { 1479 const struct ieee80211_freq_range *freq_range = NULL; 1480 u32 max_bandwidth_khz, bw_flags = 0; 1481 1482 freq_range = ®_rule->freq_range; 1483 1484 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1485 /* Check if auto calculation requested */ 1486 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1487 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1488 1489 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1490 if (!cfg80211_does_bw_fit_range(freq_range, 1491 MHZ_TO_KHZ(chan->center_freq), 1492 MHZ_TO_KHZ(10))) 1493 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1494 if (!cfg80211_does_bw_fit_range(freq_range, 1495 MHZ_TO_KHZ(chan->center_freq), 1496 MHZ_TO_KHZ(20))) 1497 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1498 1499 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1500 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1501 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1502 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1503 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1504 bw_flags |= IEEE80211_CHAN_NO_HT40; 1505 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1506 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1507 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1508 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1509 return bw_flags; 1510 } 1511 1512 /* 1513 * Note that right now we assume the desired channel bandwidth 1514 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1515 * per channel, the primary and the extension channel). 1516 */ 1517 static void handle_channel(struct wiphy *wiphy, 1518 enum nl80211_reg_initiator initiator, 1519 struct ieee80211_channel *chan) 1520 { 1521 u32 flags, bw_flags = 0; 1522 const struct ieee80211_reg_rule *reg_rule = NULL; 1523 const struct ieee80211_power_rule *power_rule = NULL; 1524 struct wiphy *request_wiphy = NULL; 1525 struct regulatory_request *lr = get_last_request(); 1526 const struct ieee80211_regdomain *regd; 1527 1528 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1529 1530 flags = chan->orig_flags; 1531 1532 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 1533 if (IS_ERR(reg_rule)) { 1534 /* 1535 * We will disable all channels that do not match our 1536 * received regulatory rule unless the hint is coming 1537 * from a Country IE and the Country IE had no information 1538 * about a band. The IEEE 802.11 spec allows for an AP 1539 * to send only a subset of the regulatory rules allowed, 1540 * so an AP in the US that only supports 2.4 GHz may only send 1541 * a country IE with information for the 2.4 GHz band 1542 * while 5 GHz is still supported. 1543 */ 1544 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1545 PTR_ERR(reg_rule) == -ERANGE) 1546 return; 1547 1548 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1549 request_wiphy && request_wiphy == wiphy && 1550 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1551 pr_debug("Disabling freq %d MHz for good\n", 1552 chan->center_freq); 1553 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1554 chan->flags = chan->orig_flags; 1555 } else { 1556 pr_debug("Disabling freq %d MHz\n", 1557 chan->center_freq); 1558 chan->flags |= IEEE80211_CHAN_DISABLED; 1559 } 1560 return; 1561 } 1562 1563 regd = reg_get_regdomain(wiphy); 1564 1565 power_rule = ®_rule->power_rule; 1566 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1567 1568 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1569 request_wiphy && request_wiphy == wiphy && 1570 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1571 /* 1572 * This guarantees the driver's requested regulatory domain 1573 * will always be used as a base for further regulatory 1574 * settings 1575 */ 1576 chan->flags = chan->orig_flags = 1577 map_regdom_flags(reg_rule->flags) | bw_flags; 1578 chan->max_antenna_gain = chan->orig_mag = 1579 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1580 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1581 (int) MBM_TO_DBM(power_rule->max_eirp); 1582 1583 if (chan->flags & IEEE80211_CHAN_RADAR) { 1584 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1585 if (reg_rule->dfs_cac_ms) 1586 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1587 } 1588 1589 return; 1590 } 1591 1592 chan->dfs_state = NL80211_DFS_USABLE; 1593 chan->dfs_state_entered = jiffies; 1594 1595 chan->beacon_found = false; 1596 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1597 chan->max_antenna_gain = 1598 min_t(int, chan->orig_mag, 1599 MBI_TO_DBI(power_rule->max_antenna_gain)); 1600 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1601 1602 if (chan->flags & IEEE80211_CHAN_RADAR) { 1603 if (reg_rule->dfs_cac_ms) 1604 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1605 else 1606 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1607 } 1608 1609 if (chan->orig_mpwr) { 1610 /* 1611 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1612 * will always follow the passed country IE power settings. 1613 */ 1614 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1615 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1616 chan->max_power = chan->max_reg_power; 1617 else 1618 chan->max_power = min(chan->orig_mpwr, 1619 chan->max_reg_power); 1620 } else 1621 chan->max_power = chan->max_reg_power; 1622 } 1623 1624 static void handle_band(struct wiphy *wiphy, 1625 enum nl80211_reg_initiator initiator, 1626 struct ieee80211_supported_band *sband) 1627 { 1628 unsigned int i; 1629 1630 if (!sband) 1631 return; 1632 1633 for (i = 0; i < sband->n_channels; i++) 1634 handle_channel(wiphy, initiator, &sband->channels[i]); 1635 } 1636 1637 static bool reg_request_cell_base(struct regulatory_request *request) 1638 { 1639 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1640 return false; 1641 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 1642 } 1643 1644 bool reg_last_request_cell_base(void) 1645 { 1646 return reg_request_cell_base(get_last_request()); 1647 } 1648 1649 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 1650 /* Core specific check */ 1651 static enum reg_request_treatment 1652 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1653 { 1654 struct regulatory_request *lr = get_last_request(); 1655 1656 if (!reg_num_devs_support_basehint) 1657 return REG_REQ_IGNORE; 1658 1659 if (reg_request_cell_base(lr) && 1660 !regdom_changes(pending_request->alpha2)) 1661 return REG_REQ_ALREADY_SET; 1662 1663 return REG_REQ_OK; 1664 } 1665 1666 /* Device specific check */ 1667 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1668 { 1669 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 1670 } 1671 #else 1672 static enum reg_request_treatment 1673 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1674 { 1675 return REG_REQ_IGNORE; 1676 } 1677 1678 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1679 { 1680 return true; 1681 } 1682 #endif 1683 1684 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 1685 { 1686 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 1687 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 1688 return true; 1689 return false; 1690 } 1691 1692 static bool ignore_reg_update(struct wiphy *wiphy, 1693 enum nl80211_reg_initiator initiator) 1694 { 1695 struct regulatory_request *lr = get_last_request(); 1696 1697 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 1698 return true; 1699 1700 if (!lr) { 1701 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 1702 reg_initiator_name(initiator)); 1703 return true; 1704 } 1705 1706 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1707 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 1708 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 1709 reg_initiator_name(initiator)); 1710 return true; 1711 } 1712 1713 /* 1714 * wiphy->regd will be set once the device has its own 1715 * desired regulatory domain set 1716 */ 1717 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1718 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1719 !is_world_regdom(lr->alpha2)) { 1720 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 1721 reg_initiator_name(initiator)); 1722 return true; 1723 } 1724 1725 if (reg_request_cell_base(lr)) 1726 return reg_dev_ignore_cell_hint(wiphy); 1727 1728 return false; 1729 } 1730 1731 static bool reg_is_world_roaming(struct wiphy *wiphy) 1732 { 1733 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1734 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1735 struct regulatory_request *lr = get_last_request(); 1736 1737 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1738 return true; 1739 1740 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1741 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1742 return true; 1743 1744 return false; 1745 } 1746 1747 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1748 struct reg_beacon *reg_beacon) 1749 { 1750 struct ieee80211_supported_band *sband; 1751 struct ieee80211_channel *chan; 1752 bool channel_changed = false; 1753 struct ieee80211_channel chan_before; 1754 1755 sband = wiphy->bands[reg_beacon->chan.band]; 1756 chan = &sband->channels[chan_idx]; 1757 1758 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1759 return; 1760 1761 if (chan->beacon_found) 1762 return; 1763 1764 chan->beacon_found = true; 1765 1766 if (!reg_is_world_roaming(wiphy)) 1767 return; 1768 1769 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 1770 return; 1771 1772 chan_before = *chan; 1773 1774 if (chan->flags & IEEE80211_CHAN_NO_IR) { 1775 chan->flags &= ~IEEE80211_CHAN_NO_IR; 1776 channel_changed = true; 1777 } 1778 1779 if (channel_changed) 1780 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1781 } 1782 1783 /* 1784 * Called when a scan on a wiphy finds a beacon on 1785 * new channel 1786 */ 1787 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1788 struct reg_beacon *reg_beacon) 1789 { 1790 unsigned int i; 1791 struct ieee80211_supported_band *sband; 1792 1793 if (!wiphy->bands[reg_beacon->chan.band]) 1794 return; 1795 1796 sband = wiphy->bands[reg_beacon->chan.band]; 1797 1798 for (i = 0; i < sband->n_channels; i++) 1799 handle_reg_beacon(wiphy, i, reg_beacon); 1800 } 1801 1802 /* 1803 * Called upon reg changes or a new wiphy is added 1804 */ 1805 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1806 { 1807 unsigned int i; 1808 struct ieee80211_supported_band *sband; 1809 struct reg_beacon *reg_beacon; 1810 1811 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1812 if (!wiphy->bands[reg_beacon->chan.band]) 1813 continue; 1814 sband = wiphy->bands[reg_beacon->chan.band]; 1815 for (i = 0; i < sband->n_channels; i++) 1816 handle_reg_beacon(wiphy, i, reg_beacon); 1817 } 1818 } 1819 1820 /* Reap the advantages of previously found beacons */ 1821 static void reg_process_beacons(struct wiphy *wiphy) 1822 { 1823 /* 1824 * Means we are just firing up cfg80211, so no beacons would 1825 * have been processed yet. 1826 */ 1827 if (!last_request) 1828 return; 1829 wiphy_update_beacon_reg(wiphy); 1830 } 1831 1832 static bool is_ht40_allowed(struct ieee80211_channel *chan) 1833 { 1834 if (!chan) 1835 return false; 1836 if (chan->flags & IEEE80211_CHAN_DISABLED) 1837 return false; 1838 /* This would happen when regulatory rules disallow HT40 completely */ 1839 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 1840 return false; 1841 return true; 1842 } 1843 1844 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1845 struct ieee80211_channel *channel) 1846 { 1847 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 1848 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1849 const struct ieee80211_regdomain *regd; 1850 unsigned int i; 1851 u32 flags; 1852 1853 if (!is_ht40_allowed(channel)) { 1854 channel->flags |= IEEE80211_CHAN_NO_HT40; 1855 return; 1856 } 1857 1858 /* 1859 * We need to ensure the extension channels exist to 1860 * be able to use HT40- or HT40+, this finds them (or not) 1861 */ 1862 for (i = 0; i < sband->n_channels; i++) { 1863 struct ieee80211_channel *c = &sband->channels[i]; 1864 1865 if (c->center_freq == (channel->center_freq - 20)) 1866 channel_before = c; 1867 if (c->center_freq == (channel->center_freq + 20)) 1868 channel_after = c; 1869 } 1870 1871 flags = 0; 1872 regd = get_wiphy_regdom(wiphy); 1873 if (regd) { 1874 const struct ieee80211_reg_rule *reg_rule = 1875 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 1876 regd, MHZ_TO_KHZ(20)); 1877 1878 if (!IS_ERR(reg_rule)) 1879 flags = reg_rule->flags; 1880 } 1881 1882 /* 1883 * Please note that this assumes target bandwidth is 20 MHz, 1884 * if that ever changes we also need to change the below logic 1885 * to include that as well. 1886 */ 1887 if (!is_ht40_allowed(channel_before) || 1888 flags & NL80211_RRF_NO_HT40MINUS) 1889 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1890 else 1891 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1892 1893 if (!is_ht40_allowed(channel_after) || 1894 flags & NL80211_RRF_NO_HT40PLUS) 1895 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1896 else 1897 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1898 } 1899 1900 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1901 struct ieee80211_supported_band *sband) 1902 { 1903 unsigned int i; 1904 1905 if (!sband) 1906 return; 1907 1908 for (i = 0; i < sband->n_channels; i++) 1909 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 1910 } 1911 1912 static void reg_process_ht_flags(struct wiphy *wiphy) 1913 { 1914 enum nl80211_band band; 1915 1916 if (!wiphy) 1917 return; 1918 1919 for (band = 0; band < NUM_NL80211_BANDS; band++) 1920 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 1921 } 1922 1923 static void reg_call_notifier(struct wiphy *wiphy, 1924 struct regulatory_request *request) 1925 { 1926 if (wiphy->reg_notifier) 1927 wiphy->reg_notifier(wiphy, request); 1928 } 1929 1930 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 1931 { 1932 struct cfg80211_chan_def chandef; 1933 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1934 enum nl80211_iftype iftype; 1935 1936 wdev_lock(wdev); 1937 iftype = wdev->iftype; 1938 1939 /* make sure the interface is active */ 1940 if (!wdev->netdev || !netif_running(wdev->netdev)) 1941 goto wdev_inactive_unlock; 1942 1943 switch (iftype) { 1944 case NL80211_IFTYPE_AP: 1945 case NL80211_IFTYPE_P2P_GO: 1946 if (!wdev->beacon_interval) 1947 goto wdev_inactive_unlock; 1948 chandef = wdev->chandef; 1949 break; 1950 case NL80211_IFTYPE_ADHOC: 1951 if (!wdev->ssid_len) 1952 goto wdev_inactive_unlock; 1953 chandef = wdev->chandef; 1954 break; 1955 case NL80211_IFTYPE_STATION: 1956 case NL80211_IFTYPE_P2P_CLIENT: 1957 if (!wdev->current_bss || 1958 !wdev->current_bss->pub.channel) 1959 goto wdev_inactive_unlock; 1960 1961 if (!rdev->ops->get_channel || 1962 rdev_get_channel(rdev, wdev, &chandef)) 1963 cfg80211_chandef_create(&chandef, 1964 wdev->current_bss->pub.channel, 1965 NL80211_CHAN_NO_HT); 1966 break; 1967 case NL80211_IFTYPE_MONITOR: 1968 case NL80211_IFTYPE_AP_VLAN: 1969 case NL80211_IFTYPE_P2P_DEVICE: 1970 /* no enforcement required */ 1971 break; 1972 default: 1973 /* others not implemented for now */ 1974 WARN_ON(1); 1975 break; 1976 } 1977 1978 wdev_unlock(wdev); 1979 1980 switch (iftype) { 1981 case NL80211_IFTYPE_AP: 1982 case NL80211_IFTYPE_P2P_GO: 1983 case NL80211_IFTYPE_ADHOC: 1984 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 1985 case NL80211_IFTYPE_STATION: 1986 case NL80211_IFTYPE_P2P_CLIENT: 1987 return cfg80211_chandef_usable(wiphy, &chandef, 1988 IEEE80211_CHAN_DISABLED); 1989 default: 1990 break; 1991 } 1992 1993 return true; 1994 1995 wdev_inactive_unlock: 1996 wdev_unlock(wdev); 1997 return true; 1998 } 1999 2000 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2001 { 2002 struct wireless_dev *wdev; 2003 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2004 2005 ASSERT_RTNL(); 2006 2007 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2008 if (!reg_wdev_chan_valid(wiphy, wdev)) 2009 cfg80211_leave(rdev, wdev); 2010 } 2011 2012 static void reg_check_chans_work(struct work_struct *work) 2013 { 2014 struct cfg80211_registered_device *rdev; 2015 2016 pr_debug("Verifying active interfaces after reg change\n"); 2017 rtnl_lock(); 2018 2019 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2020 if (!(rdev->wiphy.regulatory_flags & 2021 REGULATORY_IGNORE_STALE_KICKOFF)) 2022 reg_leave_invalid_chans(&rdev->wiphy); 2023 2024 rtnl_unlock(); 2025 } 2026 2027 static void reg_check_channels(void) 2028 { 2029 /* 2030 * Give usermode a chance to do something nicer (move to another 2031 * channel, orderly disconnection), before forcing a disconnection. 2032 */ 2033 mod_delayed_work(system_power_efficient_wq, 2034 ®_check_chans, 2035 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2036 } 2037 2038 static void wiphy_update_regulatory(struct wiphy *wiphy, 2039 enum nl80211_reg_initiator initiator) 2040 { 2041 enum nl80211_band band; 2042 struct regulatory_request *lr = get_last_request(); 2043 2044 if (ignore_reg_update(wiphy, initiator)) { 2045 /* 2046 * Regulatory updates set by CORE are ignored for custom 2047 * regulatory cards. Let us notify the changes to the driver, 2048 * as some drivers used this to restore its orig_* reg domain. 2049 */ 2050 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2051 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2052 reg_call_notifier(wiphy, lr); 2053 return; 2054 } 2055 2056 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2057 2058 for (band = 0; band < NUM_NL80211_BANDS; band++) 2059 handle_band(wiphy, initiator, wiphy->bands[band]); 2060 2061 reg_process_beacons(wiphy); 2062 reg_process_ht_flags(wiphy); 2063 reg_call_notifier(wiphy, lr); 2064 } 2065 2066 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2067 { 2068 struct cfg80211_registered_device *rdev; 2069 struct wiphy *wiphy; 2070 2071 ASSERT_RTNL(); 2072 2073 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2074 wiphy = &rdev->wiphy; 2075 wiphy_update_regulatory(wiphy, initiator); 2076 } 2077 2078 reg_check_channels(); 2079 } 2080 2081 static void handle_channel_custom(struct wiphy *wiphy, 2082 struct ieee80211_channel *chan, 2083 const struct ieee80211_regdomain *regd) 2084 { 2085 u32 bw_flags = 0; 2086 const struct ieee80211_reg_rule *reg_rule = NULL; 2087 const struct ieee80211_power_rule *power_rule = NULL; 2088 u32 bw; 2089 2090 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) { 2091 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq), 2092 regd, bw); 2093 if (!IS_ERR(reg_rule)) 2094 break; 2095 } 2096 2097 if (IS_ERR(reg_rule)) { 2098 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n", 2099 chan->center_freq); 2100 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2101 chan->flags |= IEEE80211_CHAN_DISABLED; 2102 } else { 2103 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2104 chan->flags = chan->orig_flags; 2105 } 2106 return; 2107 } 2108 2109 power_rule = ®_rule->power_rule; 2110 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2111 2112 chan->dfs_state_entered = jiffies; 2113 chan->dfs_state = NL80211_DFS_USABLE; 2114 2115 chan->beacon_found = false; 2116 2117 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2118 chan->flags = chan->orig_flags | bw_flags | 2119 map_regdom_flags(reg_rule->flags); 2120 else 2121 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2122 2123 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2124 chan->max_reg_power = chan->max_power = 2125 (int) MBM_TO_DBM(power_rule->max_eirp); 2126 2127 if (chan->flags & IEEE80211_CHAN_RADAR) { 2128 if (reg_rule->dfs_cac_ms) 2129 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2130 else 2131 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2132 } 2133 2134 chan->max_power = chan->max_reg_power; 2135 } 2136 2137 static void handle_band_custom(struct wiphy *wiphy, 2138 struct ieee80211_supported_band *sband, 2139 const struct ieee80211_regdomain *regd) 2140 { 2141 unsigned int i; 2142 2143 if (!sband) 2144 return; 2145 2146 for (i = 0; i < sband->n_channels; i++) 2147 handle_channel_custom(wiphy, &sband->channels[i], regd); 2148 } 2149 2150 /* Used by drivers prior to wiphy registration */ 2151 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2152 const struct ieee80211_regdomain *regd) 2153 { 2154 enum nl80211_band band; 2155 unsigned int bands_set = 0; 2156 2157 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2158 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2159 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2160 2161 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2162 if (!wiphy->bands[band]) 2163 continue; 2164 handle_band_custom(wiphy, wiphy->bands[band], regd); 2165 bands_set++; 2166 } 2167 2168 /* 2169 * no point in calling this if it won't have any effect 2170 * on your device's supported bands. 2171 */ 2172 WARN_ON(!bands_set); 2173 } 2174 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2175 2176 static void reg_set_request_processed(void) 2177 { 2178 bool need_more_processing = false; 2179 struct regulatory_request *lr = get_last_request(); 2180 2181 lr->processed = true; 2182 2183 spin_lock(®_requests_lock); 2184 if (!list_empty(®_requests_list)) 2185 need_more_processing = true; 2186 spin_unlock(®_requests_lock); 2187 2188 cancel_crda_timeout(); 2189 2190 if (need_more_processing) 2191 schedule_work(®_work); 2192 } 2193 2194 /** 2195 * reg_process_hint_core - process core regulatory requests 2196 * @pending_request: a pending core regulatory request 2197 * 2198 * The wireless subsystem can use this function to process 2199 * a regulatory request issued by the regulatory core. 2200 */ 2201 static enum reg_request_treatment 2202 reg_process_hint_core(struct regulatory_request *core_request) 2203 { 2204 if (reg_query_database(core_request)) { 2205 core_request->intersect = false; 2206 core_request->processed = false; 2207 reg_update_last_request(core_request); 2208 return REG_REQ_OK; 2209 } 2210 2211 return REG_REQ_IGNORE; 2212 } 2213 2214 static enum reg_request_treatment 2215 __reg_process_hint_user(struct regulatory_request *user_request) 2216 { 2217 struct regulatory_request *lr = get_last_request(); 2218 2219 if (reg_request_cell_base(user_request)) 2220 return reg_ignore_cell_hint(user_request); 2221 2222 if (reg_request_cell_base(lr)) 2223 return REG_REQ_IGNORE; 2224 2225 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2226 return REG_REQ_INTERSECT; 2227 /* 2228 * If the user knows better the user should set the regdom 2229 * to their country before the IE is picked up 2230 */ 2231 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2232 lr->intersect) 2233 return REG_REQ_IGNORE; 2234 /* 2235 * Process user requests only after previous user/driver/core 2236 * requests have been processed 2237 */ 2238 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2239 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2240 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2241 regdom_changes(lr->alpha2)) 2242 return REG_REQ_IGNORE; 2243 2244 if (!regdom_changes(user_request->alpha2)) 2245 return REG_REQ_ALREADY_SET; 2246 2247 return REG_REQ_OK; 2248 } 2249 2250 /** 2251 * reg_process_hint_user - process user regulatory requests 2252 * @user_request: a pending user regulatory request 2253 * 2254 * The wireless subsystem can use this function to process 2255 * a regulatory request initiated by userspace. 2256 */ 2257 static enum reg_request_treatment 2258 reg_process_hint_user(struct regulatory_request *user_request) 2259 { 2260 enum reg_request_treatment treatment; 2261 2262 treatment = __reg_process_hint_user(user_request); 2263 if (treatment == REG_REQ_IGNORE || 2264 treatment == REG_REQ_ALREADY_SET) 2265 return REG_REQ_IGNORE; 2266 2267 user_request->intersect = treatment == REG_REQ_INTERSECT; 2268 user_request->processed = false; 2269 2270 if (reg_query_database(user_request)) { 2271 reg_update_last_request(user_request); 2272 user_alpha2[0] = user_request->alpha2[0]; 2273 user_alpha2[1] = user_request->alpha2[1]; 2274 return REG_REQ_OK; 2275 } 2276 2277 return REG_REQ_IGNORE; 2278 } 2279 2280 static enum reg_request_treatment 2281 __reg_process_hint_driver(struct regulatory_request *driver_request) 2282 { 2283 struct regulatory_request *lr = get_last_request(); 2284 2285 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2286 if (regdom_changes(driver_request->alpha2)) 2287 return REG_REQ_OK; 2288 return REG_REQ_ALREADY_SET; 2289 } 2290 2291 /* 2292 * This would happen if you unplug and plug your card 2293 * back in or if you add a new device for which the previously 2294 * loaded card also agrees on the regulatory domain. 2295 */ 2296 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2297 !regdom_changes(driver_request->alpha2)) 2298 return REG_REQ_ALREADY_SET; 2299 2300 return REG_REQ_INTERSECT; 2301 } 2302 2303 /** 2304 * reg_process_hint_driver - process driver regulatory requests 2305 * @driver_request: a pending driver regulatory request 2306 * 2307 * The wireless subsystem can use this function to process 2308 * a regulatory request issued by an 802.11 driver. 2309 * 2310 * Returns one of the different reg request treatment values. 2311 */ 2312 static enum reg_request_treatment 2313 reg_process_hint_driver(struct wiphy *wiphy, 2314 struct regulatory_request *driver_request) 2315 { 2316 const struct ieee80211_regdomain *regd, *tmp; 2317 enum reg_request_treatment treatment; 2318 2319 treatment = __reg_process_hint_driver(driver_request); 2320 2321 switch (treatment) { 2322 case REG_REQ_OK: 2323 break; 2324 case REG_REQ_IGNORE: 2325 return REG_REQ_IGNORE; 2326 case REG_REQ_INTERSECT: 2327 case REG_REQ_ALREADY_SET: 2328 regd = reg_copy_regd(get_cfg80211_regdom()); 2329 if (IS_ERR(regd)) 2330 return REG_REQ_IGNORE; 2331 2332 tmp = get_wiphy_regdom(wiphy); 2333 rcu_assign_pointer(wiphy->regd, regd); 2334 rcu_free_regdom(tmp); 2335 } 2336 2337 2338 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2339 driver_request->processed = false; 2340 2341 /* 2342 * Since CRDA will not be called in this case as we already 2343 * have applied the requested regulatory domain before we just 2344 * inform userspace we have processed the request 2345 */ 2346 if (treatment == REG_REQ_ALREADY_SET) { 2347 nl80211_send_reg_change_event(driver_request); 2348 reg_update_last_request(driver_request); 2349 reg_set_request_processed(); 2350 return REG_REQ_ALREADY_SET; 2351 } 2352 2353 if (reg_query_database(driver_request)) { 2354 reg_update_last_request(driver_request); 2355 return REG_REQ_OK; 2356 } 2357 2358 return REG_REQ_IGNORE; 2359 } 2360 2361 static enum reg_request_treatment 2362 __reg_process_hint_country_ie(struct wiphy *wiphy, 2363 struct regulatory_request *country_ie_request) 2364 { 2365 struct wiphy *last_wiphy = NULL; 2366 struct regulatory_request *lr = get_last_request(); 2367 2368 if (reg_request_cell_base(lr)) { 2369 /* Trust a Cell base station over the AP's country IE */ 2370 if (regdom_changes(country_ie_request->alpha2)) 2371 return REG_REQ_IGNORE; 2372 return REG_REQ_ALREADY_SET; 2373 } else { 2374 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2375 return REG_REQ_IGNORE; 2376 } 2377 2378 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2379 return -EINVAL; 2380 2381 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2382 return REG_REQ_OK; 2383 2384 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2385 2386 if (last_wiphy != wiphy) { 2387 /* 2388 * Two cards with two APs claiming different 2389 * Country IE alpha2s. We could 2390 * intersect them, but that seems unlikely 2391 * to be correct. Reject second one for now. 2392 */ 2393 if (regdom_changes(country_ie_request->alpha2)) 2394 return REG_REQ_IGNORE; 2395 return REG_REQ_ALREADY_SET; 2396 } 2397 2398 if (regdom_changes(country_ie_request->alpha2)) 2399 return REG_REQ_OK; 2400 return REG_REQ_ALREADY_SET; 2401 } 2402 2403 /** 2404 * reg_process_hint_country_ie - process regulatory requests from country IEs 2405 * @country_ie_request: a regulatory request from a country IE 2406 * 2407 * The wireless subsystem can use this function to process 2408 * a regulatory request issued by a country Information Element. 2409 * 2410 * Returns one of the different reg request treatment values. 2411 */ 2412 static enum reg_request_treatment 2413 reg_process_hint_country_ie(struct wiphy *wiphy, 2414 struct regulatory_request *country_ie_request) 2415 { 2416 enum reg_request_treatment treatment; 2417 2418 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2419 2420 switch (treatment) { 2421 case REG_REQ_OK: 2422 break; 2423 case REG_REQ_IGNORE: 2424 return REG_REQ_IGNORE; 2425 case REG_REQ_ALREADY_SET: 2426 reg_free_request(country_ie_request); 2427 return REG_REQ_ALREADY_SET; 2428 case REG_REQ_INTERSECT: 2429 /* 2430 * This doesn't happen yet, not sure we 2431 * ever want to support it for this case. 2432 */ 2433 WARN_ONCE(1, "Unexpected intersection for country IEs"); 2434 return REG_REQ_IGNORE; 2435 } 2436 2437 country_ie_request->intersect = false; 2438 country_ie_request->processed = false; 2439 2440 if (reg_query_database(country_ie_request)) { 2441 reg_update_last_request(country_ie_request); 2442 return REG_REQ_OK; 2443 } 2444 2445 return REG_REQ_IGNORE; 2446 } 2447 2448 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2449 { 2450 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2451 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2452 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2453 bool dfs_domain_same; 2454 2455 rcu_read_lock(); 2456 2457 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2458 wiphy1_regd = rcu_dereference(wiphy1->regd); 2459 if (!wiphy1_regd) 2460 wiphy1_regd = cfg80211_regd; 2461 2462 wiphy2_regd = rcu_dereference(wiphy2->regd); 2463 if (!wiphy2_regd) 2464 wiphy2_regd = cfg80211_regd; 2465 2466 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2467 2468 rcu_read_unlock(); 2469 2470 return dfs_domain_same; 2471 } 2472 2473 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2474 struct ieee80211_channel *src_chan) 2475 { 2476 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2477 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2478 return; 2479 2480 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2481 src_chan->flags & IEEE80211_CHAN_DISABLED) 2482 return; 2483 2484 if (src_chan->center_freq == dst_chan->center_freq && 2485 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2486 dst_chan->dfs_state = src_chan->dfs_state; 2487 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2488 } 2489 } 2490 2491 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2492 struct wiphy *src_wiphy) 2493 { 2494 struct ieee80211_supported_band *src_sband, *dst_sband; 2495 struct ieee80211_channel *src_chan, *dst_chan; 2496 int i, j, band; 2497 2498 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2499 return; 2500 2501 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2502 dst_sband = dst_wiphy->bands[band]; 2503 src_sband = src_wiphy->bands[band]; 2504 if (!dst_sband || !src_sband) 2505 continue; 2506 2507 for (i = 0; i < dst_sband->n_channels; i++) { 2508 dst_chan = &dst_sband->channels[i]; 2509 for (j = 0; j < src_sband->n_channels; j++) { 2510 src_chan = &src_sband->channels[j]; 2511 reg_copy_dfs_chan_state(dst_chan, src_chan); 2512 } 2513 } 2514 } 2515 } 2516 2517 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2518 { 2519 struct cfg80211_registered_device *rdev; 2520 2521 ASSERT_RTNL(); 2522 2523 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2524 if (wiphy == &rdev->wiphy) 2525 continue; 2526 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2527 } 2528 } 2529 2530 /* This processes *all* regulatory hints */ 2531 static void reg_process_hint(struct regulatory_request *reg_request) 2532 { 2533 struct wiphy *wiphy = NULL; 2534 enum reg_request_treatment treatment; 2535 2536 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2537 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2538 2539 switch (reg_request->initiator) { 2540 case NL80211_REGDOM_SET_BY_CORE: 2541 treatment = reg_process_hint_core(reg_request); 2542 break; 2543 case NL80211_REGDOM_SET_BY_USER: 2544 treatment = reg_process_hint_user(reg_request); 2545 break; 2546 case NL80211_REGDOM_SET_BY_DRIVER: 2547 if (!wiphy) 2548 goto out_free; 2549 treatment = reg_process_hint_driver(wiphy, reg_request); 2550 break; 2551 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2552 if (!wiphy) 2553 goto out_free; 2554 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2555 break; 2556 default: 2557 WARN(1, "invalid initiator %d\n", reg_request->initiator); 2558 goto out_free; 2559 } 2560 2561 if (treatment == REG_REQ_IGNORE) 2562 goto out_free; 2563 2564 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 2565 "unexpected treatment value %d\n", treatment); 2566 2567 /* This is required so that the orig_* parameters are saved. 2568 * NOTE: treatment must be set for any case that reaches here! 2569 */ 2570 if (treatment == REG_REQ_ALREADY_SET && wiphy && 2571 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2572 wiphy_update_regulatory(wiphy, reg_request->initiator); 2573 wiphy_all_share_dfs_chan_state(wiphy); 2574 reg_check_channels(); 2575 } 2576 2577 return; 2578 2579 out_free: 2580 reg_free_request(reg_request); 2581 } 2582 2583 static bool reg_only_self_managed_wiphys(void) 2584 { 2585 struct cfg80211_registered_device *rdev; 2586 struct wiphy *wiphy; 2587 bool self_managed_found = false; 2588 2589 ASSERT_RTNL(); 2590 2591 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2592 wiphy = &rdev->wiphy; 2593 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2594 self_managed_found = true; 2595 else 2596 return false; 2597 } 2598 2599 /* make sure at least one self-managed wiphy exists */ 2600 return self_managed_found; 2601 } 2602 2603 /* 2604 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 2605 * Regulatory hints come on a first come first serve basis and we 2606 * must process each one atomically. 2607 */ 2608 static void reg_process_pending_hints(void) 2609 { 2610 struct regulatory_request *reg_request, *lr; 2611 2612 lr = get_last_request(); 2613 2614 /* When last_request->processed becomes true this will be rescheduled */ 2615 if (lr && !lr->processed) { 2616 reg_process_hint(lr); 2617 return; 2618 } 2619 2620 spin_lock(®_requests_lock); 2621 2622 if (list_empty(®_requests_list)) { 2623 spin_unlock(®_requests_lock); 2624 return; 2625 } 2626 2627 reg_request = list_first_entry(®_requests_list, 2628 struct regulatory_request, 2629 list); 2630 list_del_init(®_request->list); 2631 2632 spin_unlock(®_requests_lock); 2633 2634 if (reg_only_self_managed_wiphys()) { 2635 reg_free_request(reg_request); 2636 return; 2637 } 2638 2639 reg_process_hint(reg_request); 2640 2641 lr = get_last_request(); 2642 2643 spin_lock(®_requests_lock); 2644 if (!list_empty(®_requests_list) && lr && lr->processed) 2645 schedule_work(®_work); 2646 spin_unlock(®_requests_lock); 2647 } 2648 2649 /* Processes beacon hints -- this has nothing to do with country IEs */ 2650 static void reg_process_pending_beacon_hints(void) 2651 { 2652 struct cfg80211_registered_device *rdev; 2653 struct reg_beacon *pending_beacon, *tmp; 2654 2655 /* This goes through the _pending_ beacon list */ 2656 spin_lock_bh(®_pending_beacons_lock); 2657 2658 list_for_each_entry_safe(pending_beacon, tmp, 2659 ®_pending_beacons, list) { 2660 list_del_init(&pending_beacon->list); 2661 2662 /* Applies the beacon hint to current wiphys */ 2663 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2664 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 2665 2666 /* Remembers the beacon hint for new wiphys or reg changes */ 2667 list_add_tail(&pending_beacon->list, ®_beacon_list); 2668 } 2669 2670 spin_unlock_bh(®_pending_beacons_lock); 2671 } 2672 2673 static void reg_process_self_managed_hints(void) 2674 { 2675 struct cfg80211_registered_device *rdev; 2676 struct wiphy *wiphy; 2677 const struct ieee80211_regdomain *tmp; 2678 const struct ieee80211_regdomain *regd; 2679 enum nl80211_band band; 2680 struct regulatory_request request = {}; 2681 2682 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2683 wiphy = &rdev->wiphy; 2684 2685 spin_lock(®_requests_lock); 2686 regd = rdev->requested_regd; 2687 rdev->requested_regd = NULL; 2688 spin_unlock(®_requests_lock); 2689 2690 if (regd == NULL) 2691 continue; 2692 2693 tmp = get_wiphy_regdom(wiphy); 2694 rcu_assign_pointer(wiphy->regd, regd); 2695 rcu_free_regdom(tmp); 2696 2697 for (band = 0; band < NUM_NL80211_BANDS; band++) 2698 handle_band_custom(wiphy, wiphy->bands[band], regd); 2699 2700 reg_process_ht_flags(wiphy); 2701 2702 request.wiphy_idx = get_wiphy_idx(wiphy); 2703 request.alpha2[0] = regd->alpha2[0]; 2704 request.alpha2[1] = regd->alpha2[1]; 2705 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 2706 2707 nl80211_send_wiphy_reg_change_event(&request); 2708 } 2709 2710 reg_check_channels(); 2711 } 2712 2713 static void reg_todo(struct work_struct *work) 2714 { 2715 rtnl_lock(); 2716 reg_process_pending_hints(); 2717 reg_process_pending_beacon_hints(); 2718 reg_process_self_managed_hints(); 2719 rtnl_unlock(); 2720 } 2721 2722 static void queue_regulatory_request(struct regulatory_request *request) 2723 { 2724 request->alpha2[0] = toupper(request->alpha2[0]); 2725 request->alpha2[1] = toupper(request->alpha2[1]); 2726 2727 spin_lock(®_requests_lock); 2728 list_add_tail(&request->list, ®_requests_list); 2729 spin_unlock(®_requests_lock); 2730 2731 schedule_work(®_work); 2732 } 2733 2734 /* 2735 * Core regulatory hint -- happens during cfg80211_init() 2736 * and when we restore regulatory settings. 2737 */ 2738 static int regulatory_hint_core(const char *alpha2) 2739 { 2740 struct regulatory_request *request; 2741 2742 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2743 if (!request) 2744 return -ENOMEM; 2745 2746 request->alpha2[0] = alpha2[0]; 2747 request->alpha2[1] = alpha2[1]; 2748 request->initiator = NL80211_REGDOM_SET_BY_CORE; 2749 2750 queue_regulatory_request(request); 2751 2752 return 0; 2753 } 2754 2755 /* User hints */ 2756 int regulatory_hint_user(const char *alpha2, 2757 enum nl80211_user_reg_hint_type user_reg_hint_type) 2758 { 2759 struct regulatory_request *request; 2760 2761 if (WARN_ON(!alpha2)) 2762 return -EINVAL; 2763 2764 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2765 if (!request) 2766 return -ENOMEM; 2767 2768 request->wiphy_idx = WIPHY_IDX_INVALID; 2769 request->alpha2[0] = alpha2[0]; 2770 request->alpha2[1] = alpha2[1]; 2771 request->initiator = NL80211_REGDOM_SET_BY_USER; 2772 request->user_reg_hint_type = user_reg_hint_type; 2773 2774 /* Allow calling CRDA again */ 2775 reset_crda_timeouts(); 2776 2777 queue_regulatory_request(request); 2778 2779 return 0; 2780 } 2781 2782 int regulatory_hint_indoor(bool is_indoor, u32 portid) 2783 { 2784 spin_lock(®_indoor_lock); 2785 2786 /* It is possible that more than one user space process is trying to 2787 * configure the indoor setting. To handle such cases, clear the indoor 2788 * setting in case that some process does not think that the device 2789 * is operating in an indoor environment. In addition, if a user space 2790 * process indicates that it is controlling the indoor setting, save its 2791 * portid, i.e., make it the owner. 2792 */ 2793 reg_is_indoor = is_indoor; 2794 if (reg_is_indoor) { 2795 if (!reg_is_indoor_portid) 2796 reg_is_indoor_portid = portid; 2797 } else { 2798 reg_is_indoor_portid = 0; 2799 } 2800 2801 spin_unlock(®_indoor_lock); 2802 2803 if (!is_indoor) 2804 reg_check_channels(); 2805 2806 return 0; 2807 } 2808 2809 void regulatory_netlink_notify(u32 portid) 2810 { 2811 spin_lock(®_indoor_lock); 2812 2813 if (reg_is_indoor_portid != portid) { 2814 spin_unlock(®_indoor_lock); 2815 return; 2816 } 2817 2818 reg_is_indoor = false; 2819 reg_is_indoor_portid = 0; 2820 2821 spin_unlock(®_indoor_lock); 2822 2823 reg_check_channels(); 2824 } 2825 2826 /* Driver hints */ 2827 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 2828 { 2829 struct regulatory_request *request; 2830 2831 if (WARN_ON(!alpha2 || !wiphy)) 2832 return -EINVAL; 2833 2834 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 2835 2836 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2837 if (!request) 2838 return -ENOMEM; 2839 2840 request->wiphy_idx = get_wiphy_idx(wiphy); 2841 2842 request->alpha2[0] = alpha2[0]; 2843 request->alpha2[1] = alpha2[1]; 2844 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 2845 2846 /* Allow calling CRDA again */ 2847 reset_crda_timeouts(); 2848 2849 queue_regulatory_request(request); 2850 2851 return 0; 2852 } 2853 EXPORT_SYMBOL(regulatory_hint); 2854 2855 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 2856 const u8 *country_ie, u8 country_ie_len) 2857 { 2858 char alpha2[2]; 2859 enum environment_cap env = ENVIRON_ANY; 2860 struct regulatory_request *request = NULL, *lr; 2861 2862 /* IE len must be evenly divisible by 2 */ 2863 if (country_ie_len & 0x01) 2864 return; 2865 2866 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 2867 return; 2868 2869 request = kzalloc(sizeof(*request), GFP_KERNEL); 2870 if (!request) 2871 return; 2872 2873 alpha2[0] = country_ie[0]; 2874 alpha2[1] = country_ie[1]; 2875 2876 if (country_ie[2] == 'I') 2877 env = ENVIRON_INDOOR; 2878 else if (country_ie[2] == 'O') 2879 env = ENVIRON_OUTDOOR; 2880 2881 rcu_read_lock(); 2882 lr = get_last_request(); 2883 2884 if (unlikely(!lr)) 2885 goto out; 2886 2887 /* 2888 * We will run this only upon a successful connection on cfg80211. 2889 * We leave conflict resolution to the workqueue, where can hold 2890 * the RTNL. 2891 */ 2892 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2893 lr->wiphy_idx != WIPHY_IDX_INVALID) 2894 goto out; 2895 2896 request->wiphy_idx = get_wiphy_idx(wiphy); 2897 request->alpha2[0] = alpha2[0]; 2898 request->alpha2[1] = alpha2[1]; 2899 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 2900 request->country_ie_env = env; 2901 2902 /* Allow calling CRDA again */ 2903 reset_crda_timeouts(); 2904 2905 queue_regulatory_request(request); 2906 request = NULL; 2907 out: 2908 kfree(request); 2909 rcu_read_unlock(); 2910 } 2911 2912 static void restore_alpha2(char *alpha2, bool reset_user) 2913 { 2914 /* indicates there is no alpha2 to consider for restoration */ 2915 alpha2[0] = '9'; 2916 alpha2[1] = '7'; 2917 2918 /* The user setting has precedence over the module parameter */ 2919 if (is_user_regdom_saved()) { 2920 /* Unless we're asked to ignore it and reset it */ 2921 if (reset_user) { 2922 pr_debug("Restoring regulatory settings including user preference\n"); 2923 user_alpha2[0] = '9'; 2924 user_alpha2[1] = '7'; 2925 2926 /* 2927 * If we're ignoring user settings, we still need to 2928 * check the module parameter to ensure we put things 2929 * back as they were for a full restore. 2930 */ 2931 if (!is_world_regdom(ieee80211_regdom)) { 2932 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 2933 ieee80211_regdom[0], ieee80211_regdom[1]); 2934 alpha2[0] = ieee80211_regdom[0]; 2935 alpha2[1] = ieee80211_regdom[1]; 2936 } 2937 } else { 2938 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 2939 user_alpha2[0], user_alpha2[1]); 2940 alpha2[0] = user_alpha2[0]; 2941 alpha2[1] = user_alpha2[1]; 2942 } 2943 } else if (!is_world_regdom(ieee80211_regdom)) { 2944 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 2945 ieee80211_regdom[0], ieee80211_regdom[1]); 2946 alpha2[0] = ieee80211_regdom[0]; 2947 alpha2[1] = ieee80211_regdom[1]; 2948 } else 2949 pr_debug("Restoring regulatory settings\n"); 2950 } 2951 2952 static void restore_custom_reg_settings(struct wiphy *wiphy) 2953 { 2954 struct ieee80211_supported_band *sband; 2955 enum nl80211_band band; 2956 struct ieee80211_channel *chan; 2957 int i; 2958 2959 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2960 sband = wiphy->bands[band]; 2961 if (!sband) 2962 continue; 2963 for (i = 0; i < sband->n_channels; i++) { 2964 chan = &sband->channels[i]; 2965 chan->flags = chan->orig_flags; 2966 chan->max_antenna_gain = chan->orig_mag; 2967 chan->max_power = chan->orig_mpwr; 2968 chan->beacon_found = false; 2969 } 2970 } 2971 } 2972 2973 /* 2974 * Restoring regulatory settings involves ingoring any 2975 * possibly stale country IE information and user regulatory 2976 * settings if so desired, this includes any beacon hints 2977 * learned as we could have traveled outside to another country 2978 * after disconnection. To restore regulatory settings we do 2979 * exactly what we did at bootup: 2980 * 2981 * - send a core regulatory hint 2982 * - send a user regulatory hint if applicable 2983 * 2984 * Device drivers that send a regulatory hint for a specific country 2985 * keep their own regulatory domain on wiphy->regd so that does does 2986 * not need to be remembered. 2987 */ 2988 static void restore_regulatory_settings(bool reset_user) 2989 { 2990 char alpha2[2]; 2991 char world_alpha2[2]; 2992 struct reg_beacon *reg_beacon, *btmp; 2993 LIST_HEAD(tmp_reg_req_list); 2994 struct cfg80211_registered_device *rdev; 2995 2996 ASSERT_RTNL(); 2997 2998 /* 2999 * Clear the indoor setting in case that it is not controlled by user 3000 * space, as otherwise there is no guarantee that the device is still 3001 * operating in an indoor environment. 3002 */ 3003 spin_lock(®_indoor_lock); 3004 if (reg_is_indoor && !reg_is_indoor_portid) { 3005 reg_is_indoor = false; 3006 reg_check_channels(); 3007 } 3008 spin_unlock(®_indoor_lock); 3009 3010 reset_regdomains(true, &world_regdom); 3011 restore_alpha2(alpha2, reset_user); 3012 3013 /* 3014 * If there's any pending requests we simply 3015 * stash them to a temporary pending queue and 3016 * add then after we've restored regulatory 3017 * settings. 3018 */ 3019 spin_lock(®_requests_lock); 3020 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3021 spin_unlock(®_requests_lock); 3022 3023 /* Clear beacon hints */ 3024 spin_lock_bh(®_pending_beacons_lock); 3025 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3026 list_del(®_beacon->list); 3027 kfree(reg_beacon); 3028 } 3029 spin_unlock_bh(®_pending_beacons_lock); 3030 3031 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3032 list_del(®_beacon->list); 3033 kfree(reg_beacon); 3034 } 3035 3036 /* First restore to the basic regulatory settings */ 3037 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3038 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3039 3040 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3041 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3042 continue; 3043 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3044 restore_custom_reg_settings(&rdev->wiphy); 3045 } 3046 3047 regulatory_hint_core(world_alpha2); 3048 3049 /* 3050 * This restores the ieee80211_regdom module parameter 3051 * preference or the last user requested regulatory 3052 * settings, user regulatory settings takes precedence. 3053 */ 3054 if (is_an_alpha2(alpha2)) 3055 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3056 3057 spin_lock(®_requests_lock); 3058 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3059 spin_unlock(®_requests_lock); 3060 3061 pr_debug("Kicking the queue\n"); 3062 3063 schedule_work(®_work); 3064 } 3065 3066 void regulatory_hint_disconnect(void) 3067 { 3068 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3069 restore_regulatory_settings(false); 3070 } 3071 3072 static bool freq_is_chan_12_13_14(u16 freq) 3073 { 3074 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3075 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3076 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3077 return true; 3078 return false; 3079 } 3080 3081 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3082 { 3083 struct reg_beacon *pending_beacon; 3084 3085 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3086 if (beacon_chan->center_freq == 3087 pending_beacon->chan.center_freq) 3088 return true; 3089 return false; 3090 } 3091 3092 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3093 struct ieee80211_channel *beacon_chan, 3094 gfp_t gfp) 3095 { 3096 struct reg_beacon *reg_beacon; 3097 bool processing; 3098 3099 if (beacon_chan->beacon_found || 3100 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3101 (beacon_chan->band == NL80211_BAND_2GHZ && 3102 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3103 return 0; 3104 3105 spin_lock_bh(®_pending_beacons_lock); 3106 processing = pending_reg_beacon(beacon_chan); 3107 spin_unlock_bh(®_pending_beacons_lock); 3108 3109 if (processing) 3110 return 0; 3111 3112 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3113 if (!reg_beacon) 3114 return -ENOMEM; 3115 3116 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 3117 beacon_chan->center_freq, 3118 ieee80211_frequency_to_channel(beacon_chan->center_freq), 3119 wiphy_name(wiphy)); 3120 3121 memcpy(®_beacon->chan, beacon_chan, 3122 sizeof(struct ieee80211_channel)); 3123 3124 /* 3125 * Since we can be called from BH or and non-BH context 3126 * we must use spin_lock_bh() 3127 */ 3128 spin_lock_bh(®_pending_beacons_lock); 3129 list_add_tail(®_beacon->list, ®_pending_beacons); 3130 spin_unlock_bh(®_pending_beacons_lock); 3131 3132 schedule_work(®_work); 3133 3134 return 0; 3135 } 3136 3137 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3138 { 3139 unsigned int i; 3140 const struct ieee80211_reg_rule *reg_rule = NULL; 3141 const struct ieee80211_freq_range *freq_range = NULL; 3142 const struct ieee80211_power_rule *power_rule = NULL; 3143 char bw[32], cac_time[32]; 3144 3145 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3146 3147 for (i = 0; i < rd->n_reg_rules; i++) { 3148 reg_rule = &rd->reg_rules[i]; 3149 freq_range = ®_rule->freq_range; 3150 power_rule = ®_rule->power_rule; 3151 3152 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3153 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 3154 freq_range->max_bandwidth_khz, 3155 reg_get_max_bandwidth(rd, reg_rule)); 3156 else 3157 snprintf(bw, sizeof(bw), "%d KHz", 3158 freq_range->max_bandwidth_khz); 3159 3160 if (reg_rule->flags & NL80211_RRF_DFS) 3161 scnprintf(cac_time, sizeof(cac_time), "%u s", 3162 reg_rule->dfs_cac_ms/1000); 3163 else 3164 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3165 3166 3167 /* 3168 * There may not be documentation for max antenna gain 3169 * in certain regions 3170 */ 3171 if (power_rule->max_antenna_gain) 3172 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3173 freq_range->start_freq_khz, 3174 freq_range->end_freq_khz, 3175 bw, 3176 power_rule->max_antenna_gain, 3177 power_rule->max_eirp, 3178 cac_time); 3179 else 3180 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3181 freq_range->start_freq_khz, 3182 freq_range->end_freq_khz, 3183 bw, 3184 power_rule->max_eirp, 3185 cac_time); 3186 } 3187 } 3188 3189 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3190 { 3191 switch (dfs_region) { 3192 case NL80211_DFS_UNSET: 3193 case NL80211_DFS_FCC: 3194 case NL80211_DFS_ETSI: 3195 case NL80211_DFS_JP: 3196 return true; 3197 default: 3198 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region); 3199 return false; 3200 } 3201 } 3202 3203 static void print_regdomain(const struct ieee80211_regdomain *rd) 3204 { 3205 struct regulatory_request *lr = get_last_request(); 3206 3207 if (is_intersected_alpha2(rd->alpha2)) { 3208 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3209 struct cfg80211_registered_device *rdev; 3210 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3211 if (rdev) { 3212 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3213 rdev->country_ie_alpha2[0], 3214 rdev->country_ie_alpha2[1]); 3215 } else 3216 pr_debug("Current regulatory domain intersected:\n"); 3217 } else 3218 pr_debug("Current regulatory domain intersected:\n"); 3219 } else if (is_world_regdom(rd->alpha2)) { 3220 pr_debug("World regulatory domain updated:\n"); 3221 } else { 3222 if (is_unknown_alpha2(rd->alpha2)) 3223 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3224 else { 3225 if (reg_request_cell_base(lr)) 3226 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3227 rd->alpha2[0], rd->alpha2[1]); 3228 else 3229 pr_debug("Regulatory domain changed to country: %c%c\n", 3230 rd->alpha2[0], rd->alpha2[1]); 3231 } 3232 } 3233 3234 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3235 print_rd_rules(rd); 3236 } 3237 3238 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3239 { 3240 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3241 print_rd_rules(rd); 3242 } 3243 3244 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3245 { 3246 if (!is_world_regdom(rd->alpha2)) 3247 return -EINVAL; 3248 update_world_regdomain(rd); 3249 return 0; 3250 } 3251 3252 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3253 struct regulatory_request *user_request) 3254 { 3255 const struct ieee80211_regdomain *intersected_rd = NULL; 3256 3257 if (!regdom_changes(rd->alpha2)) 3258 return -EALREADY; 3259 3260 if (!is_valid_rd(rd)) { 3261 pr_err("Invalid regulatory domain detected: %c%c\n", 3262 rd->alpha2[0], rd->alpha2[1]); 3263 print_regdomain_info(rd); 3264 return -EINVAL; 3265 } 3266 3267 if (!user_request->intersect) { 3268 reset_regdomains(false, rd); 3269 return 0; 3270 } 3271 3272 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3273 if (!intersected_rd) 3274 return -EINVAL; 3275 3276 kfree(rd); 3277 rd = NULL; 3278 reset_regdomains(false, intersected_rd); 3279 3280 return 0; 3281 } 3282 3283 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3284 struct regulatory_request *driver_request) 3285 { 3286 const struct ieee80211_regdomain *regd; 3287 const struct ieee80211_regdomain *intersected_rd = NULL; 3288 const struct ieee80211_regdomain *tmp; 3289 struct wiphy *request_wiphy; 3290 3291 if (is_world_regdom(rd->alpha2)) 3292 return -EINVAL; 3293 3294 if (!regdom_changes(rd->alpha2)) 3295 return -EALREADY; 3296 3297 if (!is_valid_rd(rd)) { 3298 pr_err("Invalid regulatory domain detected: %c%c\n", 3299 rd->alpha2[0], rd->alpha2[1]); 3300 print_regdomain_info(rd); 3301 return -EINVAL; 3302 } 3303 3304 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3305 if (!request_wiphy) 3306 return -ENODEV; 3307 3308 if (!driver_request->intersect) { 3309 if (request_wiphy->regd) 3310 return -EALREADY; 3311 3312 regd = reg_copy_regd(rd); 3313 if (IS_ERR(regd)) 3314 return PTR_ERR(regd); 3315 3316 rcu_assign_pointer(request_wiphy->regd, regd); 3317 reset_regdomains(false, rd); 3318 return 0; 3319 } 3320 3321 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3322 if (!intersected_rd) 3323 return -EINVAL; 3324 3325 /* 3326 * We can trash what CRDA provided now. 3327 * However if a driver requested this specific regulatory 3328 * domain we keep it for its private use 3329 */ 3330 tmp = get_wiphy_regdom(request_wiphy); 3331 rcu_assign_pointer(request_wiphy->regd, rd); 3332 rcu_free_regdom(tmp); 3333 3334 rd = NULL; 3335 3336 reset_regdomains(false, intersected_rd); 3337 3338 return 0; 3339 } 3340 3341 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3342 struct regulatory_request *country_ie_request) 3343 { 3344 struct wiphy *request_wiphy; 3345 3346 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3347 !is_unknown_alpha2(rd->alpha2)) 3348 return -EINVAL; 3349 3350 /* 3351 * Lets only bother proceeding on the same alpha2 if the current 3352 * rd is non static (it means CRDA was present and was used last) 3353 * and the pending request came in from a country IE 3354 */ 3355 3356 if (!is_valid_rd(rd)) { 3357 pr_err("Invalid regulatory domain detected: %c%c\n", 3358 rd->alpha2[0], rd->alpha2[1]); 3359 print_regdomain_info(rd); 3360 return -EINVAL; 3361 } 3362 3363 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3364 if (!request_wiphy) 3365 return -ENODEV; 3366 3367 if (country_ie_request->intersect) 3368 return -EINVAL; 3369 3370 reset_regdomains(false, rd); 3371 return 0; 3372 } 3373 3374 /* 3375 * Use this call to set the current regulatory domain. Conflicts with 3376 * multiple drivers can be ironed out later. Caller must've already 3377 * kmalloc'd the rd structure. 3378 */ 3379 int set_regdom(const struct ieee80211_regdomain *rd, 3380 enum ieee80211_regd_source regd_src) 3381 { 3382 struct regulatory_request *lr; 3383 bool user_reset = false; 3384 int r; 3385 3386 if (!reg_is_valid_request(rd->alpha2)) { 3387 kfree(rd); 3388 return -EINVAL; 3389 } 3390 3391 if (regd_src == REGD_SOURCE_CRDA) 3392 reset_crda_timeouts(); 3393 3394 lr = get_last_request(); 3395 3396 /* Note that this doesn't update the wiphys, this is done below */ 3397 switch (lr->initiator) { 3398 case NL80211_REGDOM_SET_BY_CORE: 3399 r = reg_set_rd_core(rd); 3400 break; 3401 case NL80211_REGDOM_SET_BY_USER: 3402 r = reg_set_rd_user(rd, lr); 3403 user_reset = true; 3404 break; 3405 case NL80211_REGDOM_SET_BY_DRIVER: 3406 r = reg_set_rd_driver(rd, lr); 3407 break; 3408 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3409 r = reg_set_rd_country_ie(rd, lr); 3410 break; 3411 default: 3412 WARN(1, "invalid initiator %d\n", lr->initiator); 3413 kfree(rd); 3414 return -EINVAL; 3415 } 3416 3417 if (r) { 3418 switch (r) { 3419 case -EALREADY: 3420 reg_set_request_processed(); 3421 break; 3422 default: 3423 /* Back to world regulatory in case of errors */ 3424 restore_regulatory_settings(user_reset); 3425 } 3426 3427 kfree(rd); 3428 return r; 3429 } 3430 3431 /* This would make this whole thing pointless */ 3432 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3433 return -EINVAL; 3434 3435 /* update all wiphys now with the new established regulatory domain */ 3436 update_all_wiphy_regulatory(lr->initiator); 3437 3438 print_regdomain(get_cfg80211_regdom()); 3439 3440 nl80211_send_reg_change_event(lr); 3441 3442 reg_set_request_processed(); 3443 3444 return 0; 3445 } 3446 3447 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 3448 struct ieee80211_regdomain *rd) 3449 { 3450 const struct ieee80211_regdomain *regd; 3451 const struct ieee80211_regdomain *prev_regd; 3452 struct cfg80211_registered_device *rdev; 3453 3454 if (WARN_ON(!wiphy || !rd)) 3455 return -EINVAL; 3456 3457 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 3458 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 3459 return -EPERM; 3460 3461 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { 3462 print_regdomain_info(rd); 3463 return -EINVAL; 3464 } 3465 3466 regd = reg_copy_regd(rd); 3467 if (IS_ERR(regd)) 3468 return PTR_ERR(regd); 3469 3470 rdev = wiphy_to_rdev(wiphy); 3471 3472 spin_lock(®_requests_lock); 3473 prev_regd = rdev->requested_regd; 3474 rdev->requested_regd = regd; 3475 spin_unlock(®_requests_lock); 3476 3477 kfree(prev_regd); 3478 return 0; 3479 } 3480 3481 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 3482 struct ieee80211_regdomain *rd) 3483 { 3484 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 3485 3486 if (ret) 3487 return ret; 3488 3489 schedule_work(®_work); 3490 return 0; 3491 } 3492 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 3493 3494 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, 3495 struct ieee80211_regdomain *rd) 3496 { 3497 int ret; 3498 3499 ASSERT_RTNL(); 3500 3501 ret = __regulatory_set_wiphy_regd(wiphy, rd); 3502 if (ret) 3503 return ret; 3504 3505 /* process the request immediately */ 3506 reg_process_self_managed_hints(); 3507 return 0; 3508 } 3509 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); 3510 3511 void wiphy_regulatory_register(struct wiphy *wiphy) 3512 { 3513 struct regulatory_request *lr; 3514 3515 /* self-managed devices ignore external hints */ 3516 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3517 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 3518 REGULATORY_COUNTRY_IE_IGNORE; 3519 3520 if (!reg_dev_ignore_cell_hint(wiphy)) 3521 reg_num_devs_support_basehint++; 3522 3523 lr = get_last_request(); 3524 wiphy_update_regulatory(wiphy, lr->initiator); 3525 wiphy_all_share_dfs_chan_state(wiphy); 3526 } 3527 3528 void wiphy_regulatory_deregister(struct wiphy *wiphy) 3529 { 3530 struct wiphy *request_wiphy = NULL; 3531 struct regulatory_request *lr; 3532 3533 lr = get_last_request(); 3534 3535 if (!reg_dev_ignore_cell_hint(wiphy)) 3536 reg_num_devs_support_basehint--; 3537 3538 rcu_free_regdom(get_wiphy_regdom(wiphy)); 3539 RCU_INIT_POINTER(wiphy->regd, NULL); 3540 3541 if (lr) 3542 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 3543 3544 if (!request_wiphy || request_wiphy != wiphy) 3545 return; 3546 3547 lr->wiphy_idx = WIPHY_IDX_INVALID; 3548 lr->country_ie_env = ENVIRON_ANY; 3549 } 3550 3551 /* 3552 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for 3553 * UNII band definitions 3554 */ 3555 int cfg80211_get_unii(int freq) 3556 { 3557 /* UNII-1 */ 3558 if (freq >= 5150 && freq <= 5250) 3559 return 0; 3560 3561 /* UNII-2A */ 3562 if (freq > 5250 && freq <= 5350) 3563 return 1; 3564 3565 /* UNII-2B */ 3566 if (freq > 5350 && freq <= 5470) 3567 return 2; 3568 3569 /* UNII-2C */ 3570 if (freq > 5470 && freq <= 5725) 3571 return 3; 3572 3573 /* UNII-3 */ 3574 if (freq > 5725 && freq <= 5825) 3575 return 4; 3576 3577 return -EINVAL; 3578 } 3579 3580 bool regulatory_indoor_allowed(void) 3581 { 3582 return reg_is_indoor; 3583 } 3584 3585 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 3586 { 3587 const struct ieee80211_regdomain *regd = NULL; 3588 const struct ieee80211_regdomain *wiphy_regd = NULL; 3589 bool pre_cac_allowed = false; 3590 3591 rcu_read_lock(); 3592 3593 regd = rcu_dereference(cfg80211_regdomain); 3594 wiphy_regd = rcu_dereference(wiphy->regd); 3595 if (!wiphy_regd) { 3596 if (regd->dfs_region == NL80211_DFS_ETSI) 3597 pre_cac_allowed = true; 3598 3599 rcu_read_unlock(); 3600 3601 return pre_cac_allowed; 3602 } 3603 3604 if (regd->dfs_region == wiphy_regd->dfs_region && 3605 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 3606 pre_cac_allowed = true; 3607 3608 rcu_read_unlock(); 3609 3610 return pre_cac_allowed; 3611 } 3612 3613 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 3614 struct cfg80211_chan_def *chandef, 3615 enum nl80211_dfs_state dfs_state, 3616 enum nl80211_radar_event event) 3617 { 3618 struct cfg80211_registered_device *rdev; 3619 3620 ASSERT_RTNL(); 3621 3622 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 3623 return; 3624 3625 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3626 if (wiphy == &rdev->wiphy) 3627 continue; 3628 3629 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 3630 continue; 3631 3632 if (!ieee80211_get_channel(&rdev->wiphy, 3633 chandef->chan->center_freq)) 3634 continue; 3635 3636 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 3637 3638 if (event == NL80211_RADAR_DETECTED || 3639 event == NL80211_RADAR_CAC_FINISHED) 3640 cfg80211_sched_dfs_chan_update(rdev); 3641 3642 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 3643 } 3644 } 3645 3646 static int __init regulatory_init_db(void) 3647 { 3648 int err; 3649 3650 err = load_builtin_regdb_keys(); 3651 if (err) 3652 return err; 3653 3654 /* We always try to get an update for the static regdomain */ 3655 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 3656 if (err) { 3657 if (err == -ENOMEM) { 3658 platform_device_unregister(reg_pdev); 3659 return err; 3660 } 3661 /* 3662 * N.B. kobject_uevent_env() can fail mainly for when we're out 3663 * memory which is handled and propagated appropriately above 3664 * but it can also fail during a netlink_broadcast() or during 3665 * early boot for call_usermodehelper(). For now treat these 3666 * errors as non-fatal. 3667 */ 3668 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 3669 } 3670 3671 /* 3672 * Finally, if the user set the module parameter treat it 3673 * as a user hint. 3674 */ 3675 if (!is_world_regdom(ieee80211_regdom)) 3676 regulatory_hint_user(ieee80211_regdom, 3677 NL80211_USER_REG_HINT_USER); 3678 3679 return 0; 3680 } 3681 #ifndef MODULE 3682 late_initcall(regulatory_init_db); 3683 #endif 3684 3685 int __init regulatory_init(void) 3686 { 3687 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 3688 if (IS_ERR(reg_pdev)) 3689 return PTR_ERR(reg_pdev); 3690 3691 spin_lock_init(®_requests_lock); 3692 spin_lock_init(®_pending_beacons_lock); 3693 spin_lock_init(®_indoor_lock); 3694 3695 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 3696 3697 user_alpha2[0] = '9'; 3698 user_alpha2[1] = '7'; 3699 3700 #ifdef MODULE 3701 return regulatory_init_db(); 3702 #else 3703 return 0; 3704 #endif 3705 } 3706 3707 void regulatory_exit(void) 3708 { 3709 struct regulatory_request *reg_request, *tmp; 3710 struct reg_beacon *reg_beacon, *btmp; 3711 3712 cancel_work_sync(®_work); 3713 cancel_crda_timeout_sync(); 3714 cancel_delayed_work_sync(®_check_chans); 3715 3716 /* Lock to suppress warnings */ 3717 rtnl_lock(); 3718 reset_regdomains(true, NULL); 3719 rtnl_unlock(); 3720 3721 dev_set_uevent_suppress(®_pdev->dev, true); 3722 3723 platform_device_unregister(reg_pdev); 3724 3725 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3726 list_del(®_beacon->list); 3727 kfree(reg_beacon); 3728 } 3729 3730 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3731 list_del(®_beacon->list); 3732 kfree(reg_beacon); 3733 } 3734 3735 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 3736 list_del(®_request->list); 3737 kfree(reg_request); 3738 } 3739 3740 if (!IS_ERR_OR_NULL(regdb)) 3741 kfree(regdb); 3742 3743 free_regdb_keyring(); 3744 } 3745