xref: /openbmc/linux/net/wireless/reg.c (revision 7fe2f639)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/ctype.h>
43 #include <linux/nl80211.h>
44 #include <linux/platform_device.h>
45 #include <net/cfg80211.h>
46 #include "core.h"
47 #include "reg.h"
48 #include "regdb.h"
49 #include "nl80211.h"
50 
51 #ifdef CONFIG_CFG80211_REG_DEBUG
52 #define REG_DBG_PRINT(format, args...) \
53 	do { \
54 		printk(KERN_DEBUG pr_fmt(format), ##args);	\
55 	} while (0)
56 #else
57 #define REG_DBG_PRINT(args...)
58 #endif
59 
60 /* Receipt of information from last regulatory request */
61 static struct regulatory_request *last_request;
62 
63 /* To trigger userspace events */
64 static struct platform_device *reg_pdev;
65 
66 static struct device_type reg_device_type = {
67 	.uevent = reg_device_uevent,
68 };
69 
70 /*
71  * Central wireless core regulatory domains, we only need two,
72  * the current one and a world regulatory domain in case we have no
73  * information to give us an alpha2
74  */
75 const struct ieee80211_regdomain *cfg80211_regdomain;
76 
77 /*
78  * Protects static reg.c components:
79  *     - cfg80211_world_regdom
80  *     - cfg80211_regdom
81  *     - last_request
82  */
83 static DEFINE_MUTEX(reg_mutex);
84 
85 static inline void assert_reg_lock(void)
86 {
87 	lockdep_assert_held(&reg_mutex);
88 }
89 
90 /* Used to queue up regulatory hints */
91 static LIST_HEAD(reg_requests_list);
92 static spinlock_t reg_requests_lock;
93 
94 /* Used to queue up beacon hints for review */
95 static LIST_HEAD(reg_pending_beacons);
96 static spinlock_t reg_pending_beacons_lock;
97 
98 /* Used to keep track of processed beacon hints */
99 static LIST_HEAD(reg_beacon_list);
100 
101 struct reg_beacon {
102 	struct list_head list;
103 	struct ieee80211_channel chan;
104 };
105 
106 static void reg_todo(struct work_struct *work);
107 static DECLARE_WORK(reg_work, reg_todo);
108 
109 static void reg_timeout_work(struct work_struct *work);
110 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
111 
112 /* We keep a static world regulatory domain in case of the absence of CRDA */
113 static const struct ieee80211_regdomain world_regdom = {
114 	.n_reg_rules = 5,
115 	.alpha2 =  "00",
116 	.reg_rules = {
117 		/* IEEE 802.11b/g, channels 1..11 */
118 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
119 		/* IEEE 802.11b/g, channels 12..13. No HT40
120 		 * channel fits here. */
121 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
122 			NL80211_RRF_PASSIVE_SCAN |
123 			NL80211_RRF_NO_IBSS),
124 		/* IEEE 802.11 channel 14 - Only JP enables
125 		 * this and for 802.11b only */
126 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
127 			NL80211_RRF_PASSIVE_SCAN |
128 			NL80211_RRF_NO_IBSS |
129 			NL80211_RRF_NO_OFDM),
130 		/* IEEE 802.11a, channel 36..48 */
131 		REG_RULE(5180-10, 5240+10, 40, 6, 20,
132                         NL80211_RRF_PASSIVE_SCAN |
133                         NL80211_RRF_NO_IBSS),
134 
135 		/* NB: 5260 MHz - 5700 MHz requies DFS */
136 
137 		/* IEEE 802.11a, channel 149..165 */
138 		REG_RULE(5745-10, 5825+10, 40, 6, 20,
139 			NL80211_RRF_PASSIVE_SCAN |
140 			NL80211_RRF_NO_IBSS),
141 	}
142 };
143 
144 static const struct ieee80211_regdomain *cfg80211_world_regdom =
145 	&world_regdom;
146 
147 static char *ieee80211_regdom = "00";
148 static char user_alpha2[2];
149 
150 module_param(ieee80211_regdom, charp, 0444);
151 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
152 
153 static void reset_regdomains(void)
154 {
155 	/* avoid freeing static information or freeing something twice */
156 	if (cfg80211_regdomain == cfg80211_world_regdom)
157 		cfg80211_regdomain = NULL;
158 	if (cfg80211_world_regdom == &world_regdom)
159 		cfg80211_world_regdom = NULL;
160 	if (cfg80211_regdomain == &world_regdom)
161 		cfg80211_regdomain = NULL;
162 
163 	kfree(cfg80211_regdomain);
164 	kfree(cfg80211_world_regdom);
165 
166 	cfg80211_world_regdom = &world_regdom;
167 	cfg80211_regdomain = NULL;
168 }
169 
170 /*
171  * Dynamic world regulatory domain requested by the wireless
172  * core upon initialization
173  */
174 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
175 {
176 	BUG_ON(!last_request);
177 
178 	reset_regdomains();
179 
180 	cfg80211_world_regdom = rd;
181 	cfg80211_regdomain = rd;
182 }
183 
184 bool is_world_regdom(const char *alpha2)
185 {
186 	if (!alpha2)
187 		return false;
188 	if (alpha2[0] == '0' && alpha2[1] == '0')
189 		return true;
190 	return false;
191 }
192 
193 static bool is_alpha2_set(const char *alpha2)
194 {
195 	if (!alpha2)
196 		return false;
197 	if (alpha2[0] != 0 && alpha2[1] != 0)
198 		return true;
199 	return false;
200 }
201 
202 static bool is_unknown_alpha2(const char *alpha2)
203 {
204 	if (!alpha2)
205 		return false;
206 	/*
207 	 * Special case where regulatory domain was built by driver
208 	 * but a specific alpha2 cannot be determined
209 	 */
210 	if (alpha2[0] == '9' && alpha2[1] == '9')
211 		return true;
212 	return false;
213 }
214 
215 static bool is_intersected_alpha2(const char *alpha2)
216 {
217 	if (!alpha2)
218 		return false;
219 	/*
220 	 * Special case where regulatory domain is the
221 	 * result of an intersection between two regulatory domain
222 	 * structures
223 	 */
224 	if (alpha2[0] == '9' && alpha2[1] == '8')
225 		return true;
226 	return false;
227 }
228 
229 static bool is_an_alpha2(const char *alpha2)
230 {
231 	if (!alpha2)
232 		return false;
233 	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
234 		return true;
235 	return false;
236 }
237 
238 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
239 {
240 	if (!alpha2_x || !alpha2_y)
241 		return false;
242 	if (alpha2_x[0] == alpha2_y[0] &&
243 		alpha2_x[1] == alpha2_y[1])
244 		return true;
245 	return false;
246 }
247 
248 static bool regdom_changes(const char *alpha2)
249 {
250 	assert_cfg80211_lock();
251 
252 	if (!cfg80211_regdomain)
253 		return true;
254 	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
255 		return false;
256 	return true;
257 }
258 
259 /*
260  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
261  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
262  * has ever been issued.
263  */
264 static bool is_user_regdom_saved(void)
265 {
266 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
267 		return false;
268 
269 	/* This would indicate a mistake on the design */
270 	if (WARN((!is_world_regdom(user_alpha2) &&
271 		  !is_an_alpha2(user_alpha2)),
272 		 "Unexpected user alpha2: %c%c\n",
273 		 user_alpha2[0],
274 	         user_alpha2[1]))
275 		return false;
276 
277 	return true;
278 }
279 
280 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
281 			 const struct ieee80211_regdomain *src_regd)
282 {
283 	struct ieee80211_regdomain *regd;
284 	int size_of_regd = 0;
285 	unsigned int i;
286 
287 	size_of_regd = sizeof(struct ieee80211_regdomain) +
288 	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
289 
290 	regd = kzalloc(size_of_regd, GFP_KERNEL);
291 	if (!regd)
292 		return -ENOMEM;
293 
294 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
295 
296 	for (i = 0; i < src_regd->n_reg_rules; i++)
297 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
298 			sizeof(struct ieee80211_reg_rule));
299 
300 	*dst_regd = regd;
301 	return 0;
302 }
303 
304 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
305 struct reg_regdb_search_request {
306 	char alpha2[2];
307 	struct list_head list;
308 };
309 
310 static LIST_HEAD(reg_regdb_search_list);
311 static DEFINE_MUTEX(reg_regdb_search_mutex);
312 
313 static void reg_regdb_search(struct work_struct *work)
314 {
315 	struct reg_regdb_search_request *request;
316 	const struct ieee80211_regdomain *curdom, *regdom;
317 	int i, r;
318 
319 	mutex_lock(&reg_regdb_search_mutex);
320 	while (!list_empty(&reg_regdb_search_list)) {
321 		request = list_first_entry(&reg_regdb_search_list,
322 					   struct reg_regdb_search_request,
323 					   list);
324 		list_del(&request->list);
325 
326 		for (i=0; i<reg_regdb_size; i++) {
327 			curdom = reg_regdb[i];
328 
329 			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
330 				r = reg_copy_regd(&regdom, curdom);
331 				if (r)
332 					break;
333 				mutex_lock(&cfg80211_mutex);
334 				set_regdom(regdom);
335 				mutex_unlock(&cfg80211_mutex);
336 				break;
337 			}
338 		}
339 
340 		kfree(request);
341 	}
342 	mutex_unlock(&reg_regdb_search_mutex);
343 }
344 
345 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
346 
347 static void reg_regdb_query(const char *alpha2)
348 {
349 	struct reg_regdb_search_request *request;
350 
351 	if (!alpha2)
352 		return;
353 
354 	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
355 	if (!request)
356 		return;
357 
358 	memcpy(request->alpha2, alpha2, 2);
359 
360 	mutex_lock(&reg_regdb_search_mutex);
361 	list_add_tail(&request->list, &reg_regdb_search_list);
362 	mutex_unlock(&reg_regdb_search_mutex);
363 
364 	schedule_work(&reg_regdb_work);
365 }
366 #else
367 static inline void reg_regdb_query(const char *alpha2) {}
368 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
369 
370 /*
371  * This lets us keep regulatory code which is updated on a regulatory
372  * basis in userspace. Country information is filled in by
373  * reg_device_uevent
374  */
375 static int call_crda(const char *alpha2)
376 {
377 	if (!is_world_regdom((char *) alpha2))
378 		pr_info("Calling CRDA for country: %c%c\n",
379 			alpha2[0], alpha2[1]);
380 	else
381 		pr_info("Calling CRDA to update world regulatory domain\n");
382 
383 	/* query internal regulatory database (if it exists) */
384 	reg_regdb_query(alpha2);
385 
386 	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
387 }
388 
389 /* Used by nl80211 before kmalloc'ing our regulatory domain */
390 bool reg_is_valid_request(const char *alpha2)
391 {
392 	assert_cfg80211_lock();
393 
394 	if (!last_request)
395 		return false;
396 
397 	return alpha2_equal(last_request->alpha2, alpha2);
398 }
399 
400 /* Sanity check on a regulatory rule */
401 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
402 {
403 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
404 	u32 freq_diff;
405 
406 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
407 		return false;
408 
409 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
410 		return false;
411 
412 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
413 
414 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
415 			freq_range->max_bandwidth_khz > freq_diff)
416 		return false;
417 
418 	return true;
419 }
420 
421 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
422 {
423 	const struct ieee80211_reg_rule *reg_rule = NULL;
424 	unsigned int i;
425 
426 	if (!rd->n_reg_rules)
427 		return false;
428 
429 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
430 		return false;
431 
432 	for (i = 0; i < rd->n_reg_rules; i++) {
433 		reg_rule = &rd->reg_rules[i];
434 		if (!is_valid_reg_rule(reg_rule))
435 			return false;
436 	}
437 
438 	return true;
439 }
440 
441 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
442 			    u32 center_freq_khz,
443 			    u32 bw_khz)
444 {
445 	u32 start_freq_khz, end_freq_khz;
446 
447 	start_freq_khz = center_freq_khz - (bw_khz/2);
448 	end_freq_khz = center_freq_khz + (bw_khz/2);
449 
450 	if (start_freq_khz >= freq_range->start_freq_khz &&
451 	    end_freq_khz <= freq_range->end_freq_khz)
452 		return true;
453 
454 	return false;
455 }
456 
457 /**
458  * freq_in_rule_band - tells us if a frequency is in a frequency band
459  * @freq_range: frequency rule we want to query
460  * @freq_khz: frequency we are inquiring about
461  *
462  * This lets us know if a specific frequency rule is or is not relevant to
463  * a specific frequency's band. Bands are device specific and artificial
464  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
465  * safe for now to assume that a frequency rule should not be part of a
466  * frequency's band if the start freq or end freq are off by more than 2 GHz.
467  * This resolution can be lowered and should be considered as we add
468  * regulatory rule support for other "bands".
469  **/
470 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
471 	u32 freq_khz)
472 {
473 #define ONE_GHZ_IN_KHZ	1000000
474 	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
475 		return true;
476 	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
477 		return true;
478 	return false;
479 #undef ONE_GHZ_IN_KHZ
480 }
481 
482 /*
483  * Helper for regdom_intersect(), this does the real
484  * mathematical intersection fun
485  */
486 static int reg_rules_intersect(
487 	const struct ieee80211_reg_rule *rule1,
488 	const struct ieee80211_reg_rule *rule2,
489 	struct ieee80211_reg_rule *intersected_rule)
490 {
491 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
492 	struct ieee80211_freq_range *freq_range;
493 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
494 	struct ieee80211_power_rule *power_rule;
495 	u32 freq_diff;
496 
497 	freq_range1 = &rule1->freq_range;
498 	freq_range2 = &rule2->freq_range;
499 	freq_range = &intersected_rule->freq_range;
500 
501 	power_rule1 = &rule1->power_rule;
502 	power_rule2 = &rule2->power_rule;
503 	power_rule = &intersected_rule->power_rule;
504 
505 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
506 		freq_range2->start_freq_khz);
507 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
508 		freq_range2->end_freq_khz);
509 	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
510 		freq_range2->max_bandwidth_khz);
511 
512 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
513 	if (freq_range->max_bandwidth_khz > freq_diff)
514 		freq_range->max_bandwidth_khz = freq_diff;
515 
516 	power_rule->max_eirp = min(power_rule1->max_eirp,
517 		power_rule2->max_eirp);
518 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
519 		power_rule2->max_antenna_gain);
520 
521 	intersected_rule->flags = (rule1->flags | rule2->flags);
522 
523 	if (!is_valid_reg_rule(intersected_rule))
524 		return -EINVAL;
525 
526 	return 0;
527 }
528 
529 /**
530  * regdom_intersect - do the intersection between two regulatory domains
531  * @rd1: first regulatory domain
532  * @rd2: second regulatory domain
533  *
534  * Use this function to get the intersection between two regulatory domains.
535  * Once completed we will mark the alpha2 for the rd as intersected, "98",
536  * as no one single alpha2 can represent this regulatory domain.
537  *
538  * Returns a pointer to the regulatory domain structure which will hold the
539  * resulting intersection of rules between rd1 and rd2. We will
540  * kzalloc() this structure for you.
541  */
542 static struct ieee80211_regdomain *regdom_intersect(
543 	const struct ieee80211_regdomain *rd1,
544 	const struct ieee80211_regdomain *rd2)
545 {
546 	int r, size_of_regd;
547 	unsigned int x, y;
548 	unsigned int num_rules = 0, rule_idx = 0;
549 	const struct ieee80211_reg_rule *rule1, *rule2;
550 	struct ieee80211_reg_rule *intersected_rule;
551 	struct ieee80211_regdomain *rd;
552 	/* This is just a dummy holder to help us count */
553 	struct ieee80211_reg_rule irule;
554 
555 	/* Uses the stack temporarily for counter arithmetic */
556 	intersected_rule = &irule;
557 
558 	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
559 
560 	if (!rd1 || !rd2)
561 		return NULL;
562 
563 	/*
564 	 * First we get a count of the rules we'll need, then we actually
565 	 * build them. This is to so we can malloc() and free() a
566 	 * regdomain once. The reason we use reg_rules_intersect() here
567 	 * is it will return -EINVAL if the rule computed makes no sense.
568 	 * All rules that do check out OK are valid.
569 	 */
570 
571 	for (x = 0; x < rd1->n_reg_rules; x++) {
572 		rule1 = &rd1->reg_rules[x];
573 		for (y = 0; y < rd2->n_reg_rules; y++) {
574 			rule2 = &rd2->reg_rules[y];
575 			if (!reg_rules_intersect(rule1, rule2,
576 					intersected_rule))
577 				num_rules++;
578 			memset(intersected_rule, 0,
579 					sizeof(struct ieee80211_reg_rule));
580 		}
581 	}
582 
583 	if (!num_rules)
584 		return NULL;
585 
586 	size_of_regd = sizeof(struct ieee80211_regdomain) +
587 		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
588 
589 	rd = kzalloc(size_of_regd, GFP_KERNEL);
590 	if (!rd)
591 		return NULL;
592 
593 	for (x = 0; x < rd1->n_reg_rules; x++) {
594 		rule1 = &rd1->reg_rules[x];
595 		for (y = 0; y < rd2->n_reg_rules; y++) {
596 			rule2 = &rd2->reg_rules[y];
597 			/*
598 			 * This time around instead of using the stack lets
599 			 * write to the target rule directly saving ourselves
600 			 * a memcpy()
601 			 */
602 			intersected_rule = &rd->reg_rules[rule_idx];
603 			r = reg_rules_intersect(rule1, rule2,
604 				intersected_rule);
605 			/*
606 			 * No need to memset here the intersected rule here as
607 			 * we're not using the stack anymore
608 			 */
609 			if (r)
610 				continue;
611 			rule_idx++;
612 		}
613 	}
614 
615 	if (rule_idx != num_rules) {
616 		kfree(rd);
617 		return NULL;
618 	}
619 
620 	rd->n_reg_rules = num_rules;
621 	rd->alpha2[0] = '9';
622 	rd->alpha2[1] = '8';
623 
624 	return rd;
625 }
626 
627 /*
628  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
629  * want to just have the channel structure use these
630  */
631 static u32 map_regdom_flags(u32 rd_flags)
632 {
633 	u32 channel_flags = 0;
634 	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
635 		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
636 	if (rd_flags & NL80211_RRF_NO_IBSS)
637 		channel_flags |= IEEE80211_CHAN_NO_IBSS;
638 	if (rd_flags & NL80211_RRF_DFS)
639 		channel_flags |= IEEE80211_CHAN_RADAR;
640 	return channel_flags;
641 }
642 
643 static int freq_reg_info_regd(struct wiphy *wiphy,
644 			      u32 center_freq,
645 			      u32 desired_bw_khz,
646 			      const struct ieee80211_reg_rule **reg_rule,
647 			      const struct ieee80211_regdomain *custom_regd)
648 {
649 	int i;
650 	bool band_rule_found = false;
651 	const struct ieee80211_regdomain *regd;
652 	bool bw_fits = false;
653 
654 	if (!desired_bw_khz)
655 		desired_bw_khz = MHZ_TO_KHZ(20);
656 
657 	regd = custom_regd ? custom_regd : cfg80211_regdomain;
658 
659 	/*
660 	 * Follow the driver's regulatory domain, if present, unless a country
661 	 * IE has been processed or a user wants to help complaince further
662 	 */
663 	if (!custom_regd &&
664 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
665 	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
666 	    wiphy->regd)
667 		regd = wiphy->regd;
668 
669 	if (!regd)
670 		return -EINVAL;
671 
672 	for (i = 0; i < regd->n_reg_rules; i++) {
673 		const struct ieee80211_reg_rule *rr;
674 		const struct ieee80211_freq_range *fr = NULL;
675 
676 		rr = &regd->reg_rules[i];
677 		fr = &rr->freq_range;
678 
679 		/*
680 		 * We only need to know if one frequency rule was
681 		 * was in center_freq's band, that's enough, so lets
682 		 * not overwrite it once found
683 		 */
684 		if (!band_rule_found)
685 			band_rule_found = freq_in_rule_band(fr, center_freq);
686 
687 		bw_fits = reg_does_bw_fit(fr,
688 					  center_freq,
689 					  desired_bw_khz);
690 
691 		if (band_rule_found && bw_fits) {
692 			*reg_rule = rr;
693 			return 0;
694 		}
695 	}
696 
697 	if (!band_rule_found)
698 		return -ERANGE;
699 
700 	return -EINVAL;
701 }
702 
703 int freq_reg_info(struct wiphy *wiphy,
704 		  u32 center_freq,
705 		  u32 desired_bw_khz,
706 		  const struct ieee80211_reg_rule **reg_rule)
707 {
708 	assert_cfg80211_lock();
709 	return freq_reg_info_regd(wiphy,
710 				  center_freq,
711 				  desired_bw_khz,
712 				  reg_rule,
713 				  NULL);
714 }
715 EXPORT_SYMBOL(freq_reg_info);
716 
717 #ifdef CONFIG_CFG80211_REG_DEBUG
718 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
719 {
720 	switch (initiator) {
721 	case NL80211_REGDOM_SET_BY_CORE:
722 		return "Set by core";
723 	case NL80211_REGDOM_SET_BY_USER:
724 		return "Set by user";
725 	case NL80211_REGDOM_SET_BY_DRIVER:
726 		return "Set by driver";
727 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
728 		return "Set by country IE";
729 	default:
730 		WARN_ON(1);
731 		return "Set by bug";
732 	}
733 }
734 
735 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
736 				    u32 desired_bw_khz,
737 				    const struct ieee80211_reg_rule *reg_rule)
738 {
739 	const struct ieee80211_power_rule *power_rule;
740 	const struct ieee80211_freq_range *freq_range;
741 	char max_antenna_gain[32];
742 
743 	power_rule = &reg_rule->power_rule;
744 	freq_range = &reg_rule->freq_range;
745 
746 	if (!power_rule->max_antenna_gain)
747 		snprintf(max_antenna_gain, 32, "N/A");
748 	else
749 		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
750 
751 	REG_DBG_PRINT("Updating information on frequency %d MHz "
752 		      "for a %d MHz width channel with regulatory rule:\n",
753 		      chan->center_freq,
754 		      KHZ_TO_MHZ(desired_bw_khz));
755 
756 	REG_DBG_PRINT("%d KHz - %d KHz @  KHz), (%s mBi, %d mBm)\n",
757 		      freq_range->start_freq_khz,
758 		      freq_range->end_freq_khz,
759 		      max_antenna_gain,
760 		      power_rule->max_eirp);
761 }
762 #else
763 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
764 				    u32 desired_bw_khz,
765 				    const struct ieee80211_reg_rule *reg_rule)
766 {
767 	return;
768 }
769 #endif
770 
771 /*
772  * Note that right now we assume the desired channel bandwidth
773  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
774  * per channel, the primary and the extension channel). To support
775  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
776  * new ieee80211_channel.target_bw and re run the regulatory check
777  * on the wiphy with the target_bw specified. Then we can simply use
778  * that below for the desired_bw_khz below.
779  */
780 static void handle_channel(struct wiphy *wiphy,
781 			   enum nl80211_reg_initiator initiator,
782 			   enum ieee80211_band band,
783 			   unsigned int chan_idx)
784 {
785 	int r;
786 	u32 flags, bw_flags = 0;
787 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
788 	const struct ieee80211_reg_rule *reg_rule = NULL;
789 	const struct ieee80211_power_rule *power_rule = NULL;
790 	const struct ieee80211_freq_range *freq_range = NULL;
791 	struct ieee80211_supported_band *sband;
792 	struct ieee80211_channel *chan;
793 	struct wiphy *request_wiphy = NULL;
794 
795 	assert_cfg80211_lock();
796 
797 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
798 
799 	sband = wiphy->bands[band];
800 	BUG_ON(chan_idx >= sband->n_channels);
801 	chan = &sband->channels[chan_idx];
802 
803 	flags = chan->orig_flags;
804 
805 	r = freq_reg_info(wiphy,
806 			  MHZ_TO_KHZ(chan->center_freq),
807 			  desired_bw_khz,
808 			  &reg_rule);
809 
810 	if (r) {
811 		/*
812 		 * We will disable all channels that do not match our
813 		 * received regulatory rule unless the hint is coming
814 		 * from a Country IE and the Country IE had no information
815 		 * about a band. The IEEE 802.11 spec allows for an AP
816 		 * to send only a subset of the regulatory rules allowed,
817 		 * so an AP in the US that only supports 2.4 GHz may only send
818 		 * a country IE with information for the 2.4 GHz band
819 		 * while 5 GHz is still supported.
820 		 */
821 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
822 		    r == -ERANGE)
823 			return;
824 
825 		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
826 		chan->flags = IEEE80211_CHAN_DISABLED;
827 		return;
828 	}
829 
830 	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
831 
832 	power_rule = &reg_rule->power_rule;
833 	freq_range = &reg_rule->freq_range;
834 
835 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
836 		bw_flags = IEEE80211_CHAN_NO_HT40;
837 
838 	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
839 	    request_wiphy && request_wiphy == wiphy &&
840 	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
841 		/*
842 		 * This guarantees the driver's requested regulatory domain
843 		 * will always be used as a base for further regulatory
844 		 * settings
845 		 */
846 		chan->flags = chan->orig_flags =
847 			map_regdom_flags(reg_rule->flags) | bw_flags;
848 		chan->max_antenna_gain = chan->orig_mag =
849 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
850 		chan->max_power = chan->orig_mpwr =
851 			(int) MBM_TO_DBM(power_rule->max_eirp);
852 		return;
853 	}
854 
855 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
856 	chan->max_antenna_gain = min(chan->orig_mag,
857 		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
858 	if (chan->orig_mpwr)
859 		chan->max_power = min(chan->orig_mpwr,
860 			(int) MBM_TO_DBM(power_rule->max_eirp));
861 	else
862 		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
863 }
864 
865 static void handle_band(struct wiphy *wiphy,
866 			enum ieee80211_band band,
867 			enum nl80211_reg_initiator initiator)
868 {
869 	unsigned int i;
870 	struct ieee80211_supported_band *sband;
871 
872 	BUG_ON(!wiphy->bands[band]);
873 	sband = wiphy->bands[band];
874 
875 	for (i = 0; i < sband->n_channels; i++)
876 		handle_channel(wiphy, initiator, band, i);
877 }
878 
879 static bool ignore_reg_update(struct wiphy *wiphy,
880 			      enum nl80211_reg_initiator initiator)
881 {
882 	if (!last_request) {
883 		REG_DBG_PRINT("Ignoring regulatory request %s since "
884 			      "last_request is not set\n",
885 			      reg_initiator_name(initiator));
886 		return true;
887 	}
888 
889 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
890 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
891 		REG_DBG_PRINT("Ignoring regulatory request %s "
892 			      "since the driver uses its own custom "
893 			      "regulatory domain ",
894 			      reg_initiator_name(initiator));
895 		return true;
896 	}
897 
898 	/*
899 	 * wiphy->regd will be set once the device has its own
900 	 * desired regulatory domain set
901 	 */
902 	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
903 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
904 	    !is_world_regdom(last_request->alpha2)) {
905 		REG_DBG_PRINT("Ignoring regulatory request %s "
906 			      "since the driver requires its own regulaotry "
907 			      "domain to be set first",
908 			      reg_initiator_name(initiator));
909 		return true;
910 	}
911 
912 	return false;
913 }
914 
915 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
916 {
917 	struct cfg80211_registered_device *rdev;
918 
919 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
920 		wiphy_update_regulatory(&rdev->wiphy, initiator);
921 }
922 
923 static void handle_reg_beacon(struct wiphy *wiphy,
924 			      unsigned int chan_idx,
925 			      struct reg_beacon *reg_beacon)
926 {
927 	struct ieee80211_supported_band *sband;
928 	struct ieee80211_channel *chan;
929 	bool channel_changed = false;
930 	struct ieee80211_channel chan_before;
931 
932 	assert_cfg80211_lock();
933 
934 	sband = wiphy->bands[reg_beacon->chan.band];
935 	chan = &sband->channels[chan_idx];
936 
937 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
938 		return;
939 
940 	if (chan->beacon_found)
941 		return;
942 
943 	chan->beacon_found = true;
944 
945 	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
946 		return;
947 
948 	chan_before.center_freq = chan->center_freq;
949 	chan_before.flags = chan->flags;
950 
951 	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
952 		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
953 		channel_changed = true;
954 	}
955 
956 	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
957 		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
958 		channel_changed = true;
959 	}
960 
961 	if (channel_changed)
962 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
963 }
964 
965 /*
966  * Called when a scan on a wiphy finds a beacon on
967  * new channel
968  */
969 static void wiphy_update_new_beacon(struct wiphy *wiphy,
970 				    struct reg_beacon *reg_beacon)
971 {
972 	unsigned int i;
973 	struct ieee80211_supported_band *sband;
974 
975 	assert_cfg80211_lock();
976 
977 	if (!wiphy->bands[reg_beacon->chan.band])
978 		return;
979 
980 	sband = wiphy->bands[reg_beacon->chan.band];
981 
982 	for (i = 0; i < sband->n_channels; i++)
983 		handle_reg_beacon(wiphy, i, reg_beacon);
984 }
985 
986 /*
987  * Called upon reg changes or a new wiphy is added
988  */
989 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
990 {
991 	unsigned int i;
992 	struct ieee80211_supported_band *sband;
993 	struct reg_beacon *reg_beacon;
994 
995 	assert_cfg80211_lock();
996 
997 	if (list_empty(&reg_beacon_list))
998 		return;
999 
1000 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1001 		if (!wiphy->bands[reg_beacon->chan.band])
1002 			continue;
1003 		sband = wiphy->bands[reg_beacon->chan.band];
1004 		for (i = 0; i < sband->n_channels; i++)
1005 			handle_reg_beacon(wiphy, i, reg_beacon);
1006 	}
1007 }
1008 
1009 static bool reg_is_world_roaming(struct wiphy *wiphy)
1010 {
1011 	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1012 	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1013 		return true;
1014 	if (last_request &&
1015 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1016 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1017 		return true;
1018 	return false;
1019 }
1020 
1021 /* Reap the advantages of previously found beacons */
1022 static void reg_process_beacons(struct wiphy *wiphy)
1023 {
1024 	/*
1025 	 * Means we are just firing up cfg80211, so no beacons would
1026 	 * have been processed yet.
1027 	 */
1028 	if (!last_request)
1029 		return;
1030 	if (!reg_is_world_roaming(wiphy))
1031 		return;
1032 	wiphy_update_beacon_reg(wiphy);
1033 }
1034 
1035 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1036 {
1037 	if (!chan)
1038 		return true;
1039 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1040 		return true;
1041 	/* This would happen when regulatory rules disallow HT40 completely */
1042 	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1043 		return true;
1044 	return false;
1045 }
1046 
1047 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1048 					 enum ieee80211_band band,
1049 					 unsigned int chan_idx)
1050 {
1051 	struct ieee80211_supported_band *sband;
1052 	struct ieee80211_channel *channel;
1053 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1054 	unsigned int i;
1055 
1056 	assert_cfg80211_lock();
1057 
1058 	sband = wiphy->bands[band];
1059 	BUG_ON(chan_idx >= sband->n_channels);
1060 	channel = &sband->channels[chan_idx];
1061 
1062 	if (is_ht40_not_allowed(channel)) {
1063 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1064 		return;
1065 	}
1066 
1067 	/*
1068 	 * We need to ensure the extension channels exist to
1069 	 * be able to use HT40- or HT40+, this finds them (or not)
1070 	 */
1071 	for (i = 0; i < sband->n_channels; i++) {
1072 		struct ieee80211_channel *c = &sband->channels[i];
1073 		if (c->center_freq == (channel->center_freq - 20))
1074 			channel_before = c;
1075 		if (c->center_freq == (channel->center_freq + 20))
1076 			channel_after = c;
1077 	}
1078 
1079 	/*
1080 	 * Please note that this assumes target bandwidth is 20 MHz,
1081 	 * if that ever changes we also need to change the below logic
1082 	 * to include that as well.
1083 	 */
1084 	if (is_ht40_not_allowed(channel_before))
1085 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1086 	else
1087 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1088 
1089 	if (is_ht40_not_allowed(channel_after))
1090 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1091 	else
1092 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1093 }
1094 
1095 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1096 				      enum ieee80211_band band)
1097 {
1098 	unsigned int i;
1099 	struct ieee80211_supported_band *sband;
1100 
1101 	BUG_ON(!wiphy->bands[band]);
1102 	sband = wiphy->bands[band];
1103 
1104 	for (i = 0; i < sband->n_channels; i++)
1105 		reg_process_ht_flags_channel(wiphy, band, i);
1106 }
1107 
1108 static void reg_process_ht_flags(struct wiphy *wiphy)
1109 {
1110 	enum ieee80211_band band;
1111 
1112 	if (!wiphy)
1113 		return;
1114 
1115 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1116 		if (wiphy->bands[band])
1117 			reg_process_ht_flags_band(wiphy, band);
1118 	}
1119 
1120 }
1121 
1122 void wiphy_update_regulatory(struct wiphy *wiphy,
1123 			     enum nl80211_reg_initiator initiator)
1124 {
1125 	enum ieee80211_band band;
1126 
1127 	if (ignore_reg_update(wiphy, initiator))
1128 		goto out;
1129 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1130 		if (wiphy->bands[band])
1131 			handle_band(wiphy, band, initiator);
1132 	}
1133 out:
1134 	reg_process_beacons(wiphy);
1135 	reg_process_ht_flags(wiphy);
1136 	if (wiphy->reg_notifier)
1137 		wiphy->reg_notifier(wiphy, last_request);
1138 }
1139 
1140 static void handle_channel_custom(struct wiphy *wiphy,
1141 				  enum ieee80211_band band,
1142 				  unsigned int chan_idx,
1143 				  const struct ieee80211_regdomain *regd)
1144 {
1145 	int r;
1146 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
1147 	u32 bw_flags = 0;
1148 	const struct ieee80211_reg_rule *reg_rule = NULL;
1149 	const struct ieee80211_power_rule *power_rule = NULL;
1150 	const struct ieee80211_freq_range *freq_range = NULL;
1151 	struct ieee80211_supported_band *sband;
1152 	struct ieee80211_channel *chan;
1153 
1154 	assert_reg_lock();
1155 
1156 	sband = wiphy->bands[band];
1157 	BUG_ON(chan_idx >= sband->n_channels);
1158 	chan = &sband->channels[chan_idx];
1159 
1160 	r = freq_reg_info_regd(wiphy,
1161 			       MHZ_TO_KHZ(chan->center_freq),
1162 			       desired_bw_khz,
1163 			       &reg_rule,
1164 			       regd);
1165 
1166 	if (r) {
1167 		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1168 			      "regd has no rule that fits a %d MHz "
1169 			      "wide channel\n",
1170 			      chan->center_freq,
1171 			      KHZ_TO_MHZ(desired_bw_khz));
1172 		chan->flags = IEEE80211_CHAN_DISABLED;
1173 		return;
1174 	}
1175 
1176 	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1177 
1178 	power_rule = &reg_rule->power_rule;
1179 	freq_range = &reg_rule->freq_range;
1180 
1181 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1182 		bw_flags = IEEE80211_CHAN_NO_HT40;
1183 
1184 	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1185 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1186 	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1187 }
1188 
1189 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1190 			       const struct ieee80211_regdomain *regd)
1191 {
1192 	unsigned int i;
1193 	struct ieee80211_supported_band *sband;
1194 
1195 	BUG_ON(!wiphy->bands[band]);
1196 	sband = wiphy->bands[band];
1197 
1198 	for (i = 0; i < sband->n_channels; i++)
1199 		handle_channel_custom(wiphy, band, i, regd);
1200 }
1201 
1202 /* Used by drivers prior to wiphy registration */
1203 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1204 				   const struct ieee80211_regdomain *regd)
1205 {
1206 	enum ieee80211_band band;
1207 	unsigned int bands_set = 0;
1208 
1209 	mutex_lock(&reg_mutex);
1210 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1211 		if (!wiphy->bands[band])
1212 			continue;
1213 		handle_band_custom(wiphy, band, regd);
1214 		bands_set++;
1215 	}
1216 	mutex_unlock(&reg_mutex);
1217 
1218 	/*
1219 	 * no point in calling this if it won't have any effect
1220 	 * on your device's supportd bands.
1221 	 */
1222 	WARN_ON(!bands_set);
1223 }
1224 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1225 
1226 /*
1227  * Return value which can be used by ignore_request() to indicate
1228  * it has been determined we should intersect two regulatory domains
1229  */
1230 #define REG_INTERSECT	1
1231 
1232 /* This has the logic which determines when a new request
1233  * should be ignored. */
1234 static int ignore_request(struct wiphy *wiphy,
1235 			  struct regulatory_request *pending_request)
1236 {
1237 	struct wiphy *last_wiphy = NULL;
1238 
1239 	assert_cfg80211_lock();
1240 
1241 	/* All initial requests are respected */
1242 	if (!last_request)
1243 		return 0;
1244 
1245 	switch (pending_request->initiator) {
1246 	case NL80211_REGDOM_SET_BY_CORE:
1247 		return 0;
1248 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1249 
1250 		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1251 
1252 		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1253 			return -EINVAL;
1254 		if (last_request->initiator ==
1255 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1256 			if (last_wiphy != wiphy) {
1257 				/*
1258 				 * Two cards with two APs claiming different
1259 				 * Country IE alpha2s. We could
1260 				 * intersect them, but that seems unlikely
1261 				 * to be correct. Reject second one for now.
1262 				 */
1263 				if (regdom_changes(pending_request->alpha2))
1264 					return -EOPNOTSUPP;
1265 				return -EALREADY;
1266 			}
1267 			/*
1268 			 * Two consecutive Country IE hints on the same wiphy.
1269 			 * This should be picked up early by the driver/stack
1270 			 */
1271 			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1272 				return 0;
1273 			return -EALREADY;
1274 		}
1275 		return 0;
1276 	case NL80211_REGDOM_SET_BY_DRIVER:
1277 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1278 			if (regdom_changes(pending_request->alpha2))
1279 				return 0;
1280 			return -EALREADY;
1281 		}
1282 
1283 		/*
1284 		 * This would happen if you unplug and plug your card
1285 		 * back in or if you add a new device for which the previously
1286 		 * loaded card also agrees on the regulatory domain.
1287 		 */
1288 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1289 		    !regdom_changes(pending_request->alpha2))
1290 			return -EALREADY;
1291 
1292 		return REG_INTERSECT;
1293 	case NL80211_REGDOM_SET_BY_USER:
1294 		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1295 			return REG_INTERSECT;
1296 		/*
1297 		 * If the user knows better the user should set the regdom
1298 		 * to their country before the IE is picked up
1299 		 */
1300 		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1301 			  last_request->intersect)
1302 			return -EOPNOTSUPP;
1303 		/*
1304 		 * Process user requests only after previous user/driver/core
1305 		 * requests have been processed
1306 		 */
1307 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1308 		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1309 		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1310 			if (regdom_changes(last_request->alpha2))
1311 				return -EAGAIN;
1312 		}
1313 
1314 		if (!regdom_changes(pending_request->alpha2))
1315 			return -EALREADY;
1316 
1317 		return 0;
1318 	}
1319 
1320 	return -EINVAL;
1321 }
1322 
1323 static void reg_set_request_processed(void)
1324 {
1325 	bool need_more_processing = false;
1326 
1327 	last_request->processed = true;
1328 
1329 	spin_lock(&reg_requests_lock);
1330 	if (!list_empty(&reg_requests_list))
1331 		need_more_processing = true;
1332 	spin_unlock(&reg_requests_lock);
1333 
1334 	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1335 		cancel_delayed_work_sync(&reg_timeout);
1336 
1337 	if (need_more_processing)
1338 		schedule_work(&reg_work);
1339 }
1340 
1341 /**
1342  * __regulatory_hint - hint to the wireless core a regulatory domain
1343  * @wiphy: if the hint comes from country information from an AP, this
1344  *	is required to be set to the wiphy that received the information
1345  * @pending_request: the regulatory request currently being processed
1346  *
1347  * The Wireless subsystem can use this function to hint to the wireless core
1348  * what it believes should be the current regulatory domain.
1349  *
1350  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1351  * already been set or other standard error codes.
1352  *
1353  * Caller must hold &cfg80211_mutex and &reg_mutex
1354  */
1355 static int __regulatory_hint(struct wiphy *wiphy,
1356 			     struct regulatory_request *pending_request)
1357 {
1358 	bool intersect = false;
1359 	int r = 0;
1360 
1361 	assert_cfg80211_lock();
1362 
1363 	r = ignore_request(wiphy, pending_request);
1364 
1365 	if (r == REG_INTERSECT) {
1366 		if (pending_request->initiator ==
1367 		    NL80211_REGDOM_SET_BY_DRIVER) {
1368 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1369 			if (r) {
1370 				kfree(pending_request);
1371 				return r;
1372 			}
1373 		}
1374 		intersect = true;
1375 	} else if (r) {
1376 		/*
1377 		 * If the regulatory domain being requested by the
1378 		 * driver has already been set just copy it to the
1379 		 * wiphy
1380 		 */
1381 		if (r == -EALREADY &&
1382 		    pending_request->initiator ==
1383 		    NL80211_REGDOM_SET_BY_DRIVER) {
1384 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1385 			if (r) {
1386 				kfree(pending_request);
1387 				return r;
1388 			}
1389 			r = -EALREADY;
1390 			goto new_request;
1391 		}
1392 		kfree(pending_request);
1393 		return r;
1394 	}
1395 
1396 new_request:
1397 	kfree(last_request);
1398 
1399 	last_request = pending_request;
1400 	last_request->intersect = intersect;
1401 
1402 	pending_request = NULL;
1403 
1404 	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1405 		user_alpha2[0] = last_request->alpha2[0];
1406 		user_alpha2[1] = last_request->alpha2[1];
1407 	}
1408 
1409 	/* When r == REG_INTERSECT we do need to call CRDA */
1410 	if (r < 0) {
1411 		/*
1412 		 * Since CRDA will not be called in this case as we already
1413 		 * have applied the requested regulatory domain before we just
1414 		 * inform userspace we have processed the request
1415 		 */
1416 		if (r == -EALREADY) {
1417 			nl80211_send_reg_change_event(last_request);
1418 			reg_set_request_processed();
1419 		}
1420 		return r;
1421 	}
1422 
1423 	return call_crda(last_request->alpha2);
1424 }
1425 
1426 /* This processes *all* regulatory hints */
1427 static void reg_process_hint(struct regulatory_request *reg_request)
1428 {
1429 	int r = 0;
1430 	struct wiphy *wiphy = NULL;
1431 	enum nl80211_reg_initiator initiator = reg_request->initiator;
1432 
1433 	BUG_ON(!reg_request->alpha2);
1434 
1435 	if (wiphy_idx_valid(reg_request->wiphy_idx))
1436 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1437 
1438 	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1439 	    !wiphy) {
1440 		kfree(reg_request);
1441 		return;
1442 	}
1443 
1444 	r = __regulatory_hint(wiphy, reg_request);
1445 	/* This is required so that the orig_* parameters are saved */
1446 	if (r == -EALREADY && wiphy &&
1447 	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1448 		wiphy_update_regulatory(wiphy, initiator);
1449 		return;
1450 	}
1451 
1452 	/*
1453 	 * We only time out user hints, given that they should be the only
1454 	 * source of bogus requests.
1455 	 */
1456 	if (r != -EALREADY &&
1457 	    reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1458 		schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1459 }
1460 
1461 /*
1462  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1463  * Regulatory hints come on a first come first serve basis and we
1464  * must process each one atomically.
1465  */
1466 static void reg_process_pending_hints(void)
1467 {
1468 	struct regulatory_request *reg_request;
1469 
1470 	mutex_lock(&cfg80211_mutex);
1471 	mutex_lock(&reg_mutex);
1472 
1473 	/* When last_request->processed becomes true this will be rescheduled */
1474 	if (last_request && !last_request->processed) {
1475 		REG_DBG_PRINT("Pending regulatory request, waiting "
1476 			      "for it to be processed...");
1477 		goto out;
1478 	}
1479 
1480 	spin_lock(&reg_requests_lock);
1481 
1482 	if (list_empty(&reg_requests_list)) {
1483 		spin_unlock(&reg_requests_lock);
1484 		goto out;
1485 	}
1486 
1487 	reg_request = list_first_entry(&reg_requests_list,
1488 				       struct regulatory_request,
1489 				       list);
1490 	list_del_init(&reg_request->list);
1491 
1492 	spin_unlock(&reg_requests_lock);
1493 
1494 	reg_process_hint(reg_request);
1495 
1496 out:
1497 	mutex_unlock(&reg_mutex);
1498 	mutex_unlock(&cfg80211_mutex);
1499 }
1500 
1501 /* Processes beacon hints -- this has nothing to do with country IEs */
1502 static void reg_process_pending_beacon_hints(void)
1503 {
1504 	struct cfg80211_registered_device *rdev;
1505 	struct reg_beacon *pending_beacon, *tmp;
1506 
1507 	/*
1508 	 * No need to hold the reg_mutex here as we just touch wiphys
1509 	 * and do not read or access regulatory variables.
1510 	 */
1511 	mutex_lock(&cfg80211_mutex);
1512 
1513 	/* This goes through the _pending_ beacon list */
1514 	spin_lock_bh(&reg_pending_beacons_lock);
1515 
1516 	if (list_empty(&reg_pending_beacons)) {
1517 		spin_unlock_bh(&reg_pending_beacons_lock);
1518 		goto out;
1519 	}
1520 
1521 	list_for_each_entry_safe(pending_beacon, tmp,
1522 				 &reg_pending_beacons, list) {
1523 
1524 		list_del_init(&pending_beacon->list);
1525 
1526 		/* Applies the beacon hint to current wiphys */
1527 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1528 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1529 
1530 		/* Remembers the beacon hint for new wiphys or reg changes */
1531 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
1532 	}
1533 
1534 	spin_unlock_bh(&reg_pending_beacons_lock);
1535 out:
1536 	mutex_unlock(&cfg80211_mutex);
1537 }
1538 
1539 static void reg_todo(struct work_struct *work)
1540 {
1541 	reg_process_pending_hints();
1542 	reg_process_pending_beacon_hints();
1543 }
1544 
1545 static void queue_regulatory_request(struct regulatory_request *request)
1546 {
1547 	if (isalpha(request->alpha2[0]))
1548 		request->alpha2[0] = toupper(request->alpha2[0]);
1549 	if (isalpha(request->alpha2[1]))
1550 		request->alpha2[1] = toupper(request->alpha2[1]);
1551 
1552 	spin_lock(&reg_requests_lock);
1553 	list_add_tail(&request->list, &reg_requests_list);
1554 	spin_unlock(&reg_requests_lock);
1555 
1556 	schedule_work(&reg_work);
1557 }
1558 
1559 /*
1560  * Core regulatory hint -- happens during cfg80211_init()
1561  * and when we restore regulatory settings.
1562  */
1563 static int regulatory_hint_core(const char *alpha2)
1564 {
1565 	struct regulatory_request *request;
1566 
1567 	kfree(last_request);
1568 	last_request = NULL;
1569 
1570 	request = kzalloc(sizeof(struct regulatory_request),
1571 			  GFP_KERNEL);
1572 	if (!request)
1573 		return -ENOMEM;
1574 
1575 	request->alpha2[0] = alpha2[0];
1576 	request->alpha2[1] = alpha2[1];
1577 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1578 
1579 	queue_regulatory_request(request);
1580 
1581 	return 0;
1582 }
1583 
1584 /* User hints */
1585 int regulatory_hint_user(const char *alpha2)
1586 {
1587 	struct regulatory_request *request;
1588 
1589 	BUG_ON(!alpha2);
1590 
1591 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1592 	if (!request)
1593 		return -ENOMEM;
1594 
1595 	request->wiphy_idx = WIPHY_IDX_STALE;
1596 	request->alpha2[0] = alpha2[0];
1597 	request->alpha2[1] = alpha2[1];
1598 	request->initiator = NL80211_REGDOM_SET_BY_USER;
1599 
1600 	queue_regulatory_request(request);
1601 
1602 	return 0;
1603 }
1604 
1605 /* Driver hints */
1606 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1607 {
1608 	struct regulatory_request *request;
1609 
1610 	BUG_ON(!alpha2);
1611 	BUG_ON(!wiphy);
1612 
1613 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1614 	if (!request)
1615 		return -ENOMEM;
1616 
1617 	request->wiphy_idx = get_wiphy_idx(wiphy);
1618 
1619 	/* Must have registered wiphy first */
1620 	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1621 
1622 	request->alpha2[0] = alpha2[0];
1623 	request->alpha2[1] = alpha2[1];
1624 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1625 
1626 	queue_regulatory_request(request);
1627 
1628 	return 0;
1629 }
1630 EXPORT_SYMBOL(regulatory_hint);
1631 
1632 /*
1633  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1634  * therefore cannot iterate over the rdev list here.
1635  */
1636 void regulatory_hint_11d(struct wiphy *wiphy,
1637 			 enum ieee80211_band band,
1638 			 u8 *country_ie,
1639 			 u8 country_ie_len)
1640 {
1641 	char alpha2[2];
1642 	enum environment_cap env = ENVIRON_ANY;
1643 	struct regulatory_request *request;
1644 
1645 	mutex_lock(&reg_mutex);
1646 
1647 	if (unlikely(!last_request))
1648 		goto out;
1649 
1650 	/* IE len must be evenly divisible by 2 */
1651 	if (country_ie_len & 0x01)
1652 		goto out;
1653 
1654 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1655 		goto out;
1656 
1657 	alpha2[0] = country_ie[0];
1658 	alpha2[1] = country_ie[1];
1659 
1660 	if (country_ie[2] == 'I')
1661 		env = ENVIRON_INDOOR;
1662 	else if (country_ie[2] == 'O')
1663 		env = ENVIRON_OUTDOOR;
1664 
1665 	/*
1666 	 * We will run this only upon a successful connection on cfg80211.
1667 	 * We leave conflict resolution to the workqueue, where can hold
1668 	 * cfg80211_mutex.
1669 	 */
1670 	if (likely(last_request->initiator ==
1671 	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1672 	    wiphy_idx_valid(last_request->wiphy_idx)))
1673 		goto out;
1674 
1675 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1676 	if (!request)
1677 		goto out;
1678 
1679 	request->wiphy_idx = get_wiphy_idx(wiphy);
1680 	request->alpha2[0] = alpha2[0];
1681 	request->alpha2[1] = alpha2[1];
1682 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1683 	request->country_ie_env = env;
1684 
1685 	mutex_unlock(&reg_mutex);
1686 
1687 	queue_regulatory_request(request);
1688 
1689 	return;
1690 
1691 out:
1692 	mutex_unlock(&reg_mutex);
1693 }
1694 
1695 static void restore_alpha2(char *alpha2, bool reset_user)
1696 {
1697 	/* indicates there is no alpha2 to consider for restoration */
1698 	alpha2[0] = '9';
1699 	alpha2[1] = '7';
1700 
1701 	/* The user setting has precedence over the module parameter */
1702 	if (is_user_regdom_saved()) {
1703 		/* Unless we're asked to ignore it and reset it */
1704 		if (reset_user) {
1705 			REG_DBG_PRINT("Restoring regulatory settings "
1706 			       "including user preference\n");
1707 			user_alpha2[0] = '9';
1708 			user_alpha2[1] = '7';
1709 
1710 			/*
1711 			 * If we're ignoring user settings, we still need to
1712 			 * check the module parameter to ensure we put things
1713 			 * back as they were for a full restore.
1714 			 */
1715 			if (!is_world_regdom(ieee80211_regdom)) {
1716 				REG_DBG_PRINT("Keeping preference on "
1717 				       "module parameter ieee80211_regdom: %c%c\n",
1718 				       ieee80211_regdom[0],
1719 				       ieee80211_regdom[1]);
1720 				alpha2[0] = ieee80211_regdom[0];
1721 				alpha2[1] = ieee80211_regdom[1];
1722 			}
1723 		} else {
1724 			REG_DBG_PRINT("Restoring regulatory settings "
1725 			       "while preserving user preference for: %c%c\n",
1726 			       user_alpha2[0],
1727 			       user_alpha2[1]);
1728 			alpha2[0] = user_alpha2[0];
1729 			alpha2[1] = user_alpha2[1];
1730 		}
1731 	} else if (!is_world_regdom(ieee80211_regdom)) {
1732 		REG_DBG_PRINT("Keeping preference on "
1733 		       "module parameter ieee80211_regdom: %c%c\n",
1734 		       ieee80211_regdom[0],
1735 		       ieee80211_regdom[1]);
1736 		alpha2[0] = ieee80211_regdom[0];
1737 		alpha2[1] = ieee80211_regdom[1];
1738 	} else
1739 		REG_DBG_PRINT("Restoring regulatory settings\n");
1740 }
1741 
1742 /*
1743  * Restoring regulatory settings involves ingoring any
1744  * possibly stale country IE information and user regulatory
1745  * settings if so desired, this includes any beacon hints
1746  * learned as we could have traveled outside to another country
1747  * after disconnection. To restore regulatory settings we do
1748  * exactly what we did at bootup:
1749  *
1750  *   - send a core regulatory hint
1751  *   - send a user regulatory hint if applicable
1752  *
1753  * Device drivers that send a regulatory hint for a specific country
1754  * keep their own regulatory domain on wiphy->regd so that does does
1755  * not need to be remembered.
1756  */
1757 static void restore_regulatory_settings(bool reset_user)
1758 {
1759 	char alpha2[2];
1760 	struct reg_beacon *reg_beacon, *btmp;
1761 	struct regulatory_request *reg_request, *tmp;
1762 	LIST_HEAD(tmp_reg_req_list);
1763 
1764 	mutex_lock(&cfg80211_mutex);
1765 	mutex_lock(&reg_mutex);
1766 
1767 	reset_regdomains();
1768 	restore_alpha2(alpha2, reset_user);
1769 
1770 	/*
1771 	 * If there's any pending requests we simply
1772 	 * stash them to a temporary pending queue and
1773 	 * add then after we've restored regulatory
1774 	 * settings.
1775 	 */
1776 	spin_lock(&reg_requests_lock);
1777 	if (!list_empty(&reg_requests_list)) {
1778 		list_for_each_entry_safe(reg_request, tmp,
1779 					 &reg_requests_list, list) {
1780 			if (reg_request->initiator !=
1781 			    NL80211_REGDOM_SET_BY_USER)
1782 				continue;
1783 			list_del(&reg_request->list);
1784 			list_add_tail(&reg_request->list, &tmp_reg_req_list);
1785 		}
1786 	}
1787 	spin_unlock(&reg_requests_lock);
1788 
1789 	/* Clear beacon hints */
1790 	spin_lock_bh(&reg_pending_beacons_lock);
1791 	if (!list_empty(&reg_pending_beacons)) {
1792 		list_for_each_entry_safe(reg_beacon, btmp,
1793 					 &reg_pending_beacons, list) {
1794 			list_del(&reg_beacon->list);
1795 			kfree(reg_beacon);
1796 		}
1797 	}
1798 	spin_unlock_bh(&reg_pending_beacons_lock);
1799 
1800 	if (!list_empty(&reg_beacon_list)) {
1801 		list_for_each_entry_safe(reg_beacon, btmp,
1802 					 &reg_beacon_list, list) {
1803 			list_del(&reg_beacon->list);
1804 			kfree(reg_beacon);
1805 		}
1806 	}
1807 
1808 	/* First restore to the basic regulatory settings */
1809 	cfg80211_regdomain = cfg80211_world_regdom;
1810 
1811 	mutex_unlock(&reg_mutex);
1812 	mutex_unlock(&cfg80211_mutex);
1813 
1814 	regulatory_hint_core(cfg80211_regdomain->alpha2);
1815 
1816 	/*
1817 	 * This restores the ieee80211_regdom module parameter
1818 	 * preference or the last user requested regulatory
1819 	 * settings, user regulatory settings takes precedence.
1820 	 */
1821 	if (is_an_alpha2(alpha2))
1822 		regulatory_hint_user(user_alpha2);
1823 
1824 	if (list_empty(&tmp_reg_req_list))
1825 		return;
1826 
1827 	mutex_lock(&cfg80211_mutex);
1828 	mutex_lock(&reg_mutex);
1829 
1830 	spin_lock(&reg_requests_lock);
1831 	list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1832 		REG_DBG_PRINT("Adding request for country %c%c back "
1833 			      "into the queue\n",
1834 			      reg_request->alpha2[0],
1835 			      reg_request->alpha2[1]);
1836 		list_del(&reg_request->list);
1837 		list_add_tail(&reg_request->list, &reg_requests_list);
1838 	}
1839 	spin_unlock(&reg_requests_lock);
1840 
1841 	mutex_unlock(&reg_mutex);
1842 	mutex_unlock(&cfg80211_mutex);
1843 
1844 	REG_DBG_PRINT("Kicking the queue\n");
1845 
1846 	schedule_work(&reg_work);
1847 }
1848 
1849 void regulatory_hint_disconnect(void)
1850 {
1851 	REG_DBG_PRINT("All devices are disconnected, going to "
1852 		      "restore regulatory settings\n");
1853 	restore_regulatory_settings(false);
1854 }
1855 
1856 static bool freq_is_chan_12_13_14(u16 freq)
1857 {
1858 	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1859 	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1860 	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1861 		return true;
1862 	return false;
1863 }
1864 
1865 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1866 				 struct ieee80211_channel *beacon_chan,
1867 				 gfp_t gfp)
1868 {
1869 	struct reg_beacon *reg_beacon;
1870 
1871 	if (likely((beacon_chan->beacon_found ||
1872 	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1873 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1874 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1875 		return 0;
1876 
1877 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1878 	if (!reg_beacon)
1879 		return -ENOMEM;
1880 
1881 	REG_DBG_PRINT("Found new beacon on "
1882 		      "frequency: %d MHz (Ch %d) on %s\n",
1883 		      beacon_chan->center_freq,
1884 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
1885 		      wiphy_name(wiphy));
1886 
1887 	memcpy(&reg_beacon->chan, beacon_chan,
1888 		sizeof(struct ieee80211_channel));
1889 
1890 
1891 	/*
1892 	 * Since we can be called from BH or and non-BH context
1893 	 * we must use spin_lock_bh()
1894 	 */
1895 	spin_lock_bh(&reg_pending_beacons_lock);
1896 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1897 	spin_unlock_bh(&reg_pending_beacons_lock);
1898 
1899 	schedule_work(&reg_work);
1900 
1901 	return 0;
1902 }
1903 
1904 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1905 {
1906 	unsigned int i;
1907 	const struct ieee80211_reg_rule *reg_rule = NULL;
1908 	const struct ieee80211_freq_range *freq_range = NULL;
1909 	const struct ieee80211_power_rule *power_rule = NULL;
1910 
1911 	pr_info("    (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1912 
1913 	for (i = 0; i < rd->n_reg_rules; i++) {
1914 		reg_rule = &rd->reg_rules[i];
1915 		freq_range = &reg_rule->freq_range;
1916 		power_rule = &reg_rule->power_rule;
1917 
1918 		/*
1919 		 * There may not be documentation for max antenna gain
1920 		 * in certain regions
1921 		 */
1922 		if (power_rule->max_antenna_gain)
1923 			pr_info("    (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1924 				freq_range->start_freq_khz,
1925 				freq_range->end_freq_khz,
1926 				freq_range->max_bandwidth_khz,
1927 				power_rule->max_antenna_gain,
1928 				power_rule->max_eirp);
1929 		else
1930 			pr_info("    (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1931 				freq_range->start_freq_khz,
1932 				freq_range->end_freq_khz,
1933 				freq_range->max_bandwidth_khz,
1934 				power_rule->max_eirp);
1935 	}
1936 }
1937 
1938 static void print_regdomain(const struct ieee80211_regdomain *rd)
1939 {
1940 
1941 	if (is_intersected_alpha2(rd->alpha2)) {
1942 
1943 		if (last_request->initiator ==
1944 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1945 			struct cfg80211_registered_device *rdev;
1946 			rdev = cfg80211_rdev_by_wiphy_idx(
1947 				last_request->wiphy_idx);
1948 			if (rdev) {
1949 				pr_info("Current regulatory domain updated by AP to: %c%c\n",
1950 					rdev->country_ie_alpha2[0],
1951 					rdev->country_ie_alpha2[1]);
1952 			} else
1953 				pr_info("Current regulatory domain intersected:\n");
1954 		} else
1955 			pr_info("Current regulatory domain intersected:\n");
1956 	} else if (is_world_regdom(rd->alpha2))
1957 		pr_info("World regulatory domain updated:\n");
1958 	else {
1959 		if (is_unknown_alpha2(rd->alpha2))
1960 			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1961 		else
1962 			pr_info("Regulatory domain changed to country: %c%c\n",
1963 				rd->alpha2[0], rd->alpha2[1]);
1964 	}
1965 	print_rd_rules(rd);
1966 }
1967 
1968 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1969 {
1970 	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1971 	print_rd_rules(rd);
1972 }
1973 
1974 /* Takes ownership of rd only if it doesn't fail */
1975 static int __set_regdom(const struct ieee80211_regdomain *rd)
1976 {
1977 	const struct ieee80211_regdomain *intersected_rd = NULL;
1978 	struct cfg80211_registered_device *rdev = NULL;
1979 	struct wiphy *request_wiphy;
1980 	/* Some basic sanity checks first */
1981 
1982 	if (is_world_regdom(rd->alpha2)) {
1983 		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1984 			return -EINVAL;
1985 		update_world_regdomain(rd);
1986 		return 0;
1987 	}
1988 
1989 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1990 			!is_unknown_alpha2(rd->alpha2))
1991 		return -EINVAL;
1992 
1993 	if (!last_request)
1994 		return -EINVAL;
1995 
1996 	/*
1997 	 * Lets only bother proceeding on the same alpha2 if the current
1998 	 * rd is non static (it means CRDA was present and was used last)
1999 	 * and the pending request came in from a country IE
2000 	 */
2001 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2002 		/*
2003 		 * If someone else asked us to change the rd lets only bother
2004 		 * checking if the alpha2 changes if CRDA was already called
2005 		 */
2006 		if (!regdom_changes(rd->alpha2))
2007 			return -EINVAL;
2008 	}
2009 
2010 	/*
2011 	 * Now lets set the regulatory domain, update all driver channels
2012 	 * and finally inform them of what we have done, in case they want
2013 	 * to review or adjust their own settings based on their own
2014 	 * internal EEPROM data
2015 	 */
2016 
2017 	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2018 		return -EINVAL;
2019 
2020 	if (!is_valid_rd(rd)) {
2021 		pr_err("Invalid regulatory domain detected:\n");
2022 		print_regdomain_info(rd);
2023 		return -EINVAL;
2024 	}
2025 
2026 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2027 
2028 	if (!last_request->intersect) {
2029 		int r;
2030 
2031 		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2032 			reset_regdomains();
2033 			cfg80211_regdomain = rd;
2034 			return 0;
2035 		}
2036 
2037 		/*
2038 		 * For a driver hint, lets copy the regulatory domain the
2039 		 * driver wanted to the wiphy to deal with conflicts
2040 		 */
2041 
2042 		/*
2043 		 * Userspace could have sent two replies with only
2044 		 * one kernel request.
2045 		 */
2046 		if (request_wiphy->regd)
2047 			return -EALREADY;
2048 
2049 		r = reg_copy_regd(&request_wiphy->regd, rd);
2050 		if (r)
2051 			return r;
2052 
2053 		reset_regdomains();
2054 		cfg80211_regdomain = rd;
2055 		return 0;
2056 	}
2057 
2058 	/* Intersection requires a bit more work */
2059 
2060 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2061 
2062 		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2063 		if (!intersected_rd)
2064 			return -EINVAL;
2065 
2066 		/*
2067 		 * We can trash what CRDA provided now.
2068 		 * However if a driver requested this specific regulatory
2069 		 * domain we keep it for its private use
2070 		 */
2071 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2072 			request_wiphy->regd = rd;
2073 		else
2074 			kfree(rd);
2075 
2076 		rd = NULL;
2077 
2078 		reset_regdomains();
2079 		cfg80211_regdomain = intersected_rd;
2080 
2081 		return 0;
2082 	}
2083 
2084 	if (!intersected_rd)
2085 		return -EINVAL;
2086 
2087 	rdev = wiphy_to_dev(request_wiphy);
2088 
2089 	rdev->country_ie_alpha2[0] = rd->alpha2[0];
2090 	rdev->country_ie_alpha2[1] = rd->alpha2[1];
2091 	rdev->env = last_request->country_ie_env;
2092 
2093 	BUG_ON(intersected_rd == rd);
2094 
2095 	kfree(rd);
2096 	rd = NULL;
2097 
2098 	reset_regdomains();
2099 	cfg80211_regdomain = intersected_rd;
2100 
2101 	return 0;
2102 }
2103 
2104 
2105 /*
2106  * Use this call to set the current regulatory domain. Conflicts with
2107  * multiple drivers can be ironed out later. Caller must've already
2108  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2109  */
2110 int set_regdom(const struct ieee80211_regdomain *rd)
2111 {
2112 	int r;
2113 
2114 	assert_cfg80211_lock();
2115 
2116 	mutex_lock(&reg_mutex);
2117 
2118 	/* Note that this doesn't update the wiphys, this is done below */
2119 	r = __set_regdom(rd);
2120 	if (r) {
2121 		kfree(rd);
2122 		mutex_unlock(&reg_mutex);
2123 		return r;
2124 	}
2125 
2126 	/* This would make this whole thing pointless */
2127 	if (!last_request->intersect)
2128 		BUG_ON(rd != cfg80211_regdomain);
2129 
2130 	/* update all wiphys now with the new established regulatory domain */
2131 	update_all_wiphy_regulatory(last_request->initiator);
2132 
2133 	print_regdomain(cfg80211_regdomain);
2134 
2135 	nl80211_send_reg_change_event(last_request);
2136 
2137 	reg_set_request_processed();
2138 
2139 	mutex_unlock(&reg_mutex);
2140 
2141 	return r;
2142 }
2143 
2144 #ifdef CONFIG_HOTPLUG
2145 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2146 {
2147 	if (last_request && !last_request->processed) {
2148 		if (add_uevent_var(env, "COUNTRY=%c%c",
2149 				   last_request->alpha2[0],
2150 				   last_request->alpha2[1]))
2151 			return -ENOMEM;
2152 	}
2153 
2154 	return 0;
2155 }
2156 #else
2157 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2158 {
2159 	return -ENODEV;
2160 }
2161 #endif /* CONFIG_HOTPLUG */
2162 
2163 /* Caller must hold cfg80211_mutex */
2164 void reg_device_remove(struct wiphy *wiphy)
2165 {
2166 	struct wiphy *request_wiphy = NULL;
2167 
2168 	assert_cfg80211_lock();
2169 
2170 	mutex_lock(&reg_mutex);
2171 
2172 	kfree(wiphy->regd);
2173 
2174 	if (last_request)
2175 		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2176 
2177 	if (!request_wiphy || request_wiphy != wiphy)
2178 		goto out;
2179 
2180 	last_request->wiphy_idx = WIPHY_IDX_STALE;
2181 	last_request->country_ie_env = ENVIRON_ANY;
2182 out:
2183 	mutex_unlock(&reg_mutex);
2184 }
2185 
2186 static void reg_timeout_work(struct work_struct *work)
2187 {
2188 	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2189 		      "restoring regulatory settings");
2190 	restore_regulatory_settings(true);
2191 }
2192 
2193 int __init regulatory_init(void)
2194 {
2195 	int err = 0;
2196 
2197 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2198 	if (IS_ERR(reg_pdev))
2199 		return PTR_ERR(reg_pdev);
2200 
2201 	reg_pdev->dev.type = &reg_device_type;
2202 
2203 	spin_lock_init(&reg_requests_lock);
2204 	spin_lock_init(&reg_pending_beacons_lock);
2205 
2206 	cfg80211_regdomain = cfg80211_world_regdom;
2207 
2208 	user_alpha2[0] = '9';
2209 	user_alpha2[1] = '7';
2210 
2211 	/* We always try to get an update for the static regdomain */
2212 	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2213 	if (err) {
2214 		if (err == -ENOMEM)
2215 			return err;
2216 		/*
2217 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
2218 		 * memory which is handled and propagated appropriately above
2219 		 * but it can also fail during a netlink_broadcast() or during
2220 		 * early boot for call_usermodehelper(). For now treat these
2221 		 * errors as non-fatal.
2222 		 */
2223 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2224 #ifdef CONFIG_CFG80211_REG_DEBUG
2225 		/* We want to find out exactly why when debugging */
2226 		WARN_ON(err);
2227 #endif
2228 	}
2229 
2230 	/*
2231 	 * Finally, if the user set the module parameter treat it
2232 	 * as a user hint.
2233 	 */
2234 	if (!is_world_regdom(ieee80211_regdom))
2235 		regulatory_hint_user(ieee80211_regdom);
2236 
2237 	return 0;
2238 }
2239 
2240 void /* __init_or_exit */ regulatory_exit(void)
2241 {
2242 	struct regulatory_request *reg_request, *tmp;
2243 	struct reg_beacon *reg_beacon, *btmp;
2244 
2245 	cancel_work_sync(&reg_work);
2246 	cancel_delayed_work_sync(&reg_timeout);
2247 
2248 	mutex_lock(&cfg80211_mutex);
2249 	mutex_lock(&reg_mutex);
2250 
2251 	reset_regdomains();
2252 
2253 	kfree(last_request);
2254 
2255 	platform_device_unregister(reg_pdev);
2256 
2257 	spin_lock_bh(&reg_pending_beacons_lock);
2258 	if (!list_empty(&reg_pending_beacons)) {
2259 		list_for_each_entry_safe(reg_beacon, btmp,
2260 					 &reg_pending_beacons, list) {
2261 			list_del(&reg_beacon->list);
2262 			kfree(reg_beacon);
2263 		}
2264 	}
2265 	spin_unlock_bh(&reg_pending_beacons_lock);
2266 
2267 	if (!list_empty(&reg_beacon_list)) {
2268 		list_for_each_entry_safe(reg_beacon, btmp,
2269 					 &reg_beacon_list, list) {
2270 			list_del(&reg_beacon->list);
2271 			kfree(reg_beacon);
2272 		}
2273 	}
2274 
2275 	spin_lock(&reg_requests_lock);
2276 	if (!list_empty(&reg_requests_list)) {
2277 		list_for_each_entry_safe(reg_request, tmp,
2278 					 &reg_requests_list, list) {
2279 			list_del(&reg_request->list);
2280 			kfree(reg_request);
2281 		}
2282 	}
2283 	spin_unlock(&reg_requests_lock);
2284 
2285 	mutex_unlock(&reg_mutex);
2286 	mutex_unlock(&cfg80211_mutex);
2287 }
2288