1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static spinlock_t reg_indoor_lock; 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user); 135 136 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 137 { 138 return rcu_dereference_rtnl(cfg80211_regdomain); 139 } 140 141 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 142 { 143 return rcu_dereference_rtnl(wiphy->regd); 144 } 145 146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 147 { 148 switch (dfs_region) { 149 case NL80211_DFS_UNSET: 150 return "unset"; 151 case NL80211_DFS_FCC: 152 return "FCC"; 153 case NL80211_DFS_ETSI: 154 return "ETSI"; 155 case NL80211_DFS_JP: 156 return "JP"; 157 } 158 return "Unknown"; 159 } 160 161 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 162 { 163 const struct ieee80211_regdomain *regd = NULL; 164 const struct ieee80211_regdomain *wiphy_regd = NULL; 165 166 regd = get_cfg80211_regdom(); 167 if (!wiphy) 168 goto out; 169 170 wiphy_regd = get_wiphy_regdom(wiphy); 171 if (!wiphy_regd) 172 goto out; 173 174 if (wiphy_regd->dfs_region == regd->dfs_region) 175 goto out; 176 177 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 178 dev_name(&wiphy->dev), 179 reg_dfs_region_str(wiphy_regd->dfs_region), 180 reg_dfs_region_str(regd->dfs_region)); 181 182 out: 183 return regd->dfs_region; 184 } 185 186 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 187 { 188 if (!r) 189 return; 190 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 191 } 192 193 static struct regulatory_request *get_last_request(void) 194 { 195 return rcu_dereference_rtnl(last_request); 196 } 197 198 /* Used to queue up regulatory hints */ 199 static LIST_HEAD(reg_requests_list); 200 static spinlock_t reg_requests_lock; 201 202 /* Used to queue up beacon hints for review */ 203 static LIST_HEAD(reg_pending_beacons); 204 static spinlock_t reg_pending_beacons_lock; 205 206 /* Used to keep track of processed beacon hints */ 207 static LIST_HEAD(reg_beacon_list); 208 209 struct reg_beacon { 210 struct list_head list; 211 struct ieee80211_channel chan; 212 }; 213 214 static void reg_check_chans_work(struct work_struct *work); 215 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 216 217 static void reg_todo(struct work_struct *work); 218 static DECLARE_WORK(reg_work, reg_todo); 219 220 /* We keep a static world regulatory domain in case of the absence of CRDA */ 221 static const struct ieee80211_regdomain world_regdom = { 222 .n_reg_rules = 8, 223 .alpha2 = "00", 224 .reg_rules = { 225 /* IEEE 802.11b/g, channels 1..11 */ 226 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 227 /* IEEE 802.11b/g, channels 12..13. */ 228 REG_RULE(2467-10, 2472+10, 20, 6, 20, 229 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 230 /* IEEE 802.11 channel 14 - Only JP enables 231 * this and for 802.11b only */ 232 REG_RULE(2484-10, 2484+10, 20, 6, 20, 233 NL80211_RRF_NO_IR | 234 NL80211_RRF_NO_OFDM), 235 /* IEEE 802.11a, channel 36..48 */ 236 REG_RULE(5180-10, 5240+10, 80, 6, 20, 237 NL80211_RRF_NO_IR | 238 NL80211_RRF_AUTO_BW), 239 240 /* IEEE 802.11a, channel 52..64 - DFS required */ 241 REG_RULE(5260-10, 5320+10, 80, 6, 20, 242 NL80211_RRF_NO_IR | 243 NL80211_RRF_AUTO_BW | 244 NL80211_RRF_DFS), 245 246 /* IEEE 802.11a, channel 100..144 - DFS required */ 247 REG_RULE(5500-10, 5720+10, 160, 6, 20, 248 NL80211_RRF_NO_IR | 249 NL80211_RRF_DFS), 250 251 /* IEEE 802.11a, channel 149..165 */ 252 REG_RULE(5745-10, 5825+10, 80, 6, 20, 253 NL80211_RRF_NO_IR), 254 255 /* IEEE 802.11ad (60GHz), channels 1..3 */ 256 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 257 } 258 }; 259 260 /* protected by RTNL */ 261 static const struct ieee80211_regdomain *cfg80211_world_regdom = 262 &world_regdom; 263 264 static char *ieee80211_regdom = "00"; 265 static char user_alpha2[2]; 266 267 module_param(ieee80211_regdom, charp, 0444); 268 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 269 270 static void reg_free_request(struct regulatory_request *request) 271 { 272 if (request == &core_request_world) 273 return; 274 275 if (request != get_last_request()) 276 kfree(request); 277 } 278 279 static void reg_free_last_request(void) 280 { 281 struct regulatory_request *lr = get_last_request(); 282 283 if (lr != &core_request_world && lr) 284 kfree_rcu(lr, rcu_head); 285 } 286 287 static void reg_update_last_request(struct regulatory_request *request) 288 { 289 struct regulatory_request *lr; 290 291 lr = get_last_request(); 292 if (lr == request) 293 return; 294 295 reg_free_last_request(); 296 rcu_assign_pointer(last_request, request); 297 } 298 299 static void reset_regdomains(bool full_reset, 300 const struct ieee80211_regdomain *new_regdom) 301 { 302 const struct ieee80211_regdomain *r; 303 304 ASSERT_RTNL(); 305 306 r = get_cfg80211_regdom(); 307 308 /* avoid freeing static information or freeing something twice */ 309 if (r == cfg80211_world_regdom) 310 r = NULL; 311 if (cfg80211_world_regdom == &world_regdom) 312 cfg80211_world_regdom = NULL; 313 if (r == &world_regdom) 314 r = NULL; 315 316 rcu_free_regdom(r); 317 rcu_free_regdom(cfg80211_world_regdom); 318 319 cfg80211_world_regdom = &world_regdom; 320 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 321 322 if (!full_reset) 323 return; 324 325 reg_update_last_request(&core_request_world); 326 } 327 328 /* 329 * Dynamic world regulatory domain requested by the wireless 330 * core upon initialization 331 */ 332 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 333 { 334 struct regulatory_request *lr; 335 336 lr = get_last_request(); 337 338 WARN_ON(!lr); 339 340 reset_regdomains(false, rd); 341 342 cfg80211_world_regdom = rd; 343 } 344 345 bool is_world_regdom(const char *alpha2) 346 { 347 if (!alpha2) 348 return false; 349 return alpha2[0] == '0' && alpha2[1] == '0'; 350 } 351 352 static bool is_alpha2_set(const char *alpha2) 353 { 354 if (!alpha2) 355 return false; 356 return alpha2[0] && alpha2[1]; 357 } 358 359 static bool is_unknown_alpha2(const char *alpha2) 360 { 361 if (!alpha2) 362 return false; 363 /* 364 * Special case where regulatory domain was built by driver 365 * but a specific alpha2 cannot be determined 366 */ 367 return alpha2[0] == '9' && alpha2[1] == '9'; 368 } 369 370 static bool is_intersected_alpha2(const char *alpha2) 371 { 372 if (!alpha2) 373 return false; 374 /* 375 * Special case where regulatory domain is the 376 * result of an intersection between two regulatory domain 377 * structures 378 */ 379 return alpha2[0] == '9' && alpha2[1] == '8'; 380 } 381 382 static bool is_an_alpha2(const char *alpha2) 383 { 384 if (!alpha2) 385 return false; 386 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 387 } 388 389 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 390 { 391 if (!alpha2_x || !alpha2_y) 392 return false; 393 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 394 } 395 396 static bool regdom_changes(const char *alpha2) 397 { 398 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 399 400 if (!r) 401 return true; 402 return !alpha2_equal(r->alpha2, alpha2); 403 } 404 405 /* 406 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 407 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 408 * has ever been issued. 409 */ 410 static bool is_user_regdom_saved(void) 411 { 412 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 413 return false; 414 415 /* This would indicate a mistake on the design */ 416 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 417 "Unexpected user alpha2: %c%c\n", 418 user_alpha2[0], user_alpha2[1])) 419 return false; 420 421 return true; 422 } 423 424 static const struct ieee80211_regdomain * 425 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 426 { 427 struct ieee80211_regdomain *regd; 428 int size_of_regd; 429 unsigned int i; 430 431 size_of_regd = 432 sizeof(struct ieee80211_regdomain) + 433 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); 434 435 regd = kzalloc(size_of_regd, GFP_KERNEL); 436 if (!regd) 437 return ERR_PTR(-ENOMEM); 438 439 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 440 441 for (i = 0; i < src_regd->n_reg_rules; i++) 442 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 443 sizeof(struct ieee80211_reg_rule)); 444 445 return regd; 446 } 447 448 struct reg_regdb_apply_request { 449 struct list_head list; 450 const struct ieee80211_regdomain *regdom; 451 }; 452 453 static LIST_HEAD(reg_regdb_apply_list); 454 static DEFINE_MUTEX(reg_regdb_apply_mutex); 455 456 static void reg_regdb_apply(struct work_struct *work) 457 { 458 struct reg_regdb_apply_request *request; 459 460 rtnl_lock(); 461 462 mutex_lock(®_regdb_apply_mutex); 463 while (!list_empty(®_regdb_apply_list)) { 464 request = list_first_entry(®_regdb_apply_list, 465 struct reg_regdb_apply_request, 466 list); 467 list_del(&request->list); 468 469 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 470 kfree(request); 471 } 472 mutex_unlock(®_regdb_apply_mutex); 473 474 rtnl_unlock(); 475 } 476 477 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 478 479 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 480 { 481 struct reg_regdb_apply_request *request; 482 483 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 484 if (!request) { 485 kfree(regdom); 486 return -ENOMEM; 487 } 488 489 request->regdom = regdom; 490 491 mutex_lock(®_regdb_apply_mutex); 492 list_add_tail(&request->list, ®_regdb_apply_list); 493 mutex_unlock(®_regdb_apply_mutex); 494 495 schedule_work(®_regdb_work); 496 return 0; 497 } 498 499 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 500 /* Max number of consecutive attempts to communicate with CRDA */ 501 #define REG_MAX_CRDA_TIMEOUTS 10 502 503 static u32 reg_crda_timeouts; 504 505 static void crda_timeout_work(struct work_struct *work); 506 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 507 508 static void crda_timeout_work(struct work_struct *work) 509 { 510 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 511 rtnl_lock(); 512 reg_crda_timeouts++; 513 restore_regulatory_settings(true); 514 rtnl_unlock(); 515 } 516 517 static void cancel_crda_timeout(void) 518 { 519 cancel_delayed_work(&crda_timeout); 520 } 521 522 static void cancel_crda_timeout_sync(void) 523 { 524 cancel_delayed_work_sync(&crda_timeout); 525 } 526 527 static void reset_crda_timeouts(void) 528 { 529 reg_crda_timeouts = 0; 530 } 531 532 /* 533 * This lets us keep regulatory code which is updated on a regulatory 534 * basis in userspace. 535 */ 536 static int call_crda(const char *alpha2) 537 { 538 char country[12]; 539 char *env[] = { country, NULL }; 540 int ret; 541 542 snprintf(country, sizeof(country), "COUNTRY=%c%c", 543 alpha2[0], alpha2[1]); 544 545 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 546 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 547 return -EINVAL; 548 } 549 550 if (!is_world_regdom((char *) alpha2)) 551 pr_debug("Calling CRDA for country: %c%c\n", 552 alpha2[0], alpha2[1]); 553 else 554 pr_debug("Calling CRDA to update world regulatory domain\n"); 555 556 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 557 if (ret) 558 return ret; 559 560 queue_delayed_work(system_power_efficient_wq, 561 &crda_timeout, msecs_to_jiffies(3142)); 562 return 0; 563 } 564 #else 565 static inline void cancel_crda_timeout(void) {} 566 static inline void cancel_crda_timeout_sync(void) {} 567 static inline void reset_crda_timeouts(void) {} 568 static inline int call_crda(const char *alpha2) 569 { 570 return -ENODATA; 571 } 572 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 573 574 /* code to directly load a firmware database through request_firmware */ 575 static const struct fwdb_header *regdb; 576 577 struct fwdb_country { 578 u8 alpha2[2]; 579 __be16 coll_ptr; 580 /* this struct cannot be extended */ 581 } __packed __aligned(4); 582 583 struct fwdb_collection { 584 u8 len; 585 u8 n_rules; 586 u8 dfs_region; 587 /* no optional data yet */ 588 /* aligned to 2, then followed by __be16 array of rule pointers */ 589 } __packed __aligned(4); 590 591 enum fwdb_flags { 592 FWDB_FLAG_NO_OFDM = BIT(0), 593 FWDB_FLAG_NO_OUTDOOR = BIT(1), 594 FWDB_FLAG_DFS = BIT(2), 595 FWDB_FLAG_NO_IR = BIT(3), 596 FWDB_FLAG_AUTO_BW = BIT(4), 597 }; 598 599 struct fwdb_wmm_ac { 600 u8 ecw; 601 u8 aifsn; 602 __be16 cot; 603 } __packed; 604 605 struct fwdb_wmm_rule { 606 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 607 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 608 } __packed; 609 610 struct fwdb_rule { 611 u8 len; 612 u8 flags; 613 __be16 max_eirp; 614 __be32 start, end, max_bw; 615 /* start of optional data */ 616 __be16 cac_timeout; 617 __be16 wmm_ptr; 618 } __packed __aligned(4); 619 620 #define FWDB_MAGIC 0x52474442 621 #define FWDB_VERSION 20 622 623 struct fwdb_header { 624 __be32 magic; 625 __be32 version; 626 struct fwdb_country country[]; 627 } __packed __aligned(4); 628 629 static int ecw2cw(int ecw) 630 { 631 return (1 << ecw) - 1; 632 } 633 634 static bool valid_wmm(struct fwdb_wmm_rule *rule) 635 { 636 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 637 int i; 638 639 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 640 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 641 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 642 u8 aifsn = ac[i].aifsn; 643 644 if (cw_min >= cw_max) 645 return false; 646 647 if (aifsn < 1) 648 return false; 649 } 650 651 return true; 652 } 653 654 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 655 { 656 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 657 658 if ((u8 *)rule + sizeof(rule->len) > data + size) 659 return false; 660 661 /* mandatory fields */ 662 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 663 return false; 664 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 665 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 666 struct fwdb_wmm_rule *wmm; 667 668 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 669 return false; 670 671 wmm = (void *)(data + wmm_ptr); 672 673 if (!valid_wmm(wmm)) 674 return false; 675 } 676 return true; 677 } 678 679 static bool valid_country(const u8 *data, unsigned int size, 680 const struct fwdb_country *country) 681 { 682 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 683 struct fwdb_collection *coll = (void *)(data + ptr); 684 __be16 *rules_ptr; 685 unsigned int i; 686 687 /* make sure we can read len/n_rules */ 688 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 689 return false; 690 691 /* make sure base struct and all rules fit */ 692 if ((u8 *)coll + ALIGN(coll->len, 2) + 693 (coll->n_rules * 2) > data + size) 694 return false; 695 696 /* mandatory fields must exist */ 697 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 698 return false; 699 700 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 701 702 for (i = 0; i < coll->n_rules; i++) { 703 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 704 705 if (!valid_rule(data, size, rule_ptr)) 706 return false; 707 } 708 709 return true; 710 } 711 712 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 713 static struct key *builtin_regdb_keys; 714 715 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen) 716 { 717 const u8 *end = p + buflen; 718 size_t plen; 719 key_ref_t key; 720 721 while (p < end) { 722 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more 723 * than 256 bytes in size. 724 */ 725 if (end - p < 4) 726 goto dodgy_cert; 727 if (p[0] != 0x30 && 728 p[1] != 0x82) 729 goto dodgy_cert; 730 plen = (p[2] << 8) | p[3]; 731 plen += 4; 732 if (plen > end - p) 733 goto dodgy_cert; 734 735 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1), 736 "asymmetric", NULL, p, plen, 737 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 738 KEY_USR_VIEW | KEY_USR_READ), 739 KEY_ALLOC_NOT_IN_QUOTA | 740 KEY_ALLOC_BUILT_IN | 741 KEY_ALLOC_BYPASS_RESTRICTION); 742 if (IS_ERR(key)) { 743 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n", 744 PTR_ERR(key)); 745 } else { 746 pr_notice("Loaded X.509 cert '%s'\n", 747 key_ref_to_ptr(key)->description); 748 key_ref_put(key); 749 } 750 p += plen; 751 } 752 753 return; 754 755 dodgy_cert: 756 pr_err("Problem parsing in-kernel X.509 certificate list\n"); 757 } 758 759 static int __init load_builtin_regdb_keys(void) 760 { 761 builtin_regdb_keys = 762 keyring_alloc(".builtin_regdb_keys", 763 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 764 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 765 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 766 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 767 if (IS_ERR(builtin_regdb_keys)) 768 return PTR_ERR(builtin_regdb_keys); 769 770 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 771 772 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 773 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len); 774 #endif 775 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 776 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 777 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len); 778 #endif 779 780 return 0; 781 } 782 783 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 784 { 785 const struct firmware *sig; 786 bool result; 787 788 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 789 return false; 790 791 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 792 builtin_regdb_keys, 793 VERIFYING_UNSPECIFIED_SIGNATURE, 794 NULL, NULL) == 0; 795 796 release_firmware(sig); 797 798 return result; 799 } 800 801 static void free_regdb_keyring(void) 802 { 803 key_put(builtin_regdb_keys); 804 } 805 #else 806 static int load_builtin_regdb_keys(void) 807 { 808 return 0; 809 } 810 811 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 812 { 813 return true; 814 } 815 816 static void free_regdb_keyring(void) 817 { 818 } 819 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 820 821 static bool valid_regdb(const u8 *data, unsigned int size) 822 { 823 const struct fwdb_header *hdr = (void *)data; 824 const struct fwdb_country *country; 825 826 if (size < sizeof(*hdr)) 827 return false; 828 829 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 830 return false; 831 832 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 833 return false; 834 835 if (!regdb_has_valid_signature(data, size)) 836 return false; 837 838 country = &hdr->country[0]; 839 while ((u8 *)(country + 1) <= data + size) { 840 if (!country->coll_ptr) 841 break; 842 if (!valid_country(data, size, country)) 843 return false; 844 country++; 845 } 846 847 return true; 848 } 849 850 static void set_wmm_rule(const struct fwdb_header *db, 851 const struct fwdb_country *country, 852 const struct fwdb_rule *rule, 853 struct ieee80211_reg_rule *rrule) 854 { 855 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 856 struct fwdb_wmm_rule *wmm; 857 unsigned int i, wmm_ptr; 858 859 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 860 wmm = (void *)((u8 *)db + wmm_ptr); 861 862 if (!valid_wmm(wmm)) { 863 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 864 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 865 country->alpha2[0], country->alpha2[1]); 866 return; 867 } 868 869 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 870 wmm_rule->client[i].cw_min = 871 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 872 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 873 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 874 wmm_rule->client[i].cot = 875 1000 * be16_to_cpu(wmm->client[i].cot); 876 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 877 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 878 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 879 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 880 } 881 882 rrule->has_wmm = true; 883 } 884 885 static int __regdb_query_wmm(const struct fwdb_header *db, 886 const struct fwdb_country *country, int freq, 887 struct ieee80211_reg_rule *rrule) 888 { 889 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 890 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 891 int i; 892 893 for (i = 0; i < coll->n_rules; i++) { 894 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 895 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 896 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 897 898 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 899 continue; 900 901 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 902 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 903 set_wmm_rule(db, country, rule, rrule); 904 return 0; 905 } 906 } 907 908 return -ENODATA; 909 } 910 911 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 912 { 913 const struct fwdb_header *hdr = regdb; 914 const struct fwdb_country *country; 915 916 if (!regdb) 917 return -ENODATA; 918 919 if (IS_ERR(regdb)) 920 return PTR_ERR(regdb); 921 922 country = &hdr->country[0]; 923 while (country->coll_ptr) { 924 if (alpha2_equal(alpha2, country->alpha2)) 925 return __regdb_query_wmm(regdb, country, freq, rule); 926 927 country++; 928 } 929 930 return -ENODATA; 931 } 932 EXPORT_SYMBOL(reg_query_regdb_wmm); 933 934 static int regdb_query_country(const struct fwdb_header *db, 935 const struct fwdb_country *country) 936 { 937 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 938 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 939 struct ieee80211_regdomain *regdom; 940 unsigned int size_of_regd, i; 941 942 size_of_regd = sizeof(struct ieee80211_regdomain) + 943 coll->n_rules * sizeof(struct ieee80211_reg_rule); 944 945 regdom = kzalloc(size_of_regd, GFP_KERNEL); 946 if (!regdom) 947 return -ENOMEM; 948 949 regdom->n_reg_rules = coll->n_rules; 950 regdom->alpha2[0] = country->alpha2[0]; 951 regdom->alpha2[1] = country->alpha2[1]; 952 regdom->dfs_region = coll->dfs_region; 953 954 for (i = 0; i < regdom->n_reg_rules; i++) { 955 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 956 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 957 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 958 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 959 960 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 961 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 962 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 963 964 rrule->power_rule.max_antenna_gain = 0; 965 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 966 967 rrule->flags = 0; 968 if (rule->flags & FWDB_FLAG_NO_OFDM) 969 rrule->flags |= NL80211_RRF_NO_OFDM; 970 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 971 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 972 if (rule->flags & FWDB_FLAG_DFS) 973 rrule->flags |= NL80211_RRF_DFS; 974 if (rule->flags & FWDB_FLAG_NO_IR) 975 rrule->flags |= NL80211_RRF_NO_IR; 976 if (rule->flags & FWDB_FLAG_AUTO_BW) 977 rrule->flags |= NL80211_RRF_AUTO_BW; 978 979 rrule->dfs_cac_ms = 0; 980 981 /* handle optional data */ 982 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 983 rrule->dfs_cac_ms = 984 1000 * be16_to_cpu(rule->cac_timeout); 985 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 986 set_wmm_rule(db, country, rule, rrule); 987 } 988 989 return reg_schedule_apply(regdom); 990 } 991 992 static int query_regdb(const char *alpha2) 993 { 994 const struct fwdb_header *hdr = regdb; 995 const struct fwdb_country *country; 996 997 ASSERT_RTNL(); 998 999 if (IS_ERR(regdb)) 1000 return PTR_ERR(regdb); 1001 1002 country = &hdr->country[0]; 1003 while (country->coll_ptr) { 1004 if (alpha2_equal(alpha2, country->alpha2)) 1005 return regdb_query_country(regdb, country); 1006 country++; 1007 } 1008 1009 return -ENODATA; 1010 } 1011 1012 static void regdb_fw_cb(const struct firmware *fw, void *context) 1013 { 1014 int set_error = 0; 1015 bool restore = true; 1016 void *db; 1017 1018 if (!fw) { 1019 pr_info("failed to load regulatory.db\n"); 1020 set_error = -ENODATA; 1021 } else if (!valid_regdb(fw->data, fw->size)) { 1022 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1023 set_error = -EINVAL; 1024 } 1025 1026 rtnl_lock(); 1027 if (WARN_ON(regdb && !IS_ERR(regdb))) { 1028 /* just restore and free new db */ 1029 } else if (set_error) { 1030 regdb = ERR_PTR(set_error); 1031 } else if (fw) { 1032 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1033 if (db) { 1034 regdb = db; 1035 restore = context && query_regdb(context); 1036 } else { 1037 restore = true; 1038 } 1039 } 1040 1041 if (restore) 1042 restore_regulatory_settings(true); 1043 1044 rtnl_unlock(); 1045 1046 kfree(context); 1047 1048 release_firmware(fw); 1049 } 1050 1051 static int query_regdb_file(const char *alpha2) 1052 { 1053 ASSERT_RTNL(); 1054 1055 if (regdb) 1056 return query_regdb(alpha2); 1057 1058 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1059 if (!alpha2) 1060 return -ENOMEM; 1061 1062 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1063 ®_pdev->dev, GFP_KERNEL, 1064 (void *)alpha2, regdb_fw_cb); 1065 } 1066 1067 int reg_reload_regdb(void) 1068 { 1069 const struct firmware *fw; 1070 void *db; 1071 int err; 1072 1073 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1074 if (err) 1075 return err; 1076 1077 if (!valid_regdb(fw->data, fw->size)) { 1078 err = -ENODATA; 1079 goto out; 1080 } 1081 1082 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1083 if (!db) { 1084 err = -ENOMEM; 1085 goto out; 1086 } 1087 1088 rtnl_lock(); 1089 if (!IS_ERR_OR_NULL(regdb)) 1090 kfree(regdb); 1091 regdb = db; 1092 rtnl_unlock(); 1093 1094 out: 1095 release_firmware(fw); 1096 return err; 1097 } 1098 1099 static bool reg_query_database(struct regulatory_request *request) 1100 { 1101 if (query_regdb_file(request->alpha2) == 0) 1102 return true; 1103 1104 if (call_crda(request->alpha2) == 0) 1105 return true; 1106 1107 return false; 1108 } 1109 1110 bool reg_is_valid_request(const char *alpha2) 1111 { 1112 struct regulatory_request *lr = get_last_request(); 1113 1114 if (!lr || lr->processed) 1115 return false; 1116 1117 return alpha2_equal(lr->alpha2, alpha2); 1118 } 1119 1120 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1121 { 1122 struct regulatory_request *lr = get_last_request(); 1123 1124 /* 1125 * Follow the driver's regulatory domain, if present, unless a country 1126 * IE has been processed or a user wants to help complaince further 1127 */ 1128 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1129 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1130 wiphy->regd) 1131 return get_wiphy_regdom(wiphy); 1132 1133 return get_cfg80211_regdom(); 1134 } 1135 1136 static unsigned int 1137 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1138 const struct ieee80211_reg_rule *rule) 1139 { 1140 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1141 const struct ieee80211_freq_range *freq_range_tmp; 1142 const struct ieee80211_reg_rule *tmp; 1143 u32 start_freq, end_freq, idx, no; 1144 1145 for (idx = 0; idx < rd->n_reg_rules; idx++) 1146 if (rule == &rd->reg_rules[idx]) 1147 break; 1148 1149 if (idx == rd->n_reg_rules) 1150 return 0; 1151 1152 /* get start_freq */ 1153 no = idx; 1154 1155 while (no) { 1156 tmp = &rd->reg_rules[--no]; 1157 freq_range_tmp = &tmp->freq_range; 1158 1159 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1160 break; 1161 1162 freq_range = freq_range_tmp; 1163 } 1164 1165 start_freq = freq_range->start_freq_khz; 1166 1167 /* get end_freq */ 1168 freq_range = &rule->freq_range; 1169 no = idx; 1170 1171 while (no < rd->n_reg_rules - 1) { 1172 tmp = &rd->reg_rules[++no]; 1173 freq_range_tmp = &tmp->freq_range; 1174 1175 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1176 break; 1177 1178 freq_range = freq_range_tmp; 1179 } 1180 1181 end_freq = freq_range->end_freq_khz; 1182 1183 return end_freq - start_freq; 1184 } 1185 1186 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1187 const struct ieee80211_reg_rule *rule) 1188 { 1189 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1190 1191 if (rule->flags & NL80211_RRF_NO_160MHZ) 1192 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1193 if (rule->flags & NL80211_RRF_NO_80MHZ) 1194 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1195 1196 /* 1197 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1198 * are not allowed. 1199 */ 1200 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1201 rule->flags & NL80211_RRF_NO_HT40PLUS) 1202 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1203 1204 return bw; 1205 } 1206 1207 /* Sanity check on a regulatory rule */ 1208 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1209 { 1210 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1211 u32 freq_diff; 1212 1213 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1214 return false; 1215 1216 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1217 return false; 1218 1219 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1220 1221 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1222 freq_range->max_bandwidth_khz > freq_diff) 1223 return false; 1224 1225 return true; 1226 } 1227 1228 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1229 { 1230 const struct ieee80211_reg_rule *reg_rule = NULL; 1231 unsigned int i; 1232 1233 if (!rd->n_reg_rules) 1234 return false; 1235 1236 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1237 return false; 1238 1239 for (i = 0; i < rd->n_reg_rules; i++) { 1240 reg_rule = &rd->reg_rules[i]; 1241 if (!is_valid_reg_rule(reg_rule)) 1242 return false; 1243 } 1244 1245 return true; 1246 } 1247 1248 /** 1249 * freq_in_rule_band - tells us if a frequency is in a frequency band 1250 * @freq_range: frequency rule we want to query 1251 * @freq_khz: frequency we are inquiring about 1252 * 1253 * This lets us know if a specific frequency rule is or is not relevant to 1254 * a specific frequency's band. Bands are device specific and artificial 1255 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1256 * however it is safe for now to assume that a frequency rule should not be 1257 * part of a frequency's band if the start freq or end freq are off by more 1258 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the 1259 * 60 GHz band. 1260 * This resolution can be lowered and should be considered as we add 1261 * regulatory rule support for other "bands". 1262 **/ 1263 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1264 u32 freq_khz) 1265 { 1266 #define ONE_GHZ_IN_KHZ 1000000 1267 /* 1268 * From 802.11ad: directional multi-gigabit (DMG): 1269 * Pertaining to operation in a frequency band containing a channel 1270 * with the Channel starting frequency above 45 GHz. 1271 */ 1272 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1273 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1274 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1275 return true; 1276 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1277 return true; 1278 return false; 1279 #undef ONE_GHZ_IN_KHZ 1280 } 1281 1282 /* 1283 * Later on we can perhaps use the more restrictive DFS 1284 * region but we don't have information for that yet so 1285 * for now simply disallow conflicts. 1286 */ 1287 static enum nl80211_dfs_regions 1288 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1289 const enum nl80211_dfs_regions dfs_region2) 1290 { 1291 if (dfs_region1 != dfs_region2) 1292 return NL80211_DFS_UNSET; 1293 return dfs_region1; 1294 } 1295 1296 /* 1297 * Helper for regdom_intersect(), this does the real 1298 * mathematical intersection fun 1299 */ 1300 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1301 const struct ieee80211_regdomain *rd2, 1302 const struct ieee80211_reg_rule *rule1, 1303 const struct ieee80211_reg_rule *rule2, 1304 struct ieee80211_reg_rule *intersected_rule) 1305 { 1306 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1307 struct ieee80211_freq_range *freq_range; 1308 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1309 struct ieee80211_power_rule *power_rule; 1310 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1311 1312 freq_range1 = &rule1->freq_range; 1313 freq_range2 = &rule2->freq_range; 1314 freq_range = &intersected_rule->freq_range; 1315 1316 power_rule1 = &rule1->power_rule; 1317 power_rule2 = &rule2->power_rule; 1318 power_rule = &intersected_rule->power_rule; 1319 1320 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1321 freq_range2->start_freq_khz); 1322 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1323 freq_range2->end_freq_khz); 1324 1325 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1326 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1327 1328 if (rule1->flags & NL80211_RRF_AUTO_BW) 1329 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1330 if (rule2->flags & NL80211_RRF_AUTO_BW) 1331 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1332 1333 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1334 1335 intersected_rule->flags = rule1->flags | rule2->flags; 1336 1337 /* 1338 * In case NL80211_RRF_AUTO_BW requested for both rules 1339 * set AUTO_BW in intersected rule also. Next we will 1340 * calculate BW correctly in handle_channel function. 1341 * In other case remove AUTO_BW flag while we calculate 1342 * maximum bandwidth correctly and auto calculation is 1343 * not required. 1344 */ 1345 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1346 (rule2->flags & NL80211_RRF_AUTO_BW)) 1347 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1348 else 1349 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1350 1351 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1352 if (freq_range->max_bandwidth_khz > freq_diff) 1353 freq_range->max_bandwidth_khz = freq_diff; 1354 1355 power_rule->max_eirp = min(power_rule1->max_eirp, 1356 power_rule2->max_eirp); 1357 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1358 power_rule2->max_antenna_gain); 1359 1360 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1361 rule2->dfs_cac_ms); 1362 1363 if (!is_valid_reg_rule(intersected_rule)) 1364 return -EINVAL; 1365 1366 return 0; 1367 } 1368 1369 /* check whether old rule contains new rule */ 1370 static bool rule_contains(struct ieee80211_reg_rule *r1, 1371 struct ieee80211_reg_rule *r2) 1372 { 1373 /* for simplicity, currently consider only same flags */ 1374 if (r1->flags != r2->flags) 1375 return false; 1376 1377 /* verify r1 is more restrictive */ 1378 if ((r1->power_rule.max_antenna_gain > 1379 r2->power_rule.max_antenna_gain) || 1380 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1381 return false; 1382 1383 /* make sure r2's range is contained within r1 */ 1384 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1385 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1386 return false; 1387 1388 /* and finally verify that r1.max_bw >= r2.max_bw */ 1389 if (r1->freq_range.max_bandwidth_khz < 1390 r2->freq_range.max_bandwidth_khz) 1391 return false; 1392 1393 return true; 1394 } 1395 1396 /* add or extend current rules. do nothing if rule is already contained */ 1397 static void add_rule(struct ieee80211_reg_rule *rule, 1398 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1399 { 1400 struct ieee80211_reg_rule *tmp_rule; 1401 int i; 1402 1403 for (i = 0; i < *n_rules; i++) { 1404 tmp_rule = ®_rules[i]; 1405 /* rule is already contained - do nothing */ 1406 if (rule_contains(tmp_rule, rule)) 1407 return; 1408 1409 /* extend rule if possible */ 1410 if (rule_contains(rule, tmp_rule)) { 1411 memcpy(tmp_rule, rule, sizeof(*rule)); 1412 return; 1413 } 1414 } 1415 1416 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1417 (*n_rules)++; 1418 } 1419 1420 /** 1421 * regdom_intersect - do the intersection between two regulatory domains 1422 * @rd1: first regulatory domain 1423 * @rd2: second regulatory domain 1424 * 1425 * Use this function to get the intersection between two regulatory domains. 1426 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1427 * as no one single alpha2 can represent this regulatory domain. 1428 * 1429 * Returns a pointer to the regulatory domain structure which will hold the 1430 * resulting intersection of rules between rd1 and rd2. We will 1431 * kzalloc() this structure for you. 1432 */ 1433 static struct ieee80211_regdomain * 1434 regdom_intersect(const struct ieee80211_regdomain *rd1, 1435 const struct ieee80211_regdomain *rd2) 1436 { 1437 int r, size_of_regd; 1438 unsigned int x, y; 1439 unsigned int num_rules = 0; 1440 const struct ieee80211_reg_rule *rule1, *rule2; 1441 struct ieee80211_reg_rule intersected_rule; 1442 struct ieee80211_regdomain *rd; 1443 1444 if (!rd1 || !rd2) 1445 return NULL; 1446 1447 /* 1448 * First we get a count of the rules we'll need, then we actually 1449 * build them. This is to so we can malloc() and free() a 1450 * regdomain once. The reason we use reg_rules_intersect() here 1451 * is it will return -EINVAL if the rule computed makes no sense. 1452 * All rules that do check out OK are valid. 1453 */ 1454 1455 for (x = 0; x < rd1->n_reg_rules; x++) { 1456 rule1 = &rd1->reg_rules[x]; 1457 for (y = 0; y < rd2->n_reg_rules; y++) { 1458 rule2 = &rd2->reg_rules[y]; 1459 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1460 &intersected_rule)) 1461 num_rules++; 1462 } 1463 } 1464 1465 if (!num_rules) 1466 return NULL; 1467 1468 size_of_regd = sizeof(struct ieee80211_regdomain) + 1469 num_rules * sizeof(struct ieee80211_reg_rule); 1470 1471 rd = kzalloc(size_of_regd, GFP_KERNEL); 1472 if (!rd) 1473 return NULL; 1474 1475 for (x = 0; x < rd1->n_reg_rules; x++) { 1476 rule1 = &rd1->reg_rules[x]; 1477 for (y = 0; y < rd2->n_reg_rules; y++) { 1478 rule2 = &rd2->reg_rules[y]; 1479 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1480 &intersected_rule); 1481 /* 1482 * No need to memset here the intersected rule here as 1483 * we're not using the stack anymore 1484 */ 1485 if (r) 1486 continue; 1487 1488 add_rule(&intersected_rule, rd->reg_rules, 1489 &rd->n_reg_rules); 1490 } 1491 } 1492 1493 rd->alpha2[0] = '9'; 1494 rd->alpha2[1] = '8'; 1495 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1496 rd2->dfs_region); 1497 1498 return rd; 1499 } 1500 1501 /* 1502 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1503 * want to just have the channel structure use these 1504 */ 1505 static u32 map_regdom_flags(u32 rd_flags) 1506 { 1507 u32 channel_flags = 0; 1508 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1509 channel_flags |= IEEE80211_CHAN_NO_IR; 1510 if (rd_flags & NL80211_RRF_DFS) 1511 channel_flags |= IEEE80211_CHAN_RADAR; 1512 if (rd_flags & NL80211_RRF_NO_OFDM) 1513 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1514 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1515 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1516 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1517 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1518 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1519 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1520 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1521 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1522 if (rd_flags & NL80211_RRF_NO_80MHZ) 1523 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1524 if (rd_flags & NL80211_RRF_NO_160MHZ) 1525 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1526 return channel_flags; 1527 } 1528 1529 static const struct ieee80211_reg_rule * 1530 freq_reg_info_regd(u32 center_freq, 1531 const struct ieee80211_regdomain *regd, u32 bw) 1532 { 1533 int i; 1534 bool band_rule_found = false; 1535 bool bw_fits = false; 1536 1537 if (!regd) 1538 return ERR_PTR(-EINVAL); 1539 1540 for (i = 0; i < regd->n_reg_rules; i++) { 1541 const struct ieee80211_reg_rule *rr; 1542 const struct ieee80211_freq_range *fr = NULL; 1543 1544 rr = ®d->reg_rules[i]; 1545 fr = &rr->freq_range; 1546 1547 /* 1548 * We only need to know if one frequency rule was 1549 * was in center_freq's band, that's enough, so lets 1550 * not overwrite it once found 1551 */ 1552 if (!band_rule_found) 1553 band_rule_found = freq_in_rule_band(fr, center_freq); 1554 1555 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1556 1557 if (band_rule_found && bw_fits) 1558 return rr; 1559 } 1560 1561 if (!band_rule_found) 1562 return ERR_PTR(-ERANGE); 1563 1564 return ERR_PTR(-EINVAL); 1565 } 1566 1567 static const struct ieee80211_reg_rule * 1568 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1569 { 1570 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1571 const struct ieee80211_reg_rule *reg_rule = NULL; 1572 u32 bw; 1573 1574 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 1575 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1576 if (!IS_ERR(reg_rule)) 1577 return reg_rule; 1578 } 1579 1580 return reg_rule; 1581 } 1582 1583 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1584 u32 center_freq) 1585 { 1586 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20)); 1587 } 1588 EXPORT_SYMBOL(freq_reg_info); 1589 1590 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1591 { 1592 switch (initiator) { 1593 case NL80211_REGDOM_SET_BY_CORE: 1594 return "core"; 1595 case NL80211_REGDOM_SET_BY_USER: 1596 return "user"; 1597 case NL80211_REGDOM_SET_BY_DRIVER: 1598 return "driver"; 1599 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1600 return "country element"; 1601 default: 1602 WARN_ON(1); 1603 return "bug"; 1604 } 1605 } 1606 EXPORT_SYMBOL(reg_initiator_name); 1607 1608 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1609 const struct ieee80211_reg_rule *reg_rule, 1610 const struct ieee80211_channel *chan) 1611 { 1612 const struct ieee80211_freq_range *freq_range = NULL; 1613 u32 max_bandwidth_khz, bw_flags = 0; 1614 1615 freq_range = ®_rule->freq_range; 1616 1617 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1618 /* Check if auto calculation requested */ 1619 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1620 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1621 1622 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1623 if (!cfg80211_does_bw_fit_range(freq_range, 1624 MHZ_TO_KHZ(chan->center_freq), 1625 MHZ_TO_KHZ(10))) 1626 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1627 if (!cfg80211_does_bw_fit_range(freq_range, 1628 MHZ_TO_KHZ(chan->center_freq), 1629 MHZ_TO_KHZ(20))) 1630 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1631 1632 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1633 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1634 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1635 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1636 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1637 bw_flags |= IEEE80211_CHAN_NO_HT40; 1638 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1639 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1640 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1641 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1642 return bw_flags; 1643 } 1644 1645 /* 1646 * Note that right now we assume the desired channel bandwidth 1647 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1648 * per channel, the primary and the extension channel). 1649 */ 1650 static void handle_channel(struct wiphy *wiphy, 1651 enum nl80211_reg_initiator initiator, 1652 struct ieee80211_channel *chan) 1653 { 1654 u32 flags, bw_flags = 0; 1655 const struct ieee80211_reg_rule *reg_rule = NULL; 1656 const struct ieee80211_power_rule *power_rule = NULL; 1657 struct wiphy *request_wiphy = NULL; 1658 struct regulatory_request *lr = get_last_request(); 1659 const struct ieee80211_regdomain *regd; 1660 1661 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1662 1663 flags = chan->orig_flags; 1664 1665 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 1666 if (IS_ERR(reg_rule)) { 1667 /* 1668 * We will disable all channels that do not match our 1669 * received regulatory rule unless the hint is coming 1670 * from a Country IE and the Country IE had no information 1671 * about a band. The IEEE 802.11 spec allows for an AP 1672 * to send only a subset of the regulatory rules allowed, 1673 * so an AP in the US that only supports 2.4 GHz may only send 1674 * a country IE with information for the 2.4 GHz band 1675 * while 5 GHz is still supported. 1676 */ 1677 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1678 PTR_ERR(reg_rule) == -ERANGE) 1679 return; 1680 1681 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1682 request_wiphy && request_wiphy == wiphy && 1683 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1684 pr_debug("Disabling freq %d MHz for good\n", 1685 chan->center_freq); 1686 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1687 chan->flags = chan->orig_flags; 1688 } else { 1689 pr_debug("Disabling freq %d MHz\n", 1690 chan->center_freq); 1691 chan->flags |= IEEE80211_CHAN_DISABLED; 1692 } 1693 return; 1694 } 1695 1696 regd = reg_get_regdomain(wiphy); 1697 1698 power_rule = ®_rule->power_rule; 1699 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1700 1701 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1702 request_wiphy && request_wiphy == wiphy && 1703 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1704 /* 1705 * This guarantees the driver's requested regulatory domain 1706 * will always be used as a base for further regulatory 1707 * settings 1708 */ 1709 chan->flags = chan->orig_flags = 1710 map_regdom_flags(reg_rule->flags) | bw_flags; 1711 chan->max_antenna_gain = chan->orig_mag = 1712 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1713 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1714 (int) MBM_TO_DBM(power_rule->max_eirp); 1715 1716 if (chan->flags & IEEE80211_CHAN_RADAR) { 1717 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1718 if (reg_rule->dfs_cac_ms) 1719 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1720 } 1721 1722 return; 1723 } 1724 1725 chan->dfs_state = NL80211_DFS_USABLE; 1726 chan->dfs_state_entered = jiffies; 1727 1728 chan->beacon_found = false; 1729 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1730 chan->max_antenna_gain = 1731 min_t(int, chan->orig_mag, 1732 MBI_TO_DBI(power_rule->max_antenna_gain)); 1733 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1734 1735 if (chan->flags & IEEE80211_CHAN_RADAR) { 1736 if (reg_rule->dfs_cac_ms) 1737 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1738 else 1739 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1740 } 1741 1742 if (chan->orig_mpwr) { 1743 /* 1744 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1745 * will always follow the passed country IE power settings. 1746 */ 1747 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1748 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1749 chan->max_power = chan->max_reg_power; 1750 else 1751 chan->max_power = min(chan->orig_mpwr, 1752 chan->max_reg_power); 1753 } else 1754 chan->max_power = chan->max_reg_power; 1755 } 1756 1757 static void handle_band(struct wiphy *wiphy, 1758 enum nl80211_reg_initiator initiator, 1759 struct ieee80211_supported_band *sband) 1760 { 1761 unsigned int i; 1762 1763 if (!sband) 1764 return; 1765 1766 for (i = 0; i < sband->n_channels; i++) 1767 handle_channel(wiphy, initiator, &sband->channels[i]); 1768 } 1769 1770 static bool reg_request_cell_base(struct regulatory_request *request) 1771 { 1772 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1773 return false; 1774 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 1775 } 1776 1777 bool reg_last_request_cell_base(void) 1778 { 1779 return reg_request_cell_base(get_last_request()); 1780 } 1781 1782 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 1783 /* Core specific check */ 1784 static enum reg_request_treatment 1785 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1786 { 1787 struct regulatory_request *lr = get_last_request(); 1788 1789 if (!reg_num_devs_support_basehint) 1790 return REG_REQ_IGNORE; 1791 1792 if (reg_request_cell_base(lr) && 1793 !regdom_changes(pending_request->alpha2)) 1794 return REG_REQ_ALREADY_SET; 1795 1796 return REG_REQ_OK; 1797 } 1798 1799 /* Device specific check */ 1800 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1801 { 1802 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 1803 } 1804 #else 1805 static enum reg_request_treatment 1806 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1807 { 1808 return REG_REQ_IGNORE; 1809 } 1810 1811 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1812 { 1813 return true; 1814 } 1815 #endif 1816 1817 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 1818 { 1819 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 1820 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 1821 return true; 1822 return false; 1823 } 1824 1825 static bool ignore_reg_update(struct wiphy *wiphy, 1826 enum nl80211_reg_initiator initiator) 1827 { 1828 struct regulatory_request *lr = get_last_request(); 1829 1830 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 1831 return true; 1832 1833 if (!lr) { 1834 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 1835 reg_initiator_name(initiator)); 1836 return true; 1837 } 1838 1839 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1840 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 1841 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 1842 reg_initiator_name(initiator)); 1843 return true; 1844 } 1845 1846 /* 1847 * wiphy->regd will be set once the device has its own 1848 * desired regulatory domain set 1849 */ 1850 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1851 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1852 !is_world_regdom(lr->alpha2)) { 1853 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 1854 reg_initiator_name(initiator)); 1855 return true; 1856 } 1857 1858 if (reg_request_cell_base(lr)) 1859 return reg_dev_ignore_cell_hint(wiphy); 1860 1861 return false; 1862 } 1863 1864 static bool reg_is_world_roaming(struct wiphy *wiphy) 1865 { 1866 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1867 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1868 struct regulatory_request *lr = get_last_request(); 1869 1870 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1871 return true; 1872 1873 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1874 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1875 return true; 1876 1877 return false; 1878 } 1879 1880 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1881 struct reg_beacon *reg_beacon) 1882 { 1883 struct ieee80211_supported_band *sband; 1884 struct ieee80211_channel *chan; 1885 bool channel_changed = false; 1886 struct ieee80211_channel chan_before; 1887 1888 sband = wiphy->bands[reg_beacon->chan.band]; 1889 chan = &sband->channels[chan_idx]; 1890 1891 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1892 return; 1893 1894 if (chan->beacon_found) 1895 return; 1896 1897 chan->beacon_found = true; 1898 1899 if (!reg_is_world_roaming(wiphy)) 1900 return; 1901 1902 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 1903 return; 1904 1905 chan_before = *chan; 1906 1907 if (chan->flags & IEEE80211_CHAN_NO_IR) { 1908 chan->flags &= ~IEEE80211_CHAN_NO_IR; 1909 channel_changed = true; 1910 } 1911 1912 if (channel_changed) 1913 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1914 } 1915 1916 /* 1917 * Called when a scan on a wiphy finds a beacon on 1918 * new channel 1919 */ 1920 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1921 struct reg_beacon *reg_beacon) 1922 { 1923 unsigned int i; 1924 struct ieee80211_supported_band *sband; 1925 1926 if (!wiphy->bands[reg_beacon->chan.band]) 1927 return; 1928 1929 sband = wiphy->bands[reg_beacon->chan.band]; 1930 1931 for (i = 0; i < sband->n_channels; i++) 1932 handle_reg_beacon(wiphy, i, reg_beacon); 1933 } 1934 1935 /* 1936 * Called upon reg changes or a new wiphy is added 1937 */ 1938 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1939 { 1940 unsigned int i; 1941 struct ieee80211_supported_band *sband; 1942 struct reg_beacon *reg_beacon; 1943 1944 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1945 if (!wiphy->bands[reg_beacon->chan.band]) 1946 continue; 1947 sband = wiphy->bands[reg_beacon->chan.band]; 1948 for (i = 0; i < sband->n_channels; i++) 1949 handle_reg_beacon(wiphy, i, reg_beacon); 1950 } 1951 } 1952 1953 /* Reap the advantages of previously found beacons */ 1954 static void reg_process_beacons(struct wiphy *wiphy) 1955 { 1956 /* 1957 * Means we are just firing up cfg80211, so no beacons would 1958 * have been processed yet. 1959 */ 1960 if (!last_request) 1961 return; 1962 wiphy_update_beacon_reg(wiphy); 1963 } 1964 1965 static bool is_ht40_allowed(struct ieee80211_channel *chan) 1966 { 1967 if (!chan) 1968 return false; 1969 if (chan->flags & IEEE80211_CHAN_DISABLED) 1970 return false; 1971 /* This would happen when regulatory rules disallow HT40 completely */ 1972 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 1973 return false; 1974 return true; 1975 } 1976 1977 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1978 struct ieee80211_channel *channel) 1979 { 1980 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 1981 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1982 const struct ieee80211_regdomain *regd; 1983 unsigned int i; 1984 u32 flags; 1985 1986 if (!is_ht40_allowed(channel)) { 1987 channel->flags |= IEEE80211_CHAN_NO_HT40; 1988 return; 1989 } 1990 1991 /* 1992 * We need to ensure the extension channels exist to 1993 * be able to use HT40- or HT40+, this finds them (or not) 1994 */ 1995 for (i = 0; i < sband->n_channels; i++) { 1996 struct ieee80211_channel *c = &sband->channels[i]; 1997 1998 if (c->center_freq == (channel->center_freq - 20)) 1999 channel_before = c; 2000 if (c->center_freq == (channel->center_freq + 20)) 2001 channel_after = c; 2002 } 2003 2004 flags = 0; 2005 regd = get_wiphy_regdom(wiphy); 2006 if (regd) { 2007 const struct ieee80211_reg_rule *reg_rule = 2008 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2009 regd, MHZ_TO_KHZ(20)); 2010 2011 if (!IS_ERR(reg_rule)) 2012 flags = reg_rule->flags; 2013 } 2014 2015 /* 2016 * Please note that this assumes target bandwidth is 20 MHz, 2017 * if that ever changes we also need to change the below logic 2018 * to include that as well. 2019 */ 2020 if (!is_ht40_allowed(channel_before) || 2021 flags & NL80211_RRF_NO_HT40MINUS) 2022 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2023 else 2024 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2025 2026 if (!is_ht40_allowed(channel_after) || 2027 flags & NL80211_RRF_NO_HT40PLUS) 2028 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2029 else 2030 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2031 } 2032 2033 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2034 struct ieee80211_supported_band *sband) 2035 { 2036 unsigned int i; 2037 2038 if (!sband) 2039 return; 2040 2041 for (i = 0; i < sband->n_channels; i++) 2042 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2043 } 2044 2045 static void reg_process_ht_flags(struct wiphy *wiphy) 2046 { 2047 enum nl80211_band band; 2048 2049 if (!wiphy) 2050 return; 2051 2052 for (band = 0; band < NUM_NL80211_BANDS; band++) 2053 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2054 } 2055 2056 static void reg_call_notifier(struct wiphy *wiphy, 2057 struct regulatory_request *request) 2058 { 2059 if (wiphy->reg_notifier) 2060 wiphy->reg_notifier(wiphy, request); 2061 } 2062 2063 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2064 { 2065 struct cfg80211_chan_def chandef; 2066 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2067 enum nl80211_iftype iftype; 2068 2069 wdev_lock(wdev); 2070 iftype = wdev->iftype; 2071 2072 /* make sure the interface is active */ 2073 if (!wdev->netdev || !netif_running(wdev->netdev)) 2074 goto wdev_inactive_unlock; 2075 2076 switch (iftype) { 2077 case NL80211_IFTYPE_AP: 2078 case NL80211_IFTYPE_P2P_GO: 2079 if (!wdev->beacon_interval) 2080 goto wdev_inactive_unlock; 2081 chandef = wdev->chandef; 2082 break; 2083 case NL80211_IFTYPE_ADHOC: 2084 if (!wdev->ssid_len) 2085 goto wdev_inactive_unlock; 2086 chandef = wdev->chandef; 2087 break; 2088 case NL80211_IFTYPE_STATION: 2089 case NL80211_IFTYPE_P2P_CLIENT: 2090 if (!wdev->current_bss || 2091 !wdev->current_bss->pub.channel) 2092 goto wdev_inactive_unlock; 2093 2094 if (!rdev->ops->get_channel || 2095 rdev_get_channel(rdev, wdev, &chandef)) 2096 cfg80211_chandef_create(&chandef, 2097 wdev->current_bss->pub.channel, 2098 NL80211_CHAN_NO_HT); 2099 break; 2100 case NL80211_IFTYPE_MONITOR: 2101 case NL80211_IFTYPE_AP_VLAN: 2102 case NL80211_IFTYPE_P2P_DEVICE: 2103 /* no enforcement required */ 2104 break; 2105 default: 2106 /* others not implemented for now */ 2107 WARN_ON(1); 2108 break; 2109 } 2110 2111 wdev_unlock(wdev); 2112 2113 switch (iftype) { 2114 case NL80211_IFTYPE_AP: 2115 case NL80211_IFTYPE_P2P_GO: 2116 case NL80211_IFTYPE_ADHOC: 2117 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 2118 case NL80211_IFTYPE_STATION: 2119 case NL80211_IFTYPE_P2P_CLIENT: 2120 return cfg80211_chandef_usable(wiphy, &chandef, 2121 IEEE80211_CHAN_DISABLED); 2122 default: 2123 break; 2124 } 2125 2126 return true; 2127 2128 wdev_inactive_unlock: 2129 wdev_unlock(wdev); 2130 return true; 2131 } 2132 2133 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2134 { 2135 struct wireless_dev *wdev; 2136 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2137 2138 ASSERT_RTNL(); 2139 2140 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2141 if (!reg_wdev_chan_valid(wiphy, wdev)) 2142 cfg80211_leave(rdev, wdev); 2143 } 2144 2145 static void reg_check_chans_work(struct work_struct *work) 2146 { 2147 struct cfg80211_registered_device *rdev; 2148 2149 pr_debug("Verifying active interfaces after reg change\n"); 2150 rtnl_lock(); 2151 2152 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2153 if (!(rdev->wiphy.regulatory_flags & 2154 REGULATORY_IGNORE_STALE_KICKOFF)) 2155 reg_leave_invalid_chans(&rdev->wiphy); 2156 2157 rtnl_unlock(); 2158 } 2159 2160 static void reg_check_channels(void) 2161 { 2162 /* 2163 * Give usermode a chance to do something nicer (move to another 2164 * channel, orderly disconnection), before forcing a disconnection. 2165 */ 2166 mod_delayed_work(system_power_efficient_wq, 2167 ®_check_chans, 2168 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2169 } 2170 2171 static void wiphy_update_regulatory(struct wiphy *wiphy, 2172 enum nl80211_reg_initiator initiator) 2173 { 2174 enum nl80211_band band; 2175 struct regulatory_request *lr = get_last_request(); 2176 2177 if (ignore_reg_update(wiphy, initiator)) { 2178 /* 2179 * Regulatory updates set by CORE are ignored for custom 2180 * regulatory cards. Let us notify the changes to the driver, 2181 * as some drivers used this to restore its orig_* reg domain. 2182 */ 2183 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2184 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2185 !(wiphy->regulatory_flags & 2186 REGULATORY_WIPHY_SELF_MANAGED)) 2187 reg_call_notifier(wiphy, lr); 2188 return; 2189 } 2190 2191 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2192 2193 for (band = 0; band < NUM_NL80211_BANDS; band++) 2194 handle_band(wiphy, initiator, wiphy->bands[band]); 2195 2196 reg_process_beacons(wiphy); 2197 reg_process_ht_flags(wiphy); 2198 reg_call_notifier(wiphy, lr); 2199 } 2200 2201 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2202 { 2203 struct cfg80211_registered_device *rdev; 2204 struct wiphy *wiphy; 2205 2206 ASSERT_RTNL(); 2207 2208 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2209 wiphy = &rdev->wiphy; 2210 wiphy_update_regulatory(wiphy, initiator); 2211 } 2212 2213 reg_check_channels(); 2214 } 2215 2216 static void handle_channel_custom(struct wiphy *wiphy, 2217 struct ieee80211_channel *chan, 2218 const struct ieee80211_regdomain *regd) 2219 { 2220 u32 bw_flags = 0; 2221 const struct ieee80211_reg_rule *reg_rule = NULL; 2222 const struct ieee80211_power_rule *power_rule = NULL; 2223 u32 bw; 2224 2225 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) { 2226 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq), 2227 regd, bw); 2228 if (!IS_ERR(reg_rule)) 2229 break; 2230 } 2231 2232 if (IS_ERR(reg_rule)) { 2233 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n", 2234 chan->center_freq); 2235 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2236 chan->flags |= IEEE80211_CHAN_DISABLED; 2237 } else { 2238 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2239 chan->flags = chan->orig_flags; 2240 } 2241 return; 2242 } 2243 2244 power_rule = ®_rule->power_rule; 2245 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2246 2247 chan->dfs_state_entered = jiffies; 2248 chan->dfs_state = NL80211_DFS_USABLE; 2249 2250 chan->beacon_found = false; 2251 2252 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2253 chan->flags = chan->orig_flags | bw_flags | 2254 map_regdom_flags(reg_rule->flags); 2255 else 2256 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2257 2258 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2259 chan->max_reg_power = chan->max_power = 2260 (int) MBM_TO_DBM(power_rule->max_eirp); 2261 2262 if (chan->flags & IEEE80211_CHAN_RADAR) { 2263 if (reg_rule->dfs_cac_ms) 2264 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2265 else 2266 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2267 } 2268 2269 chan->max_power = chan->max_reg_power; 2270 } 2271 2272 static void handle_band_custom(struct wiphy *wiphy, 2273 struct ieee80211_supported_band *sband, 2274 const struct ieee80211_regdomain *regd) 2275 { 2276 unsigned int i; 2277 2278 if (!sband) 2279 return; 2280 2281 for (i = 0; i < sband->n_channels; i++) 2282 handle_channel_custom(wiphy, &sband->channels[i], regd); 2283 } 2284 2285 /* Used by drivers prior to wiphy registration */ 2286 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2287 const struct ieee80211_regdomain *regd) 2288 { 2289 enum nl80211_band band; 2290 unsigned int bands_set = 0; 2291 2292 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2293 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2294 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2295 2296 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2297 if (!wiphy->bands[band]) 2298 continue; 2299 handle_band_custom(wiphy, wiphy->bands[band], regd); 2300 bands_set++; 2301 } 2302 2303 /* 2304 * no point in calling this if it won't have any effect 2305 * on your device's supported bands. 2306 */ 2307 WARN_ON(!bands_set); 2308 } 2309 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2310 2311 static void reg_set_request_processed(void) 2312 { 2313 bool need_more_processing = false; 2314 struct regulatory_request *lr = get_last_request(); 2315 2316 lr->processed = true; 2317 2318 spin_lock(®_requests_lock); 2319 if (!list_empty(®_requests_list)) 2320 need_more_processing = true; 2321 spin_unlock(®_requests_lock); 2322 2323 cancel_crda_timeout(); 2324 2325 if (need_more_processing) 2326 schedule_work(®_work); 2327 } 2328 2329 /** 2330 * reg_process_hint_core - process core regulatory requests 2331 * @pending_request: a pending core regulatory request 2332 * 2333 * The wireless subsystem can use this function to process 2334 * a regulatory request issued by the regulatory core. 2335 */ 2336 static enum reg_request_treatment 2337 reg_process_hint_core(struct regulatory_request *core_request) 2338 { 2339 if (reg_query_database(core_request)) { 2340 core_request->intersect = false; 2341 core_request->processed = false; 2342 reg_update_last_request(core_request); 2343 return REG_REQ_OK; 2344 } 2345 2346 return REG_REQ_IGNORE; 2347 } 2348 2349 static enum reg_request_treatment 2350 __reg_process_hint_user(struct regulatory_request *user_request) 2351 { 2352 struct regulatory_request *lr = get_last_request(); 2353 2354 if (reg_request_cell_base(user_request)) 2355 return reg_ignore_cell_hint(user_request); 2356 2357 if (reg_request_cell_base(lr)) 2358 return REG_REQ_IGNORE; 2359 2360 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2361 return REG_REQ_INTERSECT; 2362 /* 2363 * If the user knows better the user should set the regdom 2364 * to their country before the IE is picked up 2365 */ 2366 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2367 lr->intersect) 2368 return REG_REQ_IGNORE; 2369 /* 2370 * Process user requests only after previous user/driver/core 2371 * requests have been processed 2372 */ 2373 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2374 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2375 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2376 regdom_changes(lr->alpha2)) 2377 return REG_REQ_IGNORE; 2378 2379 if (!regdom_changes(user_request->alpha2)) 2380 return REG_REQ_ALREADY_SET; 2381 2382 return REG_REQ_OK; 2383 } 2384 2385 /** 2386 * reg_process_hint_user - process user regulatory requests 2387 * @user_request: a pending user regulatory request 2388 * 2389 * The wireless subsystem can use this function to process 2390 * a regulatory request initiated by userspace. 2391 */ 2392 static enum reg_request_treatment 2393 reg_process_hint_user(struct regulatory_request *user_request) 2394 { 2395 enum reg_request_treatment treatment; 2396 2397 treatment = __reg_process_hint_user(user_request); 2398 if (treatment == REG_REQ_IGNORE || 2399 treatment == REG_REQ_ALREADY_SET) 2400 return REG_REQ_IGNORE; 2401 2402 user_request->intersect = treatment == REG_REQ_INTERSECT; 2403 user_request->processed = false; 2404 2405 if (reg_query_database(user_request)) { 2406 reg_update_last_request(user_request); 2407 user_alpha2[0] = user_request->alpha2[0]; 2408 user_alpha2[1] = user_request->alpha2[1]; 2409 return REG_REQ_OK; 2410 } 2411 2412 return REG_REQ_IGNORE; 2413 } 2414 2415 static enum reg_request_treatment 2416 __reg_process_hint_driver(struct regulatory_request *driver_request) 2417 { 2418 struct regulatory_request *lr = get_last_request(); 2419 2420 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2421 if (regdom_changes(driver_request->alpha2)) 2422 return REG_REQ_OK; 2423 return REG_REQ_ALREADY_SET; 2424 } 2425 2426 /* 2427 * This would happen if you unplug and plug your card 2428 * back in or if you add a new device for which the previously 2429 * loaded card also agrees on the regulatory domain. 2430 */ 2431 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2432 !regdom_changes(driver_request->alpha2)) 2433 return REG_REQ_ALREADY_SET; 2434 2435 return REG_REQ_INTERSECT; 2436 } 2437 2438 /** 2439 * reg_process_hint_driver - process driver regulatory requests 2440 * @driver_request: a pending driver regulatory request 2441 * 2442 * The wireless subsystem can use this function to process 2443 * a regulatory request issued by an 802.11 driver. 2444 * 2445 * Returns one of the different reg request treatment values. 2446 */ 2447 static enum reg_request_treatment 2448 reg_process_hint_driver(struct wiphy *wiphy, 2449 struct regulatory_request *driver_request) 2450 { 2451 const struct ieee80211_regdomain *regd, *tmp; 2452 enum reg_request_treatment treatment; 2453 2454 treatment = __reg_process_hint_driver(driver_request); 2455 2456 switch (treatment) { 2457 case REG_REQ_OK: 2458 break; 2459 case REG_REQ_IGNORE: 2460 return REG_REQ_IGNORE; 2461 case REG_REQ_INTERSECT: 2462 case REG_REQ_ALREADY_SET: 2463 regd = reg_copy_regd(get_cfg80211_regdom()); 2464 if (IS_ERR(regd)) 2465 return REG_REQ_IGNORE; 2466 2467 tmp = get_wiphy_regdom(wiphy); 2468 rcu_assign_pointer(wiphy->regd, regd); 2469 rcu_free_regdom(tmp); 2470 } 2471 2472 2473 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2474 driver_request->processed = false; 2475 2476 /* 2477 * Since CRDA will not be called in this case as we already 2478 * have applied the requested regulatory domain before we just 2479 * inform userspace we have processed the request 2480 */ 2481 if (treatment == REG_REQ_ALREADY_SET) { 2482 nl80211_send_reg_change_event(driver_request); 2483 reg_update_last_request(driver_request); 2484 reg_set_request_processed(); 2485 return REG_REQ_ALREADY_SET; 2486 } 2487 2488 if (reg_query_database(driver_request)) { 2489 reg_update_last_request(driver_request); 2490 return REG_REQ_OK; 2491 } 2492 2493 return REG_REQ_IGNORE; 2494 } 2495 2496 static enum reg_request_treatment 2497 __reg_process_hint_country_ie(struct wiphy *wiphy, 2498 struct regulatory_request *country_ie_request) 2499 { 2500 struct wiphy *last_wiphy = NULL; 2501 struct regulatory_request *lr = get_last_request(); 2502 2503 if (reg_request_cell_base(lr)) { 2504 /* Trust a Cell base station over the AP's country IE */ 2505 if (regdom_changes(country_ie_request->alpha2)) 2506 return REG_REQ_IGNORE; 2507 return REG_REQ_ALREADY_SET; 2508 } else { 2509 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2510 return REG_REQ_IGNORE; 2511 } 2512 2513 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2514 return -EINVAL; 2515 2516 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2517 return REG_REQ_OK; 2518 2519 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2520 2521 if (last_wiphy != wiphy) { 2522 /* 2523 * Two cards with two APs claiming different 2524 * Country IE alpha2s. We could 2525 * intersect them, but that seems unlikely 2526 * to be correct. Reject second one for now. 2527 */ 2528 if (regdom_changes(country_ie_request->alpha2)) 2529 return REG_REQ_IGNORE; 2530 return REG_REQ_ALREADY_SET; 2531 } 2532 2533 if (regdom_changes(country_ie_request->alpha2)) 2534 return REG_REQ_OK; 2535 return REG_REQ_ALREADY_SET; 2536 } 2537 2538 /** 2539 * reg_process_hint_country_ie - process regulatory requests from country IEs 2540 * @country_ie_request: a regulatory request from a country IE 2541 * 2542 * The wireless subsystem can use this function to process 2543 * a regulatory request issued by a country Information Element. 2544 * 2545 * Returns one of the different reg request treatment values. 2546 */ 2547 static enum reg_request_treatment 2548 reg_process_hint_country_ie(struct wiphy *wiphy, 2549 struct regulatory_request *country_ie_request) 2550 { 2551 enum reg_request_treatment treatment; 2552 2553 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2554 2555 switch (treatment) { 2556 case REG_REQ_OK: 2557 break; 2558 case REG_REQ_IGNORE: 2559 return REG_REQ_IGNORE; 2560 case REG_REQ_ALREADY_SET: 2561 reg_free_request(country_ie_request); 2562 return REG_REQ_ALREADY_SET; 2563 case REG_REQ_INTERSECT: 2564 /* 2565 * This doesn't happen yet, not sure we 2566 * ever want to support it for this case. 2567 */ 2568 WARN_ONCE(1, "Unexpected intersection for country elements"); 2569 return REG_REQ_IGNORE; 2570 } 2571 2572 country_ie_request->intersect = false; 2573 country_ie_request->processed = false; 2574 2575 if (reg_query_database(country_ie_request)) { 2576 reg_update_last_request(country_ie_request); 2577 return REG_REQ_OK; 2578 } 2579 2580 return REG_REQ_IGNORE; 2581 } 2582 2583 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2584 { 2585 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2586 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2587 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2588 bool dfs_domain_same; 2589 2590 rcu_read_lock(); 2591 2592 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2593 wiphy1_regd = rcu_dereference(wiphy1->regd); 2594 if (!wiphy1_regd) 2595 wiphy1_regd = cfg80211_regd; 2596 2597 wiphy2_regd = rcu_dereference(wiphy2->regd); 2598 if (!wiphy2_regd) 2599 wiphy2_regd = cfg80211_regd; 2600 2601 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2602 2603 rcu_read_unlock(); 2604 2605 return dfs_domain_same; 2606 } 2607 2608 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2609 struct ieee80211_channel *src_chan) 2610 { 2611 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2612 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2613 return; 2614 2615 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2616 src_chan->flags & IEEE80211_CHAN_DISABLED) 2617 return; 2618 2619 if (src_chan->center_freq == dst_chan->center_freq && 2620 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2621 dst_chan->dfs_state = src_chan->dfs_state; 2622 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2623 } 2624 } 2625 2626 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2627 struct wiphy *src_wiphy) 2628 { 2629 struct ieee80211_supported_band *src_sband, *dst_sband; 2630 struct ieee80211_channel *src_chan, *dst_chan; 2631 int i, j, band; 2632 2633 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2634 return; 2635 2636 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2637 dst_sband = dst_wiphy->bands[band]; 2638 src_sband = src_wiphy->bands[band]; 2639 if (!dst_sband || !src_sband) 2640 continue; 2641 2642 for (i = 0; i < dst_sband->n_channels; i++) { 2643 dst_chan = &dst_sband->channels[i]; 2644 for (j = 0; j < src_sband->n_channels; j++) { 2645 src_chan = &src_sband->channels[j]; 2646 reg_copy_dfs_chan_state(dst_chan, src_chan); 2647 } 2648 } 2649 } 2650 } 2651 2652 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2653 { 2654 struct cfg80211_registered_device *rdev; 2655 2656 ASSERT_RTNL(); 2657 2658 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2659 if (wiphy == &rdev->wiphy) 2660 continue; 2661 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2662 } 2663 } 2664 2665 /* This processes *all* regulatory hints */ 2666 static void reg_process_hint(struct regulatory_request *reg_request) 2667 { 2668 struct wiphy *wiphy = NULL; 2669 enum reg_request_treatment treatment; 2670 enum nl80211_reg_initiator initiator = reg_request->initiator; 2671 2672 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2673 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2674 2675 switch (initiator) { 2676 case NL80211_REGDOM_SET_BY_CORE: 2677 treatment = reg_process_hint_core(reg_request); 2678 break; 2679 case NL80211_REGDOM_SET_BY_USER: 2680 treatment = reg_process_hint_user(reg_request); 2681 break; 2682 case NL80211_REGDOM_SET_BY_DRIVER: 2683 if (!wiphy) 2684 goto out_free; 2685 treatment = reg_process_hint_driver(wiphy, reg_request); 2686 break; 2687 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2688 if (!wiphy) 2689 goto out_free; 2690 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2691 break; 2692 default: 2693 WARN(1, "invalid initiator %d\n", initiator); 2694 goto out_free; 2695 } 2696 2697 if (treatment == REG_REQ_IGNORE) 2698 goto out_free; 2699 2700 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 2701 "unexpected treatment value %d\n", treatment); 2702 2703 /* This is required so that the orig_* parameters are saved. 2704 * NOTE: treatment must be set for any case that reaches here! 2705 */ 2706 if (treatment == REG_REQ_ALREADY_SET && wiphy && 2707 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2708 wiphy_update_regulatory(wiphy, initiator); 2709 wiphy_all_share_dfs_chan_state(wiphy); 2710 reg_check_channels(); 2711 } 2712 2713 return; 2714 2715 out_free: 2716 reg_free_request(reg_request); 2717 } 2718 2719 static void notify_self_managed_wiphys(struct regulatory_request *request) 2720 { 2721 struct cfg80211_registered_device *rdev; 2722 struct wiphy *wiphy; 2723 2724 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2725 wiphy = &rdev->wiphy; 2726 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 2727 request->initiator == NL80211_REGDOM_SET_BY_USER && 2728 request->user_reg_hint_type == 2729 NL80211_USER_REG_HINT_CELL_BASE) 2730 reg_call_notifier(wiphy, request); 2731 } 2732 } 2733 2734 /* 2735 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 2736 * Regulatory hints come on a first come first serve basis and we 2737 * must process each one atomically. 2738 */ 2739 static void reg_process_pending_hints(void) 2740 { 2741 struct regulatory_request *reg_request, *lr; 2742 2743 lr = get_last_request(); 2744 2745 /* When last_request->processed becomes true this will be rescheduled */ 2746 if (lr && !lr->processed) { 2747 reg_process_hint(lr); 2748 return; 2749 } 2750 2751 spin_lock(®_requests_lock); 2752 2753 if (list_empty(®_requests_list)) { 2754 spin_unlock(®_requests_lock); 2755 return; 2756 } 2757 2758 reg_request = list_first_entry(®_requests_list, 2759 struct regulatory_request, 2760 list); 2761 list_del_init(®_request->list); 2762 2763 spin_unlock(®_requests_lock); 2764 2765 notify_self_managed_wiphys(reg_request); 2766 2767 reg_process_hint(reg_request); 2768 2769 lr = get_last_request(); 2770 2771 spin_lock(®_requests_lock); 2772 if (!list_empty(®_requests_list) && lr && lr->processed) 2773 schedule_work(®_work); 2774 spin_unlock(®_requests_lock); 2775 } 2776 2777 /* Processes beacon hints -- this has nothing to do with country IEs */ 2778 static void reg_process_pending_beacon_hints(void) 2779 { 2780 struct cfg80211_registered_device *rdev; 2781 struct reg_beacon *pending_beacon, *tmp; 2782 2783 /* This goes through the _pending_ beacon list */ 2784 spin_lock_bh(®_pending_beacons_lock); 2785 2786 list_for_each_entry_safe(pending_beacon, tmp, 2787 ®_pending_beacons, list) { 2788 list_del_init(&pending_beacon->list); 2789 2790 /* Applies the beacon hint to current wiphys */ 2791 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2792 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 2793 2794 /* Remembers the beacon hint for new wiphys or reg changes */ 2795 list_add_tail(&pending_beacon->list, ®_beacon_list); 2796 } 2797 2798 spin_unlock_bh(®_pending_beacons_lock); 2799 } 2800 2801 static void reg_process_self_managed_hints(void) 2802 { 2803 struct cfg80211_registered_device *rdev; 2804 struct wiphy *wiphy; 2805 const struct ieee80211_regdomain *tmp; 2806 const struct ieee80211_regdomain *regd; 2807 enum nl80211_band band; 2808 struct regulatory_request request = {}; 2809 2810 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2811 wiphy = &rdev->wiphy; 2812 2813 spin_lock(®_requests_lock); 2814 regd = rdev->requested_regd; 2815 rdev->requested_regd = NULL; 2816 spin_unlock(®_requests_lock); 2817 2818 if (regd == NULL) 2819 continue; 2820 2821 tmp = get_wiphy_regdom(wiphy); 2822 rcu_assign_pointer(wiphy->regd, regd); 2823 rcu_free_regdom(tmp); 2824 2825 for (band = 0; band < NUM_NL80211_BANDS; band++) 2826 handle_band_custom(wiphy, wiphy->bands[band], regd); 2827 2828 reg_process_ht_flags(wiphy); 2829 2830 request.wiphy_idx = get_wiphy_idx(wiphy); 2831 request.alpha2[0] = regd->alpha2[0]; 2832 request.alpha2[1] = regd->alpha2[1]; 2833 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 2834 2835 nl80211_send_wiphy_reg_change_event(&request); 2836 } 2837 2838 reg_check_channels(); 2839 } 2840 2841 static void reg_todo(struct work_struct *work) 2842 { 2843 rtnl_lock(); 2844 reg_process_pending_hints(); 2845 reg_process_pending_beacon_hints(); 2846 reg_process_self_managed_hints(); 2847 rtnl_unlock(); 2848 } 2849 2850 static void queue_regulatory_request(struct regulatory_request *request) 2851 { 2852 request->alpha2[0] = toupper(request->alpha2[0]); 2853 request->alpha2[1] = toupper(request->alpha2[1]); 2854 2855 spin_lock(®_requests_lock); 2856 list_add_tail(&request->list, ®_requests_list); 2857 spin_unlock(®_requests_lock); 2858 2859 schedule_work(®_work); 2860 } 2861 2862 /* 2863 * Core regulatory hint -- happens during cfg80211_init() 2864 * and when we restore regulatory settings. 2865 */ 2866 static int regulatory_hint_core(const char *alpha2) 2867 { 2868 struct regulatory_request *request; 2869 2870 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2871 if (!request) 2872 return -ENOMEM; 2873 2874 request->alpha2[0] = alpha2[0]; 2875 request->alpha2[1] = alpha2[1]; 2876 request->initiator = NL80211_REGDOM_SET_BY_CORE; 2877 request->wiphy_idx = WIPHY_IDX_INVALID; 2878 2879 queue_regulatory_request(request); 2880 2881 return 0; 2882 } 2883 2884 /* User hints */ 2885 int regulatory_hint_user(const char *alpha2, 2886 enum nl80211_user_reg_hint_type user_reg_hint_type) 2887 { 2888 struct regulatory_request *request; 2889 2890 if (WARN_ON(!alpha2)) 2891 return -EINVAL; 2892 2893 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2894 if (!request) 2895 return -ENOMEM; 2896 2897 request->wiphy_idx = WIPHY_IDX_INVALID; 2898 request->alpha2[0] = alpha2[0]; 2899 request->alpha2[1] = alpha2[1]; 2900 request->initiator = NL80211_REGDOM_SET_BY_USER; 2901 request->user_reg_hint_type = user_reg_hint_type; 2902 2903 /* Allow calling CRDA again */ 2904 reset_crda_timeouts(); 2905 2906 queue_regulatory_request(request); 2907 2908 return 0; 2909 } 2910 2911 int regulatory_hint_indoor(bool is_indoor, u32 portid) 2912 { 2913 spin_lock(®_indoor_lock); 2914 2915 /* It is possible that more than one user space process is trying to 2916 * configure the indoor setting. To handle such cases, clear the indoor 2917 * setting in case that some process does not think that the device 2918 * is operating in an indoor environment. In addition, if a user space 2919 * process indicates that it is controlling the indoor setting, save its 2920 * portid, i.e., make it the owner. 2921 */ 2922 reg_is_indoor = is_indoor; 2923 if (reg_is_indoor) { 2924 if (!reg_is_indoor_portid) 2925 reg_is_indoor_portid = portid; 2926 } else { 2927 reg_is_indoor_portid = 0; 2928 } 2929 2930 spin_unlock(®_indoor_lock); 2931 2932 if (!is_indoor) 2933 reg_check_channels(); 2934 2935 return 0; 2936 } 2937 2938 void regulatory_netlink_notify(u32 portid) 2939 { 2940 spin_lock(®_indoor_lock); 2941 2942 if (reg_is_indoor_portid != portid) { 2943 spin_unlock(®_indoor_lock); 2944 return; 2945 } 2946 2947 reg_is_indoor = false; 2948 reg_is_indoor_portid = 0; 2949 2950 spin_unlock(®_indoor_lock); 2951 2952 reg_check_channels(); 2953 } 2954 2955 /* Driver hints */ 2956 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 2957 { 2958 struct regulatory_request *request; 2959 2960 if (WARN_ON(!alpha2 || !wiphy)) 2961 return -EINVAL; 2962 2963 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 2964 2965 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2966 if (!request) 2967 return -ENOMEM; 2968 2969 request->wiphy_idx = get_wiphy_idx(wiphy); 2970 2971 request->alpha2[0] = alpha2[0]; 2972 request->alpha2[1] = alpha2[1]; 2973 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 2974 2975 /* Allow calling CRDA again */ 2976 reset_crda_timeouts(); 2977 2978 queue_regulatory_request(request); 2979 2980 return 0; 2981 } 2982 EXPORT_SYMBOL(regulatory_hint); 2983 2984 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 2985 const u8 *country_ie, u8 country_ie_len) 2986 { 2987 char alpha2[2]; 2988 enum environment_cap env = ENVIRON_ANY; 2989 struct regulatory_request *request = NULL, *lr; 2990 2991 /* IE len must be evenly divisible by 2 */ 2992 if (country_ie_len & 0x01) 2993 return; 2994 2995 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 2996 return; 2997 2998 request = kzalloc(sizeof(*request), GFP_KERNEL); 2999 if (!request) 3000 return; 3001 3002 alpha2[0] = country_ie[0]; 3003 alpha2[1] = country_ie[1]; 3004 3005 if (country_ie[2] == 'I') 3006 env = ENVIRON_INDOOR; 3007 else if (country_ie[2] == 'O') 3008 env = ENVIRON_OUTDOOR; 3009 3010 rcu_read_lock(); 3011 lr = get_last_request(); 3012 3013 if (unlikely(!lr)) 3014 goto out; 3015 3016 /* 3017 * We will run this only upon a successful connection on cfg80211. 3018 * We leave conflict resolution to the workqueue, where can hold 3019 * the RTNL. 3020 */ 3021 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3022 lr->wiphy_idx != WIPHY_IDX_INVALID) 3023 goto out; 3024 3025 request->wiphy_idx = get_wiphy_idx(wiphy); 3026 request->alpha2[0] = alpha2[0]; 3027 request->alpha2[1] = alpha2[1]; 3028 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3029 request->country_ie_env = env; 3030 3031 /* Allow calling CRDA again */ 3032 reset_crda_timeouts(); 3033 3034 queue_regulatory_request(request); 3035 request = NULL; 3036 out: 3037 kfree(request); 3038 rcu_read_unlock(); 3039 } 3040 3041 static void restore_alpha2(char *alpha2, bool reset_user) 3042 { 3043 /* indicates there is no alpha2 to consider for restoration */ 3044 alpha2[0] = '9'; 3045 alpha2[1] = '7'; 3046 3047 /* The user setting has precedence over the module parameter */ 3048 if (is_user_regdom_saved()) { 3049 /* Unless we're asked to ignore it and reset it */ 3050 if (reset_user) { 3051 pr_debug("Restoring regulatory settings including user preference\n"); 3052 user_alpha2[0] = '9'; 3053 user_alpha2[1] = '7'; 3054 3055 /* 3056 * If we're ignoring user settings, we still need to 3057 * check the module parameter to ensure we put things 3058 * back as they were for a full restore. 3059 */ 3060 if (!is_world_regdom(ieee80211_regdom)) { 3061 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3062 ieee80211_regdom[0], ieee80211_regdom[1]); 3063 alpha2[0] = ieee80211_regdom[0]; 3064 alpha2[1] = ieee80211_regdom[1]; 3065 } 3066 } else { 3067 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3068 user_alpha2[0], user_alpha2[1]); 3069 alpha2[0] = user_alpha2[0]; 3070 alpha2[1] = user_alpha2[1]; 3071 } 3072 } else if (!is_world_regdom(ieee80211_regdom)) { 3073 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3074 ieee80211_regdom[0], ieee80211_regdom[1]); 3075 alpha2[0] = ieee80211_regdom[0]; 3076 alpha2[1] = ieee80211_regdom[1]; 3077 } else 3078 pr_debug("Restoring regulatory settings\n"); 3079 } 3080 3081 static void restore_custom_reg_settings(struct wiphy *wiphy) 3082 { 3083 struct ieee80211_supported_band *sband; 3084 enum nl80211_band band; 3085 struct ieee80211_channel *chan; 3086 int i; 3087 3088 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3089 sband = wiphy->bands[band]; 3090 if (!sband) 3091 continue; 3092 for (i = 0; i < sband->n_channels; i++) { 3093 chan = &sband->channels[i]; 3094 chan->flags = chan->orig_flags; 3095 chan->max_antenna_gain = chan->orig_mag; 3096 chan->max_power = chan->orig_mpwr; 3097 chan->beacon_found = false; 3098 } 3099 } 3100 } 3101 3102 /* 3103 * Restoring regulatory settings involves ingoring any 3104 * possibly stale country IE information and user regulatory 3105 * settings if so desired, this includes any beacon hints 3106 * learned as we could have traveled outside to another country 3107 * after disconnection. To restore regulatory settings we do 3108 * exactly what we did at bootup: 3109 * 3110 * - send a core regulatory hint 3111 * - send a user regulatory hint if applicable 3112 * 3113 * Device drivers that send a regulatory hint for a specific country 3114 * keep their own regulatory domain on wiphy->regd so that does does 3115 * not need to be remembered. 3116 */ 3117 static void restore_regulatory_settings(bool reset_user) 3118 { 3119 char alpha2[2]; 3120 char world_alpha2[2]; 3121 struct reg_beacon *reg_beacon, *btmp; 3122 LIST_HEAD(tmp_reg_req_list); 3123 struct cfg80211_registered_device *rdev; 3124 3125 ASSERT_RTNL(); 3126 3127 /* 3128 * Clear the indoor setting in case that it is not controlled by user 3129 * space, as otherwise there is no guarantee that the device is still 3130 * operating in an indoor environment. 3131 */ 3132 spin_lock(®_indoor_lock); 3133 if (reg_is_indoor && !reg_is_indoor_portid) { 3134 reg_is_indoor = false; 3135 reg_check_channels(); 3136 } 3137 spin_unlock(®_indoor_lock); 3138 3139 reset_regdomains(true, &world_regdom); 3140 restore_alpha2(alpha2, reset_user); 3141 3142 /* 3143 * If there's any pending requests we simply 3144 * stash them to a temporary pending queue and 3145 * add then after we've restored regulatory 3146 * settings. 3147 */ 3148 spin_lock(®_requests_lock); 3149 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3150 spin_unlock(®_requests_lock); 3151 3152 /* Clear beacon hints */ 3153 spin_lock_bh(®_pending_beacons_lock); 3154 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3155 list_del(®_beacon->list); 3156 kfree(reg_beacon); 3157 } 3158 spin_unlock_bh(®_pending_beacons_lock); 3159 3160 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3161 list_del(®_beacon->list); 3162 kfree(reg_beacon); 3163 } 3164 3165 /* First restore to the basic regulatory settings */ 3166 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3167 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3168 3169 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3170 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3171 continue; 3172 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3173 restore_custom_reg_settings(&rdev->wiphy); 3174 } 3175 3176 regulatory_hint_core(world_alpha2); 3177 3178 /* 3179 * This restores the ieee80211_regdom module parameter 3180 * preference or the last user requested regulatory 3181 * settings, user regulatory settings takes precedence. 3182 */ 3183 if (is_an_alpha2(alpha2)) 3184 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3185 3186 spin_lock(®_requests_lock); 3187 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3188 spin_unlock(®_requests_lock); 3189 3190 pr_debug("Kicking the queue\n"); 3191 3192 schedule_work(®_work); 3193 } 3194 3195 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3196 { 3197 struct cfg80211_registered_device *rdev; 3198 struct wireless_dev *wdev; 3199 3200 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3201 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3202 wdev_lock(wdev); 3203 if (!(wdev->wiphy->regulatory_flags & flag)) { 3204 wdev_unlock(wdev); 3205 return false; 3206 } 3207 wdev_unlock(wdev); 3208 } 3209 } 3210 3211 return true; 3212 } 3213 3214 void regulatory_hint_disconnect(void) 3215 { 3216 /* Restore of regulatory settings is not required when wiphy(s) 3217 * ignore IE from connected access point but clearance of beacon hints 3218 * is required when wiphy(s) supports beacon hints. 3219 */ 3220 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3221 struct reg_beacon *reg_beacon, *btmp; 3222 3223 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3224 return; 3225 3226 spin_lock_bh(®_pending_beacons_lock); 3227 list_for_each_entry_safe(reg_beacon, btmp, 3228 ®_pending_beacons, list) { 3229 list_del(®_beacon->list); 3230 kfree(reg_beacon); 3231 } 3232 spin_unlock_bh(®_pending_beacons_lock); 3233 3234 list_for_each_entry_safe(reg_beacon, btmp, 3235 ®_beacon_list, list) { 3236 list_del(®_beacon->list); 3237 kfree(reg_beacon); 3238 } 3239 3240 return; 3241 } 3242 3243 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3244 restore_regulatory_settings(false); 3245 } 3246 3247 static bool freq_is_chan_12_13_14(u32 freq) 3248 { 3249 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3250 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3251 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3252 return true; 3253 return false; 3254 } 3255 3256 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3257 { 3258 struct reg_beacon *pending_beacon; 3259 3260 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3261 if (beacon_chan->center_freq == 3262 pending_beacon->chan.center_freq) 3263 return true; 3264 return false; 3265 } 3266 3267 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3268 struct ieee80211_channel *beacon_chan, 3269 gfp_t gfp) 3270 { 3271 struct reg_beacon *reg_beacon; 3272 bool processing; 3273 3274 if (beacon_chan->beacon_found || 3275 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3276 (beacon_chan->band == NL80211_BAND_2GHZ && 3277 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3278 return 0; 3279 3280 spin_lock_bh(®_pending_beacons_lock); 3281 processing = pending_reg_beacon(beacon_chan); 3282 spin_unlock_bh(®_pending_beacons_lock); 3283 3284 if (processing) 3285 return 0; 3286 3287 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3288 if (!reg_beacon) 3289 return -ENOMEM; 3290 3291 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 3292 beacon_chan->center_freq, 3293 ieee80211_frequency_to_channel(beacon_chan->center_freq), 3294 wiphy_name(wiphy)); 3295 3296 memcpy(®_beacon->chan, beacon_chan, 3297 sizeof(struct ieee80211_channel)); 3298 3299 /* 3300 * Since we can be called from BH or and non-BH context 3301 * we must use spin_lock_bh() 3302 */ 3303 spin_lock_bh(®_pending_beacons_lock); 3304 list_add_tail(®_beacon->list, ®_pending_beacons); 3305 spin_unlock_bh(®_pending_beacons_lock); 3306 3307 schedule_work(®_work); 3308 3309 return 0; 3310 } 3311 3312 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3313 { 3314 unsigned int i; 3315 const struct ieee80211_reg_rule *reg_rule = NULL; 3316 const struct ieee80211_freq_range *freq_range = NULL; 3317 const struct ieee80211_power_rule *power_rule = NULL; 3318 char bw[32], cac_time[32]; 3319 3320 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3321 3322 for (i = 0; i < rd->n_reg_rules; i++) { 3323 reg_rule = &rd->reg_rules[i]; 3324 freq_range = ®_rule->freq_range; 3325 power_rule = ®_rule->power_rule; 3326 3327 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3328 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 3329 freq_range->max_bandwidth_khz, 3330 reg_get_max_bandwidth(rd, reg_rule)); 3331 else 3332 snprintf(bw, sizeof(bw), "%d KHz", 3333 freq_range->max_bandwidth_khz); 3334 3335 if (reg_rule->flags & NL80211_RRF_DFS) 3336 scnprintf(cac_time, sizeof(cac_time), "%u s", 3337 reg_rule->dfs_cac_ms/1000); 3338 else 3339 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3340 3341 3342 /* 3343 * There may not be documentation for max antenna gain 3344 * in certain regions 3345 */ 3346 if (power_rule->max_antenna_gain) 3347 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3348 freq_range->start_freq_khz, 3349 freq_range->end_freq_khz, 3350 bw, 3351 power_rule->max_antenna_gain, 3352 power_rule->max_eirp, 3353 cac_time); 3354 else 3355 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3356 freq_range->start_freq_khz, 3357 freq_range->end_freq_khz, 3358 bw, 3359 power_rule->max_eirp, 3360 cac_time); 3361 } 3362 } 3363 3364 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3365 { 3366 switch (dfs_region) { 3367 case NL80211_DFS_UNSET: 3368 case NL80211_DFS_FCC: 3369 case NL80211_DFS_ETSI: 3370 case NL80211_DFS_JP: 3371 return true; 3372 default: 3373 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3374 return false; 3375 } 3376 } 3377 3378 static void print_regdomain(const struct ieee80211_regdomain *rd) 3379 { 3380 struct regulatory_request *lr = get_last_request(); 3381 3382 if (is_intersected_alpha2(rd->alpha2)) { 3383 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3384 struct cfg80211_registered_device *rdev; 3385 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3386 if (rdev) { 3387 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3388 rdev->country_ie_alpha2[0], 3389 rdev->country_ie_alpha2[1]); 3390 } else 3391 pr_debug("Current regulatory domain intersected:\n"); 3392 } else 3393 pr_debug("Current regulatory domain intersected:\n"); 3394 } else if (is_world_regdom(rd->alpha2)) { 3395 pr_debug("World regulatory domain updated:\n"); 3396 } else { 3397 if (is_unknown_alpha2(rd->alpha2)) 3398 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3399 else { 3400 if (reg_request_cell_base(lr)) 3401 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3402 rd->alpha2[0], rd->alpha2[1]); 3403 else 3404 pr_debug("Regulatory domain changed to country: %c%c\n", 3405 rd->alpha2[0], rd->alpha2[1]); 3406 } 3407 } 3408 3409 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3410 print_rd_rules(rd); 3411 } 3412 3413 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3414 { 3415 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3416 print_rd_rules(rd); 3417 } 3418 3419 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3420 { 3421 if (!is_world_regdom(rd->alpha2)) 3422 return -EINVAL; 3423 update_world_regdomain(rd); 3424 return 0; 3425 } 3426 3427 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3428 struct regulatory_request *user_request) 3429 { 3430 const struct ieee80211_regdomain *intersected_rd = NULL; 3431 3432 if (!regdom_changes(rd->alpha2)) 3433 return -EALREADY; 3434 3435 if (!is_valid_rd(rd)) { 3436 pr_err("Invalid regulatory domain detected: %c%c\n", 3437 rd->alpha2[0], rd->alpha2[1]); 3438 print_regdomain_info(rd); 3439 return -EINVAL; 3440 } 3441 3442 if (!user_request->intersect) { 3443 reset_regdomains(false, rd); 3444 return 0; 3445 } 3446 3447 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3448 if (!intersected_rd) 3449 return -EINVAL; 3450 3451 kfree(rd); 3452 rd = NULL; 3453 reset_regdomains(false, intersected_rd); 3454 3455 return 0; 3456 } 3457 3458 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3459 struct regulatory_request *driver_request) 3460 { 3461 const struct ieee80211_regdomain *regd; 3462 const struct ieee80211_regdomain *intersected_rd = NULL; 3463 const struct ieee80211_regdomain *tmp; 3464 struct wiphy *request_wiphy; 3465 3466 if (is_world_regdom(rd->alpha2)) 3467 return -EINVAL; 3468 3469 if (!regdom_changes(rd->alpha2)) 3470 return -EALREADY; 3471 3472 if (!is_valid_rd(rd)) { 3473 pr_err("Invalid regulatory domain detected: %c%c\n", 3474 rd->alpha2[0], rd->alpha2[1]); 3475 print_regdomain_info(rd); 3476 return -EINVAL; 3477 } 3478 3479 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3480 if (!request_wiphy) 3481 return -ENODEV; 3482 3483 if (!driver_request->intersect) { 3484 if (request_wiphy->regd) 3485 return -EALREADY; 3486 3487 regd = reg_copy_regd(rd); 3488 if (IS_ERR(regd)) 3489 return PTR_ERR(regd); 3490 3491 rcu_assign_pointer(request_wiphy->regd, regd); 3492 reset_regdomains(false, rd); 3493 return 0; 3494 } 3495 3496 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3497 if (!intersected_rd) 3498 return -EINVAL; 3499 3500 /* 3501 * We can trash what CRDA provided now. 3502 * However if a driver requested this specific regulatory 3503 * domain we keep it for its private use 3504 */ 3505 tmp = get_wiphy_regdom(request_wiphy); 3506 rcu_assign_pointer(request_wiphy->regd, rd); 3507 rcu_free_regdom(tmp); 3508 3509 rd = NULL; 3510 3511 reset_regdomains(false, intersected_rd); 3512 3513 return 0; 3514 } 3515 3516 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3517 struct regulatory_request *country_ie_request) 3518 { 3519 struct wiphy *request_wiphy; 3520 3521 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3522 !is_unknown_alpha2(rd->alpha2)) 3523 return -EINVAL; 3524 3525 /* 3526 * Lets only bother proceeding on the same alpha2 if the current 3527 * rd is non static (it means CRDA was present and was used last) 3528 * and the pending request came in from a country IE 3529 */ 3530 3531 if (!is_valid_rd(rd)) { 3532 pr_err("Invalid regulatory domain detected: %c%c\n", 3533 rd->alpha2[0], rd->alpha2[1]); 3534 print_regdomain_info(rd); 3535 return -EINVAL; 3536 } 3537 3538 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3539 if (!request_wiphy) 3540 return -ENODEV; 3541 3542 if (country_ie_request->intersect) 3543 return -EINVAL; 3544 3545 reset_regdomains(false, rd); 3546 return 0; 3547 } 3548 3549 /* 3550 * Use this call to set the current regulatory domain. Conflicts with 3551 * multiple drivers can be ironed out later. Caller must've already 3552 * kmalloc'd the rd structure. 3553 */ 3554 int set_regdom(const struct ieee80211_regdomain *rd, 3555 enum ieee80211_regd_source regd_src) 3556 { 3557 struct regulatory_request *lr; 3558 bool user_reset = false; 3559 int r; 3560 3561 if (!reg_is_valid_request(rd->alpha2)) { 3562 kfree(rd); 3563 return -EINVAL; 3564 } 3565 3566 if (regd_src == REGD_SOURCE_CRDA) 3567 reset_crda_timeouts(); 3568 3569 lr = get_last_request(); 3570 3571 /* Note that this doesn't update the wiphys, this is done below */ 3572 switch (lr->initiator) { 3573 case NL80211_REGDOM_SET_BY_CORE: 3574 r = reg_set_rd_core(rd); 3575 break; 3576 case NL80211_REGDOM_SET_BY_USER: 3577 r = reg_set_rd_user(rd, lr); 3578 user_reset = true; 3579 break; 3580 case NL80211_REGDOM_SET_BY_DRIVER: 3581 r = reg_set_rd_driver(rd, lr); 3582 break; 3583 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3584 r = reg_set_rd_country_ie(rd, lr); 3585 break; 3586 default: 3587 WARN(1, "invalid initiator %d\n", lr->initiator); 3588 kfree(rd); 3589 return -EINVAL; 3590 } 3591 3592 if (r) { 3593 switch (r) { 3594 case -EALREADY: 3595 reg_set_request_processed(); 3596 break; 3597 default: 3598 /* Back to world regulatory in case of errors */ 3599 restore_regulatory_settings(user_reset); 3600 } 3601 3602 kfree(rd); 3603 return r; 3604 } 3605 3606 /* This would make this whole thing pointless */ 3607 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3608 return -EINVAL; 3609 3610 /* update all wiphys now with the new established regulatory domain */ 3611 update_all_wiphy_regulatory(lr->initiator); 3612 3613 print_regdomain(get_cfg80211_regdom()); 3614 3615 nl80211_send_reg_change_event(lr); 3616 3617 reg_set_request_processed(); 3618 3619 return 0; 3620 } 3621 3622 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 3623 struct ieee80211_regdomain *rd) 3624 { 3625 const struct ieee80211_regdomain *regd; 3626 const struct ieee80211_regdomain *prev_regd; 3627 struct cfg80211_registered_device *rdev; 3628 3629 if (WARN_ON(!wiphy || !rd)) 3630 return -EINVAL; 3631 3632 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 3633 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 3634 return -EPERM; 3635 3636 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { 3637 print_regdomain_info(rd); 3638 return -EINVAL; 3639 } 3640 3641 regd = reg_copy_regd(rd); 3642 if (IS_ERR(regd)) 3643 return PTR_ERR(regd); 3644 3645 rdev = wiphy_to_rdev(wiphy); 3646 3647 spin_lock(®_requests_lock); 3648 prev_regd = rdev->requested_regd; 3649 rdev->requested_regd = regd; 3650 spin_unlock(®_requests_lock); 3651 3652 kfree(prev_regd); 3653 return 0; 3654 } 3655 3656 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 3657 struct ieee80211_regdomain *rd) 3658 { 3659 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 3660 3661 if (ret) 3662 return ret; 3663 3664 schedule_work(®_work); 3665 return 0; 3666 } 3667 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 3668 3669 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, 3670 struct ieee80211_regdomain *rd) 3671 { 3672 int ret; 3673 3674 ASSERT_RTNL(); 3675 3676 ret = __regulatory_set_wiphy_regd(wiphy, rd); 3677 if (ret) 3678 return ret; 3679 3680 /* process the request immediately */ 3681 reg_process_self_managed_hints(); 3682 return 0; 3683 } 3684 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); 3685 3686 void wiphy_regulatory_register(struct wiphy *wiphy) 3687 { 3688 struct regulatory_request *lr = get_last_request(); 3689 3690 /* self-managed devices ignore beacon hints and country IE */ 3691 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 3692 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 3693 REGULATORY_COUNTRY_IE_IGNORE; 3694 3695 /* 3696 * The last request may have been received before this 3697 * registration call. Call the driver notifier if 3698 * initiator is USER and user type is CELL_BASE. 3699 */ 3700 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 3701 lr->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE) 3702 reg_call_notifier(wiphy, lr); 3703 } 3704 3705 if (!reg_dev_ignore_cell_hint(wiphy)) 3706 reg_num_devs_support_basehint++; 3707 3708 wiphy_update_regulatory(wiphy, lr->initiator); 3709 wiphy_all_share_dfs_chan_state(wiphy); 3710 } 3711 3712 void wiphy_regulatory_deregister(struct wiphy *wiphy) 3713 { 3714 struct wiphy *request_wiphy = NULL; 3715 struct regulatory_request *lr; 3716 3717 lr = get_last_request(); 3718 3719 if (!reg_dev_ignore_cell_hint(wiphy)) 3720 reg_num_devs_support_basehint--; 3721 3722 rcu_free_regdom(get_wiphy_regdom(wiphy)); 3723 RCU_INIT_POINTER(wiphy->regd, NULL); 3724 3725 if (lr) 3726 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 3727 3728 if (!request_wiphy || request_wiphy != wiphy) 3729 return; 3730 3731 lr->wiphy_idx = WIPHY_IDX_INVALID; 3732 lr->country_ie_env = ENVIRON_ANY; 3733 } 3734 3735 /* 3736 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for 3737 * UNII band definitions 3738 */ 3739 int cfg80211_get_unii(int freq) 3740 { 3741 /* UNII-1 */ 3742 if (freq >= 5150 && freq <= 5250) 3743 return 0; 3744 3745 /* UNII-2A */ 3746 if (freq > 5250 && freq <= 5350) 3747 return 1; 3748 3749 /* UNII-2B */ 3750 if (freq > 5350 && freq <= 5470) 3751 return 2; 3752 3753 /* UNII-2C */ 3754 if (freq > 5470 && freq <= 5725) 3755 return 3; 3756 3757 /* UNII-3 */ 3758 if (freq > 5725 && freq <= 5825) 3759 return 4; 3760 3761 return -EINVAL; 3762 } 3763 3764 bool regulatory_indoor_allowed(void) 3765 { 3766 return reg_is_indoor; 3767 } 3768 3769 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 3770 { 3771 const struct ieee80211_regdomain *regd = NULL; 3772 const struct ieee80211_regdomain *wiphy_regd = NULL; 3773 bool pre_cac_allowed = false; 3774 3775 rcu_read_lock(); 3776 3777 regd = rcu_dereference(cfg80211_regdomain); 3778 wiphy_regd = rcu_dereference(wiphy->regd); 3779 if (!wiphy_regd) { 3780 if (regd->dfs_region == NL80211_DFS_ETSI) 3781 pre_cac_allowed = true; 3782 3783 rcu_read_unlock(); 3784 3785 return pre_cac_allowed; 3786 } 3787 3788 if (regd->dfs_region == wiphy_regd->dfs_region && 3789 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 3790 pre_cac_allowed = true; 3791 3792 rcu_read_unlock(); 3793 3794 return pre_cac_allowed; 3795 } 3796 3797 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 3798 struct cfg80211_chan_def *chandef, 3799 enum nl80211_dfs_state dfs_state, 3800 enum nl80211_radar_event event) 3801 { 3802 struct cfg80211_registered_device *rdev; 3803 3804 ASSERT_RTNL(); 3805 3806 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 3807 return; 3808 3809 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3810 if (wiphy == &rdev->wiphy) 3811 continue; 3812 3813 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 3814 continue; 3815 3816 if (!ieee80211_get_channel(&rdev->wiphy, 3817 chandef->chan->center_freq)) 3818 continue; 3819 3820 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 3821 3822 if (event == NL80211_RADAR_DETECTED || 3823 event == NL80211_RADAR_CAC_FINISHED) 3824 cfg80211_sched_dfs_chan_update(rdev); 3825 3826 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 3827 } 3828 } 3829 3830 static int __init regulatory_init_db(void) 3831 { 3832 int err; 3833 3834 /* 3835 * It's possible that - due to other bugs/issues - cfg80211 3836 * never called regulatory_init() below, or that it failed; 3837 * in that case, don't try to do any further work here as 3838 * it's doomed to lead to crashes. 3839 */ 3840 if (IS_ERR_OR_NULL(reg_pdev)) 3841 return -EINVAL; 3842 3843 err = load_builtin_regdb_keys(); 3844 if (err) 3845 return err; 3846 3847 /* We always try to get an update for the static regdomain */ 3848 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 3849 if (err) { 3850 if (err == -ENOMEM) { 3851 platform_device_unregister(reg_pdev); 3852 return err; 3853 } 3854 /* 3855 * N.B. kobject_uevent_env() can fail mainly for when we're out 3856 * memory which is handled and propagated appropriately above 3857 * but it can also fail during a netlink_broadcast() or during 3858 * early boot for call_usermodehelper(). For now treat these 3859 * errors as non-fatal. 3860 */ 3861 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 3862 } 3863 3864 /* 3865 * Finally, if the user set the module parameter treat it 3866 * as a user hint. 3867 */ 3868 if (!is_world_regdom(ieee80211_regdom)) 3869 regulatory_hint_user(ieee80211_regdom, 3870 NL80211_USER_REG_HINT_USER); 3871 3872 return 0; 3873 } 3874 #ifndef MODULE 3875 late_initcall(regulatory_init_db); 3876 #endif 3877 3878 int __init regulatory_init(void) 3879 { 3880 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 3881 if (IS_ERR(reg_pdev)) 3882 return PTR_ERR(reg_pdev); 3883 3884 spin_lock_init(®_requests_lock); 3885 spin_lock_init(®_pending_beacons_lock); 3886 spin_lock_init(®_indoor_lock); 3887 3888 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 3889 3890 user_alpha2[0] = '9'; 3891 user_alpha2[1] = '7'; 3892 3893 #ifdef MODULE 3894 return regulatory_init_db(); 3895 #else 3896 return 0; 3897 #endif 3898 } 3899 3900 void regulatory_exit(void) 3901 { 3902 struct regulatory_request *reg_request, *tmp; 3903 struct reg_beacon *reg_beacon, *btmp; 3904 3905 cancel_work_sync(®_work); 3906 cancel_crda_timeout_sync(); 3907 cancel_delayed_work_sync(®_check_chans); 3908 3909 /* Lock to suppress warnings */ 3910 rtnl_lock(); 3911 reset_regdomains(true, NULL); 3912 rtnl_unlock(); 3913 3914 dev_set_uevent_suppress(®_pdev->dev, true); 3915 3916 platform_device_unregister(reg_pdev); 3917 3918 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3919 list_del(®_beacon->list); 3920 kfree(reg_beacon); 3921 } 3922 3923 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3924 list_del(®_beacon->list); 3925 kfree(reg_beacon); 3926 } 3927 3928 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 3929 list_del(®_request->list); 3930 kfree(reg_request); 3931 } 3932 3933 if (!IS_ERR_OR_NULL(regdb)) 3934 kfree(regdb); 3935 3936 free_regdb_keyring(); 3937 } 3938