1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * 9 * Permission to use, copy, modify, and/or distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 23 /** 24 * DOC: Wireless regulatory infrastructure 25 * 26 * The usual implementation is for a driver to read a device EEPROM to 27 * determine which regulatory domain it should be operating under, then 28 * looking up the allowable channels in a driver-local table and finally 29 * registering those channels in the wiphy structure. 30 * 31 * Another set of compliance enforcement is for drivers to use their 32 * own compliance limits which can be stored on the EEPROM. The host 33 * driver or firmware may ensure these are used. 34 * 35 * In addition to all this we provide an extra layer of regulatory 36 * conformance. For drivers which do not have any regulatory 37 * information CRDA provides the complete regulatory solution. 38 * For others it provides a community effort on further restrictions 39 * to enhance compliance. 40 * 41 * Note: When number of rules --> infinity we will not be able to 42 * index on alpha2 any more, instead we'll probably have to 43 * rely on some SHA1 checksum of the regdomain for example. 44 * 45 */ 46 47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 48 49 #include <linux/kernel.h> 50 #include <linux/export.h> 51 #include <linux/slab.h> 52 #include <linux/list.h> 53 #include <linux/ctype.h> 54 #include <linux/nl80211.h> 55 #include <linux/platform_device.h> 56 #include <linux/moduleparam.h> 57 #include <net/cfg80211.h> 58 #include "core.h" 59 #include "reg.h" 60 #include "rdev-ops.h" 61 #include "regdb.h" 62 #include "nl80211.h" 63 64 /* 65 * Grace period we give before making sure all current interfaces reside on 66 * channels allowed by the current regulatory domain. 67 */ 68 #define REG_ENFORCE_GRACE_MS 60000 69 70 /** 71 * enum reg_request_treatment - regulatory request treatment 72 * 73 * @REG_REQ_OK: continue processing the regulatory request 74 * @REG_REQ_IGNORE: ignore the regulatory request 75 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 76 * be intersected with the current one. 77 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 78 * regulatory settings, and no further processing is required. 79 */ 80 enum reg_request_treatment { 81 REG_REQ_OK, 82 REG_REQ_IGNORE, 83 REG_REQ_INTERSECT, 84 REG_REQ_ALREADY_SET, 85 }; 86 87 static struct regulatory_request core_request_world = { 88 .initiator = NL80211_REGDOM_SET_BY_CORE, 89 .alpha2[0] = '0', 90 .alpha2[1] = '0', 91 .intersect = false, 92 .processed = true, 93 .country_ie_env = ENVIRON_ANY, 94 }; 95 96 /* 97 * Receipt of information from last regulatory request, 98 * protected by RTNL (and can be accessed with RCU protection) 99 */ 100 static struct regulatory_request __rcu *last_request = 101 (void __force __rcu *)&core_request_world; 102 103 /* To trigger userspace events */ 104 static struct platform_device *reg_pdev; 105 106 /* 107 * Central wireless core regulatory domains, we only need two, 108 * the current one and a world regulatory domain in case we have no 109 * information to give us an alpha2. 110 * (protected by RTNL, can be read under RCU) 111 */ 112 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 113 114 /* 115 * Number of devices that registered to the core 116 * that support cellular base station regulatory hints 117 * (protected by RTNL) 118 */ 119 static int reg_num_devs_support_basehint; 120 121 /* 122 * State variable indicating if the platform on which the devices 123 * are attached is operating in an indoor environment. The state variable 124 * is relevant for all registered devices. 125 */ 126 static bool reg_is_indoor; 127 static spinlock_t reg_indoor_lock; 128 129 /* Used to track the userspace process controlling the indoor setting */ 130 static u32 reg_is_indoor_portid; 131 132 static void restore_regulatory_settings(bool reset_user); 133 134 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 135 { 136 return rtnl_dereference(cfg80211_regdomain); 137 } 138 139 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 140 { 141 return rtnl_dereference(wiphy->regd); 142 } 143 144 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 145 { 146 switch (dfs_region) { 147 case NL80211_DFS_UNSET: 148 return "unset"; 149 case NL80211_DFS_FCC: 150 return "FCC"; 151 case NL80211_DFS_ETSI: 152 return "ETSI"; 153 case NL80211_DFS_JP: 154 return "JP"; 155 } 156 return "Unknown"; 157 } 158 159 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 160 { 161 const struct ieee80211_regdomain *regd = NULL; 162 const struct ieee80211_regdomain *wiphy_regd = NULL; 163 164 regd = get_cfg80211_regdom(); 165 if (!wiphy) 166 goto out; 167 168 wiphy_regd = get_wiphy_regdom(wiphy); 169 if (!wiphy_regd) 170 goto out; 171 172 if (wiphy_regd->dfs_region == regd->dfs_region) 173 goto out; 174 175 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 176 dev_name(&wiphy->dev), 177 reg_dfs_region_str(wiphy_regd->dfs_region), 178 reg_dfs_region_str(regd->dfs_region)); 179 180 out: 181 return regd->dfs_region; 182 } 183 184 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 185 { 186 if (!r) 187 return; 188 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 189 } 190 191 static struct regulatory_request *get_last_request(void) 192 { 193 return rcu_dereference_rtnl(last_request); 194 } 195 196 /* Used to queue up regulatory hints */ 197 static LIST_HEAD(reg_requests_list); 198 static spinlock_t reg_requests_lock; 199 200 /* Used to queue up beacon hints for review */ 201 static LIST_HEAD(reg_pending_beacons); 202 static spinlock_t reg_pending_beacons_lock; 203 204 /* Used to keep track of processed beacon hints */ 205 static LIST_HEAD(reg_beacon_list); 206 207 struct reg_beacon { 208 struct list_head list; 209 struct ieee80211_channel chan; 210 }; 211 212 static void reg_check_chans_work(struct work_struct *work); 213 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 214 215 static void reg_todo(struct work_struct *work); 216 static DECLARE_WORK(reg_work, reg_todo); 217 218 /* We keep a static world regulatory domain in case of the absence of CRDA */ 219 static const struct ieee80211_regdomain world_regdom = { 220 .n_reg_rules = 8, 221 .alpha2 = "00", 222 .reg_rules = { 223 /* IEEE 802.11b/g, channels 1..11 */ 224 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 225 /* IEEE 802.11b/g, channels 12..13. */ 226 REG_RULE(2467-10, 2472+10, 20, 6, 20, 227 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 228 /* IEEE 802.11 channel 14 - Only JP enables 229 * this and for 802.11b only */ 230 REG_RULE(2484-10, 2484+10, 20, 6, 20, 231 NL80211_RRF_NO_IR | 232 NL80211_RRF_NO_OFDM), 233 /* IEEE 802.11a, channel 36..48 */ 234 REG_RULE(5180-10, 5240+10, 80, 6, 20, 235 NL80211_RRF_NO_IR | 236 NL80211_RRF_AUTO_BW), 237 238 /* IEEE 802.11a, channel 52..64 - DFS required */ 239 REG_RULE(5260-10, 5320+10, 80, 6, 20, 240 NL80211_RRF_NO_IR | 241 NL80211_RRF_AUTO_BW | 242 NL80211_RRF_DFS), 243 244 /* IEEE 802.11a, channel 100..144 - DFS required */ 245 REG_RULE(5500-10, 5720+10, 160, 6, 20, 246 NL80211_RRF_NO_IR | 247 NL80211_RRF_DFS), 248 249 /* IEEE 802.11a, channel 149..165 */ 250 REG_RULE(5745-10, 5825+10, 80, 6, 20, 251 NL80211_RRF_NO_IR), 252 253 /* IEEE 802.11ad (60GHz), channels 1..3 */ 254 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 255 } 256 }; 257 258 /* protected by RTNL */ 259 static const struct ieee80211_regdomain *cfg80211_world_regdom = 260 &world_regdom; 261 262 static char *ieee80211_regdom = "00"; 263 static char user_alpha2[2]; 264 265 module_param(ieee80211_regdom, charp, 0444); 266 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 267 268 static void reg_free_request(struct regulatory_request *request) 269 { 270 if (request == &core_request_world) 271 return; 272 273 if (request != get_last_request()) 274 kfree(request); 275 } 276 277 static void reg_free_last_request(void) 278 { 279 struct regulatory_request *lr = get_last_request(); 280 281 if (lr != &core_request_world && lr) 282 kfree_rcu(lr, rcu_head); 283 } 284 285 static void reg_update_last_request(struct regulatory_request *request) 286 { 287 struct regulatory_request *lr; 288 289 lr = get_last_request(); 290 if (lr == request) 291 return; 292 293 reg_free_last_request(); 294 rcu_assign_pointer(last_request, request); 295 } 296 297 static void reset_regdomains(bool full_reset, 298 const struct ieee80211_regdomain *new_regdom) 299 { 300 const struct ieee80211_regdomain *r; 301 302 ASSERT_RTNL(); 303 304 r = get_cfg80211_regdom(); 305 306 /* avoid freeing static information or freeing something twice */ 307 if (r == cfg80211_world_regdom) 308 r = NULL; 309 if (cfg80211_world_regdom == &world_regdom) 310 cfg80211_world_regdom = NULL; 311 if (r == &world_regdom) 312 r = NULL; 313 314 rcu_free_regdom(r); 315 rcu_free_regdom(cfg80211_world_regdom); 316 317 cfg80211_world_regdom = &world_regdom; 318 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 319 320 if (!full_reset) 321 return; 322 323 reg_update_last_request(&core_request_world); 324 } 325 326 /* 327 * Dynamic world regulatory domain requested by the wireless 328 * core upon initialization 329 */ 330 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 331 { 332 struct regulatory_request *lr; 333 334 lr = get_last_request(); 335 336 WARN_ON(!lr); 337 338 reset_regdomains(false, rd); 339 340 cfg80211_world_regdom = rd; 341 } 342 343 bool is_world_regdom(const char *alpha2) 344 { 345 if (!alpha2) 346 return false; 347 return alpha2[0] == '0' && alpha2[1] == '0'; 348 } 349 350 static bool is_alpha2_set(const char *alpha2) 351 { 352 if (!alpha2) 353 return false; 354 return alpha2[0] && alpha2[1]; 355 } 356 357 static bool is_unknown_alpha2(const char *alpha2) 358 { 359 if (!alpha2) 360 return false; 361 /* 362 * Special case where regulatory domain was built by driver 363 * but a specific alpha2 cannot be determined 364 */ 365 return alpha2[0] == '9' && alpha2[1] == '9'; 366 } 367 368 static bool is_intersected_alpha2(const char *alpha2) 369 { 370 if (!alpha2) 371 return false; 372 /* 373 * Special case where regulatory domain is the 374 * result of an intersection between two regulatory domain 375 * structures 376 */ 377 return alpha2[0] == '9' && alpha2[1] == '8'; 378 } 379 380 static bool is_an_alpha2(const char *alpha2) 381 { 382 if (!alpha2) 383 return false; 384 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 385 } 386 387 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 388 { 389 if (!alpha2_x || !alpha2_y) 390 return false; 391 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 392 } 393 394 static bool regdom_changes(const char *alpha2) 395 { 396 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 397 398 if (!r) 399 return true; 400 return !alpha2_equal(r->alpha2, alpha2); 401 } 402 403 /* 404 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 405 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 406 * has ever been issued. 407 */ 408 static bool is_user_regdom_saved(void) 409 { 410 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 411 return false; 412 413 /* This would indicate a mistake on the design */ 414 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 415 "Unexpected user alpha2: %c%c\n", 416 user_alpha2[0], user_alpha2[1])) 417 return false; 418 419 return true; 420 } 421 422 static const struct ieee80211_regdomain * 423 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 424 { 425 struct ieee80211_regdomain *regd; 426 int size_of_regd; 427 unsigned int i; 428 429 size_of_regd = 430 sizeof(struct ieee80211_regdomain) + 431 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); 432 433 regd = kzalloc(size_of_regd, GFP_KERNEL); 434 if (!regd) 435 return ERR_PTR(-ENOMEM); 436 437 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 438 439 for (i = 0; i < src_regd->n_reg_rules; i++) 440 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 441 sizeof(struct ieee80211_reg_rule)); 442 443 return regd; 444 } 445 446 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 447 struct reg_regdb_apply_request { 448 struct list_head list; 449 const struct ieee80211_regdomain *regdom; 450 }; 451 452 static LIST_HEAD(reg_regdb_apply_list); 453 static DEFINE_MUTEX(reg_regdb_apply_mutex); 454 455 static void reg_regdb_apply(struct work_struct *work) 456 { 457 struct reg_regdb_apply_request *request; 458 459 rtnl_lock(); 460 461 mutex_lock(®_regdb_apply_mutex); 462 while (!list_empty(®_regdb_apply_list)) { 463 request = list_first_entry(®_regdb_apply_list, 464 struct reg_regdb_apply_request, 465 list); 466 list_del(&request->list); 467 468 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 469 kfree(request); 470 } 471 mutex_unlock(®_regdb_apply_mutex); 472 473 rtnl_unlock(); 474 } 475 476 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 477 478 static int reg_query_builtin(const char *alpha2) 479 { 480 const struct ieee80211_regdomain *regdom = NULL; 481 struct reg_regdb_apply_request *request; 482 unsigned int i; 483 484 for (i = 0; i < reg_regdb_size; i++) { 485 if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) { 486 regdom = reg_regdb[i]; 487 break; 488 } 489 } 490 491 if (!regdom) 492 return -ENODATA; 493 494 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 495 if (!request) 496 return -ENOMEM; 497 498 request->regdom = reg_copy_regd(regdom); 499 if (IS_ERR_OR_NULL(request->regdom)) { 500 kfree(request); 501 return -ENOMEM; 502 } 503 504 mutex_lock(®_regdb_apply_mutex); 505 list_add_tail(&request->list, ®_regdb_apply_list); 506 mutex_unlock(®_regdb_apply_mutex); 507 508 schedule_work(®_regdb_work); 509 510 return 0; 511 } 512 513 /* Feel free to add any other sanity checks here */ 514 static void reg_regdb_size_check(void) 515 { 516 /* We should ideally BUILD_BUG_ON() but then random builds would fail */ 517 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it..."); 518 } 519 #else 520 static inline void reg_regdb_size_check(void) {} 521 static inline int reg_query_builtin(const char *alpha2) 522 { 523 return -ENODATA; 524 } 525 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 526 527 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 528 /* Max number of consecutive attempts to communicate with CRDA */ 529 #define REG_MAX_CRDA_TIMEOUTS 10 530 531 static u32 reg_crda_timeouts; 532 533 static void crda_timeout_work(struct work_struct *work); 534 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 535 536 static void crda_timeout_work(struct work_struct *work) 537 { 538 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 539 rtnl_lock(); 540 reg_crda_timeouts++; 541 restore_regulatory_settings(true); 542 rtnl_unlock(); 543 } 544 545 static void cancel_crda_timeout(void) 546 { 547 cancel_delayed_work(&crda_timeout); 548 } 549 550 static void cancel_crda_timeout_sync(void) 551 { 552 cancel_delayed_work_sync(&crda_timeout); 553 } 554 555 static void reset_crda_timeouts(void) 556 { 557 reg_crda_timeouts = 0; 558 } 559 560 /* 561 * This lets us keep regulatory code which is updated on a regulatory 562 * basis in userspace. 563 */ 564 static int call_crda(const char *alpha2) 565 { 566 char country[12]; 567 char *env[] = { country, NULL }; 568 int ret; 569 570 snprintf(country, sizeof(country), "COUNTRY=%c%c", 571 alpha2[0], alpha2[1]); 572 573 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 574 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 575 return -EINVAL; 576 } 577 578 if (!is_world_regdom((char *) alpha2)) 579 pr_debug("Calling CRDA for country: %c%c\n", 580 alpha2[0], alpha2[1]); 581 else 582 pr_debug("Calling CRDA to update world regulatory domain\n"); 583 584 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 585 if (ret) 586 return ret; 587 588 queue_delayed_work(system_power_efficient_wq, 589 &crda_timeout, msecs_to_jiffies(3142)); 590 return 0; 591 } 592 #else 593 static inline void cancel_crda_timeout(void) {} 594 static inline void cancel_crda_timeout_sync(void) {} 595 static inline void reset_crda_timeouts(void) {} 596 static inline int call_crda(const char *alpha2) 597 { 598 return -ENODATA; 599 } 600 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 601 602 static bool reg_query_database(struct regulatory_request *request) 603 { 604 /* query internal regulatory database (if it exists) */ 605 if (reg_query_builtin(request->alpha2) == 0) 606 return true; 607 608 if (call_crda(request->alpha2) == 0) 609 return true; 610 611 return false; 612 } 613 614 bool reg_is_valid_request(const char *alpha2) 615 { 616 struct regulatory_request *lr = get_last_request(); 617 618 if (!lr || lr->processed) 619 return false; 620 621 return alpha2_equal(lr->alpha2, alpha2); 622 } 623 624 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 625 { 626 struct regulatory_request *lr = get_last_request(); 627 628 /* 629 * Follow the driver's regulatory domain, if present, unless a country 630 * IE has been processed or a user wants to help complaince further 631 */ 632 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 633 lr->initiator != NL80211_REGDOM_SET_BY_USER && 634 wiphy->regd) 635 return get_wiphy_regdom(wiphy); 636 637 return get_cfg80211_regdom(); 638 } 639 640 static unsigned int 641 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 642 const struct ieee80211_reg_rule *rule) 643 { 644 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 645 const struct ieee80211_freq_range *freq_range_tmp; 646 const struct ieee80211_reg_rule *tmp; 647 u32 start_freq, end_freq, idx, no; 648 649 for (idx = 0; idx < rd->n_reg_rules; idx++) 650 if (rule == &rd->reg_rules[idx]) 651 break; 652 653 if (idx == rd->n_reg_rules) 654 return 0; 655 656 /* get start_freq */ 657 no = idx; 658 659 while (no) { 660 tmp = &rd->reg_rules[--no]; 661 freq_range_tmp = &tmp->freq_range; 662 663 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 664 break; 665 666 freq_range = freq_range_tmp; 667 } 668 669 start_freq = freq_range->start_freq_khz; 670 671 /* get end_freq */ 672 freq_range = &rule->freq_range; 673 no = idx; 674 675 while (no < rd->n_reg_rules - 1) { 676 tmp = &rd->reg_rules[++no]; 677 freq_range_tmp = &tmp->freq_range; 678 679 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 680 break; 681 682 freq_range = freq_range_tmp; 683 } 684 685 end_freq = freq_range->end_freq_khz; 686 687 return end_freq - start_freq; 688 } 689 690 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 691 const struct ieee80211_reg_rule *rule) 692 { 693 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 694 695 if (rule->flags & NL80211_RRF_NO_160MHZ) 696 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 697 if (rule->flags & NL80211_RRF_NO_80MHZ) 698 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 699 700 /* 701 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 702 * are not allowed. 703 */ 704 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 705 rule->flags & NL80211_RRF_NO_HT40PLUS) 706 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 707 708 return bw; 709 } 710 711 /* Sanity check on a regulatory rule */ 712 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 713 { 714 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 715 u32 freq_diff; 716 717 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 718 return false; 719 720 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 721 return false; 722 723 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 724 725 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 726 freq_range->max_bandwidth_khz > freq_diff) 727 return false; 728 729 return true; 730 } 731 732 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 733 { 734 const struct ieee80211_reg_rule *reg_rule = NULL; 735 unsigned int i; 736 737 if (!rd->n_reg_rules) 738 return false; 739 740 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 741 return false; 742 743 for (i = 0; i < rd->n_reg_rules; i++) { 744 reg_rule = &rd->reg_rules[i]; 745 if (!is_valid_reg_rule(reg_rule)) 746 return false; 747 } 748 749 return true; 750 } 751 752 /** 753 * freq_in_rule_band - tells us if a frequency is in a frequency band 754 * @freq_range: frequency rule we want to query 755 * @freq_khz: frequency we are inquiring about 756 * 757 * This lets us know if a specific frequency rule is or is not relevant to 758 * a specific frequency's band. Bands are device specific and artificial 759 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 760 * however it is safe for now to assume that a frequency rule should not be 761 * part of a frequency's band if the start freq or end freq are off by more 762 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the 763 * 60 GHz band. 764 * This resolution can be lowered and should be considered as we add 765 * regulatory rule support for other "bands". 766 **/ 767 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 768 u32 freq_khz) 769 { 770 #define ONE_GHZ_IN_KHZ 1000000 771 /* 772 * From 802.11ad: directional multi-gigabit (DMG): 773 * Pertaining to operation in a frequency band containing a channel 774 * with the Channel starting frequency above 45 GHz. 775 */ 776 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 777 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 778 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 779 return true; 780 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 781 return true; 782 return false; 783 #undef ONE_GHZ_IN_KHZ 784 } 785 786 /* 787 * Later on we can perhaps use the more restrictive DFS 788 * region but we don't have information for that yet so 789 * for now simply disallow conflicts. 790 */ 791 static enum nl80211_dfs_regions 792 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 793 const enum nl80211_dfs_regions dfs_region2) 794 { 795 if (dfs_region1 != dfs_region2) 796 return NL80211_DFS_UNSET; 797 return dfs_region1; 798 } 799 800 /* 801 * Helper for regdom_intersect(), this does the real 802 * mathematical intersection fun 803 */ 804 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 805 const struct ieee80211_regdomain *rd2, 806 const struct ieee80211_reg_rule *rule1, 807 const struct ieee80211_reg_rule *rule2, 808 struct ieee80211_reg_rule *intersected_rule) 809 { 810 const struct ieee80211_freq_range *freq_range1, *freq_range2; 811 struct ieee80211_freq_range *freq_range; 812 const struct ieee80211_power_rule *power_rule1, *power_rule2; 813 struct ieee80211_power_rule *power_rule; 814 u32 freq_diff, max_bandwidth1, max_bandwidth2; 815 816 freq_range1 = &rule1->freq_range; 817 freq_range2 = &rule2->freq_range; 818 freq_range = &intersected_rule->freq_range; 819 820 power_rule1 = &rule1->power_rule; 821 power_rule2 = &rule2->power_rule; 822 power_rule = &intersected_rule->power_rule; 823 824 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 825 freq_range2->start_freq_khz); 826 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 827 freq_range2->end_freq_khz); 828 829 max_bandwidth1 = freq_range1->max_bandwidth_khz; 830 max_bandwidth2 = freq_range2->max_bandwidth_khz; 831 832 if (rule1->flags & NL80211_RRF_AUTO_BW) 833 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 834 if (rule2->flags & NL80211_RRF_AUTO_BW) 835 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 836 837 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 838 839 intersected_rule->flags = rule1->flags | rule2->flags; 840 841 /* 842 * In case NL80211_RRF_AUTO_BW requested for both rules 843 * set AUTO_BW in intersected rule also. Next we will 844 * calculate BW correctly in handle_channel function. 845 * In other case remove AUTO_BW flag while we calculate 846 * maximum bandwidth correctly and auto calculation is 847 * not required. 848 */ 849 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 850 (rule2->flags & NL80211_RRF_AUTO_BW)) 851 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 852 else 853 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 854 855 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 856 if (freq_range->max_bandwidth_khz > freq_diff) 857 freq_range->max_bandwidth_khz = freq_diff; 858 859 power_rule->max_eirp = min(power_rule1->max_eirp, 860 power_rule2->max_eirp); 861 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 862 power_rule2->max_antenna_gain); 863 864 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 865 rule2->dfs_cac_ms); 866 867 if (!is_valid_reg_rule(intersected_rule)) 868 return -EINVAL; 869 870 return 0; 871 } 872 873 /* check whether old rule contains new rule */ 874 static bool rule_contains(struct ieee80211_reg_rule *r1, 875 struct ieee80211_reg_rule *r2) 876 { 877 /* for simplicity, currently consider only same flags */ 878 if (r1->flags != r2->flags) 879 return false; 880 881 /* verify r1 is more restrictive */ 882 if ((r1->power_rule.max_antenna_gain > 883 r2->power_rule.max_antenna_gain) || 884 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 885 return false; 886 887 /* make sure r2's range is contained within r1 */ 888 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 889 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 890 return false; 891 892 /* and finally verify that r1.max_bw >= r2.max_bw */ 893 if (r1->freq_range.max_bandwidth_khz < 894 r2->freq_range.max_bandwidth_khz) 895 return false; 896 897 return true; 898 } 899 900 /* add or extend current rules. do nothing if rule is already contained */ 901 static void add_rule(struct ieee80211_reg_rule *rule, 902 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 903 { 904 struct ieee80211_reg_rule *tmp_rule; 905 int i; 906 907 for (i = 0; i < *n_rules; i++) { 908 tmp_rule = ®_rules[i]; 909 /* rule is already contained - do nothing */ 910 if (rule_contains(tmp_rule, rule)) 911 return; 912 913 /* extend rule if possible */ 914 if (rule_contains(rule, tmp_rule)) { 915 memcpy(tmp_rule, rule, sizeof(*rule)); 916 return; 917 } 918 } 919 920 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 921 (*n_rules)++; 922 } 923 924 /** 925 * regdom_intersect - do the intersection between two regulatory domains 926 * @rd1: first regulatory domain 927 * @rd2: second regulatory domain 928 * 929 * Use this function to get the intersection between two regulatory domains. 930 * Once completed we will mark the alpha2 for the rd as intersected, "98", 931 * as no one single alpha2 can represent this regulatory domain. 932 * 933 * Returns a pointer to the regulatory domain structure which will hold the 934 * resulting intersection of rules between rd1 and rd2. We will 935 * kzalloc() this structure for you. 936 */ 937 static struct ieee80211_regdomain * 938 regdom_intersect(const struct ieee80211_regdomain *rd1, 939 const struct ieee80211_regdomain *rd2) 940 { 941 int r, size_of_regd; 942 unsigned int x, y; 943 unsigned int num_rules = 0; 944 const struct ieee80211_reg_rule *rule1, *rule2; 945 struct ieee80211_reg_rule intersected_rule; 946 struct ieee80211_regdomain *rd; 947 948 if (!rd1 || !rd2) 949 return NULL; 950 951 /* 952 * First we get a count of the rules we'll need, then we actually 953 * build them. This is to so we can malloc() and free() a 954 * regdomain once. The reason we use reg_rules_intersect() here 955 * is it will return -EINVAL if the rule computed makes no sense. 956 * All rules that do check out OK are valid. 957 */ 958 959 for (x = 0; x < rd1->n_reg_rules; x++) { 960 rule1 = &rd1->reg_rules[x]; 961 for (y = 0; y < rd2->n_reg_rules; y++) { 962 rule2 = &rd2->reg_rules[y]; 963 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 964 &intersected_rule)) 965 num_rules++; 966 } 967 } 968 969 if (!num_rules) 970 return NULL; 971 972 size_of_regd = sizeof(struct ieee80211_regdomain) + 973 num_rules * sizeof(struct ieee80211_reg_rule); 974 975 rd = kzalloc(size_of_regd, GFP_KERNEL); 976 if (!rd) 977 return NULL; 978 979 for (x = 0; x < rd1->n_reg_rules; x++) { 980 rule1 = &rd1->reg_rules[x]; 981 for (y = 0; y < rd2->n_reg_rules; y++) { 982 rule2 = &rd2->reg_rules[y]; 983 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 984 &intersected_rule); 985 /* 986 * No need to memset here the intersected rule here as 987 * we're not using the stack anymore 988 */ 989 if (r) 990 continue; 991 992 add_rule(&intersected_rule, rd->reg_rules, 993 &rd->n_reg_rules); 994 } 995 } 996 997 rd->alpha2[0] = '9'; 998 rd->alpha2[1] = '8'; 999 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1000 rd2->dfs_region); 1001 1002 return rd; 1003 } 1004 1005 /* 1006 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1007 * want to just have the channel structure use these 1008 */ 1009 static u32 map_regdom_flags(u32 rd_flags) 1010 { 1011 u32 channel_flags = 0; 1012 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1013 channel_flags |= IEEE80211_CHAN_NO_IR; 1014 if (rd_flags & NL80211_RRF_DFS) 1015 channel_flags |= IEEE80211_CHAN_RADAR; 1016 if (rd_flags & NL80211_RRF_NO_OFDM) 1017 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1018 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1019 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1020 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1021 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1022 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1023 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1024 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1025 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1026 if (rd_flags & NL80211_RRF_NO_80MHZ) 1027 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1028 if (rd_flags & NL80211_RRF_NO_160MHZ) 1029 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1030 return channel_flags; 1031 } 1032 1033 static const struct ieee80211_reg_rule * 1034 freq_reg_info_regd(u32 center_freq, 1035 const struct ieee80211_regdomain *regd, u32 bw) 1036 { 1037 int i; 1038 bool band_rule_found = false; 1039 bool bw_fits = false; 1040 1041 if (!regd) 1042 return ERR_PTR(-EINVAL); 1043 1044 for (i = 0; i < regd->n_reg_rules; i++) { 1045 const struct ieee80211_reg_rule *rr; 1046 const struct ieee80211_freq_range *fr = NULL; 1047 1048 rr = ®d->reg_rules[i]; 1049 fr = &rr->freq_range; 1050 1051 /* 1052 * We only need to know if one frequency rule was 1053 * was in center_freq's band, that's enough, so lets 1054 * not overwrite it once found 1055 */ 1056 if (!band_rule_found) 1057 band_rule_found = freq_in_rule_band(fr, center_freq); 1058 1059 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1060 1061 if (band_rule_found && bw_fits) 1062 return rr; 1063 } 1064 1065 if (!band_rule_found) 1066 return ERR_PTR(-ERANGE); 1067 1068 return ERR_PTR(-EINVAL); 1069 } 1070 1071 static const struct ieee80211_reg_rule * 1072 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1073 { 1074 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1075 const struct ieee80211_reg_rule *reg_rule = NULL; 1076 u32 bw; 1077 1078 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 1079 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1080 if (!IS_ERR(reg_rule)) 1081 return reg_rule; 1082 } 1083 1084 return reg_rule; 1085 } 1086 1087 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1088 u32 center_freq) 1089 { 1090 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20)); 1091 } 1092 EXPORT_SYMBOL(freq_reg_info); 1093 1094 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1095 { 1096 switch (initiator) { 1097 case NL80211_REGDOM_SET_BY_CORE: 1098 return "core"; 1099 case NL80211_REGDOM_SET_BY_USER: 1100 return "user"; 1101 case NL80211_REGDOM_SET_BY_DRIVER: 1102 return "driver"; 1103 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1104 return "country IE"; 1105 default: 1106 WARN_ON(1); 1107 return "bug"; 1108 } 1109 } 1110 EXPORT_SYMBOL(reg_initiator_name); 1111 1112 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1113 const struct ieee80211_reg_rule *reg_rule, 1114 const struct ieee80211_channel *chan) 1115 { 1116 const struct ieee80211_freq_range *freq_range = NULL; 1117 u32 max_bandwidth_khz, bw_flags = 0; 1118 1119 freq_range = ®_rule->freq_range; 1120 1121 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1122 /* Check if auto calculation requested */ 1123 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1124 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1125 1126 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1127 if (!cfg80211_does_bw_fit_range(freq_range, 1128 MHZ_TO_KHZ(chan->center_freq), 1129 MHZ_TO_KHZ(10))) 1130 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1131 if (!cfg80211_does_bw_fit_range(freq_range, 1132 MHZ_TO_KHZ(chan->center_freq), 1133 MHZ_TO_KHZ(20))) 1134 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1135 1136 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1137 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1138 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1139 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1140 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1141 bw_flags |= IEEE80211_CHAN_NO_HT40; 1142 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1143 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1144 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1145 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1146 return bw_flags; 1147 } 1148 1149 /* 1150 * Note that right now we assume the desired channel bandwidth 1151 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1152 * per channel, the primary and the extension channel). 1153 */ 1154 static void handle_channel(struct wiphy *wiphy, 1155 enum nl80211_reg_initiator initiator, 1156 struct ieee80211_channel *chan) 1157 { 1158 u32 flags, bw_flags = 0; 1159 const struct ieee80211_reg_rule *reg_rule = NULL; 1160 const struct ieee80211_power_rule *power_rule = NULL; 1161 struct wiphy *request_wiphy = NULL; 1162 struct regulatory_request *lr = get_last_request(); 1163 const struct ieee80211_regdomain *regd; 1164 1165 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1166 1167 flags = chan->orig_flags; 1168 1169 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 1170 if (IS_ERR(reg_rule)) { 1171 /* 1172 * We will disable all channels that do not match our 1173 * received regulatory rule unless the hint is coming 1174 * from a Country IE and the Country IE had no information 1175 * about a band. The IEEE 802.11 spec allows for an AP 1176 * to send only a subset of the regulatory rules allowed, 1177 * so an AP in the US that only supports 2.4 GHz may only send 1178 * a country IE with information for the 2.4 GHz band 1179 * while 5 GHz is still supported. 1180 */ 1181 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1182 PTR_ERR(reg_rule) == -ERANGE) 1183 return; 1184 1185 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1186 request_wiphy && request_wiphy == wiphy && 1187 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1188 pr_debug("Disabling freq %d MHz for good\n", 1189 chan->center_freq); 1190 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1191 chan->flags = chan->orig_flags; 1192 } else { 1193 pr_debug("Disabling freq %d MHz\n", 1194 chan->center_freq); 1195 chan->flags |= IEEE80211_CHAN_DISABLED; 1196 } 1197 return; 1198 } 1199 1200 regd = reg_get_regdomain(wiphy); 1201 1202 power_rule = ®_rule->power_rule; 1203 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1204 1205 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1206 request_wiphy && request_wiphy == wiphy && 1207 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1208 /* 1209 * This guarantees the driver's requested regulatory domain 1210 * will always be used as a base for further regulatory 1211 * settings 1212 */ 1213 chan->flags = chan->orig_flags = 1214 map_regdom_flags(reg_rule->flags) | bw_flags; 1215 chan->max_antenna_gain = chan->orig_mag = 1216 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1217 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1218 (int) MBM_TO_DBM(power_rule->max_eirp); 1219 1220 if (chan->flags & IEEE80211_CHAN_RADAR) { 1221 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1222 if (reg_rule->dfs_cac_ms) 1223 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1224 } 1225 1226 return; 1227 } 1228 1229 chan->dfs_state = NL80211_DFS_USABLE; 1230 chan->dfs_state_entered = jiffies; 1231 1232 chan->beacon_found = false; 1233 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1234 chan->max_antenna_gain = 1235 min_t(int, chan->orig_mag, 1236 MBI_TO_DBI(power_rule->max_antenna_gain)); 1237 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1238 1239 if (chan->flags & IEEE80211_CHAN_RADAR) { 1240 if (reg_rule->dfs_cac_ms) 1241 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1242 else 1243 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1244 } 1245 1246 if (chan->orig_mpwr) { 1247 /* 1248 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1249 * will always follow the passed country IE power settings. 1250 */ 1251 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1252 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1253 chan->max_power = chan->max_reg_power; 1254 else 1255 chan->max_power = min(chan->orig_mpwr, 1256 chan->max_reg_power); 1257 } else 1258 chan->max_power = chan->max_reg_power; 1259 } 1260 1261 static void handle_band(struct wiphy *wiphy, 1262 enum nl80211_reg_initiator initiator, 1263 struct ieee80211_supported_band *sband) 1264 { 1265 unsigned int i; 1266 1267 if (!sband) 1268 return; 1269 1270 for (i = 0; i < sband->n_channels; i++) 1271 handle_channel(wiphy, initiator, &sband->channels[i]); 1272 } 1273 1274 static bool reg_request_cell_base(struct regulatory_request *request) 1275 { 1276 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1277 return false; 1278 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 1279 } 1280 1281 bool reg_last_request_cell_base(void) 1282 { 1283 return reg_request_cell_base(get_last_request()); 1284 } 1285 1286 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 1287 /* Core specific check */ 1288 static enum reg_request_treatment 1289 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1290 { 1291 struct regulatory_request *lr = get_last_request(); 1292 1293 if (!reg_num_devs_support_basehint) 1294 return REG_REQ_IGNORE; 1295 1296 if (reg_request_cell_base(lr) && 1297 !regdom_changes(pending_request->alpha2)) 1298 return REG_REQ_ALREADY_SET; 1299 1300 return REG_REQ_OK; 1301 } 1302 1303 /* Device specific check */ 1304 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1305 { 1306 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 1307 } 1308 #else 1309 static enum reg_request_treatment 1310 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1311 { 1312 return REG_REQ_IGNORE; 1313 } 1314 1315 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1316 { 1317 return true; 1318 } 1319 #endif 1320 1321 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 1322 { 1323 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 1324 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 1325 return true; 1326 return false; 1327 } 1328 1329 static bool ignore_reg_update(struct wiphy *wiphy, 1330 enum nl80211_reg_initiator initiator) 1331 { 1332 struct regulatory_request *lr = get_last_request(); 1333 1334 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 1335 return true; 1336 1337 if (!lr) { 1338 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 1339 reg_initiator_name(initiator)); 1340 return true; 1341 } 1342 1343 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1344 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 1345 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 1346 reg_initiator_name(initiator)); 1347 return true; 1348 } 1349 1350 /* 1351 * wiphy->regd will be set once the device has its own 1352 * desired regulatory domain set 1353 */ 1354 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1355 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1356 !is_world_regdom(lr->alpha2)) { 1357 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 1358 reg_initiator_name(initiator)); 1359 return true; 1360 } 1361 1362 if (reg_request_cell_base(lr)) 1363 return reg_dev_ignore_cell_hint(wiphy); 1364 1365 return false; 1366 } 1367 1368 static bool reg_is_world_roaming(struct wiphy *wiphy) 1369 { 1370 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1371 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1372 struct regulatory_request *lr = get_last_request(); 1373 1374 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1375 return true; 1376 1377 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1378 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1379 return true; 1380 1381 return false; 1382 } 1383 1384 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1385 struct reg_beacon *reg_beacon) 1386 { 1387 struct ieee80211_supported_band *sband; 1388 struct ieee80211_channel *chan; 1389 bool channel_changed = false; 1390 struct ieee80211_channel chan_before; 1391 1392 sband = wiphy->bands[reg_beacon->chan.band]; 1393 chan = &sband->channels[chan_idx]; 1394 1395 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1396 return; 1397 1398 if (chan->beacon_found) 1399 return; 1400 1401 chan->beacon_found = true; 1402 1403 if (!reg_is_world_roaming(wiphy)) 1404 return; 1405 1406 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 1407 return; 1408 1409 chan_before.center_freq = chan->center_freq; 1410 chan_before.flags = chan->flags; 1411 1412 if (chan->flags & IEEE80211_CHAN_NO_IR) { 1413 chan->flags &= ~IEEE80211_CHAN_NO_IR; 1414 channel_changed = true; 1415 } 1416 1417 if (channel_changed) 1418 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1419 } 1420 1421 /* 1422 * Called when a scan on a wiphy finds a beacon on 1423 * new channel 1424 */ 1425 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1426 struct reg_beacon *reg_beacon) 1427 { 1428 unsigned int i; 1429 struct ieee80211_supported_band *sband; 1430 1431 if (!wiphy->bands[reg_beacon->chan.band]) 1432 return; 1433 1434 sband = wiphy->bands[reg_beacon->chan.band]; 1435 1436 for (i = 0; i < sband->n_channels; i++) 1437 handle_reg_beacon(wiphy, i, reg_beacon); 1438 } 1439 1440 /* 1441 * Called upon reg changes or a new wiphy is added 1442 */ 1443 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1444 { 1445 unsigned int i; 1446 struct ieee80211_supported_band *sband; 1447 struct reg_beacon *reg_beacon; 1448 1449 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1450 if (!wiphy->bands[reg_beacon->chan.band]) 1451 continue; 1452 sband = wiphy->bands[reg_beacon->chan.band]; 1453 for (i = 0; i < sband->n_channels; i++) 1454 handle_reg_beacon(wiphy, i, reg_beacon); 1455 } 1456 } 1457 1458 /* Reap the advantages of previously found beacons */ 1459 static void reg_process_beacons(struct wiphy *wiphy) 1460 { 1461 /* 1462 * Means we are just firing up cfg80211, so no beacons would 1463 * have been processed yet. 1464 */ 1465 if (!last_request) 1466 return; 1467 wiphy_update_beacon_reg(wiphy); 1468 } 1469 1470 static bool is_ht40_allowed(struct ieee80211_channel *chan) 1471 { 1472 if (!chan) 1473 return false; 1474 if (chan->flags & IEEE80211_CHAN_DISABLED) 1475 return false; 1476 /* This would happen when regulatory rules disallow HT40 completely */ 1477 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 1478 return false; 1479 return true; 1480 } 1481 1482 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1483 struct ieee80211_channel *channel) 1484 { 1485 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 1486 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1487 const struct ieee80211_regdomain *regd; 1488 unsigned int i; 1489 u32 flags; 1490 1491 if (!is_ht40_allowed(channel)) { 1492 channel->flags |= IEEE80211_CHAN_NO_HT40; 1493 return; 1494 } 1495 1496 /* 1497 * We need to ensure the extension channels exist to 1498 * be able to use HT40- or HT40+, this finds them (or not) 1499 */ 1500 for (i = 0; i < sband->n_channels; i++) { 1501 struct ieee80211_channel *c = &sband->channels[i]; 1502 1503 if (c->center_freq == (channel->center_freq - 20)) 1504 channel_before = c; 1505 if (c->center_freq == (channel->center_freq + 20)) 1506 channel_after = c; 1507 } 1508 1509 flags = 0; 1510 regd = get_wiphy_regdom(wiphy); 1511 if (regd) { 1512 const struct ieee80211_reg_rule *reg_rule = 1513 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 1514 regd, MHZ_TO_KHZ(20)); 1515 1516 if (!IS_ERR(reg_rule)) 1517 flags = reg_rule->flags; 1518 } 1519 1520 /* 1521 * Please note that this assumes target bandwidth is 20 MHz, 1522 * if that ever changes we also need to change the below logic 1523 * to include that as well. 1524 */ 1525 if (!is_ht40_allowed(channel_before) || 1526 flags & NL80211_RRF_NO_HT40MINUS) 1527 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1528 else 1529 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1530 1531 if (!is_ht40_allowed(channel_after) || 1532 flags & NL80211_RRF_NO_HT40PLUS) 1533 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1534 else 1535 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1536 } 1537 1538 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1539 struct ieee80211_supported_band *sband) 1540 { 1541 unsigned int i; 1542 1543 if (!sband) 1544 return; 1545 1546 for (i = 0; i < sband->n_channels; i++) 1547 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 1548 } 1549 1550 static void reg_process_ht_flags(struct wiphy *wiphy) 1551 { 1552 enum nl80211_band band; 1553 1554 if (!wiphy) 1555 return; 1556 1557 for (band = 0; band < NUM_NL80211_BANDS; band++) 1558 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 1559 } 1560 1561 static void reg_call_notifier(struct wiphy *wiphy, 1562 struct regulatory_request *request) 1563 { 1564 if (wiphy->reg_notifier) 1565 wiphy->reg_notifier(wiphy, request); 1566 } 1567 1568 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 1569 { 1570 struct cfg80211_chan_def chandef; 1571 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1572 enum nl80211_iftype iftype; 1573 1574 wdev_lock(wdev); 1575 iftype = wdev->iftype; 1576 1577 /* make sure the interface is active */ 1578 if (!wdev->netdev || !netif_running(wdev->netdev)) 1579 goto wdev_inactive_unlock; 1580 1581 switch (iftype) { 1582 case NL80211_IFTYPE_AP: 1583 case NL80211_IFTYPE_P2P_GO: 1584 if (!wdev->beacon_interval) 1585 goto wdev_inactive_unlock; 1586 chandef = wdev->chandef; 1587 break; 1588 case NL80211_IFTYPE_ADHOC: 1589 if (!wdev->ssid_len) 1590 goto wdev_inactive_unlock; 1591 chandef = wdev->chandef; 1592 break; 1593 case NL80211_IFTYPE_STATION: 1594 case NL80211_IFTYPE_P2P_CLIENT: 1595 if (!wdev->current_bss || 1596 !wdev->current_bss->pub.channel) 1597 goto wdev_inactive_unlock; 1598 1599 if (!rdev->ops->get_channel || 1600 rdev_get_channel(rdev, wdev, &chandef)) 1601 cfg80211_chandef_create(&chandef, 1602 wdev->current_bss->pub.channel, 1603 NL80211_CHAN_NO_HT); 1604 break; 1605 case NL80211_IFTYPE_MONITOR: 1606 case NL80211_IFTYPE_AP_VLAN: 1607 case NL80211_IFTYPE_P2P_DEVICE: 1608 /* no enforcement required */ 1609 break; 1610 default: 1611 /* others not implemented for now */ 1612 WARN_ON(1); 1613 break; 1614 } 1615 1616 wdev_unlock(wdev); 1617 1618 switch (iftype) { 1619 case NL80211_IFTYPE_AP: 1620 case NL80211_IFTYPE_P2P_GO: 1621 case NL80211_IFTYPE_ADHOC: 1622 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 1623 case NL80211_IFTYPE_STATION: 1624 case NL80211_IFTYPE_P2P_CLIENT: 1625 return cfg80211_chandef_usable(wiphy, &chandef, 1626 IEEE80211_CHAN_DISABLED); 1627 default: 1628 break; 1629 } 1630 1631 return true; 1632 1633 wdev_inactive_unlock: 1634 wdev_unlock(wdev); 1635 return true; 1636 } 1637 1638 static void reg_leave_invalid_chans(struct wiphy *wiphy) 1639 { 1640 struct wireless_dev *wdev; 1641 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1642 1643 ASSERT_RTNL(); 1644 1645 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 1646 if (!reg_wdev_chan_valid(wiphy, wdev)) 1647 cfg80211_leave(rdev, wdev); 1648 } 1649 1650 static void reg_check_chans_work(struct work_struct *work) 1651 { 1652 struct cfg80211_registered_device *rdev; 1653 1654 pr_debug("Verifying active interfaces after reg change\n"); 1655 rtnl_lock(); 1656 1657 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1658 if (!(rdev->wiphy.regulatory_flags & 1659 REGULATORY_IGNORE_STALE_KICKOFF)) 1660 reg_leave_invalid_chans(&rdev->wiphy); 1661 1662 rtnl_unlock(); 1663 } 1664 1665 static void reg_check_channels(void) 1666 { 1667 /* 1668 * Give usermode a chance to do something nicer (move to another 1669 * channel, orderly disconnection), before forcing a disconnection. 1670 */ 1671 mod_delayed_work(system_power_efficient_wq, 1672 ®_check_chans, 1673 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 1674 } 1675 1676 static void wiphy_update_regulatory(struct wiphy *wiphy, 1677 enum nl80211_reg_initiator initiator) 1678 { 1679 enum nl80211_band band; 1680 struct regulatory_request *lr = get_last_request(); 1681 1682 if (ignore_reg_update(wiphy, initiator)) { 1683 /* 1684 * Regulatory updates set by CORE are ignored for custom 1685 * regulatory cards. Let us notify the changes to the driver, 1686 * as some drivers used this to restore its orig_* reg domain. 1687 */ 1688 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1689 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1690 reg_call_notifier(wiphy, lr); 1691 return; 1692 } 1693 1694 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 1695 1696 for (band = 0; band < NUM_NL80211_BANDS; band++) 1697 handle_band(wiphy, initiator, wiphy->bands[band]); 1698 1699 reg_process_beacons(wiphy); 1700 reg_process_ht_flags(wiphy); 1701 reg_call_notifier(wiphy, lr); 1702 } 1703 1704 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 1705 { 1706 struct cfg80211_registered_device *rdev; 1707 struct wiphy *wiphy; 1708 1709 ASSERT_RTNL(); 1710 1711 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1712 wiphy = &rdev->wiphy; 1713 wiphy_update_regulatory(wiphy, initiator); 1714 } 1715 1716 reg_check_channels(); 1717 } 1718 1719 static void handle_channel_custom(struct wiphy *wiphy, 1720 struct ieee80211_channel *chan, 1721 const struct ieee80211_regdomain *regd) 1722 { 1723 u32 bw_flags = 0; 1724 const struct ieee80211_reg_rule *reg_rule = NULL; 1725 const struct ieee80211_power_rule *power_rule = NULL; 1726 u32 bw; 1727 1728 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) { 1729 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq), 1730 regd, bw); 1731 if (!IS_ERR(reg_rule)) 1732 break; 1733 } 1734 1735 if (IS_ERR(reg_rule)) { 1736 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n", 1737 chan->center_freq); 1738 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 1739 chan->flags |= IEEE80211_CHAN_DISABLED; 1740 } else { 1741 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1742 chan->flags = chan->orig_flags; 1743 } 1744 return; 1745 } 1746 1747 power_rule = ®_rule->power_rule; 1748 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1749 1750 chan->dfs_state_entered = jiffies; 1751 chan->dfs_state = NL80211_DFS_USABLE; 1752 1753 chan->beacon_found = false; 1754 1755 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 1756 chan->flags = chan->orig_flags | bw_flags | 1757 map_regdom_flags(reg_rule->flags); 1758 else 1759 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1760 1761 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1762 chan->max_reg_power = chan->max_power = 1763 (int) MBM_TO_DBM(power_rule->max_eirp); 1764 1765 if (chan->flags & IEEE80211_CHAN_RADAR) { 1766 if (reg_rule->dfs_cac_ms) 1767 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1768 else 1769 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1770 } 1771 1772 chan->max_power = chan->max_reg_power; 1773 } 1774 1775 static void handle_band_custom(struct wiphy *wiphy, 1776 struct ieee80211_supported_band *sband, 1777 const struct ieee80211_regdomain *regd) 1778 { 1779 unsigned int i; 1780 1781 if (!sband) 1782 return; 1783 1784 for (i = 0; i < sband->n_channels; i++) 1785 handle_channel_custom(wiphy, &sband->channels[i], regd); 1786 } 1787 1788 /* Used by drivers prior to wiphy registration */ 1789 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1790 const struct ieee80211_regdomain *regd) 1791 { 1792 enum nl80211_band band; 1793 unsigned int bands_set = 0; 1794 1795 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 1796 "wiphy should have REGULATORY_CUSTOM_REG\n"); 1797 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 1798 1799 for (band = 0; band < NUM_NL80211_BANDS; band++) { 1800 if (!wiphy->bands[band]) 1801 continue; 1802 handle_band_custom(wiphy, wiphy->bands[band], regd); 1803 bands_set++; 1804 } 1805 1806 /* 1807 * no point in calling this if it won't have any effect 1808 * on your device's supported bands. 1809 */ 1810 WARN_ON(!bands_set); 1811 } 1812 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1813 1814 static void reg_set_request_processed(void) 1815 { 1816 bool need_more_processing = false; 1817 struct regulatory_request *lr = get_last_request(); 1818 1819 lr->processed = true; 1820 1821 spin_lock(®_requests_lock); 1822 if (!list_empty(®_requests_list)) 1823 need_more_processing = true; 1824 spin_unlock(®_requests_lock); 1825 1826 cancel_crda_timeout(); 1827 1828 if (need_more_processing) 1829 schedule_work(®_work); 1830 } 1831 1832 /** 1833 * reg_process_hint_core - process core regulatory requests 1834 * @pending_request: a pending core regulatory request 1835 * 1836 * The wireless subsystem can use this function to process 1837 * a regulatory request issued by the regulatory core. 1838 */ 1839 static enum reg_request_treatment 1840 reg_process_hint_core(struct regulatory_request *core_request) 1841 { 1842 if (reg_query_database(core_request)) { 1843 core_request->intersect = false; 1844 core_request->processed = false; 1845 reg_update_last_request(core_request); 1846 return REG_REQ_OK; 1847 } 1848 1849 return REG_REQ_IGNORE; 1850 } 1851 1852 static enum reg_request_treatment 1853 __reg_process_hint_user(struct regulatory_request *user_request) 1854 { 1855 struct regulatory_request *lr = get_last_request(); 1856 1857 if (reg_request_cell_base(user_request)) 1858 return reg_ignore_cell_hint(user_request); 1859 1860 if (reg_request_cell_base(lr)) 1861 return REG_REQ_IGNORE; 1862 1863 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1864 return REG_REQ_INTERSECT; 1865 /* 1866 * If the user knows better the user should set the regdom 1867 * to their country before the IE is picked up 1868 */ 1869 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 1870 lr->intersect) 1871 return REG_REQ_IGNORE; 1872 /* 1873 * Process user requests only after previous user/driver/core 1874 * requests have been processed 1875 */ 1876 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 1877 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1878 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 1879 regdom_changes(lr->alpha2)) 1880 return REG_REQ_IGNORE; 1881 1882 if (!regdom_changes(user_request->alpha2)) 1883 return REG_REQ_ALREADY_SET; 1884 1885 return REG_REQ_OK; 1886 } 1887 1888 /** 1889 * reg_process_hint_user - process user regulatory requests 1890 * @user_request: a pending user regulatory request 1891 * 1892 * The wireless subsystem can use this function to process 1893 * a regulatory request initiated by userspace. 1894 */ 1895 static enum reg_request_treatment 1896 reg_process_hint_user(struct regulatory_request *user_request) 1897 { 1898 enum reg_request_treatment treatment; 1899 1900 treatment = __reg_process_hint_user(user_request); 1901 if (treatment == REG_REQ_IGNORE || 1902 treatment == REG_REQ_ALREADY_SET) 1903 return REG_REQ_IGNORE; 1904 1905 user_request->intersect = treatment == REG_REQ_INTERSECT; 1906 user_request->processed = false; 1907 1908 if (reg_query_database(user_request)) { 1909 reg_update_last_request(user_request); 1910 user_alpha2[0] = user_request->alpha2[0]; 1911 user_alpha2[1] = user_request->alpha2[1]; 1912 return REG_REQ_OK; 1913 } 1914 1915 return REG_REQ_IGNORE; 1916 } 1917 1918 static enum reg_request_treatment 1919 __reg_process_hint_driver(struct regulatory_request *driver_request) 1920 { 1921 struct regulatory_request *lr = get_last_request(); 1922 1923 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 1924 if (regdom_changes(driver_request->alpha2)) 1925 return REG_REQ_OK; 1926 return REG_REQ_ALREADY_SET; 1927 } 1928 1929 /* 1930 * This would happen if you unplug and plug your card 1931 * back in or if you add a new device for which the previously 1932 * loaded card also agrees on the regulatory domain. 1933 */ 1934 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1935 !regdom_changes(driver_request->alpha2)) 1936 return REG_REQ_ALREADY_SET; 1937 1938 return REG_REQ_INTERSECT; 1939 } 1940 1941 /** 1942 * reg_process_hint_driver - process driver regulatory requests 1943 * @driver_request: a pending driver regulatory request 1944 * 1945 * The wireless subsystem can use this function to process 1946 * a regulatory request issued by an 802.11 driver. 1947 * 1948 * Returns one of the different reg request treatment values. 1949 */ 1950 static enum reg_request_treatment 1951 reg_process_hint_driver(struct wiphy *wiphy, 1952 struct regulatory_request *driver_request) 1953 { 1954 const struct ieee80211_regdomain *regd, *tmp; 1955 enum reg_request_treatment treatment; 1956 1957 treatment = __reg_process_hint_driver(driver_request); 1958 1959 switch (treatment) { 1960 case REG_REQ_OK: 1961 break; 1962 case REG_REQ_IGNORE: 1963 return REG_REQ_IGNORE; 1964 case REG_REQ_INTERSECT: 1965 case REG_REQ_ALREADY_SET: 1966 regd = reg_copy_regd(get_cfg80211_regdom()); 1967 if (IS_ERR(regd)) 1968 return REG_REQ_IGNORE; 1969 1970 tmp = get_wiphy_regdom(wiphy); 1971 rcu_assign_pointer(wiphy->regd, regd); 1972 rcu_free_regdom(tmp); 1973 } 1974 1975 1976 driver_request->intersect = treatment == REG_REQ_INTERSECT; 1977 driver_request->processed = false; 1978 1979 /* 1980 * Since CRDA will not be called in this case as we already 1981 * have applied the requested regulatory domain before we just 1982 * inform userspace we have processed the request 1983 */ 1984 if (treatment == REG_REQ_ALREADY_SET) { 1985 nl80211_send_reg_change_event(driver_request); 1986 reg_update_last_request(driver_request); 1987 reg_set_request_processed(); 1988 return REG_REQ_ALREADY_SET; 1989 } 1990 1991 if (reg_query_database(driver_request)) { 1992 reg_update_last_request(driver_request); 1993 return REG_REQ_OK; 1994 } 1995 1996 return REG_REQ_IGNORE; 1997 } 1998 1999 static enum reg_request_treatment 2000 __reg_process_hint_country_ie(struct wiphy *wiphy, 2001 struct regulatory_request *country_ie_request) 2002 { 2003 struct wiphy *last_wiphy = NULL; 2004 struct regulatory_request *lr = get_last_request(); 2005 2006 if (reg_request_cell_base(lr)) { 2007 /* Trust a Cell base station over the AP's country IE */ 2008 if (regdom_changes(country_ie_request->alpha2)) 2009 return REG_REQ_IGNORE; 2010 return REG_REQ_ALREADY_SET; 2011 } else { 2012 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2013 return REG_REQ_IGNORE; 2014 } 2015 2016 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2017 return -EINVAL; 2018 2019 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2020 return REG_REQ_OK; 2021 2022 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2023 2024 if (last_wiphy != wiphy) { 2025 /* 2026 * Two cards with two APs claiming different 2027 * Country IE alpha2s. We could 2028 * intersect them, but that seems unlikely 2029 * to be correct. Reject second one for now. 2030 */ 2031 if (regdom_changes(country_ie_request->alpha2)) 2032 return REG_REQ_IGNORE; 2033 return REG_REQ_ALREADY_SET; 2034 } 2035 2036 if (regdom_changes(country_ie_request->alpha2)) 2037 return REG_REQ_OK; 2038 return REG_REQ_ALREADY_SET; 2039 } 2040 2041 /** 2042 * reg_process_hint_country_ie - process regulatory requests from country IEs 2043 * @country_ie_request: a regulatory request from a country IE 2044 * 2045 * The wireless subsystem can use this function to process 2046 * a regulatory request issued by a country Information Element. 2047 * 2048 * Returns one of the different reg request treatment values. 2049 */ 2050 static enum reg_request_treatment 2051 reg_process_hint_country_ie(struct wiphy *wiphy, 2052 struct regulatory_request *country_ie_request) 2053 { 2054 enum reg_request_treatment treatment; 2055 2056 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2057 2058 switch (treatment) { 2059 case REG_REQ_OK: 2060 break; 2061 case REG_REQ_IGNORE: 2062 return REG_REQ_IGNORE; 2063 case REG_REQ_ALREADY_SET: 2064 reg_free_request(country_ie_request); 2065 return REG_REQ_ALREADY_SET; 2066 case REG_REQ_INTERSECT: 2067 /* 2068 * This doesn't happen yet, not sure we 2069 * ever want to support it for this case. 2070 */ 2071 WARN_ONCE(1, "Unexpected intersection for country IEs"); 2072 return REG_REQ_IGNORE; 2073 } 2074 2075 country_ie_request->intersect = false; 2076 country_ie_request->processed = false; 2077 2078 if (reg_query_database(country_ie_request)) { 2079 reg_update_last_request(country_ie_request); 2080 return REG_REQ_OK; 2081 } 2082 2083 return REG_REQ_IGNORE; 2084 } 2085 2086 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2087 { 2088 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2089 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2090 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2091 bool dfs_domain_same; 2092 2093 rcu_read_lock(); 2094 2095 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2096 wiphy1_regd = rcu_dereference(wiphy1->regd); 2097 if (!wiphy1_regd) 2098 wiphy1_regd = cfg80211_regd; 2099 2100 wiphy2_regd = rcu_dereference(wiphy2->regd); 2101 if (!wiphy2_regd) 2102 wiphy2_regd = cfg80211_regd; 2103 2104 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2105 2106 rcu_read_unlock(); 2107 2108 return dfs_domain_same; 2109 } 2110 2111 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2112 struct ieee80211_channel *src_chan) 2113 { 2114 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2115 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2116 return; 2117 2118 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2119 src_chan->flags & IEEE80211_CHAN_DISABLED) 2120 return; 2121 2122 if (src_chan->center_freq == dst_chan->center_freq && 2123 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2124 dst_chan->dfs_state = src_chan->dfs_state; 2125 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2126 } 2127 } 2128 2129 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2130 struct wiphy *src_wiphy) 2131 { 2132 struct ieee80211_supported_band *src_sband, *dst_sband; 2133 struct ieee80211_channel *src_chan, *dst_chan; 2134 int i, j, band; 2135 2136 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2137 return; 2138 2139 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2140 dst_sband = dst_wiphy->bands[band]; 2141 src_sband = src_wiphy->bands[band]; 2142 if (!dst_sband || !src_sband) 2143 continue; 2144 2145 for (i = 0; i < dst_sband->n_channels; i++) { 2146 dst_chan = &dst_sband->channels[i]; 2147 for (j = 0; j < src_sband->n_channels; j++) { 2148 src_chan = &src_sband->channels[j]; 2149 reg_copy_dfs_chan_state(dst_chan, src_chan); 2150 } 2151 } 2152 } 2153 } 2154 2155 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2156 { 2157 struct cfg80211_registered_device *rdev; 2158 2159 ASSERT_RTNL(); 2160 2161 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2162 if (wiphy == &rdev->wiphy) 2163 continue; 2164 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2165 } 2166 } 2167 2168 /* This processes *all* regulatory hints */ 2169 static void reg_process_hint(struct regulatory_request *reg_request) 2170 { 2171 struct wiphy *wiphy = NULL; 2172 enum reg_request_treatment treatment; 2173 2174 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2175 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2176 2177 switch (reg_request->initiator) { 2178 case NL80211_REGDOM_SET_BY_CORE: 2179 treatment = reg_process_hint_core(reg_request); 2180 break; 2181 case NL80211_REGDOM_SET_BY_USER: 2182 treatment = reg_process_hint_user(reg_request); 2183 break; 2184 case NL80211_REGDOM_SET_BY_DRIVER: 2185 if (!wiphy) 2186 goto out_free; 2187 treatment = reg_process_hint_driver(wiphy, reg_request); 2188 break; 2189 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2190 if (!wiphy) 2191 goto out_free; 2192 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2193 break; 2194 default: 2195 WARN(1, "invalid initiator %d\n", reg_request->initiator); 2196 goto out_free; 2197 } 2198 2199 if (treatment == REG_REQ_IGNORE) 2200 goto out_free; 2201 2202 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 2203 "unexpected treatment value %d\n", treatment); 2204 2205 /* This is required so that the orig_* parameters are saved. 2206 * NOTE: treatment must be set for any case that reaches here! 2207 */ 2208 if (treatment == REG_REQ_ALREADY_SET && wiphy && 2209 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2210 wiphy_update_regulatory(wiphy, reg_request->initiator); 2211 wiphy_all_share_dfs_chan_state(wiphy); 2212 reg_check_channels(); 2213 } 2214 2215 return; 2216 2217 out_free: 2218 reg_free_request(reg_request); 2219 } 2220 2221 static bool reg_only_self_managed_wiphys(void) 2222 { 2223 struct cfg80211_registered_device *rdev; 2224 struct wiphy *wiphy; 2225 bool self_managed_found = false; 2226 2227 ASSERT_RTNL(); 2228 2229 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2230 wiphy = &rdev->wiphy; 2231 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2232 self_managed_found = true; 2233 else 2234 return false; 2235 } 2236 2237 /* make sure at least one self-managed wiphy exists */ 2238 return self_managed_found; 2239 } 2240 2241 /* 2242 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 2243 * Regulatory hints come on a first come first serve basis and we 2244 * must process each one atomically. 2245 */ 2246 static void reg_process_pending_hints(void) 2247 { 2248 struct regulatory_request *reg_request, *lr; 2249 2250 lr = get_last_request(); 2251 2252 /* When last_request->processed becomes true this will be rescheduled */ 2253 if (lr && !lr->processed) { 2254 reg_process_hint(lr); 2255 return; 2256 } 2257 2258 spin_lock(®_requests_lock); 2259 2260 if (list_empty(®_requests_list)) { 2261 spin_unlock(®_requests_lock); 2262 return; 2263 } 2264 2265 reg_request = list_first_entry(®_requests_list, 2266 struct regulatory_request, 2267 list); 2268 list_del_init(®_request->list); 2269 2270 spin_unlock(®_requests_lock); 2271 2272 if (reg_only_self_managed_wiphys()) { 2273 reg_free_request(reg_request); 2274 return; 2275 } 2276 2277 reg_process_hint(reg_request); 2278 2279 lr = get_last_request(); 2280 2281 spin_lock(®_requests_lock); 2282 if (!list_empty(®_requests_list) && lr && lr->processed) 2283 schedule_work(®_work); 2284 spin_unlock(®_requests_lock); 2285 } 2286 2287 /* Processes beacon hints -- this has nothing to do with country IEs */ 2288 static void reg_process_pending_beacon_hints(void) 2289 { 2290 struct cfg80211_registered_device *rdev; 2291 struct reg_beacon *pending_beacon, *tmp; 2292 2293 /* This goes through the _pending_ beacon list */ 2294 spin_lock_bh(®_pending_beacons_lock); 2295 2296 list_for_each_entry_safe(pending_beacon, tmp, 2297 ®_pending_beacons, list) { 2298 list_del_init(&pending_beacon->list); 2299 2300 /* Applies the beacon hint to current wiphys */ 2301 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2302 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 2303 2304 /* Remembers the beacon hint for new wiphys or reg changes */ 2305 list_add_tail(&pending_beacon->list, ®_beacon_list); 2306 } 2307 2308 spin_unlock_bh(®_pending_beacons_lock); 2309 } 2310 2311 static void reg_process_self_managed_hints(void) 2312 { 2313 struct cfg80211_registered_device *rdev; 2314 struct wiphy *wiphy; 2315 const struct ieee80211_regdomain *tmp; 2316 const struct ieee80211_regdomain *regd; 2317 enum nl80211_band band; 2318 struct regulatory_request request = {}; 2319 2320 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2321 wiphy = &rdev->wiphy; 2322 2323 spin_lock(®_requests_lock); 2324 regd = rdev->requested_regd; 2325 rdev->requested_regd = NULL; 2326 spin_unlock(®_requests_lock); 2327 2328 if (regd == NULL) 2329 continue; 2330 2331 tmp = get_wiphy_regdom(wiphy); 2332 rcu_assign_pointer(wiphy->regd, regd); 2333 rcu_free_regdom(tmp); 2334 2335 for (band = 0; band < NUM_NL80211_BANDS; band++) 2336 handle_band_custom(wiphy, wiphy->bands[band], regd); 2337 2338 reg_process_ht_flags(wiphy); 2339 2340 request.wiphy_idx = get_wiphy_idx(wiphy); 2341 request.alpha2[0] = regd->alpha2[0]; 2342 request.alpha2[1] = regd->alpha2[1]; 2343 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 2344 2345 nl80211_send_wiphy_reg_change_event(&request); 2346 } 2347 2348 reg_check_channels(); 2349 } 2350 2351 static void reg_todo(struct work_struct *work) 2352 { 2353 rtnl_lock(); 2354 reg_process_pending_hints(); 2355 reg_process_pending_beacon_hints(); 2356 reg_process_self_managed_hints(); 2357 rtnl_unlock(); 2358 } 2359 2360 static void queue_regulatory_request(struct regulatory_request *request) 2361 { 2362 request->alpha2[0] = toupper(request->alpha2[0]); 2363 request->alpha2[1] = toupper(request->alpha2[1]); 2364 2365 spin_lock(®_requests_lock); 2366 list_add_tail(&request->list, ®_requests_list); 2367 spin_unlock(®_requests_lock); 2368 2369 schedule_work(®_work); 2370 } 2371 2372 /* 2373 * Core regulatory hint -- happens during cfg80211_init() 2374 * and when we restore regulatory settings. 2375 */ 2376 static int regulatory_hint_core(const char *alpha2) 2377 { 2378 struct regulatory_request *request; 2379 2380 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2381 if (!request) 2382 return -ENOMEM; 2383 2384 request->alpha2[0] = alpha2[0]; 2385 request->alpha2[1] = alpha2[1]; 2386 request->initiator = NL80211_REGDOM_SET_BY_CORE; 2387 2388 queue_regulatory_request(request); 2389 2390 return 0; 2391 } 2392 2393 /* User hints */ 2394 int regulatory_hint_user(const char *alpha2, 2395 enum nl80211_user_reg_hint_type user_reg_hint_type) 2396 { 2397 struct regulatory_request *request; 2398 2399 if (WARN_ON(!alpha2)) 2400 return -EINVAL; 2401 2402 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2403 if (!request) 2404 return -ENOMEM; 2405 2406 request->wiphy_idx = WIPHY_IDX_INVALID; 2407 request->alpha2[0] = alpha2[0]; 2408 request->alpha2[1] = alpha2[1]; 2409 request->initiator = NL80211_REGDOM_SET_BY_USER; 2410 request->user_reg_hint_type = user_reg_hint_type; 2411 2412 /* Allow calling CRDA again */ 2413 reset_crda_timeouts(); 2414 2415 queue_regulatory_request(request); 2416 2417 return 0; 2418 } 2419 2420 int regulatory_hint_indoor(bool is_indoor, u32 portid) 2421 { 2422 spin_lock(®_indoor_lock); 2423 2424 /* It is possible that more than one user space process is trying to 2425 * configure the indoor setting. To handle such cases, clear the indoor 2426 * setting in case that some process does not think that the device 2427 * is operating in an indoor environment. In addition, if a user space 2428 * process indicates that it is controlling the indoor setting, save its 2429 * portid, i.e., make it the owner. 2430 */ 2431 reg_is_indoor = is_indoor; 2432 if (reg_is_indoor) { 2433 if (!reg_is_indoor_portid) 2434 reg_is_indoor_portid = portid; 2435 } else { 2436 reg_is_indoor_portid = 0; 2437 } 2438 2439 spin_unlock(®_indoor_lock); 2440 2441 if (!is_indoor) 2442 reg_check_channels(); 2443 2444 return 0; 2445 } 2446 2447 void regulatory_netlink_notify(u32 portid) 2448 { 2449 spin_lock(®_indoor_lock); 2450 2451 if (reg_is_indoor_portid != portid) { 2452 spin_unlock(®_indoor_lock); 2453 return; 2454 } 2455 2456 reg_is_indoor = false; 2457 reg_is_indoor_portid = 0; 2458 2459 spin_unlock(®_indoor_lock); 2460 2461 reg_check_channels(); 2462 } 2463 2464 /* Driver hints */ 2465 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 2466 { 2467 struct regulatory_request *request; 2468 2469 if (WARN_ON(!alpha2 || !wiphy)) 2470 return -EINVAL; 2471 2472 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 2473 2474 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2475 if (!request) 2476 return -ENOMEM; 2477 2478 request->wiphy_idx = get_wiphy_idx(wiphy); 2479 2480 request->alpha2[0] = alpha2[0]; 2481 request->alpha2[1] = alpha2[1]; 2482 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 2483 2484 /* Allow calling CRDA again */ 2485 reset_crda_timeouts(); 2486 2487 queue_regulatory_request(request); 2488 2489 return 0; 2490 } 2491 EXPORT_SYMBOL(regulatory_hint); 2492 2493 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 2494 const u8 *country_ie, u8 country_ie_len) 2495 { 2496 char alpha2[2]; 2497 enum environment_cap env = ENVIRON_ANY; 2498 struct regulatory_request *request = NULL, *lr; 2499 2500 /* IE len must be evenly divisible by 2 */ 2501 if (country_ie_len & 0x01) 2502 return; 2503 2504 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 2505 return; 2506 2507 request = kzalloc(sizeof(*request), GFP_KERNEL); 2508 if (!request) 2509 return; 2510 2511 alpha2[0] = country_ie[0]; 2512 alpha2[1] = country_ie[1]; 2513 2514 if (country_ie[2] == 'I') 2515 env = ENVIRON_INDOOR; 2516 else if (country_ie[2] == 'O') 2517 env = ENVIRON_OUTDOOR; 2518 2519 rcu_read_lock(); 2520 lr = get_last_request(); 2521 2522 if (unlikely(!lr)) 2523 goto out; 2524 2525 /* 2526 * We will run this only upon a successful connection on cfg80211. 2527 * We leave conflict resolution to the workqueue, where can hold 2528 * the RTNL. 2529 */ 2530 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2531 lr->wiphy_idx != WIPHY_IDX_INVALID) 2532 goto out; 2533 2534 request->wiphy_idx = get_wiphy_idx(wiphy); 2535 request->alpha2[0] = alpha2[0]; 2536 request->alpha2[1] = alpha2[1]; 2537 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 2538 request->country_ie_env = env; 2539 2540 /* Allow calling CRDA again */ 2541 reset_crda_timeouts(); 2542 2543 queue_regulatory_request(request); 2544 request = NULL; 2545 out: 2546 kfree(request); 2547 rcu_read_unlock(); 2548 } 2549 2550 static void restore_alpha2(char *alpha2, bool reset_user) 2551 { 2552 /* indicates there is no alpha2 to consider for restoration */ 2553 alpha2[0] = '9'; 2554 alpha2[1] = '7'; 2555 2556 /* The user setting has precedence over the module parameter */ 2557 if (is_user_regdom_saved()) { 2558 /* Unless we're asked to ignore it and reset it */ 2559 if (reset_user) { 2560 pr_debug("Restoring regulatory settings including user preference\n"); 2561 user_alpha2[0] = '9'; 2562 user_alpha2[1] = '7'; 2563 2564 /* 2565 * If we're ignoring user settings, we still need to 2566 * check the module parameter to ensure we put things 2567 * back as they were for a full restore. 2568 */ 2569 if (!is_world_regdom(ieee80211_regdom)) { 2570 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 2571 ieee80211_regdom[0], ieee80211_regdom[1]); 2572 alpha2[0] = ieee80211_regdom[0]; 2573 alpha2[1] = ieee80211_regdom[1]; 2574 } 2575 } else { 2576 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 2577 user_alpha2[0], user_alpha2[1]); 2578 alpha2[0] = user_alpha2[0]; 2579 alpha2[1] = user_alpha2[1]; 2580 } 2581 } else if (!is_world_regdom(ieee80211_regdom)) { 2582 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 2583 ieee80211_regdom[0], ieee80211_regdom[1]); 2584 alpha2[0] = ieee80211_regdom[0]; 2585 alpha2[1] = ieee80211_regdom[1]; 2586 } else 2587 pr_debug("Restoring regulatory settings\n"); 2588 } 2589 2590 static void restore_custom_reg_settings(struct wiphy *wiphy) 2591 { 2592 struct ieee80211_supported_band *sband; 2593 enum nl80211_band band; 2594 struct ieee80211_channel *chan; 2595 int i; 2596 2597 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2598 sband = wiphy->bands[band]; 2599 if (!sband) 2600 continue; 2601 for (i = 0; i < sband->n_channels; i++) { 2602 chan = &sband->channels[i]; 2603 chan->flags = chan->orig_flags; 2604 chan->max_antenna_gain = chan->orig_mag; 2605 chan->max_power = chan->orig_mpwr; 2606 chan->beacon_found = false; 2607 } 2608 } 2609 } 2610 2611 /* 2612 * Restoring regulatory settings involves ingoring any 2613 * possibly stale country IE information and user regulatory 2614 * settings if so desired, this includes any beacon hints 2615 * learned as we could have traveled outside to another country 2616 * after disconnection. To restore regulatory settings we do 2617 * exactly what we did at bootup: 2618 * 2619 * - send a core regulatory hint 2620 * - send a user regulatory hint if applicable 2621 * 2622 * Device drivers that send a regulatory hint for a specific country 2623 * keep their own regulatory domain on wiphy->regd so that does does 2624 * not need to be remembered. 2625 */ 2626 static void restore_regulatory_settings(bool reset_user) 2627 { 2628 char alpha2[2]; 2629 char world_alpha2[2]; 2630 struct reg_beacon *reg_beacon, *btmp; 2631 LIST_HEAD(tmp_reg_req_list); 2632 struct cfg80211_registered_device *rdev; 2633 2634 ASSERT_RTNL(); 2635 2636 /* 2637 * Clear the indoor setting in case that it is not controlled by user 2638 * space, as otherwise there is no guarantee that the device is still 2639 * operating in an indoor environment. 2640 */ 2641 spin_lock(®_indoor_lock); 2642 if (reg_is_indoor && !reg_is_indoor_portid) { 2643 reg_is_indoor = false; 2644 reg_check_channels(); 2645 } 2646 spin_unlock(®_indoor_lock); 2647 2648 reset_regdomains(true, &world_regdom); 2649 restore_alpha2(alpha2, reset_user); 2650 2651 /* 2652 * If there's any pending requests we simply 2653 * stash them to a temporary pending queue and 2654 * add then after we've restored regulatory 2655 * settings. 2656 */ 2657 spin_lock(®_requests_lock); 2658 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 2659 spin_unlock(®_requests_lock); 2660 2661 /* Clear beacon hints */ 2662 spin_lock_bh(®_pending_beacons_lock); 2663 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 2664 list_del(®_beacon->list); 2665 kfree(reg_beacon); 2666 } 2667 spin_unlock_bh(®_pending_beacons_lock); 2668 2669 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 2670 list_del(®_beacon->list); 2671 kfree(reg_beacon); 2672 } 2673 2674 /* First restore to the basic regulatory settings */ 2675 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 2676 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 2677 2678 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2679 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2680 continue; 2681 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 2682 restore_custom_reg_settings(&rdev->wiphy); 2683 } 2684 2685 regulatory_hint_core(world_alpha2); 2686 2687 /* 2688 * This restores the ieee80211_regdom module parameter 2689 * preference or the last user requested regulatory 2690 * settings, user regulatory settings takes precedence. 2691 */ 2692 if (is_an_alpha2(alpha2)) 2693 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 2694 2695 spin_lock(®_requests_lock); 2696 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 2697 spin_unlock(®_requests_lock); 2698 2699 pr_debug("Kicking the queue\n"); 2700 2701 schedule_work(®_work); 2702 } 2703 2704 void regulatory_hint_disconnect(void) 2705 { 2706 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 2707 restore_regulatory_settings(false); 2708 } 2709 2710 static bool freq_is_chan_12_13_14(u16 freq) 2711 { 2712 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 2713 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 2714 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 2715 return true; 2716 return false; 2717 } 2718 2719 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 2720 { 2721 struct reg_beacon *pending_beacon; 2722 2723 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 2724 if (beacon_chan->center_freq == 2725 pending_beacon->chan.center_freq) 2726 return true; 2727 return false; 2728 } 2729 2730 int regulatory_hint_found_beacon(struct wiphy *wiphy, 2731 struct ieee80211_channel *beacon_chan, 2732 gfp_t gfp) 2733 { 2734 struct reg_beacon *reg_beacon; 2735 bool processing; 2736 2737 if (beacon_chan->beacon_found || 2738 beacon_chan->flags & IEEE80211_CHAN_RADAR || 2739 (beacon_chan->band == NL80211_BAND_2GHZ && 2740 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 2741 return 0; 2742 2743 spin_lock_bh(®_pending_beacons_lock); 2744 processing = pending_reg_beacon(beacon_chan); 2745 spin_unlock_bh(®_pending_beacons_lock); 2746 2747 if (processing) 2748 return 0; 2749 2750 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 2751 if (!reg_beacon) 2752 return -ENOMEM; 2753 2754 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 2755 beacon_chan->center_freq, 2756 ieee80211_frequency_to_channel(beacon_chan->center_freq), 2757 wiphy_name(wiphy)); 2758 2759 memcpy(®_beacon->chan, beacon_chan, 2760 sizeof(struct ieee80211_channel)); 2761 2762 /* 2763 * Since we can be called from BH or and non-BH context 2764 * we must use spin_lock_bh() 2765 */ 2766 spin_lock_bh(®_pending_beacons_lock); 2767 list_add_tail(®_beacon->list, ®_pending_beacons); 2768 spin_unlock_bh(®_pending_beacons_lock); 2769 2770 schedule_work(®_work); 2771 2772 return 0; 2773 } 2774 2775 static void print_rd_rules(const struct ieee80211_regdomain *rd) 2776 { 2777 unsigned int i; 2778 const struct ieee80211_reg_rule *reg_rule = NULL; 2779 const struct ieee80211_freq_range *freq_range = NULL; 2780 const struct ieee80211_power_rule *power_rule = NULL; 2781 char bw[32], cac_time[32]; 2782 2783 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 2784 2785 for (i = 0; i < rd->n_reg_rules; i++) { 2786 reg_rule = &rd->reg_rules[i]; 2787 freq_range = ®_rule->freq_range; 2788 power_rule = ®_rule->power_rule; 2789 2790 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 2791 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 2792 freq_range->max_bandwidth_khz, 2793 reg_get_max_bandwidth(rd, reg_rule)); 2794 else 2795 snprintf(bw, sizeof(bw), "%d KHz", 2796 freq_range->max_bandwidth_khz); 2797 2798 if (reg_rule->flags & NL80211_RRF_DFS) 2799 scnprintf(cac_time, sizeof(cac_time), "%u s", 2800 reg_rule->dfs_cac_ms/1000); 2801 else 2802 scnprintf(cac_time, sizeof(cac_time), "N/A"); 2803 2804 2805 /* 2806 * There may not be documentation for max antenna gain 2807 * in certain regions 2808 */ 2809 if (power_rule->max_antenna_gain) 2810 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 2811 freq_range->start_freq_khz, 2812 freq_range->end_freq_khz, 2813 bw, 2814 power_rule->max_antenna_gain, 2815 power_rule->max_eirp, 2816 cac_time); 2817 else 2818 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 2819 freq_range->start_freq_khz, 2820 freq_range->end_freq_khz, 2821 bw, 2822 power_rule->max_eirp, 2823 cac_time); 2824 } 2825 } 2826 2827 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 2828 { 2829 switch (dfs_region) { 2830 case NL80211_DFS_UNSET: 2831 case NL80211_DFS_FCC: 2832 case NL80211_DFS_ETSI: 2833 case NL80211_DFS_JP: 2834 return true; 2835 default: 2836 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region); 2837 return false; 2838 } 2839 } 2840 2841 static void print_regdomain(const struct ieee80211_regdomain *rd) 2842 { 2843 struct regulatory_request *lr = get_last_request(); 2844 2845 if (is_intersected_alpha2(rd->alpha2)) { 2846 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2847 struct cfg80211_registered_device *rdev; 2848 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 2849 if (rdev) { 2850 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 2851 rdev->country_ie_alpha2[0], 2852 rdev->country_ie_alpha2[1]); 2853 } else 2854 pr_debug("Current regulatory domain intersected:\n"); 2855 } else 2856 pr_debug("Current regulatory domain intersected:\n"); 2857 } else if (is_world_regdom(rd->alpha2)) { 2858 pr_debug("World regulatory domain updated:\n"); 2859 } else { 2860 if (is_unknown_alpha2(rd->alpha2)) 2861 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 2862 else { 2863 if (reg_request_cell_base(lr)) 2864 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 2865 rd->alpha2[0], rd->alpha2[1]); 2866 else 2867 pr_debug("Regulatory domain changed to country: %c%c\n", 2868 rd->alpha2[0], rd->alpha2[1]); 2869 } 2870 } 2871 2872 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 2873 print_rd_rules(rd); 2874 } 2875 2876 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 2877 { 2878 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 2879 print_rd_rules(rd); 2880 } 2881 2882 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 2883 { 2884 if (!is_world_regdom(rd->alpha2)) 2885 return -EINVAL; 2886 update_world_regdomain(rd); 2887 return 0; 2888 } 2889 2890 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 2891 struct regulatory_request *user_request) 2892 { 2893 const struct ieee80211_regdomain *intersected_rd = NULL; 2894 2895 if (!regdom_changes(rd->alpha2)) 2896 return -EALREADY; 2897 2898 if (!is_valid_rd(rd)) { 2899 pr_err("Invalid regulatory domain detected: %c%c\n", 2900 rd->alpha2[0], rd->alpha2[1]); 2901 print_regdomain_info(rd); 2902 return -EINVAL; 2903 } 2904 2905 if (!user_request->intersect) { 2906 reset_regdomains(false, rd); 2907 return 0; 2908 } 2909 2910 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2911 if (!intersected_rd) 2912 return -EINVAL; 2913 2914 kfree(rd); 2915 rd = NULL; 2916 reset_regdomains(false, intersected_rd); 2917 2918 return 0; 2919 } 2920 2921 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 2922 struct regulatory_request *driver_request) 2923 { 2924 const struct ieee80211_regdomain *regd; 2925 const struct ieee80211_regdomain *intersected_rd = NULL; 2926 const struct ieee80211_regdomain *tmp; 2927 struct wiphy *request_wiphy; 2928 2929 if (is_world_regdom(rd->alpha2)) 2930 return -EINVAL; 2931 2932 if (!regdom_changes(rd->alpha2)) 2933 return -EALREADY; 2934 2935 if (!is_valid_rd(rd)) { 2936 pr_err("Invalid regulatory domain detected: %c%c\n", 2937 rd->alpha2[0], rd->alpha2[1]); 2938 print_regdomain_info(rd); 2939 return -EINVAL; 2940 } 2941 2942 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 2943 if (!request_wiphy) 2944 return -ENODEV; 2945 2946 if (!driver_request->intersect) { 2947 if (request_wiphy->regd) 2948 return -EALREADY; 2949 2950 regd = reg_copy_regd(rd); 2951 if (IS_ERR(regd)) 2952 return PTR_ERR(regd); 2953 2954 rcu_assign_pointer(request_wiphy->regd, regd); 2955 reset_regdomains(false, rd); 2956 return 0; 2957 } 2958 2959 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2960 if (!intersected_rd) 2961 return -EINVAL; 2962 2963 /* 2964 * We can trash what CRDA provided now. 2965 * However if a driver requested this specific regulatory 2966 * domain we keep it for its private use 2967 */ 2968 tmp = get_wiphy_regdom(request_wiphy); 2969 rcu_assign_pointer(request_wiphy->regd, rd); 2970 rcu_free_regdom(tmp); 2971 2972 rd = NULL; 2973 2974 reset_regdomains(false, intersected_rd); 2975 2976 return 0; 2977 } 2978 2979 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 2980 struct regulatory_request *country_ie_request) 2981 { 2982 struct wiphy *request_wiphy; 2983 2984 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 2985 !is_unknown_alpha2(rd->alpha2)) 2986 return -EINVAL; 2987 2988 /* 2989 * Lets only bother proceeding on the same alpha2 if the current 2990 * rd is non static (it means CRDA was present and was used last) 2991 * and the pending request came in from a country IE 2992 */ 2993 2994 if (!is_valid_rd(rd)) { 2995 pr_err("Invalid regulatory domain detected: %c%c\n", 2996 rd->alpha2[0], rd->alpha2[1]); 2997 print_regdomain_info(rd); 2998 return -EINVAL; 2999 } 3000 3001 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3002 if (!request_wiphy) 3003 return -ENODEV; 3004 3005 if (country_ie_request->intersect) 3006 return -EINVAL; 3007 3008 reset_regdomains(false, rd); 3009 return 0; 3010 } 3011 3012 /* 3013 * Use this call to set the current regulatory domain. Conflicts with 3014 * multiple drivers can be ironed out later. Caller must've already 3015 * kmalloc'd the rd structure. 3016 */ 3017 int set_regdom(const struct ieee80211_regdomain *rd, 3018 enum ieee80211_regd_source regd_src) 3019 { 3020 struct regulatory_request *lr; 3021 bool user_reset = false; 3022 int r; 3023 3024 if (!reg_is_valid_request(rd->alpha2)) { 3025 kfree(rd); 3026 return -EINVAL; 3027 } 3028 3029 if (regd_src == REGD_SOURCE_CRDA) 3030 reset_crda_timeouts(); 3031 3032 lr = get_last_request(); 3033 3034 /* Note that this doesn't update the wiphys, this is done below */ 3035 switch (lr->initiator) { 3036 case NL80211_REGDOM_SET_BY_CORE: 3037 r = reg_set_rd_core(rd); 3038 break; 3039 case NL80211_REGDOM_SET_BY_USER: 3040 r = reg_set_rd_user(rd, lr); 3041 user_reset = true; 3042 break; 3043 case NL80211_REGDOM_SET_BY_DRIVER: 3044 r = reg_set_rd_driver(rd, lr); 3045 break; 3046 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3047 r = reg_set_rd_country_ie(rd, lr); 3048 break; 3049 default: 3050 WARN(1, "invalid initiator %d\n", lr->initiator); 3051 kfree(rd); 3052 return -EINVAL; 3053 } 3054 3055 if (r) { 3056 switch (r) { 3057 case -EALREADY: 3058 reg_set_request_processed(); 3059 break; 3060 default: 3061 /* Back to world regulatory in case of errors */ 3062 restore_regulatory_settings(user_reset); 3063 } 3064 3065 kfree(rd); 3066 return r; 3067 } 3068 3069 /* This would make this whole thing pointless */ 3070 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3071 return -EINVAL; 3072 3073 /* update all wiphys now with the new established regulatory domain */ 3074 update_all_wiphy_regulatory(lr->initiator); 3075 3076 print_regdomain(get_cfg80211_regdom()); 3077 3078 nl80211_send_reg_change_event(lr); 3079 3080 reg_set_request_processed(); 3081 3082 return 0; 3083 } 3084 3085 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 3086 struct ieee80211_regdomain *rd) 3087 { 3088 const struct ieee80211_regdomain *regd; 3089 const struct ieee80211_regdomain *prev_regd; 3090 struct cfg80211_registered_device *rdev; 3091 3092 if (WARN_ON(!wiphy || !rd)) 3093 return -EINVAL; 3094 3095 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 3096 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 3097 return -EPERM; 3098 3099 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { 3100 print_regdomain_info(rd); 3101 return -EINVAL; 3102 } 3103 3104 regd = reg_copy_regd(rd); 3105 if (IS_ERR(regd)) 3106 return PTR_ERR(regd); 3107 3108 rdev = wiphy_to_rdev(wiphy); 3109 3110 spin_lock(®_requests_lock); 3111 prev_regd = rdev->requested_regd; 3112 rdev->requested_regd = regd; 3113 spin_unlock(®_requests_lock); 3114 3115 kfree(prev_regd); 3116 return 0; 3117 } 3118 3119 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 3120 struct ieee80211_regdomain *rd) 3121 { 3122 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 3123 3124 if (ret) 3125 return ret; 3126 3127 schedule_work(®_work); 3128 return 0; 3129 } 3130 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 3131 3132 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, 3133 struct ieee80211_regdomain *rd) 3134 { 3135 int ret; 3136 3137 ASSERT_RTNL(); 3138 3139 ret = __regulatory_set_wiphy_regd(wiphy, rd); 3140 if (ret) 3141 return ret; 3142 3143 /* process the request immediately */ 3144 reg_process_self_managed_hints(); 3145 return 0; 3146 } 3147 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); 3148 3149 void wiphy_regulatory_register(struct wiphy *wiphy) 3150 { 3151 struct regulatory_request *lr; 3152 3153 /* self-managed devices ignore external hints */ 3154 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3155 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 3156 REGULATORY_COUNTRY_IE_IGNORE; 3157 3158 if (!reg_dev_ignore_cell_hint(wiphy)) 3159 reg_num_devs_support_basehint++; 3160 3161 lr = get_last_request(); 3162 wiphy_update_regulatory(wiphy, lr->initiator); 3163 wiphy_all_share_dfs_chan_state(wiphy); 3164 } 3165 3166 void wiphy_regulatory_deregister(struct wiphy *wiphy) 3167 { 3168 struct wiphy *request_wiphy = NULL; 3169 struct regulatory_request *lr; 3170 3171 lr = get_last_request(); 3172 3173 if (!reg_dev_ignore_cell_hint(wiphy)) 3174 reg_num_devs_support_basehint--; 3175 3176 rcu_free_regdom(get_wiphy_regdom(wiphy)); 3177 RCU_INIT_POINTER(wiphy->regd, NULL); 3178 3179 if (lr) 3180 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 3181 3182 if (!request_wiphy || request_wiphy != wiphy) 3183 return; 3184 3185 lr->wiphy_idx = WIPHY_IDX_INVALID; 3186 lr->country_ie_env = ENVIRON_ANY; 3187 } 3188 3189 /* 3190 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for 3191 * UNII band definitions 3192 */ 3193 int cfg80211_get_unii(int freq) 3194 { 3195 /* UNII-1 */ 3196 if (freq >= 5150 && freq <= 5250) 3197 return 0; 3198 3199 /* UNII-2A */ 3200 if (freq > 5250 && freq <= 5350) 3201 return 1; 3202 3203 /* UNII-2B */ 3204 if (freq > 5350 && freq <= 5470) 3205 return 2; 3206 3207 /* UNII-2C */ 3208 if (freq > 5470 && freq <= 5725) 3209 return 3; 3210 3211 /* UNII-3 */ 3212 if (freq > 5725 && freq <= 5825) 3213 return 4; 3214 3215 return -EINVAL; 3216 } 3217 3218 bool regulatory_indoor_allowed(void) 3219 { 3220 return reg_is_indoor; 3221 } 3222 3223 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 3224 { 3225 const struct ieee80211_regdomain *regd = NULL; 3226 const struct ieee80211_regdomain *wiphy_regd = NULL; 3227 bool pre_cac_allowed = false; 3228 3229 rcu_read_lock(); 3230 3231 regd = rcu_dereference(cfg80211_regdomain); 3232 wiphy_regd = rcu_dereference(wiphy->regd); 3233 if (!wiphy_regd) { 3234 if (regd->dfs_region == NL80211_DFS_ETSI) 3235 pre_cac_allowed = true; 3236 3237 rcu_read_unlock(); 3238 3239 return pre_cac_allowed; 3240 } 3241 3242 if (regd->dfs_region == wiphy_regd->dfs_region && 3243 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 3244 pre_cac_allowed = true; 3245 3246 rcu_read_unlock(); 3247 3248 return pre_cac_allowed; 3249 } 3250 3251 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 3252 struct cfg80211_chan_def *chandef, 3253 enum nl80211_dfs_state dfs_state, 3254 enum nl80211_radar_event event) 3255 { 3256 struct cfg80211_registered_device *rdev; 3257 3258 ASSERT_RTNL(); 3259 3260 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 3261 return; 3262 3263 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3264 if (wiphy == &rdev->wiphy) 3265 continue; 3266 3267 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 3268 continue; 3269 3270 if (!ieee80211_get_channel(&rdev->wiphy, 3271 chandef->chan->center_freq)) 3272 continue; 3273 3274 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 3275 3276 if (event == NL80211_RADAR_DETECTED || 3277 event == NL80211_RADAR_CAC_FINISHED) 3278 cfg80211_sched_dfs_chan_update(rdev); 3279 3280 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 3281 } 3282 } 3283 3284 int __init regulatory_init(void) 3285 { 3286 int err = 0; 3287 3288 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 3289 if (IS_ERR(reg_pdev)) 3290 return PTR_ERR(reg_pdev); 3291 3292 spin_lock_init(®_requests_lock); 3293 spin_lock_init(®_pending_beacons_lock); 3294 spin_lock_init(®_indoor_lock); 3295 3296 reg_regdb_size_check(); 3297 3298 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 3299 3300 user_alpha2[0] = '9'; 3301 user_alpha2[1] = '7'; 3302 3303 /* We always try to get an update for the static regdomain */ 3304 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 3305 if (err) { 3306 if (err == -ENOMEM) { 3307 platform_device_unregister(reg_pdev); 3308 return err; 3309 } 3310 /* 3311 * N.B. kobject_uevent_env() can fail mainly for when we're out 3312 * memory which is handled and propagated appropriately above 3313 * but it can also fail during a netlink_broadcast() or during 3314 * early boot for call_usermodehelper(). For now treat these 3315 * errors as non-fatal. 3316 */ 3317 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 3318 } 3319 3320 /* 3321 * Finally, if the user set the module parameter treat it 3322 * as a user hint. 3323 */ 3324 if (!is_world_regdom(ieee80211_regdom)) 3325 regulatory_hint_user(ieee80211_regdom, 3326 NL80211_USER_REG_HINT_USER); 3327 3328 return 0; 3329 } 3330 3331 void regulatory_exit(void) 3332 { 3333 struct regulatory_request *reg_request, *tmp; 3334 struct reg_beacon *reg_beacon, *btmp; 3335 3336 cancel_work_sync(®_work); 3337 cancel_crda_timeout_sync(); 3338 cancel_delayed_work_sync(®_check_chans); 3339 3340 /* Lock to suppress warnings */ 3341 rtnl_lock(); 3342 reset_regdomains(true, NULL); 3343 rtnl_unlock(); 3344 3345 dev_set_uevent_suppress(®_pdev->dev, true); 3346 3347 platform_device_unregister(reg_pdev); 3348 3349 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3350 list_del(®_beacon->list); 3351 kfree(reg_beacon); 3352 } 3353 3354 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3355 list_del(®_beacon->list); 3356 kfree(reg_beacon); 3357 } 3358 3359 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 3360 list_del(®_request->list); 3361 kfree(reg_request); 3362 } 3363 } 3364