1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * 8 * Permission to use, copy, modify, and/or distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 22 /** 23 * DOC: Wireless regulatory infrastructure 24 * 25 * The usual implementation is for a driver to read a device EEPROM to 26 * determine which regulatory domain it should be operating under, then 27 * looking up the allowable channels in a driver-local table and finally 28 * registering those channels in the wiphy structure. 29 * 30 * Another set of compliance enforcement is for drivers to use their 31 * own compliance limits which can be stored on the EEPROM. The host 32 * driver or firmware may ensure these are used. 33 * 34 * In addition to all this we provide an extra layer of regulatory 35 * conformance. For drivers which do not have any regulatory 36 * information CRDA provides the complete regulatory solution. 37 * For others it provides a community effort on further restrictions 38 * to enhance compliance. 39 * 40 * Note: When number of rules --> infinity we will not be able to 41 * index on alpha2 any more, instead we'll probably have to 42 * rely on some SHA1 checksum of the regdomain for example. 43 * 44 */ 45 46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 47 48 #include <linux/kernel.h> 49 #include <linux/export.h> 50 #include <linux/slab.h> 51 #include <linux/list.h> 52 #include <linux/ctype.h> 53 #include <linux/nl80211.h> 54 #include <linux/platform_device.h> 55 #include <linux/moduleparam.h> 56 #include <net/cfg80211.h> 57 #include "core.h" 58 #include "reg.h" 59 #include "rdev-ops.h" 60 #include "regdb.h" 61 #include "nl80211.h" 62 63 /* 64 * Grace period we give before making sure all current interfaces reside on 65 * channels allowed by the current regulatory domain. 66 */ 67 #define REG_ENFORCE_GRACE_MS 60000 68 69 /** 70 * enum reg_request_treatment - regulatory request treatment 71 * 72 * @REG_REQ_OK: continue processing the regulatory request 73 * @REG_REQ_IGNORE: ignore the regulatory request 74 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 75 * be intersected with the current one. 76 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 77 * regulatory settings, and no further processing is required. 78 */ 79 enum reg_request_treatment { 80 REG_REQ_OK, 81 REG_REQ_IGNORE, 82 REG_REQ_INTERSECT, 83 REG_REQ_ALREADY_SET, 84 }; 85 86 static struct regulatory_request core_request_world = { 87 .initiator = NL80211_REGDOM_SET_BY_CORE, 88 .alpha2[0] = '0', 89 .alpha2[1] = '0', 90 .intersect = false, 91 .processed = true, 92 .country_ie_env = ENVIRON_ANY, 93 }; 94 95 /* 96 * Receipt of information from last regulatory request, 97 * protected by RTNL (and can be accessed with RCU protection) 98 */ 99 static struct regulatory_request __rcu *last_request = 100 (void __force __rcu *)&core_request_world; 101 102 /* To trigger userspace events */ 103 static struct platform_device *reg_pdev; 104 105 /* 106 * Central wireless core regulatory domains, we only need two, 107 * the current one and a world regulatory domain in case we have no 108 * information to give us an alpha2. 109 * (protected by RTNL, can be read under RCU) 110 */ 111 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 112 113 /* 114 * Number of devices that registered to the core 115 * that support cellular base station regulatory hints 116 * (protected by RTNL) 117 */ 118 static int reg_num_devs_support_basehint; 119 120 /* 121 * State variable indicating if the platform on which the devices 122 * are attached is operating in an indoor environment. The state variable 123 * is relevant for all registered devices. 124 */ 125 static bool reg_is_indoor; 126 static spinlock_t reg_indoor_lock; 127 128 /* Used to track the userspace process controlling the indoor setting */ 129 static u32 reg_is_indoor_portid; 130 131 static void restore_regulatory_settings(bool reset_user); 132 133 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 134 { 135 return rtnl_dereference(cfg80211_regdomain); 136 } 137 138 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 139 { 140 return rtnl_dereference(wiphy->regd); 141 } 142 143 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 144 { 145 switch (dfs_region) { 146 case NL80211_DFS_UNSET: 147 return "unset"; 148 case NL80211_DFS_FCC: 149 return "FCC"; 150 case NL80211_DFS_ETSI: 151 return "ETSI"; 152 case NL80211_DFS_JP: 153 return "JP"; 154 } 155 return "Unknown"; 156 } 157 158 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 159 { 160 const struct ieee80211_regdomain *regd = NULL; 161 const struct ieee80211_regdomain *wiphy_regd = NULL; 162 163 regd = get_cfg80211_regdom(); 164 if (!wiphy) 165 goto out; 166 167 wiphy_regd = get_wiphy_regdom(wiphy); 168 if (!wiphy_regd) 169 goto out; 170 171 if (wiphy_regd->dfs_region == regd->dfs_region) 172 goto out; 173 174 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 175 dev_name(&wiphy->dev), 176 reg_dfs_region_str(wiphy_regd->dfs_region), 177 reg_dfs_region_str(regd->dfs_region)); 178 179 out: 180 return regd->dfs_region; 181 } 182 183 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 184 { 185 if (!r) 186 return; 187 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 188 } 189 190 static struct regulatory_request *get_last_request(void) 191 { 192 return rcu_dereference_rtnl(last_request); 193 } 194 195 /* Used to queue up regulatory hints */ 196 static LIST_HEAD(reg_requests_list); 197 static spinlock_t reg_requests_lock; 198 199 /* Used to queue up beacon hints for review */ 200 static LIST_HEAD(reg_pending_beacons); 201 static spinlock_t reg_pending_beacons_lock; 202 203 /* Used to keep track of processed beacon hints */ 204 static LIST_HEAD(reg_beacon_list); 205 206 struct reg_beacon { 207 struct list_head list; 208 struct ieee80211_channel chan; 209 }; 210 211 static void reg_check_chans_work(struct work_struct *work); 212 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 213 214 static void reg_todo(struct work_struct *work); 215 static DECLARE_WORK(reg_work, reg_todo); 216 217 /* We keep a static world regulatory domain in case of the absence of CRDA */ 218 static const struct ieee80211_regdomain world_regdom = { 219 .n_reg_rules = 8, 220 .alpha2 = "00", 221 .reg_rules = { 222 /* IEEE 802.11b/g, channels 1..11 */ 223 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 224 /* IEEE 802.11b/g, channels 12..13. */ 225 REG_RULE(2467-10, 2472+10, 20, 6, 20, 226 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 227 /* IEEE 802.11 channel 14 - Only JP enables 228 * this and for 802.11b only */ 229 REG_RULE(2484-10, 2484+10, 20, 6, 20, 230 NL80211_RRF_NO_IR | 231 NL80211_RRF_NO_OFDM), 232 /* IEEE 802.11a, channel 36..48 */ 233 REG_RULE(5180-10, 5240+10, 80, 6, 20, 234 NL80211_RRF_NO_IR | 235 NL80211_RRF_AUTO_BW), 236 237 /* IEEE 802.11a, channel 52..64 - DFS required */ 238 REG_RULE(5260-10, 5320+10, 80, 6, 20, 239 NL80211_RRF_NO_IR | 240 NL80211_RRF_AUTO_BW | 241 NL80211_RRF_DFS), 242 243 /* IEEE 802.11a, channel 100..144 - DFS required */ 244 REG_RULE(5500-10, 5720+10, 160, 6, 20, 245 NL80211_RRF_NO_IR | 246 NL80211_RRF_DFS), 247 248 /* IEEE 802.11a, channel 149..165 */ 249 REG_RULE(5745-10, 5825+10, 80, 6, 20, 250 NL80211_RRF_NO_IR), 251 252 /* IEEE 802.11ad (60GHz), channels 1..3 */ 253 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 254 } 255 }; 256 257 /* protected by RTNL */ 258 static const struct ieee80211_regdomain *cfg80211_world_regdom = 259 &world_regdom; 260 261 static char *ieee80211_regdom = "00"; 262 static char user_alpha2[2]; 263 264 module_param(ieee80211_regdom, charp, 0444); 265 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 266 267 static void reg_free_request(struct regulatory_request *request) 268 { 269 if (request == &core_request_world) 270 return; 271 272 if (request != get_last_request()) 273 kfree(request); 274 } 275 276 static void reg_free_last_request(void) 277 { 278 struct regulatory_request *lr = get_last_request(); 279 280 if (lr != &core_request_world && lr) 281 kfree_rcu(lr, rcu_head); 282 } 283 284 static void reg_update_last_request(struct regulatory_request *request) 285 { 286 struct regulatory_request *lr; 287 288 lr = get_last_request(); 289 if (lr == request) 290 return; 291 292 reg_free_last_request(); 293 rcu_assign_pointer(last_request, request); 294 } 295 296 static void reset_regdomains(bool full_reset, 297 const struct ieee80211_regdomain *new_regdom) 298 { 299 const struct ieee80211_regdomain *r; 300 301 ASSERT_RTNL(); 302 303 r = get_cfg80211_regdom(); 304 305 /* avoid freeing static information or freeing something twice */ 306 if (r == cfg80211_world_regdom) 307 r = NULL; 308 if (cfg80211_world_regdom == &world_regdom) 309 cfg80211_world_regdom = NULL; 310 if (r == &world_regdom) 311 r = NULL; 312 313 rcu_free_regdom(r); 314 rcu_free_regdom(cfg80211_world_regdom); 315 316 cfg80211_world_regdom = &world_regdom; 317 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 318 319 if (!full_reset) 320 return; 321 322 reg_update_last_request(&core_request_world); 323 } 324 325 /* 326 * Dynamic world regulatory domain requested by the wireless 327 * core upon initialization 328 */ 329 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 330 { 331 struct regulatory_request *lr; 332 333 lr = get_last_request(); 334 335 WARN_ON(!lr); 336 337 reset_regdomains(false, rd); 338 339 cfg80211_world_regdom = rd; 340 } 341 342 bool is_world_regdom(const char *alpha2) 343 { 344 if (!alpha2) 345 return false; 346 return alpha2[0] == '0' && alpha2[1] == '0'; 347 } 348 349 static bool is_alpha2_set(const char *alpha2) 350 { 351 if (!alpha2) 352 return false; 353 return alpha2[0] && alpha2[1]; 354 } 355 356 static bool is_unknown_alpha2(const char *alpha2) 357 { 358 if (!alpha2) 359 return false; 360 /* 361 * Special case where regulatory domain was built by driver 362 * but a specific alpha2 cannot be determined 363 */ 364 return alpha2[0] == '9' && alpha2[1] == '9'; 365 } 366 367 static bool is_intersected_alpha2(const char *alpha2) 368 { 369 if (!alpha2) 370 return false; 371 /* 372 * Special case where regulatory domain is the 373 * result of an intersection between two regulatory domain 374 * structures 375 */ 376 return alpha2[0] == '9' && alpha2[1] == '8'; 377 } 378 379 static bool is_an_alpha2(const char *alpha2) 380 { 381 if (!alpha2) 382 return false; 383 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 384 } 385 386 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 387 { 388 if (!alpha2_x || !alpha2_y) 389 return false; 390 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 391 } 392 393 static bool regdom_changes(const char *alpha2) 394 { 395 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 396 397 if (!r) 398 return true; 399 return !alpha2_equal(r->alpha2, alpha2); 400 } 401 402 /* 403 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 404 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 405 * has ever been issued. 406 */ 407 static bool is_user_regdom_saved(void) 408 { 409 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 410 return false; 411 412 /* This would indicate a mistake on the design */ 413 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 414 "Unexpected user alpha2: %c%c\n", 415 user_alpha2[0], user_alpha2[1])) 416 return false; 417 418 return true; 419 } 420 421 static const struct ieee80211_regdomain * 422 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 423 { 424 struct ieee80211_regdomain *regd; 425 int size_of_regd; 426 unsigned int i; 427 428 size_of_regd = 429 sizeof(struct ieee80211_regdomain) + 430 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); 431 432 regd = kzalloc(size_of_regd, GFP_KERNEL); 433 if (!regd) 434 return ERR_PTR(-ENOMEM); 435 436 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 437 438 for (i = 0; i < src_regd->n_reg_rules; i++) 439 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 440 sizeof(struct ieee80211_reg_rule)); 441 442 return regd; 443 } 444 445 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 446 struct reg_regdb_apply_request { 447 struct list_head list; 448 const struct ieee80211_regdomain *regdom; 449 }; 450 451 static LIST_HEAD(reg_regdb_apply_list); 452 static DEFINE_MUTEX(reg_regdb_apply_mutex); 453 454 static void reg_regdb_apply(struct work_struct *work) 455 { 456 struct reg_regdb_apply_request *request; 457 458 rtnl_lock(); 459 460 mutex_lock(®_regdb_apply_mutex); 461 while (!list_empty(®_regdb_apply_list)) { 462 request = list_first_entry(®_regdb_apply_list, 463 struct reg_regdb_apply_request, 464 list); 465 list_del(&request->list); 466 467 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 468 kfree(request); 469 } 470 mutex_unlock(®_regdb_apply_mutex); 471 472 rtnl_unlock(); 473 } 474 475 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 476 477 static int reg_query_builtin(const char *alpha2) 478 { 479 const struct ieee80211_regdomain *regdom = NULL; 480 struct reg_regdb_apply_request *request; 481 unsigned int i; 482 483 for (i = 0; i < reg_regdb_size; i++) { 484 if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) { 485 regdom = reg_regdb[i]; 486 break; 487 } 488 } 489 490 if (!regdom) 491 return -ENODATA; 492 493 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 494 if (!request) 495 return -ENOMEM; 496 497 request->regdom = reg_copy_regd(regdom); 498 if (IS_ERR_OR_NULL(request->regdom)) { 499 kfree(request); 500 return -ENOMEM; 501 } 502 503 mutex_lock(®_regdb_apply_mutex); 504 list_add_tail(&request->list, ®_regdb_apply_list); 505 mutex_unlock(®_regdb_apply_mutex); 506 507 schedule_work(®_regdb_work); 508 509 return 0; 510 } 511 512 /* Feel free to add any other sanity checks here */ 513 static void reg_regdb_size_check(void) 514 { 515 /* We should ideally BUILD_BUG_ON() but then random builds would fail */ 516 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it..."); 517 } 518 #else 519 static inline void reg_regdb_size_check(void) {} 520 static inline int reg_query_builtin(const char *alpha2) 521 { 522 return -ENODATA; 523 } 524 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 525 526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 527 /* Max number of consecutive attempts to communicate with CRDA */ 528 #define REG_MAX_CRDA_TIMEOUTS 10 529 530 static u32 reg_crda_timeouts; 531 532 static void crda_timeout_work(struct work_struct *work); 533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 534 535 static void crda_timeout_work(struct work_struct *work) 536 { 537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 538 rtnl_lock(); 539 reg_crda_timeouts++; 540 restore_regulatory_settings(true); 541 rtnl_unlock(); 542 } 543 544 static void cancel_crda_timeout(void) 545 { 546 cancel_delayed_work(&crda_timeout); 547 } 548 549 static void cancel_crda_timeout_sync(void) 550 { 551 cancel_delayed_work_sync(&crda_timeout); 552 } 553 554 static void reset_crda_timeouts(void) 555 { 556 reg_crda_timeouts = 0; 557 } 558 559 /* 560 * This lets us keep regulatory code which is updated on a regulatory 561 * basis in userspace. 562 */ 563 static int call_crda(const char *alpha2) 564 { 565 char country[12]; 566 char *env[] = { country, NULL }; 567 int ret; 568 569 snprintf(country, sizeof(country), "COUNTRY=%c%c", 570 alpha2[0], alpha2[1]); 571 572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 574 return -EINVAL; 575 } 576 577 if (!is_world_regdom((char *) alpha2)) 578 pr_debug("Calling CRDA for country: %c%c\n", 579 alpha2[0], alpha2[1]); 580 else 581 pr_debug("Calling CRDA to update world regulatory domain\n"); 582 583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 584 if (ret) 585 return ret; 586 587 queue_delayed_work(system_power_efficient_wq, 588 &crda_timeout, msecs_to_jiffies(3142)); 589 return 0; 590 } 591 #else 592 static inline void cancel_crda_timeout(void) {} 593 static inline void cancel_crda_timeout_sync(void) {} 594 static inline void reset_crda_timeouts(void) {} 595 static inline int call_crda(const char *alpha2) 596 { 597 return -ENODATA; 598 } 599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 600 601 static bool reg_query_database(struct regulatory_request *request) 602 { 603 /* query internal regulatory database (if it exists) */ 604 if (reg_query_builtin(request->alpha2) == 0) 605 return true; 606 607 if (call_crda(request->alpha2) == 0) 608 return true; 609 610 return false; 611 } 612 613 bool reg_is_valid_request(const char *alpha2) 614 { 615 struct regulatory_request *lr = get_last_request(); 616 617 if (!lr || lr->processed) 618 return false; 619 620 return alpha2_equal(lr->alpha2, alpha2); 621 } 622 623 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 624 { 625 struct regulatory_request *lr = get_last_request(); 626 627 /* 628 * Follow the driver's regulatory domain, if present, unless a country 629 * IE has been processed or a user wants to help complaince further 630 */ 631 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 632 lr->initiator != NL80211_REGDOM_SET_BY_USER && 633 wiphy->regd) 634 return get_wiphy_regdom(wiphy); 635 636 return get_cfg80211_regdom(); 637 } 638 639 static unsigned int 640 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 641 const struct ieee80211_reg_rule *rule) 642 { 643 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 644 const struct ieee80211_freq_range *freq_range_tmp; 645 const struct ieee80211_reg_rule *tmp; 646 u32 start_freq, end_freq, idx, no; 647 648 for (idx = 0; idx < rd->n_reg_rules; idx++) 649 if (rule == &rd->reg_rules[idx]) 650 break; 651 652 if (idx == rd->n_reg_rules) 653 return 0; 654 655 /* get start_freq */ 656 no = idx; 657 658 while (no) { 659 tmp = &rd->reg_rules[--no]; 660 freq_range_tmp = &tmp->freq_range; 661 662 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 663 break; 664 665 freq_range = freq_range_tmp; 666 } 667 668 start_freq = freq_range->start_freq_khz; 669 670 /* get end_freq */ 671 freq_range = &rule->freq_range; 672 no = idx; 673 674 while (no < rd->n_reg_rules - 1) { 675 tmp = &rd->reg_rules[++no]; 676 freq_range_tmp = &tmp->freq_range; 677 678 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 679 break; 680 681 freq_range = freq_range_tmp; 682 } 683 684 end_freq = freq_range->end_freq_khz; 685 686 return end_freq - start_freq; 687 } 688 689 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 690 const struct ieee80211_reg_rule *rule) 691 { 692 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 693 694 if (rule->flags & NL80211_RRF_NO_160MHZ) 695 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 696 if (rule->flags & NL80211_RRF_NO_80MHZ) 697 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 698 699 /* 700 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 701 * are not allowed. 702 */ 703 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 704 rule->flags & NL80211_RRF_NO_HT40PLUS) 705 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 706 707 return bw; 708 } 709 710 /* Sanity check on a regulatory rule */ 711 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 712 { 713 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 714 u32 freq_diff; 715 716 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 717 return false; 718 719 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 720 return false; 721 722 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 723 724 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 725 freq_range->max_bandwidth_khz > freq_diff) 726 return false; 727 728 return true; 729 } 730 731 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 732 { 733 const struct ieee80211_reg_rule *reg_rule = NULL; 734 unsigned int i; 735 736 if (!rd->n_reg_rules) 737 return false; 738 739 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 740 return false; 741 742 for (i = 0; i < rd->n_reg_rules; i++) { 743 reg_rule = &rd->reg_rules[i]; 744 if (!is_valid_reg_rule(reg_rule)) 745 return false; 746 } 747 748 return true; 749 } 750 751 /** 752 * freq_in_rule_band - tells us if a frequency is in a frequency band 753 * @freq_range: frequency rule we want to query 754 * @freq_khz: frequency we are inquiring about 755 * 756 * This lets us know if a specific frequency rule is or is not relevant to 757 * a specific frequency's band. Bands are device specific and artificial 758 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 759 * however it is safe for now to assume that a frequency rule should not be 760 * part of a frequency's band if the start freq or end freq are off by more 761 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the 762 * 60 GHz band. 763 * This resolution can be lowered and should be considered as we add 764 * regulatory rule support for other "bands". 765 **/ 766 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 767 u32 freq_khz) 768 { 769 #define ONE_GHZ_IN_KHZ 1000000 770 /* 771 * From 802.11ad: directional multi-gigabit (DMG): 772 * Pertaining to operation in a frequency band containing a channel 773 * with the Channel starting frequency above 45 GHz. 774 */ 775 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 776 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 777 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 778 return true; 779 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 780 return true; 781 return false; 782 #undef ONE_GHZ_IN_KHZ 783 } 784 785 /* 786 * Later on we can perhaps use the more restrictive DFS 787 * region but we don't have information for that yet so 788 * for now simply disallow conflicts. 789 */ 790 static enum nl80211_dfs_regions 791 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 792 const enum nl80211_dfs_regions dfs_region2) 793 { 794 if (dfs_region1 != dfs_region2) 795 return NL80211_DFS_UNSET; 796 return dfs_region1; 797 } 798 799 /* 800 * Helper for regdom_intersect(), this does the real 801 * mathematical intersection fun 802 */ 803 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 804 const struct ieee80211_regdomain *rd2, 805 const struct ieee80211_reg_rule *rule1, 806 const struct ieee80211_reg_rule *rule2, 807 struct ieee80211_reg_rule *intersected_rule) 808 { 809 const struct ieee80211_freq_range *freq_range1, *freq_range2; 810 struct ieee80211_freq_range *freq_range; 811 const struct ieee80211_power_rule *power_rule1, *power_rule2; 812 struct ieee80211_power_rule *power_rule; 813 u32 freq_diff, max_bandwidth1, max_bandwidth2; 814 815 freq_range1 = &rule1->freq_range; 816 freq_range2 = &rule2->freq_range; 817 freq_range = &intersected_rule->freq_range; 818 819 power_rule1 = &rule1->power_rule; 820 power_rule2 = &rule2->power_rule; 821 power_rule = &intersected_rule->power_rule; 822 823 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 824 freq_range2->start_freq_khz); 825 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 826 freq_range2->end_freq_khz); 827 828 max_bandwidth1 = freq_range1->max_bandwidth_khz; 829 max_bandwidth2 = freq_range2->max_bandwidth_khz; 830 831 if (rule1->flags & NL80211_RRF_AUTO_BW) 832 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 833 if (rule2->flags & NL80211_RRF_AUTO_BW) 834 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 835 836 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 837 838 intersected_rule->flags = rule1->flags | rule2->flags; 839 840 /* 841 * In case NL80211_RRF_AUTO_BW requested for both rules 842 * set AUTO_BW in intersected rule also. Next we will 843 * calculate BW correctly in handle_channel function. 844 * In other case remove AUTO_BW flag while we calculate 845 * maximum bandwidth correctly and auto calculation is 846 * not required. 847 */ 848 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 849 (rule2->flags & NL80211_RRF_AUTO_BW)) 850 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 851 else 852 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 853 854 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 855 if (freq_range->max_bandwidth_khz > freq_diff) 856 freq_range->max_bandwidth_khz = freq_diff; 857 858 power_rule->max_eirp = min(power_rule1->max_eirp, 859 power_rule2->max_eirp); 860 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 861 power_rule2->max_antenna_gain); 862 863 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 864 rule2->dfs_cac_ms); 865 866 if (!is_valid_reg_rule(intersected_rule)) 867 return -EINVAL; 868 869 return 0; 870 } 871 872 /* check whether old rule contains new rule */ 873 static bool rule_contains(struct ieee80211_reg_rule *r1, 874 struct ieee80211_reg_rule *r2) 875 { 876 /* for simplicity, currently consider only same flags */ 877 if (r1->flags != r2->flags) 878 return false; 879 880 /* verify r1 is more restrictive */ 881 if ((r1->power_rule.max_antenna_gain > 882 r2->power_rule.max_antenna_gain) || 883 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 884 return false; 885 886 /* make sure r2's range is contained within r1 */ 887 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 888 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 889 return false; 890 891 /* and finally verify that r1.max_bw >= r2.max_bw */ 892 if (r1->freq_range.max_bandwidth_khz < 893 r2->freq_range.max_bandwidth_khz) 894 return false; 895 896 return true; 897 } 898 899 /* add or extend current rules. do nothing if rule is already contained */ 900 static void add_rule(struct ieee80211_reg_rule *rule, 901 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 902 { 903 struct ieee80211_reg_rule *tmp_rule; 904 int i; 905 906 for (i = 0; i < *n_rules; i++) { 907 tmp_rule = ®_rules[i]; 908 /* rule is already contained - do nothing */ 909 if (rule_contains(tmp_rule, rule)) 910 return; 911 912 /* extend rule if possible */ 913 if (rule_contains(rule, tmp_rule)) { 914 memcpy(tmp_rule, rule, sizeof(*rule)); 915 return; 916 } 917 } 918 919 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 920 (*n_rules)++; 921 } 922 923 /** 924 * regdom_intersect - do the intersection between two regulatory domains 925 * @rd1: first regulatory domain 926 * @rd2: second regulatory domain 927 * 928 * Use this function to get the intersection between two regulatory domains. 929 * Once completed we will mark the alpha2 for the rd as intersected, "98", 930 * as no one single alpha2 can represent this regulatory domain. 931 * 932 * Returns a pointer to the regulatory domain structure which will hold the 933 * resulting intersection of rules between rd1 and rd2. We will 934 * kzalloc() this structure for you. 935 */ 936 static struct ieee80211_regdomain * 937 regdom_intersect(const struct ieee80211_regdomain *rd1, 938 const struct ieee80211_regdomain *rd2) 939 { 940 int r, size_of_regd; 941 unsigned int x, y; 942 unsigned int num_rules = 0; 943 const struct ieee80211_reg_rule *rule1, *rule2; 944 struct ieee80211_reg_rule intersected_rule; 945 struct ieee80211_regdomain *rd; 946 947 if (!rd1 || !rd2) 948 return NULL; 949 950 /* 951 * First we get a count of the rules we'll need, then we actually 952 * build them. This is to so we can malloc() and free() a 953 * regdomain once. The reason we use reg_rules_intersect() here 954 * is it will return -EINVAL if the rule computed makes no sense. 955 * All rules that do check out OK are valid. 956 */ 957 958 for (x = 0; x < rd1->n_reg_rules; x++) { 959 rule1 = &rd1->reg_rules[x]; 960 for (y = 0; y < rd2->n_reg_rules; y++) { 961 rule2 = &rd2->reg_rules[y]; 962 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 963 &intersected_rule)) 964 num_rules++; 965 } 966 } 967 968 if (!num_rules) 969 return NULL; 970 971 size_of_regd = sizeof(struct ieee80211_regdomain) + 972 num_rules * sizeof(struct ieee80211_reg_rule); 973 974 rd = kzalloc(size_of_regd, GFP_KERNEL); 975 if (!rd) 976 return NULL; 977 978 for (x = 0; x < rd1->n_reg_rules; x++) { 979 rule1 = &rd1->reg_rules[x]; 980 for (y = 0; y < rd2->n_reg_rules; y++) { 981 rule2 = &rd2->reg_rules[y]; 982 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 983 &intersected_rule); 984 /* 985 * No need to memset here the intersected rule here as 986 * we're not using the stack anymore 987 */ 988 if (r) 989 continue; 990 991 add_rule(&intersected_rule, rd->reg_rules, 992 &rd->n_reg_rules); 993 } 994 } 995 996 rd->alpha2[0] = '9'; 997 rd->alpha2[1] = '8'; 998 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 999 rd2->dfs_region); 1000 1001 return rd; 1002 } 1003 1004 /* 1005 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1006 * want to just have the channel structure use these 1007 */ 1008 static u32 map_regdom_flags(u32 rd_flags) 1009 { 1010 u32 channel_flags = 0; 1011 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1012 channel_flags |= IEEE80211_CHAN_NO_IR; 1013 if (rd_flags & NL80211_RRF_DFS) 1014 channel_flags |= IEEE80211_CHAN_RADAR; 1015 if (rd_flags & NL80211_RRF_NO_OFDM) 1016 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1017 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1018 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1019 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1020 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1021 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1022 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1023 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1024 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1025 if (rd_flags & NL80211_RRF_NO_80MHZ) 1026 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1027 if (rd_flags & NL80211_RRF_NO_160MHZ) 1028 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1029 return channel_flags; 1030 } 1031 1032 static const struct ieee80211_reg_rule * 1033 freq_reg_info_regd(u32 center_freq, 1034 const struct ieee80211_regdomain *regd, u32 bw) 1035 { 1036 int i; 1037 bool band_rule_found = false; 1038 bool bw_fits = false; 1039 1040 if (!regd) 1041 return ERR_PTR(-EINVAL); 1042 1043 for (i = 0; i < regd->n_reg_rules; i++) { 1044 const struct ieee80211_reg_rule *rr; 1045 const struct ieee80211_freq_range *fr = NULL; 1046 1047 rr = ®d->reg_rules[i]; 1048 fr = &rr->freq_range; 1049 1050 /* 1051 * We only need to know if one frequency rule was 1052 * was in center_freq's band, that's enough, so lets 1053 * not overwrite it once found 1054 */ 1055 if (!band_rule_found) 1056 band_rule_found = freq_in_rule_band(fr, center_freq); 1057 1058 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1059 1060 if (band_rule_found && bw_fits) 1061 return rr; 1062 } 1063 1064 if (!band_rule_found) 1065 return ERR_PTR(-ERANGE); 1066 1067 return ERR_PTR(-EINVAL); 1068 } 1069 1070 static const struct ieee80211_reg_rule * 1071 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1072 { 1073 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1074 const struct ieee80211_reg_rule *reg_rule = NULL; 1075 u32 bw; 1076 1077 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 1078 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1079 if (!IS_ERR(reg_rule)) 1080 return reg_rule; 1081 } 1082 1083 return reg_rule; 1084 } 1085 1086 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1087 u32 center_freq) 1088 { 1089 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20)); 1090 } 1091 EXPORT_SYMBOL(freq_reg_info); 1092 1093 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1094 { 1095 switch (initiator) { 1096 case NL80211_REGDOM_SET_BY_CORE: 1097 return "core"; 1098 case NL80211_REGDOM_SET_BY_USER: 1099 return "user"; 1100 case NL80211_REGDOM_SET_BY_DRIVER: 1101 return "driver"; 1102 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1103 return "country IE"; 1104 default: 1105 WARN_ON(1); 1106 return "bug"; 1107 } 1108 } 1109 EXPORT_SYMBOL(reg_initiator_name); 1110 1111 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1112 const struct ieee80211_reg_rule *reg_rule, 1113 const struct ieee80211_channel *chan) 1114 { 1115 const struct ieee80211_freq_range *freq_range = NULL; 1116 u32 max_bandwidth_khz, bw_flags = 0; 1117 1118 freq_range = ®_rule->freq_range; 1119 1120 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1121 /* Check if auto calculation requested */ 1122 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1123 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1124 1125 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1126 if (!cfg80211_does_bw_fit_range(freq_range, 1127 MHZ_TO_KHZ(chan->center_freq), 1128 MHZ_TO_KHZ(10))) 1129 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1130 if (!cfg80211_does_bw_fit_range(freq_range, 1131 MHZ_TO_KHZ(chan->center_freq), 1132 MHZ_TO_KHZ(20))) 1133 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1134 1135 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1136 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1137 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1138 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1139 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1140 bw_flags |= IEEE80211_CHAN_NO_HT40; 1141 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1142 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1143 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1144 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1145 return bw_flags; 1146 } 1147 1148 /* 1149 * Note that right now we assume the desired channel bandwidth 1150 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1151 * per channel, the primary and the extension channel). 1152 */ 1153 static void handle_channel(struct wiphy *wiphy, 1154 enum nl80211_reg_initiator initiator, 1155 struct ieee80211_channel *chan) 1156 { 1157 u32 flags, bw_flags = 0; 1158 const struct ieee80211_reg_rule *reg_rule = NULL; 1159 const struct ieee80211_power_rule *power_rule = NULL; 1160 struct wiphy *request_wiphy = NULL; 1161 struct regulatory_request *lr = get_last_request(); 1162 const struct ieee80211_regdomain *regd; 1163 1164 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1165 1166 flags = chan->orig_flags; 1167 1168 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 1169 if (IS_ERR(reg_rule)) { 1170 /* 1171 * We will disable all channels that do not match our 1172 * received regulatory rule unless the hint is coming 1173 * from a Country IE and the Country IE had no information 1174 * about a band. The IEEE 802.11 spec allows for an AP 1175 * to send only a subset of the regulatory rules allowed, 1176 * so an AP in the US that only supports 2.4 GHz may only send 1177 * a country IE with information for the 2.4 GHz band 1178 * while 5 GHz is still supported. 1179 */ 1180 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1181 PTR_ERR(reg_rule) == -ERANGE) 1182 return; 1183 1184 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1185 request_wiphy && request_wiphy == wiphy && 1186 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1187 pr_debug("Disabling freq %d MHz for good\n", 1188 chan->center_freq); 1189 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1190 chan->flags = chan->orig_flags; 1191 } else { 1192 pr_debug("Disabling freq %d MHz\n", 1193 chan->center_freq); 1194 chan->flags |= IEEE80211_CHAN_DISABLED; 1195 } 1196 return; 1197 } 1198 1199 regd = reg_get_regdomain(wiphy); 1200 1201 power_rule = ®_rule->power_rule; 1202 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1203 1204 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1205 request_wiphy && request_wiphy == wiphy && 1206 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1207 /* 1208 * This guarantees the driver's requested regulatory domain 1209 * will always be used as a base for further regulatory 1210 * settings 1211 */ 1212 chan->flags = chan->orig_flags = 1213 map_regdom_flags(reg_rule->flags) | bw_flags; 1214 chan->max_antenna_gain = chan->orig_mag = 1215 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1216 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1217 (int) MBM_TO_DBM(power_rule->max_eirp); 1218 1219 if (chan->flags & IEEE80211_CHAN_RADAR) { 1220 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1221 if (reg_rule->dfs_cac_ms) 1222 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1223 } 1224 1225 return; 1226 } 1227 1228 chan->dfs_state = NL80211_DFS_USABLE; 1229 chan->dfs_state_entered = jiffies; 1230 1231 chan->beacon_found = false; 1232 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1233 chan->max_antenna_gain = 1234 min_t(int, chan->orig_mag, 1235 MBI_TO_DBI(power_rule->max_antenna_gain)); 1236 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1237 1238 if (chan->flags & IEEE80211_CHAN_RADAR) { 1239 if (reg_rule->dfs_cac_ms) 1240 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1241 else 1242 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1243 } 1244 1245 if (chan->orig_mpwr) { 1246 /* 1247 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1248 * will always follow the passed country IE power settings. 1249 */ 1250 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1251 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1252 chan->max_power = chan->max_reg_power; 1253 else 1254 chan->max_power = min(chan->orig_mpwr, 1255 chan->max_reg_power); 1256 } else 1257 chan->max_power = chan->max_reg_power; 1258 } 1259 1260 static void handle_band(struct wiphy *wiphy, 1261 enum nl80211_reg_initiator initiator, 1262 struct ieee80211_supported_band *sband) 1263 { 1264 unsigned int i; 1265 1266 if (!sband) 1267 return; 1268 1269 for (i = 0; i < sband->n_channels; i++) 1270 handle_channel(wiphy, initiator, &sband->channels[i]); 1271 } 1272 1273 static bool reg_request_cell_base(struct regulatory_request *request) 1274 { 1275 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1276 return false; 1277 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 1278 } 1279 1280 bool reg_last_request_cell_base(void) 1281 { 1282 return reg_request_cell_base(get_last_request()); 1283 } 1284 1285 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 1286 /* Core specific check */ 1287 static enum reg_request_treatment 1288 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1289 { 1290 struct regulatory_request *lr = get_last_request(); 1291 1292 if (!reg_num_devs_support_basehint) 1293 return REG_REQ_IGNORE; 1294 1295 if (reg_request_cell_base(lr) && 1296 !regdom_changes(pending_request->alpha2)) 1297 return REG_REQ_ALREADY_SET; 1298 1299 return REG_REQ_OK; 1300 } 1301 1302 /* Device specific check */ 1303 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1304 { 1305 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 1306 } 1307 #else 1308 static enum reg_request_treatment 1309 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1310 { 1311 return REG_REQ_IGNORE; 1312 } 1313 1314 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1315 { 1316 return true; 1317 } 1318 #endif 1319 1320 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 1321 { 1322 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 1323 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 1324 return true; 1325 return false; 1326 } 1327 1328 static bool ignore_reg_update(struct wiphy *wiphy, 1329 enum nl80211_reg_initiator initiator) 1330 { 1331 struct regulatory_request *lr = get_last_request(); 1332 1333 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 1334 return true; 1335 1336 if (!lr) { 1337 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 1338 reg_initiator_name(initiator)); 1339 return true; 1340 } 1341 1342 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1343 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 1344 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 1345 reg_initiator_name(initiator)); 1346 return true; 1347 } 1348 1349 /* 1350 * wiphy->regd will be set once the device has its own 1351 * desired regulatory domain set 1352 */ 1353 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1354 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1355 !is_world_regdom(lr->alpha2)) { 1356 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 1357 reg_initiator_name(initiator)); 1358 return true; 1359 } 1360 1361 if (reg_request_cell_base(lr)) 1362 return reg_dev_ignore_cell_hint(wiphy); 1363 1364 return false; 1365 } 1366 1367 static bool reg_is_world_roaming(struct wiphy *wiphy) 1368 { 1369 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1370 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1371 struct regulatory_request *lr = get_last_request(); 1372 1373 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1374 return true; 1375 1376 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1377 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1378 return true; 1379 1380 return false; 1381 } 1382 1383 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1384 struct reg_beacon *reg_beacon) 1385 { 1386 struct ieee80211_supported_band *sband; 1387 struct ieee80211_channel *chan; 1388 bool channel_changed = false; 1389 struct ieee80211_channel chan_before; 1390 1391 sband = wiphy->bands[reg_beacon->chan.band]; 1392 chan = &sband->channels[chan_idx]; 1393 1394 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1395 return; 1396 1397 if (chan->beacon_found) 1398 return; 1399 1400 chan->beacon_found = true; 1401 1402 if (!reg_is_world_roaming(wiphy)) 1403 return; 1404 1405 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 1406 return; 1407 1408 chan_before.center_freq = chan->center_freq; 1409 chan_before.flags = chan->flags; 1410 1411 if (chan->flags & IEEE80211_CHAN_NO_IR) { 1412 chan->flags &= ~IEEE80211_CHAN_NO_IR; 1413 channel_changed = true; 1414 } 1415 1416 if (channel_changed) 1417 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1418 } 1419 1420 /* 1421 * Called when a scan on a wiphy finds a beacon on 1422 * new channel 1423 */ 1424 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1425 struct reg_beacon *reg_beacon) 1426 { 1427 unsigned int i; 1428 struct ieee80211_supported_band *sband; 1429 1430 if (!wiphy->bands[reg_beacon->chan.band]) 1431 return; 1432 1433 sband = wiphy->bands[reg_beacon->chan.band]; 1434 1435 for (i = 0; i < sband->n_channels; i++) 1436 handle_reg_beacon(wiphy, i, reg_beacon); 1437 } 1438 1439 /* 1440 * Called upon reg changes or a new wiphy is added 1441 */ 1442 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1443 { 1444 unsigned int i; 1445 struct ieee80211_supported_band *sband; 1446 struct reg_beacon *reg_beacon; 1447 1448 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1449 if (!wiphy->bands[reg_beacon->chan.band]) 1450 continue; 1451 sband = wiphy->bands[reg_beacon->chan.band]; 1452 for (i = 0; i < sband->n_channels; i++) 1453 handle_reg_beacon(wiphy, i, reg_beacon); 1454 } 1455 } 1456 1457 /* Reap the advantages of previously found beacons */ 1458 static void reg_process_beacons(struct wiphy *wiphy) 1459 { 1460 /* 1461 * Means we are just firing up cfg80211, so no beacons would 1462 * have been processed yet. 1463 */ 1464 if (!last_request) 1465 return; 1466 wiphy_update_beacon_reg(wiphy); 1467 } 1468 1469 static bool is_ht40_allowed(struct ieee80211_channel *chan) 1470 { 1471 if (!chan) 1472 return false; 1473 if (chan->flags & IEEE80211_CHAN_DISABLED) 1474 return false; 1475 /* This would happen when regulatory rules disallow HT40 completely */ 1476 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 1477 return false; 1478 return true; 1479 } 1480 1481 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1482 struct ieee80211_channel *channel) 1483 { 1484 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 1485 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1486 unsigned int i; 1487 1488 if (!is_ht40_allowed(channel)) { 1489 channel->flags |= IEEE80211_CHAN_NO_HT40; 1490 return; 1491 } 1492 1493 /* 1494 * We need to ensure the extension channels exist to 1495 * be able to use HT40- or HT40+, this finds them (or not) 1496 */ 1497 for (i = 0; i < sband->n_channels; i++) { 1498 struct ieee80211_channel *c = &sband->channels[i]; 1499 1500 if (c->center_freq == (channel->center_freq - 20)) 1501 channel_before = c; 1502 if (c->center_freq == (channel->center_freq + 20)) 1503 channel_after = c; 1504 } 1505 1506 /* 1507 * Please note that this assumes target bandwidth is 20 MHz, 1508 * if that ever changes we also need to change the below logic 1509 * to include that as well. 1510 */ 1511 if (!is_ht40_allowed(channel_before)) 1512 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1513 else 1514 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1515 1516 if (!is_ht40_allowed(channel_after)) 1517 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1518 else 1519 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1520 } 1521 1522 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1523 struct ieee80211_supported_band *sband) 1524 { 1525 unsigned int i; 1526 1527 if (!sband) 1528 return; 1529 1530 for (i = 0; i < sband->n_channels; i++) 1531 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 1532 } 1533 1534 static void reg_process_ht_flags(struct wiphy *wiphy) 1535 { 1536 enum nl80211_band band; 1537 1538 if (!wiphy) 1539 return; 1540 1541 for (band = 0; band < NUM_NL80211_BANDS; band++) 1542 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 1543 } 1544 1545 static void reg_call_notifier(struct wiphy *wiphy, 1546 struct regulatory_request *request) 1547 { 1548 if (wiphy->reg_notifier) 1549 wiphy->reg_notifier(wiphy, request); 1550 } 1551 1552 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 1553 { 1554 struct cfg80211_chan_def chandef; 1555 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1556 enum nl80211_iftype iftype; 1557 1558 wdev_lock(wdev); 1559 iftype = wdev->iftype; 1560 1561 /* make sure the interface is active */ 1562 if (!wdev->netdev || !netif_running(wdev->netdev)) 1563 goto wdev_inactive_unlock; 1564 1565 switch (iftype) { 1566 case NL80211_IFTYPE_AP: 1567 case NL80211_IFTYPE_P2P_GO: 1568 if (!wdev->beacon_interval) 1569 goto wdev_inactive_unlock; 1570 chandef = wdev->chandef; 1571 break; 1572 case NL80211_IFTYPE_ADHOC: 1573 if (!wdev->ssid_len) 1574 goto wdev_inactive_unlock; 1575 chandef = wdev->chandef; 1576 break; 1577 case NL80211_IFTYPE_STATION: 1578 case NL80211_IFTYPE_P2P_CLIENT: 1579 if (!wdev->current_bss || 1580 !wdev->current_bss->pub.channel) 1581 goto wdev_inactive_unlock; 1582 1583 if (!rdev->ops->get_channel || 1584 rdev_get_channel(rdev, wdev, &chandef)) 1585 cfg80211_chandef_create(&chandef, 1586 wdev->current_bss->pub.channel, 1587 NL80211_CHAN_NO_HT); 1588 break; 1589 case NL80211_IFTYPE_MONITOR: 1590 case NL80211_IFTYPE_AP_VLAN: 1591 case NL80211_IFTYPE_P2P_DEVICE: 1592 /* no enforcement required */ 1593 break; 1594 default: 1595 /* others not implemented for now */ 1596 WARN_ON(1); 1597 break; 1598 } 1599 1600 wdev_unlock(wdev); 1601 1602 switch (iftype) { 1603 case NL80211_IFTYPE_AP: 1604 case NL80211_IFTYPE_P2P_GO: 1605 case NL80211_IFTYPE_ADHOC: 1606 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 1607 case NL80211_IFTYPE_STATION: 1608 case NL80211_IFTYPE_P2P_CLIENT: 1609 return cfg80211_chandef_usable(wiphy, &chandef, 1610 IEEE80211_CHAN_DISABLED); 1611 default: 1612 break; 1613 } 1614 1615 return true; 1616 1617 wdev_inactive_unlock: 1618 wdev_unlock(wdev); 1619 return true; 1620 } 1621 1622 static void reg_leave_invalid_chans(struct wiphy *wiphy) 1623 { 1624 struct wireless_dev *wdev; 1625 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1626 1627 ASSERT_RTNL(); 1628 1629 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 1630 if (!reg_wdev_chan_valid(wiphy, wdev)) 1631 cfg80211_leave(rdev, wdev); 1632 } 1633 1634 static void reg_check_chans_work(struct work_struct *work) 1635 { 1636 struct cfg80211_registered_device *rdev; 1637 1638 pr_debug("Verifying active interfaces after reg change\n"); 1639 rtnl_lock(); 1640 1641 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1642 if (!(rdev->wiphy.regulatory_flags & 1643 REGULATORY_IGNORE_STALE_KICKOFF)) 1644 reg_leave_invalid_chans(&rdev->wiphy); 1645 1646 rtnl_unlock(); 1647 } 1648 1649 static void reg_check_channels(void) 1650 { 1651 /* 1652 * Give usermode a chance to do something nicer (move to another 1653 * channel, orderly disconnection), before forcing a disconnection. 1654 */ 1655 mod_delayed_work(system_power_efficient_wq, 1656 ®_check_chans, 1657 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 1658 } 1659 1660 static void wiphy_update_regulatory(struct wiphy *wiphy, 1661 enum nl80211_reg_initiator initiator) 1662 { 1663 enum nl80211_band band; 1664 struct regulatory_request *lr = get_last_request(); 1665 1666 if (ignore_reg_update(wiphy, initiator)) { 1667 /* 1668 * Regulatory updates set by CORE are ignored for custom 1669 * regulatory cards. Let us notify the changes to the driver, 1670 * as some drivers used this to restore its orig_* reg domain. 1671 */ 1672 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1673 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1674 reg_call_notifier(wiphy, lr); 1675 return; 1676 } 1677 1678 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 1679 1680 for (band = 0; band < NUM_NL80211_BANDS; band++) 1681 handle_band(wiphy, initiator, wiphy->bands[band]); 1682 1683 reg_process_beacons(wiphy); 1684 reg_process_ht_flags(wiphy); 1685 reg_call_notifier(wiphy, lr); 1686 } 1687 1688 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 1689 { 1690 struct cfg80211_registered_device *rdev; 1691 struct wiphy *wiphy; 1692 1693 ASSERT_RTNL(); 1694 1695 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1696 wiphy = &rdev->wiphy; 1697 wiphy_update_regulatory(wiphy, initiator); 1698 } 1699 1700 reg_check_channels(); 1701 } 1702 1703 static void handle_channel_custom(struct wiphy *wiphy, 1704 struct ieee80211_channel *chan, 1705 const struct ieee80211_regdomain *regd) 1706 { 1707 u32 bw_flags = 0; 1708 const struct ieee80211_reg_rule *reg_rule = NULL; 1709 const struct ieee80211_power_rule *power_rule = NULL; 1710 u32 bw; 1711 1712 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) { 1713 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq), 1714 regd, bw); 1715 if (!IS_ERR(reg_rule)) 1716 break; 1717 } 1718 1719 if (IS_ERR(reg_rule)) { 1720 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n", 1721 chan->center_freq); 1722 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 1723 chan->flags |= IEEE80211_CHAN_DISABLED; 1724 } else { 1725 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1726 chan->flags = chan->orig_flags; 1727 } 1728 return; 1729 } 1730 1731 power_rule = ®_rule->power_rule; 1732 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1733 1734 chan->dfs_state_entered = jiffies; 1735 chan->dfs_state = NL80211_DFS_USABLE; 1736 1737 chan->beacon_found = false; 1738 1739 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 1740 chan->flags = chan->orig_flags | bw_flags | 1741 map_regdom_flags(reg_rule->flags); 1742 else 1743 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1744 1745 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1746 chan->max_reg_power = chan->max_power = 1747 (int) MBM_TO_DBM(power_rule->max_eirp); 1748 1749 if (chan->flags & IEEE80211_CHAN_RADAR) { 1750 if (reg_rule->dfs_cac_ms) 1751 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1752 else 1753 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1754 } 1755 1756 chan->max_power = chan->max_reg_power; 1757 } 1758 1759 static void handle_band_custom(struct wiphy *wiphy, 1760 struct ieee80211_supported_band *sband, 1761 const struct ieee80211_regdomain *regd) 1762 { 1763 unsigned int i; 1764 1765 if (!sband) 1766 return; 1767 1768 for (i = 0; i < sband->n_channels; i++) 1769 handle_channel_custom(wiphy, &sband->channels[i], regd); 1770 } 1771 1772 /* Used by drivers prior to wiphy registration */ 1773 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1774 const struct ieee80211_regdomain *regd) 1775 { 1776 enum nl80211_band band; 1777 unsigned int bands_set = 0; 1778 1779 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 1780 "wiphy should have REGULATORY_CUSTOM_REG\n"); 1781 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 1782 1783 for (band = 0; band < NUM_NL80211_BANDS; band++) { 1784 if (!wiphy->bands[band]) 1785 continue; 1786 handle_band_custom(wiphy, wiphy->bands[band], regd); 1787 bands_set++; 1788 } 1789 1790 /* 1791 * no point in calling this if it won't have any effect 1792 * on your device's supported bands. 1793 */ 1794 WARN_ON(!bands_set); 1795 } 1796 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1797 1798 static void reg_set_request_processed(void) 1799 { 1800 bool need_more_processing = false; 1801 struct regulatory_request *lr = get_last_request(); 1802 1803 lr->processed = true; 1804 1805 spin_lock(®_requests_lock); 1806 if (!list_empty(®_requests_list)) 1807 need_more_processing = true; 1808 spin_unlock(®_requests_lock); 1809 1810 cancel_crda_timeout(); 1811 1812 if (need_more_processing) 1813 schedule_work(®_work); 1814 } 1815 1816 /** 1817 * reg_process_hint_core - process core regulatory requests 1818 * @pending_request: a pending core regulatory request 1819 * 1820 * The wireless subsystem can use this function to process 1821 * a regulatory request issued by the regulatory core. 1822 */ 1823 static enum reg_request_treatment 1824 reg_process_hint_core(struct regulatory_request *core_request) 1825 { 1826 if (reg_query_database(core_request)) { 1827 core_request->intersect = false; 1828 core_request->processed = false; 1829 reg_update_last_request(core_request); 1830 return REG_REQ_OK; 1831 } 1832 1833 return REG_REQ_IGNORE; 1834 } 1835 1836 static enum reg_request_treatment 1837 __reg_process_hint_user(struct regulatory_request *user_request) 1838 { 1839 struct regulatory_request *lr = get_last_request(); 1840 1841 if (reg_request_cell_base(user_request)) 1842 return reg_ignore_cell_hint(user_request); 1843 1844 if (reg_request_cell_base(lr)) 1845 return REG_REQ_IGNORE; 1846 1847 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1848 return REG_REQ_INTERSECT; 1849 /* 1850 * If the user knows better the user should set the regdom 1851 * to their country before the IE is picked up 1852 */ 1853 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 1854 lr->intersect) 1855 return REG_REQ_IGNORE; 1856 /* 1857 * Process user requests only after previous user/driver/core 1858 * requests have been processed 1859 */ 1860 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 1861 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1862 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 1863 regdom_changes(lr->alpha2)) 1864 return REG_REQ_IGNORE; 1865 1866 if (!regdom_changes(user_request->alpha2)) 1867 return REG_REQ_ALREADY_SET; 1868 1869 return REG_REQ_OK; 1870 } 1871 1872 /** 1873 * reg_process_hint_user - process user regulatory requests 1874 * @user_request: a pending user regulatory request 1875 * 1876 * The wireless subsystem can use this function to process 1877 * a regulatory request initiated by userspace. 1878 */ 1879 static enum reg_request_treatment 1880 reg_process_hint_user(struct regulatory_request *user_request) 1881 { 1882 enum reg_request_treatment treatment; 1883 1884 treatment = __reg_process_hint_user(user_request); 1885 if (treatment == REG_REQ_IGNORE || 1886 treatment == REG_REQ_ALREADY_SET) 1887 return REG_REQ_IGNORE; 1888 1889 user_request->intersect = treatment == REG_REQ_INTERSECT; 1890 user_request->processed = false; 1891 1892 if (reg_query_database(user_request)) { 1893 reg_update_last_request(user_request); 1894 user_alpha2[0] = user_request->alpha2[0]; 1895 user_alpha2[1] = user_request->alpha2[1]; 1896 return REG_REQ_OK; 1897 } 1898 1899 return REG_REQ_IGNORE; 1900 } 1901 1902 static enum reg_request_treatment 1903 __reg_process_hint_driver(struct regulatory_request *driver_request) 1904 { 1905 struct regulatory_request *lr = get_last_request(); 1906 1907 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 1908 if (regdom_changes(driver_request->alpha2)) 1909 return REG_REQ_OK; 1910 return REG_REQ_ALREADY_SET; 1911 } 1912 1913 /* 1914 * This would happen if you unplug and plug your card 1915 * back in or if you add a new device for which the previously 1916 * loaded card also agrees on the regulatory domain. 1917 */ 1918 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1919 !regdom_changes(driver_request->alpha2)) 1920 return REG_REQ_ALREADY_SET; 1921 1922 return REG_REQ_INTERSECT; 1923 } 1924 1925 /** 1926 * reg_process_hint_driver - process driver regulatory requests 1927 * @driver_request: a pending driver regulatory request 1928 * 1929 * The wireless subsystem can use this function to process 1930 * a regulatory request issued by an 802.11 driver. 1931 * 1932 * Returns one of the different reg request treatment values. 1933 */ 1934 static enum reg_request_treatment 1935 reg_process_hint_driver(struct wiphy *wiphy, 1936 struct regulatory_request *driver_request) 1937 { 1938 const struct ieee80211_regdomain *regd, *tmp; 1939 enum reg_request_treatment treatment; 1940 1941 treatment = __reg_process_hint_driver(driver_request); 1942 1943 switch (treatment) { 1944 case REG_REQ_OK: 1945 break; 1946 case REG_REQ_IGNORE: 1947 return REG_REQ_IGNORE; 1948 case REG_REQ_INTERSECT: 1949 case REG_REQ_ALREADY_SET: 1950 regd = reg_copy_regd(get_cfg80211_regdom()); 1951 if (IS_ERR(regd)) 1952 return REG_REQ_IGNORE; 1953 1954 tmp = get_wiphy_regdom(wiphy); 1955 rcu_assign_pointer(wiphy->regd, regd); 1956 rcu_free_regdom(tmp); 1957 } 1958 1959 1960 driver_request->intersect = treatment == REG_REQ_INTERSECT; 1961 driver_request->processed = false; 1962 1963 /* 1964 * Since CRDA will not be called in this case as we already 1965 * have applied the requested regulatory domain before we just 1966 * inform userspace we have processed the request 1967 */ 1968 if (treatment == REG_REQ_ALREADY_SET) { 1969 nl80211_send_reg_change_event(driver_request); 1970 reg_update_last_request(driver_request); 1971 reg_set_request_processed(); 1972 return REG_REQ_ALREADY_SET; 1973 } 1974 1975 if (reg_query_database(driver_request)) { 1976 reg_update_last_request(driver_request); 1977 return REG_REQ_OK; 1978 } 1979 1980 return REG_REQ_IGNORE; 1981 } 1982 1983 static enum reg_request_treatment 1984 __reg_process_hint_country_ie(struct wiphy *wiphy, 1985 struct regulatory_request *country_ie_request) 1986 { 1987 struct wiphy *last_wiphy = NULL; 1988 struct regulatory_request *lr = get_last_request(); 1989 1990 if (reg_request_cell_base(lr)) { 1991 /* Trust a Cell base station over the AP's country IE */ 1992 if (regdom_changes(country_ie_request->alpha2)) 1993 return REG_REQ_IGNORE; 1994 return REG_REQ_ALREADY_SET; 1995 } else { 1996 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 1997 return REG_REQ_IGNORE; 1998 } 1999 2000 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2001 return -EINVAL; 2002 2003 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2004 return REG_REQ_OK; 2005 2006 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2007 2008 if (last_wiphy != wiphy) { 2009 /* 2010 * Two cards with two APs claiming different 2011 * Country IE alpha2s. We could 2012 * intersect them, but that seems unlikely 2013 * to be correct. Reject second one for now. 2014 */ 2015 if (regdom_changes(country_ie_request->alpha2)) 2016 return REG_REQ_IGNORE; 2017 return REG_REQ_ALREADY_SET; 2018 } 2019 2020 if (regdom_changes(country_ie_request->alpha2)) 2021 return REG_REQ_OK; 2022 return REG_REQ_ALREADY_SET; 2023 } 2024 2025 /** 2026 * reg_process_hint_country_ie - process regulatory requests from country IEs 2027 * @country_ie_request: a regulatory request from a country IE 2028 * 2029 * The wireless subsystem can use this function to process 2030 * a regulatory request issued by a country Information Element. 2031 * 2032 * Returns one of the different reg request treatment values. 2033 */ 2034 static enum reg_request_treatment 2035 reg_process_hint_country_ie(struct wiphy *wiphy, 2036 struct regulatory_request *country_ie_request) 2037 { 2038 enum reg_request_treatment treatment; 2039 2040 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2041 2042 switch (treatment) { 2043 case REG_REQ_OK: 2044 break; 2045 case REG_REQ_IGNORE: 2046 return REG_REQ_IGNORE; 2047 case REG_REQ_ALREADY_SET: 2048 reg_free_request(country_ie_request); 2049 return REG_REQ_ALREADY_SET; 2050 case REG_REQ_INTERSECT: 2051 /* 2052 * This doesn't happen yet, not sure we 2053 * ever want to support it for this case. 2054 */ 2055 WARN_ONCE(1, "Unexpected intersection for country IEs"); 2056 return REG_REQ_IGNORE; 2057 } 2058 2059 country_ie_request->intersect = false; 2060 country_ie_request->processed = false; 2061 2062 if (reg_query_database(country_ie_request)) { 2063 reg_update_last_request(country_ie_request); 2064 return REG_REQ_OK; 2065 } 2066 2067 return REG_REQ_IGNORE; 2068 } 2069 2070 /* This processes *all* regulatory hints */ 2071 static void reg_process_hint(struct regulatory_request *reg_request) 2072 { 2073 struct wiphy *wiphy = NULL; 2074 enum reg_request_treatment treatment; 2075 2076 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2077 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2078 2079 switch (reg_request->initiator) { 2080 case NL80211_REGDOM_SET_BY_CORE: 2081 treatment = reg_process_hint_core(reg_request); 2082 break; 2083 case NL80211_REGDOM_SET_BY_USER: 2084 treatment = reg_process_hint_user(reg_request); 2085 break; 2086 case NL80211_REGDOM_SET_BY_DRIVER: 2087 if (!wiphy) 2088 goto out_free; 2089 treatment = reg_process_hint_driver(wiphy, reg_request); 2090 break; 2091 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2092 if (!wiphy) 2093 goto out_free; 2094 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2095 break; 2096 default: 2097 WARN(1, "invalid initiator %d\n", reg_request->initiator); 2098 goto out_free; 2099 } 2100 2101 if (treatment == REG_REQ_IGNORE) 2102 goto out_free; 2103 2104 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 2105 "unexpected treatment value %d\n", treatment); 2106 2107 /* This is required so that the orig_* parameters are saved. 2108 * NOTE: treatment must be set for any case that reaches here! 2109 */ 2110 if (treatment == REG_REQ_ALREADY_SET && wiphy && 2111 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2112 wiphy_update_regulatory(wiphy, reg_request->initiator); 2113 reg_check_channels(); 2114 } 2115 2116 return; 2117 2118 out_free: 2119 reg_free_request(reg_request); 2120 } 2121 2122 static bool reg_only_self_managed_wiphys(void) 2123 { 2124 struct cfg80211_registered_device *rdev; 2125 struct wiphy *wiphy; 2126 bool self_managed_found = false; 2127 2128 ASSERT_RTNL(); 2129 2130 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2131 wiphy = &rdev->wiphy; 2132 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2133 self_managed_found = true; 2134 else 2135 return false; 2136 } 2137 2138 /* make sure at least one self-managed wiphy exists */ 2139 return self_managed_found; 2140 } 2141 2142 /* 2143 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 2144 * Regulatory hints come on a first come first serve basis and we 2145 * must process each one atomically. 2146 */ 2147 static void reg_process_pending_hints(void) 2148 { 2149 struct regulatory_request *reg_request, *lr; 2150 2151 lr = get_last_request(); 2152 2153 /* When last_request->processed becomes true this will be rescheduled */ 2154 if (lr && !lr->processed) { 2155 reg_process_hint(lr); 2156 return; 2157 } 2158 2159 spin_lock(®_requests_lock); 2160 2161 if (list_empty(®_requests_list)) { 2162 spin_unlock(®_requests_lock); 2163 return; 2164 } 2165 2166 reg_request = list_first_entry(®_requests_list, 2167 struct regulatory_request, 2168 list); 2169 list_del_init(®_request->list); 2170 2171 spin_unlock(®_requests_lock); 2172 2173 if (reg_only_self_managed_wiphys()) { 2174 reg_free_request(reg_request); 2175 return; 2176 } 2177 2178 reg_process_hint(reg_request); 2179 2180 lr = get_last_request(); 2181 2182 spin_lock(®_requests_lock); 2183 if (!list_empty(®_requests_list) && lr && lr->processed) 2184 schedule_work(®_work); 2185 spin_unlock(®_requests_lock); 2186 } 2187 2188 /* Processes beacon hints -- this has nothing to do with country IEs */ 2189 static void reg_process_pending_beacon_hints(void) 2190 { 2191 struct cfg80211_registered_device *rdev; 2192 struct reg_beacon *pending_beacon, *tmp; 2193 2194 /* This goes through the _pending_ beacon list */ 2195 spin_lock_bh(®_pending_beacons_lock); 2196 2197 list_for_each_entry_safe(pending_beacon, tmp, 2198 ®_pending_beacons, list) { 2199 list_del_init(&pending_beacon->list); 2200 2201 /* Applies the beacon hint to current wiphys */ 2202 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2203 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 2204 2205 /* Remembers the beacon hint for new wiphys or reg changes */ 2206 list_add_tail(&pending_beacon->list, ®_beacon_list); 2207 } 2208 2209 spin_unlock_bh(®_pending_beacons_lock); 2210 } 2211 2212 static void reg_process_self_managed_hints(void) 2213 { 2214 struct cfg80211_registered_device *rdev; 2215 struct wiphy *wiphy; 2216 const struct ieee80211_regdomain *tmp; 2217 const struct ieee80211_regdomain *regd; 2218 enum nl80211_band band; 2219 struct regulatory_request request = {}; 2220 2221 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2222 wiphy = &rdev->wiphy; 2223 2224 spin_lock(®_requests_lock); 2225 regd = rdev->requested_regd; 2226 rdev->requested_regd = NULL; 2227 spin_unlock(®_requests_lock); 2228 2229 if (regd == NULL) 2230 continue; 2231 2232 tmp = get_wiphy_regdom(wiphy); 2233 rcu_assign_pointer(wiphy->regd, regd); 2234 rcu_free_regdom(tmp); 2235 2236 for (band = 0; band < NUM_NL80211_BANDS; band++) 2237 handle_band_custom(wiphy, wiphy->bands[band], regd); 2238 2239 reg_process_ht_flags(wiphy); 2240 2241 request.wiphy_idx = get_wiphy_idx(wiphy); 2242 request.alpha2[0] = regd->alpha2[0]; 2243 request.alpha2[1] = regd->alpha2[1]; 2244 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 2245 2246 nl80211_send_wiphy_reg_change_event(&request); 2247 } 2248 2249 reg_check_channels(); 2250 } 2251 2252 static void reg_todo(struct work_struct *work) 2253 { 2254 rtnl_lock(); 2255 reg_process_pending_hints(); 2256 reg_process_pending_beacon_hints(); 2257 reg_process_self_managed_hints(); 2258 rtnl_unlock(); 2259 } 2260 2261 static void queue_regulatory_request(struct regulatory_request *request) 2262 { 2263 request->alpha2[0] = toupper(request->alpha2[0]); 2264 request->alpha2[1] = toupper(request->alpha2[1]); 2265 2266 spin_lock(®_requests_lock); 2267 list_add_tail(&request->list, ®_requests_list); 2268 spin_unlock(®_requests_lock); 2269 2270 schedule_work(®_work); 2271 } 2272 2273 /* 2274 * Core regulatory hint -- happens during cfg80211_init() 2275 * and when we restore regulatory settings. 2276 */ 2277 static int regulatory_hint_core(const char *alpha2) 2278 { 2279 struct regulatory_request *request; 2280 2281 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2282 if (!request) 2283 return -ENOMEM; 2284 2285 request->alpha2[0] = alpha2[0]; 2286 request->alpha2[1] = alpha2[1]; 2287 request->initiator = NL80211_REGDOM_SET_BY_CORE; 2288 2289 queue_regulatory_request(request); 2290 2291 return 0; 2292 } 2293 2294 /* User hints */ 2295 int regulatory_hint_user(const char *alpha2, 2296 enum nl80211_user_reg_hint_type user_reg_hint_type) 2297 { 2298 struct regulatory_request *request; 2299 2300 if (WARN_ON(!alpha2)) 2301 return -EINVAL; 2302 2303 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2304 if (!request) 2305 return -ENOMEM; 2306 2307 request->wiphy_idx = WIPHY_IDX_INVALID; 2308 request->alpha2[0] = alpha2[0]; 2309 request->alpha2[1] = alpha2[1]; 2310 request->initiator = NL80211_REGDOM_SET_BY_USER; 2311 request->user_reg_hint_type = user_reg_hint_type; 2312 2313 /* Allow calling CRDA again */ 2314 reset_crda_timeouts(); 2315 2316 queue_regulatory_request(request); 2317 2318 return 0; 2319 } 2320 2321 int regulatory_hint_indoor(bool is_indoor, u32 portid) 2322 { 2323 spin_lock(®_indoor_lock); 2324 2325 /* It is possible that more than one user space process is trying to 2326 * configure the indoor setting. To handle such cases, clear the indoor 2327 * setting in case that some process does not think that the device 2328 * is operating in an indoor environment. In addition, if a user space 2329 * process indicates that it is controlling the indoor setting, save its 2330 * portid, i.e., make it the owner. 2331 */ 2332 reg_is_indoor = is_indoor; 2333 if (reg_is_indoor) { 2334 if (!reg_is_indoor_portid) 2335 reg_is_indoor_portid = portid; 2336 } else { 2337 reg_is_indoor_portid = 0; 2338 } 2339 2340 spin_unlock(®_indoor_lock); 2341 2342 if (!is_indoor) 2343 reg_check_channels(); 2344 2345 return 0; 2346 } 2347 2348 void regulatory_netlink_notify(u32 portid) 2349 { 2350 spin_lock(®_indoor_lock); 2351 2352 if (reg_is_indoor_portid != portid) { 2353 spin_unlock(®_indoor_lock); 2354 return; 2355 } 2356 2357 reg_is_indoor = false; 2358 reg_is_indoor_portid = 0; 2359 2360 spin_unlock(®_indoor_lock); 2361 2362 reg_check_channels(); 2363 } 2364 2365 /* Driver hints */ 2366 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 2367 { 2368 struct regulatory_request *request; 2369 2370 if (WARN_ON(!alpha2 || !wiphy)) 2371 return -EINVAL; 2372 2373 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 2374 2375 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2376 if (!request) 2377 return -ENOMEM; 2378 2379 request->wiphy_idx = get_wiphy_idx(wiphy); 2380 2381 request->alpha2[0] = alpha2[0]; 2382 request->alpha2[1] = alpha2[1]; 2383 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 2384 2385 /* Allow calling CRDA again */ 2386 reset_crda_timeouts(); 2387 2388 queue_regulatory_request(request); 2389 2390 return 0; 2391 } 2392 EXPORT_SYMBOL(regulatory_hint); 2393 2394 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 2395 const u8 *country_ie, u8 country_ie_len) 2396 { 2397 char alpha2[2]; 2398 enum environment_cap env = ENVIRON_ANY; 2399 struct regulatory_request *request = NULL, *lr; 2400 2401 /* IE len must be evenly divisible by 2 */ 2402 if (country_ie_len & 0x01) 2403 return; 2404 2405 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 2406 return; 2407 2408 request = kzalloc(sizeof(*request), GFP_KERNEL); 2409 if (!request) 2410 return; 2411 2412 alpha2[0] = country_ie[0]; 2413 alpha2[1] = country_ie[1]; 2414 2415 if (country_ie[2] == 'I') 2416 env = ENVIRON_INDOOR; 2417 else if (country_ie[2] == 'O') 2418 env = ENVIRON_OUTDOOR; 2419 2420 rcu_read_lock(); 2421 lr = get_last_request(); 2422 2423 if (unlikely(!lr)) 2424 goto out; 2425 2426 /* 2427 * We will run this only upon a successful connection on cfg80211. 2428 * We leave conflict resolution to the workqueue, where can hold 2429 * the RTNL. 2430 */ 2431 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2432 lr->wiphy_idx != WIPHY_IDX_INVALID) 2433 goto out; 2434 2435 request->wiphy_idx = get_wiphy_idx(wiphy); 2436 request->alpha2[0] = alpha2[0]; 2437 request->alpha2[1] = alpha2[1]; 2438 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 2439 request->country_ie_env = env; 2440 2441 /* Allow calling CRDA again */ 2442 reset_crda_timeouts(); 2443 2444 queue_regulatory_request(request); 2445 request = NULL; 2446 out: 2447 kfree(request); 2448 rcu_read_unlock(); 2449 } 2450 2451 static void restore_alpha2(char *alpha2, bool reset_user) 2452 { 2453 /* indicates there is no alpha2 to consider for restoration */ 2454 alpha2[0] = '9'; 2455 alpha2[1] = '7'; 2456 2457 /* The user setting has precedence over the module parameter */ 2458 if (is_user_regdom_saved()) { 2459 /* Unless we're asked to ignore it and reset it */ 2460 if (reset_user) { 2461 pr_debug("Restoring regulatory settings including user preference\n"); 2462 user_alpha2[0] = '9'; 2463 user_alpha2[1] = '7'; 2464 2465 /* 2466 * If we're ignoring user settings, we still need to 2467 * check the module parameter to ensure we put things 2468 * back as they were for a full restore. 2469 */ 2470 if (!is_world_regdom(ieee80211_regdom)) { 2471 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 2472 ieee80211_regdom[0], ieee80211_regdom[1]); 2473 alpha2[0] = ieee80211_regdom[0]; 2474 alpha2[1] = ieee80211_regdom[1]; 2475 } 2476 } else { 2477 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 2478 user_alpha2[0], user_alpha2[1]); 2479 alpha2[0] = user_alpha2[0]; 2480 alpha2[1] = user_alpha2[1]; 2481 } 2482 } else if (!is_world_regdom(ieee80211_regdom)) { 2483 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 2484 ieee80211_regdom[0], ieee80211_regdom[1]); 2485 alpha2[0] = ieee80211_regdom[0]; 2486 alpha2[1] = ieee80211_regdom[1]; 2487 } else 2488 pr_debug("Restoring regulatory settings\n"); 2489 } 2490 2491 static void restore_custom_reg_settings(struct wiphy *wiphy) 2492 { 2493 struct ieee80211_supported_band *sband; 2494 enum nl80211_band band; 2495 struct ieee80211_channel *chan; 2496 int i; 2497 2498 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2499 sband = wiphy->bands[band]; 2500 if (!sband) 2501 continue; 2502 for (i = 0; i < sband->n_channels; i++) { 2503 chan = &sband->channels[i]; 2504 chan->flags = chan->orig_flags; 2505 chan->max_antenna_gain = chan->orig_mag; 2506 chan->max_power = chan->orig_mpwr; 2507 chan->beacon_found = false; 2508 } 2509 } 2510 } 2511 2512 /* 2513 * Restoring regulatory settings involves ingoring any 2514 * possibly stale country IE information and user regulatory 2515 * settings if so desired, this includes any beacon hints 2516 * learned as we could have traveled outside to another country 2517 * after disconnection. To restore regulatory settings we do 2518 * exactly what we did at bootup: 2519 * 2520 * - send a core regulatory hint 2521 * - send a user regulatory hint if applicable 2522 * 2523 * Device drivers that send a regulatory hint for a specific country 2524 * keep their own regulatory domain on wiphy->regd so that does does 2525 * not need to be remembered. 2526 */ 2527 static void restore_regulatory_settings(bool reset_user) 2528 { 2529 char alpha2[2]; 2530 char world_alpha2[2]; 2531 struct reg_beacon *reg_beacon, *btmp; 2532 LIST_HEAD(tmp_reg_req_list); 2533 struct cfg80211_registered_device *rdev; 2534 2535 ASSERT_RTNL(); 2536 2537 /* 2538 * Clear the indoor setting in case that it is not controlled by user 2539 * space, as otherwise there is no guarantee that the device is still 2540 * operating in an indoor environment. 2541 */ 2542 spin_lock(®_indoor_lock); 2543 if (reg_is_indoor && !reg_is_indoor_portid) { 2544 reg_is_indoor = false; 2545 reg_check_channels(); 2546 } 2547 spin_unlock(®_indoor_lock); 2548 2549 reset_regdomains(true, &world_regdom); 2550 restore_alpha2(alpha2, reset_user); 2551 2552 /* 2553 * If there's any pending requests we simply 2554 * stash them to a temporary pending queue and 2555 * add then after we've restored regulatory 2556 * settings. 2557 */ 2558 spin_lock(®_requests_lock); 2559 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 2560 spin_unlock(®_requests_lock); 2561 2562 /* Clear beacon hints */ 2563 spin_lock_bh(®_pending_beacons_lock); 2564 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 2565 list_del(®_beacon->list); 2566 kfree(reg_beacon); 2567 } 2568 spin_unlock_bh(®_pending_beacons_lock); 2569 2570 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 2571 list_del(®_beacon->list); 2572 kfree(reg_beacon); 2573 } 2574 2575 /* First restore to the basic regulatory settings */ 2576 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 2577 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 2578 2579 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2580 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2581 continue; 2582 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 2583 restore_custom_reg_settings(&rdev->wiphy); 2584 } 2585 2586 regulatory_hint_core(world_alpha2); 2587 2588 /* 2589 * This restores the ieee80211_regdom module parameter 2590 * preference or the last user requested regulatory 2591 * settings, user regulatory settings takes precedence. 2592 */ 2593 if (is_an_alpha2(alpha2)) 2594 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 2595 2596 spin_lock(®_requests_lock); 2597 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 2598 spin_unlock(®_requests_lock); 2599 2600 pr_debug("Kicking the queue\n"); 2601 2602 schedule_work(®_work); 2603 } 2604 2605 void regulatory_hint_disconnect(void) 2606 { 2607 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 2608 restore_regulatory_settings(false); 2609 } 2610 2611 static bool freq_is_chan_12_13_14(u16 freq) 2612 { 2613 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 2614 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 2615 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 2616 return true; 2617 return false; 2618 } 2619 2620 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 2621 { 2622 struct reg_beacon *pending_beacon; 2623 2624 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 2625 if (beacon_chan->center_freq == 2626 pending_beacon->chan.center_freq) 2627 return true; 2628 return false; 2629 } 2630 2631 int regulatory_hint_found_beacon(struct wiphy *wiphy, 2632 struct ieee80211_channel *beacon_chan, 2633 gfp_t gfp) 2634 { 2635 struct reg_beacon *reg_beacon; 2636 bool processing; 2637 2638 if (beacon_chan->beacon_found || 2639 beacon_chan->flags & IEEE80211_CHAN_RADAR || 2640 (beacon_chan->band == NL80211_BAND_2GHZ && 2641 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 2642 return 0; 2643 2644 spin_lock_bh(®_pending_beacons_lock); 2645 processing = pending_reg_beacon(beacon_chan); 2646 spin_unlock_bh(®_pending_beacons_lock); 2647 2648 if (processing) 2649 return 0; 2650 2651 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 2652 if (!reg_beacon) 2653 return -ENOMEM; 2654 2655 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 2656 beacon_chan->center_freq, 2657 ieee80211_frequency_to_channel(beacon_chan->center_freq), 2658 wiphy_name(wiphy)); 2659 2660 memcpy(®_beacon->chan, beacon_chan, 2661 sizeof(struct ieee80211_channel)); 2662 2663 /* 2664 * Since we can be called from BH or and non-BH context 2665 * we must use spin_lock_bh() 2666 */ 2667 spin_lock_bh(®_pending_beacons_lock); 2668 list_add_tail(®_beacon->list, ®_pending_beacons); 2669 spin_unlock_bh(®_pending_beacons_lock); 2670 2671 schedule_work(®_work); 2672 2673 return 0; 2674 } 2675 2676 static void print_rd_rules(const struct ieee80211_regdomain *rd) 2677 { 2678 unsigned int i; 2679 const struct ieee80211_reg_rule *reg_rule = NULL; 2680 const struct ieee80211_freq_range *freq_range = NULL; 2681 const struct ieee80211_power_rule *power_rule = NULL; 2682 char bw[32], cac_time[32]; 2683 2684 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 2685 2686 for (i = 0; i < rd->n_reg_rules; i++) { 2687 reg_rule = &rd->reg_rules[i]; 2688 freq_range = ®_rule->freq_range; 2689 power_rule = ®_rule->power_rule; 2690 2691 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 2692 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 2693 freq_range->max_bandwidth_khz, 2694 reg_get_max_bandwidth(rd, reg_rule)); 2695 else 2696 snprintf(bw, sizeof(bw), "%d KHz", 2697 freq_range->max_bandwidth_khz); 2698 2699 if (reg_rule->flags & NL80211_RRF_DFS) 2700 scnprintf(cac_time, sizeof(cac_time), "%u s", 2701 reg_rule->dfs_cac_ms/1000); 2702 else 2703 scnprintf(cac_time, sizeof(cac_time), "N/A"); 2704 2705 2706 /* 2707 * There may not be documentation for max antenna gain 2708 * in certain regions 2709 */ 2710 if (power_rule->max_antenna_gain) 2711 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 2712 freq_range->start_freq_khz, 2713 freq_range->end_freq_khz, 2714 bw, 2715 power_rule->max_antenna_gain, 2716 power_rule->max_eirp, 2717 cac_time); 2718 else 2719 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 2720 freq_range->start_freq_khz, 2721 freq_range->end_freq_khz, 2722 bw, 2723 power_rule->max_eirp, 2724 cac_time); 2725 } 2726 } 2727 2728 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 2729 { 2730 switch (dfs_region) { 2731 case NL80211_DFS_UNSET: 2732 case NL80211_DFS_FCC: 2733 case NL80211_DFS_ETSI: 2734 case NL80211_DFS_JP: 2735 return true; 2736 default: 2737 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region); 2738 return false; 2739 } 2740 } 2741 2742 static void print_regdomain(const struct ieee80211_regdomain *rd) 2743 { 2744 struct regulatory_request *lr = get_last_request(); 2745 2746 if (is_intersected_alpha2(rd->alpha2)) { 2747 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2748 struct cfg80211_registered_device *rdev; 2749 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 2750 if (rdev) { 2751 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 2752 rdev->country_ie_alpha2[0], 2753 rdev->country_ie_alpha2[1]); 2754 } else 2755 pr_debug("Current regulatory domain intersected:\n"); 2756 } else 2757 pr_debug("Current regulatory domain intersected:\n"); 2758 } else if (is_world_regdom(rd->alpha2)) { 2759 pr_debug("World regulatory domain updated:\n"); 2760 } else { 2761 if (is_unknown_alpha2(rd->alpha2)) 2762 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 2763 else { 2764 if (reg_request_cell_base(lr)) 2765 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 2766 rd->alpha2[0], rd->alpha2[1]); 2767 else 2768 pr_debug("Regulatory domain changed to country: %c%c\n", 2769 rd->alpha2[0], rd->alpha2[1]); 2770 } 2771 } 2772 2773 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 2774 print_rd_rules(rd); 2775 } 2776 2777 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 2778 { 2779 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 2780 print_rd_rules(rd); 2781 } 2782 2783 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 2784 { 2785 if (!is_world_regdom(rd->alpha2)) 2786 return -EINVAL; 2787 update_world_regdomain(rd); 2788 return 0; 2789 } 2790 2791 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 2792 struct regulatory_request *user_request) 2793 { 2794 const struct ieee80211_regdomain *intersected_rd = NULL; 2795 2796 if (!regdom_changes(rd->alpha2)) 2797 return -EALREADY; 2798 2799 if (!is_valid_rd(rd)) { 2800 pr_err("Invalid regulatory domain detected: %c%c\n", 2801 rd->alpha2[0], rd->alpha2[1]); 2802 print_regdomain_info(rd); 2803 return -EINVAL; 2804 } 2805 2806 if (!user_request->intersect) { 2807 reset_regdomains(false, rd); 2808 return 0; 2809 } 2810 2811 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2812 if (!intersected_rd) 2813 return -EINVAL; 2814 2815 kfree(rd); 2816 rd = NULL; 2817 reset_regdomains(false, intersected_rd); 2818 2819 return 0; 2820 } 2821 2822 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 2823 struct regulatory_request *driver_request) 2824 { 2825 const struct ieee80211_regdomain *regd; 2826 const struct ieee80211_regdomain *intersected_rd = NULL; 2827 const struct ieee80211_regdomain *tmp; 2828 struct wiphy *request_wiphy; 2829 2830 if (is_world_regdom(rd->alpha2)) 2831 return -EINVAL; 2832 2833 if (!regdom_changes(rd->alpha2)) 2834 return -EALREADY; 2835 2836 if (!is_valid_rd(rd)) { 2837 pr_err("Invalid regulatory domain detected: %c%c\n", 2838 rd->alpha2[0], rd->alpha2[1]); 2839 print_regdomain_info(rd); 2840 return -EINVAL; 2841 } 2842 2843 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 2844 if (!request_wiphy) 2845 return -ENODEV; 2846 2847 if (!driver_request->intersect) { 2848 if (request_wiphy->regd) 2849 return -EALREADY; 2850 2851 regd = reg_copy_regd(rd); 2852 if (IS_ERR(regd)) 2853 return PTR_ERR(regd); 2854 2855 rcu_assign_pointer(request_wiphy->regd, regd); 2856 reset_regdomains(false, rd); 2857 return 0; 2858 } 2859 2860 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2861 if (!intersected_rd) 2862 return -EINVAL; 2863 2864 /* 2865 * We can trash what CRDA provided now. 2866 * However if a driver requested this specific regulatory 2867 * domain we keep it for its private use 2868 */ 2869 tmp = get_wiphy_regdom(request_wiphy); 2870 rcu_assign_pointer(request_wiphy->regd, rd); 2871 rcu_free_regdom(tmp); 2872 2873 rd = NULL; 2874 2875 reset_regdomains(false, intersected_rd); 2876 2877 return 0; 2878 } 2879 2880 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 2881 struct regulatory_request *country_ie_request) 2882 { 2883 struct wiphy *request_wiphy; 2884 2885 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 2886 !is_unknown_alpha2(rd->alpha2)) 2887 return -EINVAL; 2888 2889 /* 2890 * Lets only bother proceeding on the same alpha2 if the current 2891 * rd is non static (it means CRDA was present and was used last) 2892 * and the pending request came in from a country IE 2893 */ 2894 2895 if (!is_valid_rd(rd)) { 2896 pr_err("Invalid regulatory domain detected: %c%c\n", 2897 rd->alpha2[0], rd->alpha2[1]); 2898 print_regdomain_info(rd); 2899 return -EINVAL; 2900 } 2901 2902 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 2903 if (!request_wiphy) 2904 return -ENODEV; 2905 2906 if (country_ie_request->intersect) 2907 return -EINVAL; 2908 2909 reset_regdomains(false, rd); 2910 return 0; 2911 } 2912 2913 /* 2914 * Use this call to set the current regulatory domain. Conflicts with 2915 * multiple drivers can be ironed out later. Caller must've already 2916 * kmalloc'd the rd structure. 2917 */ 2918 int set_regdom(const struct ieee80211_regdomain *rd, 2919 enum ieee80211_regd_source regd_src) 2920 { 2921 struct regulatory_request *lr; 2922 bool user_reset = false; 2923 int r; 2924 2925 if (!reg_is_valid_request(rd->alpha2)) { 2926 kfree(rd); 2927 return -EINVAL; 2928 } 2929 2930 if (regd_src == REGD_SOURCE_CRDA) 2931 reset_crda_timeouts(); 2932 2933 lr = get_last_request(); 2934 2935 /* Note that this doesn't update the wiphys, this is done below */ 2936 switch (lr->initiator) { 2937 case NL80211_REGDOM_SET_BY_CORE: 2938 r = reg_set_rd_core(rd); 2939 break; 2940 case NL80211_REGDOM_SET_BY_USER: 2941 r = reg_set_rd_user(rd, lr); 2942 user_reset = true; 2943 break; 2944 case NL80211_REGDOM_SET_BY_DRIVER: 2945 r = reg_set_rd_driver(rd, lr); 2946 break; 2947 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2948 r = reg_set_rd_country_ie(rd, lr); 2949 break; 2950 default: 2951 WARN(1, "invalid initiator %d\n", lr->initiator); 2952 kfree(rd); 2953 return -EINVAL; 2954 } 2955 2956 if (r) { 2957 switch (r) { 2958 case -EALREADY: 2959 reg_set_request_processed(); 2960 break; 2961 default: 2962 /* Back to world regulatory in case of errors */ 2963 restore_regulatory_settings(user_reset); 2964 } 2965 2966 kfree(rd); 2967 return r; 2968 } 2969 2970 /* This would make this whole thing pointless */ 2971 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 2972 return -EINVAL; 2973 2974 /* update all wiphys now with the new established regulatory domain */ 2975 update_all_wiphy_regulatory(lr->initiator); 2976 2977 print_regdomain(get_cfg80211_regdom()); 2978 2979 nl80211_send_reg_change_event(lr); 2980 2981 reg_set_request_processed(); 2982 2983 return 0; 2984 } 2985 2986 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 2987 struct ieee80211_regdomain *rd) 2988 { 2989 const struct ieee80211_regdomain *regd; 2990 const struct ieee80211_regdomain *prev_regd; 2991 struct cfg80211_registered_device *rdev; 2992 2993 if (WARN_ON(!wiphy || !rd)) 2994 return -EINVAL; 2995 2996 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 2997 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 2998 return -EPERM; 2999 3000 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { 3001 print_regdomain_info(rd); 3002 return -EINVAL; 3003 } 3004 3005 regd = reg_copy_regd(rd); 3006 if (IS_ERR(regd)) 3007 return PTR_ERR(regd); 3008 3009 rdev = wiphy_to_rdev(wiphy); 3010 3011 spin_lock(®_requests_lock); 3012 prev_regd = rdev->requested_regd; 3013 rdev->requested_regd = regd; 3014 spin_unlock(®_requests_lock); 3015 3016 kfree(prev_regd); 3017 return 0; 3018 } 3019 3020 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 3021 struct ieee80211_regdomain *rd) 3022 { 3023 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 3024 3025 if (ret) 3026 return ret; 3027 3028 schedule_work(®_work); 3029 return 0; 3030 } 3031 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 3032 3033 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, 3034 struct ieee80211_regdomain *rd) 3035 { 3036 int ret; 3037 3038 ASSERT_RTNL(); 3039 3040 ret = __regulatory_set_wiphy_regd(wiphy, rd); 3041 if (ret) 3042 return ret; 3043 3044 /* process the request immediately */ 3045 reg_process_self_managed_hints(); 3046 return 0; 3047 } 3048 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); 3049 3050 void wiphy_regulatory_register(struct wiphy *wiphy) 3051 { 3052 struct regulatory_request *lr; 3053 3054 /* self-managed devices ignore external hints */ 3055 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3056 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 3057 REGULATORY_COUNTRY_IE_IGNORE; 3058 3059 if (!reg_dev_ignore_cell_hint(wiphy)) 3060 reg_num_devs_support_basehint++; 3061 3062 lr = get_last_request(); 3063 wiphy_update_regulatory(wiphy, lr->initiator); 3064 } 3065 3066 void wiphy_regulatory_deregister(struct wiphy *wiphy) 3067 { 3068 struct wiphy *request_wiphy = NULL; 3069 struct regulatory_request *lr; 3070 3071 lr = get_last_request(); 3072 3073 if (!reg_dev_ignore_cell_hint(wiphy)) 3074 reg_num_devs_support_basehint--; 3075 3076 rcu_free_regdom(get_wiphy_regdom(wiphy)); 3077 RCU_INIT_POINTER(wiphy->regd, NULL); 3078 3079 if (lr) 3080 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 3081 3082 if (!request_wiphy || request_wiphy != wiphy) 3083 return; 3084 3085 lr->wiphy_idx = WIPHY_IDX_INVALID; 3086 lr->country_ie_env = ENVIRON_ANY; 3087 } 3088 3089 /* 3090 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for 3091 * UNII band definitions 3092 */ 3093 int cfg80211_get_unii(int freq) 3094 { 3095 /* UNII-1 */ 3096 if (freq >= 5150 && freq <= 5250) 3097 return 0; 3098 3099 /* UNII-2A */ 3100 if (freq > 5250 && freq <= 5350) 3101 return 1; 3102 3103 /* UNII-2B */ 3104 if (freq > 5350 && freq <= 5470) 3105 return 2; 3106 3107 /* UNII-2C */ 3108 if (freq > 5470 && freq <= 5725) 3109 return 3; 3110 3111 /* UNII-3 */ 3112 if (freq > 5725 && freq <= 5825) 3113 return 4; 3114 3115 return -EINVAL; 3116 } 3117 3118 bool regulatory_indoor_allowed(void) 3119 { 3120 return reg_is_indoor; 3121 } 3122 3123 int __init regulatory_init(void) 3124 { 3125 int err = 0; 3126 3127 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 3128 if (IS_ERR(reg_pdev)) 3129 return PTR_ERR(reg_pdev); 3130 3131 spin_lock_init(®_requests_lock); 3132 spin_lock_init(®_pending_beacons_lock); 3133 spin_lock_init(®_indoor_lock); 3134 3135 reg_regdb_size_check(); 3136 3137 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 3138 3139 user_alpha2[0] = '9'; 3140 user_alpha2[1] = '7'; 3141 3142 /* We always try to get an update for the static regdomain */ 3143 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 3144 if (err) { 3145 if (err == -ENOMEM) { 3146 platform_device_unregister(reg_pdev); 3147 return err; 3148 } 3149 /* 3150 * N.B. kobject_uevent_env() can fail mainly for when we're out 3151 * memory which is handled and propagated appropriately above 3152 * but it can also fail during a netlink_broadcast() or during 3153 * early boot for call_usermodehelper(). For now treat these 3154 * errors as non-fatal. 3155 */ 3156 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 3157 } 3158 3159 /* 3160 * Finally, if the user set the module parameter treat it 3161 * as a user hint. 3162 */ 3163 if (!is_world_regdom(ieee80211_regdom)) 3164 regulatory_hint_user(ieee80211_regdom, 3165 NL80211_USER_REG_HINT_USER); 3166 3167 return 0; 3168 } 3169 3170 void regulatory_exit(void) 3171 { 3172 struct regulatory_request *reg_request, *tmp; 3173 struct reg_beacon *reg_beacon, *btmp; 3174 3175 cancel_work_sync(®_work); 3176 cancel_crda_timeout_sync(); 3177 cancel_delayed_work_sync(®_check_chans); 3178 3179 /* Lock to suppress warnings */ 3180 rtnl_lock(); 3181 reset_regdomains(true, NULL); 3182 rtnl_unlock(); 3183 3184 dev_set_uevent_suppress(®_pdev->dev, true); 3185 3186 platform_device_unregister(reg_pdev); 3187 3188 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3189 list_del(®_beacon->list); 3190 kfree(reg_beacon); 3191 } 3192 3193 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3194 list_del(®_beacon->list); 3195 kfree(reg_beacon); 3196 } 3197 3198 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 3199 list_del(®_request->list); 3200 kfree(reg_request); 3201 } 3202 } 3203