1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2021 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static DEFINE_SPINLOCK(reg_indoor_lock); 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user, bool cached); 135 static void print_regdomain(const struct ieee80211_regdomain *rd); 136 137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 138 { 139 return rcu_dereference_rtnl(cfg80211_regdomain); 140 } 141 142 /* 143 * Returns the regulatory domain associated with the wiphy. 144 * 145 * Requires any of RTNL, wiphy mutex or RCU protection. 146 */ 147 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 148 { 149 return rcu_dereference_check(wiphy->regd, 150 lockdep_is_held(&wiphy->mtx) || 151 lockdep_rtnl_is_held()); 152 } 153 EXPORT_SYMBOL(get_wiphy_regdom); 154 155 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 156 { 157 switch (dfs_region) { 158 case NL80211_DFS_UNSET: 159 return "unset"; 160 case NL80211_DFS_FCC: 161 return "FCC"; 162 case NL80211_DFS_ETSI: 163 return "ETSI"; 164 case NL80211_DFS_JP: 165 return "JP"; 166 } 167 return "Unknown"; 168 } 169 170 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 171 { 172 const struct ieee80211_regdomain *regd = NULL; 173 const struct ieee80211_regdomain *wiphy_regd = NULL; 174 enum nl80211_dfs_regions dfs_region; 175 176 rcu_read_lock(); 177 regd = get_cfg80211_regdom(); 178 dfs_region = regd->dfs_region; 179 180 if (!wiphy) 181 goto out; 182 183 wiphy_regd = get_wiphy_regdom(wiphy); 184 if (!wiphy_regd) 185 goto out; 186 187 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 188 dfs_region = wiphy_regd->dfs_region; 189 goto out; 190 } 191 192 if (wiphy_regd->dfs_region == regd->dfs_region) 193 goto out; 194 195 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 196 dev_name(&wiphy->dev), 197 reg_dfs_region_str(wiphy_regd->dfs_region), 198 reg_dfs_region_str(regd->dfs_region)); 199 200 out: 201 rcu_read_unlock(); 202 203 return dfs_region; 204 } 205 206 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 207 { 208 if (!r) 209 return; 210 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 211 } 212 213 static struct regulatory_request *get_last_request(void) 214 { 215 return rcu_dereference_rtnl(last_request); 216 } 217 218 /* Used to queue up regulatory hints */ 219 static LIST_HEAD(reg_requests_list); 220 static DEFINE_SPINLOCK(reg_requests_lock); 221 222 /* Used to queue up beacon hints for review */ 223 static LIST_HEAD(reg_pending_beacons); 224 static DEFINE_SPINLOCK(reg_pending_beacons_lock); 225 226 /* Used to keep track of processed beacon hints */ 227 static LIST_HEAD(reg_beacon_list); 228 229 struct reg_beacon { 230 struct list_head list; 231 struct ieee80211_channel chan; 232 }; 233 234 static void reg_check_chans_work(struct work_struct *work); 235 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 236 237 static void reg_todo(struct work_struct *work); 238 static DECLARE_WORK(reg_work, reg_todo); 239 240 /* We keep a static world regulatory domain in case of the absence of CRDA */ 241 static const struct ieee80211_regdomain world_regdom = { 242 .n_reg_rules = 8, 243 .alpha2 = "00", 244 .reg_rules = { 245 /* IEEE 802.11b/g, channels 1..11 */ 246 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 247 /* IEEE 802.11b/g, channels 12..13. */ 248 REG_RULE(2467-10, 2472+10, 20, 6, 20, 249 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 250 /* IEEE 802.11 channel 14 - Only JP enables 251 * this and for 802.11b only */ 252 REG_RULE(2484-10, 2484+10, 20, 6, 20, 253 NL80211_RRF_NO_IR | 254 NL80211_RRF_NO_OFDM), 255 /* IEEE 802.11a, channel 36..48 */ 256 REG_RULE(5180-10, 5240+10, 80, 6, 20, 257 NL80211_RRF_NO_IR | 258 NL80211_RRF_AUTO_BW), 259 260 /* IEEE 802.11a, channel 52..64 - DFS required */ 261 REG_RULE(5260-10, 5320+10, 80, 6, 20, 262 NL80211_RRF_NO_IR | 263 NL80211_RRF_AUTO_BW | 264 NL80211_RRF_DFS), 265 266 /* IEEE 802.11a, channel 100..144 - DFS required */ 267 REG_RULE(5500-10, 5720+10, 160, 6, 20, 268 NL80211_RRF_NO_IR | 269 NL80211_RRF_DFS), 270 271 /* IEEE 802.11a, channel 149..165 */ 272 REG_RULE(5745-10, 5825+10, 80, 6, 20, 273 NL80211_RRF_NO_IR), 274 275 /* IEEE 802.11ad (60GHz), channels 1..3 */ 276 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 277 } 278 }; 279 280 /* protected by RTNL */ 281 static const struct ieee80211_regdomain *cfg80211_world_regdom = 282 &world_regdom; 283 284 static char *ieee80211_regdom = "00"; 285 static char user_alpha2[2]; 286 static const struct ieee80211_regdomain *cfg80211_user_regdom; 287 288 module_param(ieee80211_regdom, charp, 0444); 289 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 290 291 static void reg_free_request(struct regulatory_request *request) 292 { 293 if (request == &core_request_world) 294 return; 295 296 if (request != get_last_request()) 297 kfree(request); 298 } 299 300 static void reg_free_last_request(void) 301 { 302 struct regulatory_request *lr = get_last_request(); 303 304 if (lr != &core_request_world && lr) 305 kfree_rcu(lr, rcu_head); 306 } 307 308 static void reg_update_last_request(struct regulatory_request *request) 309 { 310 struct regulatory_request *lr; 311 312 lr = get_last_request(); 313 if (lr == request) 314 return; 315 316 reg_free_last_request(); 317 rcu_assign_pointer(last_request, request); 318 } 319 320 static void reset_regdomains(bool full_reset, 321 const struct ieee80211_regdomain *new_regdom) 322 { 323 const struct ieee80211_regdomain *r; 324 325 ASSERT_RTNL(); 326 327 r = get_cfg80211_regdom(); 328 329 /* avoid freeing static information or freeing something twice */ 330 if (r == cfg80211_world_regdom) 331 r = NULL; 332 if (cfg80211_world_regdom == &world_regdom) 333 cfg80211_world_regdom = NULL; 334 if (r == &world_regdom) 335 r = NULL; 336 337 rcu_free_regdom(r); 338 rcu_free_regdom(cfg80211_world_regdom); 339 340 cfg80211_world_regdom = &world_regdom; 341 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 342 343 if (!full_reset) 344 return; 345 346 reg_update_last_request(&core_request_world); 347 } 348 349 /* 350 * Dynamic world regulatory domain requested by the wireless 351 * core upon initialization 352 */ 353 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 354 { 355 struct regulatory_request *lr; 356 357 lr = get_last_request(); 358 359 WARN_ON(!lr); 360 361 reset_regdomains(false, rd); 362 363 cfg80211_world_regdom = rd; 364 } 365 366 bool is_world_regdom(const char *alpha2) 367 { 368 if (!alpha2) 369 return false; 370 return alpha2[0] == '0' && alpha2[1] == '0'; 371 } 372 373 static bool is_alpha2_set(const char *alpha2) 374 { 375 if (!alpha2) 376 return false; 377 return alpha2[0] && alpha2[1]; 378 } 379 380 static bool is_unknown_alpha2(const char *alpha2) 381 { 382 if (!alpha2) 383 return false; 384 /* 385 * Special case where regulatory domain was built by driver 386 * but a specific alpha2 cannot be determined 387 */ 388 return alpha2[0] == '9' && alpha2[1] == '9'; 389 } 390 391 static bool is_intersected_alpha2(const char *alpha2) 392 { 393 if (!alpha2) 394 return false; 395 /* 396 * Special case where regulatory domain is the 397 * result of an intersection between two regulatory domain 398 * structures 399 */ 400 return alpha2[0] == '9' && alpha2[1] == '8'; 401 } 402 403 static bool is_an_alpha2(const char *alpha2) 404 { 405 if (!alpha2) 406 return false; 407 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 408 } 409 410 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 411 { 412 if (!alpha2_x || !alpha2_y) 413 return false; 414 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 415 } 416 417 static bool regdom_changes(const char *alpha2) 418 { 419 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 420 421 if (!r) 422 return true; 423 return !alpha2_equal(r->alpha2, alpha2); 424 } 425 426 /* 427 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 428 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 429 * has ever been issued. 430 */ 431 static bool is_user_regdom_saved(void) 432 { 433 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 434 return false; 435 436 /* This would indicate a mistake on the design */ 437 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 438 "Unexpected user alpha2: %c%c\n", 439 user_alpha2[0], user_alpha2[1])) 440 return false; 441 442 return true; 443 } 444 445 static const struct ieee80211_regdomain * 446 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 447 { 448 struct ieee80211_regdomain *regd; 449 unsigned int i; 450 451 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 452 GFP_KERNEL); 453 if (!regd) 454 return ERR_PTR(-ENOMEM); 455 456 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 457 458 for (i = 0; i < src_regd->n_reg_rules; i++) 459 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 460 sizeof(struct ieee80211_reg_rule)); 461 462 return regd; 463 } 464 465 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 466 { 467 ASSERT_RTNL(); 468 469 if (!IS_ERR(cfg80211_user_regdom)) 470 kfree(cfg80211_user_regdom); 471 cfg80211_user_regdom = reg_copy_regd(rd); 472 } 473 474 struct reg_regdb_apply_request { 475 struct list_head list; 476 const struct ieee80211_regdomain *regdom; 477 }; 478 479 static LIST_HEAD(reg_regdb_apply_list); 480 static DEFINE_MUTEX(reg_regdb_apply_mutex); 481 482 static void reg_regdb_apply(struct work_struct *work) 483 { 484 struct reg_regdb_apply_request *request; 485 486 rtnl_lock(); 487 488 mutex_lock(®_regdb_apply_mutex); 489 while (!list_empty(®_regdb_apply_list)) { 490 request = list_first_entry(®_regdb_apply_list, 491 struct reg_regdb_apply_request, 492 list); 493 list_del(&request->list); 494 495 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 496 kfree(request); 497 } 498 mutex_unlock(®_regdb_apply_mutex); 499 500 rtnl_unlock(); 501 } 502 503 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 504 505 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 506 { 507 struct reg_regdb_apply_request *request; 508 509 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 510 if (!request) { 511 kfree(regdom); 512 return -ENOMEM; 513 } 514 515 request->regdom = regdom; 516 517 mutex_lock(®_regdb_apply_mutex); 518 list_add_tail(&request->list, ®_regdb_apply_list); 519 mutex_unlock(®_regdb_apply_mutex); 520 521 schedule_work(®_regdb_work); 522 return 0; 523 } 524 525 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 526 /* Max number of consecutive attempts to communicate with CRDA */ 527 #define REG_MAX_CRDA_TIMEOUTS 10 528 529 static u32 reg_crda_timeouts; 530 531 static void crda_timeout_work(struct work_struct *work); 532 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 533 534 static void crda_timeout_work(struct work_struct *work) 535 { 536 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 537 rtnl_lock(); 538 reg_crda_timeouts++; 539 restore_regulatory_settings(true, false); 540 rtnl_unlock(); 541 } 542 543 static void cancel_crda_timeout(void) 544 { 545 cancel_delayed_work(&crda_timeout); 546 } 547 548 static void cancel_crda_timeout_sync(void) 549 { 550 cancel_delayed_work_sync(&crda_timeout); 551 } 552 553 static void reset_crda_timeouts(void) 554 { 555 reg_crda_timeouts = 0; 556 } 557 558 /* 559 * This lets us keep regulatory code which is updated on a regulatory 560 * basis in userspace. 561 */ 562 static int call_crda(const char *alpha2) 563 { 564 char country[12]; 565 char *env[] = { country, NULL }; 566 int ret; 567 568 snprintf(country, sizeof(country), "COUNTRY=%c%c", 569 alpha2[0], alpha2[1]); 570 571 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 572 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 573 return -EINVAL; 574 } 575 576 if (!is_world_regdom((char *) alpha2)) 577 pr_debug("Calling CRDA for country: %c%c\n", 578 alpha2[0], alpha2[1]); 579 else 580 pr_debug("Calling CRDA to update world regulatory domain\n"); 581 582 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 583 if (ret) 584 return ret; 585 586 queue_delayed_work(system_power_efficient_wq, 587 &crda_timeout, msecs_to_jiffies(3142)); 588 return 0; 589 } 590 #else 591 static inline void cancel_crda_timeout(void) {} 592 static inline void cancel_crda_timeout_sync(void) {} 593 static inline void reset_crda_timeouts(void) {} 594 static inline int call_crda(const char *alpha2) 595 { 596 return -ENODATA; 597 } 598 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 599 600 /* code to directly load a firmware database through request_firmware */ 601 static const struct fwdb_header *regdb; 602 603 struct fwdb_country { 604 u8 alpha2[2]; 605 __be16 coll_ptr; 606 /* this struct cannot be extended */ 607 } __packed __aligned(4); 608 609 struct fwdb_collection { 610 u8 len; 611 u8 n_rules; 612 u8 dfs_region; 613 /* no optional data yet */ 614 /* aligned to 2, then followed by __be16 array of rule pointers */ 615 } __packed __aligned(4); 616 617 enum fwdb_flags { 618 FWDB_FLAG_NO_OFDM = BIT(0), 619 FWDB_FLAG_NO_OUTDOOR = BIT(1), 620 FWDB_FLAG_DFS = BIT(2), 621 FWDB_FLAG_NO_IR = BIT(3), 622 FWDB_FLAG_AUTO_BW = BIT(4), 623 }; 624 625 struct fwdb_wmm_ac { 626 u8 ecw; 627 u8 aifsn; 628 __be16 cot; 629 } __packed; 630 631 struct fwdb_wmm_rule { 632 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 633 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 634 } __packed; 635 636 struct fwdb_rule { 637 u8 len; 638 u8 flags; 639 __be16 max_eirp; 640 __be32 start, end, max_bw; 641 /* start of optional data */ 642 __be16 cac_timeout; 643 __be16 wmm_ptr; 644 } __packed __aligned(4); 645 646 #define FWDB_MAGIC 0x52474442 647 #define FWDB_VERSION 20 648 649 struct fwdb_header { 650 __be32 magic; 651 __be32 version; 652 struct fwdb_country country[]; 653 } __packed __aligned(4); 654 655 static int ecw2cw(int ecw) 656 { 657 return (1 << ecw) - 1; 658 } 659 660 static bool valid_wmm(struct fwdb_wmm_rule *rule) 661 { 662 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 663 int i; 664 665 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 666 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 667 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 668 u8 aifsn = ac[i].aifsn; 669 670 if (cw_min >= cw_max) 671 return false; 672 673 if (aifsn < 1) 674 return false; 675 } 676 677 return true; 678 } 679 680 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 681 { 682 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 683 684 if ((u8 *)rule + sizeof(rule->len) > data + size) 685 return false; 686 687 /* mandatory fields */ 688 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 689 return false; 690 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 691 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 692 struct fwdb_wmm_rule *wmm; 693 694 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 695 return false; 696 697 wmm = (void *)(data + wmm_ptr); 698 699 if (!valid_wmm(wmm)) 700 return false; 701 } 702 return true; 703 } 704 705 static bool valid_country(const u8 *data, unsigned int size, 706 const struct fwdb_country *country) 707 { 708 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 709 struct fwdb_collection *coll = (void *)(data + ptr); 710 __be16 *rules_ptr; 711 unsigned int i; 712 713 /* make sure we can read len/n_rules */ 714 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 715 return false; 716 717 /* make sure base struct and all rules fit */ 718 if ((u8 *)coll + ALIGN(coll->len, 2) + 719 (coll->n_rules * 2) > data + size) 720 return false; 721 722 /* mandatory fields must exist */ 723 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 724 return false; 725 726 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 727 728 for (i = 0; i < coll->n_rules; i++) { 729 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 730 731 if (!valid_rule(data, size, rule_ptr)) 732 return false; 733 } 734 735 return true; 736 } 737 738 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 739 static struct key *builtin_regdb_keys; 740 741 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen) 742 { 743 const u8 *end = p + buflen; 744 size_t plen; 745 key_ref_t key; 746 747 while (p < end) { 748 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more 749 * than 256 bytes in size. 750 */ 751 if (end - p < 4) 752 goto dodgy_cert; 753 if (p[0] != 0x30 && 754 p[1] != 0x82) 755 goto dodgy_cert; 756 plen = (p[2] << 8) | p[3]; 757 plen += 4; 758 if (plen > end - p) 759 goto dodgy_cert; 760 761 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1), 762 "asymmetric", NULL, p, plen, 763 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 764 KEY_USR_VIEW | KEY_USR_READ), 765 KEY_ALLOC_NOT_IN_QUOTA | 766 KEY_ALLOC_BUILT_IN | 767 KEY_ALLOC_BYPASS_RESTRICTION); 768 if (IS_ERR(key)) { 769 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n", 770 PTR_ERR(key)); 771 } else { 772 pr_notice("Loaded X.509 cert '%s'\n", 773 key_ref_to_ptr(key)->description); 774 key_ref_put(key); 775 } 776 p += plen; 777 } 778 779 return; 780 781 dodgy_cert: 782 pr_err("Problem parsing in-kernel X.509 certificate list\n"); 783 } 784 785 static int __init load_builtin_regdb_keys(void) 786 { 787 builtin_regdb_keys = 788 keyring_alloc(".builtin_regdb_keys", 789 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 790 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 791 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 792 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 793 if (IS_ERR(builtin_regdb_keys)) 794 return PTR_ERR(builtin_regdb_keys); 795 796 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 797 798 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 799 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len); 800 #endif 801 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 802 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 803 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len); 804 #endif 805 806 return 0; 807 } 808 809 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 810 { 811 const struct firmware *sig; 812 bool result; 813 814 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 815 return false; 816 817 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 818 builtin_regdb_keys, 819 VERIFYING_UNSPECIFIED_SIGNATURE, 820 NULL, NULL) == 0; 821 822 release_firmware(sig); 823 824 return result; 825 } 826 827 static void free_regdb_keyring(void) 828 { 829 key_put(builtin_regdb_keys); 830 } 831 #else 832 static int load_builtin_regdb_keys(void) 833 { 834 return 0; 835 } 836 837 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 838 { 839 return true; 840 } 841 842 static void free_regdb_keyring(void) 843 { 844 } 845 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 846 847 static bool valid_regdb(const u8 *data, unsigned int size) 848 { 849 const struct fwdb_header *hdr = (void *)data; 850 const struct fwdb_country *country; 851 852 if (size < sizeof(*hdr)) 853 return false; 854 855 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 856 return false; 857 858 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 859 return false; 860 861 if (!regdb_has_valid_signature(data, size)) 862 return false; 863 864 country = &hdr->country[0]; 865 while ((u8 *)(country + 1) <= data + size) { 866 if (!country->coll_ptr) 867 break; 868 if (!valid_country(data, size, country)) 869 return false; 870 country++; 871 } 872 873 return true; 874 } 875 876 static void set_wmm_rule(const struct fwdb_header *db, 877 const struct fwdb_country *country, 878 const struct fwdb_rule *rule, 879 struct ieee80211_reg_rule *rrule) 880 { 881 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 882 struct fwdb_wmm_rule *wmm; 883 unsigned int i, wmm_ptr; 884 885 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 886 wmm = (void *)((u8 *)db + wmm_ptr); 887 888 if (!valid_wmm(wmm)) { 889 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 890 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 891 country->alpha2[0], country->alpha2[1]); 892 return; 893 } 894 895 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 896 wmm_rule->client[i].cw_min = 897 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 898 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 899 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 900 wmm_rule->client[i].cot = 901 1000 * be16_to_cpu(wmm->client[i].cot); 902 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 903 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 904 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 905 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 906 } 907 908 rrule->has_wmm = true; 909 } 910 911 static int __regdb_query_wmm(const struct fwdb_header *db, 912 const struct fwdb_country *country, int freq, 913 struct ieee80211_reg_rule *rrule) 914 { 915 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 916 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 917 int i; 918 919 for (i = 0; i < coll->n_rules; i++) { 920 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 921 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 922 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 923 924 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 925 continue; 926 927 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 928 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 929 set_wmm_rule(db, country, rule, rrule); 930 return 0; 931 } 932 } 933 934 return -ENODATA; 935 } 936 937 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 938 { 939 const struct fwdb_header *hdr = regdb; 940 const struct fwdb_country *country; 941 942 if (!regdb) 943 return -ENODATA; 944 945 if (IS_ERR(regdb)) 946 return PTR_ERR(regdb); 947 948 country = &hdr->country[0]; 949 while (country->coll_ptr) { 950 if (alpha2_equal(alpha2, country->alpha2)) 951 return __regdb_query_wmm(regdb, country, freq, rule); 952 953 country++; 954 } 955 956 return -ENODATA; 957 } 958 EXPORT_SYMBOL(reg_query_regdb_wmm); 959 960 static int regdb_query_country(const struct fwdb_header *db, 961 const struct fwdb_country *country) 962 { 963 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 964 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 965 struct ieee80211_regdomain *regdom; 966 unsigned int i; 967 968 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 969 GFP_KERNEL); 970 if (!regdom) 971 return -ENOMEM; 972 973 regdom->n_reg_rules = coll->n_rules; 974 regdom->alpha2[0] = country->alpha2[0]; 975 regdom->alpha2[1] = country->alpha2[1]; 976 regdom->dfs_region = coll->dfs_region; 977 978 for (i = 0; i < regdom->n_reg_rules; i++) { 979 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 980 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 981 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 982 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 983 984 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 985 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 986 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 987 988 rrule->power_rule.max_antenna_gain = 0; 989 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 990 991 rrule->flags = 0; 992 if (rule->flags & FWDB_FLAG_NO_OFDM) 993 rrule->flags |= NL80211_RRF_NO_OFDM; 994 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 995 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 996 if (rule->flags & FWDB_FLAG_DFS) 997 rrule->flags |= NL80211_RRF_DFS; 998 if (rule->flags & FWDB_FLAG_NO_IR) 999 rrule->flags |= NL80211_RRF_NO_IR; 1000 if (rule->flags & FWDB_FLAG_AUTO_BW) 1001 rrule->flags |= NL80211_RRF_AUTO_BW; 1002 1003 rrule->dfs_cac_ms = 0; 1004 1005 /* handle optional data */ 1006 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 1007 rrule->dfs_cac_ms = 1008 1000 * be16_to_cpu(rule->cac_timeout); 1009 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 1010 set_wmm_rule(db, country, rule, rrule); 1011 } 1012 1013 return reg_schedule_apply(regdom); 1014 } 1015 1016 static int query_regdb(const char *alpha2) 1017 { 1018 const struct fwdb_header *hdr = regdb; 1019 const struct fwdb_country *country; 1020 1021 ASSERT_RTNL(); 1022 1023 if (IS_ERR(regdb)) 1024 return PTR_ERR(regdb); 1025 1026 country = &hdr->country[0]; 1027 while (country->coll_ptr) { 1028 if (alpha2_equal(alpha2, country->alpha2)) 1029 return regdb_query_country(regdb, country); 1030 country++; 1031 } 1032 1033 return -ENODATA; 1034 } 1035 1036 static void regdb_fw_cb(const struct firmware *fw, void *context) 1037 { 1038 int set_error = 0; 1039 bool restore = true; 1040 void *db; 1041 1042 if (!fw) { 1043 pr_info("failed to load regulatory.db\n"); 1044 set_error = -ENODATA; 1045 } else if (!valid_regdb(fw->data, fw->size)) { 1046 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1047 set_error = -EINVAL; 1048 } 1049 1050 rtnl_lock(); 1051 if (regdb && !IS_ERR(regdb)) { 1052 /* negative case - a bug 1053 * positive case - can happen due to race in case of multiple cb's in 1054 * queue, due to usage of asynchronous callback 1055 * 1056 * Either case, just restore and free new db. 1057 */ 1058 } else if (set_error) { 1059 regdb = ERR_PTR(set_error); 1060 } else if (fw) { 1061 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1062 if (db) { 1063 regdb = db; 1064 restore = context && query_regdb(context); 1065 } else { 1066 restore = true; 1067 } 1068 } 1069 1070 if (restore) 1071 restore_regulatory_settings(true, false); 1072 1073 rtnl_unlock(); 1074 1075 kfree(context); 1076 1077 release_firmware(fw); 1078 } 1079 1080 static int query_regdb_file(const char *alpha2) 1081 { 1082 ASSERT_RTNL(); 1083 1084 if (regdb) 1085 return query_regdb(alpha2); 1086 1087 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1088 if (!alpha2) 1089 return -ENOMEM; 1090 1091 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1092 ®_pdev->dev, GFP_KERNEL, 1093 (void *)alpha2, regdb_fw_cb); 1094 } 1095 1096 int reg_reload_regdb(void) 1097 { 1098 const struct firmware *fw; 1099 void *db; 1100 int err; 1101 1102 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1103 if (err) 1104 return err; 1105 1106 if (!valid_regdb(fw->data, fw->size)) { 1107 err = -ENODATA; 1108 goto out; 1109 } 1110 1111 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1112 if (!db) { 1113 err = -ENOMEM; 1114 goto out; 1115 } 1116 1117 rtnl_lock(); 1118 if (!IS_ERR_OR_NULL(regdb)) 1119 kfree(regdb); 1120 regdb = db; 1121 rtnl_unlock(); 1122 1123 out: 1124 release_firmware(fw); 1125 return err; 1126 } 1127 1128 static bool reg_query_database(struct regulatory_request *request) 1129 { 1130 if (query_regdb_file(request->alpha2) == 0) 1131 return true; 1132 1133 if (call_crda(request->alpha2) == 0) 1134 return true; 1135 1136 return false; 1137 } 1138 1139 bool reg_is_valid_request(const char *alpha2) 1140 { 1141 struct regulatory_request *lr = get_last_request(); 1142 1143 if (!lr || lr->processed) 1144 return false; 1145 1146 return alpha2_equal(lr->alpha2, alpha2); 1147 } 1148 1149 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1150 { 1151 struct regulatory_request *lr = get_last_request(); 1152 1153 /* 1154 * Follow the driver's regulatory domain, if present, unless a country 1155 * IE has been processed or a user wants to help complaince further 1156 */ 1157 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1158 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1159 wiphy->regd) 1160 return get_wiphy_regdom(wiphy); 1161 1162 return get_cfg80211_regdom(); 1163 } 1164 1165 static unsigned int 1166 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1167 const struct ieee80211_reg_rule *rule) 1168 { 1169 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1170 const struct ieee80211_freq_range *freq_range_tmp; 1171 const struct ieee80211_reg_rule *tmp; 1172 u32 start_freq, end_freq, idx, no; 1173 1174 for (idx = 0; idx < rd->n_reg_rules; idx++) 1175 if (rule == &rd->reg_rules[idx]) 1176 break; 1177 1178 if (idx == rd->n_reg_rules) 1179 return 0; 1180 1181 /* get start_freq */ 1182 no = idx; 1183 1184 while (no) { 1185 tmp = &rd->reg_rules[--no]; 1186 freq_range_tmp = &tmp->freq_range; 1187 1188 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1189 break; 1190 1191 freq_range = freq_range_tmp; 1192 } 1193 1194 start_freq = freq_range->start_freq_khz; 1195 1196 /* get end_freq */ 1197 freq_range = &rule->freq_range; 1198 no = idx; 1199 1200 while (no < rd->n_reg_rules - 1) { 1201 tmp = &rd->reg_rules[++no]; 1202 freq_range_tmp = &tmp->freq_range; 1203 1204 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1205 break; 1206 1207 freq_range = freq_range_tmp; 1208 } 1209 1210 end_freq = freq_range->end_freq_khz; 1211 1212 return end_freq - start_freq; 1213 } 1214 1215 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1216 const struct ieee80211_reg_rule *rule) 1217 { 1218 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1219 1220 if (rule->flags & NL80211_RRF_NO_160MHZ) 1221 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1222 if (rule->flags & NL80211_RRF_NO_80MHZ) 1223 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1224 1225 /* 1226 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1227 * are not allowed. 1228 */ 1229 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1230 rule->flags & NL80211_RRF_NO_HT40PLUS) 1231 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1232 1233 return bw; 1234 } 1235 1236 /* Sanity check on a regulatory rule */ 1237 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1238 { 1239 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1240 u32 freq_diff; 1241 1242 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1243 return false; 1244 1245 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1246 return false; 1247 1248 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1249 1250 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1251 freq_range->max_bandwidth_khz > freq_diff) 1252 return false; 1253 1254 return true; 1255 } 1256 1257 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1258 { 1259 const struct ieee80211_reg_rule *reg_rule = NULL; 1260 unsigned int i; 1261 1262 if (!rd->n_reg_rules) 1263 return false; 1264 1265 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1266 return false; 1267 1268 for (i = 0; i < rd->n_reg_rules; i++) { 1269 reg_rule = &rd->reg_rules[i]; 1270 if (!is_valid_reg_rule(reg_rule)) 1271 return false; 1272 } 1273 1274 return true; 1275 } 1276 1277 /** 1278 * freq_in_rule_band - tells us if a frequency is in a frequency band 1279 * @freq_range: frequency rule we want to query 1280 * @freq_khz: frequency we are inquiring about 1281 * 1282 * This lets us know if a specific frequency rule is or is not relevant to 1283 * a specific frequency's band. Bands are device specific and artificial 1284 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1285 * however it is safe for now to assume that a frequency rule should not be 1286 * part of a frequency's band if the start freq or end freq are off by more 1287 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1288 * 60 GHz band. 1289 * This resolution can be lowered and should be considered as we add 1290 * regulatory rule support for other "bands". 1291 **/ 1292 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1293 u32 freq_khz) 1294 { 1295 #define ONE_GHZ_IN_KHZ 1000000 1296 /* 1297 * From 802.11ad: directional multi-gigabit (DMG): 1298 * Pertaining to operation in a frequency band containing a channel 1299 * with the Channel starting frequency above 45 GHz. 1300 */ 1301 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1302 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1303 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1304 return true; 1305 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1306 return true; 1307 return false; 1308 #undef ONE_GHZ_IN_KHZ 1309 } 1310 1311 /* 1312 * Later on we can perhaps use the more restrictive DFS 1313 * region but we don't have information for that yet so 1314 * for now simply disallow conflicts. 1315 */ 1316 static enum nl80211_dfs_regions 1317 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1318 const enum nl80211_dfs_regions dfs_region2) 1319 { 1320 if (dfs_region1 != dfs_region2) 1321 return NL80211_DFS_UNSET; 1322 return dfs_region1; 1323 } 1324 1325 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1326 const struct ieee80211_wmm_ac *wmm_ac2, 1327 struct ieee80211_wmm_ac *intersect) 1328 { 1329 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1330 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1331 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1332 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1333 } 1334 1335 /* 1336 * Helper for regdom_intersect(), this does the real 1337 * mathematical intersection fun 1338 */ 1339 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1340 const struct ieee80211_regdomain *rd2, 1341 const struct ieee80211_reg_rule *rule1, 1342 const struct ieee80211_reg_rule *rule2, 1343 struct ieee80211_reg_rule *intersected_rule) 1344 { 1345 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1346 struct ieee80211_freq_range *freq_range; 1347 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1348 struct ieee80211_power_rule *power_rule; 1349 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1350 struct ieee80211_wmm_rule *wmm_rule; 1351 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1352 1353 freq_range1 = &rule1->freq_range; 1354 freq_range2 = &rule2->freq_range; 1355 freq_range = &intersected_rule->freq_range; 1356 1357 power_rule1 = &rule1->power_rule; 1358 power_rule2 = &rule2->power_rule; 1359 power_rule = &intersected_rule->power_rule; 1360 1361 wmm_rule1 = &rule1->wmm_rule; 1362 wmm_rule2 = &rule2->wmm_rule; 1363 wmm_rule = &intersected_rule->wmm_rule; 1364 1365 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1366 freq_range2->start_freq_khz); 1367 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1368 freq_range2->end_freq_khz); 1369 1370 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1371 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1372 1373 if (rule1->flags & NL80211_RRF_AUTO_BW) 1374 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1375 if (rule2->flags & NL80211_RRF_AUTO_BW) 1376 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1377 1378 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1379 1380 intersected_rule->flags = rule1->flags | rule2->flags; 1381 1382 /* 1383 * In case NL80211_RRF_AUTO_BW requested for both rules 1384 * set AUTO_BW in intersected rule also. Next we will 1385 * calculate BW correctly in handle_channel function. 1386 * In other case remove AUTO_BW flag while we calculate 1387 * maximum bandwidth correctly and auto calculation is 1388 * not required. 1389 */ 1390 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1391 (rule2->flags & NL80211_RRF_AUTO_BW)) 1392 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1393 else 1394 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1395 1396 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1397 if (freq_range->max_bandwidth_khz > freq_diff) 1398 freq_range->max_bandwidth_khz = freq_diff; 1399 1400 power_rule->max_eirp = min(power_rule1->max_eirp, 1401 power_rule2->max_eirp); 1402 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1403 power_rule2->max_antenna_gain); 1404 1405 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1406 rule2->dfs_cac_ms); 1407 1408 if (rule1->has_wmm && rule2->has_wmm) { 1409 u8 ac; 1410 1411 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1412 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1413 &wmm_rule2->client[ac], 1414 &wmm_rule->client[ac]); 1415 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1416 &wmm_rule2->ap[ac], 1417 &wmm_rule->ap[ac]); 1418 } 1419 1420 intersected_rule->has_wmm = true; 1421 } else if (rule1->has_wmm) { 1422 *wmm_rule = *wmm_rule1; 1423 intersected_rule->has_wmm = true; 1424 } else if (rule2->has_wmm) { 1425 *wmm_rule = *wmm_rule2; 1426 intersected_rule->has_wmm = true; 1427 } else { 1428 intersected_rule->has_wmm = false; 1429 } 1430 1431 if (!is_valid_reg_rule(intersected_rule)) 1432 return -EINVAL; 1433 1434 return 0; 1435 } 1436 1437 /* check whether old rule contains new rule */ 1438 static bool rule_contains(struct ieee80211_reg_rule *r1, 1439 struct ieee80211_reg_rule *r2) 1440 { 1441 /* for simplicity, currently consider only same flags */ 1442 if (r1->flags != r2->flags) 1443 return false; 1444 1445 /* verify r1 is more restrictive */ 1446 if ((r1->power_rule.max_antenna_gain > 1447 r2->power_rule.max_antenna_gain) || 1448 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1449 return false; 1450 1451 /* make sure r2's range is contained within r1 */ 1452 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1453 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1454 return false; 1455 1456 /* and finally verify that r1.max_bw >= r2.max_bw */ 1457 if (r1->freq_range.max_bandwidth_khz < 1458 r2->freq_range.max_bandwidth_khz) 1459 return false; 1460 1461 return true; 1462 } 1463 1464 /* add or extend current rules. do nothing if rule is already contained */ 1465 static void add_rule(struct ieee80211_reg_rule *rule, 1466 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1467 { 1468 struct ieee80211_reg_rule *tmp_rule; 1469 int i; 1470 1471 for (i = 0; i < *n_rules; i++) { 1472 tmp_rule = ®_rules[i]; 1473 /* rule is already contained - do nothing */ 1474 if (rule_contains(tmp_rule, rule)) 1475 return; 1476 1477 /* extend rule if possible */ 1478 if (rule_contains(rule, tmp_rule)) { 1479 memcpy(tmp_rule, rule, sizeof(*rule)); 1480 return; 1481 } 1482 } 1483 1484 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1485 (*n_rules)++; 1486 } 1487 1488 /** 1489 * regdom_intersect - do the intersection between two regulatory domains 1490 * @rd1: first regulatory domain 1491 * @rd2: second regulatory domain 1492 * 1493 * Use this function to get the intersection between two regulatory domains. 1494 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1495 * as no one single alpha2 can represent this regulatory domain. 1496 * 1497 * Returns a pointer to the regulatory domain structure which will hold the 1498 * resulting intersection of rules between rd1 and rd2. We will 1499 * kzalloc() this structure for you. 1500 */ 1501 static struct ieee80211_regdomain * 1502 regdom_intersect(const struct ieee80211_regdomain *rd1, 1503 const struct ieee80211_regdomain *rd2) 1504 { 1505 int r; 1506 unsigned int x, y; 1507 unsigned int num_rules = 0; 1508 const struct ieee80211_reg_rule *rule1, *rule2; 1509 struct ieee80211_reg_rule intersected_rule; 1510 struct ieee80211_regdomain *rd; 1511 1512 if (!rd1 || !rd2) 1513 return NULL; 1514 1515 /* 1516 * First we get a count of the rules we'll need, then we actually 1517 * build them. This is to so we can malloc() and free() a 1518 * regdomain once. The reason we use reg_rules_intersect() here 1519 * is it will return -EINVAL if the rule computed makes no sense. 1520 * All rules that do check out OK are valid. 1521 */ 1522 1523 for (x = 0; x < rd1->n_reg_rules; x++) { 1524 rule1 = &rd1->reg_rules[x]; 1525 for (y = 0; y < rd2->n_reg_rules; y++) { 1526 rule2 = &rd2->reg_rules[y]; 1527 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1528 &intersected_rule)) 1529 num_rules++; 1530 } 1531 } 1532 1533 if (!num_rules) 1534 return NULL; 1535 1536 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1537 if (!rd) 1538 return NULL; 1539 1540 for (x = 0; x < rd1->n_reg_rules; x++) { 1541 rule1 = &rd1->reg_rules[x]; 1542 for (y = 0; y < rd2->n_reg_rules; y++) { 1543 rule2 = &rd2->reg_rules[y]; 1544 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1545 &intersected_rule); 1546 /* 1547 * No need to memset here the intersected rule here as 1548 * we're not using the stack anymore 1549 */ 1550 if (r) 1551 continue; 1552 1553 add_rule(&intersected_rule, rd->reg_rules, 1554 &rd->n_reg_rules); 1555 } 1556 } 1557 1558 rd->alpha2[0] = '9'; 1559 rd->alpha2[1] = '8'; 1560 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1561 rd2->dfs_region); 1562 1563 return rd; 1564 } 1565 1566 /* 1567 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1568 * want to just have the channel structure use these 1569 */ 1570 static u32 map_regdom_flags(u32 rd_flags) 1571 { 1572 u32 channel_flags = 0; 1573 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1574 channel_flags |= IEEE80211_CHAN_NO_IR; 1575 if (rd_flags & NL80211_RRF_DFS) 1576 channel_flags |= IEEE80211_CHAN_RADAR; 1577 if (rd_flags & NL80211_RRF_NO_OFDM) 1578 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1579 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1580 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1581 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1582 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1583 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1584 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1585 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1586 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1587 if (rd_flags & NL80211_RRF_NO_80MHZ) 1588 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1589 if (rd_flags & NL80211_RRF_NO_160MHZ) 1590 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1591 if (rd_flags & NL80211_RRF_NO_HE) 1592 channel_flags |= IEEE80211_CHAN_NO_HE; 1593 return channel_flags; 1594 } 1595 1596 static const struct ieee80211_reg_rule * 1597 freq_reg_info_regd(u32 center_freq, 1598 const struct ieee80211_regdomain *regd, u32 bw) 1599 { 1600 int i; 1601 bool band_rule_found = false; 1602 bool bw_fits = false; 1603 1604 if (!regd) 1605 return ERR_PTR(-EINVAL); 1606 1607 for (i = 0; i < regd->n_reg_rules; i++) { 1608 const struct ieee80211_reg_rule *rr; 1609 const struct ieee80211_freq_range *fr = NULL; 1610 1611 rr = ®d->reg_rules[i]; 1612 fr = &rr->freq_range; 1613 1614 /* 1615 * We only need to know if one frequency rule was 1616 * in center_freq's band, that's enough, so let's 1617 * not overwrite it once found 1618 */ 1619 if (!band_rule_found) 1620 band_rule_found = freq_in_rule_band(fr, center_freq); 1621 1622 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1623 1624 if (band_rule_found && bw_fits) 1625 return rr; 1626 } 1627 1628 if (!band_rule_found) 1629 return ERR_PTR(-ERANGE); 1630 1631 return ERR_PTR(-EINVAL); 1632 } 1633 1634 static const struct ieee80211_reg_rule * 1635 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1636 { 1637 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1638 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20}; 1639 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE); 1640 int i = ARRAY_SIZE(bws) - 1; 1641 u32 bw; 1642 1643 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) { 1644 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1645 if (!IS_ERR(reg_rule)) 1646 return reg_rule; 1647 } 1648 1649 return reg_rule; 1650 } 1651 1652 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1653 u32 center_freq) 1654 { 1655 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20; 1656 1657 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw)); 1658 } 1659 EXPORT_SYMBOL(freq_reg_info); 1660 1661 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1662 { 1663 switch (initiator) { 1664 case NL80211_REGDOM_SET_BY_CORE: 1665 return "core"; 1666 case NL80211_REGDOM_SET_BY_USER: 1667 return "user"; 1668 case NL80211_REGDOM_SET_BY_DRIVER: 1669 return "driver"; 1670 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1671 return "country element"; 1672 default: 1673 WARN_ON(1); 1674 return "bug"; 1675 } 1676 } 1677 EXPORT_SYMBOL(reg_initiator_name); 1678 1679 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1680 const struct ieee80211_reg_rule *reg_rule, 1681 const struct ieee80211_channel *chan) 1682 { 1683 const struct ieee80211_freq_range *freq_range = NULL; 1684 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0; 1685 bool is_s1g = chan->band == NL80211_BAND_S1GHZ; 1686 1687 freq_range = ®_rule->freq_range; 1688 1689 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1690 center_freq_khz = ieee80211_channel_to_khz(chan); 1691 /* Check if auto calculation requested */ 1692 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1693 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1694 1695 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1696 if (!cfg80211_does_bw_fit_range(freq_range, 1697 center_freq_khz, 1698 MHZ_TO_KHZ(10))) 1699 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1700 if (!cfg80211_does_bw_fit_range(freq_range, 1701 center_freq_khz, 1702 MHZ_TO_KHZ(20))) 1703 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1704 1705 if (is_s1g) { 1706 /* S1G is strict about non overlapping channels. We can 1707 * calculate which bandwidth is allowed per channel by finding 1708 * the largest bandwidth which cleanly divides the freq_range. 1709 */ 1710 int edge_offset; 1711 int ch_bw = max_bandwidth_khz; 1712 1713 while (ch_bw) { 1714 edge_offset = (center_freq_khz - ch_bw / 2) - 1715 freq_range->start_freq_khz; 1716 if (edge_offset % ch_bw == 0) { 1717 switch (KHZ_TO_MHZ(ch_bw)) { 1718 case 1: 1719 bw_flags |= IEEE80211_CHAN_1MHZ; 1720 break; 1721 case 2: 1722 bw_flags |= IEEE80211_CHAN_2MHZ; 1723 break; 1724 case 4: 1725 bw_flags |= IEEE80211_CHAN_4MHZ; 1726 break; 1727 case 8: 1728 bw_flags |= IEEE80211_CHAN_8MHZ; 1729 break; 1730 case 16: 1731 bw_flags |= IEEE80211_CHAN_16MHZ; 1732 break; 1733 default: 1734 /* If we got here, no bandwidths fit on 1735 * this frequency, ie. band edge. 1736 */ 1737 bw_flags |= IEEE80211_CHAN_DISABLED; 1738 break; 1739 } 1740 break; 1741 } 1742 ch_bw /= 2; 1743 } 1744 } else { 1745 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1746 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1747 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1748 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1749 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1750 bw_flags |= IEEE80211_CHAN_NO_HT40; 1751 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1752 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1753 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1754 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1755 } 1756 return bw_flags; 1757 } 1758 1759 static void handle_channel_single_rule(struct wiphy *wiphy, 1760 enum nl80211_reg_initiator initiator, 1761 struct ieee80211_channel *chan, 1762 u32 flags, 1763 struct regulatory_request *lr, 1764 struct wiphy *request_wiphy, 1765 const struct ieee80211_reg_rule *reg_rule) 1766 { 1767 u32 bw_flags = 0; 1768 const struct ieee80211_power_rule *power_rule = NULL; 1769 const struct ieee80211_regdomain *regd; 1770 1771 regd = reg_get_regdomain(wiphy); 1772 1773 power_rule = ®_rule->power_rule; 1774 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1775 1776 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1777 request_wiphy && request_wiphy == wiphy && 1778 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1779 /* 1780 * This guarantees the driver's requested regulatory domain 1781 * will always be used as a base for further regulatory 1782 * settings 1783 */ 1784 chan->flags = chan->orig_flags = 1785 map_regdom_flags(reg_rule->flags) | bw_flags; 1786 chan->max_antenna_gain = chan->orig_mag = 1787 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1788 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1789 (int) MBM_TO_DBM(power_rule->max_eirp); 1790 1791 if (chan->flags & IEEE80211_CHAN_RADAR) { 1792 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1793 if (reg_rule->dfs_cac_ms) 1794 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1795 } 1796 1797 return; 1798 } 1799 1800 chan->dfs_state = NL80211_DFS_USABLE; 1801 chan->dfs_state_entered = jiffies; 1802 1803 chan->beacon_found = false; 1804 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1805 chan->max_antenna_gain = 1806 min_t(int, chan->orig_mag, 1807 MBI_TO_DBI(power_rule->max_antenna_gain)); 1808 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1809 1810 if (chan->flags & IEEE80211_CHAN_RADAR) { 1811 if (reg_rule->dfs_cac_ms) 1812 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1813 else 1814 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1815 } 1816 1817 if (chan->orig_mpwr) { 1818 /* 1819 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1820 * will always follow the passed country IE power settings. 1821 */ 1822 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1823 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1824 chan->max_power = chan->max_reg_power; 1825 else 1826 chan->max_power = min(chan->orig_mpwr, 1827 chan->max_reg_power); 1828 } else 1829 chan->max_power = chan->max_reg_power; 1830 } 1831 1832 static void handle_channel_adjacent_rules(struct wiphy *wiphy, 1833 enum nl80211_reg_initiator initiator, 1834 struct ieee80211_channel *chan, 1835 u32 flags, 1836 struct regulatory_request *lr, 1837 struct wiphy *request_wiphy, 1838 const struct ieee80211_reg_rule *rrule1, 1839 const struct ieee80211_reg_rule *rrule2, 1840 struct ieee80211_freq_range *comb_range) 1841 { 1842 u32 bw_flags1 = 0; 1843 u32 bw_flags2 = 0; 1844 const struct ieee80211_power_rule *power_rule1 = NULL; 1845 const struct ieee80211_power_rule *power_rule2 = NULL; 1846 const struct ieee80211_regdomain *regd; 1847 1848 regd = reg_get_regdomain(wiphy); 1849 1850 power_rule1 = &rrule1->power_rule; 1851 power_rule2 = &rrule2->power_rule; 1852 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan); 1853 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan); 1854 1855 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1856 request_wiphy && request_wiphy == wiphy && 1857 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1858 /* This guarantees the driver's requested regulatory domain 1859 * will always be used as a base for further regulatory 1860 * settings 1861 */ 1862 chan->flags = 1863 map_regdom_flags(rrule1->flags) | 1864 map_regdom_flags(rrule2->flags) | 1865 bw_flags1 | 1866 bw_flags2; 1867 chan->orig_flags = chan->flags; 1868 chan->max_antenna_gain = 1869 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain), 1870 MBI_TO_DBI(power_rule2->max_antenna_gain)); 1871 chan->orig_mag = chan->max_antenna_gain; 1872 chan->max_reg_power = 1873 min_t(int, MBM_TO_DBM(power_rule1->max_eirp), 1874 MBM_TO_DBM(power_rule2->max_eirp)); 1875 chan->max_power = chan->max_reg_power; 1876 chan->orig_mpwr = chan->max_reg_power; 1877 1878 if (chan->flags & IEEE80211_CHAN_RADAR) { 1879 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1880 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1881 chan->dfs_cac_ms = max_t(unsigned int, 1882 rrule1->dfs_cac_ms, 1883 rrule2->dfs_cac_ms); 1884 } 1885 1886 return; 1887 } 1888 1889 chan->dfs_state = NL80211_DFS_USABLE; 1890 chan->dfs_state_entered = jiffies; 1891 1892 chan->beacon_found = false; 1893 chan->flags = flags | bw_flags1 | bw_flags2 | 1894 map_regdom_flags(rrule1->flags) | 1895 map_regdom_flags(rrule2->flags); 1896 1897 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz 1898 * (otherwise no adj. rule case), recheck therefore 1899 */ 1900 if (cfg80211_does_bw_fit_range(comb_range, 1901 ieee80211_channel_to_khz(chan), 1902 MHZ_TO_KHZ(10))) 1903 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ; 1904 if (cfg80211_does_bw_fit_range(comb_range, 1905 ieee80211_channel_to_khz(chan), 1906 MHZ_TO_KHZ(20))) 1907 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ; 1908 1909 chan->max_antenna_gain = 1910 min_t(int, chan->orig_mag, 1911 min_t(int, 1912 MBI_TO_DBI(power_rule1->max_antenna_gain), 1913 MBI_TO_DBI(power_rule2->max_antenna_gain))); 1914 chan->max_reg_power = min_t(int, 1915 MBM_TO_DBM(power_rule1->max_eirp), 1916 MBM_TO_DBM(power_rule2->max_eirp)); 1917 1918 if (chan->flags & IEEE80211_CHAN_RADAR) { 1919 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1920 chan->dfs_cac_ms = max_t(unsigned int, 1921 rrule1->dfs_cac_ms, 1922 rrule2->dfs_cac_ms); 1923 else 1924 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1925 } 1926 1927 if (chan->orig_mpwr) { 1928 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1929 * will always follow the passed country IE power settings. 1930 */ 1931 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1932 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1933 chan->max_power = chan->max_reg_power; 1934 else 1935 chan->max_power = min(chan->orig_mpwr, 1936 chan->max_reg_power); 1937 } else { 1938 chan->max_power = chan->max_reg_power; 1939 } 1940 } 1941 1942 /* Note that right now we assume the desired channel bandwidth 1943 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1944 * per channel, the primary and the extension channel). 1945 */ 1946 static void handle_channel(struct wiphy *wiphy, 1947 enum nl80211_reg_initiator initiator, 1948 struct ieee80211_channel *chan) 1949 { 1950 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan); 1951 struct regulatory_request *lr = get_last_request(); 1952 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1953 const struct ieee80211_reg_rule *rrule = NULL; 1954 const struct ieee80211_reg_rule *rrule1 = NULL; 1955 const struct ieee80211_reg_rule *rrule2 = NULL; 1956 1957 u32 flags = chan->orig_flags; 1958 1959 rrule = freq_reg_info(wiphy, orig_chan_freq); 1960 if (IS_ERR(rrule)) { 1961 /* check for adjacent match, therefore get rules for 1962 * chan - 20 MHz and chan + 20 MHz and test 1963 * if reg rules are adjacent 1964 */ 1965 rrule1 = freq_reg_info(wiphy, 1966 orig_chan_freq - MHZ_TO_KHZ(20)); 1967 rrule2 = freq_reg_info(wiphy, 1968 orig_chan_freq + MHZ_TO_KHZ(20)); 1969 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) { 1970 struct ieee80211_freq_range comb_range; 1971 1972 if (rrule1->freq_range.end_freq_khz != 1973 rrule2->freq_range.start_freq_khz) 1974 goto disable_chan; 1975 1976 comb_range.start_freq_khz = 1977 rrule1->freq_range.start_freq_khz; 1978 comb_range.end_freq_khz = 1979 rrule2->freq_range.end_freq_khz; 1980 comb_range.max_bandwidth_khz = 1981 min_t(u32, 1982 rrule1->freq_range.max_bandwidth_khz, 1983 rrule2->freq_range.max_bandwidth_khz); 1984 1985 if (!cfg80211_does_bw_fit_range(&comb_range, 1986 orig_chan_freq, 1987 MHZ_TO_KHZ(20))) 1988 goto disable_chan; 1989 1990 handle_channel_adjacent_rules(wiphy, initiator, chan, 1991 flags, lr, request_wiphy, 1992 rrule1, rrule2, 1993 &comb_range); 1994 return; 1995 } 1996 1997 disable_chan: 1998 /* We will disable all channels that do not match our 1999 * received regulatory rule unless the hint is coming 2000 * from a Country IE and the Country IE had no information 2001 * about a band. The IEEE 802.11 spec allows for an AP 2002 * to send only a subset of the regulatory rules allowed, 2003 * so an AP in the US that only supports 2.4 GHz may only send 2004 * a country IE with information for the 2.4 GHz band 2005 * while 5 GHz is still supported. 2006 */ 2007 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2008 PTR_ERR(rrule) == -ERANGE) 2009 return; 2010 2011 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2012 request_wiphy && request_wiphy == wiphy && 2013 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2014 pr_debug("Disabling freq %d.%03d MHz for good\n", 2015 chan->center_freq, chan->freq_offset); 2016 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2017 chan->flags = chan->orig_flags; 2018 } else { 2019 pr_debug("Disabling freq %d.%03d MHz\n", 2020 chan->center_freq, chan->freq_offset); 2021 chan->flags |= IEEE80211_CHAN_DISABLED; 2022 } 2023 return; 2024 } 2025 2026 handle_channel_single_rule(wiphy, initiator, chan, flags, lr, 2027 request_wiphy, rrule); 2028 } 2029 2030 static void handle_band(struct wiphy *wiphy, 2031 enum nl80211_reg_initiator initiator, 2032 struct ieee80211_supported_band *sband) 2033 { 2034 unsigned int i; 2035 2036 if (!sband) 2037 return; 2038 2039 for (i = 0; i < sband->n_channels; i++) 2040 handle_channel(wiphy, initiator, &sband->channels[i]); 2041 } 2042 2043 static bool reg_request_cell_base(struct regulatory_request *request) 2044 { 2045 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 2046 return false; 2047 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 2048 } 2049 2050 bool reg_last_request_cell_base(void) 2051 { 2052 return reg_request_cell_base(get_last_request()); 2053 } 2054 2055 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 2056 /* Core specific check */ 2057 static enum reg_request_treatment 2058 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2059 { 2060 struct regulatory_request *lr = get_last_request(); 2061 2062 if (!reg_num_devs_support_basehint) 2063 return REG_REQ_IGNORE; 2064 2065 if (reg_request_cell_base(lr) && 2066 !regdom_changes(pending_request->alpha2)) 2067 return REG_REQ_ALREADY_SET; 2068 2069 return REG_REQ_OK; 2070 } 2071 2072 /* Device specific check */ 2073 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2074 { 2075 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 2076 } 2077 #else 2078 static enum reg_request_treatment 2079 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2080 { 2081 return REG_REQ_IGNORE; 2082 } 2083 2084 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2085 { 2086 return true; 2087 } 2088 #endif 2089 2090 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 2091 { 2092 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 2093 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 2094 return true; 2095 return false; 2096 } 2097 2098 static bool ignore_reg_update(struct wiphy *wiphy, 2099 enum nl80211_reg_initiator initiator) 2100 { 2101 struct regulatory_request *lr = get_last_request(); 2102 2103 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2104 return true; 2105 2106 if (!lr) { 2107 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 2108 reg_initiator_name(initiator)); 2109 return true; 2110 } 2111 2112 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2113 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 2114 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 2115 reg_initiator_name(initiator)); 2116 return true; 2117 } 2118 2119 /* 2120 * wiphy->regd will be set once the device has its own 2121 * desired regulatory domain set 2122 */ 2123 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 2124 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2125 !is_world_regdom(lr->alpha2)) { 2126 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 2127 reg_initiator_name(initiator)); 2128 return true; 2129 } 2130 2131 if (reg_request_cell_base(lr)) 2132 return reg_dev_ignore_cell_hint(wiphy); 2133 2134 return false; 2135 } 2136 2137 static bool reg_is_world_roaming(struct wiphy *wiphy) 2138 { 2139 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 2140 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 2141 struct regulatory_request *lr = get_last_request(); 2142 2143 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 2144 return true; 2145 2146 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2147 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2148 return true; 2149 2150 return false; 2151 } 2152 2153 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 2154 struct reg_beacon *reg_beacon) 2155 { 2156 struct ieee80211_supported_band *sband; 2157 struct ieee80211_channel *chan; 2158 bool channel_changed = false; 2159 struct ieee80211_channel chan_before; 2160 2161 sband = wiphy->bands[reg_beacon->chan.band]; 2162 chan = &sband->channels[chan_idx]; 2163 2164 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan))) 2165 return; 2166 2167 if (chan->beacon_found) 2168 return; 2169 2170 chan->beacon_found = true; 2171 2172 if (!reg_is_world_roaming(wiphy)) 2173 return; 2174 2175 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 2176 return; 2177 2178 chan_before = *chan; 2179 2180 if (chan->flags & IEEE80211_CHAN_NO_IR) { 2181 chan->flags &= ~IEEE80211_CHAN_NO_IR; 2182 channel_changed = true; 2183 } 2184 2185 if (channel_changed) 2186 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 2187 } 2188 2189 /* 2190 * Called when a scan on a wiphy finds a beacon on 2191 * new channel 2192 */ 2193 static void wiphy_update_new_beacon(struct wiphy *wiphy, 2194 struct reg_beacon *reg_beacon) 2195 { 2196 unsigned int i; 2197 struct ieee80211_supported_band *sband; 2198 2199 if (!wiphy->bands[reg_beacon->chan.band]) 2200 return; 2201 2202 sband = wiphy->bands[reg_beacon->chan.band]; 2203 2204 for (i = 0; i < sband->n_channels; i++) 2205 handle_reg_beacon(wiphy, i, reg_beacon); 2206 } 2207 2208 /* 2209 * Called upon reg changes or a new wiphy is added 2210 */ 2211 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 2212 { 2213 unsigned int i; 2214 struct ieee80211_supported_band *sband; 2215 struct reg_beacon *reg_beacon; 2216 2217 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 2218 if (!wiphy->bands[reg_beacon->chan.band]) 2219 continue; 2220 sband = wiphy->bands[reg_beacon->chan.band]; 2221 for (i = 0; i < sband->n_channels; i++) 2222 handle_reg_beacon(wiphy, i, reg_beacon); 2223 } 2224 } 2225 2226 /* Reap the advantages of previously found beacons */ 2227 static void reg_process_beacons(struct wiphy *wiphy) 2228 { 2229 /* 2230 * Means we are just firing up cfg80211, so no beacons would 2231 * have been processed yet. 2232 */ 2233 if (!last_request) 2234 return; 2235 wiphy_update_beacon_reg(wiphy); 2236 } 2237 2238 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2239 { 2240 if (!chan) 2241 return false; 2242 if (chan->flags & IEEE80211_CHAN_DISABLED) 2243 return false; 2244 /* This would happen when regulatory rules disallow HT40 completely */ 2245 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2246 return false; 2247 return true; 2248 } 2249 2250 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2251 struct ieee80211_channel *channel) 2252 { 2253 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2254 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2255 const struct ieee80211_regdomain *regd; 2256 unsigned int i; 2257 u32 flags; 2258 2259 if (!is_ht40_allowed(channel)) { 2260 channel->flags |= IEEE80211_CHAN_NO_HT40; 2261 return; 2262 } 2263 2264 /* 2265 * We need to ensure the extension channels exist to 2266 * be able to use HT40- or HT40+, this finds them (or not) 2267 */ 2268 for (i = 0; i < sband->n_channels; i++) { 2269 struct ieee80211_channel *c = &sband->channels[i]; 2270 2271 if (c->center_freq == (channel->center_freq - 20)) 2272 channel_before = c; 2273 if (c->center_freq == (channel->center_freq + 20)) 2274 channel_after = c; 2275 } 2276 2277 flags = 0; 2278 regd = get_wiphy_regdom(wiphy); 2279 if (regd) { 2280 const struct ieee80211_reg_rule *reg_rule = 2281 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2282 regd, MHZ_TO_KHZ(20)); 2283 2284 if (!IS_ERR(reg_rule)) 2285 flags = reg_rule->flags; 2286 } 2287 2288 /* 2289 * Please note that this assumes target bandwidth is 20 MHz, 2290 * if that ever changes we also need to change the below logic 2291 * to include that as well. 2292 */ 2293 if (!is_ht40_allowed(channel_before) || 2294 flags & NL80211_RRF_NO_HT40MINUS) 2295 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2296 else 2297 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2298 2299 if (!is_ht40_allowed(channel_after) || 2300 flags & NL80211_RRF_NO_HT40PLUS) 2301 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2302 else 2303 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2304 } 2305 2306 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2307 struct ieee80211_supported_band *sband) 2308 { 2309 unsigned int i; 2310 2311 if (!sband) 2312 return; 2313 2314 for (i = 0; i < sband->n_channels; i++) 2315 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2316 } 2317 2318 static void reg_process_ht_flags(struct wiphy *wiphy) 2319 { 2320 enum nl80211_band band; 2321 2322 if (!wiphy) 2323 return; 2324 2325 for (band = 0; band < NUM_NL80211_BANDS; band++) 2326 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2327 } 2328 2329 static void reg_call_notifier(struct wiphy *wiphy, 2330 struct regulatory_request *request) 2331 { 2332 if (wiphy->reg_notifier) 2333 wiphy->reg_notifier(wiphy, request); 2334 } 2335 2336 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2337 { 2338 struct cfg80211_chan_def chandef = {}; 2339 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2340 enum nl80211_iftype iftype; 2341 2342 wdev_lock(wdev); 2343 iftype = wdev->iftype; 2344 2345 /* make sure the interface is active */ 2346 if (!wdev->netdev || !netif_running(wdev->netdev)) 2347 goto wdev_inactive_unlock; 2348 2349 switch (iftype) { 2350 case NL80211_IFTYPE_AP: 2351 case NL80211_IFTYPE_P2P_GO: 2352 if (!wdev->beacon_interval) 2353 goto wdev_inactive_unlock; 2354 chandef = wdev->chandef; 2355 break; 2356 case NL80211_IFTYPE_ADHOC: 2357 if (!wdev->ssid_len) 2358 goto wdev_inactive_unlock; 2359 chandef = wdev->chandef; 2360 break; 2361 case NL80211_IFTYPE_STATION: 2362 case NL80211_IFTYPE_P2P_CLIENT: 2363 if (!wdev->current_bss || 2364 !wdev->current_bss->pub.channel) 2365 goto wdev_inactive_unlock; 2366 2367 if (!rdev->ops->get_channel || 2368 rdev_get_channel(rdev, wdev, &chandef)) 2369 cfg80211_chandef_create(&chandef, 2370 wdev->current_bss->pub.channel, 2371 NL80211_CHAN_NO_HT); 2372 break; 2373 case NL80211_IFTYPE_MONITOR: 2374 case NL80211_IFTYPE_AP_VLAN: 2375 case NL80211_IFTYPE_P2P_DEVICE: 2376 /* no enforcement required */ 2377 break; 2378 default: 2379 /* others not implemented for now */ 2380 WARN_ON(1); 2381 break; 2382 } 2383 2384 wdev_unlock(wdev); 2385 2386 switch (iftype) { 2387 case NL80211_IFTYPE_AP: 2388 case NL80211_IFTYPE_P2P_GO: 2389 case NL80211_IFTYPE_ADHOC: 2390 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 2391 case NL80211_IFTYPE_STATION: 2392 case NL80211_IFTYPE_P2P_CLIENT: 2393 return cfg80211_chandef_usable(wiphy, &chandef, 2394 IEEE80211_CHAN_DISABLED); 2395 default: 2396 break; 2397 } 2398 2399 return true; 2400 2401 wdev_inactive_unlock: 2402 wdev_unlock(wdev); 2403 return true; 2404 } 2405 2406 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2407 { 2408 struct wireless_dev *wdev; 2409 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2410 2411 ASSERT_RTNL(); 2412 2413 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2414 if (!reg_wdev_chan_valid(wiphy, wdev)) 2415 cfg80211_leave(rdev, wdev); 2416 } 2417 2418 static void reg_check_chans_work(struct work_struct *work) 2419 { 2420 struct cfg80211_registered_device *rdev; 2421 2422 pr_debug("Verifying active interfaces after reg change\n"); 2423 rtnl_lock(); 2424 2425 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2426 if (!(rdev->wiphy.regulatory_flags & 2427 REGULATORY_IGNORE_STALE_KICKOFF)) 2428 reg_leave_invalid_chans(&rdev->wiphy); 2429 2430 rtnl_unlock(); 2431 } 2432 2433 static void reg_check_channels(void) 2434 { 2435 /* 2436 * Give usermode a chance to do something nicer (move to another 2437 * channel, orderly disconnection), before forcing a disconnection. 2438 */ 2439 mod_delayed_work(system_power_efficient_wq, 2440 ®_check_chans, 2441 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2442 } 2443 2444 static void wiphy_update_regulatory(struct wiphy *wiphy, 2445 enum nl80211_reg_initiator initiator) 2446 { 2447 enum nl80211_band band; 2448 struct regulatory_request *lr = get_last_request(); 2449 2450 if (ignore_reg_update(wiphy, initiator)) { 2451 /* 2452 * Regulatory updates set by CORE are ignored for custom 2453 * regulatory cards. Let us notify the changes to the driver, 2454 * as some drivers used this to restore its orig_* reg domain. 2455 */ 2456 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2457 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2458 !(wiphy->regulatory_flags & 2459 REGULATORY_WIPHY_SELF_MANAGED)) 2460 reg_call_notifier(wiphy, lr); 2461 return; 2462 } 2463 2464 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2465 2466 for (band = 0; band < NUM_NL80211_BANDS; band++) 2467 handle_band(wiphy, initiator, wiphy->bands[band]); 2468 2469 reg_process_beacons(wiphy); 2470 reg_process_ht_flags(wiphy); 2471 reg_call_notifier(wiphy, lr); 2472 } 2473 2474 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2475 { 2476 struct cfg80211_registered_device *rdev; 2477 struct wiphy *wiphy; 2478 2479 ASSERT_RTNL(); 2480 2481 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2482 wiphy = &rdev->wiphy; 2483 wiphy_update_regulatory(wiphy, initiator); 2484 } 2485 2486 reg_check_channels(); 2487 } 2488 2489 static void handle_channel_custom(struct wiphy *wiphy, 2490 struct ieee80211_channel *chan, 2491 const struct ieee80211_regdomain *regd, 2492 u32 min_bw) 2493 { 2494 u32 bw_flags = 0; 2495 const struct ieee80211_reg_rule *reg_rule = NULL; 2496 const struct ieee80211_power_rule *power_rule = NULL; 2497 u32 bw, center_freq_khz; 2498 2499 center_freq_khz = ieee80211_channel_to_khz(chan); 2500 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 2501 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw); 2502 if (!IS_ERR(reg_rule)) 2503 break; 2504 } 2505 2506 if (IS_ERR_OR_NULL(reg_rule)) { 2507 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n", 2508 chan->center_freq, chan->freq_offset); 2509 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2510 chan->flags |= IEEE80211_CHAN_DISABLED; 2511 } else { 2512 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2513 chan->flags = chan->orig_flags; 2514 } 2515 return; 2516 } 2517 2518 power_rule = ®_rule->power_rule; 2519 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2520 2521 chan->dfs_state_entered = jiffies; 2522 chan->dfs_state = NL80211_DFS_USABLE; 2523 2524 chan->beacon_found = false; 2525 2526 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2527 chan->flags = chan->orig_flags | bw_flags | 2528 map_regdom_flags(reg_rule->flags); 2529 else 2530 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2531 2532 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2533 chan->max_reg_power = chan->max_power = 2534 (int) MBM_TO_DBM(power_rule->max_eirp); 2535 2536 if (chan->flags & IEEE80211_CHAN_RADAR) { 2537 if (reg_rule->dfs_cac_ms) 2538 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2539 else 2540 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2541 } 2542 2543 chan->max_power = chan->max_reg_power; 2544 } 2545 2546 static void handle_band_custom(struct wiphy *wiphy, 2547 struct ieee80211_supported_band *sband, 2548 const struct ieee80211_regdomain *regd) 2549 { 2550 unsigned int i; 2551 2552 if (!sband) 2553 return; 2554 2555 /* 2556 * We currently assume that you always want at least 20 MHz, 2557 * otherwise channel 12 might get enabled if this rule is 2558 * compatible to US, which permits 2402 - 2472 MHz. 2559 */ 2560 for (i = 0; i < sband->n_channels; i++) 2561 handle_channel_custom(wiphy, &sband->channels[i], regd, 2562 MHZ_TO_KHZ(20)); 2563 } 2564 2565 /* Used by drivers prior to wiphy registration */ 2566 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2567 const struct ieee80211_regdomain *regd) 2568 { 2569 const struct ieee80211_regdomain *new_regd, *tmp; 2570 enum nl80211_band band; 2571 unsigned int bands_set = 0; 2572 2573 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2574 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2575 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2576 2577 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2578 if (!wiphy->bands[band]) 2579 continue; 2580 handle_band_custom(wiphy, wiphy->bands[band], regd); 2581 bands_set++; 2582 } 2583 2584 /* 2585 * no point in calling this if it won't have any effect 2586 * on your device's supported bands. 2587 */ 2588 WARN_ON(!bands_set); 2589 new_regd = reg_copy_regd(regd); 2590 if (IS_ERR(new_regd)) 2591 return; 2592 2593 rtnl_lock(); 2594 wiphy_lock(wiphy); 2595 2596 tmp = get_wiphy_regdom(wiphy); 2597 rcu_assign_pointer(wiphy->regd, new_regd); 2598 rcu_free_regdom(tmp); 2599 2600 wiphy_unlock(wiphy); 2601 rtnl_unlock(); 2602 } 2603 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2604 2605 static void reg_set_request_processed(void) 2606 { 2607 bool need_more_processing = false; 2608 struct regulatory_request *lr = get_last_request(); 2609 2610 lr->processed = true; 2611 2612 spin_lock(®_requests_lock); 2613 if (!list_empty(®_requests_list)) 2614 need_more_processing = true; 2615 spin_unlock(®_requests_lock); 2616 2617 cancel_crda_timeout(); 2618 2619 if (need_more_processing) 2620 schedule_work(®_work); 2621 } 2622 2623 /** 2624 * reg_process_hint_core - process core regulatory requests 2625 * @core_request: a pending core regulatory request 2626 * 2627 * The wireless subsystem can use this function to process 2628 * a regulatory request issued by the regulatory core. 2629 */ 2630 static enum reg_request_treatment 2631 reg_process_hint_core(struct regulatory_request *core_request) 2632 { 2633 if (reg_query_database(core_request)) { 2634 core_request->intersect = false; 2635 core_request->processed = false; 2636 reg_update_last_request(core_request); 2637 return REG_REQ_OK; 2638 } 2639 2640 return REG_REQ_IGNORE; 2641 } 2642 2643 static enum reg_request_treatment 2644 __reg_process_hint_user(struct regulatory_request *user_request) 2645 { 2646 struct regulatory_request *lr = get_last_request(); 2647 2648 if (reg_request_cell_base(user_request)) 2649 return reg_ignore_cell_hint(user_request); 2650 2651 if (reg_request_cell_base(lr)) 2652 return REG_REQ_IGNORE; 2653 2654 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2655 return REG_REQ_INTERSECT; 2656 /* 2657 * If the user knows better the user should set the regdom 2658 * to their country before the IE is picked up 2659 */ 2660 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2661 lr->intersect) 2662 return REG_REQ_IGNORE; 2663 /* 2664 * Process user requests only after previous user/driver/core 2665 * requests have been processed 2666 */ 2667 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2668 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2669 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2670 regdom_changes(lr->alpha2)) 2671 return REG_REQ_IGNORE; 2672 2673 if (!regdom_changes(user_request->alpha2)) 2674 return REG_REQ_ALREADY_SET; 2675 2676 return REG_REQ_OK; 2677 } 2678 2679 /** 2680 * reg_process_hint_user - process user regulatory requests 2681 * @user_request: a pending user regulatory request 2682 * 2683 * The wireless subsystem can use this function to process 2684 * a regulatory request initiated by userspace. 2685 */ 2686 static enum reg_request_treatment 2687 reg_process_hint_user(struct regulatory_request *user_request) 2688 { 2689 enum reg_request_treatment treatment; 2690 2691 treatment = __reg_process_hint_user(user_request); 2692 if (treatment == REG_REQ_IGNORE || 2693 treatment == REG_REQ_ALREADY_SET) 2694 return REG_REQ_IGNORE; 2695 2696 user_request->intersect = treatment == REG_REQ_INTERSECT; 2697 user_request->processed = false; 2698 2699 if (reg_query_database(user_request)) { 2700 reg_update_last_request(user_request); 2701 user_alpha2[0] = user_request->alpha2[0]; 2702 user_alpha2[1] = user_request->alpha2[1]; 2703 return REG_REQ_OK; 2704 } 2705 2706 return REG_REQ_IGNORE; 2707 } 2708 2709 static enum reg_request_treatment 2710 __reg_process_hint_driver(struct regulatory_request *driver_request) 2711 { 2712 struct regulatory_request *lr = get_last_request(); 2713 2714 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2715 if (regdom_changes(driver_request->alpha2)) 2716 return REG_REQ_OK; 2717 return REG_REQ_ALREADY_SET; 2718 } 2719 2720 /* 2721 * This would happen if you unplug and plug your card 2722 * back in or if you add a new device for which the previously 2723 * loaded card also agrees on the regulatory domain. 2724 */ 2725 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2726 !regdom_changes(driver_request->alpha2)) 2727 return REG_REQ_ALREADY_SET; 2728 2729 return REG_REQ_INTERSECT; 2730 } 2731 2732 /** 2733 * reg_process_hint_driver - process driver regulatory requests 2734 * @wiphy: the wireless device for the regulatory request 2735 * @driver_request: a pending driver regulatory request 2736 * 2737 * The wireless subsystem can use this function to process 2738 * a regulatory request issued by an 802.11 driver. 2739 * 2740 * Returns one of the different reg request treatment values. 2741 */ 2742 static enum reg_request_treatment 2743 reg_process_hint_driver(struct wiphy *wiphy, 2744 struct regulatory_request *driver_request) 2745 { 2746 const struct ieee80211_regdomain *regd, *tmp; 2747 enum reg_request_treatment treatment; 2748 2749 treatment = __reg_process_hint_driver(driver_request); 2750 2751 switch (treatment) { 2752 case REG_REQ_OK: 2753 break; 2754 case REG_REQ_IGNORE: 2755 return REG_REQ_IGNORE; 2756 case REG_REQ_INTERSECT: 2757 case REG_REQ_ALREADY_SET: 2758 regd = reg_copy_regd(get_cfg80211_regdom()); 2759 if (IS_ERR(regd)) 2760 return REG_REQ_IGNORE; 2761 2762 tmp = get_wiphy_regdom(wiphy); 2763 ASSERT_RTNL(); 2764 wiphy_lock(wiphy); 2765 rcu_assign_pointer(wiphy->regd, regd); 2766 wiphy_unlock(wiphy); 2767 rcu_free_regdom(tmp); 2768 } 2769 2770 2771 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2772 driver_request->processed = false; 2773 2774 /* 2775 * Since CRDA will not be called in this case as we already 2776 * have applied the requested regulatory domain before we just 2777 * inform userspace we have processed the request 2778 */ 2779 if (treatment == REG_REQ_ALREADY_SET) { 2780 nl80211_send_reg_change_event(driver_request); 2781 reg_update_last_request(driver_request); 2782 reg_set_request_processed(); 2783 return REG_REQ_ALREADY_SET; 2784 } 2785 2786 if (reg_query_database(driver_request)) { 2787 reg_update_last_request(driver_request); 2788 return REG_REQ_OK; 2789 } 2790 2791 return REG_REQ_IGNORE; 2792 } 2793 2794 static enum reg_request_treatment 2795 __reg_process_hint_country_ie(struct wiphy *wiphy, 2796 struct regulatory_request *country_ie_request) 2797 { 2798 struct wiphy *last_wiphy = NULL; 2799 struct regulatory_request *lr = get_last_request(); 2800 2801 if (reg_request_cell_base(lr)) { 2802 /* Trust a Cell base station over the AP's country IE */ 2803 if (regdom_changes(country_ie_request->alpha2)) 2804 return REG_REQ_IGNORE; 2805 return REG_REQ_ALREADY_SET; 2806 } else { 2807 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2808 return REG_REQ_IGNORE; 2809 } 2810 2811 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2812 return -EINVAL; 2813 2814 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2815 return REG_REQ_OK; 2816 2817 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2818 2819 if (last_wiphy != wiphy) { 2820 /* 2821 * Two cards with two APs claiming different 2822 * Country IE alpha2s. We could 2823 * intersect them, but that seems unlikely 2824 * to be correct. Reject second one for now. 2825 */ 2826 if (regdom_changes(country_ie_request->alpha2)) 2827 return REG_REQ_IGNORE; 2828 return REG_REQ_ALREADY_SET; 2829 } 2830 2831 if (regdom_changes(country_ie_request->alpha2)) 2832 return REG_REQ_OK; 2833 return REG_REQ_ALREADY_SET; 2834 } 2835 2836 /** 2837 * reg_process_hint_country_ie - process regulatory requests from country IEs 2838 * @wiphy: the wireless device for the regulatory request 2839 * @country_ie_request: a regulatory request from a country IE 2840 * 2841 * The wireless subsystem can use this function to process 2842 * a regulatory request issued by a country Information Element. 2843 * 2844 * Returns one of the different reg request treatment values. 2845 */ 2846 static enum reg_request_treatment 2847 reg_process_hint_country_ie(struct wiphy *wiphy, 2848 struct regulatory_request *country_ie_request) 2849 { 2850 enum reg_request_treatment treatment; 2851 2852 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2853 2854 switch (treatment) { 2855 case REG_REQ_OK: 2856 break; 2857 case REG_REQ_IGNORE: 2858 return REG_REQ_IGNORE; 2859 case REG_REQ_ALREADY_SET: 2860 reg_free_request(country_ie_request); 2861 return REG_REQ_ALREADY_SET; 2862 case REG_REQ_INTERSECT: 2863 /* 2864 * This doesn't happen yet, not sure we 2865 * ever want to support it for this case. 2866 */ 2867 WARN_ONCE(1, "Unexpected intersection for country elements"); 2868 return REG_REQ_IGNORE; 2869 } 2870 2871 country_ie_request->intersect = false; 2872 country_ie_request->processed = false; 2873 2874 if (reg_query_database(country_ie_request)) { 2875 reg_update_last_request(country_ie_request); 2876 return REG_REQ_OK; 2877 } 2878 2879 return REG_REQ_IGNORE; 2880 } 2881 2882 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2883 { 2884 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2885 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2886 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2887 bool dfs_domain_same; 2888 2889 rcu_read_lock(); 2890 2891 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2892 wiphy1_regd = rcu_dereference(wiphy1->regd); 2893 if (!wiphy1_regd) 2894 wiphy1_regd = cfg80211_regd; 2895 2896 wiphy2_regd = rcu_dereference(wiphy2->regd); 2897 if (!wiphy2_regd) 2898 wiphy2_regd = cfg80211_regd; 2899 2900 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2901 2902 rcu_read_unlock(); 2903 2904 return dfs_domain_same; 2905 } 2906 2907 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2908 struct ieee80211_channel *src_chan) 2909 { 2910 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2911 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2912 return; 2913 2914 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2915 src_chan->flags & IEEE80211_CHAN_DISABLED) 2916 return; 2917 2918 if (src_chan->center_freq == dst_chan->center_freq && 2919 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2920 dst_chan->dfs_state = src_chan->dfs_state; 2921 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2922 } 2923 } 2924 2925 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2926 struct wiphy *src_wiphy) 2927 { 2928 struct ieee80211_supported_band *src_sband, *dst_sband; 2929 struct ieee80211_channel *src_chan, *dst_chan; 2930 int i, j, band; 2931 2932 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2933 return; 2934 2935 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2936 dst_sband = dst_wiphy->bands[band]; 2937 src_sband = src_wiphy->bands[band]; 2938 if (!dst_sband || !src_sband) 2939 continue; 2940 2941 for (i = 0; i < dst_sband->n_channels; i++) { 2942 dst_chan = &dst_sband->channels[i]; 2943 for (j = 0; j < src_sband->n_channels; j++) { 2944 src_chan = &src_sband->channels[j]; 2945 reg_copy_dfs_chan_state(dst_chan, src_chan); 2946 } 2947 } 2948 } 2949 } 2950 2951 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2952 { 2953 struct cfg80211_registered_device *rdev; 2954 2955 ASSERT_RTNL(); 2956 2957 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2958 if (wiphy == &rdev->wiphy) 2959 continue; 2960 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2961 } 2962 } 2963 2964 /* This processes *all* regulatory hints */ 2965 static void reg_process_hint(struct regulatory_request *reg_request) 2966 { 2967 struct wiphy *wiphy = NULL; 2968 enum reg_request_treatment treatment; 2969 enum nl80211_reg_initiator initiator = reg_request->initiator; 2970 2971 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2972 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2973 2974 switch (initiator) { 2975 case NL80211_REGDOM_SET_BY_CORE: 2976 treatment = reg_process_hint_core(reg_request); 2977 break; 2978 case NL80211_REGDOM_SET_BY_USER: 2979 treatment = reg_process_hint_user(reg_request); 2980 break; 2981 case NL80211_REGDOM_SET_BY_DRIVER: 2982 if (!wiphy) 2983 goto out_free; 2984 treatment = reg_process_hint_driver(wiphy, reg_request); 2985 break; 2986 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2987 if (!wiphy) 2988 goto out_free; 2989 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2990 break; 2991 default: 2992 WARN(1, "invalid initiator %d\n", initiator); 2993 goto out_free; 2994 } 2995 2996 if (treatment == REG_REQ_IGNORE) 2997 goto out_free; 2998 2999 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 3000 "unexpected treatment value %d\n", treatment); 3001 3002 /* This is required so that the orig_* parameters are saved. 3003 * NOTE: treatment must be set for any case that reaches here! 3004 */ 3005 if (treatment == REG_REQ_ALREADY_SET && wiphy && 3006 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 3007 wiphy_update_regulatory(wiphy, initiator); 3008 wiphy_all_share_dfs_chan_state(wiphy); 3009 reg_check_channels(); 3010 } 3011 3012 return; 3013 3014 out_free: 3015 reg_free_request(reg_request); 3016 } 3017 3018 static void notify_self_managed_wiphys(struct regulatory_request *request) 3019 { 3020 struct cfg80211_registered_device *rdev; 3021 struct wiphy *wiphy; 3022 3023 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3024 wiphy = &rdev->wiphy; 3025 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 3026 request->initiator == NL80211_REGDOM_SET_BY_USER) 3027 reg_call_notifier(wiphy, request); 3028 } 3029 } 3030 3031 /* 3032 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 3033 * Regulatory hints come on a first come first serve basis and we 3034 * must process each one atomically. 3035 */ 3036 static void reg_process_pending_hints(void) 3037 { 3038 struct regulatory_request *reg_request, *lr; 3039 3040 lr = get_last_request(); 3041 3042 /* When last_request->processed becomes true this will be rescheduled */ 3043 if (lr && !lr->processed) { 3044 pr_debug("Pending regulatory request, waiting for it to be processed...\n"); 3045 return; 3046 } 3047 3048 spin_lock(®_requests_lock); 3049 3050 if (list_empty(®_requests_list)) { 3051 spin_unlock(®_requests_lock); 3052 return; 3053 } 3054 3055 reg_request = list_first_entry(®_requests_list, 3056 struct regulatory_request, 3057 list); 3058 list_del_init(®_request->list); 3059 3060 spin_unlock(®_requests_lock); 3061 3062 notify_self_managed_wiphys(reg_request); 3063 3064 reg_process_hint(reg_request); 3065 3066 lr = get_last_request(); 3067 3068 spin_lock(®_requests_lock); 3069 if (!list_empty(®_requests_list) && lr && lr->processed) 3070 schedule_work(®_work); 3071 spin_unlock(®_requests_lock); 3072 } 3073 3074 /* Processes beacon hints -- this has nothing to do with country IEs */ 3075 static void reg_process_pending_beacon_hints(void) 3076 { 3077 struct cfg80211_registered_device *rdev; 3078 struct reg_beacon *pending_beacon, *tmp; 3079 3080 /* This goes through the _pending_ beacon list */ 3081 spin_lock_bh(®_pending_beacons_lock); 3082 3083 list_for_each_entry_safe(pending_beacon, tmp, 3084 ®_pending_beacons, list) { 3085 list_del_init(&pending_beacon->list); 3086 3087 /* Applies the beacon hint to current wiphys */ 3088 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 3089 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 3090 3091 /* Remembers the beacon hint for new wiphys or reg changes */ 3092 list_add_tail(&pending_beacon->list, ®_beacon_list); 3093 } 3094 3095 spin_unlock_bh(®_pending_beacons_lock); 3096 } 3097 3098 static void reg_process_self_managed_hint(struct wiphy *wiphy) 3099 { 3100 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3101 const struct ieee80211_regdomain *tmp; 3102 const struct ieee80211_regdomain *regd; 3103 enum nl80211_band band; 3104 struct regulatory_request request = {}; 3105 3106 ASSERT_RTNL(); 3107 lockdep_assert_wiphy(wiphy); 3108 3109 spin_lock(®_requests_lock); 3110 regd = rdev->requested_regd; 3111 rdev->requested_regd = NULL; 3112 spin_unlock(®_requests_lock); 3113 3114 if (!regd) 3115 return; 3116 3117 tmp = get_wiphy_regdom(wiphy); 3118 rcu_assign_pointer(wiphy->regd, regd); 3119 rcu_free_regdom(tmp); 3120 3121 for (band = 0; band < NUM_NL80211_BANDS; band++) 3122 handle_band_custom(wiphy, wiphy->bands[band], regd); 3123 3124 reg_process_ht_flags(wiphy); 3125 3126 request.wiphy_idx = get_wiphy_idx(wiphy); 3127 request.alpha2[0] = regd->alpha2[0]; 3128 request.alpha2[1] = regd->alpha2[1]; 3129 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 3130 3131 nl80211_send_wiphy_reg_change_event(&request); 3132 } 3133 3134 static void reg_process_self_managed_hints(void) 3135 { 3136 struct cfg80211_registered_device *rdev; 3137 3138 ASSERT_RTNL(); 3139 3140 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3141 wiphy_lock(&rdev->wiphy); 3142 reg_process_self_managed_hint(&rdev->wiphy); 3143 wiphy_unlock(&rdev->wiphy); 3144 } 3145 3146 reg_check_channels(); 3147 } 3148 3149 static void reg_todo(struct work_struct *work) 3150 { 3151 rtnl_lock(); 3152 reg_process_pending_hints(); 3153 reg_process_pending_beacon_hints(); 3154 reg_process_self_managed_hints(); 3155 rtnl_unlock(); 3156 } 3157 3158 static void queue_regulatory_request(struct regulatory_request *request) 3159 { 3160 request->alpha2[0] = toupper(request->alpha2[0]); 3161 request->alpha2[1] = toupper(request->alpha2[1]); 3162 3163 spin_lock(®_requests_lock); 3164 list_add_tail(&request->list, ®_requests_list); 3165 spin_unlock(®_requests_lock); 3166 3167 schedule_work(®_work); 3168 } 3169 3170 /* 3171 * Core regulatory hint -- happens during cfg80211_init() 3172 * and when we restore regulatory settings. 3173 */ 3174 static int regulatory_hint_core(const char *alpha2) 3175 { 3176 struct regulatory_request *request; 3177 3178 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3179 if (!request) 3180 return -ENOMEM; 3181 3182 request->alpha2[0] = alpha2[0]; 3183 request->alpha2[1] = alpha2[1]; 3184 request->initiator = NL80211_REGDOM_SET_BY_CORE; 3185 request->wiphy_idx = WIPHY_IDX_INVALID; 3186 3187 queue_regulatory_request(request); 3188 3189 return 0; 3190 } 3191 3192 /* User hints */ 3193 int regulatory_hint_user(const char *alpha2, 3194 enum nl80211_user_reg_hint_type user_reg_hint_type) 3195 { 3196 struct regulatory_request *request; 3197 3198 if (WARN_ON(!alpha2)) 3199 return -EINVAL; 3200 3201 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2)) 3202 return -EINVAL; 3203 3204 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3205 if (!request) 3206 return -ENOMEM; 3207 3208 request->wiphy_idx = WIPHY_IDX_INVALID; 3209 request->alpha2[0] = alpha2[0]; 3210 request->alpha2[1] = alpha2[1]; 3211 request->initiator = NL80211_REGDOM_SET_BY_USER; 3212 request->user_reg_hint_type = user_reg_hint_type; 3213 3214 /* Allow calling CRDA again */ 3215 reset_crda_timeouts(); 3216 3217 queue_regulatory_request(request); 3218 3219 return 0; 3220 } 3221 3222 int regulatory_hint_indoor(bool is_indoor, u32 portid) 3223 { 3224 spin_lock(®_indoor_lock); 3225 3226 /* It is possible that more than one user space process is trying to 3227 * configure the indoor setting. To handle such cases, clear the indoor 3228 * setting in case that some process does not think that the device 3229 * is operating in an indoor environment. In addition, if a user space 3230 * process indicates that it is controlling the indoor setting, save its 3231 * portid, i.e., make it the owner. 3232 */ 3233 reg_is_indoor = is_indoor; 3234 if (reg_is_indoor) { 3235 if (!reg_is_indoor_portid) 3236 reg_is_indoor_portid = portid; 3237 } else { 3238 reg_is_indoor_portid = 0; 3239 } 3240 3241 spin_unlock(®_indoor_lock); 3242 3243 if (!is_indoor) 3244 reg_check_channels(); 3245 3246 return 0; 3247 } 3248 3249 void regulatory_netlink_notify(u32 portid) 3250 { 3251 spin_lock(®_indoor_lock); 3252 3253 if (reg_is_indoor_portid != portid) { 3254 spin_unlock(®_indoor_lock); 3255 return; 3256 } 3257 3258 reg_is_indoor = false; 3259 reg_is_indoor_portid = 0; 3260 3261 spin_unlock(®_indoor_lock); 3262 3263 reg_check_channels(); 3264 } 3265 3266 /* Driver hints */ 3267 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3268 { 3269 struct regulatory_request *request; 3270 3271 if (WARN_ON(!alpha2 || !wiphy)) 3272 return -EINVAL; 3273 3274 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3275 3276 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3277 if (!request) 3278 return -ENOMEM; 3279 3280 request->wiphy_idx = get_wiphy_idx(wiphy); 3281 3282 request->alpha2[0] = alpha2[0]; 3283 request->alpha2[1] = alpha2[1]; 3284 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3285 3286 /* Allow calling CRDA again */ 3287 reset_crda_timeouts(); 3288 3289 queue_regulatory_request(request); 3290 3291 return 0; 3292 } 3293 EXPORT_SYMBOL(regulatory_hint); 3294 3295 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3296 const u8 *country_ie, u8 country_ie_len) 3297 { 3298 char alpha2[2]; 3299 enum environment_cap env = ENVIRON_ANY; 3300 struct regulatory_request *request = NULL, *lr; 3301 3302 /* IE len must be evenly divisible by 2 */ 3303 if (country_ie_len & 0x01) 3304 return; 3305 3306 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3307 return; 3308 3309 request = kzalloc(sizeof(*request), GFP_KERNEL); 3310 if (!request) 3311 return; 3312 3313 alpha2[0] = country_ie[0]; 3314 alpha2[1] = country_ie[1]; 3315 3316 if (country_ie[2] == 'I') 3317 env = ENVIRON_INDOOR; 3318 else if (country_ie[2] == 'O') 3319 env = ENVIRON_OUTDOOR; 3320 3321 rcu_read_lock(); 3322 lr = get_last_request(); 3323 3324 if (unlikely(!lr)) 3325 goto out; 3326 3327 /* 3328 * We will run this only upon a successful connection on cfg80211. 3329 * We leave conflict resolution to the workqueue, where can hold 3330 * the RTNL. 3331 */ 3332 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3333 lr->wiphy_idx != WIPHY_IDX_INVALID) 3334 goto out; 3335 3336 request->wiphy_idx = get_wiphy_idx(wiphy); 3337 request->alpha2[0] = alpha2[0]; 3338 request->alpha2[1] = alpha2[1]; 3339 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3340 request->country_ie_env = env; 3341 3342 /* Allow calling CRDA again */ 3343 reset_crda_timeouts(); 3344 3345 queue_regulatory_request(request); 3346 request = NULL; 3347 out: 3348 kfree(request); 3349 rcu_read_unlock(); 3350 } 3351 3352 static void restore_alpha2(char *alpha2, bool reset_user) 3353 { 3354 /* indicates there is no alpha2 to consider for restoration */ 3355 alpha2[0] = '9'; 3356 alpha2[1] = '7'; 3357 3358 /* The user setting has precedence over the module parameter */ 3359 if (is_user_regdom_saved()) { 3360 /* Unless we're asked to ignore it and reset it */ 3361 if (reset_user) { 3362 pr_debug("Restoring regulatory settings including user preference\n"); 3363 user_alpha2[0] = '9'; 3364 user_alpha2[1] = '7'; 3365 3366 /* 3367 * If we're ignoring user settings, we still need to 3368 * check the module parameter to ensure we put things 3369 * back as they were for a full restore. 3370 */ 3371 if (!is_world_regdom(ieee80211_regdom)) { 3372 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3373 ieee80211_regdom[0], ieee80211_regdom[1]); 3374 alpha2[0] = ieee80211_regdom[0]; 3375 alpha2[1] = ieee80211_regdom[1]; 3376 } 3377 } else { 3378 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3379 user_alpha2[0], user_alpha2[1]); 3380 alpha2[0] = user_alpha2[0]; 3381 alpha2[1] = user_alpha2[1]; 3382 } 3383 } else if (!is_world_regdom(ieee80211_regdom)) { 3384 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3385 ieee80211_regdom[0], ieee80211_regdom[1]); 3386 alpha2[0] = ieee80211_regdom[0]; 3387 alpha2[1] = ieee80211_regdom[1]; 3388 } else 3389 pr_debug("Restoring regulatory settings\n"); 3390 } 3391 3392 static void restore_custom_reg_settings(struct wiphy *wiphy) 3393 { 3394 struct ieee80211_supported_band *sband; 3395 enum nl80211_band band; 3396 struct ieee80211_channel *chan; 3397 int i; 3398 3399 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3400 sband = wiphy->bands[band]; 3401 if (!sband) 3402 continue; 3403 for (i = 0; i < sband->n_channels; i++) { 3404 chan = &sband->channels[i]; 3405 chan->flags = chan->orig_flags; 3406 chan->max_antenna_gain = chan->orig_mag; 3407 chan->max_power = chan->orig_mpwr; 3408 chan->beacon_found = false; 3409 } 3410 } 3411 } 3412 3413 /* 3414 * Restoring regulatory settings involves ignoring any 3415 * possibly stale country IE information and user regulatory 3416 * settings if so desired, this includes any beacon hints 3417 * learned as we could have traveled outside to another country 3418 * after disconnection. To restore regulatory settings we do 3419 * exactly what we did at bootup: 3420 * 3421 * - send a core regulatory hint 3422 * - send a user regulatory hint if applicable 3423 * 3424 * Device drivers that send a regulatory hint for a specific country 3425 * keep their own regulatory domain on wiphy->regd so that does 3426 * not need to be remembered. 3427 */ 3428 static void restore_regulatory_settings(bool reset_user, bool cached) 3429 { 3430 char alpha2[2]; 3431 char world_alpha2[2]; 3432 struct reg_beacon *reg_beacon, *btmp; 3433 LIST_HEAD(tmp_reg_req_list); 3434 struct cfg80211_registered_device *rdev; 3435 3436 ASSERT_RTNL(); 3437 3438 /* 3439 * Clear the indoor setting in case that it is not controlled by user 3440 * space, as otherwise there is no guarantee that the device is still 3441 * operating in an indoor environment. 3442 */ 3443 spin_lock(®_indoor_lock); 3444 if (reg_is_indoor && !reg_is_indoor_portid) { 3445 reg_is_indoor = false; 3446 reg_check_channels(); 3447 } 3448 spin_unlock(®_indoor_lock); 3449 3450 reset_regdomains(true, &world_regdom); 3451 restore_alpha2(alpha2, reset_user); 3452 3453 /* 3454 * If there's any pending requests we simply 3455 * stash them to a temporary pending queue and 3456 * add then after we've restored regulatory 3457 * settings. 3458 */ 3459 spin_lock(®_requests_lock); 3460 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3461 spin_unlock(®_requests_lock); 3462 3463 /* Clear beacon hints */ 3464 spin_lock_bh(®_pending_beacons_lock); 3465 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3466 list_del(®_beacon->list); 3467 kfree(reg_beacon); 3468 } 3469 spin_unlock_bh(®_pending_beacons_lock); 3470 3471 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3472 list_del(®_beacon->list); 3473 kfree(reg_beacon); 3474 } 3475 3476 /* First restore to the basic regulatory settings */ 3477 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3478 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3479 3480 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3481 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3482 continue; 3483 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3484 restore_custom_reg_settings(&rdev->wiphy); 3485 } 3486 3487 if (cached && (!is_an_alpha2(alpha2) || 3488 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3489 reset_regdomains(false, cfg80211_world_regdom); 3490 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3491 print_regdomain(get_cfg80211_regdom()); 3492 nl80211_send_reg_change_event(&core_request_world); 3493 reg_set_request_processed(); 3494 3495 if (is_an_alpha2(alpha2) && 3496 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3497 struct regulatory_request *ureq; 3498 3499 spin_lock(®_requests_lock); 3500 ureq = list_last_entry(®_requests_list, 3501 struct regulatory_request, 3502 list); 3503 list_del(&ureq->list); 3504 spin_unlock(®_requests_lock); 3505 3506 notify_self_managed_wiphys(ureq); 3507 reg_update_last_request(ureq); 3508 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3509 REGD_SOURCE_CACHED); 3510 } 3511 } else { 3512 regulatory_hint_core(world_alpha2); 3513 3514 /* 3515 * This restores the ieee80211_regdom module parameter 3516 * preference or the last user requested regulatory 3517 * settings, user regulatory settings takes precedence. 3518 */ 3519 if (is_an_alpha2(alpha2)) 3520 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3521 } 3522 3523 spin_lock(®_requests_lock); 3524 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3525 spin_unlock(®_requests_lock); 3526 3527 pr_debug("Kicking the queue\n"); 3528 3529 schedule_work(®_work); 3530 } 3531 3532 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3533 { 3534 struct cfg80211_registered_device *rdev; 3535 struct wireless_dev *wdev; 3536 3537 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3538 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3539 wdev_lock(wdev); 3540 if (!(wdev->wiphy->regulatory_flags & flag)) { 3541 wdev_unlock(wdev); 3542 return false; 3543 } 3544 wdev_unlock(wdev); 3545 } 3546 } 3547 3548 return true; 3549 } 3550 3551 void regulatory_hint_disconnect(void) 3552 { 3553 /* Restore of regulatory settings is not required when wiphy(s) 3554 * ignore IE from connected access point but clearance of beacon hints 3555 * is required when wiphy(s) supports beacon hints. 3556 */ 3557 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3558 struct reg_beacon *reg_beacon, *btmp; 3559 3560 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3561 return; 3562 3563 spin_lock_bh(®_pending_beacons_lock); 3564 list_for_each_entry_safe(reg_beacon, btmp, 3565 ®_pending_beacons, list) { 3566 list_del(®_beacon->list); 3567 kfree(reg_beacon); 3568 } 3569 spin_unlock_bh(®_pending_beacons_lock); 3570 3571 list_for_each_entry_safe(reg_beacon, btmp, 3572 ®_beacon_list, list) { 3573 list_del(®_beacon->list); 3574 kfree(reg_beacon); 3575 } 3576 3577 return; 3578 } 3579 3580 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3581 restore_regulatory_settings(false, true); 3582 } 3583 3584 static bool freq_is_chan_12_13_14(u32 freq) 3585 { 3586 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3587 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3588 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3589 return true; 3590 return false; 3591 } 3592 3593 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3594 { 3595 struct reg_beacon *pending_beacon; 3596 3597 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3598 if (ieee80211_channel_equal(beacon_chan, 3599 &pending_beacon->chan)) 3600 return true; 3601 return false; 3602 } 3603 3604 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3605 struct ieee80211_channel *beacon_chan, 3606 gfp_t gfp) 3607 { 3608 struct reg_beacon *reg_beacon; 3609 bool processing; 3610 3611 if (beacon_chan->beacon_found || 3612 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3613 (beacon_chan->band == NL80211_BAND_2GHZ && 3614 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3615 return 0; 3616 3617 spin_lock_bh(®_pending_beacons_lock); 3618 processing = pending_reg_beacon(beacon_chan); 3619 spin_unlock_bh(®_pending_beacons_lock); 3620 3621 if (processing) 3622 return 0; 3623 3624 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3625 if (!reg_beacon) 3626 return -ENOMEM; 3627 3628 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n", 3629 beacon_chan->center_freq, beacon_chan->freq_offset, 3630 ieee80211_freq_khz_to_channel( 3631 ieee80211_channel_to_khz(beacon_chan)), 3632 wiphy_name(wiphy)); 3633 3634 memcpy(®_beacon->chan, beacon_chan, 3635 sizeof(struct ieee80211_channel)); 3636 3637 /* 3638 * Since we can be called from BH or and non-BH context 3639 * we must use spin_lock_bh() 3640 */ 3641 spin_lock_bh(®_pending_beacons_lock); 3642 list_add_tail(®_beacon->list, ®_pending_beacons); 3643 spin_unlock_bh(®_pending_beacons_lock); 3644 3645 schedule_work(®_work); 3646 3647 return 0; 3648 } 3649 3650 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3651 { 3652 unsigned int i; 3653 const struct ieee80211_reg_rule *reg_rule = NULL; 3654 const struct ieee80211_freq_range *freq_range = NULL; 3655 const struct ieee80211_power_rule *power_rule = NULL; 3656 char bw[32], cac_time[32]; 3657 3658 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3659 3660 for (i = 0; i < rd->n_reg_rules; i++) { 3661 reg_rule = &rd->reg_rules[i]; 3662 freq_range = ®_rule->freq_range; 3663 power_rule = ®_rule->power_rule; 3664 3665 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3666 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO", 3667 freq_range->max_bandwidth_khz, 3668 reg_get_max_bandwidth(rd, reg_rule)); 3669 else 3670 snprintf(bw, sizeof(bw), "%d KHz", 3671 freq_range->max_bandwidth_khz); 3672 3673 if (reg_rule->flags & NL80211_RRF_DFS) 3674 scnprintf(cac_time, sizeof(cac_time), "%u s", 3675 reg_rule->dfs_cac_ms/1000); 3676 else 3677 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3678 3679 3680 /* 3681 * There may not be documentation for max antenna gain 3682 * in certain regions 3683 */ 3684 if (power_rule->max_antenna_gain) 3685 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3686 freq_range->start_freq_khz, 3687 freq_range->end_freq_khz, 3688 bw, 3689 power_rule->max_antenna_gain, 3690 power_rule->max_eirp, 3691 cac_time); 3692 else 3693 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3694 freq_range->start_freq_khz, 3695 freq_range->end_freq_khz, 3696 bw, 3697 power_rule->max_eirp, 3698 cac_time); 3699 } 3700 } 3701 3702 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3703 { 3704 switch (dfs_region) { 3705 case NL80211_DFS_UNSET: 3706 case NL80211_DFS_FCC: 3707 case NL80211_DFS_ETSI: 3708 case NL80211_DFS_JP: 3709 return true; 3710 default: 3711 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3712 return false; 3713 } 3714 } 3715 3716 static void print_regdomain(const struct ieee80211_regdomain *rd) 3717 { 3718 struct regulatory_request *lr = get_last_request(); 3719 3720 if (is_intersected_alpha2(rd->alpha2)) { 3721 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3722 struct cfg80211_registered_device *rdev; 3723 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3724 if (rdev) { 3725 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3726 rdev->country_ie_alpha2[0], 3727 rdev->country_ie_alpha2[1]); 3728 } else 3729 pr_debug("Current regulatory domain intersected:\n"); 3730 } else 3731 pr_debug("Current regulatory domain intersected:\n"); 3732 } else if (is_world_regdom(rd->alpha2)) { 3733 pr_debug("World regulatory domain updated:\n"); 3734 } else { 3735 if (is_unknown_alpha2(rd->alpha2)) 3736 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3737 else { 3738 if (reg_request_cell_base(lr)) 3739 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3740 rd->alpha2[0], rd->alpha2[1]); 3741 else 3742 pr_debug("Regulatory domain changed to country: %c%c\n", 3743 rd->alpha2[0], rd->alpha2[1]); 3744 } 3745 } 3746 3747 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3748 print_rd_rules(rd); 3749 } 3750 3751 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3752 { 3753 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3754 print_rd_rules(rd); 3755 } 3756 3757 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3758 { 3759 if (!is_world_regdom(rd->alpha2)) 3760 return -EINVAL; 3761 update_world_regdomain(rd); 3762 return 0; 3763 } 3764 3765 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3766 struct regulatory_request *user_request) 3767 { 3768 const struct ieee80211_regdomain *intersected_rd = NULL; 3769 3770 if (!regdom_changes(rd->alpha2)) 3771 return -EALREADY; 3772 3773 if (!is_valid_rd(rd)) { 3774 pr_err("Invalid regulatory domain detected: %c%c\n", 3775 rd->alpha2[0], rd->alpha2[1]); 3776 print_regdomain_info(rd); 3777 return -EINVAL; 3778 } 3779 3780 if (!user_request->intersect) { 3781 reset_regdomains(false, rd); 3782 return 0; 3783 } 3784 3785 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3786 if (!intersected_rd) 3787 return -EINVAL; 3788 3789 kfree(rd); 3790 rd = NULL; 3791 reset_regdomains(false, intersected_rd); 3792 3793 return 0; 3794 } 3795 3796 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3797 struct regulatory_request *driver_request) 3798 { 3799 const struct ieee80211_regdomain *regd; 3800 const struct ieee80211_regdomain *intersected_rd = NULL; 3801 const struct ieee80211_regdomain *tmp; 3802 struct wiphy *request_wiphy; 3803 3804 if (is_world_regdom(rd->alpha2)) 3805 return -EINVAL; 3806 3807 if (!regdom_changes(rd->alpha2)) 3808 return -EALREADY; 3809 3810 if (!is_valid_rd(rd)) { 3811 pr_err("Invalid regulatory domain detected: %c%c\n", 3812 rd->alpha2[0], rd->alpha2[1]); 3813 print_regdomain_info(rd); 3814 return -EINVAL; 3815 } 3816 3817 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3818 if (!request_wiphy) 3819 return -ENODEV; 3820 3821 if (!driver_request->intersect) { 3822 ASSERT_RTNL(); 3823 wiphy_lock(request_wiphy); 3824 if (request_wiphy->regd) { 3825 wiphy_unlock(request_wiphy); 3826 return -EALREADY; 3827 } 3828 3829 regd = reg_copy_regd(rd); 3830 if (IS_ERR(regd)) { 3831 wiphy_unlock(request_wiphy); 3832 return PTR_ERR(regd); 3833 } 3834 3835 rcu_assign_pointer(request_wiphy->regd, regd); 3836 wiphy_unlock(request_wiphy); 3837 reset_regdomains(false, rd); 3838 return 0; 3839 } 3840 3841 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3842 if (!intersected_rd) 3843 return -EINVAL; 3844 3845 /* 3846 * We can trash what CRDA provided now. 3847 * However if a driver requested this specific regulatory 3848 * domain we keep it for its private use 3849 */ 3850 tmp = get_wiphy_regdom(request_wiphy); 3851 rcu_assign_pointer(request_wiphy->regd, rd); 3852 rcu_free_regdom(tmp); 3853 3854 rd = NULL; 3855 3856 reset_regdomains(false, intersected_rd); 3857 3858 return 0; 3859 } 3860 3861 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3862 struct regulatory_request *country_ie_request) 3863 { 3864 struct wiphy *request_wiphy; 3865 3866 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3867 !is_unknown_alpha2(rd->alpha2)) 3868 return -EINVAL; 3869 3870 /* 3871 * Lets only bother proceeding on the same alpha2 if the current 3872 * rd is non static (it means CRDA was present and was used last) 3873 * and the pending request came in from a country IE 3874 */ 3875 3876 if (!is_valid_rd(rd)) { 3877 pr_err("Invalid regulatory domain detected: %c%c\n", 3878 rd->alpha2[0], rd->alpha2[1]); 3879 print_regdomain_info(rd); 3880 return -EINVAL; 3881 } 3882 3883 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3884 if (!request_wiphy) 3885 return -ENODEV; 3886 3887 if (country_ie_request->intersect) 3888 return -EINVAL; 3889 3890 reset_regdomains(false, rd); 3891 return 0; 3892 } 3893 3894 /* 3895 * Use this call to set the current regulatory domain. Conflicts with 3896 * multiple drivers can be ironed out later. Caller must've already 3897 * kmalloc'd the rd structure. 3898 */ 3899 int set_regdom(const struct ieee80211_regdomain *rd, 3900 enum ieee80211_regd_source regd_src) 3901 { 3902 struct regulatory_request *lr; 3903 bool user_reset = false; 3904 int r; 3905 3906 if (IS_ERR_OR_NULL(rd)) 3907 return -ENODATA; 3908 3909 if (!reg_is_valid_request(rd->alpha2)) { 3910 kfree(rd); 3911 return -EINVAL; 3912 } 3913 3914 if (regd_src == REGD_SOURCE_CRDA) 3915 reset_crda_timeouts(); 3916 3917 lr = get_last_request(); 3918 3919 /* Note that this doesn't update the wiphys, this is done below */ 3920 switch (lr->initiator) { 3921 case NL80211_REGDOM_SET_BY_CORE: 3922 r = reg_set_rd_core(rd); 3923 break; 3924 case NL80211_REGDOM_SET_BY_USER: 3925 cfg80211_save_user_regdom(rd); 3926 r = reg_set_rd_user(rd, lr); 3927 user_reset = true; 3928 break; 3929 case NL80211_REGDOM_SET_BY_DRIVER: 3930 r = reg_set_rd_driver(rd, lr); 3931 break; 3932 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3933 r = reg_set_rd_country_ie(rd, lr); 3934 break; 3935 default: 3936 WARN(1, "invalid initiator %d\n", lr->initiator); 3937 kfree(rd); 3938 return -EINVAL; 3939 } 3940 3941 if (r) { 3942 switch (r) { 3943 case -EALREADY: 3944 reg_set_request_processed(); 3945 break; 3946 default: 3947 /* Back to world regulatory in case of errors */ 3948 restore_regulatory_settings(user_reset, false); 3949 } 3950 3951 kfree(rd); 3952 return r; 3953 } 3954 3955 /* This would make this whole thing pointless */ 3956 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3957 return -EINVAL; 3958 3959 /* update all wiphys now with the new established regulatory domain */ 3960 update_all_wiphy_regulatory(lr->initiator); 3961 3962 print_regdomain(get_cfg80211_regdom()); 3963 3964 nl80211_send_reg_change_event(lr); 3965 3966 reg_set_request_processed(); 3967 3968 return 0; 3969 } 3970 3971 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 3972 struct ieee80211_regdomain *rd) 3973 { 3974 const struct ieee80211_regdomain *regd; 3975 const struct ieee80211_regdomain *prev_regd; 3976 struct cfg80211_registered_device *rdev; 3977 3978 if (WARN_ON(!wiphy || !rd)) 3979 return -EINVAL; 3980 3981 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 3982 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 3983 return -EPERM; 3984 3985 if (WARN(!is_valid_rd(rd), 3986 "Invalid regulatory domain detected: %c%c\n", 3987 rd->alpha2[0], rd->alpha2[1])) { 3988 print_regdomain_info(rd); 3989 return -EINVAL; 3990 } 3991 3992 regd = reg_copy_regd(rd); 3993 if (IS_ERR(regd)) 3994 return PTR_ERR(regd); 3995 3996 rdev = wiphy_to_rdev(wiphy); 3997 3998 spin_lock(®_requests_lock); 3999 prev_regd = rdev->requested_regd; 4000 rdev->requested_regd = regd; 4001 spin_unlock(®_requests_lock); 4002 4003 kfree(prev_regd); 4004 return 0; 4005 } 4006 4007 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 4008 struct ieee80211_regdomain *rd) 4009 { 4010 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 4011 4012 if (ret) 4013 return ret; 4014 4015 schedule_work(®_work); 4016 return 0; 4017 } 4018 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 4019 4020 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy, 4021 struct ieee80211_regdomain *rd) 4022 { 4023 int ret; 4024 4025 ASSERT_RTNL(); 4026 4027 ret = __regulatory_set_wiphy_regd(wiphy, rd); 4028 if (ret) 4029 return ret; 4030 4031 /* process the request immediately */ 4032 reg_process_self_managed_hint(wiphy); 4033 reg_check_channels(); 4034 return 0; 4035 } 4036 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync); 4037 4038 void wiphy_regulatory_register(struct wiphy *wiphy) 4039 { 4040 struct regulatory_request *lr = get_last_request(); 4041 4042 /* self-managed devices ignore beacon hints and country IE */ 4043 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 4044 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 4045 REGULATORY_COUNTRY_IE_IGNORE; 4046 4047 /* 4048 * The last request may have been received before this 4049 * registration call. Call the driver notifier if 4050 * initiator is USER. 4051 */ 4052 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 4053 reg_call_notifier(wiphy, lr); 4054 } 4055 4056 if (!reg_dev_ignore_cell_hint(wiphy)) 4057 reg_num_devs_support_basehint++; 4058 4059 wiphy_update_regulatory(wiphy, lr->initiator); 4060 wiphy_all_share_dfs_chan_state(wiphy); 4061 reg_process_self_managed_hints(); 4062 } 4063 4064 void wiphy_regulatory_deregister(struct wiphy *wiphy) 4065 { 4066 struct wiphy *request_wiphy = NULL; 4067 struct regulatory_request *lr; 4068 4069 lr = get_last_request(); 4070 4071 if (!reg_dev_ignore_cell_hint(wiphy)) 4072 reg_num_devs_support_basehint--; 4073 4074 rcu_free_regdom(get_wiphy_regdom(wiphy)); 4075 RCU_INIT_POINTER(wiphy->regd, NULL); 4076 4077 if (lr) 4078 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 4079 4080 if (!request_wiphy || request_wiphy != wiphy) 4081 return; 4082 4083 lr->wiphy_idx = WIPHY_IDX_INVALID; 4084 lr->country_ie_env = ENVIRON_ANY; 4085 } 4086 4087 /* 4088 * See FCC notices for UNII band definitions 4089 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii 4090 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0 4091 */ 4092 int cfg80211_get_unii(int freq) 4093 { 4094 /* UNII-1 */ 4095 if (freq >= 5150 && freq <= 5250) 4096 return 0; 4097 4098 /* UNII-2A */ 4099 if (freq > 5250 && freq <= 5350) 4100 return 1; 4101 4102 /* UNII-2B */ 4103 if (freq > 5350 && freq <= 5470) 4104 return 2; 4105 4106 /* UNII-2C */ 4107 if (freq > 5470 && freq <= 5725) 4108 return 3; 4109 4110 /* UNII-3 */ 4111 if (freq > 5725 && freq <= 5825) 4112 return 4; 4113 4114 /* UNII-5 */ 4115 if (freq > 5925 && freq <= 6425) 4116 return 5; 4117 4118 /* UNII-6 */ 4119 if (freq > 6425 && freq <= 6525) 4120 return 6; 4121 4122 /* UNII-7 */ 4123 if (freq > 6525 && freq <= 6875) 4124 return 7; 4125 4126 /* UNII-8 */ 4127 if (freq > 6875 && freq <= 7125) 4128 return 8; 4129 4130 return -EINVAL; 4131 } 4132 4133 bool regulatory_indoor_allowed(void) 4134 { 4135 return reg_is_indoor; 4136 } 4137 4138 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 4139 { 4140 const struct ieee80211_regdomain *regd = NULL; 4141 const struct ieee80211_regdomain *wiphy_regd = NULL; 4142 bool pre_cac_allowed = false; 4143 4144 rcu_read_lock(); 4145 4146 regd = rcu_dereference(cfg80211_regdomain); 4147 wiphy_regd = rcu_dereference(wiphy->regd); 4148 if (!wiphy_regd) { 4149 if (regd->dfs_region == NL80211_DFS_ETSI) 4150 pre_cac_allowed = true; 4151 4152 rcu_read_unlock(); 4153 4154 return pre_cac_allowed; 4155 } 4156 4157 if (regd->dfs_region == wiphy_regd->dfs_region && 4158 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 4159 pre_cac_allowed = true; 4160 4161 rcu_read_unlock(); 4162 4163 return pre_cac_allowed; 4164 } 4165 EXPORT_SYMBOL(regulatory_pre_cac_allowed); 4166 4167 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev) 4168 { 4169 struct wireless_dev *wdev; 4170 /* If we finished CAC or received radar, we should end any 4171 * CAC running on the same channels. 4172 * the check !cfg80211_chandef_dfs_usable contain 2 options: 4173 * either all channels are available - those the CAC_FINISHED 4174 * event has effected another wdev state, or there is a channel 4175 * in unavailable state in wdev chandef - those the RADAR_DETECTED 4176 * event has effected another wdev state. 4177 * In both cases we should end the CAC on the wdev. 4178 */ 4179 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 4180 if (wdev->cac_started && 4181 !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef)) 4182 rdev_end_cac(rdev, wdev->netdev); 4183 } 4184 } 4185 4186 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 4187 struct cfg80211_chan_def *chandef, 4188 enum nl80211_dfs_state dfs_state, 4189 enum nl80211_radar_event event) 4190 { 4191 struct cfg80211_registered_device *rdev; 4192 4193 ASSERT_RTNL(); 4194 4195 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 4196 return; 4197 4198 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 4199 if (wiphy == &rdev->wiphy) 4200 continue; 4201 4202 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 4203 continue; 4204 4205 if (!ieee80211_get_channel(&rdev->wiphy, 4206 chandef->chan->center_freq)) 4207 continue; 4208 4209 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 4210 4211 if (event == NL80211_RADAR_DETECTED || 4212 event == NL80211_RADAR_CAC_FINISHED) { 4213 cfg80211_sched_dfs_chan_update(rdev); 4214 cfg80211_check_and_end_cac(rdev); 4215 } 4216 4217 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 4218 } 4219 } 4220 4221 static int __init regulatory_init_db(void) 4222 { 4223 int err; 4224 4225 /* 4226 * It's possible that - due to other bugs/issues - cfg80211 4227 * never called regulatory_init() below, or that it failed; 4228 * in that case, don't try to do any further work here as 4229 * it's doomed to lead to crashes. 4230 */ 4231 if (IS_ERR_OR_NULL(reg_pdev)) 4232 return -EINVAL; 4233 4234 err = load_builtin_regdb_keys(); 4235 if (err) 4236 return err; 4237 4238 /* We always try to get an update for the static regdomain */ 4239 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 4240 if (err) { 4241 if (err == -ENOMEM) { 4242 platform_device_unregister(reg_pdev); 4243 return err; 4244 } 4245 /* 4246 * N.B. kobject_uevent_env() can fail mainly for when we're out 4247 * memory which is handled and propagated appropriately above 4248 * but it can also fail during a netlink_broadcast() or during 4249 * early boot for call_usermodehelper(). For now treat these 4250 * errors as non-fatal. 4251 */ 4252 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 4253 } 4254 4255 /* 4256 * Finally, if the user set the module parameter treat it 4257 * as a user hint. 4258 */ 4259 if (!is_world_regdom(ieee80211_regdom)) 4260 regulatory_hint_user(ieee80211_regdom, 4261 NL80211_USER_REG_HINT_USER); 4262 4263 return 0; 4264 } 4265 #ifndef MODULE 4266 late_initcall(regulatory_init_db); 4267 #endif 4268 4269 int __init regulatory_init(void) 4270 { 4271 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 4272 if (IS_ERR(reg_pdev)) 4273 return PTR_ERR(reg_pdev); 4274 4275 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 4276 4277 user_alpha2[0] = '9'; 4278 user_alpha2[1] = '7'; 4279 4280 #ifdef MODULE 4281 return regulatory_init_db(); 4282 #else 4283 return 0; 4284 #endif 4285 } 4286 4287 void regulatory_exit(void) 4288 { 4289 struct regulatory_request *reg_request, *tmp; 4290 struct reg_beacon *reg_beacon, *btmp; 4291 4292 cancel_work_sync(®_work); 4293 cancel_crda_timeout_sync(); 4294 cancel_delayed_work_sync(®_check_chans); 4295 4296 /* Lock to suppress warnings */ 4297 rtnl_lock(); 4298 reset_regdomains(true, NULL); 4299 rtnl_unlock(); 4300 4301 dev_set_uevent_suppress(®_pdev->dev, true); 4302 4303 platform_device_unregister(reg_pdev); 4304 4305 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 4306 list_del(®_beacon->list); 4307 kfree(reg_beacon); 4308 } 4309 4310 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 4311 list_del(®_beacon->list); 4312 kfree(reg_beacon); 4313 } 4314 4315 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4316 list_del(®_request->list); 4317 kfree(reg_request); 4318 } 4319 4320 if (!IS_ERR_OR_NULL(regdb)) 4321 kfree(regdb); 4322 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4323 kfree(cfg80211_user_regdom); 4324 4325 free_regdb_keyring(); 4326 } 4327