xref: /openbmc/linux/net/wireless/reg.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  *
9  * Permission to use, copy, modify, and/or distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 
23 /**
24  * DOC: Wireless regulatory infrastructure
25  *
26  * The usual implementation is for a driver to read a device EEPROM to
27  * determine which regulatory domain it should be operating under, then
28  * looking up the allowable channels in a driver-local table and finally
29  * registering those channels in the wiphy structure.
30  *
31  * Another set of compliance enforcement is for drivers to use their
32  * own compliance limits which can be stored on the EEPROM. The host
33  * driver or firmware may ensure these are used.
34  *
35  * In addition to all this we provide an extra layer of regulatory
36  * conformance. For drivers which do not have any regulatory
37  * information CRDA provides the complete regulatory solution.
38  * For others it provides a community effort on further restrictions
39  * to enhance compliance.
40  *
41  * Note: When number of rules --> infinity we will not be able to
42  * index on alpha2 any more, instead we'll probably have to
43  * rely on some SHA1 checksum of the regdomain for example.
44  *
45  */
46 
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48 
49 #include <linux/kernel.h>
50 #include <linux/export.h>
51 #include <linux/slab.h>
52 #include <linux/list.h>
53 #include <linux/ctype.h>
54 #include <linux/nl80211.h>
55 #include <linux/platform_device.h>
56 #include <linux/verification.h>
57 #include <linux/moduleparam.h>
58 #include <linux/firmware.h>
59 #include <net/cfg80211.h>
60 #include "core.h"
61 #include "reg.h"
62 #include "rdev-ops.h"
63 #include "nl80211.h"
64 
65 /*
66  * Grace period we give before making sure all current interfaces reside on
67  * channels allowed by the current regulatory domain.
68  */
69 #define REG_ENFORCE_GRACE_MS 60000
70 
71 /**
72  * enum reg_request_treatment - regulatory request treatment
73  *
74  * @REG_REQ_OK: continue processing the regulatory request
75  * @REG_REQ_IGNORE: ignore the regulatory request
76  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
77  *	be intersected with the current one.
78  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
79  *	regulatory settings, and no further processing is required.
80  */
81 enum reg_request_treatment {
82 	REG_REQ_OK,
83 	REG_REQ_IGNORE,
84 	REG_REQ_INTERSECT,
85 	REG_REQ_ALREADY_SET,
86 };
87 
88 static struct regulatory_request core_request_world = {
89 	.initiator = NL80211_REGDOM_SET_BY_CORE,
90 	.alpha2[0] = '0',
91 	.alpha2[1] = '0',
92 	.intersect = false,
93 	.processed = true,
94 	.country_ie_env = ENVIRON_ANY,
95 };
96 
97 /*
98  * Receipt of information from last regulatory request,
99  * protected by RTNL (and can be accessed with RCU protection)
100  */
101 static struct regulatory_request __rcu *last_request =
102 	(void __force __rcu *)&core_request_world;
103 
104 /* To trigger userspace events and load firmware */
105 static struct platform_device *reg_pdev;
106 
107 /*
108  * Central wireless core regulatory domains, we only need two,
109  * the current one and a world regulatory domain in case we have no
110  * information to give us an alpha2.
111  * (protected by RTNL, can be read under RCU)
112  */
113 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
114 
115 /*
116  * Number of devices that registered to the core
117  * that support cellular base station regulatory hints
118  * (protected by RTNL)
119  */
120 static int reg_num_devs_support_basehint;
121 
122 /*
123  * State variable indicating if the platform on which the devices
124  * are attached is operating in an indoor environment. The state variable
125  * is relevant for all registered devices.
126  */
127 static bool reg_is_indoor;
128 static spinlock_t reg_indoor_lock;
129 
130 /* Used to track the userspace process controlling the indoor setting */
131 static u32 reg_is_indoor_portid;
132 
133 static void restore_regulatory_settings(bool reset_user);
134 
135 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
136 {
137 	return rtnl_dereference(cfg80211_regdomain);
138 }
139 
140 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
141 {
142 	return rtnl_dereference(wiphy->regd);
143 }
144 
145 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
146 {
147 	switch (dfs_region) {
148 	case NL80211_DFS_UNSET:
149 		return "unset";
150 	case NL80211_DFS_FCC:
151 		return "FCC";
152 	case NL80211_DFS_ETSI:
153 		return "ETSI";
154 	case NL80211_DFS_JP:
155 		return "JP";
156 	}
157 	return "Unknown";
158 }
159 
160 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
161 {
162 	const struct ieee80211_regdomain *regd = NULL;
163 	const struct ieee80211_regdomain *wiphy_regd = NULL;
164 
165 	regd = get_cfg80211_regdom();
166 	if (!wiphy)
167 		goto out;
168 
169 	wiphy_regd = get_wiphy_regdom(wiphy);
170 	if (!wiphy_regd)
171 		goto out;
172 
173 	if (wiphy_regd->dfs_region == regd->dfs_region)
174 		goto out;
175 
176 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
177 		 dev_name(&wiphy->dev),
178 		 reg_dfs_region_str(wiphy_regd->dfs_region),
179 		 reg_dfs_region_str(regd->dfs_region));
180 
181 out:
182 	return regd->dfs_region;
183 }
184 
185 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
186 {
187 	if (!r)
188 		return;
189 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
190 }
191 
192 static struct regulatory_request *get_last_request(void)
193 {
194 	return rcu_dereference_rtnl(last_request);
195 }
196 
197 /* Used to queue up regulatory hints */
198 static LIST_HEAD(reg_requests_list);
199 static spinlock_t reg_requests_lock;
200 
201 /* Used to queue up beacon hints for review */
202 static LIST_HEAD(reg_pending_beacons);
203 static spinlock_t reg_pending_beacons_lock;
204 
205 /* Used to keep track of processed beacon hints */
206 static LIST_HEAD(reg_beacon_list);
207 
208 struct reg_beacon {
209 	struct list_head list;
210 	struct ieee80211_channel chan;
211 };
212 
213 static void reg_check_chans_work(struct work_struct *work);
214 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
215 
216 static void reg_todo(struct work_struct *work);
217 static DECLARE_WORK(reg_work, reg_todo);
218 
219 /* We keep a static world regulatory domain in case of the absence of CRDA */
220 static const struct ieee80211_regdomain world_regdom = {
221 	.n_reg_rules = 8,
222 	.alpha2 =  "00",
223 	.reg_rules = {
224 		/* IEEE 802.11b/g, channels 1..11 */
225 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
226 		/* IEEE 802.11b/g, channels 12..13. */
227 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
228 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
229 		/* IEEE 802.11 channel 14 - Only JP enables
230 		 * this and for 802.11b only */
231 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
232 			NL80211_RRF_NO_IR |
233 			NL80211_RRF_NO_OFDM),
234 		/* IEEE 802.11a, channel 36..48 */
235 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
236                         NL80211_RRF_NO_IR |
237                         NL80211_RRF_AUTO_BW),
238 
239 		/* IEEE 802.11a, channel 52..64 - DFS required */
240 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
241 			NL80211_RRF_NO_IR |
242 			NL80211_RRF_AUTO_BW |
243 			NL80211_RRF_DFS),
244 
245 		/* IEEE 802.11a, channel 100..144 - DFS required */
246 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
247 			NL80211_RRF_NO_IR |
248 			NL80211_RRF_DFS),
249 
250 		/* IEEE 802.11a, channel 149..165 */
251 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
252 			NL80211_RRF_NO_IR),
253 
254 		/* IEEE 802.11ad (60GHz), channels 1..3 */
255 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
256 	}
257 };
258 
259 /* protected by RTNL */
260 static const struct ieee80211_regdomain *cfg80211_world_regdom =
261 	&world_regdom;
262 
263 static char *ieee80211_regdom = "00";
264 static char user_alpha2[2];
265 
266 module_param(ieee80211_regdom, charp, 0444);
267 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
268 
269 static void reg_free_request(struct regulatory_request *request)
270 {
271 	if (request == &core_request_world)
272 		return;
273 
274 	if (request != get_last_request())
275 		kfree(request);
276 }
277 
278 static void reg_free_last_request(void)
279 {
280 	struct regulatory_request *lr = get_last_request();
281 
282 	if (lr != &core_request_world && lr)
283 		kfree_rcu(lr, rcu_head);
284 }
285 
286 static void reg_update_last_request(struct regulatory_request *request)
287 {
288 	struct regulatory_request *lr;
289 
290 	lr = get_last_request();
291 	if (lr == request)
292 		return;
293 
294 	reg_free_last_request();
295 	rcu_assign_pointer(last_request, request);
296 }
297 
298 static void reset_regdomains(bool full_reset,
299 			     const struct ieee80211_regdomain *new_regdom)
300 {
301 	const struct ieee80211_regdomain *r;
302 
303 	ASSERT_RTNL();
304 
305 	r = get_cfg80211_regdom();
306 
307 	/* avoid freeing static information or freeing something twice */
308 	if (r == cfg80211_world_regdom)
309 		r = NULL;
310 	if (cfg80211_world_regdom == &world_regdom)
311 		cfg80211_world_regdom = NULL;
312 	if (r == &world_regdom)
313 		r = NULL;
314 
315 	rcu_free_regdom(r);
316 	rcu_free_regdom(cfg80211_world_regdom);
317 
318 	cfg80211_world_regdom = &world_regdom;
319 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
320 
321 	if (!full_reset)
322 		return;
323 
324 	reg_update_last_request(&core_request_world);
325 }
326 
327 /*
328  * Dynamic world regulatory domain requested by the wireless
329  * core upon initialization
330  */
331 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
332 {
333 	struct regulatory_request *lr;
334 
335 	lr = get_last_request();
336 
337 	WARN_ON(!lr);
338 
339 	reset_regdomains(false, rd);
340 
341 	cfg80211_world_regdom = rd;
342 }
343 
344 bool is_world_regdom(const char *alpha2)
345 {
346 	if (!alpha2)
347 		return false;
348 	return alpha2[0] == '0' && alpha2[1] == '0';
349 }
350 
351 static bool is_alpha2_set(const char *alpha2)
352 {
353 	if (!alpha2)
354 		return false;
355 	return alpha2[0] && alpha2[1];
356 }
357 
358 static bool is_unknown_alpha2(const char *alpha2)
359 {
360 	if (!alpha2)
361 		return false;
362 	/*
363 	 * Special case where regulatory domain was built by driver
364 	 * but a specific alpha2 cannot be determined
365 	 */
366 	return alpha2[0] == '9' && alpha2[1] == '9';
367 }
368 
369 static bool is_intersected_alpha2(const char *alpha2)
370 {
371 	if (!alpha2)
372 		return false;
373 	/*
374 	 * Special case where regulatory domain is the
375 	 * result of an intersection between two regulatory domain
376 	 * structures
377 	 */
378 	return alpha2[0] == '9' && alpha2[1] == '8';
379 }
380 
381 static bool is_an_alpha2(const char *alpha2)
382 {
383 	if (!alpha2)
384 		return false;
385 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
386 }
387 
388 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
389 {
390 	if (!alpha2_x || !alpha2_y)
391 		return false;
392 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
393 }
394 
395 static bool regdom_changes(const char *alpha2)
396 {
397 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
398 
399 	if (!r)
400 		return true;
401 	return !alpha2_equal(r->alpha2, alpha2);
402 }
403 
404 /*
405  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
406  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
407  * has ever been issued.
408  */
409 static bool is_user_regdom_saved(void)
410 {
411 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
412 		return false;
413 
414 	/* This would indicate a mistake on the design */
415 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
416 		 "Unexpected user alpha2: %c%c\n",
417 		 user_alpha2[0], user_alpha2[1]))
418 		return false;
419 
420 	return true;
421 }
422 
423 static const struct ieee80211_regdomain *
424 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
425 {
426 	struct ieee80211_regdomain *regd;
427 	int size_of_regd;
428 	unsigned int i;
429 
430 	size_of_regd =
431 		sizeof(struct ieee80211_regdomain) +
432 		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
433 
434 	regd = kzalloc(size_of_regd, GFP_KERNEL);
435 	if (!regd)
436 		return ERR_PTR(-ENOMEM);
437 
438 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
439 
440 	for (i = 0; i < src_regd->n_reg_rules; i++)
441 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
442 		       sizeof(struct ieee80211_reg_rule));
443 
444 	return regd;
445 }
446 
447 struct reg_regdb_apply_request {
448 	struct list_head list;
449 	const struct ieee80211_regdomain *regdom;
450 };
451 
452 static LIST_HEAD(reg_regdb_apply_list);
453 static DEFINE_MUTEX(reg_regdb_apply_mutex);
454 
455 static void reg_regdb_apply(struct work_struct *work)
456 {
457 	struct reg_regdb_apply_request *request;
458 
459 	rtnl_lock();
460 
461 	mutex_lock(&reg_regdb_apply_mutex);
462 	while (!list_empty(&reg_regdb_apply_list)) {
463 		request = list_first_entry(&reg_regdb_apply_list,
464 					   struct reg_regdb_apply_request,
465 					   list);
466 		list_del(&request->list);
467 
468 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
469 		kfree(request);
470 	}
471 	mutex_unlock(&reg_regdb_apply_mutex);
472 
473 	rtnl_unlock();
474 }
475 
476 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
477 
478 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
479 {
480 	struct reg_regdb_apply_request *request;
481 
482 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
483 	if (!request) {
484 		kfree(regdom);
485 		return -ENOMEM;
486 	}
487 
488 	request->regdom = regdom;
489 
490 	mutex_lock(&reg_regdb_apply_mutex);
491 	list_add_tail(&request->list, &reg_regdb_apply_list);
492 	mutex_unlock(&reg_regdb_apply_mutex);
493 
494 	schedule_work(&reg_regdb_work);
495 	return 0;
496 }
497 
498 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
499 /* Max number of consecutive attempts to communicate with CRDA  */
500 #define REG_MAX_CRDA_TIMEOUTS 10
501 
502 static u32 reg_crda_timeouts;
503 
504 static void crda_timeout_work(struct work_struct *work);
505 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
506 
507 static void crda_timeout_work(struct work_struct *work)
508 {
509 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
510 	rtnl_lock();
511 	reg_crda_timeouts++;
512 	restore_regulatory_settings(true);
513 	rtnl_unlock();
514 }
515 
516 static void cancel_crda_timeout(void)
517 {
518 	cancel_delayed_work(&crda_timeout);
519 }
520 
521 static void cancel_crda_timeout_sync(void)
522 {
523 	cancel_delayed_work_sync(&crda_timeout);
524 }
525 
526 static void reset_crda_timeouts(void)
527 {
528 	reg_crda_timeouts = 0;
529 }
530 
531 /*
532  * This lets us keep regulatory code which is updated on a regulatory
533  * basis in userspace.
534  */
535 static int call_crda(const char *alpha2)
536 {
537 	char country[12];
538 	char *env[] = { country, NULL };
539 	int ret;
540 
541 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
542 		 alpha2[0], alpha2[1]);
543 
544 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
545 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
546 		return -EINVAL;
547 	}
548 
549 	if (!is_world_regdom((char *) alpha2))
550 		pr_debug("Calling CRDA for country: %c%c\n",
551 			 alpha2[0], alpha2[1]);
552 	else
553 		pr_debug("Calling CRDA to update world regulatory domain\n");
554 
555 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
556 	if (ret)
557 		return ret;
558 
559 	queue_delayed_work(system_power_efficient_wq,
560 			   &crda_timeout, msecs_to_jiffies(3142));
561 	return 0;
562 }
563 #else
564 static inline void cancel_crda_timeout(void) {}
565 static inline void cancel_crda_timeout_sync(void) {}
566 static inline void reset_crda_timeouts(void) {}
567 static inline int call_crda(const char *alpha2)
568 {
569 	return -ENODATA;
570 }
571 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
572 
573 /* code to directly load a firmware database through request_firmware */
574 static const struct fwdb_header *regdb;
575 
576 struct fwdb_country {
577 	u8 alpha2[2];
578 	__be16 coll_ptr;
579 	/* this struct cannot be extended */
580 } __packed __aligned(4);
581 
582 struct fwdb_collection {
583 	u8 len;
584 	u8 n_rules;
585 	u8 dfs_region;
586 	/* no optional data yet */
587 	/* aligned to 2, then followed by __be16 array of rule pointers */
588 } __packed __aligned(4);
589 
590 enum fwdb_flags {
591 	FWDB_FLAG_NO_OFDM	= BIT(0),
592 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
593 	FWDB_FLAG_DFS		= BIT(2),
594 	FWDB_FLAG_NO_IR		= BIT(3),
595 	FWDB_FLAG_AUTO_BW	= BIT(4),
596 };
597 
598 struct fwdb_rule {
599 	u8 len;
600 	u8 flags;
601 	__be16 max_eirp;
602 	__be32 start, end, max_bw;
603 	/* start of optional data */
604 	__be16 cac_timeout;
605 } __packed __aligned(4);
606 
607 #define FWDB_MAGIC 0x52474442
608 #define FWDB_VERSION 20
609 
610 struct fwdb_header {
611 	__be32 magic;
612 	__be32 version;
613 	struct fwdb_country country[];
614 } __packed __aligned(4);
615 
616 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
617 {
618 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
619 
620 	if ((u8 *)rule + sizeof(rule->len) > data + size)
621 		return false;
622 
623 	/* mandatory fields */
624 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
625 		return false;
626 
627 	return true;
628 }
629 
630 static bool valid_country(const u8 *data, unsigned int size,
631 			  const struct fwdb_country *country)
632 {
633 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
634 	struct fwdb_collection *coll = (void *)(data + ptr);
635 	__be16 *rules_ptr;
636 	unsigned int i;
637 
638 	/* make sure we can read len/n_rules */
639 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
640 		return false;
641 
642 	/* make sure base struct and all rules fit */
643 	if ((u8 *)coll + ALIGN(coll->len, 2) +
644 	    (coll->n_rules * 2) > data + size)
645 		return false;
646 
647 	/* mandatory fields must exist */
648 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
649 		return false;
650 
651 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
652 
653 	for (i = 0; i < coll->n_rules; i++) {
654 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
655 
656 		if (!valid_rule(data, size, rule_ptr))
657 			return false;
658 	}
659 
660 	return true;
661 }
662 
663 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
664 static struct key *builtin_regdb_keys;
665 
666 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
667 {
668 	const u8 *end = p + buflen;
669 	size_t plen;
670 	key_ref_t key;
671 
672 	while (p < end) {
673 		/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
674 		 * than 256 bytes in size.
675 		 */
676 		if (end - p < 4)
677 			goto dodgy_cert;
678 		if (p[0] != 0x30 &&
679 		    p[1] != 0x82)
680 			goto dodgy_cert;
681 		plen = (p[2] << 8) | p[3];
682 		plen += 4;
683 		if (plen > end - p)
684 			goto dodgy_cert;
685 
686 		key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
687 					   "asymmetric", NULL, p, plen,
688 					   ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
689 					    KEY_USR_VIEW | KEY_USR_READ),
690 					   KEY_ALLOC_NOT_IN_QUOTA |
691 					   KEY_ALLOC_BUILT_IN |
692 					   KEY_ALLOC_BYPASS_RESTRICTION);
693 		if (IS_ERR(key)) {
694 			pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
695 			       PTR_ERR(key));
696 		} else {
697 			pr_notice("Loaded X.509 cert '%s'\n",
698 				  key_ref_to_ptr(key)->description);
699 			key_ref_put(key);
700 		}
701 		p += plen;
702 	}
703 
704 	return;
705 
706 dodgy_cert:
707 	pr_err("Problem parsing in-kernel X.509 certificate list\n");
708 }
709 
710 static int __init load_builtin_regdb_keys(void)
711 {
712 	builtin_regdb_keys =
713 		keyring_alloc(".builtin_regdb_keys",
714 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
715 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
716 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
717 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
718 	if (IS_ERR(builtin_regdb_keys))
719 		return PTR_ERR(builtin_regdb_keys);
720 
721 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
722 
723 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
724 	load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
725 #endif
726 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
727 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
728 		load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
729 #endif
730 
731 	return 0;
732 }
733 
734 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
735 {
736 	const struct firmware *sig;
737 	bool result;
738 
739 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
740 		return false;
741 
742 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
743 					builtin_regdb_keys,
744 					VERIFYING_UNSPECIFIED_SIGNATURE,
745 					NULL, NULL) == 0;
746 
747 	release_firmware(sig);
748 
749 	return result;
750 }
751 
752 static void free_regdb_keyring(void)
753 {
754 	key_put(builtin_regdb_keys);
755 }
756 #else
757 static int load_builtin_regdb_keys(void)
758 {
759 	return 0;
760 }
761 
762 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
763 {
764 	return true;
765 }
766 
767 static void free_regdb_keyring(void)
768 {
769 }
770 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
771 
772 static bool valid_regdb(const u8 *data, unsigned int size)
773 {
774 	const struct fwdb_header *hdr = (void *)data;
775 	const struct fwdb_country *country;
776 
777 	if (size < sizeof(*hdr))
778 		return false;
779 
780 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
781 		return false;
782 
783 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
784 		return false;
785 
786 	if (!regdb_has_valid_signature(data, size))
787 		return false;
788 
789 	country = &hdr->country[0];
790 	while ((u8 *)(country + 1) <= data + size) {
791 		if (!country->coll_ptr)
792 			break;
793 		if (!valid_country(data, size, country))
794 			return false;
795 		country++;
796 	}
797 
798 	return true;
799 }
800 
801 static int regdb_query_country(const struct fwdb_header *db,
802 			       const struct fwdb_country *country)
803 {
804 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
805 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
806 	struct ieee80211_regdomain *regdom;
807 	unsigned int size_of_regd;
808 	unsigned int i;
809 
810 	size_of_regd =
811 		sizeof(struct ieee80211_regdomain) +
812 		coll->n_rules * sizeof(struct ieee80211_reg_rule);
813 
814 	regdom = kzalloc(size_of_regd, GFP_KERNEL);
815 	if (!regdom)
816 		return -ENOMEM;
817 
818 	regdom->n_reg_rules = coll->n_rules;
819 	regdom->alpha2[0] = country->alpha2[0];
820 	regdom->alpha2[1] = country->alpha2[1];
821 	regdom->dfs_region = coll->dfs_region;
822 
823 	for (i = 0; i < regdom->n_reg_rules; i++) {
824 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
825 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
826 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
827 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
828 
829 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
830 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
831 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
832 
833 		rrule->power_rule.max_antenna_gain = 0;
834 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
835 
836 		rrule->flags = 0;
837 		if (rule->flags & FWDB_FLAG_NO_OFDM)
838 			rrule->flags |= NL80211_RRF_NO_OFDM;
839 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
840 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
841 		if (rule->flags & FWDB_FLAG_DFS)
842 			rrule->flags |= NL80211_RRF_DFS;
843 		if (rule->flags & FWDB_FLAG_NO_IR)
844 			rrule->flags |= NL80211_RRF_NO_IR;
845 		if (rule->flags & FWDB_FLAG_AUTO_BW)
846 			rrule->flags |= NL80211_RRF_AUTO_BW;
847 
848 		rrule->dfs_cac_ms = 0;
849 
850 		/* handle optional data */
851 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
852 			rrule->dfs_cac_ms =
853 				1000 * be16_to_cpu(rule->cac_timeout);
854 	}
855 
856 	return reg_schedule_apply(regdom);
857 }
858 
859 static int query_regdb(const char *alpha2)
860 {
861 	const struct fwdb_header *hdr = regdb;
862 	const struct fwdb_country *country;
863 
864 	ASSERT_RTNL();
865 
866 	if (IS_ERR(regdb))
867 		return PTR_ERR(regdb);
868 
869 	country = &hdr->country[0];
870 	while (country->coll_ptr) {
871 		if (alpha2_equal(alpha2, country->alpha2))
872 			return regdb_query_country(regdb, country);
873 		country++;
874 	}
875 
876 	return -ENODATA;
877 }
878 
879 static void regdb_fw_cb(const struct firmware *fw, void *context)
880 {
881 	int set_error = 0;
882 	bool restore = true;
883 	void *db;
884 
885 	if (!fw) {
886 		pr_info("failed to load regulatory.db\n");
887 		set_error = -ENODATA;
888 	} else if (!valid_regdb(fw->data, fw->size)) {
889 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
890 		set_error = -EINVAL;
891 	}
892 
893 	rtnl_lock();
894 	if (WARN_ON(regdb && !IS_ERR(regdb))) {
895 		/* just restore and free new db */
896 	} else if (set_error) {
897 		regdb = ERR_PTR(set_error);
898 	} else if (fw) {
899 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
900 		if (db) {
901 			regdb = db;
902 			restore = context && query_regdb(context);
903 		} else {
904 			restore = true;
905 		}
906 	}
907 
908 	if (restore)
909 		restore_regulatory_settings(true);
910 
911 	rtnl_unlock();
912 
913 	kfree(context);
914 
915 	release_firmware(fw);
916 }
917 
918 static int query_regdb_file(const char *alpha2)
919 {
920 	ASSERT_RTNL();
921 
922 	if (regdb)
923 		return query_regdb(alpha2);
924 
925 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
926 	if (!alpha2)
927 		return -ENOMEM;
928 
929 	return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
930 				       &reg_pdev->dev, GFP_KERNEL,
931 				       (void *)alpha2, regdb_fw_cb);
932 }
933 
934 int reg_reload_regdb(void)
935 {
936 	const struct firmware *fw;
937 	void *db;
938 	int err;
939 
940 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
941 	if (err)
942 		return err;
943 
944 	if (!valid_regdb(fw->data, fw->size)) {
945 		err = -ENODATA;
946 		goto out;
947 	}
948 
949 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
950 	if (!db) {
951 		err = -ENOMEM;
952 		goto out;
953 	}
954 
955 	rtnl_lock();
956 	if (!IS_ERR_OR_NULL(regdb))
957 		kfree(regdb);
958 	regdb = db;
959 	rtnl_unlock();
960 
961  out:
962 	release_firmware(fw);
963 	return err;
964 }
965 
966 static bool reg_query_database(struct regulatory_request *request)
967 {
968 	if (query_regdb_file(request->alpha2) == 0)
969 		return true;
970 
971 	if (call_crda(request->alpha2) == 0)
972 		return true;
973 
974 	return false;
975 }
976 
977 bool reg_is_valid_request(const char *alpha2)
978 {
979 	struct regulatory_request *lr = get_last_request();
980 
981 	if (!lr || lr->processed)
982 		return false;
983 
984 	return alpha2_equal(lr->alpha2, alpha2);
985 }
986 
987 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
988 {
989 	struct regulatory_request *lr = get_last_request();
990 
991 	/*
992 	 * Follow the driver's regulatory domain, if present, unless a country
993 	 * IE has been processed or a user wants to help complaince further
994 	 */
995 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
996 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
997 	    wiphy->regd)
998 		return get_wiphy_regdom(wiphy);
999 
1000 	return get_cfg80211_regdom();
1001 }
1002 
1003 static unsigned int
1004 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1005 				 const struct ieee80211_reg_rule *rule)
1006 {
1007 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1008 	const struct ieee80211_freq_range *freq_range_tmp;
1009 	const struct ieee80211_reg_rule *tmp;
1010 	u32 start_freq, end_freq, idx, no;
1011 
1012 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1013 		if (rule == &rd->reg_rules[idx])
1014 			break;
1015 
1016 	if (idx == rd->n_reg_rules)
1017 		return 0;
1018 
1019 	/* get start_freq */
1020 	no = idx;
1021 
1022 	while (no) {
1023 		tmp = &rd->reg_rules[--no];
1024 		freq_range_tmp = &tmp->freq_range;
1025 
1026 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1027 			break;
1028 
1029 		freq_range = freq_range_tmp;
1030 	}
1031 
1032 	start_freq = freq_range->start_freq_khz;
1033 
1034 	/* get end_freq */
1035 	freq_range = &rule->freq_range;
1036 	no = idx;
1037 
1038 	while (no < rd->n_reg_rules - 1) {
1039 		tmp = &rd->reg_rules[++no];
1040 		freq_range_tmp = &tmp->freq_range;
1041 
1042 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1043 			break;
1044 
1045 		freq_range = freq_range_tmp;
1046 	}
1047 
1048 	end_freq = freq_range->end_freq_khz;
1049 
1050 	return end_freq - start_freq;
1051 }
1052 
1053 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1054 				   const struct ieee80211_reg_rule *rule)
1055 {
1056 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1057 
1058 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1059 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1060 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1061 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1062 
1063 	/*
1064 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1065 	 * are not allowed.
1066 	 */
1067 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1068 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1069 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1070 
1071 	return bw;
1072 }
1073 
1074 /* Sanity check on a regulatory rule */
1075 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1076 {
1077 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1078 	u32 freq_diff;
1079 
1080 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1081 		return false;
1082 
1083 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1084 		return false;
1085 
1086 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1087 
1088 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1089 	    freq_range->max_bandwidth_khz > freq_diff)
1090 		return false;
1091 
1092 	return true;
1093 }
1094 
1095 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1096 {
1097 	const struct ieee80211_reg_rule *reg_rule = NULL;
1098 	unsigned int i;
1099 
1100 	if (!rd->n_reg_rules)
1101 		return false;
1102 
1103 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1104 		return false;
1105 
1106 	for (i = 0; i < rd->n_reg_rules; i++) {
1107 		reg_rule = &rd->reg_rules[i];
1108 		if (!is_valid_reg_rule(reg_rule))
1109 			return false;
1110 	}
1111 
1112 	return true;
1113 }
1114 
1115 /**
1116  * freq_in_rule_band - tells us if a frequency is in a frequency band
1117  * @freq_range: frequency rule we want to query
1118  * @freq_khz: frequency we are inquiring about
1119  *
1120  * This lets us know if a specific frequency rule is or is not relevant to
1121  * a specific frequency's band. Bands are device specific and artificial
1122  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1123  * however it is safe for now to assume that a frequency rule should not be
1124  * part of a frequency's band if the start freq or end freq are off by more
1125  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
1126  * 60 GHz band.
1127  * This resolution can be lowered and should be considered as we add
1128  * regulatory rule support for other "bands".
1129  **/
1130 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1131 			      u32 freq_khz)
1132 {
1133 #define ONE_GHZ_IN_KHZ	1000000
1134 	/*
1135 	 * From 802.11ad: directional multi-gigabit (DMG):
1136 	 * Pertaining to operation in a frequency band containing a channel
1137 	 * with the Channel starting frequency above 45 GHz.
1138 	 */
1139 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1140 			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1141 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1142 		return true;
1143 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1144 		return true;
1145 	return false;
1146 #undef ONE_GHZ_IN_KHZ
1147 }
1148 
1149 /*
1150  * Later on we can perhaps use the more restrictive DFS
1151  * region but we don't have information for that yet so
1152  * for now simply disallow conflicts.
1153  */
1154 static enum nl80211_dfs_regions
1155 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1156 			 const enum nl80211_dfs_regions dfs_region2)
1157 {
1158 	if (dfs_region1 != dfs_region2)
1159 		return NL80211_DFS_UNSET;
1160 	return dfs_region1;
1161 }
1162 
1163 /*
1164  * Helper for regdom_intersect(), this does the real
1165  * mathematical intersection fun
1166  */
1167 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1168 			       const struct ieee80211_regdomain *rd2,
1169 			       const struct ieee80211_reg_rule *rule1,
1170 			       const struct ieee80211_reg_rule *rule2,
1171 			       struct ieee80211_reg_rule *intersected_rule)
1172 {
1173 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1174 	struct ieee80211_freq_range *freq_range;
1175 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1176 	struct ieee80211_power_rule *power_rule;
1177 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1178 
1179 	freq_range1 = &rule1->freq_range;
1180 	freq_range2 = &rule2->freq_range;
1181 	freq_range = &intersected_rule->freq_range;
1182 
1183 	power_rule1 = &rule1->power_rule;
1184 	power_rule2 = &rule2->power_rule;
1185 	power_rule = &intersected_rule->power_rule;
1186 
1187 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1188 					 freq_range2->start_freq_khz);
1189 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1190 				       freq_range2->end_freq_khz);
1191 
1192 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1193 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1194 
1195 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1196 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1197 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1198 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1199 
1200 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1201 
1202 	intersected_rule->flags = rule1->flags | rule2->flags;
1203 
1204 	/*
1205 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1206 	 * set AUTO_BW in intersected rule also. Next we will
1207 	 * calculate BW correctly in handle_channel function.
1208 	 * In other case remove AUTO_BW flag while we calculate
1209 	 * maximum bandwidth correctly and auto calculation is
1210 	 * not required.
1211 	 */
1212 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1213 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1214 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1215 	else
1216 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1217 
1218 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1219 	if (freq_range->max_bandwidth_khz > freq_diff)
1220 		freq_range->max_bandwidth_khz = freq_diff;
1221 
1222 	power_rule->max_eirp = min(power_rule1->max_eirp,
1223 		power_rule2->max_eirp);
1224 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1225 		power_rule2->max_antenna_gain);
1226 
1227 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1228 					   rule2->dfs_cac_ms);
1229 
1230 	if (!is_valid_reg_rule(intersected_rule))
1231 		return -EINVAL;
1232 
1233 	return 0;
1234 }
1235 
1236 /* check whether old rule contains new rule */
1237 static bool rule_contains(struct ieee80211_reg_rule *r1,
1238 			  struct ieee80211_reg_rule *r2)
1239 {
1240 	/* for simplicity, currently consider only same flags */
1241 	if (r1->flags != r2->flags)
1242 		return false;
1243 
1244 	/* verify r1 is more restrictive */
1245 	if ((r1->power_rule.max_antenna_gain >
1246 	     r2->power_rule.max_antenna_gain) ||
1247 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1248 		return false;
1249 
1250 	/* make sure r2's range is contained within r1 */
1251 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1252 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1253 		return false;
1254 
1255 	/* and finally verify that r1.max_bw >= r2.max_bw */
1256 	if (r1->freq_range.max_bandwidth_khz <
1257 	    r2->freq_range.max_bandwidth_khz)
1258 		return false;
1259 
1260 	return true;
1261 }
1262 
1263 /* add or extend current rules. do nothing if rule is already contained */
1264 static void add_rule(struct ieee80211_reg_rule *rule,
1265 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1266 {
1267 	struct ieee80211_reg_rule *tmp_rule;
1268 	int i;
1269 
1270 	for (i = 0; i < *n_rules; i++) {
1271 		tmp_rule = &reg_rules[i];
1272 		/* rule is already contained - do nothing */
1273 		if (rule_contains(tmp_rule, rule))
1274 			return;
1275 
1276 		/* extend rule if possible */
1277 		if (rule_contains(rule, tmp_rule)) {
1278 			memcpy(tmp_rule, rule, sizeof(*rule));
1279 			return;
1280 		}
1281 	}
1282 
1283 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1284 	(*n_rules)++;
1285 }
1286 
1287 /**
1288  * regdom_intersect - do the intersection between two regulatory domains
1289  * @rd1: first regulatory domain
1290  * @rd2: second regulatory domain
1291  *
1292  * Use this function to get the intersection between two regulatory domains.
1293  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1294  * as no one single alpha2 can represent this regulatory domain.
1295  *
1296  * Returns a pointer to the regulatory domain structure which will hold the
1297  * resulting intersection of rules between rd1 and rd2. We will
1298  * kzalloc() this structure for you.
1299  */
1300 static struct ieee80211_regdomain *
1301 regdom_intersect(const struct ieee80211_regdomain *rd1,
1302 		 const struct ieee80211_regdomain *rd2)
1303 {
1304 	int r, size_of_regd;
1305 	unsigned int x, y;
1306 	unsigned int num_rules = 0;
1307 	const struct ieee80211_reg_rule *rule1, *rule2;
1308 	struct ieee80211_reg_rule intersected_rule;
1309 	struct ieee80211_regdomain *rd;
1310 
1311 	if (!rd1 || !rd2)
1312 		return NULL;
1313 
1314 	/*
1315 	 * First we get a count of the rules we'll need, then we actually
1316 	 * build them. This is to so we can malloc() and free() a
1317 	 * regdomain once. The reason we use reg_rules_intersect() here
1318 	 * is it will return -EINVAL if the rule computed makes no sense.
1319 	 * All rules that do check out OK are valid.
1320 	 */
1321 
1322 	for (x = 0; x < rd1->n_reg_rules; x++) {
1323 		rule1 = &rd1->reg_rules[x];
1324 		for (y = 0; y < rd2->n_reg_rules; y++) {
1325 			rule2 = &rd2->reg_rules[y];
1326 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1327 						 &intersected_rule))
1328 				num_rules++;
1329 		}
1330 	}
1331 
1332 	if (!num_rules)
1333 		return NULL;
1334 
1335 	size_of_regd = sizeof(struct ieee80211_regdomain) +
1336 		       num_rules * sizeof(struct ieee80211_reg_rule);
1337 
1338 	rd = kzalloc(size_of_regd, GFP_KERNEL);
1339 	if (!rd)
1340 		return NULL;
1341 
1342 	for (x = 0; x < rd1->n_reg_rules; x++) {
1343 		rule1 = &rd1->reg_rules[x];
1344 		for (y = 0; y < rd2->n_reg_rules; y++) {
1345 			rule2 = &rd2->reg_rules[y];
1346 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1347 						&intersected_rule);
1348 			/*
1349 			 * No need to memset here the intersected rule here as
1350 			 * we're not using the stack anymore
1351 			 */
1352 			if (r)
1353 				continue;
1354 
1355 			add_rule(&intersected_rule, rd->reg_rules,
1356 				 &rd->n_reg_rules);
1357 		}
1358 	}
1359 
1360 	rd->alpha2[0] = '9';
1361 	rd->alpha2[1] = '8';
1362 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1363 						  rd2->dfs_region);
1364 
1365 	return rd;
1366 }
1367 
1368 /*
1369  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1370  * want to just have the channel structure use these
1371  */
1372 static u32 map_regdom_flags(u32 rd_flags)
1373 {
1374 	u32 channel_flags = 0;
1375 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1376 		channel_flags |= IEEE80211_CHAN_NO_IR;
1377 	if (rd_flags & NL80211_RRF_DFS)
1378 		channel_flags |= IEEE80211_CHAN_RADAR;
1379 	if (rd_flags & NL80211_RRF_NO_OFDM)
1380 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1381 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1382 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1383 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1384 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1385 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1386 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1387 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1388 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1389 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1390 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1391 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1392 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1393 	return channel_flags;
1394 }
1395 
1396 static const struct ieee80211_reg_rule *
1397 freq_reg_info_regd(u32 center_freq,
1398 		   const struct ieee80211_regdomain *regd, u32 bw)
1399 {
1400 	int i;
1401 	bool band_rule_found = false;
1402 	bool bw_fits = false;
1403 
1404 	if (!regd)
1405 		return ERR_PTR(-EINVAL);
1406 
1407 	for (i = 0; i < regd->n_reg_rules; i++) {
1408 		const struct ieee80211_reg_rule *rr;
1409 		const struct ieee80211_freq_range *fr = NULL;
1410 
1411 		rr = &regd->reg_rules[i];
1412 		fr = &rr->freq_range;
1413 
1414 		/*
1415 		 * We only need to know if one frequency rule was
1416 		 * was in center_freq's band, that's enough, so lets
1417 		 * not overwrite it once found
1418 		 */
1419 		if (!band_rule_found)
1420 			band_rule_found = freq_in_rule_band(fr, center_freq);
1421 
1422 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1423 
1424 		if (band_rule_found && bw_fits)
1425 			return rr;
1426 	}
1427 
1428 	if (!band_rule_found)
1429 		return ERR_PTR(-ERANGE);
1430 
1431 	return ERR_PTR(-EINVAL);
1432 }
1433 
1434 static const struct ieee80211_reg_rule *
1435 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1436 {
1437 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1438 	const struct ieee80211_reg_rule *reg_rule = NULL;
1439 	u32 bw;
1440 
1441 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1442 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1443 		if (!IS_ERR(reg_rule))
1444 			return reg_rule;
1445 	}
1446 
1447 	return reg_rule;
1448 }
1449 
1450 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1451 					       u32 center_freq)
1452 {
1453 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1454 }
1455 EXPORT_SYMBOL(freq_reg_info);
1456 
1457 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1458 {
1459 	switch (initiator) {
1460 	case NL80211_REGDOM_SET_BY_CORE:
1461 		return "core";
1462 	case NL80211_REGDOM_SET_BY_USER:
1463 		return "user";
1464 	case NL80211_REGDOM_SET_BY_DRIVER:
1465 		return "driver";
1466 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1467 		return "country IE";
1468 	default:
1469 		WARN_ON(1);
1470 		return "bug";
1471 	}
1472 }
1473 EXPORT_SYMBOL(reg_initiator_name);
1474 
1475 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1476 					  const struct ieee80211_reg_rule *reg_rule,
1477 					  const struct ieee80211_channel *chan)
1478 {
1479 	const struct ieee80211_freq_range *freq_range = NULL;
1480 	u32 max_bandwidth_khz, bw_flags = 0;
1481 
1482 	freq_range = &reg_rule->freq_range;
1483 
1484 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1485 	/* Check if auto calculation requested */
1486 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1487 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1488 
1489 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1490 	if (!cfg80211_does_bw_fit_range(freq_range,
1491 					MHZ_TO_KHZ(chan->center_freq),
1492 					MHZ_TO_KHZ(10)))
1493 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1494 	if (!cfg80211_does_bw_fit_range(freq_range,
1495 					MHZ_TO_KHZ(chan->center_freq),
1496 					MHZ_TO_KHZ(20)))
1497 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1498 
1499 	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1500 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1501 	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1502 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1503 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1504 		bw_flags |= IEEE80211_CHAN_NO_HT40;
1505 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1506 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1507 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1508 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1509 	return bw_flags;
1510 }
1511 
1512 /*
1513  * Note that right now we assume the desired channel bandwidth
1514  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1515  * per channel, the primary and the extension channel).
1516  */
1517 static void handle_channel(struct wiphy *wiphy,
1518 			   enum nl80211_reg_initiator initiator,
1519 			   struct ieee80211_channel *chan)
1520 {
1521 	u32 flags, bw_flags = 0;
1522 	const struct ieee80211_reg_rule *reg_rule = NULL;
1523 	const struct ieee80211_power_rule *power_rule = NULL;
1524 	struct wiphy *request_wiphy = NULL;
1525 	struct regulatory_request *lr = get_last_request();
1526 	const struct ieee80211_regdomain *regd;
1527 
1528 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1529 
1530 	flags = chan->orig_flags;
1531 
1532 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1533 	if (IS_ERR(reg_rule)) {
1534 		/*
1535 		 * We will disable all channels that do not match our
1536 		 * received regulatory rule unless the hint is coming
1537 		 * from a Country IE and the Country IE had no information
1538 		 * about a band. The IEEE 802.11 spec allows for an AP
1539 		 * to send only a subset of the regulatory rules allowed,
1540 		 * so an AP in the US that only supports 2.4 GHz may only send
1541 		 * a country IE with information for the 2.4 GHz band
1542 		 * while 5 GHz is still supported.
1543 		 */
1544 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1545 		    PTR_ERR(reg_rule) == -ERANGE)
1546 			return;
1547 
1548 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1549 		    request_wiphy && request_wiphy == wiphy &&
1550 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1551 			pr_debug("Disabling freq %d MHz for good\n",
1552 				 chan->center_freq);
1553 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1554 			chan->flags = chan->orig_flags;
1555 		} else {
1556 			pr_debug("Disabling freq %d MHz\n",
1557 				 chan->center_freq);
1558 			chan->flags |= IEEE80211_CHAN_DISABLED;
1559 		}
1560 		return;
1561 	}
1562 
1563 	regd = reg_get_regdomain(wiphy);
1564 
1565 	power_rule = &reg_rule->power_rule;
1566 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1567 
1568 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1569 	    request_wiphy && request_wiphy == wiphy &&
1570 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1571 		/*
1572 		 * This guarantees the driver's requested regulatory domain
1573 		 * will always be used as a base for further regulatory
1574 		 * settings
1575 		 */
1576 		chan->flags = chan->orig_flags =
1577 			map_regdom_flags(reg_rule->flags) | bw_flags;
1578 		chan->max_antenna_gain = chan->orig_mag =
1579 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1580 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1581 			(int) MBM_TO_DBM(power_rule->max_eirp);
1582 
1583 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1584 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1585 			if (reg_rule->dfs_cac_ms)
1586 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1587 		}
1588 
1589 		return;
1590 	}
1591 
1592 	chan->dfs_state = NL80211_DFS_USABLE;
1593 	chan->dfs_state_entered = jiffies;
1594 
1595 	chan->beacon_found = false;
1596 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1597 	chan->max_antenna_gain =
1598 		min_t(int, chan->orig_mag,
1599 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1600 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1601 
1602 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1603 		if (reg_rule->dfs_cac_ms)
1604 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1605 		else
1606 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1607 	}
1608 
1609 	if (chan->orig_mpwr) {
1610 		/*
1611 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1612 		 * will always follow the passed country IE power settings.
1613 		 */
1614 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1615 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1616 			chan->max_power = chan->max_reg_power;
1617 		else
1618 			chan->max_power = min(chan->orig_mpwr,
1619 					      chan->max_reg_power);
1620 	} else
1621 		chan->max_power = chan->max_reg_power;
1622 }
1623 
1624 static void handle_band(struct wiphy *wiphy,
1625 			enum nl80211_reg_initiator initiator,
1626 			struct ieee80211_supported_band *sband)
1627 {
1628 	unsigned int i;
1629 
1630 	if (!sband)
1631 		return;
1632 
1633 	for (i = 0; i < sband->n_channels; i++)
1634 		handle_channel(wiphy, initiator, &sband->channels[i]);
1635 }
1636 
1637 static bool reg_request_cell_base(struct regulatory_request *request)
1638 {
1639 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1640 		return false;
1641 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1642 }
1643 
1644 bool reg_last_request_cell_base(void)
1645 {
1646 	return reg_request_cell_base(get_last_request());
1647 }
1648 
1649 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1650 /* Core specific check */
1651 static enum reg_request_treatment
1652 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1653 {
1654 	struct regulatory_request *lr = get_last_request();
1655 
1656 	if (!reg_num_devs_support_basehint)
1657 		return REG_REQ_IGNORE;
1658 
1659 	if (reg_request_cell_base(lr) &&
1660 	    !regdom_changes(pending_request->alpha2))
1661 		return REG_REQ_ALREADY_SET;
1662 
1663 	return REG_REQ_OK;
1664 }
1665 
1666 /* Device specific check */
1667 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1668 {
1669 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1670 }
1671 #else
1672 static enum reg_request_treatment
1673 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1674 {
1675 	return REG_REQ_IGNORE;
1676 }
1677 
1678 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1679 {
1680 	return true;
1681 }
1682 #endif
1683 
1684 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1685 {
1686 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1687 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1688 		return true;
1689 	return false;
1690 }
1691 
1692 static bool ignore_reg_update(struct wiphy *wiphy,
1693 			      enum nl80211_reg_initiator initiator)
1694 {
1695 	struct regulatory_request *lr = get_last_request();
1696 
1697 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1698 		return true;
1699 
1700 	if (!lr) {
1701 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1702 			 reg_initiator_name(initiator));
1703 		return true;
1704 	}
1705 
1706 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1707 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1708 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1709 			 reg_initiator_name(initiator));
1710 		return true;
1711 	}
1712 
1713 	/*
1714 	 * wiphy->regd will be set once the device has its own
1715 	 * desired regulatory domain set
1716 	 */
1717 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1718 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1719 	    !is_world_regdom(lr->alpha2)) {
1720 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1721 			 reg_initiator_name(initiator));
1722 		return true;
1723 	}
1724 
1725 	if (reg_request_cell_base(lr))
1726 		return reg_dev_ignore_cell_hint(wiphy);
1727 
1728 	return false;
1729 }
1730 
1731 static bool reg_is_world_roaming(struct wiphy *wiphy)
1732 {
1733 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1734 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1735 	struct regulatory_request *lr = get_last_request();
1736 
1737 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1738 		return true;
1739 
1740 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1741 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1742 		return true;
1743 
1744 	return false;
1745 }
1746 
1747 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1748 			      struct reg_beacon *reg_beacon)
1749 {
1750 	struct ieee80211_supported_band *sband;
1751 	struct ieee80211_channel *chan;
1752 	bool channel_changed = false;
1753 	struct ieee80211_channel chan_before;
1754 
1755 	sband = wiphy->bands[reg_beacon->chan.band];
1756 	chan = &sband->channels[chan_idx];
1757 
1758 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1759 		return;
1760 
1761 	if (chan->beacon_found)
1762 		return;
1763 
1764 	chan->beacon_found = true;
1765 
1766 	if (!reg_is_world_roaming(wiphy))
1767 		return;
1768 
1769 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1770 		return;
1771 
1772 	chan_before = *chan;
1773 
1774 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1775 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1776 		channel_changed = true;
1777 	}
1778 
1779 	if (channel_changed)
1780 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1781 }
1782 
1783 /*
1784  * Called when a scan on a wiphy finds a beacon on
1785  * new channel
1786  */
1787 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1788 				    struct reg_beacon *reg_beacon)
1789 {
1790 	unsigned int i;
1791 	struct ieee80211_supported_band *sband;
1792 
1793 	if (!wiphy->bands[reg_beacon->chan.band])
1794 		return;
1795 
1796 	sband = wiphy->bands[reg_beacon->chan.band];
1797 
1798 	for (i = 0; i < sband->n_channels; i++)
1799 		handle_reg_beacon(wiphy, i, reg_beacon);
1800 }
1801 
1802 /*
1803  * Called upon reg changes or a new wiphy is added
1804  */
1805 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1806 {
1807 	unsigned int i;
1808 	struct ieee80211_supported_band *sband;
1809 	struct reg_beacon *reg_beacon;
1810 
1811 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1812 		if (!wiphy->bands[reg_beacon->chan.band])
1813 			continue;
1814 		sband = wiphy->bands[reg_beacon->chan.band];
1815 		for (i = 0; i < sband->n_channels; i++)
1816 			handle_reg_beacon(wiphy, i, reg_beacon);
1817 	}
1818 }
1819 
1820 /* Reap the advantages of previously found beacons */
1821 static void reg_process_beacons(struct wiphy *wiphy)
1822 {
1823 	/*
1824 	 * Means we are just firing up cfg80211, so no beacons would
1825 	 * have been processed yet.
1826 	 */
1827 	if (!last_request)
1828 		return;
1829 	wiphy_update_beacon_reg(wiphy);
1830 }
1831 
1832 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1833 {
1834 	if (!chan)
1835 		return false;
1836 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1837 		return false;
1838 	/* This would happen when regulatory rules disallow HT40 completely */
1839 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1840 		return false;
1841 	return true;
1842 }
1843 
1844 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1845 					 struct ieee80211_channel *channel)
1846 {
1847 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1848 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1849 	const struct ieee80211_regdomain *regd;
1850 	unsigned int i;
1851 	u32 flags;
1852 
1853 	if (!is_ht40_allowed(channel)) {
1854 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1855 		return;
1856 	}
1857 
1858 	/*
1859 	 * We need to ensure the extension channels exist to
1860 	 * be able to use HT40- or HT40+, this finds them (or not)
1861 	 */
1862 	for (i = 0; i < sband->n_channels; i++) {
1863 		struct ieee80211_channel *c = &sband->channels[i];
1864 
1865 		if (c->center_freq == (channel->center_freq - 20))
1866 			channel_before = c;
1867 		if (c->center_freq == (channel->center_freq + 20))
1868 			channel_after = c;
1869 	}
1870 
1871 	flags = 0;
1872 	regd = get_wiphy_regdom(wiphy);
1873 	if (regd) {
1874 		const struct ieee80211_reg_rule *reg_rule =
1875 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
1876 					   regd, MHZ_TO_KHZ(20));
1877 
1878 		if (!IS_ERR(reg_rule))
1879 			flags = reg_rule->flags;
1880 	}
1881 
1882 	/*
1883 	 * Please note that this assumes target bandwidth is 20 MHz,
1884 	 * if that ever changes we also need to change the below logic
1885 	 * to include that as well.
1886 	 */
1887 	if (!is_ht40_allowed(channel_before) ||
1888 	    flags & NL80211_RRF_NO_HT40MINUS)
1889 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1890 	else
1891 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1892 
1893 	if (!is_ht40_allowed(channel_after) ||
1894 	    flags & NL80211_RRF_NO_HT40PLUS)
1895 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1896 	else
1897 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1898 }
1899 
1900 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1901 				      struct ieee80211_supported_band *sband)
1902 {
1903 	unsigned int i;
1904 
1905 	if (!sband)
1906 		return;
1907 
1908 	for (i = 0; i < sband->n_channels; i++)
1909 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1910 }
1911 
1912 static void reg_process_ht_flags(struct wiphy *wiphy)
1913 {
1914 	enum nl80211_band band;
1915 
1916 	if (!wiphy)
1917 		return;
1918 
1919 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1920 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1921 }
1922 
1923 static void reg_call_notifier(struct wiphy *wiphy,
1924 			      struct regulatory_request *request)
1925 {
1926 	if (wiphy->reg_notifier)
1927 		wiphy->reg_notifier(wiphy, request);
1928 }
1929 
1930 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1931 {
1932 	struct cfg80211_chan_def chandef;
1933 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1934 	enum nl80211_iftype iftype;
1935 
1936 	wdev_lock(wdev);
1937 	iftype = wdev->iftype;
1938 
1939 	/* make sure the interface is active */
1940 	if (!wdev->netdev || !netif_running(wdev->netdev))
1941 		goto wdev_inactive_unlock;
1942 
1943 	switch (iftype) {
1944 	case NL80211_IFTYPE_AP:
1945 	case NL80211_IFTYPE_P2P_GO:
1946 		if (!wdev->beacon_interval)
1947 			goto wdev_inactive_unlock;
1948 		chandef = wdev->chandef;
1949 		break;
1950 	case NL80211_IFTYPE_ADHOC:
1951 		if (!wdev->ssid_len)
1952 			goto wdev_inactive_unlock;
1953 		chandef = wdev->chandef;
1954 		break;
1955 	case NL80211_IFTYPE_STATION:
1956 	case NL80211_IFTYPE_P2P_CLIENT:
1957 		if (!wdev->current_bss ||
1958 		    !wdev->current_bss->pub.channel)
1959 			goto wdev_inactive_unlock;
1960 
1961 		if (!rdev->ops->get_channel ||
1962 		    rdev_get_channel(rdev, wdev, &chandef))
1963 			cfg80211_chandef_create(&chandef,
1964 						wdev->current_bss->pub.channel,
1965 						NL80211_CHAN_NO_HT);
1966 		break;
1967 	case NL80211_IFTYPE_MONITOR:
1968 	case NL80211_IFTYPE_AP_VLAN:
1969 	case NL80211_IFTYPE_P2P_DEVICE:
1970 		/* no enforcement required */
1971 		break;
1972 	default:
1973 		/* others not implemented for now */
1974 		WARN_ON(1);
1975 		break;
1976 	}
1977 
1978 	wdev_unlock(wdev);
1979 
1980 	switch (iftype) {
1981 	case NL80211_IFTYPE_AP:
1982 	case NL80211_IFTYPE_P2P_GO:
1983 	case NL80211_IFTYPE_ADHOC:
1984 		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1985 	case NL80211_IFTYPE_STATION:
1986 	case NL80211_IFTYPE_P2P_CLIENT:
1987 		return cfg80211_chandef_usable(wiphy, &chandef,
1988 					       IEEE80211_CHAN_DISABLED);
1989 	default:
1990 		break;
1991 	}
1992 
1993 	return true;
1994 
1995 wdev_inactive_unlock:
1996 	wdev_unlock(wdev);
1997 	return true;
1998 }
1999 
2000 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2001 {
2002 	struct wireless_dev *wdev;
2003 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2004 
2005 	ASSERT_RTNL();
2006 
2007 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2008 		if (!reg_wdev_chan_valid(wiphy, wdev))
2009 			cfg80211_leave(rdev, wdev);
2010 }
2011 
2012 static void reg_check_chans_work(struct work_struct *work)
2013 {
2014 	struct cfg80211_registered_device *rdev;
2015 
2016 	pr_debug("Verifying active interfaces after reg change\n");
2017 	rtnl_lock();
2018 
2019 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2020 		if (!(rdev->wiphy.regulatory_flags &
2021 		      REGULATORY_IGNORE_STALE_KICKOFF))
2022 			reg_leave_invalid_chans(&rdev->wiphy);
2023 
2024 	rtnl_unlock();
2025 }
2026 
2027 static void reg_check_channels(void)
2028 {
2029 	/*
2030 	 * Give usermode a chance to do something nicer (move to another
2031 	 * channel, orderly disconnection), before forcing a disconnection.
2032 	 */
2033 	mod_delayed_work(system_power_efficient_wq,
2034 			 &reg_check_chans,
2035 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2036 }
2037 
2038 static void wiphy_update_regulatory(struct wiphy *wiphy,
2039 				    enum nl80211_reg_initiator initiator)
2040 {
2041 	enum nl80211_band band;
2042 	struct regulatory_request *lr = get_last_request();
2043 
2044 	if (ignore_reg_update(wiphy, initiator)) {
2045 		/*
2046 		 * Regulatory updates set by CORE are ignored for custom
2047 		 * regulatory cards. Let us notify the changes to the driver,
2048 		 * as some drivers used this to restore its orig_* reg domain.
2049 		 */
2050 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2051 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2052 			reg_call_notifier(wiphy, lr);
2053 		return;
2054 	}
2055 
2056 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2057 
2058 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2059 		handle_band(wiphy, initiator, wiphy->bands[band]);
2060 
2061 	reg_process_beacons(wiphy);
2062 	reg_process_ht_flags(wiphy);
2063 	reg_call_notifier(wiphy, lr);
2064 }
2065 
2066 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2067 {
2068 	struct cfg80211_registered_device *rdev;
2069 	struct wiphy *wiphy;
2070 
2071 	ASSERT_RTNL();
2072 
2073 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2074 		wiphy = &rdev->wiphy;
2075 		wiphy_update_regulatory(wiphy, initiator);
2076 	}
2077 
2078 	reg_check_channels();
2079 }
2080 
2081 static void handle_channel_custom(struct wiphy *wiphy,
2082 				  struct ieee80211_channel *chan,
2083 				  const struct ieee80211_regdomain *regd)
2084 {
2085 	u32 bw_flags = 0;
2086 	const struct ieee80211_reg_rule *reg_rule = NULL;
2087 	const struct ieee80211_power_rule *power_rule = NULL;
2088 	u32 bw;
2089 
2090 	for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2091 		reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2092 					      regd, bw);
2093 		if (!IS_ERR(reg_rule))
2094 			break;
2095 	}
2096 
2097 	if (IS_ERR(reg_rule)) {
2098 		pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2099 			 chan->center_freq);
2100 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2101 			chan->flags |= IEEE80211_CHAN_DISABLED;
2102 		} else {
2103 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2104 			chan->flags = chan->orig_flags;
2105 		}
2106 		return;
2107 	}
2108 
2109 	power_rule = &reg_rule->power_rule;
2110 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2111 
2112 	chan->dfs_state_entered = jiffies;
2113 	chan->dfs_state = NL80211_DFS_USABLE;
2114 
2115 	chan->beacon_found = false;
2116 
2117 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2118 		chan->flags = chan->orig_flags | bw_flags |
2119 			      map_regdom_flags(reg_rule->flags);
2120 	else
2121 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2122 
2123 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2124 	chan->max_reg_power = chan->max_power =
2125 		(int) MBM_TO_DBM(power_rule->max_eirp);
2126 
2127 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2128 		if (reg_rule->dfs_cac_ms)
2129 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2130 		else
2131 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2132 	}
2133 
2134 	chan->max_power = chan->max_reg_power;
2135 }
2136 
2137 static void handle_band_custom(struct wiphy *wiphy,
2138 			       struct ieee80211_supported_band *sband,
2139 			       const struct ieee80211_regdomain *regd)
2140 {
2141 	unsigned int i;
2142 
2143 	if (!sband)
2144 		return;
2145 
2146 	for (i = 0; i < sband->n_channels; i++)
2147 		handle_channel_custom(wiphy, &sband->channels[i], regd);
2148 }
2149 
2150 /* Used by drivers prior to wiphy registration */
2151 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2152 				   const struct ieee80211_regdomain *regd)
2153 {
2154 	enum nl80211_band band;
2155 	unsigned int bands_set = 0;
2156 
2157 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2158 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2159 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2160 
2161 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2162 		if (!wiphy->bands[band])
2163 			continue;
2164 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2165 		bands_set++;
2166 	}
2167 
2168 	/*
2169 	 * no point in calling this if it won't have any effect
2170 	 * on your device's supported bands.
2171 	 */
2172 	WARN_ON(!bands_set);
2173 }
2174 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2175 
2176 static void reg_set_request_processed(void)
2177 {
2178 	bool need_more_processing = false;
2179 	struct regulatory_request *lr = get_last_request();
2180 
2181 	lr->processed = true;
2182 
2183 	spin_lock(&reg_requests_lock);
2184 	if (!list_empty(&reg_requests_list))
2185 		need_more_processing = true;
2186 	spin_unlock(&reg_requests_lock);
2187 
2188 	cancel_crda_timeout();
2189 
2190 	if (need_more_processing)
2191 		schedule_work(&reg_work);
2192 }
2193 
2194 /**
2195  * reg_process_hint_core - process core regulatory requests
2196  * @pending_request: a pending core regulatory request
2197  *
2198  * The wireless subsystem can use this function to process
2199  * a regulatory request issued by the regulatory core.
2200  */
2201 static enum reg_request_treatment
2202 reg_process_hint_core(struct regulatory_request *core_request)
2203 {
2204 	if (reg_query_database(core_request)) {
2205 		core_request->intersect = false;
2206 		core_request->processed = false;
2207 		reg_update_last_request(core_request);
2208 		return REG_REQ_OK;
2209 	}
2210 
2211 	return REG_REQ_IGNORE;
2212 }
2213 
2214 static enum reg_request_treatment
2215 __reg_process_hint_user(struct regulatory_request *user_request)
2216 {
2217 	struct regulatory_request *lr = get_last_request();
2218 
2219 	if (reg_request_cell_base(user_request))
2220 		return reg_ignore_cell_hint(user_request);
2221 
2222 	if (reg_request_cell_base(lr))
2223 		return REG_REQ_IGNORE;
2224 
2225 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2226 		return REG_REQ_INTERSECT;
2227 	/*
2228 	 * If the user knows better the user should set the regdom
2229 	 * to their country before the IE is picked up
2230 	 */
2231 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2232 	    lr->intersect)
2233 		return REG_REQ_IGNORE;
2234 	/*
2235 	 * Process user requests only after previous user/driver/core
2236 	 * requests have been processed
2237 	 */
2238 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2239 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2240 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2241 	    regdom_changes(lr->alpha2))
2242 		return REG_REQ_IGNORE;
2243 
2244 	if (!regdom_changes(user_request->alpha2))
2245 		return REG_REQ_ALREADY_SET;
2246 
2247 	return REG_REQ_OK;
2248 }
2249 
2250 /**
2251  * reg_process_hint_user - process user regulatory requests
2252  * @user_request: a pending user regulatory request
2253  *
2254  * The wireless subsystem can use this function to process
2255  * a regulatory request initiated by userspace.
2256  */
2257 static enum reg_request_treatment
2258 reg_process_hint_user(struct regulatory_request *user_request)
2259 {
2260 	enum reg_request_treatment treatment;
2261 
2262 	treatment = __reg_process_hint_user(user_request);
2263 	if (treatment == REG_REQ_IGNORE ||
2264 	    treatment == REG_REQ_ALREADY_SET)
2265 		return REG_REQ_IGNORE;
2266 
2267 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2268 	user_request->processed = false;
2269 
2270 	if (reg_query_database(user_request)) {
2271 		reg_update_last_request(user_request);
2272 		user_alpha2[0] = user_request->alpha2[0];
2273 		user_alpha2[1] = user_request->alpha2[1];
2274 		return REG_REQ_OK;
2275 	}
2276 
2277 	return REG_REQ_IGNORE;
2278 }
2279 
2280 static enum reg_request_treatment
2281 __reg_process_hint_driver(struct regulatory_request *driver_request)
2282 {
2283 	struct regulatory_request *lr = get_last_request();
2284 
2285 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2286 		if (regdom_changes(driver_request->alpha2))
2287 			return REG_REQ_OK;
2288 		return REG_REQ_ALREADY_SET;
2289 	}
2290 
2291 	/*
2292 	 * This would happen if you unplug and plug your card
2293 	 * back in or if you add a new device for which the previously
2294 	 * loaded card also agrees on the regulatory domain.
2295 	 */
2296 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2297 	    !regdom_changes(driver_request->alpha2))
2298 		return REG_REQ_ALREADY_SET;
2299 
2300 	return REG_REQ_INTERSECT;
2301 }
2302 
2303 /**
2304  * reg_process_hint_driver - process driver regulatory requests
2305  * @driver_request: a pending driver regulatory request
2306  *
2307  * The wireless subsystem can use this function to process
2308  * a regulatory request issued by an 802.11 driver.
2309  *
2310  * Returns one of the different reg request treatment values.
2311  */
2312 static enum reg_request_treatment
2313 reg_process_hint_driver(struct wiphy *wiphy,
2314 			struct regulatory_request *driver_request)
2315 {
2316 	const struct ieee80211_regdomain *regd, *tmp;
2317 	enum reg_request_treatment treatment;
2318 
2319 	treatment = __reg_process_hint_driver(driver_request);
2320 
2321 	switch (treatment) {
2322 	case REG_REQ_OK:
2323 		break;
2324 	case REG_REQ_IGNORE:
2325 		return REG_REQ_IGNORE;
2326 	case REG_REQ_INTERSECT:
2327 	case REG_REQ_ALREADY_SET:
2328 		regd = reg_copy_regd(get_cfg80211_regdom());
2329 		if (IS_ERR(regd))
2330 			return REG_REQ_IGNORE;
2331 
2332 		tmp = get_wiphy_regdom(wiphy);
2333 		rcu_assign_pointer(wiphy->regd, regd);
2334 		rcu_free_regdom(tmp);
2335 	}
2336 
2337 
2338 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2339 	driver_request->processed = false;
2340 
2341 	/*
2342 	 * Since CRDA will not be called in this case as we already
2343 	 * have applied the requested regulatory domain before we just
2344 	 * inform userspace we have processed the request
2345 	 */
2346 	if (treatment == REG_REQ_ALREADY_SET) {
2347 		nl80211_send_reg_change_event(driver_request);
2348 		reg_update_last_request(driver_request);
2349 		reg_set_request_processed();
2350 		return REG_REQ_ALREADY_SET;
2351 	}
2352 
2353 	if (reg_query_database(driver_request)) {
2354 		reg_update_last_request(driver_request);
2355 		return REG_REQ_OK;
2356 	}
2357 
2358 	return REG_REQ_IGNORE;
2359 }
2360 
2361 static enum reg_request_treatment
2362 __reg_process_hint_country_ie(struct wiphy *wiphy,
2363 			      struct regulatory_request *country_ie_request)
2364 {
2365 	struct wiphy *last_wiphy = NULL;
2366 	struct regulatory_request *lr = get_last_request();
2367 
2368 	if (reg_request_cell_base(lr)) {
2369 		/* Trust a Cell base station over the AP's country IE */
2370 		if (regdom_changes(country_ie_request->alpha2))
2371 			return REG_REQ_IGNORE;
2372 		return REG_REQ_ALREADY_SET;
2373 	} else {
2374 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2375 			return REG_REQ_IGNORE;
2376 	}
2377 
2378 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2379 		return -EINVAL;
2380 
2381 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2382 		return REG_REQ_OK;
2383 
2384 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2385 
2386 	if (last_wiphy != wiphy) {
2387 		/*
2388 		 * Two cards with two APs claiming different
2389 		 * Country IE alpha2s. We could
2390 		 * intersect them, but that seems unlikely
2391 		 * to be correct. Reject second one for now.
2392 		 */
2393 		if (regdom_changes(country_ie_request->alpha2))
2394 			return REG_REQ_IGNORE;
2395 		return REG_REQ_ALREADY_SET;
2396 	}
2397 
2398 	if (regdom_changes(country_ie_request->alpha2))
2399 		return REG_REQ_OK;
2400 	return REG_REQ_ALREADY_SET;
2401 }
2402 
2403 /**
2404  * reg_process_hint_country_ie - process regulatory requests from country IEs
2405  * @country_ie_request: a regulatory request from a country IE
2406  *
2407  * The wireless subsystem can use this function to process
2408  * a regulatory request issued by a country Information Element.
2409  *
2410  * Returns one of the different reg request treatment values.
2411  */
2412 static enum reg_request_treatment
2413 reg_process_hint_country_ie(struct wiphy *wiphy,
2414 			    struct regulatory_request *country_ie_request)
2415 {
2416 	enum reg_request_treatment treatment;
2417 
2418 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2419 
2420 	switch (treatment) {
2421 	case REG_REQ_OK:
2422 		break;
2423 	case REG_REQ_IGNORE:
2424 		return REG_REQ_IGNORE;
2425 	case REG_REQ_ALREADY_SET:
2426 		reg_free_request(country_ie_request);
2427 		return REG_REQ_ALREADY_SET;
2428 	case REG_REQ_INTERSECT:
2429 		/*
2430 		 * This doesn't happen yet, not sure we
2431 		 * ever want to support it for this case.
2432 		 */
2433 		WARN_ONCE(1, "Unexpected intersection for country IEs");
2434 		return REG_REQ_IGNORE;
2435 	}
2436 
2437 	country_ie_request->intersect = false;
2438 	country_ie_request->processed = false;
2439 
2440 	if (reg_query_database(country_ie_request)) {
2441 		reg_update_last_request(country_ie_request);
2442 		return REG_REQ_OK;
2443 	}
2444 
2445 	return REG_REQ_IGNORE;
2446 }
2447 
2448 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2449 {
2450 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2451 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2452 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2453 	bool dfs_domain_same;
2454 
2455 	rcu_read_lock();
2456 
2457 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2458 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2459 	if (!wiphy1_regd)
2460 		wiphy1_regd = cfg80211_regd;
2461 
2462 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2463 	if (!wiphy2_regd)
2464 		wiphy2_regd = cfg80211_regd;
2465 
2466 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2467 
2468 	rcu_read_unlock();
2469 
2470 	return dfs_domain_same;
2471 }
2472 
2473 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2474 				    struct ieee80211_channel *src_chan)
2475 {
2476 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2477 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2478 		return;
2479 
2480 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2481 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2482 		return;
2483 
2484 	if (src_chan->center_freq == dst_chan->center_freq &&
2485 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2486 		dst_chan->dfs_state = src_chan->dfs_state;
2487 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2488 	}
2489 }
2490 
2491 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2492 				       struct wiphy *src_wiphy)
2493 {
2494 	struct ieee80211_supported_band *src_sband, *dst_sband;
2495 	struct ieee80211_channel *src_chan, *dst_chan;
2496 	int i, j, band;
2497 
2498 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2499 		return;
2500 
2501 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2502 		dst_sband = dst_wiphy->bands[band];
2503 		src_sband = src_wiphy->bands[band];
2504 		if (!dst_sband || !src_sband)
2505 			continue;
2506 
2507 		for (i = 0; i < dst_sband->n_channels; i++) {
2508 			dst_chan = &dst_sband->channels[i];
2509 			for (j = 0; j < src_sband->n_channels; j++) {
2510 				src_chan = &src_sband->channels[j];
2511 				reg_copy_dfs_chan_state(dst_chan, src_chan);
2512 			}
2513 		}
2514 	}
2515 }
2516 
2517 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2518 {
2519 	struct cfg80211_registered_device *rdev;
2520 
2521 	ASSERT_RTNL();
2522 
2523 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2524 		if (wiphy == &rdev->wiphy)
2525 			continue;
2526 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2527 	}
2528 }
2529 
2530 /* This processes *all* regulatory hints */
2531 static void reg_process_hint(struct regulatory_request *reg_request)
2532 {
2533 	struct wiphy *wiphy = NULL;
2534 	enum reg_request_treatment treatment;
2535 
2536 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2537 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2538 
2539 	switch (reg_request->initiator) {
2540 	case NL80211_REGDOM_SET_BY_CORE:
2541 		treatment = reg_process_hint_core(reg_request);
2542 		break;
2543 	case NL80211_REGDOM_SET_BY_USER:
2544 		treatment = reg_process_hint_user(reg_request);
2545 		break;
2546 	case NL80211_REGDOM_SET_BY_DRIVER:
2547 		if (!wiphy)
2548 			goto out_free;
2549 		treatment = reg_process_hint_driver(wiphy, reg_request);
2550 		break;
2551 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2552 		if (!wiphy)
2553 			goto out_free;
2554 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2555 		break;
2556 	default:
2557 		WARN(1, "invalid initiator %d\n", reg_request->initiator);
2558 		goto out_free;
2559 	}
2560 
2561 	if (treatment == REG_REQ_IGNORE)
2562 		goto out_free;
2563 
2564 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2565 	     "unexpected treatment value %d\n", treatment);
2566 
2567 	/* This is required so that the orig_* parameters are saved.
2568 	 * NOTE: treatment must be set for any case that reaches here!
2569 	 */
2570 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2571 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2572 		wiphy_update_regulatory(wiphy, reg_request->initiator);
2573 		wiphy_all_share_dfs_chan_state(wiphy);
2574 		reg_check_channels();
2575 	}
2576 
2577 	return;
2578 
2579 out_free:
2580 	reg_free_request(reg_request);
2581 }
2582 
2583 static bool reg_only_self_managed_wiphys(void)
2584 {
2585 	struct cfg80211_registered_device *rdev;
2586 	struct wiphy *wiphy;
2587 	bool self_managed_found = false;
2588 
2589 	ASSERT_RTNL();
2590 
2591 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2592 		wiphy = &rdev->wiphy;
2593 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2594 			self_managed_found = true;
2595 		else
2596 			return false;
2597 	}
2598 
2599 	/* make sure at least one self-managed wiphy exists */
2600 	return self_managed_found;
2601 }
2602 
2603 /*
2604  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2605  * Regulatory hints come on a first come first serve basis and we
2606  * must process each one atomically.
2607  */
2608 static void reg_process_pending_hints(void)
2609 {
2610 	struct regulatory_request *reg_request, *lr;
2611 
2612 	lr = get_last_request();
2613 
2614 	/* When last_request->processed becomes true this will be rescheduled */
2615 	if (lr && !lr->processed) {
2616 		reg_process_hint(lr);
2617 		return;
2618 	}
2619 
2620 	spin_lock(&reg_requests_lock);
2621 
2622 	if (list_empty(&reg_requests_list)) {
2623 		spin_unlock(&reg_requests_lock);
2624 		return;
2625 	}
2626 
2627 	reg_request = list_first_entry(&reg_requests_list,
2628 				       struct regulatory_request,
2629 				       list);
2630 	list_del_init(&reg_request->list);
2631 
2632 	spin_unlock(&reg_requests_lock);
2633 
2634 	if (reg_only_self_managed_wiphys()) {
2635 		reg_free_request(reg_request);
2636 		return;
2637 	}
2638 
2639 	reg_process_hint(reg_request);
2640 
2641 	lr = get_last_request();
2642 
2643 	spin_lock(&reg_requests_lock);
2644 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
2645 		schedule_work(&reg_work);
2646 	spin_unlock(&reg_requests_lock);
2647 }
2648 
2649 /* Processes beacon hints -- this has nothing to do with country IEs */
2650 static void reg_process_pending_beacon_hints(void)
2651 {
2652 	struct cfg80211_registered_device *rdev;
2653 	struct reg_beacon *pending_beacon, *tmp;
2654 
2655 	/* This goes through the _pending_ beacon list */
2656 	spin_lock_bh(&reg_pending_beacons_lock);
2657 
2658 	list_for_each_entry_safe(pending_beacon, tmp,
2659 				 &reg_pending_beacons, list) {
2660 		list_del_init(&pending_beacon->list);
2661 
2662 		/* Applies the beacon hint to current wiphys */
2663 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2664 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2665 
2666 		/* Remembers the beacon hint for new wiphys or reg changes */
2667 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2668 	}
2669 
2670 	spin_unlock_bh(&reg_pending_beacons_lock);
2671 }
2672 
2673 static void reg_process_self_managed_hints(void)
2674 {
2675 	struct cfg80211_registered_device *rdev;
2676 	struct wiphy *wiphy;
2677 	const struct ieee80211_regdomain *tmp;
2678 	const struct ieee80211_regdomain *regd;
2679 	enum nl80211_band band;
2680 	struct regulatory_request request = {};
2681 
2682 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2683 		wiphy = &rdev->wiphy;
2684 
2685 		spin_lock(&reg_requests_lock);
2686 		regd = rdev->requested_regd;
2687 		rdev->requested_regd = NULL;
2688 		spin_unlock(&reg_requests_lock);
2689 
2690 		if (regd == NULL)
2691 			continue;
2692 
2693 		tmp = get_wiphy_regdom(wiphy);
2694 		rcu_assign_pointer(wiphy->regd, regd);
2695 		rcu_free_regdom(tmp);
2696 
2697 		for (band = 0; band < NUM_NL80211_BANDS; band++)
2698 			handle_band_custom(wiphy, wiphy->bands[band], regd);
2699 
2700 		reg_process_ht_flags(wiphy);
2701 
2702 		request.wiphy_idx = get_wiphy_idx(wiphy);
2703 		request.alpha2[0] = regd->alpha2[0];
2704 		request.alpha2[1] = regd->alpha2[1];
2705 		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2706 
2707 		nl80211_send_wiphy_reg_change_event(&request);
2708 	}
2709 
2710 	reg_check_channels();
2711 }
2712 
2713 static void reg_todo(struct work_struct *work)
2714 {
2715 	rtnl_lock();
2716 	reg_process_pending_hints();
2717 	reg_process_pending_beacon_hints();
2718 	reg_process_self_managed_hints();
2719 	rtnl_unlock();
2720 }
2721 
2722 static void queue_regulatory_request(struct regulatory_request *request)
2723 {
2724 	request->alpha2[0] = toupper(request->alpha2[0]);
2725 	request->alpha2[1] = toupper(request->alpha2[1]);
2726 
2727 	spin_lock(&reg_requests_lock);
2728 	list_add_tail(&request->list, &reg_requests_list);
2729 	spin_unlock(&reg_requests_lock);
2730 
2731 	schedule_work(&reg_work);
2732 }
2733 
2734 /*
2735  * Core regulatory hint -- happens during cfg80211_init()
2736  * and when we restore regulatory settings.
2737  */
2738 static int regulatory_hint_core(const char *alpha2)
2739 {
2740 	struct regulatory_request *request;
2741 
2742 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2743 	if (!request)
2744 		return -ENOMEM;
2745 
2746 	request->alpha2[0] = alpha2[0];
2747 	request->alpha2[1] = alpha2[1];
2748 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2749 
2750 	queue_regulatory_request(request);
2751 
2752 	return 0;
2753 }
2754 
2755 /* User hints */
2756 int regulatory_hint_user(const char *alpha2,
2757 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2758 {
2759 	struct regulatory_request *request;
2760 
2761 	if (WARN_ON(!alpha2))
2762 		return -EINVAL;
2763 
2764 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2765 	if (!request)
2766 		return -ENOMEM;
2767 
2768 	request->wiphy_idx = WIPHY_IDX_INVALID;
2769 	request->alpha2[0] = alpha2[0];
2770 	request->alpha2[1] = alpha2[1];
2771 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2772 	request->user_reg_hint_type = user_reg_hint_type;
2773 
2774 	/* Allow calling CRDA again */
2775 	reset_crda_timeouts();
2776 
2777 	queue_regulatory_request(request);
2778 
2779 	return 0;
2780 }
2781 
2782 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2783 {
2784 	spin_lock(&reg_indoor_lock);
2785 
2786 	/* It is possible that more than one user space process is trying to
2787 	 * configure the indoor setting. To handle such cases, clear the indoor
2788 	 * setting in case that some process does not think that the device
2789 	 * is operating in an indoor environment. In addition, if a user space
2790 	 * process indicates that it is controlling the indoor setting, save its
2791 	 * portid, i.e., make it the owner.
2792 	 */
2793 	reg_is_indoor = is_indoor;
2794 	if (reg_is_indoor) {
2795 		if (!reg_is_indoor_portid)
2796 			reg_is_indoor_portid = portid;
2797 	} else {
2798 		reg_is_indoor_portid = 0;
2799 	}
2800 
2801 	spin_unlock(&reg_indoor_lock);
2802 
2803 	if (!is_indoor)
2804 		reg_check_channels();
2805 
2806 	return 0;
2807 }
2808 
2809 void regulatory_netlink_notify(u32 portid)
2810 {
2811 	spin_lock(&reg_indoor_lock);
2812 
2813 	if (reg_is_indoor_portid != portid) {
2814 		spin_unlock(&reg_indoor_lock);
2815 		return;
2816 	}
2817 
2818 	reg_is_indoor = false;
2819 	reg_is_indoor_portid = 0;
2820 
2821 	spin_unlock(&reg_indoor_lock);
2822 
2823 	reg_check_channels();
2824 }
2825 
2826 /* Driver hints */
2827 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2828 {
2829 	struct regulatory_request *request;
2830 
2831 	if (WARN_ON(!alpha2 || !wiphy))
2832 		return -EINVAL;
2833 
2834 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2835 
2836 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2837 	if (!request)
2838 		return -ENOMEM;
2839 
2840 	request->wiphy_idx = get_wiphy_idx(wiphy);
2841 
2842 	request->alpha2[0] = alpha2[0];
2843 	request->alpha2[1] = alpha2[1];
2844 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2845 
2846 	/* Allow calling CRDA again */
2847 	reset_crda_timeouts();
2848 
2849 	queue_regulatory_request(request);
2850 
2851 	return 0;
2852 }
2853 EXPORT_SYMBOL(regulatory_hint);
2854 
2855 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2856 				const u8 *country_ie, u8 country_ie_len)
2857 {
2858 	char alpha2[2];
2859 	enum environment_cap env = ENVIRON_ANY;
2860 	struct regulatory_request *request = NULL, *lr;
2861 
2862 	/* IE len must be evenly divisible by 2 */
2863 	if (country_ie_len & 0x01)
2864 		return;
2865 
2866 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2867 		return;
2868 
2869 	request = kzalloc(sizeof(*request), GFP_KERNEL);
2870 	if (!request)
2871 		return;
2872 
2873 	alpha2[0] = country_ie[0];
2874 	alpha2[1] = country_ie[1];
2875 
2876 	if (country_ie[2] == 'I')
2877 		env = ENVIRON_INDOOR;
2878 	else if (country_ie[2] == 'O')
2879 		env = ENVIRON_OUTDOOR;
2880 
2881 	rcu_read_lock();
2882 	lr = get_last_request();
2883 
2884 	if (unlikely(!lr))
2885 		goto out;
2886 
2887 	/*
2888 	 * We will run this only upon a successful connection on cfg80211.
2889 	 * We leave conflict resolution to the workqueue, where can hold
2890 	 * the RTNL.
2891 	 */
2892 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2893 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
2894 		goto out;
2895 
2896 	request->wiphy_idx = get_wiphy_idx(wiphy);
2897 	request->alpha2[0] = alpha2[0];
2898 	request->alpha2[1] = alpha2[1];
2899 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2900 	request->country_ie_env = env;
2901 
2902 	/* Allow calling CRDA again */
2903 	reset_crda_timeouts();
2904 
2905 	queue_regulatory_request(request);
2906 	request = NULL;
2907 out:
2908 	kfree(request);
2909 	rcu_read_unlock();
2910 }
2911 
2912 static void restore_alpha2(char *alpha2, bool reset_user)
2913 {
2914 	/* indicates there is no alpha2 to consider for restoration */
2915 	alpha2[0] = '9';
2916 	alpha2[1] = '7';
2917 
2918 	/* The user setting has precedence over the module parameter */
2919 	if (is_user_regdom_saved()) {
2920 		/* Unless we're asked to ignore it and reset it */
2921 		if (reset_user) {
2922 			pr_debug("Restoring regulatory settings including user preference\n");
2923 			user_alpha2[0] = '9';
2924 			user_alpha2[1] = '7';
2925 
2926 			/*
2927 			 * If we're ignoring user settings, we still need to
2928 			 * check the module parameter to ensure we put things
2929 			 * back as they were for a full restore.
2930 			 */
2931 			if (!is_world_regdom(ieee80211_regdom)) {
2932 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2933 					 ieee80211_regdom[0], ieee80211_regdom[1]);
2934 				alpha2[0] = ieee80211_regdom[0];
2935 				alpha2[1] = ieee80211_regdom[1];
2936 			}
2937 		} else {
2938 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
2939 				 user_alpha2[0], user_alpha2[1]);
2940 			alpha2[0] = user_alpha2[0];
2941 			alpha2[1] = user_alpha2[1];
2942 		}
2943 	} else if (!is_world_regdom(ieee80211_regdom)) {
2944 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2945 			 ieee80211_regdom[0], ieee80211_regdom[1]);
2946 		alpha2[0] = ieee80211_regdom[0];
2947 		alpha2[1] = ieee80211_regdom[1];
2948 	} else
2949 		pr_debug("Restoring regulatory settings\n");
2950 }
2951 
2952 static void restore_custom_reg_settings(struct wiphy *wiphy)
2953 {
2954 	struct ieee80211_supported_band *sband;
2955 	enum nl80211_band band;
2956 	struct ieee80211_channel *chan;
2957 	int i;
2958 
2959 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2960 		sband = wiphy->bands[band];
2961 		if (!sband)
2962 			continue;
2963 		for (i = 0; i < sband->n_channels; i++) {
2964 			chan = &sband->channels[i];
2965 			chan->flags = chan->orig_flags;
2966 			chan->max_antenna_gain = chan->orig_mag;
2967 			chan->max_power = chan->orig_mpwr;
2968 			chan->beacon_found = false;
2969 		}
2970 	}
2971 }
2972 
2973 /*
2974  * Restoring regulatory settings involves ingoring any
2975  * possibly stale country IE information and user regulatory
2976  * settings if so desired, this includes any beacon hints
2977  * learned as we could have traveled outside to another country
2978  * after disconnection. To restore regulatory settings we do
2979  * exactly what we did at bootup:
2980  *
2981  *   - send a core regulatory hint
2982  *   - send a user regulatory hint if applicable
2983  *
2984  * Device drivers that send a regulatory hint for a specific country
2985  * keep their own regulatory domain on wiphy->regd so that does does
2986  * not need to be remembered.
2987  */
2988 static void restore_regulatory_settings(bool reset_user)
2989 {
2990 	char alpha2[2];
2991 	char world_alpha2[2];
2992 	struct reg_beacon *reg_beacon, *btmp;
2993 	LIST_HEAD(tmp_reg_req_list);
2994 	struct cfg80211_registered_device *rdev;
2995 
2996 	ASSERT_RTNL();
2997 
2998 	/*
2999 	 * Clear the indoor setting in case that it is not controlled by user
3000 	 * space, as otherwise there is no guarantee that the device is still
3001 	 * operating in an indoor environment.
3002 	 */
3003 	spin_lock(&reg_indoor_lock);
3004 	if (reg_is_indoor && !reg_is_indoor_portid) {
3005 		reg_is_indoor = false;
3006 		reg_check_channels();
3007 	}
3008 	spin_unlock(&reg_indoor_lock);
3009 
3010 	reset_regdomains(true, &world_regdom);
3011 	restore_alpha2(alpha2, reset_user);
3012 
3013 	/*
3014 	 * If there's any pending requests we simply
3015 	 * stash them to a temporary pending queue and
3016 	 * add then after we've restored regulatory
3017 	 * settings.
3018 	 */
3019 	spin_lock(&reg_requests_lock);
3020 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3021 	spin_unlock(&reg_requests_lock);
3022 
3023 	/* Clear beacon hints */
3024 	spin_lock_bh(&reg_pending_beacons_lock);
3025 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3026 		list_del(&reg_beacon->list);
3027 		kfree(reg_beacon);
3028 	}
3029 	spin_unlock_bh(&reg_pending_beacons_lock);
3030 
3031 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3032 		list_del(&reg_beacon->list);
3033 		kfree(reg_beacon);
3034 	}
3035 
3036 	/* First restore to the basic regulatory settings */
3037 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3038 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3039 
3040 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3041 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3042 			continue;
3043 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3044 			restore_custom_reg_settings(&rdev->wiphy);
3045 	}
3046 
3047 	regulatory_hint_core(world_alpha2);
3048 
3049 	/*
3050 	 * This restores the ieee80211_regdom module parameter
3051 	 * preference or the last user requested regulatory
3052 	 * settings, user regulatory settings takes precedence.
3053 	 */
3054 	if (is_an_alpha2(alpha2))
3055 		regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3056 
3057 	spin_lock(&reg_requests_lock);
3058 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3059 	spin_unlock(&reg_requests_lock);
3060 
3061 	pr_debug("Kicking the queue\n");
3062 
3063 	schedule_work(&reg_work);
3064 }
3065 
3066 void regulatory_hint_disconnect(void)
3067 {
3068 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3069 	restore_regulatory_settings(false);
3070 }
3071 
3072 static bool freq_is_chan_12_13_14(u16 freq)
3073 {
3074 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3075 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3076 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3077 		return true;
3078 	return false;
3079 }
3080 
3081 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3082 {
3083 	struct reg_beacon *pending_beacon;
3084 
3085 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3086 		if (beacon_chan->center_freq ==
3087 		    pending_beacon->chan.center_freq)
3088 			return true;
3089 	return false;
3090 }
3091 
3092 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3093 				 struct ieee80211_channel *beacon_chan,
3094 				 gfp_t gfp)
3095 {
3096 	struct reg_beacon *reg_beacon;
3097 	bool processing;
3098 
3099 	if (beacon_chan->beacon_found ||
3100 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3101 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3102 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3103 		return 0;
3104 
3105 	spin_lock_bh(&reg_pending_beacons_lock);
3106 	processing = pending_reg_beacon(beacon_chan);
3107 	spin_unlock_bh(&reg_pending_beacons_lock);
3108 
3109 	if (processing)
3110 		return 0;
3111 
3112 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3113 	if (!reg_beacon)
3114 		return -ENOMEM;
3115 
3116 	pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3117 		 beacon_chan->center_freq,
3118 		 ieee80211_frequency_to_channel(beacon_chan->center_freq),
3119 		 wiphy_name(wiphy));
3120 
3121 	memcpy(&reg_beacon->chan, beacon_chan,
3122 	       sizeof(struct ieee80211_channel));
3123 
3124 	/*
3125 	 * Since we can be called from BH or and non-BH context
3126 	 * we must use spin_lock_bh()
3127 	 */
3128 	spin_lock_bh(&reg_pending_beacons_lock);
3129 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3130 	spin_unlock_bh(&reg_pending_beacons_lock);
3131 
3132 	schedule_work(&reg_work);
3133 
3134 	return 0;
3135 }
3136 
3137 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3138 {
3139 	unsigned int i;
3140 	const struct ieee80211_reg_rule *reg_rule = NULL;
3141 	const struct ieee80211_freq_range *freq_range = NULL;
3142 	const struct ieee80211_power_rule *power_rule = NULL;
3143 	char bw[32], cac_time[32];
3144 
3145 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3146 
3147 	for (i = 0; i < rd->n_reg_rules; i++) {
3148 		reg_rule = &rd->reg_rules[i];
3149 		freq_range = &reg_rule->freq_range;
3150 		power_rule = &reg_rule->power_rule;
3151 
3152 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3153 			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3154 				 freq_range->max_bandwidth_khz,
3155 				 reg_get_max_bandwidth(rd, reg_rule));
3156 		else
3157 			snprintf(bw, sizeof(bw), "%d KHz",
3158 				 freq_range->max_bandwidth_khz);
3159 
3160 		if (reg_rule->flags & NL80211_RRF_DFS)
3161 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3162 				  reg_rule->dfs_cac_ms/1000);
3163 		else
3164 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3165 
3166 
3167 		/*
3168 		 * There may not be documentation for max antenna gain
3169 		 * in certain regions
3170 		 */
3171 		if (power_rule->max_antenna_gain)
3172 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3173 				freq_range->start_freq_khz,
3174 				freq_range->end_freq_khz,
3175 				bw,
3176 				power_rule->max_antenna_gain,
3177 				power_rule->max_eirp,
3178 				cac_time);
3179 		else
3180 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3181 				freq_range->start_freq_khz,
3182 				freq_range->end_freq_khz,
3183 				bw,
3184 				power_rule->max_eirp,
3185 				cac_time);
3186 	}
3187 }
3188 
3189 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3190 {
3191 	switch (dfs_region) {
3192 	case NL80211_DFS_UNSET:
3193 	case NL80211_DFS_FCC:
3194 	case NL80211_DFS_ETSI:
3195 	case NL80211_DFS_JP:
3196 		return true;
3197 	default:
3198 		pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region);
3199 		return false;
3200 	}
3201 }
3202 
3203 static void print_regdomain(const struct ieee80211_regdomain *rd)
3204 {
3205 	struct regulatory_request *lr = get_last_request();
3206 
3207 	if (is_intersected_alpha2(rd->alpha2)) {
3208 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3209 			struct cfg80211_registered_device *rdev;
3210 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3211 			if (rdev) {
3212 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3213 					rdev->country_ie_alpha2[0],
3214 					rdev->country_ie_alpha2[1]);
3215 			} else
3216 				pr_debug("Current regulatory domain intersected:\n");
3217 		} else
3218 			pr_debug("Current regulatory domain intersected:\n");
3219 	} else if (is_world_regdom(rd->alpha2)) {
3220 		pr_debug("World regulatory domain updated:\n");
3221 	} else {
3222 		if (is_unknown_alpha2(rd->alpha2))
3223 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3224 		else {
3225 			if (reg_request_cell_base(lr))
3226 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3227 					rd->alpha2[0], rd->alpha2[1]);
3228 			else
3229 				pr_debug("Regulatory domain changed to country: %c%c\n",
3230 					rd->alpha2[0], rd->alpha2[1]);
3231 		}
3232 	}
3233 
3234 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3235 	print_rd_rules(rd);
3236 }
3237 
3238 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3239 {
3240 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3241 	print_rd_rules(rd);
3242 }
3243 
3244 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3245 {
3246 	if (!is_world_regdom(rd->alpha2))
3247 		return -EINVAL;
3248 	update_world_regdomain(rd);
3249 	return 0;
3250 }
3251 
3252 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3253 			   struct regulatory_request *user_request)
3254 {
3255 	const struct ieee80211_regdomain *intersected_rd = NULL;
3256 
3257 	if (!regdom_changes(rd->alpha2))
3258 		return -EALREADY;
3259 
3260 	if (!is_valid_rd(rd)) {
3261 		pr_err("Invalid regulatory domain detected: %c%c\n",
3262 		       rd->alpha2[0], rd->alpha2[1]);
3263 		print_regdomain_info(rd);
3264 		return -EINVAL;
3265 	}
3266 
3267 	if (!user_request->intersect) {
3268 		reset_regdomains(false, rd);
3269 		return 0;
3270 	}
3271 
3272 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3273 	if (!intersected_rd)
3274 		return -EINVAL;
3275 
3276 	kfree(rd);
3277 	rd = NULL;
3278 	reset_regdomains(false, intersected_rd);
3279 
3280 	return 0;
3281 }
3282 
3283 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3284 			     struct regulatory_request *driver_request)
3285 {
3286 	const struct ieee80211_regdomain *regd;
3287 	const struct ieee80211_regdomain *intersected_rd = NULL;
3288 	const struct ieee80211_regdomain *tmp;
3289 	struct wiphy *request_wiphy;
3290 
3291 	if (is_world_regdom(rd->alpha2))
3292 		return -EINVAL;
3293 
3294 	if (!regdom_changes(rd->alpha2))
3295 		return -EALREADY;
3296 
3297 	if (!is_valid_rd(rd)) {
3298 		pr_err("Invalid regulatory domain detected: %c%c\n",
3299 		       rd->alpha2[0], rd->alpha2[1]);
3300 		print_regdomain_info(rd);
3301 		return -EINVAL;
3302 	}
3303 
3304 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3305 	if (!request_wiphy)
3306 		return -ENODEV;
3307 
3308 	if (!driver_request->intersect) {
3309 		if (request_wiphy->regd)
3310 			return -EALREADY;
3311 
3312 		regd = reg_copy_regd(rd);
3313 		if (IS_ERR(regd))
3314 			return PTR_ERR(regd);
3315 
3316 		rcu_assign_pointer(request_wiphy->regd, regd);
3317 		reset_regdomains(false, rd);
3318 		return 0;
3319 	}
3320 
3321 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3322 	if (!intersected_rd)
3323 		return -EINVAL;
3324 
3325 	/*
3326 	 * We can trash what CRDA provided now.
3327 	 * However if a driver requested this specific regulatory
3328 	 * domain we keep it for its private use
3329 	 */
3330 	tmp = get_wiphy_regdom(request_wiphy);
3331 	rcu_assign_pointer(request_wiphy->regd, rd);
3332 	rcu_free_regdom(tmp);
3333 
3334 	rd = NULL;
3335 
3336 	reset_regdomains(false, intersected_rd);
3337 
3338 	return 0;
3339 }
3340 
3341 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3342 				 struct regulatory_request *country_ie_request)
3343 {
3344 	struct wiphy *request_wiphy;
3345 
3346 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3347 	    !is_unknown_alpha2(rd->alpha2))
3348 		return -EINVAL;
3349 
3350 	/*
3351 	 * Lets only bother proceeding on the same alpha2 if the current
3352 	 * rd is non static (it means CRDA was present and was used last)
3353 	 * and the pending request came in from a country IE
3354 	 */
3355 
3356 	if (!is_valid_rd(rd)) {
3357 		pr_err("Invalid regulatory domain detected: %c%c\n",
3358 		       rd->alpha2[0], rd->alpha2[1]);
3359 		print_regdomain_info(rd);
3360 		return -EINVAL;
3361 	}
3362 
3363 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3364 	if (!request_wiphy)
3365 		return -ENODEV;
3366 
3367 	if (country_ie_request->intersect)
3368 		return -EINVAL;
3369 
3370 	reset_regdomains(false, rd);
3371 	return 0;
3372 }
3373 
3374 /*
3375  * Use this call to set the current regulatory domain. Conflicts with
3376  * multiple drivers can be ironed out later. Caller must've already
3377  * kmalloc'd the rd structure.
3378  */
3379 int set_regdom(const struct ieee80211_regdomain *rd,
3380 	       enum ieee80211_regd_source regd_src)
3381 {
3382 	struct regulatory_request *lr;
3383 	bool user_reset = false;
3384 	int r;
3385 
3386 	if (!reg_is_valid_request(rd->alpha2)) {
3387 		kfree(rd);
3388 		return -EINVAL;
3389 	}
3390 
3391 	if (regd_src == REGD_SOURCE_CRDA)
3392 		reset_crda_timeouts();
3393 
3394 	lr = get_last_request();
3395 
3396 	/* Note that this doesn't update the wiphys, this is done below */
3397 	switch (lr->initiator) {
3398 	case NL80211_REGDOM_SET_BY_CORE:
3399 		r = reg_set_rd_core(rd);
3400 		break;
3401 	case NL80211_REGDOM_SET_BY_USER:
3402 		r = reg_set_rd_user(rd, lr);
3403 		user_reset = true;
3404 		break;
3405 	case NL80211_REGDOM_SET_BY_DRIVER:
3406 		r = reg_set_rd_driver(rd, lr);
3407 		break;
3408 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3409 		r = reg_set_rd_country_ie(rd, lr);
3410 		break;
3411 	default:
3412 		WARN(1, "invalid initiator %d\n", lr->initiator);
3413 		kfree(rd);
3414 		return -EINVAL;
3415 	}
3416 
3417 	if (r) {
3418 		switch (r) {
3419 		case -EALREADY:
3420 			reg_set_request_processed();
3421 			break;
3422 		default:
3423 			/* Back to world regulatory in case of errors */
3424 			restore_regulatory_settings(user_reset);
3425 		}
3426 
3427 		kfree(rd);
3428 		return r;
3429 	}
3430 
3431 	/* This would make this whole thing pointless */
3432 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3433 		return -EINVAL;
3434 
3435 	/* update all wiphys now with the new established regulatory domain */
3436 	update_all_wiphy_regulatory(lr->initiator);
3437 
3438 	print_regdomain(get_cfg80211_regdom());
3439 
3440 	nl80211_send_reg_change_event(lr);
3441 
3442 	reg_set_request_processed();
3443 
3444 	return 0;
3445 }
3446 
3447 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3448 				       struct ieee80211_regdomain *rd)
3449 {
3450 	const struct ieee80211_regdomain *regd;
3451 	const struct ieee80211_regdomain *prev_regd;
3452 	struct cfg80211_registered_device *rdev;
3453 
3454 	if (WARN_ON(!wiphy || !rd))
3455 		return -EINVAL;
3456 
3457 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3458 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3459 		return -EPERM;
3460 
3461 	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3462 		print_regdomain_info(rd);
3463 		return -EINVAL;
3464 	}
3465 
3466 	regd = reg_copy_regd(rd);
3467 	if (IS_ERR(regd))
3468 		return PTR_ERR(regd);
3469 
3470 	rdev = wiphy_to_rdev(wiphy);
3471 
3472 	spin_lock(&reg_requests_lock);
3473 	prev_regd = rdev->requested_regd;
3474 	rdev->requested_regd = regd;
3475 	spin_unlock(&reg_requests_lock);
3476 
3477 	kfree(prev_regd);
3478 	return 0;
3479 }
3480 
3481 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3482 			      struct ieee80211_regdomain *rd)
3483 {
3484 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3485 
3486 	if (ret)
3487 		return ret;
3488 
3489 	schedule_work(&reg_work);
3490 	return 0;
3491 }
3492 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3493 
3494 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3495 					struct ieee80211_regdomain *rd)
3496 {
3497 	int ret;
3498 
3499 	ASSERT_RTNL();
3500 
3501 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3502 	if (ret)
3503 		return ret;
3504 
3505 	/* process the request immediately */
3506 	reg_process_self_managed_hints();
3507 	return 0;
3508 }
3509 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3510 
3511 void wiphy_regulatory_register(struct wiphy *wiphy)
3512 {
3513 	struct regulatory_request *lr;
3514 
3515 	/* self-managed devices ignore external hints */
3516 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3517 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3518 					   REGULATORY_COUNTRY_IE_IGNORE;
3519 
3520 	if (!reg_dev_ignore_cell_hint(wiphy))
3521 		reg_num_devs_support_basehint++;
3522 
3523 	lr = get_last_request();
3524 	wiphy_update_regulatory(wiphy, lr->initiator);
3525 	wiphy_all_share_dfs_chan_state(wiphy);
3526 }
3527 
3528 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3529 {
3530 	struct wiphy *request_wiphy = NULL;
3531 	struct regulatory_request *lr;
3532 
3533 	lr = get_last_request();
3534 
3535 	if (!reg_dev_ignore_cell_hint(wiphy))
3536 		reg_num_devs_support_basehint--;
3537 
3538 	rcu_free_regdom(get_wiphy_regdom(wiphy));
3539 	RCU_INIT_POINTER(wiphy->regd, NULL);
3540 
3541 	if (lr)
3542 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3543 
3544 	if (!request_wiphy || request_wiphy != wiphy)
3545 		return;
3546 
3547 	lr->wiphy_idx = WIPHY_IDX_INVALID;
3548 	lr->country_ie_env = ENVIRON_ANY;
3549 }
3550 
3551 /*
3552  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3553  * UNII band definitions
3554  */
3555 int cfg80211_get_unii(int freq)
3556 {
3557 	/* UNII-1 */
3558 	if (freq >= 5150 && freq <= 5250)
3559 		return 0;
3560 
3561 	/* UNII-2A */
3562 	if (freq > 5250 && freq <= 5350)
3563 		return 1;
3564 
3565 	/* UNII-2B */
3566 	if (freq > 5350 && freq <= 5470)
3567 		return 2;
3568 
3569 	/* UNII-2C */
3570 	if (freq > 5470 && freq <= 5725)
3571 		return 3;
3572 
3573 	/* UNII-3 */
3574 	if (freq > 5725 && freq <= 5825)
3575 		return 4;
3576 
3577 	return -EINVAL;
3578 }
3579 
3580 bool regulatory_indoor_allowed(void)
3581 {
3582 	return reg_is_indoor;
3583 }
3584 
3585 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3586 {
3587 	const struct ieee80211_regdomain *regd = NULL;
3588 	const struct ieee80211_regdomain *wiphy_regd = NULL;
3589 	bool pre_cac_allowed = false;
3590 
3591 	rcu_read_lock();
3592 
3593 	regd = rcu_dereference(cfg80211_regdomain);
3594 	wiphy_regd = rcu_dereference(wiphy->regd);
3595 	if (!wiphy_regd) {
3596 		if (regd->dfs_region == NL80211_DFS_ETSI)
3597 			pre_cac_allowed = true;
3598 
3599 		rcu_read_unlock();
3600 
3601 		return pre_cac_allowed;
3602 	}
3603 
3604 	if (regd->dfs_region == wiphy_regd->dfs_region &&
3605 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3606 		pre_cac_allowed = true;
3607 
3608 	rcu_read_unlock();
3609 
3610 	return pre_cac_allowed;
3611 }
3612 
3613 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3614 				    struct cfg80211_chan_def *chandef,
3615 				    enum nl80211_dfs_state dfs_state,
3616 				    enum nl80211_radar_event event)
3617 {
3618 	struct cfg80211_registered_device *rdev;
3619 
3620 	ASSERT_RTNL();
3621 
3622 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3623 		return;
3624 
3625 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3626 		if (wiphy == &rdev->wiphy)
3627 			continue;
3628 
3629 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3630 			continue;
3631 
3632 		if (!ieee80211_get_channel(&rdev->wiphy,
3633 					   chandef->chan->center_freq))
3634 			continue;
3635 
3636 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3637 
3638 		if (event == NL80211_RADAR_DETECTED ||
3639 		    event == NL80211_RADAR_CAC_FINISHED)
3640 			cfg80211_sched_dfs_chan_update(rdev);
3641 
3642 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3643 	}
3644 }
3645 
3646 static int __init regulatory_init_db(void)
3647 {
3648 	int err;
3649 
3650 	err = load_builtin_regdb_keys();
3651 	if (err)
3652 		return err;
3653 
3654 	/* We always try to get an update for the static regdomain */
3655 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3656 	if (err) {
3657 		if (err == -ENOMEM) {
3658 			platform_device_unregister(reg_pdev);
3659 			return err;
3660 		}
3661 		/*
3662 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
3663 		 * memory which is handled and propagated appropriately above
3664 		 * but it can also fail during a netlink_broadcast() or during
3665 		 * early boot for call_usermodehelper(). For now treat these
3666 		 * errors as non-fatal.
3667 		 */
3668 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3669 	}
3670 
3671 	/*
3672 	 * Finally, if the user set the module parameter treat it
3673 	 * as a user hint.
3674 	 */
3675 	if (!is_world_regdom(ieee80211_regdom))
3676 		regulatory_hint_user(ieee80211_regdom,
3677 				     NL80211_USER_REG_HINT_USER);
3678 
3679 	return 0;
3680 }
3681 #ifndef MODULE
3682 late_initcall(regulatory_init_db);
3683 #endif
3684 
3685 int __init regulatory_init(void)
3686 {
3687 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3688 	if (IS_ERR(reg_pdev))
3689 		return PTR_ERR(reg_pdev);
3690 
3691 	spin_lock_init(&reg_requests_lock);
3692 	spin_lock_init(&reg_pending_beacons_lock);
3693 	spin_lock_init(&reg_indoor_lock);
3694 
3695 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3696 
3697 	user_alpha2[0] = '9';
3698 	user_alpha2[1] = '7';
3699 
3700 #ifdef MODULE
3701 	return regulatory_init_db();
3702 #else
3703 	return 0;
3704 #endif
3705 }
3706 
3707 void regulatory_exit(void)
3708 {
3709 	struct regulatory_request *reg_request, *tmp;
3710 	struct reg_beacon *reg_beacon, *btmp;
3711 
3712 	cancel_work_sync(&reg_work);
3713 	cancel_crda_timeout_sync();
3714 	cancel_delayed_work_sync(&reg_check_chans);
3715 
3716 	/* Lock to suppress warnings */
3717 	rtnl_lock();
3718 	reset_regdomains(true, NULL);
3719 	rtnl_unlock();
3720 
3721 	dev_set_uevent_suppress(&reg_pdev->dev, true);
3722 
3723 	platform_device_unregister(reg_pdev);
3724 
3725 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3726 		list_del(&reg_beacon->list);
3727 		kfree(reg_beacon);
3728 	}
3729 
3730 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3731 		list_del(&reg_beacon->list);
3732 		kfree(reg_beacon);
3733 	}
3734 
3735 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3736 		list_del(&reg_request->list);
3737 		kfree(reg_request);
3738 	}
3739 
3740 	if (!IS_ERR_OR_NULL(regdb))
3741 		kfree(regdb);
3742 
3743 	free_regdb_keyring();
3744 }
3745