xref: /openbmc/linux/net/wireless/reg.c (revision 6ee73861)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/cfg80211.h>
41 #include "core.h"
42 #include "reg.h"
43 #include "nl80211.h"
44 
45 /* Receipt of information from last regulatory request */
46 static struct regulatory_request *last_request;
47 
48 /* To trigger userspace events */
49 static struct platform_device *reg_pdev;
50 
51 /*
52  * Central wireless core regulatory domains, we only need two,
53  * the current one and a world regulatory domain in case we have no
54  * information to give us an alpha2
55  */
56 const struct ieee80211_regdomain *cfg80211_regdomain;
57 
58 /*
59  * We use this as a place for the rd structure built from the
60  * last parsed country IE to rest until CRDA gets back to us with
61  * what it thinks should apply for the same country
62  */
63 static const struct ieee80211_regdomain *country_ie_regdomain;
64 
65 /*
66  * Protects static reg.c components:
67  *     - cfg80211_world_regdom
68  *     - cfg80211_regdom
69  *     - country_ie_regdomain
70  *     - last_request
71  */
72 DEFINE_MUTEX(reg_mutex);
73 #define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))
74 
75 /* Used to queue up regulatory hints */
76 static LIST_HEAD(reg_requests_list);
77 static spinlock_t reg_requests_lock;
78 
79 /* Used to queue up beacon hints for review */
80 static LIST_HEAD(reg_pending_beacons);
81 static spinlock_t reg_pending_beacons_lock;
82 
83 /* Used to keep track of processed beacon hints */
84 static LIST_HEAD(reg_beacon_list);
85 
86 struct reg_beacon {
87 	struct list_head list;
88 	struct ieee80211_channel chan;
89 };
90 
91 /* We keep a static world regulatory domain in case of the absence of CRDA */
92 static const struct ieee80211_regdomain world_regdom = {
93 	.n_reg_rules = 5,
94 	.alpha2 =  "00",
95 	.reg_rules = {
96 		/* IEEE 802.11b/g, channels 1..11 */
97 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
98 		/* IEEE 802.11b/g, channels 12..13. No HT40
99 		 * channel fits here. */
100 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
101 			NL80211_RRF_PASSIVE_SCAN |
102 			NL80211_RRF_NO_IBSS),
103 		/* IEEE 802.11 channel 14 - Only JP enables
104 		 * this and for 802.11b only */
105 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
106 			NL80211_RRF_PASSIVE_SCAN |
107 			NL80211_RRF_NO_IBSS |
108 			NL80211_RRF_NO_OFDM),
109 		/* IEEE 802.11a, channel 36..48 */
110 		REG_RULE(5180-10, 5240+10, 40, 6, 20,
111                         NL80211_RRF_PASSIVE_SCAN |
112                         NL80211_RRF_NO_IBSS),
113 
114 		/* NB: 5260 MHz - 5700 MHz requies DFS */
115 
116 		/* IEEE 802.11a, channel 149..165 */
117 		REG_RULE(5745-10, 5825+10, 40, 6, 20,
118 			NL80211_RRF_PASSIVE_SCAN |
119 			NL80211_RRF_NO_IBSS),
120 	}
121 };
122 
123 static const struct ieee80211_regdomain *cfg80211_world_regdom =
124 	&world_regdom;
125 
126 static char *ieee80211_regdom = "00";
127 
128 module_param(ieee80211_regdom, charp, 0444);
129 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
130 
131 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
132 /*
133  * We assume 40 MHz bandwidth for the old regulatory work.
134  * We make emphasis we are using the exact same frequencies
135  * as before
136  */
137 
138 static const struct ieee80211_regdomain us_regdom = {
139 	.n_reg_rules = 6,
140 	.alpha2 =  "US",
141 	.reg_rules = {
142 		/* IEEE 802.11b/g, channels 1..11 */
143 		REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
144 		/* IEEE 802.11a, channel 36 */
145 		REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
146 		/* IEEE 802.11a, channel 40 */
147 		REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
148 		/* IEEE 802.11a, channel 44 */
149 		REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
150 		/* IEEE 802.11a, channels 48..64 */
151 		REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
152 		/* IEEE 802.11a, channels 149..165, outdoor */
153 		REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
154 	}
155 };
156 
157 static const struct ieee80211_regdomain jp_regdom = {
158 	.n_reg_rules = 3,
159 	.alpha2 =  "JP",
160 	.reg_rules = {
161 		/* IEEE 802.11b/g, channels 1..14 */
162 		REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
163 		/* IEEE 802.11a, channels 34..48 */
164 		REG_RULE(5170-10, 5240+10, 40, 6, 20,
165 			NL80211_RRF_PASSIVE_SCAN),
166 		/* IEEE 802.11a, channels 52..64 */
167 		REG_RULE(5260-10, 5320+10, 40, 6, 20,
168 			NL80211_RRF_NO_IBSS |
169 			NL80211_RRF_DFS),
170 	}
171 };
172 
173 static const struct ieee80211_regdomain eu_regdom = {
174 	.n_reg_rules = 6,
175 	/*
176 	 * This alpha2 is bogus, we leave it here just for stupid
177 	 * backward compatibility
178 	 */
179 	.alpha2 =  "EU",
180 	.reg_rules = {
181 		/* IEEE 802.11b/g, channels 1..13 */
182 		REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
183 		/* IEEE 802.11a, channel 36 */
184 		REG_RULE(5180-10, 5180+10, 40, 6, 23,
185 			NL80211_RRF_PASSIVE_SCAN),
186 		/* IEEE 802.11a, channel 40 */
187 		REG_RULE(5200-10, 5200+10, 40, 6, 23,
188 			NL80211_RRF_PASSIVE_SCAN),
189 		/* IEEE 802.11a, channel 44 */
190 		REG_RULE(5220-10, 5220+10, 40, 6, 23,
191 			NL80211_RRF_PASSIVE_SCAN),
192 		/* IEEE 802.11a, channels 48..64 */
193 		REG_RULE(5240-10, 5320+10, 40, 6, 20,
194 			NL80211_RRF_NO_IBSS |
195 			NL80211_RRF_DFS),
196 		/* IEEE 802.11a, channels 100..140 */
197 		REG_RULE(5500-10, 5700+10, 40, 6, 30,
198 			NL80211_RRF_NO_IBSS |
199 			NL80211_RRF_DFS),
200 	}
201 };
202 
203 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
204 {
205 	if (alpha2[0] == 'U' && alpha2[1] == 'S')
206 		return &us_regdom;
207 	if (alpha2[0] == 'J' && alpha2[1] == 'P')
208 		return &jp_regdom;
209 	if (alpha2[0] == 'E' && alpha2[1] == 'U')
210 		return &eu_regdom;
211 	/* Default, as per the old rules */
212 	return &us_regdom;
213 }
214 
215 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
216 {
217 	if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
218 		return true;
219 	return false;
220 }
221 #else
222 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
223 {
224 	return false;
225 }
226 #endif
227 
228 static void reset_regdomains(void)
229 {
230 	/* avoid freeing static information or freeing something twice */
231 	if (cfg80211_regdomain == cfg80211_world_regdom)
232 		cfg80211_regdomain = NULL;
233 	if (cfg80211_world_regdom == &world_regdom)
234 		cfg80211_world_regdom = NULL;
235 	if (cfg80211_regdomain == &world_regdom)
236 		cfg80211_regdomain = NULL;
237 	if (is_old_static_regdom(cfg80211_regdomain))
238 		cfg80211_regdomain = NULL;
239 
240 	kfree(cfg80211_regdomain);
241 	kfree(cfg80211_world_regdom);
242 
243 	cfg80211_world_regdom = &world_regdom;
244 	cfg80211_regdomain = NULL;
245 }
246 
247 /*
248  * Dynamic world regulatory domain requested by the wireless
249  * core upon initialization
250  */
251 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
252 {
253 	BUG_ON(!last_request);
254 
255 	reset_regdomains();
256 
257 	cfg80211_world_regdom = rd;
258 	cfg80211_regdomain = rd;
259 }
260 
261 bool is_world_regdom(const char *alpha2)
262 {
263 	if (!alpha2)
264 		return false;
265 	if (alpha2[0] == '0' && alpha2[1] == '0')
266 		return true;
267 	return false;
268 }
269 
270 static bool is_alpha2_set(const char *alpha2)
271 {
272 	if (!alpha2)
273 		return false;
274 	if (alpha2[0] != 0 && alpha2[1] != 0)
275 		return true;
276 	return false;
277 }
278 
279 static bool is_alpha_upper(char letter)
280 {
281 	/* ASCII A - Z */
282 	if (letter >= 65 && letter <= 90)
283 		return true;
284 	return false;
285 }
286 
287 static bool is_unknown_alpha2(const char *alpha2)
288 {
289 	if (!alpha2)
290 		return false;
291 	/*
292 	 * Special case where regulatory domain was built by driver
293 	 * but a specific alpha2 cannot be determined
294 	 */
295 	if (alpha2[0] == '9' && alpha2[1] == '9')
296 		return true;
297 	return false;
298 }
299 
300 static bool is_intersected_alpha2(const char *alpha2)
301 {
302 	if (!alpha2)
303 		return false;
304 	/*
305 	 * Special case where regulatory domain is the
306 	 * result of an intersection between two regulatory domain
307 	 * structures
308 	 */
309 	if (alpha2[0] == '9' && alpha2[1] == '8')
310 		return true;
311 	return false;
312 }
313 
314 static bool is_an_alpha2(const char *alpha2)
315 {
316 	if (!alpha2)
317 		return false;
318 	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
319 		return true;
320 	return false;
321 }
322 
323 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
324 {
325 	if (!alpha2_x || !alpha2_y)
326 		return false;
327 	if (alpha2_x[0] == alpha2_y[0] &&
328 		alpha2_x[1] == alpha2_y[1])
329 		return true;
330 	return false;
331 }
332 
333 static bool regdom_changes(const char *alpha2)
334 {
335 	assert_cfg80211_lock();
336 
337 	if (!cfg80211_regdomain)
338 		return true;
339 	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
340 		return false;
341 	return true;
342 }
343 
344 /**
345  * country_ie_integrity_changes - tells us if the country IE has changed
346  * @checksum: checksum of country IE of fields we are interested in
347  *
348  * If the country IE has not changed you can ignore it safely. This is
349  * useful to determine if two devices are seeing two different country IEs
350  * even on the same alpha2. Note that this will return false if no IE has
351  * been set on the wireless core yet.
352  */
353 static bool country_ie_integrity_changes(u32 checksum)
354 {
355 	/* If no IE has been set then the checksum doesn't change */
356 	if (unlikely(!last_request->country_ie_checksum))
357 		return false;
358 	if (unlikely(last_request->country_ie_checksum != checksum))
359 		return true;
360 	return false;
361 }
362 
363 /*
364  * This lets us keep regulatory code which is updated on a regulatory
365  * basis in userspace.
366  */
367 static int call_crda(const char *alpha2)
368 {
369 	char country_env[9 + 2] = "COUNTRY=";
370 	char *envp[] = {
371 		country_env,
372 		NULL
373 	};
374 
375 	if (!is_world_regdom((char *) alpha2))
376 		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
377 			alpha2[0], alpha2[1]);
378 	else
379 		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
380 			"regulatory domain\n");
381 
382 	country_env[8] = alpha2[0];
383 	country_env[9] = alpha2[1];
384 
385 	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
386 }
387 
388 /* Used by nl80211 before kmalloc'ing our regulatory domain */
389 bool reg_is_valid_request(const char *alpha2)
390 {
391 	assert_cfg80211_lock();
392 
393 	if (!last_request)
394 		return false;
395 
396 	return alpha2_equal(last_request->alpha2, alpha2);
397 }
398 
399 /* Sanity check on a regulatory rule */
400 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
401 {
402 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
403 	u32 freq_diff;
404 
405 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
406 		return false;
407 
408 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
409 		return false;
410 
411 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
412 
413 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
414 			freq_range->max_bandwidth_khz > freq_diff)
415 		return false;
416 
417 	return true;
418 }
419 
420 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
421 {
422 	const struct ieee80211_reg_rule *reg_rule = NULL;
423 	unsigned int i;
424 
425 	if (!rd->n_reg_rules)
426 		return false;
427 
428 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
429 		return false;
430 
431 	for (i = 0; i < rd->n_reg_rules; i++) {
432 		reg_rule = &rd->reg_rules[i];
433 		if (!is_valid_reg_rule(reg_rule))
434 			return false;
435 	}
436 
437 	return true;
438 }
439 
440 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
441 			    u32 center_freq_khz,
442 			    u32 bw_khz)
443 {
444 	u32 start_freq_khz, end_freq_khz;
445 
446 	start_freq_khz = center_freq_khz - (bw_khz/2);
447 	end_freq_khz = center_freq_khz + (bw_khz/2);
448 
449 	if (start_freq_khz >= freq_range->start_freq_khz &&
450 	    end_freq_khz <= freq_range->end_freq_khz)
451 		return true;
452 
453 	return false;
454 }
455 
456 /**
457  * freq_in_rule_band - tells us if a frequency is in a frequency band
458  * @freq_range: frequency rule we want to query
459  * @freq_khz: frequency we are inquiring about
460  *
461  * This lets us know if a specific frequency rule is or is not relevant to
462  * a specific frequency's band. Bands are device specific and artificial
463  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
464  * safe for now to assume that a frequency rule should not be part of a
465  * frequency's band if the start freq or end freq are off by more than 2 GHz.
466  * This resolution can be lowered and should be considered as we add
467  * regulatory rule support for other "bands".
468  **/
469 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
470 	u32 freq_khz)
471 {
472 #define ONE_GHZ_IN_KHZ	1000000
473 	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
474 		return true;
475 	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
476 		return true;
477 	return false;
478 #undef ONE_GHZ_IN_KHZ
479 }
480 
481 /*
482  * Converts a country IE to a regulatory domain. A regulatory domain
483  * structure has a lot of information which the IE doesn't yet have,
484  * so for the other values we use upper max values as we will intersect
485  * with our userspace regulatory agent to get lower bounds.
486  */
487 static struct ieee80211_regdomain *country_ie_2_rd(
488 				u8 *country_ie,
489 				u8 country_ie_len,
490 				u32 *checksum)
491 {
492 	struct ieee80211_regdomain *rd = NULL;
493 	unsigned int i = 0;
494 	char alpha2[2];
495 	u32 flags = 0;
496 	u32 num_rules = 0, size_of_regd = 0;
497 	u8 *triplets_start = NULL;
498 	u8 len_at_triplet = 0;
499 	/* the last channel we have registered in a subband (triplet) */
500 	int last_sub_max_channel = 0;
501 
502 	*checksum = 0xDEADBEEF;
503 
504 	/* Country IE requirements */
505 	BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
506 		country_ie_len & 0x01);
507 
508 	alpha2[0] = country_ie[0];
509 	alpha2[1] = country_ie[1];
510 
511 	/*
512 	 * Third octet can be:
513 	 *    'I' - Indoor
514 	 *    'O' - Outdoor
515 	 *
516 	 *  anything else we assume is no restrictions
517 	 */
518 	if (country_ie[2] == 'I')
519 		flags = NL80211_RRF_NO_OUTDOOR;
520 	else if (country_ie[2] == 'O')
521 		flags = NL80211_RRF_NO_INDOOR;
522 
523 	country_ie += 3;
524 	country_ie_len -= 3;
525 
526 	triplets_start = country_ie;
527 	len_at_triplet = country_ie_len;
528 
529 	*checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
530 
531 	/*
532 	 * We need to build a reg rule for each triplet, but first we must
533 	 * calculate the number of reg rules we will need. We will need one
534 	 * for each channel subband
535 	 */
536 	while (country_ie_len >= 3) {
537 		int end_channel = 0;
538 		struct ieee80211_country_ie_triplet *triplet =
539 			(struct ieee80211_country_ie_triplet *) country_ie;
540 		int cur_sub_max_channel = 0, cur_channel = 0;
541 
542 		if (triplet->ext.reg_extension_id >=
543 				IEEE80211_COUNTRY_EXTENSION_ID) {
544 			country_ie += 3;
545 			country_ie_len -= 3;
546 			continue;
547 		}
548 
549 		/* 2 GHz */
550 		if (triplet->chans.first_channel <= 14)
551 			end_channel = triplet->chans.first_channel +
552 				triplet->chans.num_channels;
553 		else
554 			/*
555 			 * 5 GHz -- For example in country IEs if the first
556 			 * channel given is 36 and the number of channels is 4
557 			 * then the individual channel numbers defined for the
558 			 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
559 			 * and not 36, 37, 38, 39.
560 			 *
561 			 * See: http://tinyurl.com/11d-clarification
562 			 */
563 			end_channel =  triplet->chans.first_channel +
564 				(4 * (triplet->chans.num_channels - 1));
565 
566 		cur_channel = triplet->chans.first_channel;
567 		cur_sub_max_channel = end_channel;
568 
569 		/* Basic sanity check */
570 		if (cur_sub_max_channel < cur_channel)
571 			return NULL;
572 
573 		/*
574 		 * Do not allow overlapping channels. Also channels
575 		 * passed in each subband must be monotonically
576 		 * increasing
577 		 */
578 		if (last_sub_max_channel) {
579 			if (cur_channel <= last_sub_max_channel)
580 				return NULL;
581 			if (cur_sub_max_channel <= last_sub_max_channel)
582 				return NULL;
583 		}
584 
585 		/*
586 		 * When dot11RegulatoryClassesRequired is supported
587 		 * we can throw ext triplets as part of this soup,
588 		 * for now we don't care when those change as we
589 		 * don't support them
590 		 */
591 		*checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
592 		  ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
593 		  ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
594 
595 		last_sub_max_channel = cur_sub_max_channel;
596 
597 		country_ie += 3;
598 		country_ie_len -= 3;
599 		num_rules++;
600 
601 		/*
602 		 * Note: this is not a IEEE requirement but
603 		 * simply a memory requirement
604 		 */
605 		if (num_rules > NL80211_MAX_SUPP_REG_RULES)
606 			return NULL;
607 	}
608 
609 	country_ie = triplets_start;
610 	country_ie_len = len_at_triplet;
611 
612 	size_of_regd = sizeof(struct ieee80211_regdomain) +
613 		(num_rules * sizeof(struct ieee80211_reg_rule));
614 
615 	rd = kzalloc(size_of_regd, GFP_KERNEL);
616 	if (!rd)
617 		return NULL;
618 
619 	rd->n_reg_rules = num_rules;
620 	rd->alpha2[0] = alpha2[0];
621 	rd->alpha2[1] = alpha2[1];
622 
623 	/* This time around we fill in the rd */
624 	while (country_ie_len >= 3) {
625 		int end_channel = 0;
626 		struct ieee80211_country_ie_triplet *triplet =
627 			(struct ieee80211_country_ie_triplet *) country_ie;
628 		struct ieee80211_reg_rule *reg_rule = NULL;
629 		struct ieee80211_freq_range *freq_range = NULL;
630 		struct ieee80211_power_rule *power_rule = NULL;
631 
632 		/*
633 		 * Must parse if dot11RegulatoryClassesRequired is true,
634 		 * we don't support this yet
635 		 */
636 		if (triplet->ext.reg_extension_id >=
637 				IEEE80211_COUNTRY_EXTENSION_ID) {
638 			country_ie += 3;
639 			country_ie_len -= 3;
640 			continue;
641 		}
642 
643 		reg_rule = &rd->reg_rules[i];
644 		freq_range = &reg_rule->freq_range;
645 		power_rule = &reg_rule->power_rule;
646 
647 		reg_rule->flags = flags;
648 
649 		/* 2 GHz */
650 		if (triplet->chans.first_channel <= 14)
651 			end_channel = triplet->chans.first_channel +
652 				triplet->chans.num_channels;
653 		else
654 			end_channel =  triplet->chans.first_channel +
655 				(4 * (triplet->chans.num_channels - 1));
656 
657 		/*
658 		 * The +10 is since the regulatory domain expects
659 		 * the actual band edge, not the center of freq for
660 		 * its start and end freqs, assuming 20 MHz bandwidth on
661 		 * the channels passed
662 		 */
663 		freq_range->start_freq_khz =
664 			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
665 				triplet->chans.first_channel) - 10);
666 		freq_range->end_freq_khz =
667 			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
668 				end_channel) + 10);
669 
670 		/*
671 		 * These are large arbitrary values we use to intersect later.
672 		 * Increment this if we ever support >= 40 MHz channels
673 		 * in IEEE 802.11
674 		 */
675 		freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
676 		power_rule->max_antenna_gain = DBI_TO_MBI(100);
677 		power_rule->max_eirp = DBM_TO_MBM(100);
678 
679 		country_ie += 3;
680 		country_ie_len -= 3;
681 		i++;
682 
683 		BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
684 	}
685 
686 	return rd;
687 }
688 
689 
690 /*
691  * Helper for regdom_intersect(), this does the real
692  * mathematical intersection fun
693  */
694 static int reg_rules_intersect(
695 	const struct ieee80211_reg_rule *rule1,
696 	const struct ieee80211_reg_rule *rule2,
697 	struct ieee80211_reg_rule *intersected_rule)
698 {
699 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
700 	struct ieee80211_freq_range *freq_range;
701 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
702 	struct ieee80211_power_rule *power_rule;
703 	u32 freq_diff;
704 
705 	freq_range1 = &rule1->freq_range;
706 	freq_range2 = &rule2->freq_range;
707 	freq_range = &intersected_rule->freq_range;
708 
709 	power_rule1 = &rule1->power_rule;
710 	power_rule2 = &rule2->power_rule;
711 	power_rule = &intersected_rule->power_rule;
712 
713 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
714 		freq_range2->start_freq_khz);
715 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
716 		freq_range2->end_freq_khz);
717 	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
718 		freq_range2->max_bandwidth_khz);
719 
720 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
721 	if (freq_range->max_bandwidth_khz > freq_diff)
722 		freq_range->max_bandwidth_khz = freq_diff;
723 
724 	power_rule->max_eirp = min(power_rule1->max_eirp,
725 		power_rule2->max_eirp);
726 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
727 		power_rule2->max_antenna_gain);
728 
729 	intersected_rule->flags = (rule1->flags | rule2->flags);
730 
731 	if (!is_valid_reg_rule(intersected_rule))
732 		return -EINVAL;
733 
734 	return 0;
735 }
736 
737 /**
738  * regdom_intersect - do the intersection between two regulatory domains
739  * @rd1: first regulatory domain
740  * @rd2: second regulatory domain
741  *
742  * Use this function to get the intersection between two regulatory domains.
743  * Once completed we will mark the alpha2 for the rd as intersected, "98",
744  * as no one single alpha2 can represent this regulatory domain.
745  *
746  * Returns a pointer to the regulatory domain structure which will hold the
747  * resulting intersection of rules between rd1 and rd2. We will
748  * kzalloc() this structure for you.
749  */
750 static struct ieee80211_regdomain *regdom_intersect(
751 	const struct ieee80211_regdomain *rd1,
752 	const struct ieee80211_regdomain *rd2)
753 {
754 	int r, size_of_regd;
755 	unsigned int x, y;
756 	unsigned int num_rules = 0, rule_idx = 0;
757 	const struct ieee80211_reg_rule *rule1, *rule2;
758 	struct ieee80211_reg_rule *intersected_rule;
759 	struct ieee80211_regdomain *rd;
760 	/* This is just a dummy holder to help us count */
761 	struct ieee80211_reg_rule irule;
762 
763 	/* Uses the stack temporarily for counter arithmetic */
764 	intersected_rule = &irule;
765 
766 	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
767 
768 	if (!rd1 || !rd2)
769 		return NULL;
770 
771 	/*
772 	 * First we get a count of the rules we'll need, then we actually
773 	 * build them. This is to so we can malloc() and free() a
774 	 * regdomain once. The reason we use reg_rules_intersect() here
775 	 * is it will return -EINVAL if the rule computed makes no sense.
776 	 * All rules that do check out OK are valid.
777 	 */
778 
779 	for (x = 0; x < rd1->n_reg_rules; x++) {
780 		rule1 = &rd1->reg_rules[x];
781 		for (y = 0; y < rd2->n_reg_rules; y++) {
782 			rule2 = &rd2->reg_rules[y];
783 			if (!reg_rules_intersect(rule1, rule2,
784 					intersected_rule))
785 				num_rules++;
786 			memset(intersected_rule, 0,
787 					sizeof(struct ieee80211_reg_rule));
788 		}
789 	}
790 
791 	if (!num_rules)
792 		return NULL;
793 
794 	size_of_regd = sizeof(struct ieee80211_regdomain) +
795 		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
796 
797 	rd = kzalloc(size_of_regd, GFP_KERNEL);
798 	if (!rd)
799 		return NULL;
800 
801 	for (x = 0; x < rd1->n_reg_rules; x++) {
802 		rule1 = &rd1->reg_rules[x];
803 		for (y = 0; y < rd2->n_reg_rules; y++) {
804 			rule2 = &rd2->reg_rules[y];
805 			/*
806 			 * This time around instead of using the stack lets
807 			 * write to the target rule directly saving ourselves
808 			 * a memcpy()
809 			 */
810 			intersected_rule = &rd->reg_rules[rule_idx];
811 			r = reg_rules_intersect(rule1, rule2,
812 				intersected_rule);
813 			/*
814 			 * No need to memset here the intersected rule here as
815 			 * we're not using the stack anymore
816 			 */
817 			if (r)
818 				continue;
819 			rule_idx++;
820 		}
821 	}
822 
823 	if (rule_idx != num_rules) {
824 		kfree(rd);
825 		return NULL;
826 	}
827 
828 	rd->n_reg_rules = num_rules;
829 	rd->alpha2[0] = '9';
830 	rd->alpha2[1] = '8';
831 
832 	return rd;
833 }
834 
835 /*
836  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
837  * want to just have the channel structure use these
838  */
839 static u32 map_regdom_flags(u32 rd_flags)
840 {
841 	u32 channel_flags = 0;
842 	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
843 		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
844 	if (rd_flags & NL80211_RRF_NO_IBSS)
845 		channel_flags |= IEEE80211_CHAN_NO_IBSS;
846 	if (rd_flags & NL80211_RRF_DFS)
847 		channel_flags |= IEEE80211_CHAN_RADAR;
848 	return channel_flags;
849 }
850 
851 static int freq_reg_info_regd(struct wiphy *wiphy,
852 			      u32 center_freq,
853 			      u32 desired_bw_khz,
854 			      const struct ieee80211_reg_rule **reg_rule,
855 			      const struct ieee80211_regdomain *custom_regd)
856 {
857 	int i;
858 	bool band_rule_found = false;
859 	const struct ieee80211_regdomain *regd;
860 	bool bw_fits = false;
861 
862 	if (!desired_bw_khz)
863 		desired_bw_khz = MHZ_TO_KHZ(20);
864 
865 	regd = custom_regd ? custom_regd : cfg80211_regdomain;
866 
867 	/*
868 	 * Follow the driver's regulatory domain, if present, unless a country
869 	 * IE has been processed or a user wants to help complaince further
870 	 */
871 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
872 	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
873 	    wiphy->regd)
874 		regd = wiphy->regd;
875 
876 	if (!regd)
877 		return -EINVAL;
878 
879 	for (i = 0; i < regd->n_reg_rules; i++) {
880 		const struct ieee80211_reg_rule *rr;
881 		const struct ieee80211_freq_range *fr = NULL;
882 		const struct ieee80211_power_rule *pr = NULL;
883 
884 		rr = &regd->reg_rules[i];
885 		fr = &rr->freq_range;
886 		pr = &rr->power_rule;
887 
888 		/*
889 		 * We only need to know if one frequency rule was
890 		 * was in center_freq's band, that's enough, so lets
891 		 * not overwrite it once found
892 		 */
893 		if (!band_rule_found)
894 			band_rule_found = freq_in_rule_band(fr, center_freq);
895 
896 		bw_fits = reg_does_bw_fit(fr,
897 					  center_freq,
898 					  desired_bw_khz);
899 
900 		if (band_rule_found && bw_fits) {
901 			*reg_rule = rr;
902 			return 0;
903 		}
904 	}
905 
906 	if (!band_rule_found)
907 		return -ERANGE;
908 
909 	return -EINVAL;
910 }
911 EXPORT_SYMBOL(freq_reg_info);
912 
913 int freq_reg_info(struct wiphy *wiphy,
914 		  u32 center_freq,
915 		  u32 desired_bw_khz,
916 		  const struct ieee80211_reg_rule **reg_rule)
917 {
918 	assert_cfg80211_lock();
919 	return freq_reg_info_regd(wiphy,
920 				  center_freq,
921 				  desired_bw_khz,
922 				  reg_rule,
923 				  NULL);
924 }
925 
926 /*
927  * Note that right now we assume the desired channel bandwidth
928  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
929  * per channel, the primary and the extension channel). To support
930  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
931  * new ieee80211_channel.target_bw and re run the regulatory check
932  * on the wiphy with the target_bw specified. Then we can simply use
933  * that below for the desired_bw_khz below.
934  */
935 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
936 			   unsigned int chan_idx)
937 {
938 	int r;
939 	u32 flags, bw_flags = 0;
940 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
941 	const struct ieee80211_reg_rule *reg_rule = NULL;
942 	const struct ieee80211_power_rule *power_rule = NULL;
943 	const struct ieee80211_freq_range *freq_range = NULL;
944 	struct ieee80211_supported_band *sband;
945 	struct ieee80211_channel *chan;
946 	struct wiphy *request_wiphy = NULL;
947 
948 	assert_cfg80211_lock();
949 
950 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
951 
952 	sband = wiphy->bands[band];
953 	BUG_ON(chan_idx >= sband->n_channels);
954 	chan = &sband->channels[chan_idx];
955 
956 	flags = chan->orig_flags;
957 
958 	r = freq_reg_info(wiphy,
959 			  MHZ_TO_KHZ(chan->center_freq),
960 			  desired_bw_khz,
961 			  &reg_rule);
962 
963 	if (r) {
964 		/*
965 		 * This means no regulatory rule was found in the country IE
966 		 * with a frequency range on the center_freq's band, since
967 		 * IEEE-802.11 allows for a country IE to have a subset of the
968 		 * regulatory information provided in a country we ignore
969 		 * disabling the channel unless at least one reg rule was
970 		 * found on the center_freq's band. For details see this
971 		 * clarification:
972 		 *
973 		 * http://tinyurl.com/11d-clarification
974 		 */
975 		if (r == -ERANGE &&
976 		    last_request->initiator ==
977 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
978 #ifdef CONFIG_CFG80211_REG_DEBUG
979 			printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
980 				"intact on %s - no rule found in band on "
981 				"Country IE\n",
982 				chan->center_freq, wiphy_name(wiphy));
983 #endif
984 		} else {
985 		/*
986 		 * In this case we know the country IE has at least one reg rule
987 		 * for the band so we respect its band definitions
988 		 */
989 #ifdef CONFIG_CFG80211_REG_DEBUG
990 			if (last_request->initiator ==
991 			    NL80211_REGDOM_SET_BY_COUNTRY_IE)
992 				printk(KERN_DEBUG "cfg80211: Disabling "
993 					"channel %d MHz on %s due to "
994 					"Country IE\n",
995 					chan->center_freq, wiphy_name(wiphy));
996 #endif
997 			flags |= IEEE80211_CHAN_DISABLED;
998 			chan->flags = flags;
999 		}
1000 		return;
1001 	}
1002 
1003 	power_rule = &reg_rule->power_rule;
1004 	freq_range = &reg_rule->freq_range;
1005 
1006 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1007 		bw_flags = IEEE80211_CHAN_NO_HT40;
1008 
1009 	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1010 	    request_wiphy && request_wiphy == wiphy &&
1011 	    request_wiphy->strict_regulatory) {
1012 		/*
1013 		 * This gaurantees the driver's requested regulatory domain
1014 		 * will always be used as a base for further regulatory
1015 		 * settings
1016 		 */
1017 		chan->flags = chan->orig_flags =
1018 			map_regdom_flags(reg_rule->flags) | bw_flags;
1019 		chan->max_antenna_gain = chan->orig_mag =
1020 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1021 		chan->max_power = chan->orig_mpwr =
1022 			(int) MBM_TO_DBM(power_rule->max_eirp);
1023 		return;
1024 	}
1025 
1026 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1027 	chan->max_antenna_gain = min(chan->orig_mag,
1028 		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
1029 	if (chan->orig_mpwr)
1030 		chan->max_power = min(chan->orig_mpwr,
1031 			(int) MBM_TO_DBM(power_rule->max_eirp));
1032 	else
1033 		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1034 }
1035 
1036 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1037 {
1038 	unsigned int i;
1039 	struct ieee80211_supported_band *sband;
1040 
1041 	BUG_ON(!wiphy->bands[band]);
1042 	sband = wiphy->bands[band];
1043 
1044 	for (i = 0; i < sband->n_channels; i++)
1045 		handle_channel(wiphy, band, i);
1046 }
1047 
1048 static bool ignore_reg_update(struct wiphy *wiphy,
1049 			      enum nl80211_reg_initiator initiator)
1050 {
1051 	if (!last_request)
1052 		return true;
1053 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1054 		  wiphy->custom_regulatory)
1055 		return true;
1056 	/*
1057 	 * wiphy->regd will be set once the device has its own
1058 	 * desired regulatory domain set
1059 	 */
1060 	if (wiphy->strict_regulatory && !wiphy->regd &&
1061 	    !is_world_regdom(last_request->alpha2))
1062 		return true;
1063 	return false;
1064 }
1065 
1066 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1067 {
1068 	struct cfg80211_registered_device *rdev;
1069 
1070 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1071 		wiphy_update_regulatory(&rdev->wiphy, initiator);
1072 }
1073 
1074 static void handle_reg_beacon(struct wiphy *wiphy,
1075 			      unsigned int chan_idx,
1076 			      struct reg_beacon *reg_beacon)
1077 {
1078 	struct ieee80211_supported_band *sband;
1079 	struct ieee80211_channel *chan;
1080 	bool channel_changed = false;
1081 	struct ieee80211_channel chan_before;
1082 
1083 	assert_cfg80211_lock();
1084 
1085 	sband = wiphy->bands[reg_beacon->chan.band];
1086 	chan = &sband->channels[chan_idx];
1087 
1088 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1089 		return;
1090 
1091 	if (chan->beacon_found)
1092 		return;
1093 
1094 	chan->beacon_found = true;
1095 
1096 	if (wiphy->disable_beacon_hints)
1097 		return;
1098 
1099 	chan_before.center_freq = chan->center_freq;
1100 	chan_before.flags = chan->flags;
1101 
1102 	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1103 		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1104 		channel_changed = true;
1105 	}
1106 
1107 	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1108 		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1109 		channel_changed = true;
1110 	}
1111 
1112 	if (channel_changed)
1113 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1114 }
1115 
1116 /*
1117  * Called when a scan on a wiphy finds a beacon on
1118  * new channel
1119  */
1120 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1121 				    struct reg_beacon *reg_beacon)
1122 {
1123 	unsigned int i;
1124 	struct ieee80211_supported_band *sband;
1125 
1126 	assert_cfg80211_lock();
1127 
1128 	if (!wiphy->bands[reg_beacon->chan.band])
1129 		return;
1130 
1131 	sband = wiphy->bands[reg_beacon->chan.band];
1132 
1133 	for (i = 0; i < sband->n_channels; i++)
1134 		handle_reg_beacon(wiphy, i, reg_beacon);
1135 }
1136 
1137 /*
1138  * Called upon reg changes or a new wiphy is added
1139  */
1140 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1141 {
1142 	unsigned int i;
1143 	struct ieee80211_supported_band *sband;
1144 	struct reg_beacon *reg_beacon;
1145 
1146 	assert_cfg80211_lock();
1147 
1148 	if (list_empty(&reg_beacon_list))
1149 		return;
1150 
1151 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1152 		if (!wiphy->bands[reg_beacon->chan.band])
1153 			continue;
1154 		sband = wiphy->bands[reg_beacon->chan.band];
1155 		for (i = 0; i < sband->n_channels; i++)
1156 			handle_reg_beacon(wiphy, i, reg_beacon);
1157 	}
1158 }
1159 
1160 static bool reg_is_world_roaming(struct wiphy *wiphy)
1161 {
1162 	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1163 	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1164 		return true;
1165 	if (last_request &&
1166 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1167 	    wiphy->custom_regulatory)
1168 		return true;
1169 	return false;
1170 }
1171 
1172 /* Reap the advantages of previously found beacons */
1173 static void reg_process_beacons(struct wiphy *wiphy)
1174 {
1175 	/*
1176 	 * Means we are just firing up cfg80211, so no beacons would
1177 	 * have been processed yet.
1178 	 */
1179 	if (!last_request)
1180 		return;
1181 	if (!reg_is_world_roaming(wiphy))
1182 		return;
1183 	wiphy_update_beacon_reg(wiphy);
1184 }
1185 
1186 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1187 {
1188 	if (!chan)
1189 		return true;
1190 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1191 		return true;
1192 	/* This would happen when regulatory rules disallow HT40 completely */
1193 	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1194 		return true;
1195 	return false;
1196 }
1197 
1198 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1199 					 enum ieee80211_band band,
1200 					 unsigned int chan_idx)
1201 {
1202 	struct ieee80211_supported_band *sband;
1203 	struct ieee80211_channel *channel;
1204 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1205 	unsigned int i;
1206 
1207 	assert_cfg80211_lock();
1208 
1209 	sband = wiphy->bands[band];
1210 	BUG_ON(chan_idx >= sband->n_channels);
1211 	channel = &sband->channels[chan_idx];
1212 
1213 	if (is_ht40_not_allowed(channel)) {
1214 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1215 		return;
1216 	}
1217 
1218 	/*
1219 	 * We need to ensure the extension channels exist to
1220 	 * be able to use HT40- or HT40+, this finds them (or not)
1221 	 */
1222 	for (i = 0; i < sband->n_channels; i++) {
1223 		struct ieee80211_channel *c = &sband->channels[i];
1224 		if (c->center_freq == (channel->center_freq - 20))
1225 			channel_before = c;
1226 		if (c->center_freq == (channel->center_freq + 20))
1227 			channel_after = c;
1228 	}
1229 
1230 	/*
1231 	 * Please note that this assumes target bandwidth is 20 MHz,
1232 	 * if that ever changes we also need to change the below logic
1233 	 * to include that as well.
1234 	 */
1235 	if (is_ht40_not_allowed(channel_before))
1236 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1237 	else
1238 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1239 
1240 	if (is_ht40_not_allowed(channel_after))
1241 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1242 	else
1243 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1244 }
1245 
1246 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1247 				      enum ieee80211_band band)
1248 {
1249 	unsigned int i;
1250 	struct ieee80211_supported_band *sband;
1251 
1252 	BUG_ON(!wiphy->bands[band]);
1253 	sband = wiphy->bands[band];
1254 
1255 	for (i = 0; i < sband->n_channels; i++)
1256 		reg_process_ht_flags_channel(wiphy, band, i);
1257 }
1258 
1259 static void reg_process_ht_flags(struct wiphy *wiphy)
1260 {
1261 	enum ieee80211_band band;
1262 
1263 	if (!wiphy)
1264 		return;
1265 
1266 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1267 		if (wiphy->bands[band])
1268 			reg_process_ht_flags_band(wiphy, band);
1269 	}
1270 
1271 }
1272 
1273 void wiphy_update_regulatory(struct wiphy *wiphy,
1274 			     enum nl80211_reg_initiator initiator)
1275 {
1276 	enum ieee80211_band band;
1277 
1278 	if (ignore_reg_update(wiphy, initiator))
1279 		goto out;
1280 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1281 		if (wiphy->bands[band])
1282 			handle_band(wiphy, band);
1283 	}
1284 out:
1285 	reg_process_beacons(wiphy);
1286 	reg_process_ht_flags(wiphy);
1287 	if (wiphy->reg_notifier)
1288 		wiphy->reg_notifier(wiphy, last_request);
1289 }
1290 
1291 static void handle_channel_custom(struct wiphy *wiphy,
1292 				  enum ieee80211_band band,
1293 				  unsigned int chan_idx,
1294 				  const struct ieee80211_regdomain *regd)
1295 {
1296 	int r;
1297 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
1298 	u32 bw_flags = 0;
1299 	const struct ieee80211_reg_rule *reg_rule = NULL;
1300 	const struct ieee80211_power_rule *power_rule = NULL;
1301 	const struct ieee80211_freq_range *freq_range = NULL;
1302 	struct ieee80211_supported_band *sband;
1303 	struct ieee80211_channel *chan;
1304 
1305 	assert_reg_lock();
1306 
1307 	sband = wiphy->bands[band];
1308 	BUG_ON(chan_idx >= sband->n_channels);
1309 	chan = &sband->channels[chan_idx];
1310 
1311 	r = freq_reg_info_regd(wiphy,
1312 			       MHZ_TO_KHZ(chan->center_freq),
1313 			       desired_bw_khz,
1314 			       &reg_rule,
1315 			       regd);
1316 
1317 	if (r) {
1318 		chan->flags = IEEE80211_CHAN_DISABLED;
1319 		return;
1320 	}
1321 
1322 	power_rule = &reg_rule->power_rule;
1323 	freq_range = &reg_rule->freq_range;
1324 
1325 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1326 		bw_flags = IEEE80211_CHAN_NO_HT40;
1327 
1328 	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1329 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1330 	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1331 }
1332 
1333 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1334 			       const struct ieee80211_regdomain *regd)
1335 {
1336 	unsigned int i;
1337 	struct ieee80211_supported_band *sband;
1338 
1339 	BUG_ON(!wiphy->bands[band]);
1340 	sband = wiphy->bands[band];
1341 
1342 	for (i = 0; i < sband->n_channels; i++)
1343 		handle_channel_custom(wiphy, band, i, regd);
1344 }
1345 
1346 /* Used by drivers prior to wiphy registration */
1347 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1348 				   const struct ieee80211_regdomain *regd)
1349 {
1350 	enum ieee80211_band band;
1351 	unsigned int bands_set = 0;
1352 
1353 	mutex_lock(&reg_mutex);
1354 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1355 		if (!wiphy->bands[band])
1356 			continue;
1357 		handle_band_custom(wiphy, band, regd);
1358 		bands_set++;
1359 	}
1360 	mutex_unlock(&reg_mutex);
1361 
1362 	/*
1363 	 * no point in calling this if it won't have any effect
1364 	 * on your device's supportd bands.
1365 	 */
1366 	WARN_ON(!bands_set);
1367 }
1368 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1369 
1370 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
1371 			 const struct ieee80211_regdomain *src_regd)
1372 {
1373 	struct ieee80211_regdomain *regd;
1374 	int size_of_regd = 0;
1375 	unsigned int i;
1376 
1377 	size_of_regd = sizeof(struct ieee80211_regdomain) +
1378 	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
1379 
1380 	regd = kzalloc(size_of_regd, GFP_KERNEL);
1381 	if (!regd)
1382 		return -ENOMEM;
1383 
1384 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
1385 
1386 	for (i = 0; i < src_regd->n_reg_rules; i++)
1387 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
1388 			sizeof(struct ieee80211_reg_rule));
1389 
1390 	*dst_regd = regd;
1391 	return 0;
1392 }
1393 
1394 /*
1395  * Return value which can be used by ignore_request() to indicate
1396  * it has been determined we should intersect two regulatory domains
1397  */
1398 #define REG_INTERSECT	1
1399 
1400 /* This has the logic which determines when a new request
1401  * should be ignored. */
1402 static int ignore_request(struct wiphy *wiphy,
1403 			  struct regulatory_request *pending_request)
1404 {
1405 	struct wiphy *last_wiphy = NULL;
1406 
1407 	assert_cfg80211_lock();
1408 
1409 	/* All initial requests are respected */
1410 	if (!last_request)
1411 		return 0;
1412 
1413 	switch (pending_request->initiator) {
1414 	case NL80211_REGDOM_SET_BY_CORE:
1415 		return -EINVAL;
1416 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1417 
1418 		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1419 
1420 		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1421 			return -EINVAL;
1422 		if (last_request->initiator ==
1423 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1424 			if (last_wiphy != wiphy) {
1425 				/*
1426 				 * Two cards with two APs claiming different
1427 				 * Country IE alpha2s. We could
1428 				 * intersect them, but that seems unlikely
1429 				 * to be correct. Reject second one for now.
1430 				 */
1431 				if (regdom_changes(pending_request->alpha2))
1432 					return -EOPNOTSUPP;
1433 				return -EALREADY;
1434 			}
1435 			/*
1436 			 * Two consecutive Country IE hints on the same wiphy.
1437 			 * This should be picked up early by the driver/stack
1438 			 */
1439 			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1440 				return 0;
1441 			return -EALREADY;
1442 		}
1443 		return REG_INTERSECT;
1444 	case NL80211_REGDOM_SET_BY_DRIVER:
1445 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1446 			if (is_old_static_regdom(cfg80211_regdomain))
1447 				return 0;
1448 			if (regdom_changes(pending_request->alpha2))
1449 				return 0;
1450 			return -EALREADY;
1451 		}
1452 
1453 		/*
1454 		 * This would happen if you unplug and plug your card
1455 		 * back in or if you add a new device for which the previously
1456 		 * loaded card also agrees on the regulatory domain.
1457 		 */
1458 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1459 		    !regdom_changes(pending_request->alpha2))
1460 			return -EALREADY;
1461 
1462 		return REG_INTERSECT;
1463 	case NL80211_REGDOM_SET_BY_USER:
1464 		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1465 			return REG_INTERSECT;
1466 		/*
1467 		 * If the user knows better the user should set the regdom
1468 		 * to their country before the IE is picked up
1469 		 */
1470 		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1471 			  last_request->intersect)
1472 			return -EOPNOTSUPP;
1473 		/*
1474 		 * Process user requests only after previous user/driver/core
1475 		 * requests have been processed
1476 		 */
1477 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1478 		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1479 		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1480 			if (regdom_changes(last_request->alpha2))
1481 				return -EAGAIN;
1482 		}
1483 
1484 		if (!is_old_static_regdom(cfg80211_regdomain) &&
1485 		    !regdom_changes(pending_request->alpha2))
1486 			return -EALREADY;
1487 
1488 		return 0;
1489 	}
1490 
1491 	return -EINVAL;
1492 }
1493 
1494 /**
1495  * __regulatory_hint - hint to the wireless core a regulatory domain
1496  * @wiphy: if the hint comes from country information from an AP, this
1497  *	is required to be set to the wiphy that received the information
1498  * @pending_request: the regulatory request currently being processed
1499  *
1500  * The Wireless subsystem can use this function to hint to the wireless core
1501  * what it believes should be the current regulatory domain.
1502  *
1503  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1504  * already been set or other standard error codes.
1505  *
1506  * Caller must hold &cfg80211_mutex and &reg_mutex
1507  */
1508 static int __regulatory_hint(struct wiphy *wiphy,
1509 			     struct regulatory_request *pending_request)
1510 {
1511 	bool intersect = false;
1512 	int r = 0;
1513 
1514 	assert_cfg80211_lock();
1515 
1516 	r = ignore_request(wiphy, pending_request);
1517 
1518 	if (r == REG_INTERSECT) {
1519 		if (pending_request->initiator ==
1520 		    NL80211_REGDOM_SET_BY_DRIVER) {
1521 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1522 			if (r) {
1523 				kfree(pending_request);
1524 				return r;
1525 			}
1526 		}
1527 		intersect = true;
1528 	} else if (r) {
1529 		/*
1530 		 * If the regulatory domain being requested by the
1531 		 * driver has already been set just copy it to the
1532 		 * wiphy
1533 		 */
1534 		if (r == -EALREADY &&
1535 		    pending_request->initiator ==
1536 		    NL80211_REGDOM_SET_BY_DRIVER) {
1537 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1538 			if (r) {
1539 				kfree(pending_request);
1540 				return r;
1541 			}
1542 			r = -EALREADY;
1543 			goto new_request;
1544 		}
1545 		kfree(pending_request);
1546 		return r;
1547 	}
1548 
1549 new_request:
1550 	kfree(last_request);
1551 
1552 	last_request = pending_request;
1553 	last_request->intersect = intersect;
1554 
1555 	pending_request = NULL;
1556 
1557 	/* When r == REG_INTERSECT we do need to call CRDA */
1558 	if (r < 0) {
1559 		/*
1560 		 * Since CRDA will not be called in this case as we already
1561 		 * have applied the requested regulatory domain before we just
1562 		 * inform userspace we have processed the request
1563 		 */
1564 		if (r == -EALREADY)
1565 			nl80211_send_reg_change_event(last_request);
1566 		return r;
1567 	}
1568 
1569 	return call_crda(last_request->alpha2);
1570 }
1571 
1572 /* This processes *all* regulatory hints */
1573 static void reg_process_hint(struct regulatory_request *reg_request)
1574 {
1575 	int r = 0;
1576 	struct wiphy *wiphy = NULL;
1577 
1578 	BUG_ON(!reg_request->alpha2);
1579 
1580 	mutex_lock(&cfg80211_mutex);
1581 	mutex_lock(&reg_mutex);
1582 
1583 	if (wiphy_idx_valid(reg_request->wiphy_idx))
1584 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1585 
1586 	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1587 	    !wiphy) {
1588 		kfree(reg_request);
1589 		goto out;
1590 	}
1591 
1592 	r = __regulatory_hint(wiphy, reg_request);
1593 	/* This is required so that the orig_* parameters are saved */
1594 	if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
1595 		wiphy_update_regulatory(wiphy, reg_request->initiator);
1596 out:
1597 	mutex_unlock(&reg_mutex);
1598 	mutex_unlock(&cfg80211_mutex);
1599 }
1600 
1601 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1602 static void reg_process_pending_hints(void)
1603 	{
1604 	struct regulatory_request *reg_request;
1605 
1606 	spin_lock(&reg_requests_lock);
1607 	while (!list_empty(&reg_requests_list)) {
1608 		reg_request = list_first_entry(&reg_requests_list,
1609 					       struct regulatory_request,
1610 					       list);
1611 		list_del_init(&reg_request->list);
1612 
1613 		spin_unlock(&reg_requests_lock);
1614 		reg_process_hint(reg_request);
1615 		spin_lock(&reg_requests_lock);
1616 	}
1617 	spin_unlock(&reg_requests_lock);
1618 }
1619 
1620 /* Processes beacon hints -- this has nothing to do with country IEs */
1621 static void reg_process_pending_beacon_hints(void)
1622 {
1623 	struct cfg80211_registered_device *rdev;
1624 	struct reg_beacon *pending_beacon, *tmp;
1625 
1626 	/*
1627 	 * No need to hold the reg_mutex here as we just touch wiphys
1628 	 * and do not read or access regulatory variables.
1629 	 */
1630 	mutex_lock(&cfg80211_mutex);
1631 
1632 	/* This goes through the _pending_ beacon list */
1633 	spin_lock_bh(&reg_pending_beacons_lock);
1634 
1635 	if (list_empty(&reg_pending_beacons)) {
1636 		spin_unlock_bh(&reg_pending_beacons_lock);
1637 		goto out;
1638 	}
1639 
1640 	list_for_each_entry_safe(pending_beacon, tmp,
1641 				 &reg_pending_beacons, list) {
1642 
1643 		list_del_init(&pending_beacon->list);
1644 
1645 		/* Applies the beacon hint to current wiphys */
1646 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1647 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1648 
1649 		/* Remembers the beacon hint for new wiphys or reg changes */
1650 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
1651 	}
1652 
1653 	spin_unlock_bh(&reg_pending_beacons_lock);
1654 out:
1655 	mutex_unlock(&cfg80211_mutex);
1656 }
1657 
1658 static void reg_todo(struct work_struct *work)
1659 {
1660 	reg_process_pending_hints();
1661 	reg_process_pending_beacon_hints();
1662 }
1663 
1664 static DECLARE_WORK(reg_work, reg_todo);
1665 
1666 static void queue_regulatory_request(struct regulatory_request *request)
1667 {
1668 	spin_lock(&reg_requests_lock);
1669 	list_add_tail(&request->list, &reg_requests_list);
1670 	spin_unlock(&reg_requests_lock);
1671 
1672 	schedule_work(&reg_work);
1673 }
1674 
1675 /* Core regulatory hint -- happens once during cfg80211_init() */
1676 static int regulatory_hint_core(const char *alpha2)
1677 {
1678 	struct regulatory_request *request;
1679 
1680 	BUG_ON(last_request);
1681 
1682 	request = kzalloc(sizeof(struct regulatory_request),
1683 			  GFP_KERNEL);
1684 	if (!request)
1685 		return -ENOMEM;
1686 
1687 	request->alpha2[0] = alpha2[0];
1688 	request->alpha2[1] = alpha2[1];
1689 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1690 
1691 	queue_regulatory_request(request);
1692 
1693 	/*
1694 	 * This ensures last_request is populated once modules
1695 	 * come swinging in and calling regulatory hints and
1696 	 * wiphy_apply_custom_regulatory().
1697 	 */
1698 	flush_scheduled_work();
1699 
1700 	return 0;
1701 }
1702 
1703 /* User hints */
1704 int regulatory_hint_user(const char *alpha2)
1705 {
1706 	struct regulatory_request *request;
1707 
1708 	BUG_ON(!alpha2);
1709 
1710 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1711 	if (!request)
1712 		return -ENOMEM;
1713 
1714 	request->wiphy_idx = WIPHY_IDX_STALE;
1715 	request->alpha2[0] = alpha2[0];
1716 	request->alpha2[1] = alpha2[1];
1717 	request->initiator = NL80211_REGDOM_SET_BY_USER,
1718 
1719 	queue_regulatory_request(request);
1720 
1721 	return 0;
1722 }
1723 
1724 /* Driver hints */
1725 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1726 {
1727 	struct regulatory_request *request;
1728 
1729 	BUG_ON(!alpha2);
1730 	BUG_ON(!wiphy);
1731 
1732 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1733 	if (!request)
1734 		return -ENOMEM;
1735 
1736 	request->wiphy_idx = get_wiphy_idx(wiphy);
1737 
1738 	/* Must have registered wiphy first */
1739 	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1740 
1741 	request->alpha2[0] = alpha2[0];
1742 	request->alpha2[1] = alpha2[1];
1743 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1744 
1745 	queue_regulatory_request(request);
1746 
1747 	return 0;
1748 }
1749 EXPORT_SYMBOL(regulatory_hint);
1750 
1751 /* Caller must hold reg_mutex */
1752 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1753 			u32 country_ie_checksum)
1754 {
1755 	struct wiphy *request_wiphy;
1756 
1757 	assert_reg_lock();
1758 
1759 	if (unlikely(last_request->initiator !=
1760 	    NL80211_REGDOM_SET_BY_COUNTRY_IE))
1761 		return false;
1762 
1763 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1764 
1765 	if (!request_wiphy)
1766 		return false;
1767 
1768 	if (likely(request_wiphy != wiphy))
1769 		return !country_ie_integrity_changes(country_ie_checksum);
1770 	/*
1771 	 * We should not have let these through at this point, they
1772 	 * should have been picked up earlier by the first alpha2 check
1773 	 * on the device
1774 	 */
1775 	if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1776 		return true;
1777 	return false;
1778 }
1779 
1780 /*
1781  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1782  * therefore cannot iterate over the rdev list here.
1783  */
1784 void regulatory_hint_11d(struct wiphy *wiphy,
1785 			u8 *country_ie,
1786 			u8 country_ie_len)
1787 {
1788 	struct ieee80211_regdomain *rd = NULL;
1789 	char alpha2[2];
1790 	u32 checksum = 0;
1791 	enum environment_cap env = ENVIRON_ANY;
1792 	struct regulatory_request *request;
1793 
1794 	mutex_lock(&reg_mutex);
1795 
1796 	if (unlikely(!last_request))
1797 		goto out;
1798 
1799 	/* IE len must be evenly divisible by 2 */
1800 	if (country_ie_len & 0x01)
1801 		goto out;
1802 
1803 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1804 		goto out;
1805 
1806 	/*
1807 	 * Pending country IE processing, this can happen after we
1808 	 * call CRDA and wait for a response if a beacon was received before
1809 	 * we were able to process the last regulatory_hint_11d() call
1810 	 */
1811 	if (country_ie_regdomain)
1812 		goto out;
1813 
1814 	alpha2[0] = country_ie[0];
1815 	alpha2[1] = country_ie[1];
1816 
1817 	if (country_ie[2] == 'I')
1818 		env = ENVIRON_INDOOR;
1819 	else if (country_ie[2] == 'O')
1820 		env = ENVIRON_OUTDOOR;
1821 
1822 	/*
1823 	 * We will run this only upon a successful connection on cfg80211.
1824 	 * We leave conflict resolution to the workqueue, where can hold
1825 	 * cfg80211_mutex.
1826 	 */
1827 	if (likely(last_request->initiator ==
1828 	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1829 	    wiphy_idx_valid(last_request->wiphy_idx)))
1830 		goto out;
1831 
1832 	rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1833 	if (!rd)
1834 		goto out;
1835 
1836 	/*
1837 	 * This will not happen right now but we leave it here for the
1838 	 * the future when we want to add suspend/resume support and having
1839 	 * the user move to another country after doing so, or having the user
1840 	 * move to another AP. Right now we just trust the first AP.
1841 	 *
1842 	 * If we hit this before we add this support we want to be informed of
1843 	 * it as it would indicate a mistake in the current design
1844 	 */
1845 	if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1846 		goto free_rd_out;
1847 
1848 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1849 	if (!request)
1850 		goto free_rd_out;
1851 
1852 	/*
1853 	 * We keep this around for when CRDA comes back with a response so
1854 	 * we can intersect with that
1855 	 */
1856 	country_ie_regdomain = rd;
1857 
1858 	request->wiphy_idx = get_wiphy_idx(wiphy);
1859 	request->alpha2[0] = rd->alpha2[0];
1860 	request->alpha2[1] = rd->alpha2[1];
1861 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1862 	request->country_ie_checksum = checksum;
1863 	request->country_ie_env = env;
1864 
1865 	mutex_unlock(&reg_mutex);
1866 
1867 	queue_regulatory_request(request);
1868 
1869 	return;
1870 
1871 free_rd_out:
1872 	kfree(rd);
1873 out:
1874 	mutex_unlock(&reg_mutex);
1875 }
1876 
1877 static bool freq_is_chan_12_13_14(u16 freq)
1878 {
1879 	if (freq == ieee80211_channel_to_frequency(12) ||
1880 	    freq == ieee80211_channel_to_frequency(13) ||
1881 	    freq == ieee80211_channel_to_frequency(14))
1882 		return true;
1883 	return false;
1884 }
1885 
1886 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1887 				 struct ieee80211_channel *beacon_chan,
1888 				 gfp_t gfp)
1889 {
1890 	struct reg_beacon *reg_beacon;
1891 
1892 	if (likely((beacon_chan->beacon_found ||
1893 	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1894 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1895 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1896 		return 0;
1897 
1898 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1899 	if (!reg_beacon)
1900 		return -ENOMEM;
1901 
1902 #ifdef CONFIG_CFG80211_REG_DEBUG
1903 	printk(KERN_DEBUG "cfg80211: Found new beacon on "
1904 		"frequency: %d MHz (Ch %d) on %s\n",
1905 		beacon_chan->center_freq,
1906 		ieee80211_frequency_to_channel(beacon_chan->center_freq),
1907 		wiphy_name(wiphy));
1908 #endif
1909 	memcpy(&reg_beacon->chan, beacon_chan,
1910 		sizeof(struct ieee80211_channel));
1911 
1912 
1913 	/*
1914 	 * Since we can be called from BH or and non-BH context
1915 	 * we must use spin_lock_bh()
1916 	 */
1917 	spin_lock_bh(&reg_pending_beacons_lock);
1918 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1919 	spin_unlock_bh(&reg_pending_beacons_lock);
1920 
1921 	schedule_work(&reg_work);
1922 
1923 	return 0;
1924 }
1925 
1926 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1927 {
1928 	unsigned int i;
1929 	const struct ieee80211_reg_rule *reg_rule = NULL;
1930 	const struct ieee80211_freq_range *freq_range = NULL;
1931 	const struct ieee80211_power_rule *power_rule = NULL;
1932 
1933 	printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1934 		"(max_antenna_gain, max_eirp)\n");
1935 
1936 	for (i = 0; i < rd->n_reg_rules; i++) {
1937 		reg_rule = &rd->reg_rules[i];
1938 		freq_range = &reg_rule->freq_range;
1939 		power_rule = &reg_rule->power_rule;
1940 
1941 		/*
1942 		 * There may not be documentation for max antenna gain
1943 		 * in certain regions
1944 		 */
1945 		if (power_rule->max_antenna_gain)
1946 			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1947 				"(%d mBi, %d mBm)\n",
1948 				freq_range->start_freq_khz,
1949 				freq_range->end_freq_khz,
1950 				freq_range->max_bandwidth_khz,
1951 				power_rule->max_antenna_gain,
1952 				power_rule->max_eirp);
1953 		else
1954 			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1955 				"(N/A, %d mBm)\n",
1956 				freq_range->start_freq_khz,
1957 				freq_range->end_freq_khz,
1958 				freq_range->max_bandwidth_khz,
1959 				power_rule->max_eirp);
1960 	}
1961 }
1962 
1963 static void print_regdomain(const struct ieee80211_regdomain *rd)
1964 {
1965 
1966 	if (is_intersected_alpha2(rd->alpha2)) {
1967 
1968 		if (last_request->initiator ==
1969 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1970 			struct cfg80211_registered_device *rdev;
1971 			rdev = cfg80211_rdev_by_wiphy_idx(
1972 				last_request->wiphy_idx);
1973 			if (rdev) {
1974 				printk(KERN_INFO "cfg80211: Current regulatory "
1975 					"domain updated by AP to: %c%c\n",
1976 					rdev->country_ie_alpha2[0],
1977 					rdev->country_ie_alpha2[1]);
1978 			} else
1979 				printk(KERN_INFO "cfg80211: Current regulatory "
1980 					"domain intersected: \n");
1981 		} else
1982 				printk(KERN_INFO "cfg80211: Current regulatory "
1983 					"domain intersected: \n");
1984 	} else if (is_world_regdom(rd->alpha2))
1985 		printk(KERN_INFO "cfg80211: World regulatory "
1986 			"domain updated:\n");
1987 	else {
1988 		if (is_unknown_alpha2(rd->alpha2))
1989 			printk(KERN_INFO "cfg80211: Regulatory domain "
1990 				"changed to driver built-in settings "
1991 				"(unknown country)\n");
1992 		else
1993 			printk(KERN_INFO "cfg80211: Regulatory domain "
1994 				"changed to country: %c%c\n",
1995 				rd->alpha2[0], rd->alpha2[1]);
1996 	}
1997 	print_rd_rules(rd);
1998 }
1999 
2000 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2001 {
2002 	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
2003 		rd->alpha2[0], rd->alpha2[1]);
2004 	print_rd_rules(rd);
2005 }
2006 
2007 #ifdef CONFIG_CFG80211_REG_DEBUG
2008 static void reg_country_ie_process_debug(
2009 	const struct ieee80211_regdomain *rd,
2010 	const struct ieee80211_regdomain *country_ie_regdomain,
2011 	const struct ieee80211_regdomain *intersected_rd)
2012 {
2013 	printk(KERN_DEBUG "cfg80211: Received country IE:\n");
2014 	print_regdomain_info(country_ie_regdomain);
2015 	printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
2016 	print_regdomain_info(rd);
2017 	if (intersected_rd) {
2018 		printk(KERN_DEBUG "cfg80211: We intersect both of these "
2019 			"and get:\n");
2020 		print_regdomain_info(intersected_rd);
2021 		return;
2022 	}
2023 	printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
2024 }
2025 #else
2026 static inline void reg_country_ie_process_debug(
2027 	const struct ieee80211_regdomain *rd,
2028 	const struct ieee80211_regdomain *country_ie_regdomain,
2029 	const struct ieee80211_regdomain *intersected_rd)
2030 {
2031 }
2032 #endif
2033 
2034 /* Takes ownership of rd only if it doesn't fail */
2035 static int __set_regdom(const struct ieee80211_regdomain *rd)
2036 {
2037 	const struct ieee80211_regdomain *intersected_rd = NULL;
2038 	struct cfg80211_registered_device *rdev = NULL;
2039 	struct wiphy *request_wiphy;
2040 	/* Some basic sanity checks first */
2041 
2042 	if (is_world_regdom(rd->alpha2)) {
2043 		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2044 			return -EINVAL;
2045 		update_world_regdomain(rd);
2046 		return 0;
2047 	}
2048 
2049 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2050 			!is_unknown_alpha2(rd->alpha2))
2051 		return -EINVAL;
2052 
2053 	if (!last_request)
2054 		return -EINVAL;
2055 
2056 	/*
2057 	 * Lets only bother proceeding on the same alpha2 if the current
2058 	 * rd is non static (it means CRDA was present and was used last)
2059 	 * and the pending request came in from a country IE
2060 	 */
2061 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2062 		/*
2063 		 * If someone else asked us to change the rd lets only bother
2064 		 * checking if the alpha2 changes if CRDA was already called
2065 		 */
2066 		if (!is_old_static_regdom(cfg80211_regdomain) &&
2067 		    !regdom_changes(rd->alpha2))
2068 			return -EINVAL;
2069 	}
2070 
2071 	/*
2072 	 * Now lets set the regulatory domain, update all driver channels
2073 	 * and finally inform them of what we have done, in case they want
2074 	 * to review or adjust their own settings based on their own
2075 	 * internal EEPROM data
2076 	 */
2077 
2078 	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2079 		return -EINVAL;
2080 
2081 	if (!is_valid_rd(rd)) {
2082 		printk(KERN_ERR "cfg80211: Invalid "
2083 			"regulatory domain detected:\n");
2084 		print_regdomain_info(rd);
2085 		return -EINVAL;
2086 	}
2087 
2088 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2089 
2090 	if (!last_request->intersect) {
2091 		int r;
2092 
2093 		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2094 			reset_regdomains();
2095 			cfg80211_regdomain = rd;
2096 			return 0;
2097 		}
2098 
2099 		/*
2100 		 * For a driver hint, lets copy the regulatory domain the
2101 		 * driver wanted to the wiphy to deal with conflicts
2102 		 */
2103 
2104 		/*
2105 		 * Userspace could have sent two replies with only
2106 		 * one kernel request.
2107 		 */
2108 		if (request_wiphy->regd)
2109 			return -EALREADY;
2110 
2111 		r = reg_copy_regd(&request_wiphy->regd, rd);
2112 		if (r)
2113 			return r;
2114 
2115 		reset_regdomains();
2116 		cfg80211_regdomain = rd;
2117 		return 0;
2118 	}
2119 
2120 	/* Intersection requires a bit more work */
2121 
2122 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2123 
2124 		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2125 		if (!intersected_rd)
2126 			return -EINVAL;
2127 
2128 		/*
2129 		 * We can trash what CRDA provided now.
2130 		 * However if a driver requested this specific regulatory
2131 		 * domain we keep it for its private use
2132 		 */
2133 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2134 			request_wiphy->regd = rd;
2135 		else
2136 			kfree(rd);
2137 
2138 		rd = NULL;
2139 
2140 		reset_regdomains();
2141 		cfg80211_regdomain = intersected_rd;
2142 
2143 		return 0;
2144 	}
2145 
2146 	/*
2147 	 * Country IE requests are handled a bit differently, we intersect
2148 	 * the country IE rd with what CRDA believes that country should have
2149 	 */
2150 
2151 	/*
2152 	 * Userspace could have sent two replies with only
2153 	 * one kernel request. By the second reply we would have
2154 	 * already processed and consumed the country_ie_regdomain.
2155 	 */
2156 	if (!country_ie_regdomain)
2157 		return -EALREADY;
2158 	BUG_ON(rd == country_ie_regdomain);
2159 
2160 	/*
2161 	 * Intersect what CRDA returned and our what we
2162 	 * had built from the Country IE received
2163 	 */
2164 
2165 	intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2166 
2167 	reg_country_ie_process_debug(rd,
2168 				     country_ie_regdomain,
2169 				     intersected_rd);
2170 
2171 	kfree(country_ie_regdomain);
2172 	country_ie_regdomain = NULL;
2173 
2174 	if (!intersected_rd)
2175 		return -EINVAL;
2176 
2177 	rdev = wiphy_to_dev(request_wiphy);
2178 
2179 	rdev->country_ie_alpha2[0] = rd->alpha2[0];
2180 	rdev->country_ie_alpha2[1] = rd->alpha2[1];
2181 	rdev->env = last_request->country_ie_env;
2182 
2183 	BUG_ON(intersected_rd == rd);
2184 
2185 	kfree(rd);
2186 	rd = NULL;
2187 
2188 	reset_regdomains();
2189 	cfg80211_regdomain = intersected_rd;
2190 
2191 	return 0;
2192 }
2193 
2194 
2195 /*
2196  * Use this call to set the current regulatory domain. Conflicts with
2197  * multiple drivers can be ironed out later. Caller must've already
2198  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2199  */
2200 int set_regdom(const struct ieee80211_regdomain *rd)
2201 {
2202 	int r;
2203 
2204 	assert_cfg80211_lock();
2205 
2206 	mutex_lock(&reg_mutex);
2207 
2208 	/* Note that this doesn't update the wiphys, this is done below */
2209 	r = __set_regdom(rd);
2210 	if (r) {
2211 		kfree(rd);
2212 		mutex_unlock(&reg_mutex);
2213 		return r;
2214 	}
2215 
2216 	/* This would make this whole thing pointless */
2217 	if (!last_request->intersect)
2218 		BUG_ON(rd != cfg80211_regdomain);
2219 
2220 	/* update all wiphys now with the new established regulatory domain */
2221 	update_all_wiphy_regulatory(last_request->initiator);
2222 
2223 	print_regdomain(cfg80211_regdomain);
2224 
2225 	nl80211_send_reg_change_event(last_request);
2226 
2227 	mutex_unlock(&reg_mutex);
2228 
2229 	return r;
2230 }
2231 
2232 /* Caller must hold cfg80211_mutex */
2233 void reg_device_remove(struct wiphy *wiphy)
2234 {
2235 	struct wiphy *request_wiphy = NULL;
2236 
2237 	assert_cfg80211_lock();
2238 
2239 	mutex_lock(&reg_mutex);
2240 
2241 	kfree(wiphy->regd);
2242 
2243 	if (last_request)
2244 		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2245 
2246 	if (!request_wiphy || request_wiphy != wiphy)
2247 		goto out;
2248 
2249 	last_request->wiphy_idx = WIPHY_IDX_STALE;
2250 	last_request->country_ie_env = ENVIRON_ANY;
2251 out:
2252 	mutex_unlock(&reg_mutex);
2253 }
2254 
2255 int regulatory_init(void)
2256 {
2257 	int err = 0;
2258 
2259 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2260 	if (IS_ERR(reg_pdev))
2261 		return PTR_ERR(reg_pdev);
2262 
2263 	spin_lock_init(&reg_requests_lock);
2264 	spin_lock_init(&reg_pending_beacons_lock);
2265 
2266 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
2267 	cfg80211_regdomain = static_regdom(ieee80211_regdom);
2268 
2269 	printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2270 	print_regdomain_info(cfg80211_regdomain);
2271 #else
2272 	cfg80211_regdomain = cfg80211_world_regdom;
2273 
2274 #endif
2275 	/* We always try to get an update for the static regdomain */
2276 	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2277 	if (err) {
2278 		if (err == -ENOMEM)
2279 			return err;
2280 		/*
2281 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
2282 		 * memory which is handled and propagated appropriately above
2283 		 * but it can also fail during a netlink_broadcast() or during
2284 		 * early boot for call_usermodehelper(). For now treat these
2285 		 * errors as non-fatal.
2286 		 */
2287 		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2288 			"to call CRDA during init");
2289 #ifdef CONFIG_CFG80211_REG_DEBUG
2290 		/* We want to find out exactly why when debugging */
2291 		WARN_ON(err);
2292 #endif
2293 	}
2294 
2295 	/*
2296 	 * Finally, if the user set the module parameter treat it
2297 	 * as a user hint.
2298 	 */
2299 	if (!is_world_regdom(ieee80211_regdom))
2300 		regulatory_hint_user(ieee80211_regdom);
2301 
2302 	return 0;
2303 }
2304 
2305 void regulatory_exit(void)
2306 {
2307 	struct regulatory_request *reg_request, *tmp;
2308 	struct reg_beacon *reg_beacon, *btmp;
2309 
2310 	cancel_work_sync(&reg_work);
2311 
2312 	mutex_lock(&cfg80211_mutex);
2313 	mutex_lock(&reg_mutex);
2314 
2315 	reset_regdomains();
2316 
2317 	kfree(country_ie_regdomain);
2318 	country_ie_regdomain = NULL;
2319 
2320 	kfree(last_request);
2321 
2322 	platform_device_unregister(reg_pdev);
2323 
2324 	spin_lock_bh(&reg_pending_beacons_lock);
2325 	if (!list_empty(&reg_pending_beacons)) {
2326 		list_for_each_entry_safe(reg_beacon, btmp,
2327 					 &reg_pending_beacons, list) {
2328 			list_del(&reg_beacon->list);
2329 			kfree(reg_beacon);
2330 		}
2331 	}
2332 	spin_unlock_bh(&reg_pending_beacons_lock);
2333 
2334 	if (!list_empty(&reg_beacon_list)) {
2335 		list_for_each_entry_safe(reg_beacon, btmp,
2336 					 &reg_beacon_list, list) {
2337 			list_del(&reg_beacon->list);
2338 			kfree(reg_beacon);
2339 		}
2340 	}
2341 
2342 	spin_lock(&reg_requests_lock);
2343 	if (!list_empty(&reg_requests_list)) {
2344 		list_for_each_entry_safe(reg_request, tmp,
2345 					 &reg_requests_list, list) {
2346 			list_del(&reg_request->list);
2347 			kfree(reg_request);
2348 		}
2349 	}
2350 	spin_unlock(&reg_requests_lock);
2351 
2352 	mutex_unlock(&reg_mutex);
2353 	mutex_unlock(&cfg80211_mutex);
2354 }
2355