xref: /openbmc/linux/net/wireless/reg.c (revision 711aab1d)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  *
9  * Permission to use, copy, modify, and/or distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 
23 /**
24  * DOC: Wireless regulatory infrastructure
25  *
26  * The usual implementation is for a driver to read a device EEPROM to
27  * determine which regulatory domain it should be operating under, then
28  * looking up the allowable channels in a driver-local table and finally
29  * registering those channels in the wiphy structure.
30  *
31  * Another set of compliance enforcement is for drivers to use their
32  * own compliance limits which can be stored on the EEPROM. The host
33  * driver or firmware may ensure these are used.
34  *
35  * In addition to all this we provide an extra layer of regulatory
36  * conformance. For drivers which do not have any regulatory
37  * information CRDA provides the complete regulatory solution.
38  * For others it provides a community effort on further restrictions
39  * to enhance compliance.
40  *
41  * Note: When number of rules --> infinity we will not be able to
42  * index on alpha2 any more, instead we'll probably have to
43  * rely on some SHA1 checksum of the regdomain for example.
44  *
45  */
46 
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48 
49 #include <linux/kernel.h>
50 #include <linux/export.h>
51 #include <linux/slab.h>
52 #include <linux/list.h>
53 #include <linux/ctype.h>
54 #include <linux/nl80211.h>
55 #include <linux/platform_device.h>
56 #include <linux/moduleparam.h>
57 #include <net/cfg80211.h>
58 #include "core.h"
59 #include "reg.h"
60 #include "rdev-ops.h"
61 #include "regdb.h"
62 #include "nl80211.h"
63 
64 /*
65  * Grace period we give before making sure all current interfaces reside on
66  * channels allowed by the current regulatory domain.
67  */
68 #define REG_ENFORCE_GRACE_MS 60000
69 
70 /**
71  * enum reg_request_treatment - regulatory request treatment
72  *
73  * @REG_REQ_OK: continue processing the regulatory request
74  * @REG_REQ_IGNORE: ignore the regulatory request
75  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
76  *	be intersected with the current one.
77  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
78  *	regulatory settings, and no further processing is required.
79  */
80 enum reg_request_treatment {
81 	REG_REQ_OK,
82 	REG_REQ_IGNORE,
83 	REG_REQ_INTERSECT,
84 	REG_REQ_ALREADY_SET,
85 };
86 
87 static struct regulatory_request core_request_world = {
88 	.initiator = NL80211_REGDOM_SET_BY_CORE,
89 	.alpha2[0] = '0',
90 	.alpha2[1] = '0',
91 	.intersect = false,
92 	.processed = true,
93 	.country_ie_env = ENVIRON_ANY,
94 };
95 
96 /*
97  * Receipt of information from last regulatory request,
98  * protected by RTNL (and can be accessed with RCU protection)
99  */
100 static struct regulatory_request __rcu *last_request =
101 	(void __force __rcu *)&core_request_world;
102 
103 /* To trigger userspace events */
104 static struct platform_device *reg_pdev;
105 
106 /*
107  * Central wireless core regulatory domains, we only need two,
108  * the current one and a world regulatory domain in case we have no
109  * information to give us an alpha2.
110  * (protected by RTNL, can be read under RCU)
111  */
112 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
113 
114 /*
115  * Number of devices that registered to the core
116  * that support cellular base station regulatory hints
117  * (protected by RTNL)
118  */
119 static int reg_num_devs_support_basehint;
120 
121 /*
122  * State variable indicating if the platform on which the devices
123  * are attached is operating in an indoor environment. The state variable
124  * is relevant for all registered devices.
125  */
126 static bool reg_is_indoor;
127 static spinlock_t reg_indoor_lock;
128 
129 /* Used to track the userspace process controlling the indoor setting */
130 static u32 reg_is_indoor_portid;
131 
132 static void restore_regulatory_settings(bool reset_user);
133 
134 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
135 {
136 	return rtnl_dereference(cfg80211_regdomain);
137 }
138 
139 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
140 {
141 	return rtnl_dereference(wiphy->regd);
142 }
143 
144 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
145 {
146 	switch (dfs_region) {
147 	case NL80211_DFS_UNSET:
148 		return "unset";
149 	case NL80211_DFS_FCC:
150 		return "FCC";
151 	case NL80211_DFS_ETSI:
152 		return "ETSI";
153 	case NL80211_DFS_JP:
154 		return "JP";
155 	}
156 	return "Unknown";
157 }
158 
159 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
160 {
161 	const struct ieee80211_regdomain *regd = NULL;
162 	const struct ieee80211_regdomain *wiphy_regd = NULL;
163 
164 	regd = get_cfg80211_regdom();
165 	if (!wiphy)
166 		goto out;
167 
168 	wiphy_regd = get_wiphy_regdom(wiphy);
169 	if (!wiphy_regd)
170 		goto out;
171 
172 	if (wiphy_regd->dfs_region == regd->dfs_region)
173 		goto out;
174 
175 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
176 		 dev_name(&wiphy->dev),
177 		 reg_dfs_region_str(wiphy_regd->dfs_region),
178 		 reg_dfs_region_str(regd->dfs_region));
179 
180 out:
181 	return regd->dfs_region;
182 }
183 
184 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
185 {
186 	if (!r)
187 		return;
188 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
189 }
190 
191 static struct regulatory_request *get_last_request(void)
192 {
193 	return rcu_dereference_rtnl(last_request);
194 }
195 
196 /* Used to queue up regulatory hints */
197 static LIST_HEAD(reg_requests_list);
198 static spinlock_t reg_requests_lock;
199 
200 /* Used to queue up beacon hints for review */
201 static LIST_HEAD(reg_pending_beacons);
202 static spinlock_t reg_pending_beacons_lock;
203 
204 /* Used to keep track of processed beacon hints */
205 static LIST_HEAD(reg_beacon_list);
206 
207 struct reg_beacon {
208 	struct list_head list;
209 	struct ieee80211_channel chan;
210 };
211 
212 static void reg_check_chans_work(struct work_struct *work);
213 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
214 
215 static void reg_todo(struct work_struct *work);
216 static DECLARE_WORK(reg_work, reg_todo);
217 
218 /* We keep a static world regulatory domain in case of the absence of CRDA */
219 static const struct ieee80211_regdomain world_regdom = {
220 	.n_reg_rules = 8,
221 	.alpha2 =  "00",
222 	.reg_rules = {
223 		/* IEEE 802.11b/g, channels 1..11 */
224 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
225 		/* IEEE 802.11b/g, channels 12..13. */
226 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
227 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
228 		/* IEEE 802.11 channel 14 - Only JP enables
229 		 * this and for 802.11b only */
230 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
231 			NL80211_RRF_NO_IR |
232 			NL80211_RRF_NO_OFDM),
233 		/* IEEE 802.11a, channel 36..48 */
234 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
235                         NL80211_RRF_NO_IR |
236                         NL80211_RRF_AUTO_BW),
237 
238 		/* IEEE 802.11a, channel 52..64 - DFS required */
239 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
240 			NL80211_RRF_NO_IR |
241 			NL80211_RRF_AUTO_BW |
242 			NL80211_RRF_DFS),
243 
244 		/* IEEE 802.11a, channel 100..144 - DFS required */
245 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
246 			NL80211_RRF_NO_IR |
247 			NL80211_RRF_DFS),
248 
249 		/* IEEE 802.11a, channel 149..165 */
250 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
251 			NL80211_RRF_NO_IR),
252 
253 		/* IEEE 802.11ad (60GHz), channels 1..3 */
254 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
255 	}
256 };
257 
258 /* protected by RTNL */
259 static const struct ieee80211_regdomain *cfg80211_world_regdom =
260 	&world_regdom;
261 
262 static char *ieee80211_regdom = "00";
263 static char user_alpha2[2];
264 
265 module_param(ieee80211_regdom, charp, 0444);
266 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
267 
268 static void reg_free_request(struct regulatory_request *request)
269 {
270 	if (request == &core_request_world)
271 		return;
272 
273 	if (request != get_last_request())
274 		kfree(request);
275 }
276 
277 static void reg_free_last_request(void)
278 {
279 	struct regulatory_request *lr = get_last_request();
280 
281 	if (lr != &core_request_world && lr)
282 		kfree_rcu(lr, rcu_head);
283 }
284 
285 static void reg_update_last_request(struct regulatory_request *request)
286 {
287 	struct regulatory_request *lr;
288 
289 	lr = get_last_request();
290 	if (lr == request)
291 		return;
292 
293 	reg_free_last_request();
294 	rcu_assign_pointer(last_request, request);
295 }
296 
297 static void reset_regdomains(bool full_reset,
298 			     const struct ieee80211_regdomain *new_regdom)
299 {
300 	const struct ieee80211_regdomain *r;
301 
302 	ASSERT_RTNL();
303 
304 	r = get_cfg80211_regdom();
305 
306 	/* avoid freeing static information or freeing something twice */
307 	if (r == cfg80211_world_regdom)
308 		r = NULL;
309 	if (cfg80211_world_regdom == &world_regdom)
310 		cfg80211_world_regdom = NULL;
311 	if (r == &world_regdom)
312 		r = NULL;
313 
314 	rcu_free_regdom(r);
315 	rcu_free_regdom(cfg80211_world_regdom);
316 
317 	cfg80211_world_regdom = &world_regdom;
318 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
319 
320 	if (!full_reset)
321 		return;
322 
323 	reg_update_last_request(&core_request_world);
324 }
325 
326 /*
327  * Dynamic world regulatory domain requested by the wireless
328  * core upon initialization
329  */
330 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
331 {
332 	struct regulatory_request *lr;
333 
334 	lr = get_last_request();
335 
336 	WARN_ON(!lr);
337 
338 	reset_regdomains(false, rd);
339 
340 	cfg80211_world_regdom = rd;
341 }
342 
343 bool is_world_regdom(const char *alpha2)
344 {
345 	if (!alpha2)
346 		return false;
347 	return alpha2[0] == '0' && alpha2[1] == '0';
348 }
349 
350 static bool is_alpha2_set(const char *alpha2)
351 {
352 	if (!alpha2)
353 		return false;
354 	return alpha2[0] && alpha2[1];
355 }
356 
357 static bool is_unknown_alpha2(const char *alpha2)
358 {
359 	if (!alpha2)
360 		return false;
361 	/*
362 	 * Special case where regulatory domain was built by driver
363 	 * but a specific alpha2 cannot be determined
364 	 */
365 	return alpha2[0] == '9' && alpha2[1] == '9';
366 }
367 
368 static bool is_intersected_alpha2(const char *alpha2)
369 {
370 	if (!alpha2)
371 		return false;
372 	/*
373 	 * Special case where regulatory domain is the
374 	 * result of an intersection between two regulatory domain
375 	 * structures
376 	 */
377 	return alpha2[0] == '9' && alpha2[1] == '8';
378 }
379 
380 static bool is_an_alpha2(const char *alpha2)
381 {
382 	if (!alpha2)
383 		return false;
384 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
385 }
386 
387 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
388 {
389 	if (!alpha2_x || !alpha2_y)
390 		return false;
391 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
392 }
393 
394 static bool regdom_changes(const char *alpha2)
395 {
396 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
397 
398 	if (!r)
399 		return true;
400 	return !alpha2_equal(r->alpha2, alpha2);
401 }
402 
403 /*
404  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
405  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
406  * has ever been issued.
407  */
408 static bool is_user_regdom_saved(void)
409 {
410 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
411 		return false;
412 
413 	/* This would indicate a mistake on the design */
414 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
415 		 "Unexpected user alpha2: %c%c\n",
416 		 user_alpha2[0], user_alpha2[1]))
417 		return false;
418 
419 	return true;
420 }
421 
422 static const struct ieee80211_regdomain *
423 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
424 {
425 	struct ieee80211_regdomain *regd;
426 	int size_of_regd;
427 	unsigned int i;
428 
429 	size_of_regd =
430 		sizeof(struct ieee80211_regdomain) +
431 		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
432 
433 	regd = kzalloc(size_of_regd, GFP_KERNEL);
434 	if (!regd)
435 		return ERR_PTR(-ENOMEM);
436 
437 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
438 
439 	for (i = 0; i < src_regd->n_reg_rules; i++)
440 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
441 		       sizeof(struct ieee80211_reg_rule));
442 
443 	return regd;
444 }
445 
446 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
447 struct reg_regdb_apply_request {
448 	struct list_head list;
449 	const struct ieee80211_regdomain *regdom;
450 };
451 
452 static LIST_HEAD(reg_regdb_apply_list);
453 static DEFINE_MUTEX(reg_regdb_apply_mutex);
454 
455 static void reg_regdb_apply(struct work_struct *work)
456 {
457 	struct reg_regdb_apply_request *request;
458 
459 	rtnl_lock();
460 
461 	mutex_lock(&reg_regdb_apply_mutex);
462 	while (!list_empty(&reg_regdb_apply_list)) {
463 		request = list_first_entry(&reg_regdb_apply_list,
464 					   struct reg_regdb_apply_request,
465 					   list);
466 		list_del(&request->list);
467 
468 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
469 		kfree(request);
470 	}
471 	mutex_unlock(&reg_regdb_apply_mutex);
472 
473 	rtnl_unlock();
474 }
475 
476 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
477 
478 static int reg_query_builtin(const char *alpha2)
479 {
480 	const struct ieee80211_regdomain *regdom = NULL;
481 	struct reg_regdb_apply_request *request;
482 	unsigned int i;
483 
484 	for (i = 0; i < reg_regdb_size; i++) {
485 		if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
486 			regdom = reg_regdb[i];
487 			break;
488 		}
489 	}
490 
491 	if (!regdom)
492 		return -ENODATA;
493 
494 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
495 	if (!request)
496 		return -ENOMEM;
497 
498 	request->regdom = reg_copy_regd(regdom);
499 	if (IS_ERR_OR_NULL(request->regdom)) {
500 		kfree(request);
501 		return -ENOMEM;
502 	}
503 
504 	mutex_lock(&reg_regdb_apply_mutex);
505 	list_add_tail(&request->list, &reg_regdb_apply_list);
506 	mutex_unlock(&reg_regdb_apply_mutex);
507 
508 	schedule_work(&reg_regdb_work);
509 
510 	return 0;
511 }
512 
513 /* Feel free to add any other sanity checks here */
514 static void reg_regdb_size_check(void)
515 {
516 	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
517 	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
518 }
519 #else
520 static inline void reg_regdb_size_check(void) {}
521 static inline int reg_query_builtin(const char *alpha2)
522 {
523 	return -ENODATA;
524 }
525 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
526 
527 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
528 /* Max number of consecutive attempts to communicate with CRDA  */
529 #define REG_MAX_CRDA_TIMEOUTS 10
530 
531 static u32 reg_crda_timeouts;
532 
533 static void crda_timeout_work(struct work_struct *work);
534 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
535 
536 static void crda_timeout_work(struct work_struct *work)
537 {
538 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
539 	rtnl_lock();
540 	reg_crda_timeouts++;
541 	restore_regulatory_settings(true);
542 	rtnl_unlock();
543 }
544 
545 static void cancel_crda_timeout(void)
546 {
547 	cancel_delayed_work(&crda_timeout);
548 }
549 
550 static void cancel_crda_timeout_sync(void)
551 {
552 	cancel_delayed_work_sync(&crda_timeout);
553 }
554 
555 static void reset_crda_timeouts(void)
556 {
557 	reg_crda_timeouts = 0;
558 }
559 
560 /*
561  * This lets us keep regulatory code which is updated on a regulatory
562  * basis in userspace.
563  */
564 static int call_crda(const char *alpha2)
565 {
566 	char country[12];
567 	char *env[] = { country, NULL };
568 	int ret;
569 
570 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
571 		 alpha2[0], alpha2[1]);
572 
573 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
574 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
575 		return -EINVAL;
576 	}
577 
578 	if (!is_world_regdom((char *) alpha2))
579 		pr_debug("Calling CRDA for country: %c%c\n",
580 			 alpha2[0], alpha2[1]);
581 	else
582 		pr_debug("Calling CRDA to update world regulatory domain\n");
583 
584 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
585 	if (ret)
586 		return ret;
587 
588 	queue_delayed_work(system_power_efficient_wq,
589 			   &crda_timeout, msecs_to_jiffies(3142));
590 	return 0;
591 }
592 #else
593 static inline void cancel_crda_timeout(void) {}
594 static inline void cancel_crda_timeout_sync(void) {}
595 static inline void reset_crda_timeouts(void) {}
596 static inline int call_crda(const char *alpha2)
597 {
598 	return -ENODATA;
599 }
600 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
601 
602 static bool reg_query_database(struct regulatory_request *request)
603 {
604 	/* query internal regulatory database (if it exists) */
605 	if (reg_query_builtin(request->alpha2) == 0)
606 		return true;
607 
608 	if (call_crda(request->alpha2) == 0)
609 		return true;
610 
611 	return false;
612 }
613 
614 bool reg_is_valid_request(const char *alpha2)
615 {
616 	struct regulatory_request *lr = get_last_request();
617 
618 	if (!lr || lr->processed)
619 		return false;
620 
621 	return alpha2_equal(lr->alpha2, alpha2);
622 }
623 
624 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
625 {
626 	struct regulatory_request *lr = get_last_request();
627 
628 	/*
629 	 * Follow the driver's regulatory domain, if present, unless a country
630 	 * IE has been processed or a user wants to help complaince further
631 	 */
632 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
633 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
634 	    wiphy->regd)
635 		return get_wiphy_regdom(wiphy);
636 
637 	return get_cfg80211_regdom();
638 }
639 
640 static unsigned int
641 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
642 				 const struct ieee80211_reg_rule *rule)
643 {
644 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
645 	const struct ieee80211_freq_range *freq_range_tmp;
646 	const struct ieee80211_reg_rule *tmp;
647 	u32 start_freq, end_freq, idx, no;
648 
649 	for (idx = 0; idx < rd->n_reg_rules; idx++)
650 		if (rule == &rd->reg_rules[idx])
651 			break;
652 
653 	if (idx == rd->n_reg_rules)
654 		return 0;
655 
656 	/* get start_freq */
657 	no = idx;
658 
659 	while (no) {
660 		tmp = &rd->reg_rules[--no];
661 		freq_range_tmp = &tmp->freq_range;
662 
663 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
664 			break;
665 
666 		freq_range = freq_range_tmp;
667 	}
668 
669 	start_freq = freq_range->start_freq_khz;
670 
671 	/* get end_freq */
672 	freq_range = &rule->freq_range;
673 	no = idx;
674 
675 	while (no < rd->n_reg_rules - 1) {
676 		tmp = &rd->reg_rules[++no];
677 		freq_range_tmp = &tmp->freq_range;
678 
679 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
680 			break;
681 
682 		freq_range = freq_range_tmp;
683 	}
684 
685 	end_freq = freq_range->end_freq_khz;
686 
687 	return end_freq - start_freq;
688 }
689 
690 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
691 				   const struct ieee80211_reg_rule *rule)
692 {
693 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
694 
695 	if (rule->flags & NL80211_RRF_NO_160MHZ)
696 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
697 	if (rule->flags & NL80211_RRF_NO_80MHZ)
698 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
699 
700 	/*
701 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
702 	 * are not allowed.
703 	 */
704 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
705 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
706 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
707 
708 	return bw;
709 }
710 
711 /* Sanity check on a regulatory rule */
712 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
713 {
714 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
715 	u32 freq_diff;
716 
717 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
718 		return false;
719 
720 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
721 		return false;
722 
723 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
724 
725 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
726 	    freq_range->max_bandwidth_khz > freq_diff)
727 		return false;
728 
729 	return true;
730 }
731 
732 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
733 {
734 	const struct ieee80211_reg_rule *reg_rule = NULL;
735 	unsigned int i;
736 
737 	if (!rd->n_reg_rules)
738 		return false;
739 
740 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
741 		return false;
742 
743 	for (i = 0; i < rd->n_reg_rules; i++) {
744 		reg_rule = &rd->reg_rules[i];
745 		if (!is_valid_reg_rule(reg_rule))
746 			return false;
747 	}
748 
749 	return true;
750 }
751 
752 /**
753  * freq_in_rule_band - tells us if a frequency is in a frequency band
754  * @freq_range: frequency rule we want to query
755  * @freq_khz: frequency we are inquiring about
756  *
757  * This lets us know if a specific frequency rule is or is not relevant to
758  * a specific frequency's band. Bands are device specific and artificial
759  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
760  * however it is safe for now to assume that a frequency rule should not be
761  * part of a frequency's band if the start freq or end freq are off by more
762  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
763  * 60 GHz band.
764  * This resolution can be lowered and should be considered as we add
765  * regulatory rule support for other "bands".
766  **/
767 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
768 			      u32 freq_khz)
769 {
770 #define ONE_GHZ_IN_KHZ	1000000
771 	/*
772 	 * From 802.11ad: directional multi-gigabit (DMG):
773 	 * Pertaining to operation in a frequency band containing a channel
774 	 * with the Channel starting frequency above 45 GHz.
775 	 */
776 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
777 			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
778 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
779 		return true;
780 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
781 		return true;
782 	return false;
783 #undef ONE_GHZ_IN_KHZ
784 }
785 
786 /*
787  * Later on we can perhaps use the more restrictive DFS
788  * region but we don't have information for that yet so
789  * for now simply disallow conflicts.
790  */
791 static enum nl80211_dfs_regions
792 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
793 			 const enum nl80211_dfs_regions dfs_region2)
794 {
795 	if (dfs_region1 != dfs_region2)
796 		return NL80211_DFS_UNSET;
797 	return dfs_region1;
798 }
799 
800 /*
801  * Helper for regdom_intersect(), this does the real
802  * mathematical intersection fun
803  */
804 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
805 			       const struct ieee80211_regdomain *rd2,
806 			       const struct ieee80211_reg_rule *rule1,
807 			       const struct ieee80211_reg_rule *rule2,
808 			       struct ieee80211_reg_rule *intersected_rule)
809 {
810 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
811 	struct ieee80211_freq_range *freq_range;
812 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
813 	struct ieee80211_power_rule *power_rule;
814 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
815 
816 	freq_range1 = &rule1->freq_range;
817 	freq_range2 = &rule2->freq_range;
818 	freq_range = &intersected_rule->freq_range;
819 
820 	power_rule1 = &rule1->power_rule;
821 	power_rule2 = &rule2->power_rule;
822 	power_rule = &intersected_rule->power_rule;
823 
824 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
825 					 freq_range2->start_freq_khz);
826 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
827 				       freq_range2->end_freq_khz);
828 
829 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
830 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
831 
832 	if (rule1->flags & NL80211_RRF_AUTO_BW)
833 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
834 	if (rule2->flags & NL80211_RRF_AUTO_BW)
835 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
836 
837 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
838 
839 	intersected_rule->flags = rule1->flags | rule2->flags;
840 
841 	/*
842 	 * In case NL80211_RRF_AUTO_BW requested for both rules
843 	 * set AUTO_BW in intersected rule also. Next we will
844 	 * calculate BW correctly in handle_channel function.
845 	 * In other case remove AUTO_BW flag while we calculate
846 	 * maximum bandwidth correctly and auto calculation is
847 	 * not required.
848 	 */
849 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
850 	    (rule2->flags & NL80211_RRF_AUTO_BW))
851 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
852 	else
853 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
854 
855 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
856 	if (freq_range->max_bandwidth_khz > freq_diff)
857 		freq_range->max_bandwidth_khz = freq_diff;
858 
859 	power_rule->max_eirp = min(power_rule1->max_eirp,
860 		power_rule2->max_eirp);
861 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
862 		power_rule2->max_antenna_gain);
863 
864 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
865 					   rule2->dfs_cac_ms);
866 
867 	if (!is_valid_reg_rule(intersected_rule))
868 		return -EINVAL;
869 
870 	return 0;
871 }
872 
873 /* check whether old rule contains new rule */
874 static bool rule_contains(struct ieee80211_reg_rule *r1,
875 			  struct ieee80211_reg_rule *r2)
876 {
877 	/* for simplicity, currently consider only same flags */
878 	if (r1->flags != r2->flags)
879 		return false;
880 
881 	/* verify r1 is more restrictive */
882 	if ((r1->power_rule.max_antenna_gain >
883 	     r2->power_rule.max_antenna_gain) ||
884 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
885 		return false;
886 
887 	/* make sure r2's range is contained within r1 */
888 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
889 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
890 		return false;
891 
892 	/* and finally verify that r1.max_bw >= r2.max_bw */
893 	if (r1->freq_range.max_bandwidth_khz <
894 	    r2->freq_range.max_bandwidth_khz)
895 		return false;
896 
897 	return true;
898 }
899 
900 /* add or extend current rules. do nothing if rule is already contained */
901 static void add_rule(struct ieee80211_reg_rule *rule,
902 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
903 {
904 	struct ieee80211_reg_rule *tmp_rule;
905 	int i;
906 
907 	for (i = 0; i < *n_rules; i++) {
908 		tmp_rule = &reg_rules[i];
909 		/* rule is already contained - do nothing */
910 		if (rule_contains(tmp_rule, rule))
911 			return;
912 
913 		/* extend rule if possible */
914 		if (rule_contains(rule, tmp_rule)) {
915 			memcpy(tmp_rule, rule, sizeof(*rule));
916 			return;
917 		}
918 	}
919 
920 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
921 	(*n_rules)++;
922 }
923 
924 /**
925  * regdom_intersect - do the intersection between two regulatory domains
926  * @rd1: first regulatory domain
927  * @rd2: second regulatory domain
928  *
929  * Use this function to get the intersection between two regulatory domains.
930  * Once completed we will mark the alpha2 for the rd as intersected, "98",
931  * as no one single alpha2 can represent this regulatory domain.
932  *
933  * Returns a pointer to the regulatory domain structure which will hold the
934  * resulting intersection of rules between rd1 and rd2. We will
935  * kzalloc() this structure for you.
936  */
937 static struct ieee80211_regdomain *
938 regdom_intersect(const struct ieee80211_regdomain *rd1,
939 		 const struct ieee80211_regdomain *rd2)
940 {
941 	int r, size_of_regd;
942 	unsigned int x, y;
943 	unsigned int num_rules = 0;
944 	const struct ieee80211_reg_rule *rule1, *rule2;
945 	struct ieee80211_reg_rule intersected_rule;
946 	struct ieee80211_regdomain *rd;
947 
948 	if (!rd1 || !rd2)
949 		return NULL;
950 
951 	/*
952 	 * First we get a count of the rules we'll need, then we actually
953 	 * build them. This is to so we can malloc() and free() a
954 	 * regdomain once. The reason we use reg_rules_intersect() here
955 	 * is it will return -EINVAL if the rule computed makes no sense.
956 	 * All rules that do check out OK are valid.
957 	 */
958 
959 	for (x = 0; x < rd1->n_reg_rules; x++) {
960 		rule1 = &rd1->reg_rules[x];
961 		for (y = 0; y < rd2->n_reg_rules; y++) {
962 			rule2 = &rd2->reg_rules[y];
963 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
964 						 &intersected_rule))
965 				num_rules++;
966 		}
967 	}
968 
969 	if (!num_rules)
970 		return NULL;
971 
972 	size_of_regd = sizeof(struct ieee80211_regdomain) +
973 		       num_rules * sizeof(struct ieee80211_reg_rule);
974 
975 	rd = kzalloc(size_of_regd, GFP_KERNEL);
976 	if (!rd)
977 		return NULL;
978 
979 	for (x = 0; x < rd1->n_reg_rules; x++) {
980 		rule1 = &rd1->reg_rules[x];
981 		for (y = 0; y < rd2->n_reg_rules; y++) {
982 			rule2 = &rd2->reg_rules[y];
983 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
984 						&intersected_rule);
985 			/*
986 			 * No need to memset here the intersected rule here as
987 			 * we're not using the stack anymore
988 			 */
989 			if (r)
990 				continue;
991 
992 			add_rule(&intersected_rule, rd->reg_rules,
993 				 &rd->n_reg_rules);
994 		}
995 	}
996 
997 	rd->alpha2[0] = '9';
998 	rd->alpha2[1] = '8';
999 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1000 						  rd2->dfs_region);
1001 
1002 	return rd;
1003 }
1004 
1005 /*
1006  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1007  * want to just have the channel structure use these
1008  */
1009 static u32 map_regdom_flags(u32 rd_flags)
1010 {
1011 	u32 channel_flags = 0;
1012 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1013 		channel_flags |= IEEE80211_CHAN_NO_IR;
1014 	if (rd_flags & NL80211_RRF_DFS)
1015 		channel_flags |= IEEE80211_CHAN_RADAR;
1016 	if (rd_flags & NL80211_RRF_NO_OFDM)
1017 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1018 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1019 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1020 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1021 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1022 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1023 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1024 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1025 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1026 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1027 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1028 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1029 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1030 	return channel_flags;
1031 }
1032 
1033 static const struct ieee80211_reg_rule *
1034 freq_reg_info_regd(u32 center_freq,
1035 		   const struct ieee80211_regdomain *regd, u32 bw)
1036 {
1037 	int i;
1038 	bool band_rule_found = false;
1039 	bool bw_fits = false;
1040 
1041 	if (!regd)
1042 		return ERR_PTR(-EINVAL);
1043 
1044 	for (i = 0; i < regd->n_reg_rules; i++) {
1045 		const struct ieee80211_reg_rule *rr;
1046 		const struct ieee80211_freq_range *fr = NULL;
1047 
1048 		rr = &regd->reg_rules[i];
1049 		fr = &rr->freq_range;
1050 
1051 		/*
1052 		 * We only need to know if one frequency rule was
1053 		 * was in center_freq's band, that's enough, so lets
1054 		 * not overwrite it once found
1055 		 */
1056 		if (!band_rule_found)
1057 			band_rule_found = freq_in_rule_band(fr, center_freq);
1058 
1059 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1060 
1061 		if (band_rule_found && bw_fits)
1062 			return rr;
1063 	}
1064 
1065 	if (!band_rule_found)
1066 		return ERR_PTR(-ERANGE);
1067 
1068 	return ERR_PTR(-EINVAL);
1069 }
1070 
1071 static const struct ieee80211_reg_rule *
1072 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1073 {
1074 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1075 	const struct ieee80211_reg_rule *reg_rule = NULL;
1076 	u32 bw;
1077 
1078 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1079 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1080 		if (!IS_ERR(reg_rule))
1081 			return reg_rule;
1082 	}
1083 
1084 	return reg_rule;
1085 }
1086 
1087 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1088 					       u32 center_freq)
1089 {
1090 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1091 }
1092 EXPORT_SYMBOL(freq_reg_info);
1093 
1094 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1095 {
1096 	switch (initiator) {
1097 	case NL80211_REGDOM_SET_BY_CORE:
1098 		return "core";
1099 	case NL80211_REGDOM_SET_BY_USER:
1100 		return "user";
1101 	case NL80211_REGDOM_SET_BY_DRIVER:
1102 		return "driver";
1103 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1104 		return "country IE";
1105 	default:
1106 		WARN_ON(1);
1107 		return "bug";
1108 	}
1109 }
1110 EXPORT_SYMBOL(reg_initiator_name);
1111 
1112 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1113 					  const struct ieee80211_reg_rule *reg_rule,
1114 					  const struct ieee80211_channel *chan)
1115 {
1116 	const struct ieee80211_freq_range *freq_range = NULL;
1117 	u32 max_bandwidth_khz, bw_flags = 0;
1118 
1119 	freq_range = &reg_rule->freq_range;
1120 
1121 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1122 	/* Check if auto calculation requested */
1123 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1124 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1125 
1126 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1127 	if (!cfg80211_does_bw_fit_range(freq_range,
1128 					MHZ_TO_KHZ(chan->center_freq),
1129 					MHZ_TO_KHZ(10)))
1130 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1131 	if (!cfg80211_does_bw_fit_range(freq_range,
1132 					MHZ_TO_KHZ(chan->center_freq),
1133 					MHZ_TO_KHZ(20)))
1134 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1135 
1136 	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1137 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1138 	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1139 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1140 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1141 		bw_flags |= IEEE80211_CHAN_NO_HT40;
1142 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1143 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1144 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1145 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1146 	return bw_flags;
1147 }
1148 
1149 /*
1150  * Note that right now we assume the desired channel bandwidth
1151  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1152  * per channel, the primary and the extension channel).
1153  */
1154 static void handle_channel(struct wiphy *wiphy,
1155 			   enum nl80211_reg_initiator initiator,
1156 			   struct ieee80211_channel *chan)
1157 {
1158 	u32 flags, bw_flags = 0;
1159 	const struct ieee80211_reg_rule *reg_rule = NULL;
1160 	const struct ieee80211_power_rule *power_rule = NULL;
1161 	struct wiphy *request_wiphy = NULL;
1162 	struct regulatory_request *lr = get_last_request();
1163 	const struct ieee80211_regdomain *regd;
1164 
1165 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1166 
1167 	flags = chan->orig_flags;
1168 
1169 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1170 	if (IS_ERR(reg_rule)) {
1171 		/*
1172 		 * We will disable all channels that do not match our
1173 		 * received regulatory rule unless the hint is coming
1174 		 * from a Country IE and the Country IE had no information
1175 		 * about a band. The IEEE 802.11 spec allows for an AP
1176 		 * to send only a subset of the regulatory rules allowed,
1177 		 * so an AP in the US that only supports 2.4 GHz may only send
1178 		 * a country IE with information for the 2.4 GHz band
1179 		 * while 5 GHz is still supported.
1180 		 */
1181 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1182 		    PTR_ERR(reg_rule) == -ERANGE)
1183 			return;
1184 
1185 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1186 		    request_wiphy && request_wiphy == wiphy &&
1187 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1188 			pr_debug("Disabling freq %d MHz for good\n",
1189 				 chan->center_freq);
1190 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1191 			chan->flags = chan->orig_flags;
1192 		} else {
1193 			pr_debug("Disabling freq %d MHz\n",
1194 				 chan->center_freq);
1195 			chan->flags |= IEEE80211_CHAN_DISABLED;
1196 		}
1197 		return;
1198 	}
1199 
1200 	regd = reg_get_regdomain(wiphy);
1201 
1202 	power_rule = &reg_rule->power_rule;
1203 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1204 
1205 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1206 	    request_wiphy && request_wiphy == wiphy &&
1207 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1208 		/*
1209 		 * This guarantees the driver's requested regulatory domain
1210 		 * will always be used as a base for further regulatory
1211 		 * settings
1212 		 */
1213 		chan->flags = chan->orig_flags =
1214 			map_regdom_flags(reg_rule->flags) | bw_flags;
1215 		chan->max_antenna_gain = chan->orig_mag =
1216 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1217 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1218 			(int) MBM_TO_DBM(power_rule->max_eirp);
1219 
1220 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1221 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1222 			if (reg_rule->dfs_cac_ms)
1223 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1224 		}
1225 
1226 		return;
1227 	}
1228 
1229 	chan->dfs_state = NL80211_DFS_USABLE;
1230 	chan->dfs_state_entered = jiffies;
1231 
1232 	chan->beacon_found = false;
1233 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1234 	chan->max_antenna_gain =
1235 		min_t(int, chan->orig_mag,
1236 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1237 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1238 
1239 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1240 		if (reg_rule->dfs_cac_ms)
1241 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1242 		else
1243 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1244 	}
1245 
1246 	if (chan->orig_mpwr) {
1247 		/*
1248 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1249 		 * will always follow the passed country IE power settings.
1250 		 */
1251 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1252 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1253 			chan->max_power = chan->max_reg_power;
1254 		else
1255 			chan->max_power = min(chan->orig_mpwr,
1256 					      chan->max_reg_power);
1257 	} else
1258 		chan->max_power = chan->max_reg_power;
1259 }
1260 
1261 static void handle_band(struct wiphy *wiphy,
1262 			enum nl80211_reg_initiator initiator,
1263 			struct ieee80211_supported_band *sband)
1264 {
1265 	unsigned int i;
1266 
1267 	if (!sband)
1268 		return;
1269 
1270 	for (i = 0; i < sband->n_channels; i++)
1271 		handle_channel(wiphy, initiator, &sband->channels[i]);
1272 }
1273 
1274 static bool reg_request_cell_base(struct regulatory_request *request)
1275 {
1276 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1277 		return false;
1278 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1279 }
1280 
1281 bool reg_last_request_cell_base(void)
1282 {
1283 	return reg_request_cell_base(get_last_request());
1284 }
1285 
1286 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1287 /* Core specific check */
1288 static enum reg_request_treatment
1289 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1290 {
1291 	struct regulatory_request *lr = get_last_request();
1292 
1293 	if (!reg_num_devs_support_basehint)
1294 		return REG_REQ_IGNORE;
1295 
1296 	if (reg_request_cell_base(lr) &&
1297 	    !regdom_changes(pending_request->alpha2))
1298 		return REG_REQ_ALREADY_SET;
1299 
1300 	return REG_REQ_OK;
1301 }
1302 
1303 /* Device specific check */
1304 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1305 {
1306 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1307 }
1308 #else
1309 static enum reg_request_treatment
1310 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1311 {
1312 	return REG_REQ_IGNORE;
1313 }
1314 
1315 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1316 {
1317 	return true;
1318 }
1319 #endif
1320 
1321 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1322 {
1323 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1324 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1325 		return true;
1326 	return false;
1327 }
1328 
1329 static bool ignore_reg_update(struct wiphy *wiphy,
1330 			      enum nl80211_reg_initiator initiator)
1331 {
1332 	struct regulatory_request *lr = get_last_request();
1333 
1334 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1335 		return true;
1336 
1337 	if (!lr) {
1338 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1339 			 reg_initiator_name(initiator));
1340 		return true;
1341 	}
1342 
1343 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1344 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1345 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1346 			 reg_initiator_name(initiator));
1347 		return true;
1348 	}
1349 
1350 	/*
1351 	 * wiphy->regd will be set once the device has its own
1352 	 * desired regulatory domain set
1353 	 */
1354 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1355 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1356 	    !is_world_regdom(lr->alpha2)) {
1357 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1358 			 reg_initiator_name(initiator));
1359 		return true;
1360 	}
1361 
1362 	if (reg_request_cell_base(lr))
1363 		return reg_dev_ignore_cell_hint(wiphy);
1364 
1365 	return false;
1366 }
1367 
1368 static bool reg_is_world_roaming(struct wiphy *wiphy)
1369 {
1370 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1371 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1372 	struct regulatory_request *lr = get_last_request();
1373 
1374 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1375 		return true;
1376 
1377 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1378 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1379 		return true;
1380 
1381 	return false;
1382 }
1383 
1384 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1385 			      struct reg_beacon *reg_beacon)
1386 {
1387 	struct ieee80211_supported_band *sband;
1388 	struct ieee80211_channel *chan;
1389 	bool channel_changed = false;
1390 	struct ieee80211_channel chan_before;
1391 
1392 	sband = wiphy->bands[reg_beacon->chan.band];
1393 	chan = &sband->channels[chan_idx];
1394 
1395 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1396 		return;
1397 
1398 	if (chan->beacon_found)
1399 		return;
1400 
1401 	chan->beacon_found = true;
1402 
1403 	if (!reg_is_world_roaming(wiphy))
1404 		return;
1405 
1406 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1407 		return;
1408 
1409 	chan_before.center_freq = chan->center_freq;
1410 	chan_before.flags = chan->flags;
1411 
1412 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1413 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1414 		channel_changed = true;
1415 	}
1416 
1417 	if (channel_changed)
1418 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1419 }
1420 
1421 /*
1422  * Called when a scan on a wiphy finds a beacon on
1423  * new channel
1424  */
1425 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1426 				    struct reg_beacon *reg_beacon)
1427 {
1428 	unsigned int i;
1429 	struct ieee80211_supported_band *sband;
1430 
1431 	if (!wiphy->bands[reg_beacon->chan.band])
1432 		return;
1433 
1434 	sband = wiphy->bands[reg_beacon->chan.band];
1435 
1436 	for (i = 0; i < sband->n_channels; i++)
1437 		handle_reg_beacon(wiphy, i, reg_beacon);
1438 }
1439 
1440 /*
1441  * Called upon reg changes or a new wiphy is added
1442  */
1443 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1444 {
1445 	unsigned int i;
1446 	struct ieee80211_supported_band *sband;
1447 	struct reg_beacon *reg_beacon;
1448 
1449 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1450 		if (!wiphy->bands[reg_beacon->chan.band])
1451 			continue;
1452 		sband = wiphy->bands[reg_beacon->chan.band];
1453 		for (i = 0; i < sband->n_channels; i++)
1454 			handle_reg_beacon(wiphy, i, reg_beacon);
1455 	}
1456 }
1457 
1458 /* Reap the advantages of previously found beacons */
1459 static void reg_process_beacons(struct wiphy *wiphy)
1460 {
1461 	/*
1462 	 * Means we are just firing up cfg80211, so no beacons would
1463 	 * have been processed yet.
1464 	 */
1465 	if (!last_request)
1466 		return;
1467 	wiphy_update_beacon_reg(wiphy);
1468 }
1469 
1470 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1471 {
1472 	if (!chan)
1473 		return false;
1474 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1475 		return false;
1476 	/* This would happen when regulatory rules disallow HT40 completely */
1477 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1478 		return false;
1479 	return true;
1480 }
1481 
1482 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1483 					 struct ieee80211_channel *channel)
1484 {
1485 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1486 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1487 	const struct ieee80211_regdomain *regd;
1488 	unsigned int i;
1489 	u32 flags;
1490 
1491 	if (!is_ht40_allowed(channel)) {
1492 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1493 		return;
1494 	}
1495 
1496 	/*
1497 	 * We need to ensure the extension channels exist to
1498 	 * be able to use HT40- or HT40+, this finds them (or not)
1499 	 */
1500 	for (i = 0; i < sband->n_channels; i++) {
1501 		struct ieee80211_channel *c = &sband->channels[i];
1502 
1503 		if (c->center_freq == (channel->center_freq - 20))
1504 			channel_before = c;
1505 		if (c->center_freq == (channel->center_freq + 20))
1506 			channel_after = c;
1507 	}
1508 
1509 	flags = 0;
1510 	regd = get_wiphy_regdom(wiphy);
1511 	if (regd) {
1512 		const struct ieee80211_reg_rule *reg_rule =
1513 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
1514 					   regd, MHZ_TO_KHZ(20));
1515 
1516 		if (!IS_ERR(reg_rule))
1517 			flags = reg_rule->flags;
1518 	}
1519 
1520 	/*
1521 	 * Please note that this assumes target bandwidth is 20 MHz,
1522 	 * if that ever changes we also need to change the below logic
1523 	 * to include that as well.
1524 	 */
1525 	if (!is_ht40_allowed(channel_before) ||
1526 	    flags & NL80211_RRF_NO_HT40MINUS)
1527 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1528 	else
1529 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1530 
1531 	if (!is_ht40_allowed(channel_after) ||
1532 	    flags & NL80211_RRF_NO_HT40PLUS)
1533 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1534 	else
1535 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1536 }
1537 
1538 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1539 				      struct ieee80211_supported_band *sband)
1540 {
1541 	unsigned int i;
1542 
1543 	if (!sband)
1544 		return;
1545 
1546 	for (i = 0; i < sband->n_channels; i++)
1547 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1548 }
1549 
1550 static void reg_process_ht_flags(struct wiphy *wiphy)
1551 {
1552 	enum nl80211_band band;
1553 
1554 	if (!wiphy)
1555 		return;
1556 
1557 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1558 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1559 }
1560 
1561 static void reg_call_notifier(struct wiphy *wiphy,
1562 			      struct regulatory_request *request)
1563 {
1564 	if (wiphy->reg_notifier)
1565 		wiphy->reg_notifier(wiphy, request);
1566 }
1567 
1568 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1569 {
1570 	struct cfg80211_chan_def chandef;
1571 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1572 	enum nl80211_iftype iftype;
1573 
1574 	wdev_lock(wdev);
1575 	iftype = wdev->iftype;
1576 
1577 	/* make sure the interface is active */
1578 	if (!wdev->netdev || !netif_running(wdev->netdev))
1579 		goto wdev_inactive_unlock;
1580 
1581 	switch (iftype) {
1582 	case NL80211_IFTYPE_AP:
1583 	case NL80211_IFTYPE_P2P_GO:
1584 		if (!wdev->beacon_interval)
1585 			goto wdev_inactive_unlock;
1586 		chandef = wdev->chandef;
1587 		break;
1588 	case NL80211_IFTYPE_ADHOC:
1589 		if (!wdev->ssid_len)
1590 			goto wdev_inactive_unlock;
1591 		chandef = wdev->chandef;
1592 		break;
1593 	case NL80211_IFTYPE_STATION:
1594 	case NL80211_IFTYPE_P2P_CLIENT:
1595 		if (!wdev->current_bss ||
1596 		    !wdev->current_bss->pub.channel)
1597 			goto wdev_inactive_unlock;
1598 
1599 		if (!rdev->ops->get_channel ||
1600 		    rdev_get_channel(rdev, wdev, &chandef))
1601 			cfg80211_chandef_create(&chandef,
1602 						wdev->current_bss->pub.channel,
1603 						NL80211_CHAN_NO_HT);
1604 		break;
1605 	case NL80211_IFTYPE_MONITOR:
1606 	case NL80211_IFTYPE_AP_VLAN:
1607 	case NL80211_IFTYPE_P2P_DEVICE:
1608 		/* no enforcement required */
1609 		break;
1610 	default:
1611 		/* others not implemented for now */
1612 		WARN_ON(1);
1613 		break;
1614 	}
1615 
1616 	wdev_unlock(wdev);
1617 
1618 	switch (iftype) {
1619 	case NL80211_IFTYPE_AP:
1620 	case NL80211_IFTYPE_P2P_GO:
1621 	case NL80211_IFTYPE_ADHOC:
1622 		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1623 	case NL80211_IFTYPE_STATION:
1624 	case NL80211_IFTYPE_P2P_CLIENT:
1625 		return cfg80211_chandef_usable(wiphy, &chandef,
1626 					       IEEE80211_CHAN_DISABLED);
1627 	default:
1628 		break;
1629 	}
1630 
1631 	return true;
1632 
1633 wdev_inactive_unlock:
1634 	wdev_unlock(wdev);
1635 	return true;
1636 }
1637 
1638 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1639 {
1640 	struct wireless_dev *wdev;
1641 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1642 
1643 	ASSERT_RTNL();
1644 
1645 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1646 		if (!reg_wdev_chan_valid(wiphy, wdev))
1647 			cfg80211_leave(rdev, wdev);
1648 }
1649 
1650 static void reg_check_chans_work(struct work_struct *work)
1651 {
1652 	struct cfg80211_registered_device *rdev;
1653 
1654 	pr_debug("Verifying active interfaces after reg change\n");
1655 	rtnl_lock();
1656 
1657 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1658 		if (!(rdev->wiphy.regulatory_flags &
1659 		      REGULATORY_IGNORE_STALE_KICKOFF))
1660 			reg_leave_invalid_chans(&rdev->wiphy);
1661 
1662 	rtnl_unlock();
1663 }
1664 
1665 static void reg_check_channels(void)
1666 {
1667 	/*
1668 	 * Give usermode a chance to do something nicer (move to another
1669 	 * channel, orderly disconnection), before forcing a disconnection.
1670 	 */
1671 	mod_delayed_work(system_power_efficient_wq,
1672 			 &reg_check_chans,
1673 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1674 }
1675 
1676 static void wiphy_update_regulatory(struct wiphy *wiphy,
1677 				    enum nl80211_reg_initiator initiator)
1678 {
1679 	enum nl80211_band band;
1680 	struct regulatory_request *lr = get_last_request();
1681 
1682 	if (ignore_reg_update(wiphy, initiator)) {
1683 		/*
1684 		 * Regulatory updates set by CORE are ignored for custom
1685 		 * regulatory cards. Let us notify the changes to the driver,
1686 		 * as some drivers used this to restore its orig_* reg domain.
1687 		 */
1688 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1689 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1690 			reg_call_notifier(wiphy, lr);
1691 		return;
1692 	}
1693 
1694 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1695 
1696 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1697 		handle_band(wiphy, initiator, wiphy->bands[band]);
1698 
1699 	reg_process_beacons(wiphy);
1700 	reg_process_ht_flags(wiphy);
1701 	reg_call_notifier(wiphy, lr);
1702 }
1703 
1704 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1705 {
1706 	struct cfg80211_registered_device *rdev;
1707 	struct wiphy *wiphy;
1708 
1709 	ASSERT_RTNL();
1710 
1711 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1712 		wiphy = &rdev->wiphy;
1713 		wiphy_update_regulatory(wiphy, initiator);
1714 	}
1715 
1716 	reg_check_channels();
1717 }
1718 
1719 static void handle_channel_custom(struct wiphy *wiphy,
1720 				  struct ieee80211_channel *chan,
1721 				  const struct ieee80211_regdomain *regd)
1722 {
1723 	u32 bw_flags = 0;
1724 	const struct ieee80211_reg_rule *reg_rule = NULL;
1725 	const struct ieee80211_power_rule *power_rule = NULL;
1726 	u32 bw;
1727 
1728 	for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1729 		reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
1730 					      regd, bw);
1731 		if (!IS_ERR(reg_rule))
1732 			break;
1733 	}
1734 
1735 	if (IS_ERR(reg_rule)) {
1736 		pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1737 			 chan->center_freq);
1738 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1739 			chan->flags |= IEEE80211_CHAN_DISABLED;
1740 		} else {
1741 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1742 			chan->flags = chan->orig_flags;
1743 		}
1744 		return;
1745 	}
1746 
1747 	power_rule = &reg_rule->power_rule;
1748 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1749 
1750 	chan->dfs_state_entered = jiffies;
1751 	chan->dfs_state = NL80211_DFS_USABLE;
1752 
1753 	chan->beacon_found = false;
1754 
1755 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1756 		chan->flags = chan->orig_flags | bw_flags |
1757 			      map_regdom_flags(reg_rule->flags);
1758 	else
1759 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1760 
1761 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1762 	chan->max_reg_power = chan->max_power =
1763 		(int) MBM_TO_DBM(power_rule->max_eirp);
1764 
1765 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1766 		if (reg_rule->dfs_cac_ms)
1767 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1768 		else
1769 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1770 	}
1771 
1772 	chan->max_power = chan->max_reg_power;
1773 }
1774 
1775 static void handle_band_custom(struct wiphy *wiphy,
1776 			       struct ieee80211_supported_band *sband,
1777 			       const struct ieee80211_regdomain *regd)
1778 {
1779 	unsigned int i;
1780 
1781 	if (!sband)
1782 		return;
1783 
1784 	for (i = 0; i < sband->n_channels; i++)
1785 		handle_channel_custom(wiphy, &sband->channels[i], regd);
1786 }
1787 
1788 /* Used by drivers prior to wiphy registration */
1789 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1790 				   const struct ieee80211_regdomain *regd)
1791 {
1792 	enum nl80211_band band;
1793 	unsigned int bands_set = 0;
1794 
1795 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1796 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
1797 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1798 
1799 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
1800 		if (!wiphy->bands[band])
1801 			continue;
1802 		handle_band_custom(wiphy, wiphy->bands[band], regd);
1803 		bands_set++;
1804 	}
1805 
1806 	/*
1807 	 * no point in calling this if it won't have any effect
1808 	 * on your device's supported bands.
1809 	 */
1810 	WARN_ON(!bands_set);
1811 }
1812 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1813 
1814 static void reg_set_request_processed(void)
1815 {
1816 	bool need_more_processing = false;
1817 	struct regulatory_request *lr = get_last_request();
1818 
1819 	lr->processed = true;
1820 
1821 	spin_lock(&reg_requests_lock);
1822 	if (!list_empty(&reg_requests_list))
1823 		need_more_processing = true;
1824 	spin_unlock(&reg_requests_lock);
1825 
1826 	cancel_crda_timeout();
1827 
1828 	if (need_more_processing)
1829 		schedule_work(&reg_work);
1830 }
1831 
1832 /**
1833  * reg_process_hint_core - process core regulatory requests
1834  * @pending_request: a pending core regulatory request
1835  *
1836  * The wireless subsystem can use this function to process
1837  * a regulatory request issued by the regulatory core.
1838  */
1839 static enum reg_request_treatment
1840 reg_process_hint_core(struct regulatory_request *core_request)
1841 {
1842 	if (reg_query_database(core_request)) {
1843 		core_request->intersect = false;
1844 		core_request->processed = false;
1845 		reg_update_last_request(core_request);
1846 		return REG_REQ_OK;
1847 	}
1848 
1849 	return REG_REQ_IGNORE;
1850 }
1851 
1852 static enum reg_request_treatment
1853 __reg_process_hint_user(struct regulatory_request *user_request)
1854 {
1855 	struct regulatory_request *lr = get_last_request();
1856 
1857 	if (reg_request_cell_base(user_request))
1858 		return reg_ignore_cell_hint(user_request);
1859 
1860 	if (reg_request_cell_base(lr))
1861 		return REG_REQ_IGNORE;
1862 
1863 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1864 		return REG_REQ_INTERSECT;
1865 	/*
1866 	 * If the user knows better the user should set the regdom
1867 	 * to their country before the IE is picked up
1868 	 */
1869 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1870 	    lr->intersect)
1871 		return REG_REQ_IGNORE;
1872 	/*
1873 	 * Process user requests only after previous user/driver/core
1874 	 * requests have been processed
1875 	 */
1876 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1877 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1878 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1879 	    regdom_changes(lr->alpha2))
1880 		return REG_REQ_IGNORE;
1881 
1882 	if (!regdom_changes(user_request->alpha2))
1883 		return REG_REQ_ALREADY_SET;
1884 
1885 	return REG_REQ_OK;
1886 }
1887 
1888 /**
1889  * reg_process_hint_user - process user regulatory requests
1890  * @user_request: a pending user regulatory request
1891  *
1892  * The wireless subsystem can use this function to process
1893  * a regulatory request initiated by userspace.
1894  */
1895 static enum reg_request_treatment
1896 reg_process_hint_user(struct regulatory_request *user_request)
1897 {
1898 	enum reg_request_treatment treatment;
1899 
1900 	treatment = __reg_process_hint_user(user_request);
1901 	if (treatment == REG_REQ_IGNORE ||
1902 	    treatment == REG_REQ_ALREADY_SET)
1903 		return REG_REQ_IGNORE;
1904 
1905 	user_request->intersect = treatment == REG_REQ_INTERSECT;
1906 	user_request->processed = false;
1907 
1908 	if (reg_query_database(user_request)) {
1909 		reg_update_last_request(user_request);
1910 		user_alpha2[0] = user_request->alpha2[0];
1911 		user_alpha2[1] = user_request->alpha2[1];
1912 		return REG_REQ_OK;
1913 	}
1914 
1915 	return REG_REQ_IGNORE;
1916 }
1917 
1918 static enum reg_request_treatment
1919 __reg_process_hint_driver(struct regulatory_request *driver_request)
1920 {
1921 	struct regulatory_request *lr = get_last_request();
1922 
1923 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1924 		if (regdom_changes(driver_request->alpha2))
1925 			return REG_REQ_OK;
1926 		return REG_REQ_ALREADY_SET;
1927 	}
1928 
1929 	/*
1930 	 * This would happen if you unplug and plug your card
1931 	 * back in or if you add a new device for which the previously
1932 	 * loaded card also agrees on the regulatory domain.
1933 	 */
1934 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1935 	    !regdom_changes(driver_request->alpha2))
1936 		return REG_REQ_ALREADY_SET;
1937 
1938 	return REG_REQ_INTERSECT;
1939 }
1940 
1941 /**
1942  * reg_process_hint_driver - process driver regulatory requests
1943  * @driver_request: a pending driver regulatory request
1944  *
1945  * The wireless subsystem can use this function to process
1946  * a regulatory request issued by an 802.11 driver.
1947  *
1948  * Returns one of the different reg request treatment values.
1949  */
1950 static enum reg_request_treatment
1951 reg_process_hint_driver(struct wiphy *wiphy,
1952 			struct regulatory_request *driver_request)
1953 {
1954 	const struct ieee80211_regdomain *regd, *tmp;
1955 	enum reg_request_treatment treatment;
1956 
1957 	treatment = __reg_process_hint_driver(driver_request);
1958 
1959 	switch (treatment) {
1960 	case REG_REQ_OK:
1961 		break;
1962 	case REG_REQ_IGNORE:
1963 		return REG_REQ_IGNORE;
1964 	case REG_REQ_INTERSECT:
1965 	case REG_REQ_ALREADY_SET:
1966 		regd = reg_copy_regd(get_cfg80211_regdom());
1967 		if (IS_ERR(regd))
1968 			return REG_REQ_IGNORE;
1969 
1970 		tmp = get_wiphy_regdom(wiphy);
1971 		rcu_assign_pointer(wiphy->regd, regd);
1972 		rcu_free_regdom(tmp);
1973 	}
1974 
1975 
1976 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
1977 	driver_request->processed = false;
1978 
1979 	/*
1980 	 * Since CRDA will not be called in this case as we already
1981 	 * have applied the requested regulatory domain before we just
1982 	 * inform userspace we have processed the request
1983 	 */
1984 	if (treatment == REG_REQ_ALREADY_SET) {
1985 		nl80211_send_reg_change_event(driver_request);
1986 		reg_update_last_request(driver_request);
1987 		reg_set_request_processed();
1988 		return REG_REQ_ALREADY_SET;
1989 	}
1990 
1991 	if (reg_query_database(driver_request)) {
1992 		reg_update_last_request(driver_request);
1993 		return REG_REQ_OK;
1994 	}
1995 
1996 	return REG_REQ_IGNORE;
1997 }
1998 
1999 static enum reg_request_treatment
2000 __reg_process_hint_country_ie(struct wiphy *wiphy,
2001 			      struct regulatory_request *country_ie_request)
2002 {
2003 	struct wiphy *last_wiphy = NULL;
2004 	struct regulatory_request *lr = get_last_request();
2005 
2006 	if (reg_request_cell_base(lr)) {
2007 		/* Trust a Cell base station over the AP's country IE */
2008 		if (regdom_changes(country_ie_request->alpha2))
2009 			return REG_REQ_IGNORE;
2010 		return REG_REQ_ALREADY_SET;
2011 	} else {
2012 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2013 			return REG_REQ_IGNORE;
2014 	}
2015 
2016 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2017 		return -EINVAL;
2018 
2019 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2020 		return REG_REQ_OK;
2021 
2022 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2023 
2024 	if (last_wiphy != wiphy) {
2025 		/*
2026 		 * Two cards with two APs claiming different
2027 		 * Country IE alpha2s. We could
2028 		 * intersect them, but that seems unlikely
2029 		 * to be correct. Reject second one for now.
2030 		 */
2031 		if (regdom_changes(country_ie_request->alpha2))
2032 			return REG_REQ_IGNORE;
2033 		return REG_REQ_ALREADY_SET;
2034 	}
2035 
2036 	if (regdom_changes(country_ie_request->alpha2))
2037 		return REG_REQ_OK;
2038 	return REG_REQ_ALREADY_SET;
2039 }
2040 
2041 /**
2042  * reg_process_hint_country_ie - process regulatory requests from country IEs
2043  * @country_ie_request: a regulatory request from a country IE
2044  *
2045  * The wireless subsystem can use this function to process
2046  * a regulatory request issued by a country Information Element.
2047  *
2048  * Returns one of the different reg request treatment values.
2049  */
2050 static enum reg_request_treatment
2051 reg_process_hint_country_ie(struct wiphy *wiphy,
2052 			    struct regulatory_request *country_ie_request)
2053 {
2054 	enum reg_request_treatment treatment;
2055 
2056 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2057 
2058 	switch (treatment) {
2059 	case REG_REQ_OK:
2060 		break;
2061 	case REG_REQ_IGNORE:
2062 		return REG_REQ_IGNORE;
2063 	case REG_REQ_ALREADY_SET:
2064 		reg_free_request(country_ie_request);
2065 		return REG_REQ_ALREADY_SET;
2066 	case REG_REQ_INTERSECT:
2067 		/*
2068 		 * This doesn't happen yet, not sure we
2069 		 * ever want to support it for this case.
2070 		 */
2071 		WARN_ONCE(1, "Unexpected intersection for country IEs");
2072 		return REG_REQ_IGNORE;
2073 	}
2074 
2075 	country_ie_request->intersect = false;
2076 	country_ie_request->processed = false;
2077 
2078 	if (reg_query_database(country_ie_request)) {
2079 		reg_update_last_request(country_ie_request);
2080 		return REG_REQ_OK;
2081 	}
2082 
2083 	return REG_REQ_IGNORE;
2084 }
2085 
2086 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2087 {
2088 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2089 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2090 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2091 	bool dfs_domain_same;
2092 
2093 	rcu_read_lock();
2094 
2095 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2096 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2097 	if (!wiphy1_regd)
2098 		wiphy1_regd = cfg80211_regd;
2099 
2100 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2101 	if (!wiphy2_regd)
2102 		wiphy2_regd = cfg80211_regd;
2103 
2104 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2105 
2106 	rcu_read_unlock();
2107 
2108 	return dfs_domain_same;
2109 }
2110 
2111 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2112 				    struct ieee80211_channel *src_chan)
2113 {
2114 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2115 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2116 		return;
2117 
2118 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2119 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2120 		return;
2121 
2122 	if (src_chan->center_freq == dst_chan->center_freq &&
2123 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2124 		dst_chan->dfs_state = src_chan->dfs_state;
2125 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2126 	}
2127 }
2128 
2129 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2130 				       struct wiphy *src_wiphy)
2131 {
2132 	struct ieee80211_supported_band *src_sband, *dst_sband;
2133 	struct ieee80211_channel *src_chan, *dst_chan;
2134 	int i, j, band;
2135 
2136 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2137 		return;
2138 
2139 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2140 		dst_sband = dst_wiphy->bands[band];
2141 		src_sband = src_wiphy->bands[band];
2142 		if (!dst_sband || !src_sband)
2143 			continue;
2144 
2145 		for (i = 0; i < dst_sband->n_channels; i++) {
2146 			dst_chan = &dst_sband->channels[i];
2147 			for (j = 0; j < src_sband->n_channels; j++) {
2148 				src_chan = &src_sband->channels[j];
2149 				reg_copy_dfs_chan_state(dst_chan, src_chan);
2150 			}
2151 		}
2152 	}
2153 }
2154 
2155 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2156 {
2157 	struct cfg80211_registered_device *rdev;
2158 
2159 	ASSERT_RTNL();
2160 
2161 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2162 		if (wiphy == &rdev->wiphy)
2163 			continue;
2164 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2165 	}
2166 }
2167 
2168 /* This processes *all* regulatory hints */
2169 static void reg_process_hint(struct regulatory_request *reg_request)
2170 {
2171 	struct wiphy *wiphy = NULL;
2172 	enum reg_request_treatment treatment;
2173 
2174 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2175 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2176 
2177 	switch (reg_request->initiator) {
2178 	case NL80211_REGDOM_SET_BY_CORE:
2179 		treatment = reg_process_hint_core(reg_request);
2180 		break;
2181 	case NL80211_REGDOM_SET_BY_USER:
2182 		treatment = reg_process_hint_user(reg_request);
2183 		break;
2184 	case NL80211_REGDOM_SET_BY_DRIVER:
2185 		if (!wiphy)
2186 			goto out_free;
2187 		treatment = reg_process_hint_driver(wiphy, reg_request);
2188 		break;
2189 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2190 		if (!wiphy)
2191 			goto out_free;
2192 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2193 		break;
2194 	default:
2195 		WARN(1, "invalid initiator %d\n", reg_request->initiator);
2196 		goto out_free;
2197 	}
2198 
2199 	if (treatment == REG_REQ_IGNORE)
2200 		goto out_free;
2201 
2202 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2203 	     "unexpected treatment value %d\n", treatment);
2204 
2205 	/* This is required so that the orig_* parameters are saved.
2206 	 * NOTE: treatment must be set for any case that reaches here!
2207 	 */
2208 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2209 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2210 		wiphy_update_regulatory(wiphy, reg_request->initiator);
2211 		wiphy_all_share_dfs_chan_state(wiphy);
2212 		reg_check_channels();
2213 	}
2214 
2215 	return;
2216 
2217 out_free:
2218 	reg_free_request(reg_request);
2219 }
2220 
2221 static bool reg_only_self_managed_wiphys(void)
2222 {
2223 	struct cfg80211_registered_device *rdev;
2224 	struct wiphy *wiphy;
2225 	bool self_managed_found = false;
2226 
2227 	ASSERT_RTNL();
2228 
2229 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2230 		wiphy = &rdev->wiphy;
2231 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2232 			self_managed_found = true;
2233 		else
2234 			return false;
2235 	}
2236 
2237 	/* make sure at least one self-managed wiphy exists */
2238 	return self_managed_found;
2239 }
2240 
2241 /*
2242  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2243  * Regulatory hints come on a first come first serve basis and we
2244  * must process each one atomically.
2245  */
2246 static void reg_process_pending_hints(void)
2247 {
2248 	struct regulatory_request *reg_request, *lr;
2249 
2250 	lr = get_last_request();
2251 
2252 	/* When last_request->processed becomes true this will be rescheduled */
2253 	if (lr && !lr->processed) {
2254 		reg_process_hint(lr);
2255 		return;
2256 	}
2257 
2258 	spin_lock(&reg_requests_lock);
2259 
2260 	if (list_empty(&reg_requests_list)) {
2261 		spin_unlock(&reg_requests_lock);
2262 		return;
2263 	}
2264 
2265 	reg_request = list_first_entry(&reg_requests_list,
2266 				       struct regulatory_request,
2267 				       list);
2268 	list_del_init(&reg_request->list);
2269 
2270 	spin_unlock(&reg_requests_lock);
2271 
2272 	if (reg_only_self_managed_wiphys()) {
2273 		reg_free_request(reg_request);
2274 		return;
2275 	}
2276 
2277 	reg_process_hint(reg_request);
2278 
2279 	lr = get_last_request();
2280 
2281 	spin_lock(&reg_requests_lock);
2282 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
2283 		schedule_work(&reg_work);
2284 	spin_unlock(&reg_requests_lock);
2285 }
2286 
2287 /* Processes beacon hints -- this has nothing to do with country IEs */
2288 static void reg_process_pending_beacon_hints(void)
2289 {
2290 	struct cfg80211_registered_device *rdev;
2291 	struct reg_beacon *pending_beacon, *tmp;
2292 
2293 	/* This goes through the _pending_ beacon list */
2294 	spin_lock_bh(&reg_pending_beacons_lock);
2295 
2296 	list_for_each_entry_safe(pending_beacon, tmp,
2297 				 &reg_pending_beacons, list) {
2298 		list_del_init(&pending_beacon->list);
2299 
2300 		/* Applies the beacon hint to current wiphys */
2301 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2302 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2303 
2304 		/* Remembers the beacon hint for new wiphys or reg changes */
2305 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2306 	}
2307 
2308 	spin_unlock_bh(&reg_pending_beacons_lock);
2309 }
2310 
2311 static void reg_process_self_managed_hints(void)
2312 {
2313 	struct cfg80211_registered_device *rdev;
2314 	struct wiphy *wiphy;
2315 	const struct ieee80211_regdomain *tmp;
2316 	const struct ieee80211_regdomain *regd;
2317 	enum nl80211_band band;
2318 	struct regulatory_request request = {};
2319 
2320 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2321 		wiphy = &rdev->wiphy;
2322 
2323 		spin_lock(&reg_requests_lock);
2324 		regd = rdev->requested_regd;
2325 		rdev->requested_regd = NULL;
2326 		spin_unlock(&reg_requests_lock);
2327 
2328 		if (regd == NULL)
2329 			continue;
2330 
2331 		tmp = get_wiphy_regdom(wiphy);
2332 		rcu_assign_pointer(wiphy->regd, regd);
2333 		rcu_free_regdom(tmp);
2334 
2335 		for (band = 0; band < NUM_NL80211_BANDS; band++)
2336 			handle_band_custom(wiphy, wiphy->bands[band], regd);
2337 
2338 		reg_process_ht_flags(wiphy);
2339 
2340 		request.wiphy_idx = get_wiphy_idx(wiphy);
2341 		request.alpha2[0] = regd->alpha2[0];
2342 		request.alpha2[1] = regd->alpha2[1];
2343 		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2344 
2345 		nl80211_send_wiphy_reg_change_event(&request);
2346 	}
2347 
2348 	reg_check_channels();
2349 }
2350 
2351 static void reg_todo(struct work_struct *work)
2352 {
2353 	rtnl_lock();
2354 	reg_process_pending_hints();
2355 	reg_process_pending_beacon_hints();
2356 	reg_process_self_managed_hints();
2357 	rtnl_unlock();
2358 }
2359 
2360 static void queue_regulatory_request(struct regulatory_request *request)
2361 {
2362 	request->alpha2[0] = toupper(request->alpha2[0]);
2363 	request->alpha2[1] = toupper(request->alpha2[1]);
2364 
2365 	spin_lock(&reg_requests_lock);
2366 	list_add_tail(&request->list, &reg_requests_list);
2367 	spin_unlock(&reg_requests_lock);
2368 
2369 	schedule_work(&reg_work);
2370 }
2371 
2372 /*
2373  * Core regulatory hint -- happens during cfg80211_init()
2374  * and when we restore regulatory settings.
2375  */
2376 static int regulatory_hint_core(const char *alpha2)
2377 {
2378 	struct regulatory_request *request;
2379 
2380 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2381 	if (!request)
2382 		return -ENOMEM;
2383 
2384 	request->alpha2[0] = alpha2[0];
2385 	request->alpha2[1] = alpha2[1];
2386 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2387 
2388 	queue_regulatory_request(request);
2389 
2390 	return 0;
2391 }
2392 
2393 /* User hints */
2394 int regulatory_hint_user(const char *alpha2,
2395 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2396 {
2397 	struct regulatory_request *request;
2398 
2399 	if (WARN_ON(!alpha2))
2400 		return -EINVAL;
2401 
2402 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2403 	if (!request)
2404 		return -ENOMEM;
2405 
2406 	request->wiphy_idx = WIPHY_IDX_INVALID;
2407 	request->alpha2[0] = alpha2[0];
2408 	request->alpha2[1] = alpha2[1];
2409 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2410 	request->user_reg_hint_type = user_reg_hint_type;
2411 
2412 	/* Allow calling CRDA again */
2413 	reset_crda_timeouts();
2414 
2415 	queue_regulatory_request(request);
2416 
2417 	return 0;
2418 }
2419 
2420 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2421 {
2422 	spin_lock(&reg_indoor_lock);
2423 
2424 	/* It is possible that more than one user space process is trying to
2425 	 * configure the indoor setting. To handle such cases, clear the indoor
2426 	 * setting in case that some process does not think that the device
2427 	 * is operating in an indoor environment. In addition, if a user space
2428 	 * process indicates that it is controlling the indoor setting, save its
2429 	 * portid, i.e., make it the owner.
2430 	 */
2431 	reg_is_indoor = is_indoor;
2432 	if (reg_is_indoor) {
2433 		if (!reg_is_indoor_portid)
2434 			reg_is_indoor_portid = portid;
2435 	} else {
2436 		reg_is_indoor_portid = 0;
2437 	}
2438 
2439 	spin_unlock(&reg_indoor_lock);
2440 
2441 	if (!is_indoor)
2442 		reg_check_channels();
2443 
2444 	return 0;
2445 }
2446 
2447 void regulatory_netlink_notify(u32 portid)
2448 {
2449 	spin_lock(&reg_indoor_lock);
2450 
2451 	if (reg_is_indoor_portid != portid) {
2452 		spin_unlock(&reg_indoor_lock);
2453 		return;
2454 	}
2455 
2456 	reg_is_indoor = false;
2457 	reg_is_indoor_portid = 0;
2458 
2459 	spin_unlock(&reg_indoor_lock);
2460 
2461 	reg_check_channels();
2462 }
2463 
2464 /* Driver hints */
2465 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2466 {
2467 	struct regulatory_request *request;
2468 
2469 	if (WARN_ON(!alpha2 || !wiphy))
2470 		return -EINVAL;
2471 
2472 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2473 
2474 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2475 	if (!request)
2476 		return -ENOMEM;
2477 
2478 	request->wiphy_idx = get_wiphy_idx(wiphy);
2479 
2480 	request->alpha2[0] = alpha2[0];
2481 	request->alpha2[1] = alpha2[1];
2482 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2483 
2484 	/* Allow calling CRDA again */
2485 	reset_crda_timeouts();
2486 
2487 	queue_regulatory_request(request);
2488 
2489 	return 0;
2490 }
2491 EXPORT_SYMBOL(regulatory_hint);
2492 
2493 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2494 				const u8 *country_ie, u8 country_ie_len)
2495 {
2496 	char alpha2[2];
2497 	enum environment_cap env = ENVIRON_ANY;
2498 	struct regulatory_request *request = NULL, *lr;
2499 
2500 	/* IE len must be evenly divisible by 2 */
2501 	if (country_ie_len & 0x01)
2502 		return;
2503 
2504 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2505 		return;
2506 
2507 	request = kzalloc(sizeof(*request), GFP_KERNEL);
2508 	if (!request)
2509 		return;
2510 
2511 	alpha2[0] = country_ie[0];
2512 	alpha2[1] = country_ie[1];
2513 
2514 	if (country_ie[2] == 'I')
2515 		env = ENVIRON_INDOOR;
2516 	else if (country_ie[2] == 'O')
2517 		env = ENVIRON_OUTDOOR;
2518 
2519 	rcu_read_lock();
2520 	lr = get_last_request();
2521 
2522 	if (unlikely(!lr))
2523 		goto out;
2524 
2525 	/*
2526 	 * We will run this only upon a successful connection on cfg80211.
2527 	 * We leave conflict resolution to the workqueue, where can hold
2528 	 * the RTNL.
2529 	 */
2530 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2531 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
2532 		goto out;
2533 
2534 	request->wiphy_idx = get_wiphy_idx(wiphy);
2535 	request->alpha2[0] = alpha2[0];
2536 	request->alpha2[1] = alpha2[1];
2537 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2538 	request->country_ie_env = env;
2539 
2540 	/* Allow calling CRDA again */
2541 	reset_crda_timeouts();
2542 
2543 	queue_regulatory_request(request);
2544 	request = NULL;
2545 out:
2546 	kfree(request);
2547 	rcu_read_unlock();
2548 }
2549 
2550 static void restore_alpha2(char *alpha2, bool reset_user)
2551 {
2552 	/* indicates there is no alpha2 to consider for restoration */
2553 	alpha2[0] = '9';
2554 	alpha2[1] = '7';
2555 
2556 	/* The user setting has precedence over the module parameter */
2557 	if (is_user_regdom_saved()) {
2558 		/* Unless we're asked to ignore it and reset it */
2559 		if (reset_user) {
2560 			pr_debug("Restoring regulatory settings including user preference\n");
2561 			user_alpha2[0] = '9';
2562 			user_alpha2[1] = '7';
2563 
2564 			/*
2565 			 * If we're ignoring user settings, we still need to
2566 			 * check the module parameter to ensure we put things
2567 			 * back as they were for a full restore.
2568 			 */
2569 			if (!is_world_regdom(ieee80211_regdom)) {
2570 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2571 					 ieee80211_regdom[0], ieee80211_regdom[1]);
2572 				alpha2[0] = ieee80211_regdom[0];
2573 				alpha2[1] = ieee80211_regdom[1];
2574 			}
2575 		} else {
2576 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
2577 				 user_alpha2[0], user_alpha2[1]);
2578 			alpha2[0] = user_alpha2[0];
2579 			alpha2[1] = user_alpha2[1];
2580 		}
2581 	} else if (!is_world_regdom(ieee80211_regdom)) {
2582 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2583 			 ieee80211_regdom[0], ieee80211_regdom[1]);
2584 		alpha2[0] = ieee80211_regdom[0];
2585 		alpha2[1] = ieee80211_regdom[1];
2586 	} else
2587 		pr_debug("Restoring regulatory settings\n");
2588 }
2589 
2590 static void restore_custom_reg_settings(struct wiphy *wiphy)
2591 {
2592 	struct ieee80211_supported_band *sband;
2593 	enum nl80211_band band;
2594 	struct ieee80211_channel *chan;
2595 	int i;
2596 
2597 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2598 		sband = wiphy->bands[band];
2599 		if (!sband)
2600 			continue;
2601 		for (i = 0; i < sband->n_channels; i++) {
2602 			chan = &sband->channels[i];
2603 			chan->flags = chan->orig_flags;
2604 			chan->max_antenna_gain = chan->orig_mag;
2605 			chan->max_power = chan->orig_mpwr;
2606 			chan->beacon_found = false;
2607 		}
2608 	}
2609 }
2610 
2611 /*
2612  * Restoring regulatory settings involves ingoring any
2613  * possibly stale country IE information and user regulatory
2614  * settings if so desired, this includes any beacon hints
2615  * learned as we could have traveled outside to another country
2616  * after disconnection. To restore regulatory settings we do
2617  * exactly what we did at bootup:
2618  *
2619  *   - send a core regulatory hint
2620  *   - send a user regulatory hint if applicable
2621  *
2622  * Device drivers that send a regulatory hint for a specific country
2623  * keep their own regulatory domain on wiphy->regd so that does does
2624  * not need to be remembered.
2625  */
2626 static void restore_regulatory_settings(bool reset_user)
2627 {
2628 	char alpha2[2];
2629 	char world_alpha2[2];
2630 	struct reg_beacon *reg_beacon, *btmp;
2631 	LIST_HEAD(tmp_reg_req_list);
2632 	struct cfg80211_registered_device *rdev;
2633 
2634 	ASSERT_RTNL();
2635 
2636 	/*
2637 	 * Clear the indoor setting in case that it is not controlled by user
2638 	 * space, as otherwise there is no guarantee that the device is still
2639 	 * operating in an indoor environment.
2640 	 */
2641 	spin_lock(&reg_indoor_lock);
2642 	if (reg_is_indoor && !reg_is_indoor_portid) {
2643 		reg_is_indoor = false;
2644 		reg_check_channels();
2645 	}
2646 	spin_unlock(&reg_indoor_lock);
2647 
2648 	reset_regdomains(true, &world_regdom);
2649 	restore_alpha2(alpha2, reset_user);
2650 
2651 	/*
2652 	 * If there's any pending requests we simply
2653 	 * stash them to a temporary pending queue and
2654 	 * add then after we've restored regulatory
2655 	 * settings.
2656 	 */
2657 	spin_lock(&reg_requests_lock);
2658 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2659 	spin_unlock(&reg_requests_lock);
2660 
2661 	/* Clear beacon hints */
2662 	spin_lock_bh(&reg_pending_beacons_lock);
2663 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2664 		list_del(&reg_beacon->list);
2665 		kfree(reg_beacon);
2666 	}
2667 	spin_unlock_bh(&reg_pending_beacons_lock);
2668 
2669 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2670 		list_del(&reg_beacon->list);
2671 		kfree(reg_beacon);
2672 	}
2673 
2674 	/* First restore to the basic regulatory settings */
2675 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2676 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2677 
2678 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2679 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2680 			continue;
2681 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2682 			restore_custom_reg_settings(&rdev->wiphy);
2683 	}
2684 
2685 	regulatory_hint_core(world_alpha2);
2686 
2687 	/*
2688 	 * This restores the ieee80211_regdom module parameter
2689 	 * preference or the last user requested regulatory
2690 	 * settings, user regulatory settings takes precedence.
2691 	 */
2692 	if (is_an_alpha2(alpha2))
2693 		regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2694 
2695 	spin_lock(&reg_requests_lock);
2696 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2697 	spin_unlock(&reg_requests_lock);
2698 
2699 	pr_debug("Kicking the queue\n");
2700 
2701 	schedule_work(&reg_work);
2702 }
2703 
2704 void regulatory_hint_disconnect(void)
2705 {
2706 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
2707 	restore_regulatory_settings(false);
2708 }
2709 
2710 static bool freq_is_chan_12_13_14(u16 freq)
2711 {
2712 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
2713 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
2714 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
2715 		return true;
2716 	return false;
2717 }
2718 
2719 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2720 {
2721 	struct reg_beacon *pending_beacon;
2722 
2723 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2724 		if (beacon_chan->center_freq ==
2725 		    pending_beacon->chan.center_freq)
2726 			return true;
2727 	return false;
2728 }
2729 
2730 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2731 				 struct ieee80211_channel *beacon_chan,
2732 				 gfp_t gfp)
2733 {
2734 	struct reg_beacon *reg_beacon;
2735 	bool processing;
2736 
2737 	if (beacon_chan->beacon_found ||
2738 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2739 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
2740 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2741 		return 0;
2742 
2743 	spin_lock_bh(&reg_pending_beacons_lock);
2744 	processing = pending_reg_beacon(beacon_chan);
2745 	spin_unlock_bh(&reg_pending_beacons_lock);
2746 
2747 	if (processing)
2748 		return 0;
2749 
2750 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2751 	if (!reg_beacon)
2752 		return -ENOMEM;
2753 
2754 	pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2755 		 beacon_chan->center_freq,
2756 		 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2757 		 wiphy_name(wiphy));
2758 
2759 	memcpy(&reg_beacon->chan, beacon_chan,
2760 	       sizeof(struct ieee80211_channel));
2761 
2762 	/*
2763 	 * Since we can be called from BH or and non-BH context
2764 	 * we must use spin_lock_bh()
2765 	 */
2766 	spin_lock_bh(&reg_pending_beacons_lock);
2767 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2768 	spin_unlock_bh(&reg_pending_beacons_lock);
2769 
2770 	schedule_work(&reg_work);
2771 
2772 	return 0;
2773 }
2774 
2775 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2776 {
2777 	unsigned int i;
2778 	const struct ieee80211_reg_rule *reg_rule = NULL;
2779 	const struct ieee80211_freq_range *freq_range = NULL;
2780 	const struct ieee80211_power_rule *power_rule = NULL;
2781 	char bw[32], cac_time[32];
2782 
2783 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2784 
2785 	for (i = 0; i < rd->n_reg_rules; i++) {
2786 		reg_rule = &rd->reg_rules[i];
2787 		freq_range = &reg_rule->freq_range;
2788 		power_rule = &reg_rule->power_rule;
2789 
2790 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2791 			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2792 				 freq_range->max_bandwidth_khz,
2793 				 reg_get_max_bandwidth(rd, reg_rule));
2794 		else
2795 			snprintf(bw, sizeof(bw), "%d KHz",
2796 				 freq_range->max_bandwidth_khz);
2797 
2798 		if (reg_rule->flags & NL80211_RRF_DFS)
2799 			scnprintf(cac_time, sizeof(cac_time), "%u s",
2800 				  reg_rule->dfs_cac_ms/1000);
2801 		else
2802 			scnprintf(cac_time, sizeof(cac_time), "N/A");
2803 
2804 
2805 		/*
2806 		 * There may not be documentation for max antenna gain
2807 		 * in certain regions
2808 		 */
2809 		if (power_rule->max_antenna_gain)
2810 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2811 				freq_range->start_freq_khz,
2812 				freq_range->end_freq_khz,
2813 				bw,
2814 				power_rule->max_antenna_gain,
2815 				power_rule->max_eirp,
2816 				cac_time);
2817 		else
2818 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2819 				freq_range->start_freq_khz,
2820 				freq_range->end_freq_khz,
2821 				bw,
2822 				power_rule->max_eirp,
2823 				cac_time);
2824 	}
2825 }
2826 
2827 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2828 {
2829 	switch (dfs_region) {
2830 	case NL80211_DFS_UNSET:
2831 	case NL80211_DFS_FCC:
2832 	case NL80211_DFS_ETSI:
2833 	case NL80211_DFS_JP:
2834 		return true;
2835 	default:
2836 		pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region);
2837 		return false;
2838 	}
2839 }
2840 
2841 static void print_regdomain(const struct ieee80211_regdomain *rd)
2842 {
2843 	struct regulatory_request *lr = get_last_request();
2844 
2845 	if (is_intersected_alpha2(rd->alpha2)) {
2846 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2847 			struct cfg80211_registered_device *rdev;
2848 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2849 			if (rdev) {
2850 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
2851 					rdev->country_ie_alpha2[0],
2852 					rdev->country_ie_alpha2[1]);
2853 			} else
2854 				pr_debug("Current regulatory domain intersected:\n");
2855 		} else
2856 			pr_debug("Current regulatory domain intersected:\n");
2857 	} else if (is_world_regdom(rd->alpha2)) {
2858 		pr_debug("World regulatory domain updated:\n");
2859 	} else {
2860 		if (is_unknown_alpha2(rd->alpha2))
2861 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
2862 		else {
2863 			if (reg_request_cell_base(lr))
2864 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
2865 					rd->alpha2[0], rd->alpha2[1]);
2866 			else
2867 				pr_debug("Regulatory domain changed to country: %c%c\n",
2868 					rd->alpha2[0], rd->alpha2[1]);
2869 		}
2870 	}
2871 
2872 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2873 	print_rd_rules(rd);
2874 }
2875 
2876 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2877 {
2878 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2879 	print_rd_rules(rd);
2880 }
2881 
2882 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2883 {
2884 	if (!is_world_regdom(rd->alpha2))
2885 		return -EINVAL;
2886 	update_world_regdomain(rd);
2887 	return 0;
2888 }
2889 
2890 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2891 			   struct regulatory_request *user_request)
2892 {
2893 	const struct ieee80211_regdomain *intersected_rd = NULL;
2894 
2895 	if (!regdom_changes(rd->alpha2))
2896 		return -EALREADY;
2897 
2898 	if (!is_valid_rd(rd)) {
2899 		pr_err("Invalid regulatory domain detected: %c%c\n",
2900 		       rd->alpha2[0], rd->alpha2[1]);
2901 		print_regdomain_info(rd);
2902 		return -EINVAL;
2903 	}
2904 
2905 	if (!user_request->intersect) {
2906 		reset_regdomains(false, rd);
2907 		return 0;
2908 	}
2909 
2910 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2911 	if (!intersected_rd)
2912 		return -EINVAL;
2913 
2914 	kfree(rd);
2915 	rd = NULL;
2916 	reset_regdomains(false, intersected_rd);
2917 
2918 	return 0;
2919 }
2920 
2921 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2922 			     struct regulatory_request *driver_request)
2923 {
2924 	const struct ieee80211_regdomain *regd;
2925 	const struct ieee80211_regdomain *intersected_rd = NULL;
2926 	const struct ieee80211_regdomain *tmp;
2927 	struct wiphy *request_wiphy;
2928 
2929 	if (is_world_regdom(rd->alpha2))
2930 		return -EINVAL;
2931 
2932 	if (!regdom_changes(rd->alpha2))
2933 		return -EALREADY;
2934 
2935 	if (!is_valid_rd(rd)) {
2936 		pr_err("Invalid regulatory domain detected: %c%c\n",
2937 		       rd->alpha2[0], rd->alpha2[1]);
2938 		print_regdomain_info(rd);
2939 		return -EINVAL;
2940 	}
2941 
2942 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2943 	if (!request_wiphy)
2944 		return -ENODEV;
2945 
2946 	if (!driver_request->intersect) {
2947 		if (request_wiphy->regd)
2948 			return -EALREADY;
2949 
2950 		regd = reg_copy_regd(rd);
2951 		if (IS_ERR(regd))
2952 			return PTR_ERR(regd);
2953 
2954 		rcu_assign_pointer(request_wiphy->regd, regd);
2955 		reset_regdomains(false, rd);
2956 		return 0;
2957 	}
2958 
2959 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2960 	if (!intersected_rd)
2961 		return -EINVAL;
2962 
2963 	/*
2964 	 * We can trash what CRDA provided now.
2965 	 * However if a driver requested this specific regulatory
2966 	 * domain we keep it for its private use
2967 	 */
2968 	tmp = get_wiphy_regdom(request_wiphy);
2969 	rcu_assign_pointer(request_wiphy->regd, rd);
2970 	rcu_free_regdom(tmp);
2971 
2972 	rd = NULL;
2973 
2974 	reset_regdomains(false, intersected_rd);
2975 
2976 	return 0;
2977 }
2978 
2979 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2980 				 struct regulatory_request *country_ie_request)
2981 {
2982 	struct wiphy *request_wiphy;
2983 
2984 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2985 	    !is_unknown_alpha2(rd->alpha2))
2986 		return -EINVAL;
2987 
2988 	/*
2989 	 * Lets only bother proceeding on the same alpha2 if the current
2990 	 * rd is non static (it means CRDA was present and was used last)
2991 	 * and the pending request came in from a country IE
2992 	 */
2993 
2994 	if (!is_valid_rd(rd)) {
2995 		pr_err("Invalid regulatory domain detected: %c%c\n",
2996 		       rd->alpha2[0], rd->alpha2[1]);
2997 		print_regdomain_info(rd);
2998 		return -EINVAL;
2999 	}
3000 
3001 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3002 	if (!request_wiphy)
3003 		return -ENODEV;
3004 
3005 	if (country_ie_request->intersect)
3006 		return -EINVAL;
3007 
3008 	reset_regdomains(false, rd);
3009 	return 0;
3010 }
3011 
3012 /*
3013  * Use this call to set the current regulatory domain. Conflicts with
3014  * multiple drivers can be ironed out later. Caller must've already
3015  * kmalloc'd the rd structure.
3016  */
3017 int set_regdom(const struct ieee80211_regdomain *rd,
3018 	       enum ieee80211_regd_source regd_src)
3019 {
3020 	struct regulatory_request *lr;
3021 	bool user_reset = false;
3022 	int r;
3023 
3024 	if (!reg_is_valid_request(rd->alpha2)) {
3025 		kfree(rd);
3026 		return -EINVAL;
3027 	}
3028 
3029 	if (regd_src == REGD_SOURCE_CRDA)
3030 		reset_crda_timeouts();
3031 
3032 	lr = get_last_request();
3033 
3034 	/* Note that this doesn't update the wiphys, this is done below */
3035 	switch (lr->initiator) {
3036 	case NL80211_REGDOM_SET_BY_CORE:
3037 		r = reg_set_rd_core(rd);
3038 		break;
3039 	case NL80211_REGDOM_SET_BY_USER:
3040 		r = reg_set_rd_user(rd, lr);
3041 		user_reset = true;
3042 		break;
3043 	case NL80211_REGDOM_SET_BY_DRIVER:
3044 		r = reg_set_rd_driver(rd, lr);
3045 		break;
3046 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3047 		r = reg_set_rd_country_ie(rd, lr);
3048 		break;
3049 	default:
3050 		WARN(1, "invalid initiator %d\n", lr->initiator);
3051 		kfree(rd);
3052 		return -EINVAL;
3053 	}
3054 
3055 	if (r) {
3056 		switch (r) {
3057 		case -EALREADY:
3058 			reg_set_request_processed();
3059 			break;
3060 		default:
3061 			/* Back to world regulatory in case of errors */
3062 			restore_regulatory_settings(user_reset);
3063 		}
3064 
3065 		kfree(rd);
3066 		return r;
3067 	}
3068 
3069 	/* This would make this whole thing pointless */
3070 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3071 		return -EINVAL;
3072 
3073 	/* update all wiphys now with the new established regulatory domain */
3074 	update_all_wiphy_regulatory(lr->initiator);
3075 
3076 	print_regdomain(get_cfg80211_regdom());
3077 
3078 	nl80211_send_reg_change_event(lr);
3079 
3080 	reg_set_request_processed();
3081 
3082 	return 0;
3083 }
3084 
3085 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3086 				       struct ieee80211_regdomain *rd)
3087 {
3088 	const struct ieee80211_regdomain *regd;
3089 	const struct ieee80211_regdomain *prev_regd;
3090 	struct cfg80211_registered_device *rdev;
3091 
3092 	if (WARN_ON(!wiphy || !rd))
3093 		return -EINVAL;
3094 
3095 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3096 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3097 		return -EPERM;
3098 
3099 	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3100 		print_regdomain_info(rd);
3101 		return -EINVAL;
3102 	}
3103 
3104 	regd = reg_copy_regd(rd);
3105 	if (IS_ERR(regd))
3106 		return PTR_ERR(regd);
3107 
3108 	rdev = wiphy_to_rdev(wiphy);
3109 
3110 	spin_lock(&reg_requests_lock);
3111 	prev_regd = rdev->requested_regd;
3112 	rdev->requested_regd = regd;
3113 	spin_unlock(&reg_requests_lock);
3114 
3115 	kfree(prev_regd);
3116 	return 0;
3117 }
3118 
3119 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3120 			      struct ieee80211_regdomain *rd)
3121 {
3122 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3123 
3124 	if (ret)
3125 		return ret;
3126 
3127 	schedule_work(&reg_work);
3128 	return 0;
3129 }
3130 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3131 
3132 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3133 					struct ieee80211_regdomain *rd)
3134 {
3135 	int ret;
3136 
3137 	ASSERT_RTNL();
3138 
3139 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3140 	if (ret)
3141 		return ret;
3142 
3143 	/* process the request immediately */
3144 	reg_process_self_managed_hints();
3145 	return 0;
3146 }
3147 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3148 
3149 void wiphy_regulatory_register(struct wiphy *wiphy)
3150 {
3151 	struct regulatory_request *lr;
3152 
3153 	/* self-managed devices ignore external hints */
3154 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3155 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3156 					   REGULATORY_COUNTRY_IE_IGNORE;
3157 
3158 	if (!reg_dev_ignore_cell_hint(wiphy))
3159 		reg_num_devs_support_basehint++;
3160 
3161 	lr = get_last_request();
3162 	wiphy_update_regulatory(wiphy, lr->initiator);
3163 	wiphy_all_share_dfs_chan_state(wiphy);
3164 }
3165 
3166 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3167 {
3168 	struct wiphy *request_wiphy = NULL;
3169 	struct regulatory_request *lr;
3170 
3171 	lr = get_last_request();
3172 
3173 	if (!reg_dev_ignore_cell_hint(wiphy))
3174 		reg_num_devs_support_basehint--;
3175 
3176 	rcu_free_regdom(get_wiphy_regdom(wiphy));
3177 	RCU_INIT_POINTER(wiphy->regd, NULL);
3178 
3179 	if (lr)
3180 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3181 
3182 	if (!request_wiphy || request_wiphy != wiphy)
3183 		return;
3184 
3185 	lr->wiphy_idx = WIPHY_IDX_INVALID;
3186 	lr->country_ie_env = ENVIRON_ANY;
3187 }
3188 
3189 /*
3190  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3191  * UNII band definitions
3192  */
3193 int cfg80211_get_unii(int freq)
3194 {
3195 	/* UNII-1 */
3196 	if (freq >= 5150 && freq <= 5250)
3197 		return 0;
3198 
3199 	/* UNII-2A */
3200 	if (freq > 5250 && freq <= 5350)
3201 		return 1;
3202 
3203 	/* UNII-2B */
3204 	if (freq > 5350 && freq <= 5470)
3205 		return 2;
3206 
3207 	/* UNII-2C */
3208 	if (freq > 5470 && freq <= 5725)
3209 		return 3;
3210 
3211 	/* UNII-3 */
3212 	if (freq > 5725 && freq <= 5825)
3213 		return 4;
3214 
3215 	return -EINVAL;
3216 }
3217 
3218 bool regulatory_indoor_allowed(void)
3219 {
3220 	return reg_is_indoor;
3221 }
3222 
3223 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3224 {
3225 	const struct ieee80211_regdomain *regd = NULL;
3226 	const struct ieee80211_regdomain *wiphy_regd = NULL;
3227 	bool pre_cac_allowed = false;
3228 
3229 	rcu_read_lock();
3230 
3231 	regd = rcu_dereference(cfg80211_regdomain);
3232 	wiphy_regd = rcu_dereference(wiphy->regd);
3233 	if (!wiphy_regd) {
3234 		if (regd->dfs_region == NL80211_DFS_ETSI)
3235 			pre_cac_allowed = true;
3236 
3237 		rcu_read_unlock();
3238 
3239 		return pre_cac_allowed;
3240 	}
3241 
3242 	if (regd->dfs_region == wiphy_regd->dfs_region &&
3243 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3244 		pre_cac_allowed = true;
3245 
3246 	rcu_read_unlock();
3247 
3248 	return pre_cac_allowed;
3249 }
3250 
3251 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3252 				    struct cfg80211_chan_def *chandef,
3253 				    enum nl80211_dfs_state dfs_state,
3254 				    enum nl80211_radar_event event)
3255 {
3256 	struct cfg80211_registered_device *rdev;
3257 
3258 	ASSERT_RTNL();
3259 
3260 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3261 		return;
3262 
3263 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3264 		if (wiphy == &rdev->wiphy)
3265 			continue;
3266 
3267 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3268 			continue;
3269 
3270 		if (!ieee80211_get_channel(&rdev->wiphy,
3271 					   chandef->chan->center_freq))
3272 			continue;
3273 
3274 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3275 
3276 		if (event == NL80211_RADAR_DETECTED ||
3277 		    event == NL80211_RADAR_CAC_FINISHED)
3278 			cfg80211_sched_dfs_chan_update(rdev);
3279 
3280 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3281 	}
3282 }
3283 
3284 int __init regulatory_init(void)
3285 {
3286 	int err = 0;
3287 
3288 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3289 	if (IS_ERR(reg_pdev))
3290 		return PTR_ERR(reg_pdev);
3291 
3292 	spin_lock_init(&reg_requests_lock);
3293 	spin_lock_init(&reg_pending_beacons_lock);
3294 	spin_lock_init(&reg_indoor_lock);
3295 
3296 	reg_regdb_size_check();
3297 
3298 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3299 
3300 	user_alpha2[0] = '9';
3301 	user_alpha2[1] = '7';
3302 
3303 	/* We always try to get an update for the static regdomain */
3304 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3305 	if (err) {
3306 		if (err == -ENOMEM) {
3307 			platform_device_unregister(reg_pdev);
3308 			return err;
3309 		}
3310 		/*
3311 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
3312 		 * memory which is handled and propagated appropriately above
3313 		 * but it can also fail during a netlink_broadcast() or during
3314 		 * early boot for call_usermodehelper(). For now treat these
3315 		 * errors as non-fatal.
3316 		 */
3317 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3318 	}
3319 
3320 	/*
3321 	 * Finally, if the user set the module parameter treat it
3322 	 * as a user hint.
3323 	 */
3324 	if (!is_world_regdom(ieee80211_regdom))
3325 		regulatory_hint_user(ieee80211_regdom,
3326 				     NL80211_USER_REG_HINT_USER);
3327 
3328 	return 0;
3329 }
3330 
3331 void regulatory_exit(void)
3332 {
3333 	struct regulatory_request *reg_request, *tmp;
3334 	struct reg_beacon *reg_beacon, *btmp;
3335 
3336 	cancel_work_sync(&reg_work);
3337 	cancel_crda_timeout_sync();
3338 	cancel_delayed_work_sync(&reg_check_chans);
3339 
3340 	/* Lock to suppress warnings */
3341 	rtnl_lock();
3342 	reset_regdomains(true, NULL);
3343 	rtnl_unlock();
3344 
3345 	dev_set_uevent_suppress(&reg_pdev->dev, true);
3346 
3347 	platform_device_unregister(reg_pdev);
3348 
3349 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3350 		list_del(&reg_beacon->list);
3351 		kfree(reg_beacon);
3352 	}
3353 
3354 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3355 		list_del(&reg_beacon->list);
3356 		kfree(reg_beacon);
3357 	}
3358 
3359 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3360 		list_del(&reg_request->list);
3361 		kfree(reg_request);
3362 	}
3363 }
3364