xref: /openbmc/linux/net/wireless/reg.c (revision 7bcae826)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 
22 /**
23  * DOC: Wireless regulatory infrastructure
24  *
25  * The usual implementation is for a driver to read a device EEPROM to
26  * determine which regulatory domain it should be operating under, then
27  * looking up the allowable channels in a driver-local table and finally
28  * registering those channels in the wiphy structure.
29  *
30  * Another set of compliance enforcement is for drivers to use their
31  * own compliance limits which can be stored on the EEPROM. The host
32  * driver or firmware may ensure these are used.
33  *
34  * In addition to all this we provide an extra layer of regulatory
35  * conformance. For drivers which do not have any regulatory
36  * information CRDA provides the complete regulatory solution.
37  * For others it provides a community effort on further restrictions
38  * to enhance compliance.
39  *
40  * Note: When number of rules --> infinity we will not be able to
41  * index on alpha2 any more, instead we'll probably have to
42  * rely on some SHA1 checksum of the regdomain for example.
43  *
44  */
45 
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62 
63 /*
64  * Grace period we give before making sure all current interfaces reside on
65  * channels allowed by the current regulatory domain.
66  */
67 #define REG_ENFORCE_GRACE_MS 60000
68 
69 /**
70  * enum reg_request_treatment - regulatory request treatment
71  *
72  * @REG_REQ_OK: continue processing the regulatory request
73  * @REG_REQ_IGNORE: ignore the regulatory request
74  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
75  *	be intersected with the current one.
76  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
77  *	regulatory settings, and no further processing is required.
78  */
79 enum reg_request_treatment {
80 	REG_REQ_OK,
81 	REG_REQ_IGNORE,
82 	REG_REQ_INTERSECT,
83 	REG_REQ_ALREADY_SET,
84 };
85 
86 static struct regulatory_request core_request_world = {
87 	.initiator = NL80211_REGDOM_SET_BY_CORE,
88 	.alpha2[0] = '0',
89 	.alpha2[1] = '0',
90 	.intersect = false,
91 	.processed = true,
92 	.country_ie_env = ENVIRON_ANY,
93 };
94 
95 /*
96  * Receipt of information from last regulatory request,
97  * protected by RTNL (and can be accessed with RCU protection)
98  */
99 static struct regulatory_request __rcu *last_request =
100 	(void __force __rcu *)&core_request_world;
101 
102 /* To trigger userspace events */
103 static struct platform_device *reg_pdev;
104 
105 /*
106  * Central wireless core regulatory domains, we only need two,
107  * the current one and a world regulatory domain in case we have no
108  * information to give us an alpha2.
109  * (protected by RTNL, can be read under RCU)
110  */
111 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
112 
113 /*
114  * Number of devices that registered to the core
115  * that support cellular base station regulatory hints
116  * (protected by RTNL)
117  */
118 static int reg_num_devs_support_basehint;
119 
120 /*
121  * State variable indicating if the platform on which the devices
122  * are attached is operating in an indoor environment. The state variable
123  * is relevant for all registered devices.
124  */
125 static bool reg_is_indoor;
126 static spinlock_t reg_indoor_lock;
127 
128 /* Used to track the userspace process controlling the indoor setting */
129 static u32 reg_is_indoor_portid;
130 
131 static void restore_regulatory_settings(bool reset_user);
132 
133 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
134 {
135 	return rtnl_dereference(cfg80211_regdomain);
136 }
137 
138 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
139 {
140 	return rtnl_dereference(wiphy->regd);
141 }
142 
143 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
144 {
145 	switch (dfs_region) {
146 	case NL80211_DFS_UNSET:
147 		return "unset";
148 	case NL80211_DFS_FCC:
149 		return "FCC";
150 	case NL80211_DFS_ETSI:
151 		return "ETSI";
152 	case NL80211_DFS_JP:
153 		return "JP";
154 	}
155 	return "Unknown";
156 }
157 
158 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
159 {
160 	const struct ieee80211_regdomain *regd = NULL;
161 	const struct ieee80211_regdomain *wiphy_regd = NULL;
162 
163 	regd = get_cfg80211_regdom();
164 	if (!wiphy)
165 		goto out;
166 
167 	wiphy_regd = get_wiphy_regdom(wiphy);
168 	if (!wiphy_regd)
169 		goto out;
170 
171 	if (wiphy_regd->dfs_region == regd->dfs_region)
172 		goto out;
173 
174 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
175 		 dev_name(&wiphy->dev),
176 		 reg_dfs_region_str(wiphy_regd->dfs_region),
177 		 reg_dfs_region_str(regd->dfs_region));
178 
179 out:
180 	return regd->dfs_region;
181 }
182 
183 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
184 {
185 	if (!r)
186 		return;
187 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
188 }
189 
190 static struct regulatory_request *get_last_request(void)
191 {
192 	return rcu_dereference_rtnl(last_request);
193 }
194 
195 /* Used to queue up regulatory hints */
196 static LIST_HEAD(reg_requests_list);
197 static spinlock_t reg_requests_lock;
198 
199 /* Used to queue up beacon hints for review */
200 static LIST_HEAD(reg_pending_beacons);
201 static spinlock_t reg_pending_beacons_lock;
202 
203 /* Used to keep track of processed beacon hints */
204 static LIST_HEAD(reg_beacon_list);
205 
206 struct reg_beacon {
207 	struct list_head list;
208 	struct ieee80211_channel chan;
209 };
210 
211 static void reg_check_chans_work(struct work_struct *work);
212 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
213 
214 static void reg_todo(struct work_struct *work);
215 static DECLARE_WORK(reg_work, reg_todo);
216 
217 /* We keep a static world regulatory domain in case of the absence of CRDA */
218 static const struct ieee80211_regdomain world_regdom = {
219 	.n_reg_rules = 8,
220 	.alpha2 =  "00",
221 	.reg_rules = {
222 		/* IEEE 802.11b/g, channels 1..11 */
223 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
224 		/* IEEE 802.11b/g, channels 12..13. */
225 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
226 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
227 		/* IEEE 802.11 channel 14 - Only JP enables
228 		 * this and for 802.11b only */
229 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
230 			NL80211_RRF_NO_IR |
231 			NL80211_RRF_NO_OFDM),
232 		/* IEEE 802.11a, channel 36..48 */
233 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
234                         NL80211_RRF_NO_IR |
235                         NL80211_RRF_AUTO_BW),
236 
237 		/* IEEE 802.11a, channel 52..64 - DFS required */
238 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
239 			NL80211_RRF_NO_IR |
240 			NL80211_RRF_AUTO_BW |
241 			NL80211_RRF_DFS),
242 
243 		/* IEEE 802.11a, channel 100..144 - DFS required */
244 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
245 			NL80211_RRF_NO_IR |
246 			NL80211_RRF_DFS),
247 
248 		/* IEEE 802.11a, channel 149..165 */
249 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
250 			NL80211_RRF_NO_IR),
251 
252 		/* IEEE 802.11ad (60GHz), channels 1..3 */
253 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
254 	}
255 };
256 
257 /* protected by RTNL */
258 static const struct ieee80211_regdomain *cfg80211_world_regdom =
259 	&world_regdom;
260 
261 static char *ieee80211_regdom = "00";
262 static char user_alpha2[2];
263 
264 module_param(ieee80211_regdom, charp, 0444);
265 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
266 
267 static void reg_free_request(struct regulatory_request *request)
268 {
269 	if (request == &core_request_world)
270 		return;
271 
272 	if (request != get_last_request())
273 		kfree(request);
274 }
275 
276 static void reg_free_last_request(void)
277 {
278 	struct regulatory_request *lr = get_last_request();
279 
280 	if (lr != &core_request_world && lr)
281 		kfree_rcu(lr, rcu_head);
282 }
283 
284 static void reg_update_last_request(struct regulatory_request *request)
285 {
286 	struct regulatory_request *lr;
287 
288 	lr = get_last_request();
289 	if (lr == request)
290 		return;
291 
292 	reg_free_last_request();
293 	rcu_assign_pointer(last_request, request);
294 }
295 
296 static void reset_regdomains(bool full_reset,
297 			     const struct ieee80211_regdomain *new_regdom)
298 {
299 	const struct ieee80211_regdomain *r;
300 
301 	ASSERT_RTNL();
302 
303 	r = get_cfg80211_regdom();
304 
305 	/* avoid freeing static information or freeing something twice */
306 	if (r == cfg80211_world_regdom)
307 		r = NULL;
308 	if (cfg80211_world_regdom == &world_regdom)
309 		cfg80211_world_regdom = NULL;
310 	if (r == &world_regdom)
311 		r = NULL;
312 
313 	rcu_free_regdom(r);
314 	rcu_free_regdom(cfg80211_world_regdom);
315 
316 	cfg80211_world_regdom = &world_regdom;
317 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
318 
319 	if (!full_reset)
320 		return;
321 
322 	reg_update_last_request(&core_request_world);
323 }
324 
325 /*
326  * Dynamic world regulatory domain requested by the wireless
327  * core upon initialization
328  */
329 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
330 {
331 	struct regulatory_request *lr;
332 
333 	lr = get_last_request();
334 
335 	WARN_ON(!lr);
336 
337 	reset_regdomains(false, rd);
338 
339 	cfg80211_world_regdom = rd;
340 }
341 
342 bool is_world_regdom(const char *alpha2)
343 {
344 	if (!alpha2)
345 		return false;
346 	return alpha2[0] == '0' && alpha2[1] == '0';
347 }
348 
349 static bool is_alpha2_set(const char *alpha2)
350 {
351 	if (!alpha2)
352 		return false;
353 	return alpha2[0] && alpha2[1];
354 }
355 
356 static bool is_unknown_alpha2(const char *alpha2)
357 {
358 	if (!alpha2)
359 		return false;
360 	/*
361 	 * Special case where regulatory domain was built by driver
362 	 * but a specific alpha2 cannot be determined
363 	 */
364 	return alpha2[0] == '9' && alpha2[1] == '9';
365 }
366 
367 static bool is_intersected_alpha2(const char *alpha2)
368 {
369 	if (!alpha2)
370 		return false;
371 	/*
372 	 * Special case where regulatory domain is the
373 	 * result of an intersection between two regulatory domain
374 	 * structures
375 	 */
376 	return alpha2[0] == '9' && alpha2[1] == '8';
377 }
378 
379 static bool is_an_alpha2(const char *alpha2)
380 {
381 	if (!alpha2)
382 		return false;
383 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
384 }
385 
386 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
387 {
388 	if (!alpha2_x || !alpha2_y)
389 		return false;
390 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
391 }
392 
393 static bool regdom_changes(const char *alpha2)
394 {
395 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
396 
397 	if (!r)
398 		return true;
399 	return !alpha2_equal(r->alpha2, alpha2);
400 }
401 
402 /*
403  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
404  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
405  * has ever been issued.
406  */
407 static bool is_user_regdom_saved(void)
408 {
409 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
410 		return false;
411 
412 	/* This would indicate a mistake on the design */
413 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
414 		 "Unexpected user alpha2: %c%c\n",
415 		 user_alpha2[0], user_alpha2[1]))
416 		return false;
417 
418 	return true;
419 }
420 
421 static const struct ieee80211_regdomain *
422 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
423 {
424 	struct ieee80211_regdomain *regd;
425 	int size_of_regd;
426 	unsigned int i;
427 
428 	size_of_regd =
429 		sizeof(struct ieee80211_regdomain) +
430 		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
431 
432 	regd = kzalloc(size_of_regd, GFP_KERNEL);
433 	if (!regd)
434 		return ERR_PTR(-ENOMEM);
435 
436 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
437 
438 	for (i = 0; i < src_regd->n_reg_rules; i++)
439 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
440 		       sizeof(struct ieee80211_reg_rule));
441 
442 	return regd;
443 }
444 
445 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
446 struct reg_regdb_apply_request {
447 	struct list_head list;
448 	const struct ieee80211_regdomain *regdom;
449 };
450 
451 static LIST_HEAD(reg_regdb_apply_list);
452 static DEFINE_MUTEX(reg_regdb_apply_mutex);
453 
454 static void reg_regdb_apply(struct work_struct *work)
455 {
456 	struct reg_regdb_apply_request *request;
457 
458 	rtnl_lock();
459 
460 	mutex_lock(&reg_regdb_apply_mutex);
461 	while (!list_empty(&reg_regdb_apply_list)) {
462 		request = list_first_entry(&reg_regdb_apply_list,
463 					   struct reg_regdb_apply_request,
464 					   list);
465 		list_del(&request->list);
466 
467 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
468 		kfree(request);
469 	}
470 	mutex_unlock(&reg_regdb_apply_mutex);
471 
472 	rtnl_unlock();
473 }
474 
475 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
476 
477 static int reg_query_builtin(const char *alpha2)
478 {
479 	const struct ieee80211_regdomain *regdom = NULL;
480 	struct reg_regdb_apply_request *request;
481 	unsigned int i;
482 
483 	for (i = 0; i < reg_regdb_size; i++) {
484 		if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
485 			regdom = reg_regdb[i];
486 			break;
487 		}
488 	}
489 
490 	if (!regdom)
491 		return -ENODATA;
492 
493 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
494 	if (!request)
495 		return -ENOMEM;
496 
497 	request->regdom = reg_copy_regd(regdom);
498 	if (IS_ERR_OR_NULL(request->regdom)) {
499 		kfree(request);
500 		return -ENOMEM;
501 	}
502 
503 	mutex_lock(&reg_regdb_apply_mutex);
504 	list_add_tail(&request->list, &reg_regdb_apply_list);
505 	mutex_unlock(&reg_regdb_apply_mutex);
506 
507 	schedule_work(&reg_regdb_work);
508 
509 	return 0;
510 }
511 
512 /* Feel free to add any other sanity checks here */
513 static void reg_regdb_size_check(void)
514 {
515 	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
516 	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
517 }
518 #else
519 static inline void reg_regdb_size_check(void) {}
520 static inline int reg_query_builtin(const char *alpha2)
521 {
522 	return -ENODATA;
523 }
524 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
525 
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529 
530 static u32 reg_crda_timeouts;
531 
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534 
535 static void crda_timeout_work(struct work_struct *work)
536 {
537 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 	rtnl_lock();
539 	reg_crda_timeouts++;
540 	restore_regulatory_settings(true);
541 	rtnl_unlock();
542 }
543 
544 static void cancel_crda_timeout(void)
545 {
546 	cancel_delayed_work(&crda_timeout);
547 }
548 
549 static void cancel_crda_timeout_sync(void)
550 {
551 	cancel_delayed_work_sync(&crda_timeout);
552 }
553 
554 static void reset_crda_timeouts(void)
555 {
556 	reg_crda_timeouts = 0;
557 }
558 
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
563 static int call_crda(const char *alpha2)
564 {
565 	char country[12];
566 	char *env[] = { country, NULL };
567 	int ret;
568 
569 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 		 alpha2[0], alpha2[1]);
571 
572 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 		return -EINVAL;
575 	}
576 
577 	if (!is_world_regdom((char *) alpha2))
578 		pr_debug("Calling CRDA for country: %c%c\n",
579 			 alpha2[0], alpha2[1]);
580 	else
581 		pr_debug("Calling CRDA to update world regulatory domain\n");
582 
583 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584 	if (ret)
585 		return ret;
586 
587 	queue_delayed_work(system_power_efficient_wq,
588 			   &crda_timeout, msecs_to_jiffies(3142));
589 	return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597 	return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600 
601 static bool reg_query_database(struct regulatory_request *request)
602 {
603 	/* query internal regulatory database (if it exists) */
604 	if (reg_query_builtin(request->alpha2) == 0)
605 		return true;
606 
607 	if (call_crda(request->alpha2) == 0)
608 		return true;
609 
610 	return false;
611 }
612 
613 bool reg_is_valid_request(const char *alpha2)
614 {
615 	struct regulatory_request *lr = get_last_request();
616 
617 	if (!lr || lr->processed)
618 		return false;
619 
620 	return alpha2_equal(lr->alpha2, alpha2);
621 }
622 
623 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
624 {
625 	struct regulatory_request *lr = get_last_request();
626 
627 	/*
628 	 * Follow the driver's regulatory domain, if present, unless a country
629 	 * IE has been processed or a user wants to help complaince further
630 	 */
631 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
632 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
633 	    wiphy->regd)
634 		return get_wiphy_regdom(wiphy);
635 
636 	return get_cfg80211_regdom();
637 }
638 
639 static unsigned int
640 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
641 				 const struct ieee80211_reg_rule *rule)
642 {
643 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
644 	const struct ieee80211_freq_range *freq_range_tmp;
645 	const struct ieee80211_reg_rule *tmp;
646 	u32 start_freq, end_freq, idx, no;
647 
648 	for (idx = 0; idx < rd->n_reg_rules; idx++)
649 		if (rule == &rd->reg_rules[idx])
650 			break;
651 
652 	if (idx == rd->n_reg_rules)
653 		return 0;
654 
655 	/* get start_freq */
656 	no = idx;
657 
658 	while (no) {
659 		tmp = &rd->reg_rules[--no];
660 		freq_range_tmp = &tmp->freq_range;
661 
662 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
663 			break;
664 
665 		freq_range = freq_range_tmp;
666 	}
667 
668 	start_freq = freq_range->start_freq_khz;
669 
670 	/* get end_freq */
671 	freq_range = &rule->freq_range;
672 	no = idx;
673 
674 	while (no < rd->n_reg_rules - 1) {
675 		tmp = &rd->reg_rules[++no];
676 		freq_range_tmp = &tmp->freq_range;
677 
678 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
679 			break;
680 
681 		freq_range = freq_range_tmp;
682 	}
683 
684 	end_freq = freq_range->end_freq_khz;
685 
686 	return end_freq - start_freq;
687 }
688 
689 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
690 				   const struct ieee80211_reg_rule *rule)
691 {
692 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
693 
694 	if (rule->flags & NL80211_RRF_NO_160MHZ)
695 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
696 	if (rule->flags & NL80211_RRF_NO_80MHZ)
697 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
698 
699 	/*
700 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
701 	 * are not allowed.
702 	 */
703 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
704 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
705 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
706 
707 	return bw;
708 }
709 
710 /* Sanity check on a regulatory rule */
711 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
712 {
713 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
714 	u32 freq_diff;
715 
716 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
717 		return false;
718 
719 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
720 		return false;
721 
722 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
723 
724 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
725 	    freq_range->max_bandwidth_khz > freq_diff)
726 		return false;
727 
728 	return true;
729 }
730 
731 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
732 {
733 	const struct ieee80211_reg_rule *reg_rule = NULL;
734 	unsigned int i;
735 
736 	if (!rd->n_reg_rules)
737 		return false;
738 
739 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
740 		return false;
741 
742 	for (i = 0; i < rd->n_reg_rules; i++) {
743 		reg_rule = &rd->reg_rules[i];
744 		if (!is_valid_reg_rule(reg_rule))
745 			return false;
746 	}
747 
748 	return true;
749 }
750 
751 /**
752  * freq_in_rule_band - tells us if a frequency is in a frequency band
753  * @freq_range: frequency rule we want to query
754  * @freq_khz: frequency we are inquiring about
755  *
756  * This lets us know if a specific frequency rule is or is not relevant to
757  * a specific frequency's band. Bands are device specific and artificial
758  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
759  * however it is safe for now to assume that a frequency rule should not be
760  * part of a frequency's band if the start freq or end freq are off by more
761  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
762  * 60 GHz band.
763  * This resolution can be lowered and should be considered as we add
764  * regulatory rule support for other "bands".
765  **/
766 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
767 			      u32 freq_khz)
768 {
769 #define ONE_GHZ_IN_KHZ	1000000
770 	/*
771 	 * From 802.11ad: directional multi-gigabit (DMG):
772 	 * Pertaining to operation in a frequency band containing a channel
773 	 * with the Channel starting frequency above 45 GHz.
774 	 */
775 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
776 			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
777 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
778 		return true;
779 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
780 		return true;
781 	return false;
782 #undef ONE_GHZ_IN_KHZ
783 }
784 
785 /*
786  * Later on we can perhaps use the more restrictive DFS
787  * region but we don't have information for that yet so
788  * for now simply disallow conflicts.
789  */
790 static enum nl80211_dfs_regions
791 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
792 			 const enum nl80211_dfs_regions dfs_region2)
793 {
794 	if (dfs_region1 != dfs_region2)
795 		return NL80211_DFS_UNSET;
796 	return dfs_region1;
797 }
798 
799 /*
800  * Helper for regdom_intersect(), this does the real
801  * mathematical intersection fun
802  */
803 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
804 			       const struct ieee80211_regdomain *rd2,
805 			       const struct ieee80211_reg_rule *rule1,
806 			       const struct ieee80211_reg_rule *rule2,
807 			       struct ieee80211_reg_rule *intersected_rule)
808 {
809 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
810 	struct ieee80211_freq_range *freq_range;
811 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
812 	struct ieee80211_power_rule *power_rule;
813 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
814 
815 	freq_range1 = &rule1->freq_range;
816 	freq_range2 = &rule2->freq_range;
817 	freq_range = &intersected_rule->freq_range;
818 
819 	power_rule1 = &rule1->power_rule;
820 	power_rule2 = &rule2->power_rule;
821 	power_rule = &intersected_rule->power_rule;
822 
823 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
824 					 freq_range2->start_freq_khz);
825 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
826 				       freq_range2->end_freq_khz);
827 
828 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
829 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
830 
831 	if (rule1->flags & NL80211_RRF_AUTO_BW)
832 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
833 	if (rule2->flags & NL80211_RRF_AUTO_BW)
834 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
835 
836 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
837 
838 	intersected_rule->flags = rule1->flags | rule2->flags;
839 
840 	/*
841 	 * In case NL80211_RRF_AUTO_BW requested for both rules
842 	 * set AUTO_BW in intersected rule also. Next we will
843 	 * calculate BW correctly in handle_channel function.
844 	 * In other case remove AUTO_BW flag while we calculate
845 	 * maximum bandwidth correctly and auto calculation is
846 	 * not required.
847 	 */
848 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
849 	    (rule2->flags & NL80211_RRF_AUTO_BW))
850 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
851 	else
852 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
853 
854 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
855 	if (freq_range->max_bandwidth_khz > freq_diff)
856 		freq_range->max_bandwidth_khz = freq_diff;
857 
858 	power_rule->max_eirp = min(power_rule1->max_eirp,
859 		power_rule2->max_eirp);
860 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
861 		power_rule2->max_antenna_gain);
862 
863 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
864 					   rule2->dfs_cac_ms);
865 
866 	if (!is_valid_reg_rule(intersected_rule))
867 		return -EINVAL;
868 
869 	return 0;
870 }
871 
872 /* check whether old rule contains new rule */
873 static bool rule_contains(struct ieee80211_reg_rule *r1,
874 			  struct ieee80211_reg_rule *r2)
875 {
876 	/* for simplicity, currently consider only same flags */
877 	if (r1->flags != r2->flags)
878 		return false;
879 
880 	/* verify r1 is more restrictive */
881 	if ((r1->power_rule.max_antenna_gain >
882 	     r2->power_rule.max_antenna_gain) ||
883 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
884 		return false;
885 
886 	/* make sure r2's range is contained within r1 */
887 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
888 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
889 		return false;
890 
891 	/* and finally verify that r1.max_bw >= r2.max_bw */
892 	if (r1->freq_range.max_bandwidth_khz <
893 	    r2->freq_range.max_bandwidth_khz)
894 		return false;
895 
896 	return true;
897 }
898 
899 /* add or extend current rules. do nothing if rule is already contained */
900 static void add_rule(struct ieee80211_reg_rule *rule,
901 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
902 {
903 	struct ieee80211_reg_rule *tmp_rule;
904 	int i;
905 
906 	for (i = 0; i < *n_rules; i++) {
907 		tmp_rule = &reg_rules[i];
908 		/* rule is already contained - do nothing */
909 		if (rule_contains(tmp_rule, rule))
910 			return;
911 
912 		/* extend rule if possible */
913 		if (rule_contains(rule, tmp_rule)) {
914 			memcpy(tmp_rule, rule, sizeof(*rule));
915 			return;
916 		}
917 	}
918 
919 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
920 	(*n_rules)++;
921 }
922 
923 /**
924  * regdom_intersect - do the intersection between two regulatory domains
925  * @rd1: first regulatory domain
926  * @rd2: second regulatory domain
927  *
928  * Use this function to get the intersection between two regulatory domains.
929  * Once completed we will mark the alpha2 for the rd as intersected, "98",
930  * as no one single alpha2 can represent this regulatory domain.
931  *
932  * Returns a pointer to the regulatory domain structure which will hold the
933  * resulting intersection of rules between rd1 and rd2. We will
934  * kzalloc() this structure for you.
935  */
936 static struct ieee80211_regdomain *
937 regdom_intersect(const struct ieee80211_regdomain *rd1,
938 		 const struct ieee80211_regdomain *rd2)
939 {
940 	int r, size_of_regd;
941 	unsigned int x, y;
942 	unsigned int num_rules = 0;
943 	const struct ieee80211_reg_rule *rule1, *rule2;
944 	struct ieee80211_reg_rule intersected_rule;
945 	struct ieee80211_regdomain *rd;
946 
947 	if (!rd1 || !rd2)
948 		return NULL;
949 
950 	/*
951 	 * First we get a count of the rules we'll need, then we actually
952 	 * build them. This is to so we can malloc() and free() a
953 	 * regdomain once. The reason we use reg_rules_intersect() here
954 	 * is it will return -EINVAL if the rule computed makes no sense.
955 	 * All rules that do check out OK are valid.
956 	 */
957 
958 	for (x = 0; x < rd1->n_reg_rules; x++) {
959 		rule1 = &rd1->reg_rules[x];
960 		for (y = 0; y < rd2->n_reg_rules; y++) {
961 			rule2 = &rd2->reg_rules[y];
962 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
963 						 &intersected_rule))
964 				num_rules++;
965 		}
966 	}
967 
968 	if (!num_rules)
969 		return NULL;
970 
971 	size_of_regd = sizeof(struct ieee80211_regdomain) +
972 		       num_rules * sizeof(struct ieee80211_reg_rule);
973 
974 	rd = kzalloc(size_of_regd, GFP_KERNEL);
975 	if (!rd)
976 		return NULL;
977 
978 	for (x = 0; x < rd1->n_reg_rules; x++) {
979 		rule1 = &rd1->reg_rules[x];
980 		for (y = 0; y < rd2->n_reg_rules; y++) {
981 			rule2 = &rd2->reg_rules[y];
982 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
983 						&intersected_rule);
984 			/*
985 			 * No need to memset here the intersected rule here as
986 			 * we're not using the stack anymore
987 			 */
988 			if (r)
989 				continue;
990 
991 			add_rule(&intersected_rule, rd->reg_rules,
992 				 &rd->n_reg_rules);
993 		}
994 	}
995 
996 	rd->alpha2[0] = '9';
997 	rd->alpha2[1] = '8';
998 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
999 						  rd2->dfs_region);
1000 
1001 	return rd;
1002 }
1003 
1004 /*
1005  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1006  * want to just have the channel structure use these
1007  */
1008 static u32 map_regdom_flags(u32 rd_flags)
1009 {
1010 	u32 channel_flags = 0;
1011 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1012 		channel_flags |= IEEE80211_CHAN_NO_IR;
1013 	if (rd_flags & NL80211_RRF_DFS)
1014 		channel_flags |= IEEE80211_CHAN_RADAR;
1015 	if (rd_flags & NL80211_RRF_NO_OFDM)
1016 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1017 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1018 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1019 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1020 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1021 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1022 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1023 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1024 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1025 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1026 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1027 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1028 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1029 	return channel_flags;
1030 }
1031 
1032 static const struct ieee80211_reg_rule *
1033 freq_reg_info_regd(u32 center_freq,
1034 		   const struct ieee80211_regdomain *regd, u32 bw)
1035 {
1036 	int i;
1037 	bool band_rule_found = false;
1038 	bool bw_fits = false;
1039 
1040 	if (!regd)
1041 		return ERR_PTR(-EINVAL);
1042 
1043 	for (i = 0; i < regd->n_reg_rules; i++) {
1044 		const struct ieee80211_reg_rule *rr;
1045 		const struct ieee80211_freq_range *fr = NULL;
1046 
1047 		rr = &regd->reg_rules[i];
1048 		fr = &rr->freq_range;
1049 
1050 		/*
1051 		 * We only need to know if one frequency rule was
1052 		 * was in center_freq's band, that's enough, so lets
1053 		 * not overwrite it once found
1054 		 */
1055 		if (!band_rule_found)
1056 			band_rule_found = freq_in_rule_band(fr, center_freq);
1057 
1058 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1059 
1060 		if (band_rule_found && bw_fits)
1061 			return rr;
1062 	}
1063 
1064 	if (!band_rule_found)
1065 		return ERR_PTR(-ERANGE);
1066 
1067 	return ERR_PTR(-EINVAL);
1068 }
1069 
1070 static const struct ieee80211_reg_rule *
1071 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1072 {
1073 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1074 	const struct ieee80211_reg_rule *reg_rule = NULL;
1075 	u32 bw;
1076 
1077 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1078 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1079 		if (!IS_ERR(reg_rule))
1080 			return reg_rule;
1081 	}
1082 
1083 	return reg_rule;
1084 }
1085 
1086 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1087 					       u32 center_freq)
1088 {
1089 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1090 }
1091 EXPORT_SYMBOL(freq_reg_info);
1092 
1093 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1094 {
1095 	switch (initiator) {
1096 	case NL80211_REGDOM_SET_BY_CORE:
1097 		return "core";
1098 	case NL80211_REGDOM_SET_BY_USER:
1099 		return "user";
1100 	case NL80211_REGDOM_SET_BY_DRIVER:
1101 		return "driver";
1102 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1103 		return "country IE";
1104 	default:
1105 		WARN_ON(1);
1106 		return "bug";
1107 	}
1108 }
1109 EXPORT_SYMBOL(reg_initiator_name);
1110 
1111 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1112 					  const struct ieee80211_reg_rule *reg_rule,
1113 					  const struct ieee80211_channel *chan)
1114 {
1115 	const struct ieee80211_freq_range *freq_range = NULL;
1116 	u32 max_bandwidth_khz, bw_flags = 0;
1117 
1118 	freq_range = &reg_rule->freq_range;
1119 
1120 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1121 	/* Check if auto calculation requested */
1122 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1123 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1124 
1125 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1126 	if (!cfg80211_does_bw_fit_range(freq_range,
1127 					MHZ_TO_KHZ(chan->center_freq),
1128 					MHZ_TO_KHZ(10)))
1129 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1130 	if (!cfg80211_does_bw_fit_range(freq_range,
1131 					MHZ_TO_KHZ(chan->center_freq),
1132 					MHZ_TO_KHZ(20)))
1133 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1134 
1135 	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1136 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1137 	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1138 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1139 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1140 		bw_flags |= IEEE80211_CHAN_NO_HT40;
1141 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1142 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1143 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1144 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1145 	return bw_flags;
1146 }
1147 
1148 /*
1149  * Note that right now we assume the desired channel bandwidth
1150  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1151  * per channel, the primary and the extension channel).
1152  */
1153 static void handle_channel(struct wiphy *wiphy,
1154 			   enum nl80211_reg_initiator initiator,
1155 			   struct ieee80211_channel *chan)
1156 {
1157 	u32 flags, bw_flags = 0;
1158 	const struct ieee80211_reg_rule *reg_rule = NULL;
1159 	const struct ieee80211_power_rule *power_rule = NULL;
1160 	struct wiphy *request_wiphy = NULL;
1161 	struct regulatory_request *lr = get_last_request();
1162 	const struct ieee80211_regdomain *regd;
1163 
1164 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1165 
1166 	flags = chan->orig_flags;
1167 
1168 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1169 	if (IS_ERR(reg_rule)) {
1170 		/*
1171 		 * We will disable all channels that do not match our
1172 		 * received regulatory rule unless the hint is coming
1173 		 * from a Country IE and the Country IE had no information
1174 		 * about a band. The IEEE 802.11 spec allows for an AP
1175 		 * to send only a subset of the regulatory rules allowed,
1176 		 * so an AP in the US that only supports 2.4 GHz may only send
1177 		 * a country IE with information for the 2.4 GHz band
1178 		 * while 5 GHz is still supported.
1179 		 */
1180 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1181 		    PTR_ERR(reg_rule) == -ERANGE)
1182 			return;
1183 
1184 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1185 		    request_wiphy && request_wiphy == wiphy &&
1186 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1187 			pr_debug("Disabling freq %d MHz for good\n",
1188 				 chan->center_freq);
1189 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1190 			chan->flags = chan->orig_flags;
1191 		} else {
1192 			pr_debug("Disabling freq %d MHz\n",
1193 				 chan->center_freq);
1194 			chan->flags |= IEEE80211_CHAN_DISABLED;
1195 		}
1196 		return;
1197 	}
1198 
1199 	regd = reg_get_regdomain(wiphy);
1200 
1201 	power_rule = &reg_rule->power_rule;
1202 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1203 
1204 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1205 	    request_wiphy && request_wiphy == wiphy &&
1206 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1207 		/*
1208 		 * This guarantees the driver's requested regulatory domain
1209 		 * will always be used as a base for further regulatory
1210 		 * settings
1211 		 */
1212 		chan->flags = chan->orig_flags =
1213 			map_regdom_flags(reg_rule->flags) | bw_flags;
1214 		chan->max_antenna_gain = chan->orig_mag =
1215 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1216 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1217 			(int) MBM_TO_DBM(power_rule->max_eirp);
1218 
1219 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1220 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1221 			if (reg_rule->dfs_cac_ms)
1222 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1223 		}
1224 
1225 		return;
1226 	}
1227 
1228 	chan->dfs_state = NL80211_DFS_USABLE;
1229 	chan->dfs_state_entered = jiffies;
1230 
1231 	chan->beacon_found = false;
1232 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1233 	chan->max_antenna_gain =
1234 		min_t(int, chan->orig_mag,
1235 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1236 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1237 
1238 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1239 		if (reg_rule->dfs_cac_ms)
1240 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1241 		else
1242 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1243 	}
1244 
1245 	if (chan->orig_mpwr) {
1246 		/*
1247 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1248 		 * will always follow the passed country IE power settings.
1249 		 */
1250 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1251 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1252 			chan->max_power = chan->max_reg_power;
1253 		else
1254 			chan->max_power = min(chan->orig_mpwr,
1255 					      chan->max_reg_power);
1256 	} else
1257 		chan->max_power = chan->max_reg_power;
1258 }
1259 
1260 static void handle_band(struct wiphy *wiphy,
1261 			enum nl80211_reg_initiator initiator,
1262 			struct ieee80211_supported_band *sband)
1263 {
1264 	unsigned int i;
1265 
1266 	if (!sband)
1267 		return;
1268 
1269 	for (i = 0; i < sband->n_channels; i++)
1270 		handle_channel(wiphy, initiator, &sband->channels[i]);
1271 }
1272 
1273 static bool reg_request_cell_base(struct regulatory_request *request)
1274 {
1275 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1276 		return false;
1277 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1278 }
1279 
1280 bool reg_last_request_cell_base(void)
1281 {
1282 	return reg_request_cell_base(get_last_request());
1283 }
1284 
1285 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1286 /* Core specific check */
1287 static enum reg_request_treatment
1288 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1289 {
1290 	struct regulatory_request *lr = get_last_request();
1291 
1292 	if (!reg_num_devs_support_basehint)
1293 		return REG_REQ_IGNORE;
1294 
1295 	if (reg_request_cell_base(lr) &&
1296 	    !regdom_changes(pending_request->alpha2))
1297 		return REG_REQ_ALREADY_SET;
1298 
1299 	return REG_REQ_OK;
1300 }
1301 
1302 /* Device specific check */
1303 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1304 {
1305 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1306 }
1307 #else
1308 static enum reg_request_treatment
1309 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1310 {
1311 	return REG_REQ_IGNORE;
1312 }
1313 
1314 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1315 {
1316 	return true;
1317 }
1318 #endif
1319 
1320 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1321 {
1322 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1323 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1324 		return true;
1325 	return false;
1326 }
1327 
1328 static bool ignore_reg_update(struct wiphy *wiphy,
1329 			      enum nl80211_reg_initiator initiator)
1330 {
1331 	struct regulatory_request *lr = get_last_request();
1332 
1333 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1334 		return true;
1335 
1336 	if (!lr) {
1337 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1338 			 reg_initiator_name(initiator));
1339 		return true;
1340 	}
1341 
1342 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1343 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1344 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1345 			 reg_initiator_name(initiator));
1346 		return true;
1347 	}
1348 
1349 	/*
1350 	 * wiphy->regd will be set once the device has its own
1351 	 * desired regulatory domain set
1352 	 */
1353 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1354 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1355 	    !is_world_regdom(lr->alpha2)) {
1356 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1357 			 reg_initiator_name(initiator));
1358 		return true;
1359 	}
1360 
1361 	if (reg_request_cell_base(lr))
1362 		return reg_dev_ignore_cell_hint(wiphy);
1363 
1364 	return false;
1365 }
1366 
1367 static bool reg_is_world_roaming(struct wiphy *wiphy)
1368 {
1369 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1370 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1371 	struct regulatory_request *lr = get_last_request();
1372 
1373 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1374 		return true;
1375 
1376 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1377 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1378 		return true;
1379 
1380 	return false;
1381 }
1382 
1383 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1384 			      struct reg_beacon *reg_beacon)
1385 {
1386 	struct ieee80211_supported_band *sband;
1387 	struct ieee80211_channel *chan;
1388 	bool channel_changed = false;
1389 	struct ieee80211_channel chan_before;
1390 
1391 	sband = wiphy->bands[reg_beacon->chan.band];
1392 	chan = &sband->channels[chan_idx];
1393 
1394 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1395 		return;
1396 
1397 	if (chan->beacon_found)
1398 		return;
1399 
1400 	chan->beacon_found = true;
1401 
1402 	if (!reg_is_world_roaming(wiphy))
1403 		return;
1404 
1405 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1406 		return;
1407 
1408 	chan_before.center_freq = chan->center_freq;
1409 	chan_before.flags = chan->flags;
1410 
1411 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1412 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1413 		channel_changed = true;
1414 	}
1415 
1416 	if (channel_changed)
1417 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1418 }
1419 
1420 /*
1421  * Called when a scan on a wiphy finds a beacon on
1422  * new channel
1423  */
1424 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1425 				    struct reg_beacon *reg_beacon)
1426 {
1427 	unsigned int i;
1428 	struct ieee80211_supported_band *sband;
1429 
1430 	if (!wiphy->bands[reg_beacon->chan.band])
1431 		return;
1432 
1433 	sband = wiphy->bands[reg_beacon->chan.band];
1434 
1435 	for (i = 0; i < sband->n_channels; i++)
1436 		handle_reg_beacon(wiphy, i, reg_beacon);
1437 }
1438 
1439 /*
1440  * Called upon reg changes or a new wiphy is added
1441  */
1442 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1443 {
1444 	unsigned int i;
1445 	struct ieee80211_supported_band *sband;
1446 	struct reg_beacon *reg_beacon;
1447 
1448 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1449 		if (!wiphy->bands[reg_beacon->chan.band])
1450 			continue;
1451 		sband = wiphy->bands[reg_beacon->chan.band];
1452 		for (i = 0; i < sband->n_channels; i++)
1453 			handle_reg_beacon(wiphy, i, reg_beacon);
1454 	}
1455 }
1456 
1457 /* Reap the advantages of previously found beacons */
1458 static void reg_process_beacons(struct wiphy *wiphy)
1459 {
1460 	/*
1461 	 * Means we are just firing up cfg80211, so no beacons would
1462 	 * have been processed yet.
1463 	 */
1464 	if (!last_request)
1465 		return;
1466 	wiphy_update_beacon_reg(wiphy);
1467 }
1468 
1469 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1470 {
1471 	if (!chan)
1472 		return false;
1473 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1474 		return false;
1475 	/* This would happen when regulatory rules disallow HT40 completely */
1476 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1477 		return false;
1478 	return true;
1479 }
1480 
1481 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1482 					 struct ieee80211_channel *channel)
1483 {
1484 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1485 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1486 	unsigned int i;
1487 
1488 	if (!is_ht40_allowed(channel)) {
1489 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1490 		return;
1491 	}
1492 
1493 	/*
1494 	 * We need to ensure the extension channels exist to
1495 	 * be able to use HT40- or HT40+, this finds them (or not)
1496 	 */
1497 	for (i = 0; i < sband->n_channels; i++) {
1498 		struct ieee80211_channel *c = &sband->channels[i];
1499 
1500 		if (c->center_freq == (channel->center_freq - 20))
1501 			channel_before = c;
1502 		if (c->center_freq == (channel->center_freq + 20))
1503 			channel_after = c;
1504 	}
1505 
1506 	/*
1507 	 * Please note that this assumes target bandwidth is 20 MHz,
1508 	 * if that ever changes we also need to change the below logic
1509 	 * to include that as well.
1510 	 */
1511 	if (!is_ht40_allowed(channel_before))
1512 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1513 	else
1514 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1515 
1516 	if (!is_ht40_allowed(channel_after))
1517 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1518 	else
1519 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1520 }
1521 
1522 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1523 				      struct ieee80211_supported_band *sband)
1524 {
1525 	unsigned int i;
1526 
1527 	if (!sband)
1528 		return;
1529 
1530 	for (i = 0; i < sband->n_channels; i++)
1531 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1532 }
1533 
1534 static void reg_process_ht_flags(struct wiphy *wiphy)
1535 {
1536 	enum nl80211_band band;
1537 
1538 	if (!wiphy)
1539 		return;
1540 
1541 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1542 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1543 }
1544 
1545 static void reg_call_notifier(struct wiphy *wiphy,
1546 			      struct regulatory_request *request)
1547 {
1548 	if (wiphy->reg_notifier)
1549 		wiphy->reg_notifier(wiphy, request);
1550 }
1551 
1552 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1553 {
1554 	struct cfg80211_chan_def chandef;
1555 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1556 	enum nl80211_iftype iftype;
1557 
1558 	wdev_lock(wdev);
1559 	iftype = wdev->iftype;
1560 
1561 	/* make sure the interface is active */
1562 	if (!wdev->netdev || !netif_running(wdev->netdev))
1563 		goto wdev_inactive_unlock;
1564 
1565 	switch (iftype) {
1566 	case NL80211_IFTYPE_AP:
1567 	case NL80211_IFTYPE_P2P_GO:
1568 		if (!wdev->beacon_interval)
1569 			goto wdev_inactive_unlock;
1570 		chandef = wdev->chandef;
1571 		break;
1572 	case NL80211_IFTYPE_ADHOC:
1573 		if (!wdev->ssid_len)
1574 			goto wdev_inactive_unlock;
1575 		chandef = wdev->chandef;
1576 		break;
1577 	case NL80211_IFTYPE_STATION:
1578 	case NL80211_IFTYPE_P2P_CLIENT:
1579 		if (!wdev->current_bss ||
1580 		    !wdev->current_bss->pub.channel)
1581 			goto wdev_inactive_unlock;
1582 
1583 		if (!rdev->ops->get_channel ||
1584 		    rdev_get_channel(rdev, wdev, &chandef))
1585 			cfg80211_chandef_create(&chandef,
1586 						wdev->current_bss->pub.channel,
1587 						NL80211_CHAN_NO_HT);
1588 		break;
1589 	case NL80211_IFTYPE_MONITOR:
1590 	case NL80211_IFTYPE_AP_VLAN:
1591 	case NL80211_IFTYPE_P2P_DEVICE:
1592 		/* no enforcement required */
1593 		break;
1594 	default:
1595 		/* others not implemented for now */
1596 		WARN_ON(1);
1597 		break;
1598 	}
1599 
1600 	wdev_unlock(wdev);
1601 
1602 	switch (iftype) {
1603 	case NL80211_IFTYPE_AP:
1604 	case NL80211_IFTYPE_P2P_GO:
1605 	case NL80211_IFTYPE_ADHOC:
1606 		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1607 	case NL80211_IFTYPE_STATION:
1608 	case NL80211_IFTYPE_P2P_CLIENT:
1609 		return cfg80211_chandef_usable(wiphy, &chandef,
1610 					       IEEE80211_CHAN_DISABLED);
1611 	default:
1612 		break;
1613 	}
1614 
1615 	return true;
1616 
1617 wdev_inactive_unlock:
1618 	wdev_unlock(wdev);
1619 	return true;
1620 }
1621 
1622 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1623 {
1624 	struct wireless_dev *wdev;
1625 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1626 
1627 	ASSERT_RTNL();
1628 
1629 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1630 		if (!reg_wdev_chan_valid(wiphy, wdev))
1631 			cfg80211_leave(rdev, wdev);
1632 }
1633 
1634 static void reg_check_chans_work(struct work_struct *work)
1635 {
1636 	struct cfg80211_registered_device *rdev;
1637 
1638 	pr_debug("Verifying active interfaces after reg change\n");
1639 	rtnl_lock();
1640 
1641 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1642 		if (!(rdev->wiphy.regulatory_flags &
1643 		      REGULATORY_IGNORE_STALE_KICKOFF))
1644 			reg_leave_invalid_chans(&rdev->wiphy);
1645 
1646 	rtnl_unlock();
1647 }
1648 
1649 static void reg_check_channels(void)
1650 {
1651 	/*
1652 	 * Give usermode a chance to do something nicer (move to another
1653 	 * channel, orderly disconnection), before forcing a disconnection.
1654 	 */
1655 	mod_delayed_work(system_power_efficient_wq,
1656 			 &reg_check_chans,
1657 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1658 }
1659 
1660 static void wiphy_update_regulatory(struct wiphy *wiphy,
1661 				    enum nl80211_reg_initiator initiator)
1662 {
1663 	enum nl80211_band band;
1664 	struct regulatory_request *lr = get_last_request();
1665 
1666 	if (ignore_reg_update(wiphy, initiator)) {
1667 		/*
1668 		 * Regulatory updates set by CORE are ignored for custom
1669 		 * regulatory cards. Let us notify the changes to the driver,
1670 		 * as some drivers used this to restore its orig_* reg domain.
1671 		 */
1672 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1673 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1674 			reg_call_notifier(wiphy, lr);
1675 		return;
1676 	}
1677 
1678 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1679 
1680 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1681 		handle_band(wiphy, initiator, wiphy->bands[band]);
1682 
1683 	reg_process_beacons(wiphy);
1684 	reg_process_ht_flags(wiphy);
1685 	reg_call_notifier(wiphy, lr);
1686 }
1687 
1688 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1689 {
1690 	struct cfg80211_registered_device *rdev;
1691 	struct wiphy *wiphy;
1692 
1693 	ASSERT_RTNL();
1694 
1695 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1696 		wiphy = &rdev->wiphy;
1697 		wiphy_update_regulatory(wiphy, initiator);
1698 	}
1699 
1700 	reg_check_channels();
1701 }
1702 
1703 static void handle_channel_custom(struct wiphy *wiphy,
1704 				  struct ieee80211_channel *chan,
1705 				  const struct ieee80211_regdomain *regd)
1706 {
1707 	u32 bw_flags = 0;
1708 	const struct ieee80211_reg_rule *reg_rule = NULL;
1709 	const struct ieee80211_power_rule *power_rule = NULL;
1710 	u32 bw;
1711 
1712 	for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1713 		reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
1714 					      regd, bw);
1715 		if (!IS_ERR(reg_rule))
1716 			break;
1717 	}
1718 
1719 	if (IS_ERR(reg_rule)) {
1720 		pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1721 			 chan->center_freq);
1722 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1723 			chan->flags |= IEEE80211_CHAN_DISABLED;
1724 		} else {
1725 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1726 			chan->flags = chan->orig_flags;
1727 		}
1728 		return;
1729 	}
1730 
1731 	power_rule = &reg_rule->power_rule;
1732 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1733 
1734 	chan->dfs_state_entered = jiffies;
1735 	chan->dfs_state = NL80211_DFS_USABLE;
1736 
1737 	chan->beacon_found = false;
1738 
1739 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1740 		chan->flags = chan->orig_flags | bw_flags |
1741 			      map_regdom_flags(reg_rule->flags);
1742 	else
1743 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1744 
1745 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1746 	chan->max_reg_power = chan->max_power =
1747 		(int) MBM_TO_DBM(power_rule->max_eirp);
1748 
1749 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1750 		if (reg_rule->dfs_cac_ms)
1751 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1752 		else
1753 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1754 	}
1755 
1756 	chan->max_power = chan->max_reg_power;
1757 }
1758 
1759 static void handle_band_custom(struct wiphy *wiphy,
1760 			       struct ieee80211_supported_band *sband,
1761 			       const struct ieee80211_regdomain *regd)
1762 {
1763 	unsigned int i;
1764 
1765 	if (!sband)
1766 		return;
1767 
1768 	for (i = 0; i < sband->n_channels; i++)
1769 		handle_channel_custom(wiphy, &sband->channels[i], regd);
1770 }
1771 
1772 /* Used by drivers prior to wiphy registration */
1773 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1774 				   const struct ieee80211_regdomain *regd)
1775 {
1776 	enum nl80211_band band;
1777 	unsigned int bands_set = 0;
1778 
1779 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1780 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
1781 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1782 
1783 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
1784 		if (!wiphy->bands[band])
1785 			continue;
1786 		handle_band_custom(wiphy, wiphy->bands[band], regd);
1787 		bands_set++;
1788 	}
1789 
1790 	/*
1791 	 * no point in calling this if it won't have any effect
1792 	 * on your device's supported bands.
1793 	 */
1794 	WARN_ON(!bands_set);
1795 }
1796 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1797 
1798 static void reg_set_request_processed(void)
1799 {
1800 	bool need_more_processing = false;
1801 	struct regulatory_request *lr = get_last_request();
1802 
1803 	lr->processed = true;
1804 
1805 	spin_lock(&reg_requests_lock);
1806 	if (!list_empty(&reg_requests_list))
1807 		need_more_processing = true;
1808 	spin_unlock(&reg_requests_lock);
1809 
1810 	cancel_crda_timeout();
1811 
1812 	if (need_more_processing)
1813 		schedule_work(&reg_work);
1814 }
1815 
1816 /**
1817  * reg_process_hint_core - process core regulatory requests
1818  * @pending_request: a pending core regulatory request
1819  *
1820  * The wireless subsystem can use this function to process
1821  * a regulatory request issued by the regulatory core.
1822  */
1823 static enum reg_request_treatment
1824 reg_process_hint_core(struct regulatory_request *core_request)
1825 {
1826 	if (reg_query_database(core_request)) {
1827 		core_request->intersect = false;
1828 		core_request->processed = false;
1829 		reg_update_last_request(core_request);
1830 		return REG_REQ_OK;
1831 	}
1832 
1833 	return REG_REQ_IGNORE;
1834 }
1835 
1836 static enum reg_request_treatment
1837 __reg_process_hint_user(struct regulatory_request *user_request)
1838 {
1839 	struct regulatory_request *lr = get_last_request();
1840 
1841 	if (reg_request_cell_base(user_request))
1842 		return reg_ignore_cell_hint(user_request);
1843 
1844 	if (reg_request_cell_base(lr))
1845 		return REG_REQ_IGNORE;
1846 
1847 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1848 		return REG_REQ_INTERSECT;
1849 	/*
1850 	 * If the user knows better the user should set the regdom
1851 	 * to their country before the IE is picked up
1852 	 */
1853 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1854 	    lr->intersect)
1855 		return REG_REQ_IGNORE;
1856 	/*
1857 	 * Process user requests only after previous user/driver/core
1858 	 * requests have been processed
1859 	 */
1860 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1861 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1862 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1863 	    regdom_changes(lr->alpha2))
1864 		return REG_REQ_IGNORE;
1865 
1866 	if (!regdom_changes(user_request->alpha2))
1867 		return REG_REQ_ALREADY_SET;
1868 
1869 	return REG_REQ_OK;
1870 }
1871 
1872 /**
1873  * reg_process_hint_user - process user regulatory requests
1874  * @user_request: a pending user regulatory request
1875  *
1876  * The wireless subsystem can use this function to process
1877  * a regulatory request initiated by userspace.
1878  */
1879 static enum reg_request_treatment
1880 reg_process_hint_user(struct regulatory_request *user_request)
1881 {
1882 	enum reg_request_treatment treatment;
1883 
1884 	treatment = __reg_process_hint_user(user_request);
1885 	if (treatment == REG_REQ_IGNORE ||
1886 	    treatment == REG_REQ_ALREADY_SET)
1887 		return REG_REQ_IGNORE;
1888 
1889 	user_request->intersect = treatment == REG_REQ_INTERSECT;
1890 	user_request->processed = false;
1891 
1892 	if (reg_query_database(user_request)) {
1893 		reg_update_last_request(user_request);
1894 		user_alpha2[0] = user_request->alpha2[0];
1895 		user_alpha2[1] = user_request->alpha2[1];
1896 		return REG_REQ_OK;
1897 	}
1898 
1899 	return REG_REQ_IGNORE;
1900 }
1901 
1902 static enum reg_request_treatment
1903 __reg_process_hint_driver(struct regulatory_request *driver_request)
1904 {
1905 	struct regulatory_request *lr = get_last_request();
1906 
1907 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1908 		if (regdom_changes(driver_request->alpha2))
1909 			return REG_REQ_OK;
1910 		return REG_REQ_ALREADY_SET;
1911 	}
1912 
1913 	/*
1914 	 * This would happen if you unplug and plug your card
1915 	 * back in or if you add a new device for which the previously
1916 	 * loaded card also agrees on the regulatory domain.
1917 	 */
1918 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1919 	    !regdom_changes(driver_request->alpha2))
1920 		return REG_REQ_ALREADY_SET;
1921 
1922 	return REG_REQ_INTERSECT;
1923 }
1924 
1925 /**
1926  * reg_process_hint_driver - process driver regulatory requests
1927  * @driver_request: a pending driver regulatory request
1928  *
1929  * The wireless subsystem can use this function to process
1930  * a regulatory request issued by an 802.11 driver.
1931  *
1932  * Returns one of the different reg request treatment values.
1933  */
1934 static enum reg_request_treatment
1935 reg_process_hint_driver(struct wiphy *wiphy,
1936 			struct regulatory_request *driver_request)
1937 {
1938 	const struct ieee80211_regdomain *regd, *tmp;
1939 	enum reg_request_treatment treatment;
1940 
1941 	treatment = __reg_process_hint_driver(driver_request);
1942 
1943 	switch (treatment) {
1944 	case REG_REQ_OK:
1945 		break;
1946 	case REG_REQ_IGNORE:
1947 		return REG_REQ_IGNORE;
1948 	case REG_REQ_INTERSECT:
1949 	case REG_REQ_ALREADY_SET:
1950 		regd = reg_copy_regd(get_cfg80211_regdom());
1951 		if (IS_ERR(regd))
1952 			return REG_REQ_IGNORE;
1953 
1954 		tmp = get_wiphy_regdom(wiphy);
1955 		rcu_assign_pointer(wiphy->regd, regd);
1956 		rcu_free_regdom(tmp);
1957 	}
1958 
1959 
1960 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
1961 	driver_request->processed = false;
1962 
1963 	/*
1964 	 * Since CRDA will not be called in this case as we already
1965 	 * have applied the requested regulatory domain before we just
1966 	 * inform userspace we have processed the request
1967 	 */
1968 	if (treatment == REG_REQ_ALREADY_SET) {
1969 		nl80211_send_reg_change_event(driver_request);
1970 		reg_update_last_request(driver_request);
1971 		reg_set_request_processed();
1972 		return REG_REQ_ALREADY_SET;
1973 	}
1974 
1975 	if (reg_query_database(driver_request)) {
1976 		reg_update_last_request(driver_request);
1977 		return REG_REQ_OK;
1978 	}
1979 
1980 	return REG_REQ_IGNORE;
1981 }
1982 
1983 static enum reg_request_treatment
1984 __reg_process_hint_country_ie(struct wiphy *wiphy,
1985 			      struct regulatory_request *country_ie_request)
1986 {
1987 	struct wiphy *last_wiphy = NULL;
1988 	struct regulatory_request *lr = get_last_request();
1989 
1990 	if (reg_request_cell_base(lr)) {
1991 		/* Trust a Cell base station over the AP's country IE */
1992 		if (regdom_changes(country_ie_request->alpha2))
1993 			return REG_REQ_IGNORE;
1994 		return REG_REQ_ALREADY_SET;
1995 	} else {
1996 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1997 			return REG_REQ_IGNORE;
1998 	}
1999 
2000 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2001 		return -EINVAL;
2002 
2003 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2004 		return REG_REQ_OK;
2005 
2006 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2007 
2008 	if (last_wiphy != wiphy) {
2009 		/*
2010 		 * Two cards with two APs claiming different
2011 		 * Country IE alpha2s. We could
2012 		 * intersect them, but that seems unlikely
2013 		 * to be correct. Reject second one for now.
2014 		 */
2015 		if (regdom_changes(country_ie_request->alpha2))
2016 			return REG_REQ_IGNORE;
2017 		return REG_REQ_ALREADY_SET;
2018 	}
2019 
2020 	if (regdom_changes(country_ie_request->alpha2))
2021 		return REG_REQ_OK;
2022 	return REG_REQ_ALREADY_SET;
2023 }
2024 
2025 /**
2026  * reg_process_hint_country_ie - process regulatory requests from country IEs
2027  * @country_ie_request: a regulatory request from a country IE
2028  *
2029  * The wireless subsystem can use this function to process
2030  * a regulatory request issued by a country Information Element.
2031  *
2032  * Returns one of the different reg request treatment values.
2033  */
2034 static enum reg_request_treatment
2035 reg_process_hint_country_ie(struct wiphy *wiphy,
2036 			    struct regulatory_request *country_ie_request)
2037 {
2038 	enum reg_request_treatment treatment;
2039 
2040 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2041 
2042 	switch (treatment) {
2043 	case REG_REQ_OK:
2044 		break;
2045 	case REG_REQ_IGNORE:
2046 		return REG_REQ_IGNORE;
2047 	case REG_REQ_ALREADY_SET:
2048 		reg_free_request(country_ie_request);
2049 		return REG_REQ_ALREADY_SET;
2050 	case REG_REQ_INTERSECT:
2051 		/*
2052 		 * This doesn't happen yet, not sure we
2053 		 * ever want to support it for this case.
2054 		 */
2055 		WARN_ONCE(1, "Unexpected intersection for country IEs");
2056 		return REG_REQ_IGNORE;
2057 	}
2058 
2059 	country_ie_request->intersect = false;
2060 	country_ie_request->processed = false;
2061 
2062 	if (reg_query_database(country_ie_request)) {
2063 		reg_update_last_request(country_ie_request);
2064 		return REG_REQ_OK;
2065 	}
2066 
2067 	return REG_REQ_IGNORE;
2068 }
2069 
2070 /* This processes *all* regulatory hints */
2071 static void reg_process_hint(struct regulatory_request *reg_request)
2072 {
2073 	struct wiphy *wiphy = NULL;
2074 	enum reg_request_treatment treatment;
2075 
2076 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2077 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2078 
2079 	switch (reg_request->initiator) {
2080 	case NL80211_REGDOM_SET_BY_CORE:
2081 		treatment = reg_process_hint_core(reg_request);
2082 		break;
2083 	case NL80211_REGDOM_SET_BY_USER:
2084 		treatment = reg_process_hint_user(reg_request);
2085 		break;
2086 	case NL80211_REGDOM_SET_BY_DRIVER:
2087 		if (!wiphy)
2088 			goto out_free;
2089 		treatment = reg_process_hint_driver(wiphy, reg_request);
2090 		break;
2091 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2092 		if (!wiphy)
2093 			goto out_free;
2094 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2095 		break;
2096 	default:
2097 		WARN(1, "invalid initiator %d\n", reg_request->initiator);
2098 		goto out_free;
2099 	}
2100 
2101 	if (treatment == REG_REQ_IGNORE)
2102 		goto out_free;
2103 
2104 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2105 	     "unexpected treatment value %d\n", treatment);
2106 
2107 	/* This is required so that the orig_* parameters are saved.
2108 	 * NOTE: treatment must be set for any case that reaches here!
2109 	 */
2110 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2111 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2112 		wiphy_update_regulatory(wiphy, reg_request->initiator);
2113 		reg_check_channels();
2114 	}
2115 
2116 	return;
2117 
2118 out_free:
2119 	reg_free_request(reg_request);
2120 }
2121 
2122 static bool reg_only_self_managed_wiphys(void)
2123 {
2124 	struct cfg80211_registered_device *rdev;
2125 	struct wiphy *wiphy;
2126 	bool self_managed_found = false;
2127 
2128 	ASSERT_RTNL();
2129 
2130 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2131 		wiphy = &rdev->wiphy;
2132 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2133 			self_managed_found = true;
2134 		else
2135 			return false;
2136 	}
2137 
2138 	/* make sure at least one self-managed wiphy exists */
2139 	return self_managed_found;
2140 }
2141 
2142 /*
2143  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2144  * Regulatory hints come on a first come first serve basis and we
2145  * must process each one atomically.
2146  */
2147 static void reg_process_pending_hints(void)
2148 {
2149 	struct regulatory_request *reg_request, *lr;
2150 
2151 	lr = get_last_request();
2152 
2153 	/* When last_request->processed becomes true this will be rescheduled */
2154 	if (lr && !lr->processed) {
2155 		reg_process_hint(lr);
2156 		return;
2157 	}
2158 
2159 	spin_lock(&reg_requests_lock);
2160 
2161 	if (list_empty(&reg_requests_list)) {
2162 		spin_unlock(&reg_requests_lock);
2163 		return;
2164 	}
2165 
2166 	reg_request = list_first_entry(&reg_requests_list,
2167 				       struct regulatory_request,
2168 				       list);
2169 	list_del_init(&reg_request->list);
2170 
2171 	spin_unlock(&reg_requests_lock);
2172 
2173 	if (reg_only_self_managed_wiphys()) {
2174 		reg_free_request(reg_request);
2175 		return;
2176 	}
2177 
2178 	reg_process_hint(reg_request);
2179 
2180 	lr = get_last_request();
2181 
2182 	spin_lock(&reg_requests_lock);
2183 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
2184 		schedule_work(&reg_work);
2185 	spin_unlock(&reg_requests_lock);
2186 }
2187 
2188 /* Processes beacon hints -- this has nothing to do with country IEs */
2189 static void reg_process_pending_beacon_hints(void)
2190 {
2191 	struct cfg80211_registered_device *rdev;
2192 	struct reg_beacon *pending_beacon, *tmp;
2193 
2194 	/* This goes through the _pending_ beacon list */
2195 	spin_lock_bh(&reg_pending_beacons_lock);
2196 
2197 	list_for_each_entry_safe(pending_beacon, tmp,
2198 				 &reg_pending_beacons, list) {
2199 		list_del_init(&pending_beacon->list);
2200 
2201 		/* Applies the beacon hint to current wiphys */
2202 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2203 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2204 
2205 		/* Remembers the beacon hint for new wiphys or reg changes */
2206 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2207 	}
2208 
2209 	spin_unlock_bh(&reg_pending_beacons_lock);
2210 }
2211 
2212 static void reg_process_self_managed_hints(void)
2213 {
2214 	struct cfg80211_registered_device *rdev;
2215 	struct wiphy *wiphy;
2216 	const struct ieee80211_regdomain *tmp;
2217 	const struct ieee80211_regdomain *regd;
2218 	enum nl80211_band band;
2219 	struct regulatory_request request = {};
2220 
2221 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2222 		wiphy = &rdev->wiphy;
2223 
2224 		spin_lock(&reg_requests_lock);
2225 		regd = rdev->requested_regd;
2226 		rdev->requested_regd = NULL;
2227 		spin_unlock(&reg_requests_lock);
2228 
2229 		if (regd == NULL)
2230 			continue;
2231 
2232 		tmp = get_wiphy_regdom(wiphy);
2233 		rcu_assign_pointer(wiphy->regd, regd);
2234 		rcu_free_regdom(tmp);
2235 
2236 		for (band = 0; band < NUM_NL80211_BANDS; band++)
2237 			handle_band_custom(wiphy, wiphy->bands[band], regd);
2238 
2239 		reg_process_ht_flags(wiphy);
2240 
2241 		request.wiphy_idx = get_wiphy_idx(wiphy);
2242 		request.alpha2[0] = regd->alpha2[0];
2243 		request.alpha2[1] = regd->alpha2[1];
2244 		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2245 
2246 		nl80211_send_wiphy_reg_change_event(&request);
2247 	}
2248 
2249 	reg_check_channels();
2250 }
2251 
2252 static void reg_todo(struct work_struct *work)
2253 {
2254 	rtnl_lock();
2255 	reg_process_pending_hints();
2256 	reg_process_pending_beacon_hints();
2257 	reg_process_self_managed_hints();
2258 	rtnl_unlock();
2259 }
2260 
2261 static void queue_regulatory_request(struct regulatory_request *request)
2262 {
2263 	request->alpha2[0] = toupper(request->alpha2[0]);
2264 	request->alpha2[1] = toupper(request->alpha2[1]);
2265 
2266 	spin_lock(&reg_requests_lock);
2267 	list_add_tail(&request->list, &reg_requests_list);
2268 	spin_unlock(&reg_requests_lock);
2269 
2270 	schedule_work(&reg_work);
2271 }
2272 
2273 /*
2274  * Core regulatory hint -- happens during cfg80211_init()
2275  * and when we restore regulatory settings.
2276  */
2277 static int regulatory_hint_core(const char *alpha2)
2278 {
2279 	struct regulatory_request *request;
2280 
2281 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2282 	if (!request)
2283 		return -ENOMEM;
2284 
2285 	request->alpha2[0] = alpha2[0];
2286 	request->alpha2[1] = alpha2[1];
2287 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2288 
2289 	queue_regulatory_request(request);
2290 
2291 	return 0;
2292 }
2293 
2294 /* User hints */
2295 int regulatory_hint_user(const char *alpha2,
2296 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2297 {
2298 	struct regulatory_request *request;
2299 
2300 	if (WARN_ON(!alpha2))
2301 		return -EINVAL;
2302 
2303 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2304 	if (!request)
2305 		return -ENOMEM;
2306 
2307 	request->wiphy_idx = WIPHY_IDX_INVALID;
2308 	request->alpha2[0] = alpha2[0];
2309 	request->alpha2[1] = alpha2[1];
2310 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2311 	request->user_reg_hint_type = user_reg_hint_type;
2312 
2313 	/* Allow calling CRDA again */
2314 	reset_crda_timeouts();
2315 
2316 	queue_regulatory_request(request);
2317 
2318 	return 0;
2319 }
2320 
2321 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2322 {
2323 	spin_lock(&reg_indoor_lock);
2324 
2325 	/* It is possible that more than one user space process is trying to
2326 	 * configure the indoor setting. To handle such cases, clear the indoor
2327 	 * setting in case that some process does not think that the device
2328 	 * is operating in an indoor environment. In addition, if a user space
2329 	 * process indicates that it is controlling the indoor setting, save its
2330 	 * portid, i.e., make it the owner.
2331 	 */
2332 	reg_is_indoor = is_indoor;
2333 	if (reg_is_indoor) {
2334 		if (!reg_is_indoor_portid)
2335 			reg_is_indoor_portid = portid;
2336 	} else {
2337 		reg_is_indoor_portid = 0;
2338 	}
2339 
2340 	spin_unlock(&reg_indoor_lock);
2341 
2342 	if (!is_indoor)
2343 		reg_check_channels();
2344 
2345 	return 0;
2346 }
2347 
2348 void regulatory_netlink_notify(u32 portid)
2349 {
2350 	spin_lock(&reg_indoor_lock);
2351 
2352 	if (reg_is_indoor_portid != portid) {
2353 		spin_unlock(&reg_indoor_lock);
2354 		return;
2355 	}
2356 
2357 	reg_is_indoor = false;
2358 	reg_is_indoor_portid = 0;
2359 
2360 	spin_unlock(&reg_indoor_lock);
2361 
2362 	reg_check_channels();
2363 }
2364 
2365 /* Driver hints */
2366 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2367 {
2368 	struct regulatory_request *request;
2369 
2370 	if (WARN_ON(!alpha2 || !wiphy))
2371 		return -EINVAL;
2372 
2373 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2374 
2375 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2376 	if (!request)
2377 		return -ENOMEM;
2378 
2379 	request->wiphy_idx = get_wiphy_idx(wiphy);
2380 
2381 	request->alpha2[0] = alpha2[0];
2382 	request->alpha2[1] = alpha2[1];
2383 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2384 
2385 	/* Allow calling CRDA again */
2386 	reset_crda_timeouts();
2387 
2388 	queue_regulatory_request(request);
2389 
2390 	return 0;
2391 }
2392 EXPORT_SYMBOL(regulatory_hint);
2393 
2394 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2395 				const u8 *country_ie, u8 country_ie_len)
2396 {
2397 	char alpha2[2];
2398 	enum environment_cap env = ENVIRON_ANY;
2399 	struct regulatory_request *request = NULL, *lr;
2400 
2401 	/* IE len must be evenly divisible by 2 */
2402 	if (country_ie_len & 0x01)
2403 		return;
2404 
2405 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2406 		return;
2407 
2408 	request = kzalloc(sizeof(*request), GFP_KERNEL);
2409 	if (!request)
2410 		return;
2411 
2412 	alpha2[0] = country_ie[0];
2413 	alpha2[1] = country_ie[1];
2414 
2415 	if (country_ie[2] == 'I')
2416 		env = ENVIRON_INDOOR;
2417 	else if (country_ie[2] == 'O')
2418 		env = ENVIRON_OUTDOOR;
2419 
2420 	rcu_read_lock();
2421 	lr = get_last_request();
2422 
2423 	if (unlikely(!lr))
2424 		goto out;
2425 
2426 	/*
2427 	 * We will run this only upon a successful connection on cfg80211.
2428 	 * We leave conflict resolution to the workqueue, where can hold
2429 	 * the RTNL.
2430 	 */
2431 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2432 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
2433 		goto out;
2434 
2435 	request->wiphy_idx = get_wiphy_idx(wiphy);
2436 	request->alpha2[0] = alpha2[0];
2437 	request->alpha2[1] = alpha2[1];
2438 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2439 	request->country_ie_env = env;
2440 
2441 	/* Allow calling CRDA again */
2442 	reset_crda_timeouts();
2443 
2444 	queue_regulatory_request(request);
2445 	request = NULL;
2446 out:
2447 	kfree(request);
2448 	rcu_read_unlock();
2449 }
2450 
2451 static void restore_alpha2(char *alpha2, bool reset_user)
2452 {
2453 	/* indicates there is no alpha2 to consider for restoration */
2454 	alpha2[0] = '9';
2455 	alpha2[1] = '7';
2456 
2457 	/* The user setting has precedence over the module parameter */
2458 	if (is_user_regdom_saved()) {
2459 		/* Unless we're asked to ignore it and reset it */
2460 		if (reset_user) {
2461 			pr_debug("Restoring regulatory settings including user preference\n");
2462 			user_alpha2[0] = '9';
2463 			user_alpha2[1] = '7';
2464 
2465 			/*
2466 			 * If we're ignoring user settings, we still need to
2467 			 * check the module parameter to ensure we put things
2468 			 * back as they were for a full restore.
2469 			 */
2470 			if (!is_world_regdom(ieee80211_regdom)) {
2471 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2472 					 ieee80211_regdom[0], ieee80211_regdom[1]);
2473 				alpha2[0] = ieee80211_regdom[0];
2474 				alpha2[1] = ieee80211_regdom[1];
2475 			}
2476 		} else {
2477 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
2478 				 user_alpha2[0], user_alpha2[1]);
2479 			alpha2[0] = user_alpha2[0];
2480 			alpha2[1] = user_alpha2[1];
2481 		}
2482 	} else if (!is_world_regdom(ieee80211_regdom)) {
2483 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2484 			 ieee80211_regdom[0], ieee80211_regdom[1]);
2485 		alpha2[0] = ieee80211_regdom[0];
2486 		alpha2[1] = ieee80211_regdom[1];
2487 	} else
2488 		pr_debug("Restoring regulatory settings\n");
2489 }
2490 
2491 static void restore_custom_reg_settings(struct wiphy *wiphy)
2492 {
2493 	struct ieee80211_supported_band *sband;
2494 	enum nl80211_band band;
2495 	struct ieee80211_channel *chan;
2496 	int i;
2497 
2498 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2499 		sband = wiphy->bands[band];
2500 		if (!sband)
2501 			continue;
2502 		for (i = 0; i < sband->n_channels; i++) {
2503 			chan = &sband->channels[i];
2504 			chan->flags = chan->orig_flags;
2505 			chan->max_antenna_gain = chan->orig_mag;
2506 			chan->max_power = chan->orig_mpwr;
2507 			chan->beacon_found = false;
2508 		}
2509 	}
2510 }
2511 
2512 /*
2513  * Restoring regulatory settings involves ingoring any
2514  * possibly stale country IE information and user regulatory
2515  * settings if so desired, this includes any beacon hints
2516  * learned as we could have traveled outside to another country
2517  * after disconnection. To restore regulatory settings we do
2518  * exactly what we did at bootup:
2519  *
2520  *   - send a core regulatory hint
2521  *   - send a user regulatory hint if applicable
2522  *
2523  * Device drivers that send a regulatory hint for a specific country
2524  * keep their own regulatory domain on wiphy->regd so that does does
2525  * not need to be remembered.
2526  */
2527 static void restore_regulatory_settings(bool reset_user)
2528 {
2529 	char alpha2[2];
2530 	char world_alpha2[2];
2531 	struct reg_beacon *reg_beacon, *btmp;
2532 	LIST_HEAD(tmp_reg_req_list);
2533 	struct cfg80211_registered_device *rdev;
2534 
2535 	ASSERT_RTNL();
2536 
2537 	/*
2538 	 * Clear the indoor setting in case that it is not controlled by user
2539 	 * space, as otherwise there is no guarantee that the device is still
2540 	 * operating in an indoor environment.
2541 	 */
2542 	spin_lock(&reg_indoor_lock);
2543 	if (reg_is_indoor && !reg_is_indoor_portid) {
2544 		reg_is_indoor = false;
2545 		reg_check_channels();
2546 	}
2547 	spin_unlock(&reg_indoor_lock);
2548 
2549 	reset_regdomains(true, &world_regdom);
2550 	restore_alpha2(alpha2, reset_user);
2551 
2552 	/*
2553 	 * If there's any pending requests we simply
2554 	 * stash them to a temporary pending queue and
2555 	 * add then after we've restored regulatory
2556 	 * settings.
2557 	 */
2558 	spin_lock(&reg_requests_lock);
2559 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2560 	spin_unlock(&reg_requests_lock);
2561 
2562 	/* Clear beacon hints */
2563 	spin_lock_bh(&reg_pending_beacons_lock);
2564 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2565 		list_del(&reg_beacon->list);
2566 		kfree(reg_beacon);
2567 	}
2568 	spin_unlock_bh(&reg_pending_beacons_lock);
2569 
2570 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2571 		list_del(&reg_beacon->list);
2572 		kfree(reg_beacon);
2573 	}
2574 
2575 	/* First restore to the basic regulatory settings */
2576 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2577 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2578 
2579 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2580 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2581 			continue;
2582 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2583 			restore_custom_reg_settings(&rdev->wiphy);
2584 	}
2585 
2586 	regulatory_hint_core(world_alpha2);
2587 
2588 	/*
2589 	 * This restores the ieee80211_regdom module parameter
2590 	 * preference or the last user requested regulatory
2591 	 * settings, user regulatory settings takes precedence.
2592 	 */
2593 	if (is_an_alpha2(alpha2))
2594 		regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2595 
2596 	spin_lock(&reg_requests_lock);
2597 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2598 	spin_unlock(&reg_requests_lock);
2599 
2600 	pr_debug("Kicking the queue\n");
2601 
2602 	schedule_work(&reg_work);
2603 }
2604 
2605 void regulatory_hint_disconnect(void)
2606 {
2607 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
2608 	restore_regulatory_settings(false);
2609 }
2610 
2611 static bool freq_is_chan_12_13_14(u16 freq)
2612 {
2613 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
2614 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
2615 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
2616 		return true;
2617 	return false;
2618 }
2619 
2620 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2621 {
2622 	struct reg_beacon *pending_beacon;
2623 
2624 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2625 		if (beacon_chan->center_freq ==
2626 		    pending_beacon->chan.center_freq)
2627 			return true;
2628 	return false;
2629 }
2630 
2631 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2632 				 struct ieee80211_channel *beacon_chan,
2633 				 gfp_t gfp)
2634 {
2635 	struct reg_beacon *reg_beacon;
2636 	bool processing;
2637 
2638 	if (beacon_chan->beacon_found ||
2639 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2640 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
2641 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2642 		return 0;
2643 
2644 	spin_lock_bh(&reg_pending_beacons_lock);
2645 	processing = pending_reg_beacon(beacon_chan);
2646 	spin_unlock_bh(&reg_pending_beacons_lock);
2647 
2648 	if (processing)
2649 		return 0;
2650 
2651 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2652 	if (!reg_beacon)
2653 		return -ENOMEM;
2654 
2655 	pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2656 		 beacon_chan->center_freq,
2657 		 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2658 		 wiphy_name(wiphy));
2659 
2660 	memcpy(&reg_beacon->chan, beacon_chan,
2661 	       sizeof(struct ieee80211_channel));
2662 
2663 	/*
2664 	 * Since we can be called from BH or and non-BH context
2665 	 * we must use spin_lock_bh()
2666 	 */
2667 	spin_lock_bh(&reg_pending_beacons_lock);
2668 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2669 	spin_unlock_bh(&reg_pending_beacons_lock);
2670 
2671 	schedule_work(&reg_work);
2672 
2673 	return 0;
2674 }
2675 
2676 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2677 {
2678 	unsigned int i;
2679 	const struct ieee80211_reg_rule *reg_rule = NULL;
2680 	const struct ieee80211_freq_range *freq_range = NULL;
2681 	const struct ieee80211_power_rule *power_rule = NULL;
2682 	char bw[32], cac_time[32];
2683 
2684 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2685 
2686 	for (i = 0; i < rd->n_reg_rules; i++) {
2687 		reg_rule = &rd->reg_rules[i];
2688 		freq_range = &reg_rule->freq_range;
2689 		power_rule = &reg_rule->power_rule;
2690 
2691 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2692 			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2693 				 freq_range->max_bandwidth_khz,
2694 				 reg_get_max_bandwidth(rd, reg_rule));
2695 		else
2696 			snprintf(bw, sizeof(bw), "%d KHz",
2697 				 freq_range->max_bandwidth_khz);
2698 
2699 		if (reg_rule->flags & NL80211_RRF_DFS)
2700 			scnprintf(cac_time, sizeof(cac_time), "%u s",
2701 				  reg_rule->dfs_cac_ms/1000);
2702 		else
2703 			scnprintf(cac_time, sizeof(cac_time), "N/A");
2704 
2705 
2706 		/*
2707 		 * There may not be documentation for max antenna gain
2708 		 * in certain regions
2709 		 */
2710 		if (power_rule->max_antenna_gain)
2711 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2712 				freq_range->start_freq_khz,
2713 				freq_range->end_freq_khz,
2714 				bw,
2715 				power_rule->max_antenna_gain,
2716 				power_rule->max_eirp,
2717 				cac_time);
2718 		else
2719 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2720 				freq_range->start_freq_khz,
2721 				freq_range->end_freq_khz,
2722 				bw,
2723 				power_rule->max_eirp,
2724 				cac_time);
2725 	}
2726 }
2727 
2728 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2729 {
2730 	switch (dfs_region) {
2731 	case NL80211_DFS_UNSET:
2732 	case NL80211_DFS_FCC:
2733 	case NL80211_DFS_ETSI:
2734 	case NL80211_DFS_JP:
2735 		return true;
2736 	default:
2737 		pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region);
2738 		return false;
2739 	}
2740 }
2741 
2742 static void print_regdomain(const struct ieee80211_regdomain *rd)
2743 {
2744 	struct regulatory_request *lr = get_last_request();
2745 
2746 	if (is_intersected_alpha2(rd->alpha2)) {
2747 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2748 			struct cfg80211_registered_device *rdev;
2749 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2750 			if (rdev) {
2751 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
2752 					rdev->country_ie_alpha2[0],
2753 					rdev->country_ie_alpha2[1]);
2754 			} else
2755 				pr_debug("Current regulatory domain intersected:\n");
2756 		} else
2757 			pr_debug("Current regulatory domain intersected:\n");
2758 	} else if (is_world_regdom(rd->alpha2)) {
2759 		pr_debug("World regulatory domain updated:\n");
2760 	} else {
2761 		if (is_unknown_alpha2(rd->alpha2))
2762 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
2763 		else {
2764 			if (reg_request_cell_base(lr))
2765 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
2766 					rd->alpha2[0], rd->alpha2[1]);
2767 			else
2768 				pr_debug("Regulatory domain changed to country: %c%c\n",
2769 					rd->alpha2[0], rd->alpha2[1]);
2770 		}
2771 	}
2772 
2773 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2774 	print_rd_rules(rd);
2775 }
2776 
2777 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2778 {
2779 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2780 	print_rd_rules(rd);
2781 }
2782 
2783 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2784 {
2785 	if (!is_world_regdom(rd->alpha2))
2786 		return -EINVAL;
2787 	update_world_regdomain(rd);
2788 	return 0;
2789 }
2790 
2791 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2792 			   struct regulatory_request *user_request)
2793 {
2794 	const struct ieee80211_regdomain *intersected_rd = NULL;
2795 
2796 	if (!regdom_changes(rd->alpha2))
2797 		return -EALREADY;
2798 
2799 	if (!is_valid_rd(rd)) {
2800 		pr_err("Invalid regulatory domain detected: %c%c\n",
2801 		       rd->alpha2[0], rd->alpha2[1]);
2802 		print_regdomain_info(rd);
2803 		return -EINVAL;
2804 	}
2805 
2806 	if (!user_request->intersect) {
2807 		reset_regdomains(false, rd);
2808 		return 0;
2809 	}
2810 
2811 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2812 	if (!intersected_rd)
2813 		return -EINVAL;
2814 
2815 	kfree(rd);
2816 	rd = NULL;
2817 	reset_regdomains(false, intersected_rd);
2818 
2819 	return 0;
2820 }
2821 
2822 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2823 			     struct regulatory_request *driver_request)
2824 {
2825 	const struct ieee80211_regdomain *regd;
2826 	const struct ieee80211_regdomain *intersected_rd = NULL;
2827 	const struct ieee80211_regdomain *tmp;
2828 	struct wiphy *request_wiphy;
2829 
2830 	if (is_world_regdom(rd->alpha2))
2831 		return -EINVAL;
2832 
2833 	if (!regdom_changes(rd->alpha2))
2834 		return -EALREADY;
2835 
2836 	if (!is_valid_rd(rd)) {
2837 		pr_err("Invalid regulatory domain detected: %c%c\n",
2838 		       rd->alpha2[0], rd->alpha2[1]);
2839 		print_regdomain_info(rd);
2840 		return -EINVAL;
2841 	}
2842 
2843 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2844 	if (!request_wiphy)
2845 		return -ENODEV;
2846 
2847 	if (!driver_request->intersect) {
2848 		if (request_wiphy->regd)
2849 			return -EALREADY;
2850 
2851 		regd = reg_copy_regd(rd);
2852 		if (IS_ERR(regd))
2853 			return PTR_ERR(regd);
2854 
2855 		rcu_assign_pointer(request_wiphy->regd, regd);
2856 		reset_regdomains(false, rd);
2857 		return 0;
2858 	}
2859 
2860 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2861 	if (!intersected_rd)
2862 		return -EINVAL;
2863 
2864 	/*
2865 	 * We can trash what CRDA provided now.
2866 	 * However if a driver requested this specific regulatory
2867 	 * domain we keep it for its private use
2868 	 */
2869 	tmp = get_wiphy_regdom(request_wiphy);
2870 	rcu_assign_pointer(request_wiphy->regd, rd);
2871 	rcu_free_regdom(tmp);
2872 
2873 	rd = NULL;
2874 
2875 	reset_regdomains(false, intersected_rd);
2876 
2877 	return 0;
2878 }
2879 
2880 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2881 				 struct regulatory_request *country_ie_request)
2882 {
2883 	struct wiphy *request_wiphy;
2884 
2885 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2886 	    !is_unknown_alpha2(rd->alpha2))
2887 		return -EINVAL;
2888 
2889 	/*
2890 	 * Lets only bother proceeding on the same alpha2 if the current
2891 	 * rd is non static (it means CRDA was present and was used last)
2892 	 * and the pending request came in from a country IE
2893 	 */
2894 
2895 	if (!is_valid_rd(rd)) {
2896 		pr_err("Invalid regulatory domain detected: %c%c\n",
2897 		       rd->alpha2[0], rd->alpha2[1]);
2898 		print_regdomain_info(rd);
2899 		return -EINVAL;
2900 	}
2901 
2902 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2903 	if (!request_wiphy)
2904 		return -ENODEV;
2905 
2906 	if (country_ie_request->intersect)
2907 		return -EINVAL;
2908 
2909 	reset_regdomains(false, rd);
2910 	return 0;
2911 }
2912 
2913 /*
2914  * Use this call to set the current regulatory domain. Conflicts with
2915  * multiple drivers can be ironed out later. Caller must've already
2916  * kmalloc'd the rd structure.
2917  */
2918 int set_regdom(const struct ieee80211_regdomain *rd,
2919 	       enum ieee80211_regd_source regd_src)
2920 {
2921 	struct regulatory_request *lr;
2922 	bool user_reset = false;
2923 	int r;
2924 
2925 	if (!reg_is_valid_request(rd->alpha2)) {
2926 		kfree(rd);
2927 		return -EINVAL;
2928 	}
2929 
2930 	if (regd_src == REGD_SOURCE_CRDA)
2931 		reset_crda_timeouts();
2932 
2933 	lr = get_last_request();
2934 
2935 	/* Note that this doesn't update the wiphys, this is done below */
2936 	switch (lr->initiator) {
2937 	case NL80211_REGDOM_SET_BY_CORE:
2938 		r = reg_set_rd_core(rd);
2939 		break;
2940 	case NL80211_REGDOM_SET_BY_USER:
2941 		r = reg_set_rd_user(rd, lr);
2942 		user_reset = true;
2943 		break;
2944 	case NL80211_REGDOM_SET_BY_DRIVER:
2945 		r = reg_set_rd_driver(rd, lr);
2946 		break;
2947 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2948 		r = reg_set_rd_country_ie(rd, lr);
2949 		break;
2950 	default:
2951 		WARN(1, "invalid initiator %d\n", lr->initiator);
2952 		kfree(rd);
2953 		return -EINVAL;
2954 	}
2955 
2956 	if (r) {
2957 		switch (r) {
2958 		case -EALREADY:
2959 			reg_set_request_processed();
2960 			break;
2961 		default:
2962 			/* Back to world regulatory in case of errors */
2963 			restore_regulatory_settings(user_reset);
2964 		}
2965 
2966 		kfree(rd);
2967 		return r;
2968 	}
2969 
2970 	/* This would make this whole thing pointless */
2971 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2972 		return -EINVAL;
2973 
2974 	/* update all wiphys now with the new established regulatory domain */
2975 	update_all_wiphy_regulatory(lr->initiator);
2976 
2977 	print_regdomain(get_cfg80211_regdom());
2978 
2979 	nl80211_send_reg_change_event(lr);
2980 
2981 	reg_set_request_processed();
2982 
2983 	return 0;
2984 }
2985 
2986 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
2987 				       struct ieee80211_regdomain *rd)
2988 {
2989 	const struct ieee80211_regdomain *regd;
2990 	const struct ieee80211_regdomain *prev_regd;
2991 	struct cfg80211_registered_device *rdev;
2992 
2993 	if (WARN_ON(!wiphy || !rd))
2994 		return -EINVAL;
2995 
2996 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
2997 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
2998 		return -EPERM;
2999 
3000 	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3001 		print_regdomain_info(rd);
3002 		return -EINVAL;
3003 	}
3004 
3005 	regd = reg_copy_regd(rd);
3006 	if (IS_ERR(regd))
3007 		return PTR_ERR(regd);
3008 
3009 	rdev = wiphy_to_rdev(wiphy);
3010 
3011 	spin_lock(&reg_requests_lock);
3012 	prev_regd = rdev->requested_regd;
3013 	rdev->requested_regd = regd;
3014 	spin_unlock(&reg_requests_lock);
3015 
3016 	kfree(prev_regd);
3017 	return 0;
3018 }
3019 
3020 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3021 			      struct ieee80211_regdomain *rd)
3022 {
3023 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3024 
3025 	if (ret)
3026 		return ret;
3027 
3028 	schedule_work(&reg_work);
3029 	return 0;
3030 }
3031 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3032 
3033 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3034 					struct ieee80211_regdomain *rd)
3035 {
3036 	int ret;
3037 
3038 	ASSERT_RTNL();
3039 
3040 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3041 	if (ret)
3042 		return ret;
3043 
3044 	/* process the request immediately */
3045 	reg_process_self_managed_hints();
3046 	return 0;
3047 }
3048 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3049 
3050 void wiphy_regulatory_register(struct wiphy *wiphy)
3051 {
3052 	struct regulatory_request *lr;
3053 
3054 	/* self-managed devices ignore external hints */
3055 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3056 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3057 					   REGULATORY_COUNTRY_IE_IGNORE;
3058 
3059 	if (!reg_dev_ignore_cell_hint(wiphy))
3060 		reg_num_devs_support_basehint++;
3061 
3062 	lr = get_last_request();
3063 	wiphy_update_regulatory(wiphy, lr->initiator);
3064 }
3065 
3066 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3067 {
3068 	struct wiphy *request_wiphy = NULL;
3069 	struct regulatory_request *lr;
3070 
3071 	lr = get_last_request();
3072 
3073 	if (!reg_dev_ignore_cell_hint(wiphy))
3074 		reg_num_devs_support_basehint--;
3075 
3076 	rcu_free_regdom(get_wiphy_regdom(wiphy));
3077 	RCU_INIT_POINTER(wiphy->regd, NULL);
3078 
3079 	if (lr)
3080 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3081 
3082 	if (!request_wiphy || request_wiphy != wiphy)
3083 		return;
3084 
3085 	lr->wiphy_idx = WIPHY_IDX_INVALID;
3086 	lr->country_ie_env = ENVIRON_ANY;
3087 }
3088 
3089 /*
3090  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3091  * UNII band definitions
3092  */
3093 int cfg80211_get_unii(int freq)
3094 {
3095 	/* UNII-1 */
3096 	if (freq >= 5150 && freq <= 5250)
3097 		return 0;
3098 
3099 	/* UNII-2A */
3100 	if (freq > 5250 && freq <= 5350)
3101 		return 1;
3102 
3103 	/* UNII-2B */
3104 	if (freq > 5350 && freq <= 5470)
3105 		return 2;
3106 
3107 	/* UNII-2C */
3108 	if (freq > 5470 && freq <= 5725)
3109 		return 3;
3110 
3111 	/* UNII-3 */
3112 	if (freq > 5725 && freq <= 5825)
3113 		return 4;
3114 
3115 	return -EINVAL;
3116 }
3117 
3118 bool regulatory_indoor_allowed(void)
3119 {
3120 	return reg_is_indoor;
3121 }
3122 
3123 int __init regulatory_init(void)
3124 {
3125 	int err = 0;
3126 
3127 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3128 	if (IS_ERR(reg_pdev))
3129 		return PTR_ERR(reg_pdev);
3130 
3131 	spin_lock_init(&reg_requests_lock);
3132 	spin_lock_init(&reg_pending_beacons_lock);
3133 	spin_lock_init(&reg_indoor_lock);
3134 
3135 	reg_regdb_size_check();
3136 
3137 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3138 
3139 	user_alpha2[0] = '9';
3140 	user_alpha2[1] = '7';
3141 
3142 	/* We always try to get an update for the static regdomain */
3143 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3144 	if (err) {
3145 		if (err == -ENOMEM) {
3146 			platform_device_unregister(reg_pdev);
3147 			return err;
3148 		}
3149 		/*
3150 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
3151 		 * memory which is handled and propagated appropriately above
3152 		 * but it can also fail during a netlink_broadcast() or during
3153 		 * early boot for call_usermodehelper(). For now treat these
3154 		 * errors as non-fatal.
3155 		 */
3156 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3157 	}
3158 
3159 	/*
3160 	 * Finally, if the user set the module parameter treat it
3161 	 * as a user hint.
3162 	 */
3163 	if (!is_world_regdom(ieee80211_regdom))
3164 		regulatory_hint_user(ieee80211_regdom,
3165 				     NL80211_USER_REG_HINT_USER);
3166 
3167 	return 0;
3168 }
3169 
3170 void regulatory_exit(void)
3171 {
3172 	struct regulatory_request *reg_request, *tmp;
3173 	struct reg_beacon *reg_beacon, *btmp;
3174 
3175 	cancel_work_sync(&reg_work);
3176 	cancel_crda_timeout_sync();
3177 	cancel_delayed_work_sync(&reg_check_chans);
3178 
3179 	/* Lock to suppress warnings */
3180 	rtnl_lock();
3181 	reset_regdomains(true, NULL);
3182 	rtnl_unlock();
3183 
3184 	dev_set_uevent_suppress(&reg_pdev->dev, true);
3185 
3186 	platform_device_unregister(reg_pdev);
3187 
3188 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3189 		list_del(&reg_beacon->list);
3190 		kfree(reg_beacon);
3191 	}
3192 
3193 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3194 		list_del(&reg_beacon->list);
3195 		kfree(reg_beacon);
3196 	}
3197 
3198 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3199 		list_del(&reg_request->list);
3200 		kfree(reg_request);
3201 	}
3202 }
3203