xref: /openbmc/linux/net/wireless/reg.c (revision 6a551c11)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 
22 /**
23  * DOC: Wireless regulatory infrastructure
24  *
25  * The usual implementation is for a driver to read a device EEPROM to
26  * determine which regulatory domain it should be operating under, then
27  * looking up the allowable channels in a driver-local table and finally
28  * registering those channels in the wiphy structure.
29  *
30  * Another set of compliance enforcement is for drivers to use their
31  * own compliance limits which can be stored on the EEPROM. The host
32  * driver or firmware may ensure these are used.
33  *
34  * In addition to all this we provide an extra layer of regulatory
35  * conformance. For drivers which do not have any regulatory
36  * information CRDA provides the complete regulatory solution.
37  * For others it provides a community effort on further restrictions
38  * to enhance compliance.
39  *
40  * Note: When number of rules --> infinity we will not be able to
41  * index on alpha2 any more, instead we'll probably have to
42  * rely on some SHA1 checksum of the regdomain for example.
43  *
44  */
45 
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62 
63 /*
64  * Grace period we give before making sure all current interfaces reside on
65  * channels allowed by the current regulatory domain.
66  */
67 #define REG_ENFORCE_GRACE_MS 60000
68 
69 /**
70  * enum reg_request_treatment - regulatory request treatment
71  *
72  * @REG_REQ_OK: continue processing the regulatory request
73  * @REG_REQ_IGNORE: ignore the regulatory request
74  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
75  *	be intersected with the current one.
76  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
77  *	regulatory settings, and no further processing is required.
78  */
79 enum reg_request_treatment {
80 	REG_REQ_OK,
81 	REG_REQ_IGNORE,
82 	REG_REQ_INTERSECT,
83 	REG_REQ_ALREADY_SET,
84 };
85 
86 static struct regulatory_request core_request_world = {
87 	.initiator = NL80211_REGDOM_SET_BY_CORE,
88 	.alpha2[0] = '0',
89 	.alpha2[1] = '0',
90 	.intersect = false,
91 	.processed = true,
92 	.country_ie_env = ENVIRON_ANY,
93 };
94 
95 /*
96  * Receipt of information from last regulatory request,
97  * protected by RTNL (and can be accessed with RCU protection)
98  */
99 static struct regulatory_request __rcu *last_request =
100 	(void __force __rcu *)&core_request_world;
101 
102 /* To trigger userspace events */
103 static struct platform_device *reg_pdev;
104 
105 /*
106  * Central wireless core regulatory domains, we only need two,
107  * the current one and a world regulatory domain in case we have no
108  * information to give us an alpha2.
109  * (protected by RTNL, can be read under RCU)
110  */
111 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
112 
113 /*
114  * Number of devices that registered to the core
115  * that support cellular base station regulatory hints
116  * (protected by RTNL)
117  */
118 static int reg_num_devs_support_basehint;
119 
120 /*
121  * State variable indicating if the platform on which the devices
122  * are attached is operating in an indoor environment. The state variable
123  * is relevant for all registered devices.
124  */
125 static bool reg_is_indoor;
126 static spinlock_t reg_indoor_lock;
127 
128 /* Used to track the userspace process controlling the indoor setting */
129 static u32 reg_is_indoor_portid;
130 
131 static void restore_regulatory_settings(bool reset_user);
132 
133 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
134 {
135 	return rtnl_dereference(cfg80211_regdomain);
136 }
137 
138 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
139 {
140 	return rtnl_dereference(wiphy->regd);
141 }
142 
143 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
144 {
145 	switch (dfs_region) {
146 	case NL80211_DFS_UNSET:
147 		return "unset";
148 	case NL80211_DFS_FCC:
149 		return "FCC";
150 	case NL80211_DFS_ETSI:
151 		return "ETSI";
152 	case NL80211_DFS_JP:
153 		return "JP";
154 	}
155 	return "Unknown";
156 }
157 
158 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
159 {
160 	const struct ieee80211_regdomain *regd = NULL;
161 	const struct ieee80211_regdomain *wiphy_regd = NULL;
162 
163 	regd = get_cfg80211_regdom();
164 	if (!wiphy)
165 		goto out;
166 
167 	wiphy_regd = get_wiphy_regdom(wiphy);
168 	if (!wiphy_regd)
169 		goto out;
170 
171 	if (wiphy_regd->dfs_region == regd->dfs_region)
172 		goto out;
173 
174 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
175 		 dev_name(&wiphy->dev),
176 		 reg_dfs_region_str(wiphy_regd->dfs_region),
177 		 reg_dfs_region_str(regd->dfs_region));
178 
179 out:
180 	return regd->dfs_region;
181 }
182 
183 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
184 {
185 	if (!r)
186 		return;
187 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
188 }
189 
190 static struct regulatory_request *get_last_request(void)
191 {
192 	return rcu_dereference_rtnl(last_request);
193 }
194 
195 /* Used to queue up regulatory hints */
196 static LIST_HEAD(reg_requests_list);
197 static spinlock_t reg_requests_lock;
198 
199 /* Used to queue up beacon hints for review */
200 static LIST_HEAD(reg_pending_beacons);
201 static spinlock_t reg_pending_beacons_lock;
202 
203 /* Used to keep track of processed beacon hints */
204 static LIST_HEAD(reg_beacon_list);
205 
206 struct reg_beacon {
207 	struct list_head list;
208 	struct ieee80211_channel chan;
209 };
210 
211 static void reg_check_chans_work(struct work_struct *work);
212 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
213 
214 static void reg_todo(struct work_struct *work);
215 static DECLARE_WORK(reg_work, reg_todo);
216 
217 /* We keep a static world regulatory domain in case of the absence of CRDA */
218 static const struct ieee80211_regdomain world_regdom = {
219 	.n_reg_rules = 8,
220 	.alpha2 =  "00",
221 	.reg_rules = {
222 		/* IEEE 802.11b/g, channels 1..11 */
223 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
224 		/* IEEE 802.11b/g, channels 12..13. */
225 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
226 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
227 		/* IEEE 802.11 channel 14 - Only JP enables
228 		 * this and for 802.11b only */
229 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
230 			NL80211_RRF_NO_IR |
231 			NL80211_RRF_NO_OFDM),
232 		/* IEEE 802.11a, channel 36..48 */
233 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
234                         NL80211_RRF_NO_IR |
235                         NL80211_RRF_AUTO_BW),
236 
237 		/* IEEE 802.11a, channel 52..64 - DFS required */
238 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
239 			NL80211_RRF_NO_IR |
240 			NL80211_RRF_AUTO_BW |
241 			NL80211_RRF_DFS),
242 
243 		/* IEEE 802.11a, channel 100..144 - DFS required */
244 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
245 			NL80211_RRF_NO_IR |
246 			NL80211_RRF_DFS),
247 
248 		/* IEEE 802.11a, channel 149..165 */
249 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
250 			NL80211_RRF_NO_IR),
251 
252 		/* IEEE 802.11ad (60GHz), channels 1..3 */
253 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
254 	}
255 };
256 
257 /* protected by RTNL */
258 static const struct ieee80211_regdomain *cfg80211_world_regdom =
259 	&world_regdom;
260 
261 static char *ieee80211_regdom = "00";
262 static char user_alpha2[2];
263 
264 module_param(ieee80211_regdom, charp, 0444);
265 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
266 
267 static void reg_free_request(struct regulatory_request *request)
268 {
269 	if (request == &core_request_world)
270 		return;
271 
272 	if (request != get_last_request())
273 		kfree(request);
274 }
275 
276 static void reg_free_last_request(void)
277 {
278 	struct regulatory_request *lr = get_last_request();
279 
280 	if (lr != &core_request_world && lr)
281 		kfree_rcu(lr, rcu_head);
282 }
283 
284 static void reg_update_last_request(struct regulatory_request *request)
285 {
286 	struct regulatory_request *lr;
287 
288 	lr = get_last_request();
289 	if (lr == request)
290 		return;
291 
292 	reg_free_last_request();
293 	rcu_assign_pointer(last_request, request);
294 }
295 
296 static void reset_regdomains(bool full_reset,
297 			     const struct ieee80211_regdomain *new_regdom)
298 {
299 	const struct ieee80211_regdomain *r;
300 
301 	ASSERT_RTNL();
302 
303 	r = get_cfg80211_regdom();
304 
305 	/* avoid freeing static information or freeing something twice */
306 	if (r == cfg80211_world_regdom)
307 		r = NULL;
308 	if (cfg80211_world_regdom == &world_regdom)
309 		cfg80211_world_regdom = NULL;
310 	if (r == &world_regdom)
311 		r = NULL;
312 
313 	rcu_free_regdom(r);
314 	rcu_free_regdom(cfg80211_world_regdom);
315 
316 	cfg80211_world_regdom = &world_regdom;
317 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
318 
319 	if (!full_reset)
320 		return;
321 
322 	reg_update_last_request(&core_request_world);
323 }
324 
325 /*
326  * Dynamic world regulatory domain requested by the wireless
327  * core upon initialization
328  */
329 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
330 {
331 	struct regulatory_request *lr;
332 
333 	lr = get_last_request();
334 
335 	WARN_ON(!lr);
336 
337 	reset_regdomains(false, rd);
338 
339 	cfg80211_world_regdom = rd;
340 }
341 
342 bool is_world_regdom(const char *alpha2)
343 {
344 	if (!alpha2)
345 		return false;
346 	return alpha2[0] == '0' && alpha2[1] == '0';
347 }
348 
349 static bool is_alpha2_set(const char *alpha2)
350 {
351 	if (!alpha2)
352 		return false;
353 	return alpha2[0] && alpha2[1];
354 }
355 
356 static bool is_unknown_alpha2(const char *alpha2)
357 {
358 	if (!alpha2)
359 		return false;
360 	/*
361 	 * Special case where regulatory domain was built by driver
362 	 * but a specific alpha2 cannot be determined
363 	 */
364 	return alpha2[0] == '9' && alpha2[1] == '9';
365 }
366 
367 static bool is_intersected_alpha2(const char *alpha2)
368 {
369 	if (!alpha2)
370 		return false;
371 	/*
372 	 * Special case where regulatory domain is the
373 	 * result of an intersection between two regulatory domain
374 	 * structures
375 	 */
376 	return alpha2[0] == '9' && alpha2[1] == '8';
377 }
378 
379 static bool is_an_alpha2(const char *alpha2)
380 {
381 	if (!alpha2)
382 		return false;
383 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
384 }
385 
386 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
387 {
388 	if (!alpha2_x || !alpha2_y)
389 		return false;
390 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
391 }
392 
393 static bool regdom_changes(const char *alpha2)
394 {
395 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
396 
397 	if (!r)
398 		return true;
399 	return !alpha2_equal(r->alpha2, alpha2);
400 }
401 
402 /*
403  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
404  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
405  * has ever been issued.
406  */
407 static bool is_user_regdom_saved(void)
408 {
409 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
410 		return false;
411 
412 	/* This would indicate a mistake on the design */
413 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
414 		 "Unexpected user alpha2: %c%c\n",
415 		 user_alpha2[0], user_alpha2[1]))
416 		return false;
417 
418 	return true;
419 }
420 
421 static const struct ieee80211_regdomain *
422 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
423 {
424 	struct ieee80211_regdomain *regd;
425 	int size_of_regd;
426 	unsigned int i;
427 
428 	size_of_regd =
429 		sizeof(struct ieee80211_regdomain) +
430 		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
431 
432 	regd = kzalloc(size_of_regd, GFP_KERNEL);
433 	if (!regd)
434 		return ERR_PTR(-ENOMEM);
435 
436 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
437 
438 	for (i = 0; i < src_regd->n_reg_rules; i++)
439 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
440 		       sizeof(struct ieee80211_reg_rule));
441 
442 	return regd;
443 }
444 
445 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
446 struct reg_regdb_apply_request {
447 	struct list_head list;
448 	const struct ieee80211_regdomain *regdom;
449 };
450 
451 static LIST_HEAD(reg_regdb_apply_list);
452 static DEFINE_MUTEX(reg_regdb_apply_mutex);
453 
454 static void reg_regdb_apply(struct work_struct *work)
455 {
456 	struct reg_regdb_apply_request *request;
457 
458 	rtnl_lock();
459 
460 	mutex_lock(&reg_regdb_apply_mutex);
461 	while (!list_empty(&reg_regdb_apply_list)) {
462 		request = list_first_entry(&reg_regdb_apply_list,
463 					   struct reg_regdb_apply_request,
464 					   list);
465 		list_del(&request->list);
466 
467 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
468 		kfree(request);
469 	}
470 	mutex_unlock(&reg_regdb_apply_mutex);
471 
472 	rtnl_unlock();
473 }
474 
475 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
476 
477 static int reg_query_builtin(const char *alpha2)
478 {
479 	const struct ieee80211_regdomain *regdom = NULL;
480 	struct reg_regdb_apply_request *request;
481 	unsigned int i;
482 
483 	for (i = 0; i < reg_regdb_size; i++) {
484 		if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
485 			regdom = reg_regdb[i];
486 			break;
487 		}
488 	}
489 
490 	if (!regdom)
491 		return -ENODATA;
492 
493 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
494 	if (!request)
495 		return -ENOMEM;
496 
497 	request->regdom = reg_copy_regd(regdom);
498 	if (IS_ERR_OR_NULL(request->regdom)) {
499 		kfree(request);
500 		return -ENOMEM;
501 	}
502 
503 	mutex_lock(&reg_regdb_apply_mutex);
504 	list_add_tail(&request->list, &reg_regdb_apply_list);
505 	mutex_unlock(&reg_regdb_apply_mutex);
506 
507 	schedule_work(&reg_regdb_work);
508 
509 	return 0;
510 }
511 
512 /* Feel free to add any other sanity checks here */
513 static void reg_regdb_size_check(void)
514 {
515 	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
516 	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
517 }
518 #else
519 static inline void reg_regdb_size_check(void) {}
520 static inline int reg_query_builtin(const char *alpha2)
521 {
522 	return -ENODATA;
523 }
524 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
525 
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529 
530 static u32 reg_crda_timeouts;
531 
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534 
535 static void crda_timeout_work(struct work_struct *work)
536 {
537 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 	rtnl_lock();
539 	reg_crda_timeouts++;
540 	restore_regulatory_settings(true);
541 	rtnl_unlock();
542 }
543 
544 static void cancel_crda_timeout(void)
545 {
546 	cancel_delayed_work(&crda_timeout);
547 }
548 
549 static void cancel_crda_timeout_sync(void)
550 {
551 	cancel_delayed_work_sync(&crda_timeout);
552 }
553 
554 static void reset_crda_timeouts(void)
555 {
556 	reg_crda_timeouts = 0;
557 }
558 
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
563 static int call_crda(const char *alpha2)
564 {
565 	char country[12];
566 	char *env[] = { country, NULL };
567 	int ret;
568 
569 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 		 alpha2[0], alpha2[1]);
571 
572 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 		return -EINVAL;
575 	}
576 
577 	if (!is_world_regdom((char *) alpha2))
578 		pr_debug("Calling CRDA for country: %c%c\n",
579 			 alpha2[0], alpha2[1]);
580 	else
581 		pr_debug("Calling CRDA to update world regulatory domain\n");
582 
583 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584 	if (ret)
585 		return ret;
586 
587 	queue_delayed_work(system_power_efficient_wq,
588 			   &crda_timeout, msecs_to_jiffies(3142));
589 	return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597 	return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600 
601 static bool reg_query_database(struct regulatory_request *request)
602 {
603 	/* query internal regulatory database (if it exists) */
604 	if (reg_query_builtin(request->alpha2) == 0)
605 		return true;
606 
607 	if (call_crda(request->alpha2) == 0)
608 		return true;
609 
610 	return false;
611 }
612 
613 bool reg_is_valid_request(const char *alpha2)
614 {
615 	struct regulatory_request *lr = get_last_request();
616 
617 	if (!lr || lr->processed)
618 		return false;
619 
620 	return alpha2_equal(lr->alpha2, alpha2);
621 }
622 
623 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
624 {
625 	struct regulatory_request *lr = get_last_request();
626 
627 	/*
628 	 * Follow the driver's regulatory domain, if present, unless a country
629 	 * IE has been processed or a user wants to help complaince further
630 	 */
631 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
632 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
633 	    wiphy->regd)
634 		return get_wiphy_regdom(wiphy);
635 
636 	return get_cfg80211_regdom();
637 }
638 
639 static unsigned int
640 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
641 				 const struct ieee80211_reg_rule *rule)
642 {
643 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
644 	const struct ieee80211_freq_range *freq_range_tmp;
645 	const struct ieee80211_reg_rule *tmp;
646 	u32 start_freq, end_freq, idx, no;
647 
648 	for (idx = 0; idx < rd->n_reg_rules; idx++)
649 		if (rule == &rd->reg_rules[idx])
650 			break;
651 
652 	if (idx == rd->n_reg_rules)
653 		return 0;
654 
655 	/* get start_freq */
656 	no = idx;
657 
658 	while (no) {
659 		tmp = &rd->reg_rules[--no];
660 		freq_range_tmp = &tmp->freq_range;
661 
662 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
663 			break;
664 
665 		freq_range = freq_range_tmp;
666 	}
667 
668 	start_freq = freq_range->start_freq_khz;
669 
670 	/* get end_freq */
671 	freq_range = &rule->freq_range;
672 	no = idx;
673 
674 	while (no < rd->n_reg_rules - 1) {
675 		tmp = &rd->reg_rules[++no];
676 		freq_range_tmp = &tmp->freq_range;
677 
678 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
679 			break;
680 
681 		freq_range = freq_range_tmp;
682 	}
683 
684 	end_freq = freq_range->end_freq_khz;
685 
686 	return end_freq - start_freq;
687 }
688 
689 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
690 				   const struct ieee80211_reg_rule *rule)
691 {
692 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
693 
694 	if (rule->flags & NL80211_RRF_NO_160MHZ)
695 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
696 	if (rule->flags & NL80211_RRF_NO_80MHZ)
697 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
698 
699 	/*
700 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
701 	 * are not allowed.
702 	 */
703 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
704 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
705 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
706 
707 	return bw;
708 }
709 
710 /* Sanity check on a regulatory rule */
711 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
712 {
713 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
714 	u32 freq_diff;
715 
716 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
717 		return false;
718 
719 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
720 		return false;
721 
722 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
723 
724 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
725 	    freq_range->max_bandwidth_khz > freq_diff)
726 		return false;
727 
728 	return true;
729 }
730 
731 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
732 {
733 	const struct ieee80211_reg_rule *reg_rule = NULL;
734 	unsigned int i;
735 
736 	if (!rd->n_reg_rules)
737 		return false;
738 
739 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
740 		return false;
741 
742 	for (i = 0; i < rd->n_reg_rules; i++) {
743 		reg_rule = &rd->reg_rules[i];
744 		if (!is_valid_reg_rule(reg_rule))
745 			return false;
746 	}
747 
748 	return true;
749 }
750 
751 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
752 			    u32 center_freq_khz, u32 bw_khz)
753 {
754 	u32 start_freq_khz, end_freq_khz;
755 
756 	start_freq_khz = center_freq_khz - (bw_khz/2);
757 	end_freq_khz = center_freq_khz + (bw_khz/2);
758 
759 	if (start_freq_khz >= freq_range->start_freq_khz &&
760 	    end_freq_khz <= freq_range->end_freq_khz)
761 		return true;
762 
763 	return false;
764 }
765 
766 /**
767  * freq_in_rule_band - tells us if a frequency is in a frequency band
768  * @freq_range: frequency rule we want to query
769  * @freq_khz: frequency we are inquiring about
770  *
771  * This lets us know if a specific frequency rule is or is not relevant to
772  * a specific frequency's band. Bands are device specific and artificial
773  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
774  * however it is safe for now to assume that a frequency rule should not be
775  * part of a frequency's band if the start freq or end freq are off by more
776  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
777  * 60 GHz band.
778  * This resolution can be lowered and should be considered as we add
779  * regulatory rule support for other "bands".
780  **/
781 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
782 			      u32 freq_khz)
783 {
784 #define ONE_GHZ_IN_KHZ	1000000
785 	/*
786 	 * From 802.11ad: directional multi-gigabit (DMG):
787 	 * Pertaining to operation in a frequency band containing a channel
788 	 * with the Channel starting frequency above 45 GHz.
789 	 */
790 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
791 			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
792 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
793 		return true;
794 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
795 		return true;
796 	return false;
797 #undef ONE_GHZ_IN_KHZ
798 }
799 
800 /*
801  * Later on we can perhaps use the more restrictive DFS
802  * region but we don't have information for that yet so
803  * for now simply disallow conflicts.
804  */
805 static enum nl80211_dfs_regions
806 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
807 			 const enum nl80211_dfs_regions dfs_region2)
808 {
809 	if (dfs_region1 != dfs_region2)
810 		return NL80211_DFS_UNSET;
811 	return dfs_region1;
812 }
813 
814 /*
815  * Helper for regdom_intersect(), this does the real
816  * mathematical intersection fun
817  */
818 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
819 			       const struct ieee80211_regdomain *rd2,
820 			       const struct ieee80211_reg_rule *rule1,
821 			       const struct ieee80211_reg_rule *rule2,
822 			       struct ieee80211_reg_rule *intersected_rule)
823 {
824 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
825 	struct ieee80211_freq_range *freq_range;
826 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
827 	struct ieee80211_power_rule *power_rule;
828 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
829 
830 	freq_range1 = &rule1->freq_range;
831 	freq_range2 = &rule2->freq_range;
832 	freq_range = &intersected_rule->freq_range;
833 
834 	power_rule1 = &rule1->power_rule;
835 	power_rule2 = &rule2->power_rule;
836 	power_rule = &intersected_rule->power_rule;
837 
838 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
839 					 freq_range2->start_freq_khz);
840 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
841 				       freq_range2->end_freq_khz);
842 
843 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
844 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
845 
846 	if (rule1->flags & NL80211_RRF_AUTO_BW)
847 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
848 	if (rule2->flags & NL80211_RRF_AUTO_BW)
849 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
850 
851 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
852 
853 	intersected_rule->flags = rule1->flags | rule2->flags;
854 
855 	/*
856 	 * In case NL80211_RRF_AUTO_BW requested for both rules
857 	 * set AUTO_BW in intersected rule also. Next we will
858 	 * calculate BW correctly in handle_channel function.
859 	 * In other case remove AUTO_BW flag while we calculate
860 	 * maximum bandwidth correctly and auto calculation is
861 	 * not required.
862 	 */
863 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
864 	    (rule2->flags & NL80211_RRF_AUTO_BW))
865 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
866 	else
867 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
868 
869 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
870 	if (freq_range->max_bandwidth_khz > freq_diff)
871 		freq_range->max_bandwidth_khz = freq_diff;
872 
873 	power_rule->max_eirp = min(power_rule1->max_eirp,
874 		power_rule2->max_eirp);
875 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
876 		power_rule2->max_antenna_gain);
877 
878 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
879 					   rule2->dfs_cac_ms);
880 
881 	if (!is_valid_reg_rule(intersected_rule))
882 		return -EINVAL;
883 
884 	return 0;
885 }
886 
887 /* check whether old rule contains new rule */
888 static bool rule_contains(struct ieee80211_reg_rule *r1,
889 			  struct ieee80211_reg_rule *r2)
890 {
891 	/* for simplicity, currently consider only same flags */
892 	if (r1->flags != r2->flags)
893 		return false;
894 
895 	/* verify r1 is more restrictive */
896 	if ((r1->power_rule.max_antenna_gain >
897 	     r2->power_rule.max_antenna_gain) ||
898 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
899 		return false;
900 
901 	/* make sure r2's range is contained within r1 */
902 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
903 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
904 		return false;
905 
906 	/* and finally verify that r1.max_bw >= r2.max_bw */
907 	if (r1->freq_range.max_bandwidth_khz <
908 	    r2->freq_range.max_bandwidth_khz)
909 		return false;
910 
911 	return true;
912 }
913 
914 /* add or extend current rules. do nothing if rule is already contained */
915 static void add_rule(struct ieee80211_reg_rule *rule,
916 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
917 {
918 	struct ieee80211_reg_rule *tmp_rule;
919 	int i;
920 
921 	for (i = 0; i < *n_rules; i++) {
922 		tmp_rule = &reg_rules[i];
923 		/* rule is already contained - do nothing */
924 		if (rule_contains(tmp_rule, rule))
925 			return;
926 
927 		/* extend rule if possible */
928 		if (rule_contains(rule, tmp_rule)) {
929 			memcpy(tmp_rule, rule, sizeof(*rule));
930 			return;
931 		}
932 	}
933 
934 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
935 	(*n_rules)++;
936 }
937 
938 /**
939  * regdom_intersect - do the intersection between two regulatory domains
940  * @rd1: first regulatory domain
941  * @rd2: second regulatory domain
942  *
943  * Use this function to get the intersection between two regulatory domains.
944  * Once completed we will mark the alpha2 for the rd as intersected, "98",
945  * as no one single alpha2 can represent this regulatory domain.
946  *
947  * Returns a pointer to the regulatory domain structure which will hold the
948  * resulting intersection of rules between rd1 and rd2. We will
949  * kzalloc() this structure for you.
950  */
951 static struct ieee80211_regdomain *
952 regdom_intersect(const struct ieee80211_regdomain *rd1,
953 		 const struct ieee80211_regdomain *rd2)
954 {
955 	int r, size_of_regd;
956 	unsigned int x, y;
957 	unsigned int num_rules = 0;
958 	const struct ieee80211_reg_rule *rule1, *rule2;
959 	struct ieee80211_reg_rule intersected_rule;
960 	struct ieee80211_regdomain *rd;
961 
962 	if (!rd1 || !rd2)
963 		return NULL;
964 
965 	/*
966 	 * First we get a count of the rules we'll need, then we actually
967 	 * build them. This is to so we can malloc() and free() a
968 	 * regdomain once. The reason we use reg_rules_intersect() here
969 	 * is it will return -EINVAL if the rule computed makes no sense.
970 	 * All rules that do check out OK are valid.
971 	 */
972 
973 	for (x = 0; x < rd1->n_reg_rules; x++) {
974 		rule1 = &rd1->reg_rules[x];
975 		for (y = 0; y < rd2->n_reg_rules; y++) {
976 			rule2 = &rd2->reg_rules[y];
977 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
978 						 &intersected_rule))
979 				num_rules++;
980 		}
981 	}
982 
983 	if (!num_rules)
984 		return NULL;
985 
986 	size_of_regd = sizeof(struct ieee80211_regdomain) +
987 		       num_rules * sizeof(struct ieee80211_reg_rule);
988 
989 	rd = kzalloc(size_of_regd, GFP_KERNEL);
990 	if (!rd)
991 		return NULL;
992 
993 	for (x = 0; x < rd1->n_reg_rules; x++) {
994 		rule1 = &rd1->reg_rules[x];
995 		for (y = 0; y < rd2->n_reg_rules; y++) {
996 			rule2 = &rd2->reg_rules[y];
997 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
998 						&intersected_rule);
999 			/*
1000 			 * No need to memset here the intersected rule here as
1001 			 * we're not using the stack anymore
1002 			 */
1003 			if (r)
1004 				continue;
1005 
1006 			add_rule(&intersected_rule, rd->reg_rules,
1007 				 &rd->n_reg_rules);
1008 		}
1009 	}
1010 
1011 	rd->alpha2[0] = '9';
1012 	rd->alpha2[1] = '8';
1013 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1014 						  rd2->dfs_region);
1015 
1016 	return rd;
1017 }
1018 
1019 /*
1020  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1021  * want to just have the channel structure use these
1022  */
1023 static u32 map_regdom_flags(u32 rd_flags)
1024 {
1025 	u32 channel_flags = 0;
1026 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1027 		channel_flags |= IEEE80211_CHAN_NO_IR;
1028 	if (rd_flags & NL80211_RRF_DFS)
1029 		channel_flags |= IEEE80211_CHAN_RADAR;
1030 	if (rd_flags & NL80211_RRF_NO_OFDM)
1031 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1032 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1033 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1034 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1035 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1036 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1037 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1038 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1039 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1040 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1041 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1042 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1043 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1044 	return channel_flags;
1045 }
1046 
1047 static const struct ieee80211_reg_rule *
1048 freq_reg_info_regd(u32 center_freq,
1049 		   const struct ieee80211_regdomain *regd, u32 bw)
1050 {
1051 	int i;
1052 	bool band_rule_found = false;
1053 	bool bw_fits = false;
1054 
1055 	if (!regd)
1056 		return ERR_PTR(-EINVAL);
1057 
1058 	for (i = 0; i < regd->n_reg_rules; i++) {
1059 		const struct ieee80211_reg_rule *rr;
1060 		const struct ieee80211_freq_range *fr = NULL;
1061 
1062 		rr = &regd->reg_rules[i];
1063 		fr = &rr->freq_range;
1064 
1065 		/*
1066 		 * We only need to know if one frequency rule was
1067 		 * was in center_freq's band, that's enough, so lets
1068 		 * not overwrite it once found
1069 		 */
1070 		if (!band_rule_found)
1071 			band_rule_found = freq_in_rule_band(fr, center_freq);
1072 
1073 		bw_fits = reg_does_bw_fit(fr, center_freq, bw);
1074 
1075 		if (band_rule_found && bw_fits)
1076 			return rr;
1077 	}
1078 
1079 	if (!band_rule_found)
1080 		return ERR_PTR(-ERANGE);
1081 
1082 	return ERR_PTR(-EINVAL);
1083 }
1084 
1085 static const struct ieee80211_reg_rule *
1086 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1087 {
1088 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1089 	const struct ieee80211_reg_rule *reg_rule = NULL;
1090 	u32 bw;
1091 
1092 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1093 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1094 		if (!IS_ERR(reg_rule))
1095 			return reg_rule;
1096 	}
1097 
1098 	return reg_rule;
1099 }
1100 
1101 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1102 					       u32 center_freq)
1103 {
1104 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1105 }
1106 EXPORT_SYMBOL(freq_reg_info);
1107 
1108 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1109 {
1110 	switch (initiator) {
1111 	case NL80211_REGDOM_SET_BY_CORE:
1112 		return "core";
1113 	case NL80211_REGDOM_SET_BY_USER:
1114 		return "user";
1115 	case NL80211_REGDOM_SET_BY_DRIVER:
1116 		return "driver";
1117 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1118 		return "country IE";
1119 	default:
1120 		WARN_ON(1);
1121 		return "bug";
1122 	}
1123 }
1124 EXPORT_SYMBOL(reg_initiator_name);
1125 
1126 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1127 					  const struct ieee80211_reg_rule *reg_rule,
1128 					  const struct ieee80211_channel *chan)
1129 {
1130 	const struct ieee80211_freq_range *freq_range = NULL;
1131 	u32 max_bandwidth_khz, bw_flags = 0;
1132 
1133 	freq_range = &reg_rule->freq_range;
1134 
1135 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1136 	/* Check if auto calculation requested */
1137 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1138 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1139 
1140 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1141 	if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1142 			     MHZ_TO_KHZ(10)))
1143 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1144 	if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1145 			     MHZ_TO_KHZ(20)))
1146 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1147 
1148 	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1149 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1150 	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1151 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1152 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1153 		bw_flags |= IEEE80211_CHAN_NO_HT40;
1154 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1155 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1156 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1157 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1158 	return bw_flags;
1159 }
1160 
1161 /*
1162  * Note that right now we assume the desired channel bandwidth
1163  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1164  * per channel, the primary and the extension channel).
1165  */
1166 static void handle_channel(struct wiphy *wiphy,
1167 			   enum nl80211_reg_initiator initiator,
1168 			   struct ieee80211_channel *chan)
1169 {
1170 	u32 flags, bw_flags = 0;
1171 	const struct ieee80211_reg_rule *reg_rule = NULL;
1172 	const struct ieee80211_power_rule *power_rule = NULL;
1173 	struct wiphy *request_wiphy = NULL;
1174 	struct regulatory_request *lr = get_last_request();
1175 	const struct ieee80211_regdomain *regd;
1176 
1177 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1178 
1179 	flags = chan->orig_flags;
1180 
1181 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1182 	if (IS_ERR(reg_rule)) {
1183 		/*
1184 		 * We will disable all channels that do not match our
1185 		 * received regulatory rule unless the hint is coming
1186 		 * from a Country IE and the Country IE had no information
1187 		 * about a band. The IEEE 802.11 spec allows for an AP
1188 		 * to send only a subset of the regulatory rules allowed,
1189 		 * so an AP in the US that only supports 2.4 GHz may only send
1190 		 * a country IE with information for the 2.4 GHz band
1191 		 * while 5 GHz is still supported.
1192 		 */
1193 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1194 		    PTR_ERR(reg_rule) == -ERANGE)
1195 			return;
1196 
1197 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1198 		    request_wiphy && request_wiphy == wiphy &&
1199 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1200 			pr_debug("Disabling freq %d MHz for good\n",
1201 				 chan->center_freq);
1202 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1203 			chan->flags = chan->orig_flags;
1204 		} else {
1205 			pr_debug("Disabling freq %d MHz\n",
1206 				 chan->center_freq);
1207 			chan->flags |= IEEE80211_CHAN_DISABLED;
1208 		}
1209 		return;
1210 	}
1211 
1212 	regd = reg_get_regdomain(wiphy);
1213 
1214 	power_rule = &reg_rule->power_rule;
1215 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1216 
1217 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1218 	    request_wiphy && request_wiphy == wiphy &&
1219 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1220 		/*
1221 		 * This guarantees the driver's requested regulatory domain
1222 		 * will always be used as a base for further regulatory
1223 		 * settings
1224 		 */
1225 		chan->flags = chan->orig_flags =
1226 			map_regdom_flags(reg_rule->flags) | bw_flags;
1227 		chan->max_antenna_gain = chan->orig_mag =
1228 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1229 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1230 			(int) MBM_TO_DBM(power_rule->max_eirp);
1231 
1232 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1233 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1234 			if (reg_rule->dfs_cac_ms)
1235 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1236 		}
1237 
1238 		return;
1239 	}
1240 
1241 	chan->dfs_state = NL80211_DFS_USABLE;
1242 	chan->dfs_state_entered = jiffies;
1243 
1244 	chan->beacon_found = false;
1245 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1246 	chan->max_antenna_gain =
1247 		min_t(int, chan->orig_mag,
1248 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1249 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1250 
1251 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1252 		if (reg_rule->dfs_cac_ms)
1253 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1254 		else
1255 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1256 	}
1257 
1258 	if (chan->orig_mpwr) {
1259 		/*
1260 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1261 		 * will always follow the passed country IE power settings.
1262 		 */
1263 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1264 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1265 			chan->max_power = chan->max_reg_power;
1266 		else
1267 			chan->max_power = min(chan->orig_mpwr,
1268 					      chan->max_reg_power);
1269 	} else
1270 		chan->max_power = chan->max_reg_power;
1271 }
1272 
1273 static void handle_band(struct wiphy *wiphy,
1274 			enum nl80211_reg_initiator initiator,
1275 			struct ieee80211_supported_band *sband)
1276 {
1277 	unsigned int i;
1278 
1279 	if (!sband)
1280 		return;
1281 
1282 	for (i = 0; i < sband->n_channels; i++)
1283 		handle_channel(wiphy, initiator, &sband->channels[i]);
1284 }
1285 
1286 static bool reg_request_cell_base(struct regulatory_request *request)
1287 {
1288 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1289 		return false;
1290 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1291 }
1292 
1293 bool reg_last_request_cell_base(void)
1294 {
1295 	return reg_request_cell_base(get_last_request());
1296 }
1297 
1298 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1299 /* Core specific check */
1300 static enum reg_request_treatment
1301 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1302 {
1303 	struct regulatory_request *lr = get_last_request();
1304 
1305 	if (!reg_num_devs_support_basehint)
1306 		return REG_REQ_IGNORE;
1307 
1308 	if (reg_request_cell_base(lr) &&
1309 	    !regdom_changes(pending_request->alpha2))
1310 		return REG_REQ_ALREADY_SET;
1311 
1312 	return REG_REQ_OK;
1313 }
1314 
1315 /* Device specific check */
1316 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1317 {
1318 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1319 }
1320 #else
1321 static enum reg_request_treatment
1322 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1323 {
1324 	return REG_REQ_IGNORE;
1325 }
1326 
1327 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1328 {
1329 	return true;
1330 }
1331 #endif
1332 
1333 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1334 {
1335 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1336 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1337 		return true;
1338 	return false;
1339 }
1340 
1341 static bool ignore_reg_update(struct wiphy *wiphy,
1342 			      enum nl80211_reg_initiator initiator)
1343 {
1344 	struct regulatory_request *lr = get_last_request();
1345 
1346 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1347 		return true;
1348 
1349 	if (!lr) {
1350 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1351 			 reg_initiator_name(initiator));
1352 		return true;
1353 	}
1354 
1355 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1356 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1357 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1358 			 reg_initiator_name(initiator));
1359 		return true;
1360 	}
1361 
1362 	/*
1363 	 * wiphy->regd will be set once the device has its own
1364 	 * desired regulatory domain set
1365 	 */
1366 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1367 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1368 	    !is_world_regdom(lr->alpha2)) {
1369 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1370 			 reg_initiator_name(initiator));
1371 		return true;
1372 	}
1373 
1374 	if (reg_request_cell_base(lr))
1375 		return reg_dev_ignore_cell_hint(wiphy);
1376 
1377 	return false;
1378 }
1379 
1380 static bool reg_is_world_roaming(struct wiphy *wiphy)
1381 {
1382 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1383 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1384 	struct regulatory_request *lr = get_last_request();
1385 
1386 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1387 		return true;
1388 
1389 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1390 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1391 		return true;
1392 
1393 	return false;
1394 }
1395 
1396 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1397 			      struct reg_beacon *reg_beacon)
1398 {
1399 	struct ieee80211_supported_band *sband;
1400 	struct ieee80211_channel *chan;
1401 	bool channel_changed = false;
1402 	struct ieee80211_channel chan_before;
1403 
1404 	sband = wiphy->bands[reg_beacon->chan.band];
1405 	chan = &sband->channels[chan_idx];
1406 
1407 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1408 		return;
1409 
1410 	if (chan->beacon_found)
1411 		return;
1412 
1413 	chan->beacon_found = true;
1414 
1415 	if (!reg_is_world_roaming(wiphy))
1416 		return;
1417 
1418 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1419 		return;
1420 
1421 	chan_before.center_freq = chan->center_freq;
1422 	chan_before.flags = chan->flags;
1423 
1424 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1425 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1426 		channel_changed = true;
1427 	}
1428 
1429 	if (channel_changed)
1430 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1431 }
1432 
1433 /*
1434  * Called when a scan on a wiphy finds a beacon on
1435  * new channel
1436  */
1437 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1438 				    struct reg_beacon *reg_beacon)
1439 {
1440 	unsigned int i;
1441 	struct ieee80211_supported_band *sband;
1442 
1443 	if (!wiphy->bands[reg_beacon->chan.band])
1444 		return;
1445 
1446 	sband = wiphy->bands[reg_beacon->chan.band];
1447 
1448 	for (i = 0; i < sband->n_channels; i++)
1449 		handle_reg_beacon(wiphy, i, reg_beacon);
1450 }
1451 
1452 /*
1453  * Called upon reg changes or a new wiphy is added
1454  */
1455 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1456 {
1457 	unsigned int i;
1458 	struct ieee80211_supported_band *sband;
1459 	struct reg_beacon *reg_beacon;
1460 
1461 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1462 		if (!wiphy->bands[reg_beacon->chan.band])
1463 			continue;
1464 		sband = wiphy->bands[reg_beacon->chan.band];
1465 		for (i = 0; i < sband->n_channels; i++)
1466 			handle_reg_beacon(wiphy, i, reg_beacon);
1467 	}
1468 }
1469 
1470 /* Reap the advantages of previously found beacons */
1471 static void reg_process_beacons(struct wiphy *wiphy)
1472 {
1473 	/*
1474 	 * Means we are just firing up cfg80211, so no beacons would
1475 	 * have been processed yet.
1476 	 */
1477 	if (!last_request)
1478 		return;
1479 	wiphy_update_beacon_reg(wiphy);
1480 }
1481 
1482 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1483 {
1484 	if (!chan)
1485 		return false;
1486 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1487 		return false;
1488 	/* This would happen when regulatory rules disallow HT40 completely */
1489 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1490 		return false;
1491 	return true;
1492 }
1493 
1494 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1495 					 struct ieee80211_channel *channel)
1496 {
1497 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1498 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1499 	unsigned int i;
1500 
1501 	if (!is_ht40_allowed(channel)) {
1502 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1503 		return;
1504 	}
1505 
1506 	/*
1507 	 * We need to ensure the extension channels exist to
1508 	 * be able to use HT40- or HT40+, this finds them (or not)
1509 	 */
1510 	for (i = 0; i < sband->n_channels; i++) {
1511 		struct ieee80211_channel *c = &sband->channels[i];
1512 
1513 		if (c->center_freq == (channel->center_freq - 20))
1514 			channel_before = c;
1515 		if (c->center_freq == (channel->center_freq + 20))
1516 			channel_after = c;
1517 	}
1518 
1519 	/*
1520 	 * Please note that this assumes target bandwidth is 20 MHz,
1521 	 * if that ever changes we also need to change the below logic
1522 	 * to include that as well.
1523 	 */
1524 	if (!is_ht40_allowed(channel_before))
1525 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1526 	else
1527 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1528 
1529 	if (!is_ht40_allowed(channel_after))
1530 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1531 	else
1532 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1533 }
1534 
1535 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1536 				      struct ieee80211_supported_band *sband)
1537 {
1538 	unsigned int i;
1539 
1540 	if (!sband)
1541 		return;
1542 
1543 	for (i = 0; i < sband->n_channels; i++)
1544 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1545 }
1546 
1547 static void reg_process_ht_flags(struct wiphy *wiphy)
1548 {
1549 	enum nl80211_band band;
1550 
1551 	if (!wiphy)
1552 		return;
1553 
1554 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1555 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1556 }
1557 
1558 static void reg_call_notifier(struct wiphy *wiphy,
1559 			      struct regulatory_request *request)
1560 {
1561 	if (wiphy->reg_notifier)
1562 		wiphy->reg_notifier(wiphy, request);
1563 }
1564 
1565 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1566 {
1567 	struct cfg80211_chan_def chandef;
1568 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1569 	enum nl80211_iftype iftype;
1570 
1571 	wdev_lock(wdev);
1572 	iftype = wdev->iftype;
1573 
1574 	/* make sure the interface is active */
1575 	if (!wdev->netdev || !netif_running(wdev->netdev))
1576 		goto wdev_inactive_unlock;
1577 
1578 	switch (iftype) {
1579 	case NL80211_IFTYPE_AP:
1580 	case NL80211_IFTYPE_P2P_GO:
1581 		if (!wdev->beacon_interval)
1582 			goto wdev_inactive_unlock;
1583 		chandef = wdev->chandef;
1584 		break;
1585 	case NL80211_IFTYPE_ADHOC:
1586 		if (!wdev->ssid_len)
1587 			goto wdev_inactive_unlock;
1588 		chandef = wdev->chandef;
1589 		break;
1590 	case NL80211_IFTYPE_STATION:
1591 	case NL80211_IFTYPE_P2P_CLIENT:
1592 		if (!wdev->current_bss ||
1593 		    !wdev->current_bss->pub.channel)
1594 			goto wdev_inactive_unlock;
1595 
1596 		if (!rdev->ops->get_channel ||
1597 		    rdev_get_channel(rdev, wdev, &chandef))
1598 			cfg80211_chandef_create(&chandef,
1599 						wdev->current_bss->pub.channel,
1600 						NL80211_CHAN_NO_HT);
1601 		break;
1602 	case NL80211_IFTYPE_MONITOR:
1603 	case NL80211_IFTYPE_AP_VLAN:
1604 	case NL80211_IFTYPE_P2P_DEVICE:
1605 		/* no enforcement required */
1606 		break;
1607 	default:
1608 		/* others not implemented for now */
1609 		WARN_ON(1);
1610 		break;
1611 	}
1612 
1613 	wdev_unlock(wdev);
1614 
1615 	switch (iftype) {
1616 	case NL80211_IFTYPE_AP:
1617 	case NL80211_IFTYPE_P2P_GO:
1618 	case NL80211_IFTYPE_ADHOC:
1619 		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1620 	case NL80211_IFTYPE_STATION:
1621 	case NL80211_IFTYPE_P2P_CLIENT:
1622 		return cfg80211_chandef_usable(wiphy, &chandef,
1623 					       IEEE80211_CHAN_DISABLED);
1624 	default:
1625 		break;
1626 	}
1627 
1628 	return true;
1629 
1630 wdev_inactive_unlock:
1631 	wdev_unlock(wdev);
1632 	return true;
1633 }
1634 
1635 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1636 {
1637 	struct wireless_dev *wdev;
1638 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1639 
1640 	ASSERT_RTNL();
1641 
1642 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1643 		if (!reg_wdev_chan_valid(wiphy, wdev))
1644 			cfg80211_leave(rdev, wdev);
1645 }
1646 
1647 static void reg_check_chans_work(struct work_struct *work)
1648 {
1649 	struct cfg80211_registered_device *rdev;
1650 
1651 	pr_debug("Verifying active interfaces after reg change\n");
1652 	rtnl_lock();
1653 
1654 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1655 		if (!(rdev->wiphy.regulatory_flags &
1656 		      REGULATORY_IGNORE_STALE_KICKOFF))
1657 			reg_leave_invalid_chans(&rdev->wiphy);
1658 
1659 	rtnl_unlock();
1660 }
1661 
1662 static void reg_check_channels(void)
1663 {
1664 	/*
1665 	 * Give usermode a chance to do something nicer (move to another
1666 	 * channel, orderly disconnection), before forcing a disconnection.
1667 	 */
1668 	mod_delayed_work(system_power_efficient_wq,
1669 			 &reg_check_chans,
1670 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1671 }
1672 
1673 static void wiphy_update_regulatory(struct wiphy *wiphy,
1674 				    enum nl80211_reg_initiator initiator)
1675 {
1676 	enum nl80211_band band;
1677 	struct regulatory_request *lr = get_last_request();
1678 
1679 	if (ignore_reg_update(wiphy, initiator)) {
1680 		/*
1681 		 * Regulatory updates set by CORE are ignored for custom
1682 		 * regulatory cards. Let us notify the changes to the driver,
1683 		 * as some drivers used this to restore its orig_* reg domain.
1684 		 */
1685 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1686 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1687 			reg_call_notifier(wiphy, lr);
1688 		return;
1689 	}
1690 
1691 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1692 
1693 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1694 		handle_band(wiphy, initiator, wiphy->bands[band]);
1695 
1696 	reg_process_beacons(wiphy);
1697 	reg_process_ht_flags(wiphy);
1698 	reg_call_notifier(wiphy, lr);
1699 }
1700 
1701 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1702 {
1703 	struct cfg80211_registered_device *rdev;
1704 	struct wiphy *wiphy;
1705 
1706 	ASSERT_RTNL();
1707 
1708 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1709 		wiphy = &rdev->wiphy;
1710 		wiphy_update_regulatory(wiphy, initiator);
1711 	}
1712 
1713 	reg_check_channels();
1714 }
1715 
1716 static void handle_channel_custom(struct wiphy *wiphy,
1717 				  struct ieee80211_channel *chan,
1718 				  const struct ieee80211_regdomain *regd)
1719 {
1720 	u32 bw_flags = 0;
1721 	const struct ieee80211_reg_rule *reg_rule = NULL;
1722 	const struct ieee80211_power_rule *power_rule = NULL;
1723 	u32 bw;
1724 
1725 	for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1726 		reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
1727 					      regd, bw);
1728 		if (!IS_ERR(reg_rule))
1729 			break;
1730 	}
1731 
1732 	if (IS_ERR(reg_rule)) {
1733 		pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1734 			 chan->center_freq);
1735 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1736 			chan->flags |= IEEE80211_CHAN_DISABLED;
1737 		} else {
1738 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1739 			chan->flags = chan->orig_flags;
1740 		}
1741 		return;
1742 	}
1743 
1744 	power_rule = &reg_rule->power_rule;
1745 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1746 
1747 	chan->dfs_state_entered = jiffies;
1748 	chan->dfs_state = NL80211_DFS_USABLE;
1749 
1750 	chan->beacon_found = false;
1751 
1752 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1753 		chan->flags = chan->orig_flags | bw_flags |
1754 			      map_regdom_flags(reg_rule->flags);
1755 	else
1756 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1757 
1758 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1759 	chan->max_reg_power = chan->max_power =
1760 		(int) MBM_TO_DBM(power_rule->max_eirp);
1761 
1762 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1763 		if (reg_rule->dfs_cac_ms)
1764 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1765 		else
1766 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1767 	}
1768 
1769 	chan->max_power = chan->max_reg_power;
1770 }
1771 
1772 static void handle_band_custom(struct wiphy *wiphy,
1773 			       struct ieee80211_supported_band *sband,
1774 			       const struct ieee80211_regdomain *regd)
1775 {
1776 	unsigned int i;
1777 
1778 	if (!sband)
1779 		return;
1780 
1781 	for (i = 0; i < sband->n_channels; i++)
1782 		handle_channel_custom(wiphy, &sband->channels[i], regd);
1783 }
1784 
1785 /* Used by drivers prior to wiphy registration */
1786 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1787 				   const struct ieee80211_regdomain *regd)
1788 {
1789 	enum nl80211_band band;
1790 	unsigned int bands_set = 0;
1791 
1792 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1793 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
1794 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1795 
1796 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
1797 		if (!wiphy->bands[band])
1798 			continue;
1799 		handle_band_custom(wiphy, wiphy->bands[band], regd);
1800 		bands_set++;
1801 	}
1802 
1803 	/*
1804 	 * no point in calling this if it won't have any effect
1805 	 * on your device's supported bands.
1806 	 */
1807 	WARN_ON(!bands_set);
1808 }
1809 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1810 
1811 static void reg_set_request_processed(void)
1812 {
1813 	bool need_more_processing = false;
1814 	struct regulatory_request *lr = get_last_request();
1815 
1816 	lr->processed = true;
1817 
1818 	spin_lock(&reg_requests_lock);
1819 	if (!list_empty(&reg_requests_list))
1820 		need_more_processing = true;
1821 	spin_unlock(&reg_requests_lock);
1822 
1823 	cancel_crda_timeout();
1824 
1825 	if (need_more_processing)
1826 		schedule_work(&reg_work);
1827 }
1828 
1829 /**
1830  * reg_process_hint_core - process core regulatory requests
1831  * @pending_request: a pending core regulatory request
1832  *
1833  * The wireless subsystem can use this function to process
1834  * a regulatory request issued by the regulatory core.
1835  */
1836 static enum reg_request_treatment
1837 reg_process_hint_core(struct regulatory_request *core_request)
1838 {
1839 	if (reg_query_database(core_request)) {
1840 		core_request->intersect = false;
1841 		core_request->processed = false;
1842 		reg_update_last_request(core_request);
1843 		return REG_REQ_OK;
1844 	}
1845 
1846 	return REG_REQ_IGNORE;
1847 }
1848 
1849 static enum reg_request_treatment
1850 __reg_process_hint_user(struct regulatory_request *user_request)
1851 {
1852 	struct regulatory_request *lr = get_last_request();
1853 
1854 	if (reg_request_cell_base(user_request))
1855 		return reg_ignore_cell_hint(user_request);
1856 
1857 	if (reg_request_cell_base(lr))
1858 		return REG_REQ_IGNORE;
1859 
1860 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1861 		return REG_REQ_INTERSECT;
1862 	/*
1863 	 * If the user knows better the user should set the regdom
1864 	 * to their country before the IE is picked up
1865 	 */
1866 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1867 	    lr->intersect)
1868 		return REG_REQ_IGNORE;
1869 	/*
1870 	 * Process user requests only after previous user/driver/core
1871 	 * requests have been processed
1872 	 */
1873 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1874 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1875 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1876 	    regdom_changes(lr->alpha2))
1877 		return REG_REQ_IGNORE;
1878 
1879 	if (!regdom_changes(user_request->alpha2))
1880 		return REG_REQ_ALREADY_SET;
1881 
1882 	return REG_REQ_OK;
1883 }
1884 
1885 /**
1886  * reg_process_hint_user - process user regulatory requests
1887  * @user_request: a pending user regulatory request
1888  *
1889  * The wireless subsystem can use this function to process
1890  * a regulatory request initiated by userspace.
1891  */
1892 static enum reg_request_treatment
1893 reg_process_hint_user(struct regulatory_request *user_request)
1894 {
1895 	enum reg_request_treatment treatment;
1896 
1897 	treatment = __reg_process_hint_user(user_request);
1898 	if (treatment == REG_REQ_IGNORE ||
1899 	    treatment == REG_REQ_ALREADY_SET)
1900 		return REG_REQ_IGNORE;
1901 
1902 	user_request->intersect = treatment == REG_REQ_INTERSECT;
1903 	user_request->processed = false;
1904 
1905 	if (reg_query_database(user_request)) {
1906 		reg_update_last_request(user_request);
1907 		user_alpha2[0] = user_request->alpha2[0];
1908 		user_alpha2[1] = user_request->alpha2[1];
1909 		return REG_REQ_OK;
1910 	}
1911 
1912 	return REG_REQ_IGNORE;
1913 }
1914 
1915 static enum reg_request_treatment
1916 __reg_process_hint_driver(struct regulatory_request *driver_request)
1917 {
1918 	struct regulatory_request *lr = get_last_request();
1919 
1920 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1921 		if (regdom_changes(driver_request->alpha2))
1922 			return REG_REQ_OK;
1923 		return REG_REQ_ALREADY_SET;
1924 	}
1925 
1926 	/*
1927 	 * This would happen if you unplug and plug your card
1928 	 * back in or if you add a new device for which the previously
1929 	 * loaded card also agrees on the regulatory domain.
1930 	 */
1931 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1932 	    !regdom_changes(driver_request->alpha2))
1933 		return REG_REQ_ALREADY_SET;
1934 
1935 	return REG_REQ_INTERSECT;
1936 }
1937 
1938 /**
1939  * reg_process_hint_driver - process driver regulatory requests
1940  * @driver_request: a pending driver regulatory request
1941  *
1942  * The wireless subsystem can use this function to process
1943  * a regulatory request issued by an 802.11 driver.
1944  *
1945  * Returns one of the different reg request treatment values.
1946  */
1947 static enum reg_request_treatment
1948 reg_process_hint_driver(struct wiphy *wiphy,
1949 			struct regulatory_request *driver_request)
1950 {
1951 	const struct ieee80211_regdomain *regd, *tmp;
1952 	enum reg_request_treatment treatment;
1953 
1954 	treatment = __reg_process_hint_driver(driver_request);
1955 
1956 	switch (treatment) {
1957 	case REG_REQ_OK:
1958 		break;
1959 	case REG_REQ_IGNORE:
1960 		return REG_REQ_IGNORE;
1961 	case REG_REQ_INTERSECT:
1962 	case REG_REQ_ALREADY_SET:
1963 		regd = reg_copy_regd(get_cfg80211_regdom());
1964 		if (IS_ERR(regd))
1965 			return REG_REQ_IGNORE;
1966 
1967 		tmp = get_wiphy_regdom(wiphy);
1968 		rcu_assign_pointer(wiphy->regd, regd);
1969 		rcu_free_regdom(tmp);
1970 	}
1971 
1972 
1973 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
1974 	driver_request->processed = false;
1975 
1976 	/*
1977 	 * Since CRDA will not be called in this case as we already
1978 	 * have applied the requested regulatory domain before we just
1979 	 * inform userspace we have processed the request
1980 	 */
1981 	if (treatment == REG_REQ_ALREADY_SET) {
1982 		nl80211_send_reg_change_event(driver_request);
1983 		reg_update_last_request(driver_request);
1984 		reg_set_request_processed();
1985 		return REG_REQ_ALREADY_SET;
1986 	}
1987 
1988 	if (reg_query_database(driver_request)) {
1989 		reg_update_last_request(driver_request);
1990 		return REG_REQ_OK;
1991 	}
1992 
1993 	return REG_REQ_IGNORE;
1994 }
1995 
1996 static enum reg_request_treatment
1997 __reg_process_hint_country_ie(struct wiphy *wiphy,
1998 			      struct regulatory_request *country_ie_request)
1999 {
2000 	struct wiphy *last_wiphy = NULL;
2001 	struct regulatory_request *lr = get_last_request();
2002 
2003 	if (reg_request_cell_base(lr)) {
2004 		/* Trust a Cell base station over the AP's country IE */
2005 		if (regdom_changes(country_ie_request->alpha2))
2006 			return REG_REQ_IGNORE;
2007 		return REG_REQ_ALREADY_SET;
2008 	} else {
2009 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2010 			return REG_REQ_IGNORE;
2011 	}
2012 
2013 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2014 		return -EINVAL;
2015 
2016 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2017 		return REG_REQ_OK;
2018 
2019 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2020 
2021 	if (last_wiphy != wiphy) {
2022 		/*
2023 		 * Two cards with two APs claiming different
2024 		 * Country IE alpha2s. We could
2025 		 * intersect them, but that seems unlikely
2026 		 * to be correct. Reject second one for now.
2027 		 */
2028 		if (regdom_changes(country_ie_request->alpha2))
2029 			return REG_REQ_IGNORE;
2030 		return REG_REQ_ALREADY_SET;
2031 	}
2032 
2033 	if (regdom_changes(country_ie_request->alpha2))
2034 		return REG_REQ_OK;
2035 	return REG_REQ_ALREADY_SET;
2036 }
2037 
2038 /**
2039  * reg_process_hint_country_ie - process regulatory requests from country IEs
2040  * @country_ie_request: a regulatory request from a country IE
2041  *
2042  * The wireless subsystem can use this function to process
2043  * a regulatory request issued by a country Information Element.
2044  *
2045  * Returns one of the different reg request treatment values.
2046  */
2047 static enum reg_request_treatment
2048 reg_process_hint_country_ie(struct wiphy *wiphy,
2049 			    struct regulatory_request *country_ie_request)
2050 {
2051 	enum reg_request_treatment treatment;
2052 
2053 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2054 
2055 	switch (treatment) {
2056 	case REG_REQ_OK:
2057 		break;
2058 	case REG_REQ_IGNORE:
2059 		return REG_REQ_IGNORE;
2060 	case REG_REQ_ALREADY_SET:
2061 		reg_free_request(country_ie_request);
2062 		return REG_REQ_ALREADY_SET;
2063 	case REG_REQ_INTERSECT:
2064 		/*
2065 		 * This doesn't happen yet, not sure we
2066 		 * ever want to support it for this case.
2067 		 */
2068 		WARN_ONCE(1, "Unexpected intersection for country IEs");
2069 		return REG_REQ_IGNORE;
2070 	}
2071 
2072 	country_ie_request->intersect = false;
2073 	country_ie_request->processed = false;
2074 
2075 	if (reg_query_database(country_ie_request)) {
2076 		reg_update_last_request(country_ie_request);
2077 		return REG_REQ_OK;
2078 	}
2079 
2080 	return REG_REQ_IGNORE;
2081 }
2082 
2083 /* This processes *all* regulatory hints */
2084 static void reg_process_hint(struct regulatory_request *reg_request)
2085 {
2086 	struct wiphy *wiphy = NULL;
2087 	enum reg_request_treatment treatment;
2088 
2089 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2090 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2091 
2092 	switch (reg_request->initiator) {
2093 	case NL80211_REGDOM_SET_BY_CORE:
2094 		treatment = reg_process_hint_core(reg_request);
2095 		break;
2096 	case NL80211_REGDOM_SET_BY_USER:
2097 		treatment = reg_process_hint_user(reg_request);
2098 		break;
2099 	case NL80211_REGDOM_SET_BY_DRIVER:
2100 		if (!wiphy)
2101 			goto out_free;
2102 		treatment = reg_process_hint_driver(wiphy, reg_request);
2103 		break;
2104 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2105 		if (!wiphy)
2106 			goto out_free;
2107 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2108 		break;
2109 	default:
2110 		WARN(1, "invalid initiator %d\n", reg_request->initiator);
2111 		goto out_free;
2112 	}
2113 
2114 	if (treatment == REG_REQ_IGNORE)
2115 		goto out_free;
2116 
2117 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2118 	     "unexpected treatment value %d\n", treatment);
2119 
2120 	/* This is required so that the orig_* parameters are saved.
2121 	 * NOTE: treatment must be set for any case that reaches here!
2122 	 */
2123 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2124 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2125 		wiphy_update_regulatory(wiphy, reg_request->initiator);
2126 		reg_check_channels();
2127 	}
2128 
2129 	return;
2130 
2131 out_free:
2132 	reg_free_request(reg_request);
2133 }
2134 
2135 static bool reg_only_self_managed_wiphys(void)
2136 {
2137 	struct cfg80211_registered_device *rdev;
2138 	struct wiphy *wiphy;
2139 	bool self_managed_found = false;
2140 
2141 	ASSERT_RTNL();
2142 
2143 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2144 		wiphy = &rdev->wiphy;
2145 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2146 			self_managed_found = true;
2147 		else
2148 			return false;
2149 	}
2150 
2151 	/* make sure at least one self-managed wiphy exists */
2152 	return self_managed_found;
2153 }
2154 
2155 /*
2156  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2157  * Regulatory hints come on a first come first serve basis and we
2158  * must process each one atomically.
2159  */
2160 static void reg_process_pending_hints(void)
2161 {
2162 	struct regulatory_request *reg_request, *lr;
2163 
2164 	lr = get_last_request();
2165 
2166 	/* When last_request->processed becomes true this will be rescheduled */
2167 	if (lr && !lr->processed) {
2168 		reg_process_hint(lr);
2169 		return;
2170 	}
2171 
2172 	spin_lock(&reg_requests_lock);
2173 
2174 	if (list_empty(&reg_requests_list)) {
2175 		spin_unlock(&reg_requests_lock);
2176 		return;
2177 	}
2178 
2179 	reg_request = list_first_entry(&reg_requests_list,
2180 				       struct regulatory_request,
2181 				       list);
2182 	list_del_init(&reg_request->list);
2183 
2184 	spin_unlock(&reg_requests_lock);
2185 
2186 	if (reg_only_self_managed_wiphys()) {
2187 		reg_free_request(reg_request);
2188 		return;
2189 	}
2190 
2191 	reg_process_hint(reg_request);
2192 
2193 	lr = get_last_request();
2194 
2195 	spin_lock(&reg_requests_lock);
2196 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
2197 		schedule_work(&reg_work);
2198 	spin_unlock(&reg_requests_lock);
2199 }
2200 
2201 /* Processes beacon hints -- this has nothing to do with country IEs */
2202 static void reg_process_pending_beacon_hints(void)
2203 {
2204 	struct cfg80211_registered_device *rdev;
2205 	struct reg_beacon *pending_beacon, *tmp;
2206 
2207 	/* This goes through the _pending_ beacon list */
2208 	spin_lock_bh(&reg_pending_beacons_lock);
2209 
2210 	list_for_each_entry_safe(pending_beacon, tmp,
2211 				 &reg_pending_beacons, list) {
2212 		list_del_init(&pending_beacon->list);
2213 
2214 		/* Applies the beacon hint to current wiphys */
2215 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2216 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2217 
2218 		/* Remembers the beacon hint for new wiphys or reg changes */
2219 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2220 	}
2221 
2222 	spin_unlock_bh(&reg_pending_beacons_lock);
2223 }
2224 
2225 static void reg_process_self_managed_hints(void)
2226 {
2227 	struct cfg80211_registered_device *rdev;
2228 	struct wiphy *wiphy;
2229 	const struct ieee80211_regdomain *tmp;
2230 	const struct ieee80211_regdomain *regd;
2231 	enum nl80211_band band;
2232 	struct regulatory_request request = {};
2233 
2234 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2235 		wiphy = &rdev->wiphy;
2236 
2237 		spin_lock(&reg_requests_lock);
2238 		regd = rdev->requested_regd;
2239 		rdev->requested_regd = NULL;
2240 		spin_unlock(&reg_requests_lock);
2241 
2242 		if (regd == NULL)
2243 			continue;
2244 
2245 		tmp = get_wiphy_regdom(wiphy);
2246 		rcu_assign_pointer(wiphy->regd, regd);
2247 		rcu_free_regdom(tmp);
2248 
2249 		for (band = 0; band < NUM_NL80211_BANDS; band++)
2250 			handle_band_custom(wiphy, wiphy->bands[band], regd);
2251 
2252 		reg_process_ht_flags(wiphy);
2253 
2254 		request.wiphy_idx = get_wiphy_idx(wiphy);
2255 		request.alpha2[0] = regd->alpha2[0];
2256 		request.alpha2[1] = regd->alpha2[1];
2257 		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2258 
2259 		nl80211_send_wiphy_reg_change_event(&request);
2260 	}
2261 
2262 	reg_check_channels();
2263 }
2264 
2265 static void reg_todo(struct work_struct *work)
2266 {
2267 	rtnl_lock();
2268 	reg_process_pending_hints();
2269 	reg_process_pending_beacon_hints();
2270 	reg_process_self_managed_hints();
2271 	rtnl_unlock();
2272 }
2273 
2274 static void queue_regulatory_request(struct regulatory_request *request)
2275 {
2276 	request->alpha2[0] = toupper(request->alpha2[0]);
2277 	request->alpha2[1] = toupper(request->alpha2[1]);
2278 
2279 	spin_lock(&reg_requests_lock);
2280 	list_add_tail(&request->list, &reg_requests_list);
2281 	spin_unlock(&reg_requests_lock);
2282 
2283 	schedule_work(&reg_work);
2284 }
2285 
2286 /*
2287  * Core regulatory hint -- happens during cfg80211_init()
2288  * and when we restore regulatory settings.
2289  */
2290 static int regulatory_hint_core(const char *alpha2)
2291 {
2292 	struct regulatory_request *request;
2293 
2294 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2295 	if (!request)
2296 		return -ENOMEM;
2297 
2298 	request->alpha2[0] = alpha2[0];
2299 	request->alpha2[1] = alpha2[1];
2300 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2301 
2302 	queue_regulatory_request(request);
2303 
2304 	return 0;
2305 }
2306 
2307 /* User hints */
2308 int regulatory_hint_user(const char *alpha2,
2309 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2310 {
2311 	struct regulatory_request *request;
2312 
2313 	if (WARN_ON(!alpha2))
2314 		return -EINVAL;
2315 
2316 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2317 	if (!request)
2318 		return -ENOMEM;
2319 
2320 	request->wiphy_idx = WIPHY_IDX_INVALID;
2321 	request->alpha2[0] = alpha2[0];
2322 	request->alpha2[1] = alpha2[1];
2323 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2324 	request->user_reg_hint_type = user_reg_hint_type;
2325 
2326 	/* Allow calling CRDA again */
2327 	reset_crda_timeouts();
2328 
2329 	queue_regulatory_request(request);
2330 
2331 	return 0;
2332 }
2333 
2334 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2335 {
2336 	spin_lock(&reg_indoor_lock);
2337 
2338 	/* It is possible that more than one user space process is trying to
2339 	 * configure the indoor setting. To handle such cases, clear the indoor
2340 	 * setting in case that some process does not think that the device
2341 	 * is operating in an indoor environment. In addition, if a user space
2342 	 * process indicates that it is controlling the indoor setting, save its
2343 	 * portid, i.e., make it the owner.
2344 	 */
2345 	reg_is_indoor = is_indoor;
2346 	if (reg_is_indoor) {
2347 		if (!reg_is_indoor_portid)
2348 			reg_is_indoor_portid = portid;
2349 	} else {
2350 		reg_is_indoor_portid = 0;
2351 	}
2352 
2353 	spin_unlock(&reg_indoor_lock);
2354 
2355 	if (!is_indoor)
2356 		reg_check_channels();
2357 
2358 	return 0;
2359 }
2360 
2361 void regulatory_netlink_notify(u32 portid)
2362 {
2363 	spin_lock(&reg_indoor_lock);
2364 
2365 	if (reg_is_indoor_portid != portid) {
2366 		spin_unlock(&reg_indoor_lock);
2367 		return;
2368 	}
2369 
2370 	reg_is_indoor = false;
2371 	reg_is_indoor_portid = 0;
2372 
2373 	spin_unlock(&reg_indoor_lock);
2374 
2375 	reg_check_channels();
2376 }
2377 
2378 /* Driver hints */
2379 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2380 {
2381 	struct regulatory_request *request;
2382 
2383 	if (WARN_ON(!alpha2 || !wiphy))
2384 		return -EINVAL;
2385 
2386 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2387 
2388 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2389 	if (!request)
2390 		return -ENOMEM;
2391 
2392 	request->wiphy_idx = get_wiphy_idx(wiphy);
2393 
2394 	request->alpha2[0] = alpha2[0];
2395 	request->alpha2[1] = alpha2[1];
2396 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2397 
2398 	/* Allow calling CRDA again */
2399 	reset_crda_timeouts();
2400 
2401 	queue_regulatory_request(request);
2402 
2403 	return 0;
2404 }
2405 EXPORT_SYMBOL(regulatory_hint);
2406 
2407 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2408 				const u8 *country_ie, u8 country_ie_len)
2409 {
2410 	char alpha2[2];
2411 	enum environment_cap env = ENVIRON_ANY;
2412 	struct regulatory_request *request = NULL, *lr;
2413 
2414 	/* IE len must be evenly divisible by 2 */
2415 	if (country_ie_len & 0x01)
2416 		return;
2417 
2418 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2419 		return;
2420 
2421 	request = kzalloc(sizeof(*request), GFP_KERNEL);
2422 	if (!request)
2423 		return;
2424 
2425 	alpha2[0] = country_ie[0];
2426 	alpha2[1] = country_ie[1];
2427 
2428 	if (country_ie[2] == 'I')
2429 		env = ENVIRON_INDOOR;
2430 	else if (country_ie[2] == 'O')
2431 		env = ENVIRON_OUTDOOR;
2432 
2433 	rcu_read_lock();
2434 	lr = get_last_request();
2435 
2436 	if (unlikely(!lr))
2437 		goto out;
2438 
2439 	/*
2440 	 * We will run this only upon a successful connection on cfg80211.
2441 	 * We leave conflict resolution to the workqueue, where can hold
2442 	 * the RTNL.
2443 	 */
2444 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2445 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
2446 		goto out;
2447 
2448 	request->wiphy_idx = get_wiphy_idx(wiphy);
2449 	request->alpha2[0] = alpha2[0];
2450 	request->alpha2[1] = alpha2[1];
2451 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2452 	request->country_ie_env = env;
2453 
2454 	/* Allow calling CRDA again */
2455 	reset_crda_timeouts();
2456 
2457 	queue_regulatory_request(request);
2458 	request = NULL;
2459 out:
2460 	kfree(request);
2461 	rcu_read_unlock();
2462 }
2463 
2464 static void restore_alpha2(char *alpha2, bool reset_user)
2465 {
2466 	/* indicates there is no alpha2 to consider for restoration */
2467 	alpha2[0] = '9';
2468 	alpha2[1] = '7';
2469 
2470 	/* The user setting has precedence over the module parameter */
2471 	if (is_user_regdom_saved()) {
2472 		/* Unless we're asked to ignore it and reset it */
2473 		if (reset_user) {
2474 			pr_debug("Restoring regulatory settings including user preference\n");
2475 			user_alpha2[0] = '9';
2476 			user_alpha2[1] = '7';
2477 
2478 			/*
2479 			 * If we're ignoring user settings, we still need to
2480 			 * check the module parameter to ensure we put things
2481 			 * back as they were for a full restore.
2482 			 */
2483 			if (!is_world_regdom(ieee80211_regdom)) {
2484 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2485 					 ieee80211_regdom[0], ieee80211_regdom[1]);
2486 				alpha2[0] = ieee80211_regdom[0];
2487 				alpha2[1] = ieee80211_regdom[1];
2488 			}
2489 		} else {
2490 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
2491 				 user_alpha2[0], user_alpha2[1]);
2492 			alpha2[0] = user_alpha2[0];
2493 			alpha2[1] = user_alpha2[1];
2494 		}
2495 	} else if (!is_world_regdom(ieee80211_regdom)) {
2496 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2497 			 ieee80211_regdom[0], ieee80211_regdom[1]);
2498 		alpha2[0] = ieee80211_regdom[0];
2499 		alpha2[1] = ieee80211_regdom[1];
2500 	} else
2501 		pr_debug("Restoring regulatory settings\n");
2502 }
2503 
2504 static void restore_custom_reg_settings(struct wiphy *wiphy)
2505 {
2506 	struct ieee80211_supported_band *sband;
2507 	enum nl80211_band band;
2508 	struct ieee80211_channel *chan;
2509 	int i;
2510 
2511 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2512 		sband = wiphy->bands[band];
2513 		if (!sband)
2514 			continue;
2515 		for (i = 0; i < sband->n_channels; i++) {
2516 			chan = &sband->channels[i];
2517 			chan->flags = chan->orig_flags;
2518 			chan->max_antenna_gain = chan->orig_mag;
2519 			chan->max_power = chan->orig_mpwr;
2520 			chan->beacon_found = false;
2521 		}
2522 	}
2523 }
2524 
2525 /*
2526  * Restoring regulatory settings involves ingoring any
2527  * possibly stale country IE information and user regulatory
2528  * settings if so desired, this includes any beacon hints
2529  * learned as we could have traveled outside to another country
2530  * after disconnection. To restore regulatory settings we do
2531  * exactly what we did at bootup:
2532  *
2533  *   - send a core regulatory hint
2534  *   - send a user regulatory hint if applicable
2535  *
2536  * Device drivers that send a regulatory hint for a specific country
2537  * keep their own regulatory domain on wiphy->regd so that does does
2538  * not need to be remembered.
2539  */
2540 static void restore_regulatory_settings(bool reset_user)
2541 {
2542 	char alpha2[2];
2543 	char world_alpha2[2];
2544 	struct reg_beacon *reg_beacon, *btmp;
2545 	LIST_HEAD(tmp_reg_req_list);
2546 	struct cfg80211_registered_device *rdev;
2547 
2548 	ASSERT_RTNL();
2549 
2550 	/*
2551 	 * Clear the indoor setting in case that it is not controlled by user
2552 	 * space, as otherwise there is no guarantee that the device is still
2553 	 * operating in an indoor environment.
2554 	 */
2555 	spin_lock(&reg_indoor_lock);
2556 	if (reg_is_indoor && !reg_is_indoor_portid) {
2557 		reg_is_indoor = false;
2558 		reg_check_channels();
2559 	}
2560 	spin_unlock(&reg_indoor_lock);
2561 
2562 	reset_regdomains(true, &world_regdom);
2563 	restore_alpha2(alpha2, reset_user);
2564 
2565 	/*
2566 	 * If there's any pending requests we simply
2567 	 * stash them to a temporary pending queue and
2568 	 * add then after we've restored regulatory
2569 	 * settings.
2570 	 */
2571 	spin_lock(&reg_requests_lock);
2572 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2573 	spin_unlock(&reg_requests_lock);
2574 
2575 	/* Clear beacon hints */
2576 	spin_lock_bh(&reg_pending_beacons_lock);
2577 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2578 		list_del(&reg_beacon->list);
2579 		kfree(reg_beacon);
2580 	}
2581 	spin_unlock_bh(&reg_pending_beacons_lock);
2582 
2583 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2584 		list_del(&reg_beacon->list);
2585 		kfree(reg_beacon);
2586 	}
2587 
2588 	/* First restore to the basic regulatory settings */
2589 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2590 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2591 
2592 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2593 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2594 			continue;
2595 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2596 			restore_custom_reg_settings(&rdev->wiphy);
2597 	}
2598 
2599 	regulatory_hint_core(world_alpha2);
2600 
2601 	/*
2602 	 * This restores the ieee80211_regdom module parameter
2603 	 * preference or the last user requested regulatory
2604 	 * settings, user regulatory settings takes precedence.
2605 	 */
2606 	if (is_an_alpha2(alpha2))
2607 		regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2608 
2609 	spin_lock(&reg_requests_lock);
2610 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2611 	spin_unlock(&reg_requests_lock);
2612 
2613 	pr_debug("Kicking the queue\n");
2614 
2615 	schedule_work(&reg_work);
2616 }
2617 
2618 void regulatory_hint_disconnect(void)
2619 {
2620 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
2621 	restore_regulatory_settings(false);
2622 }
2623 
2624 static bool freq_is_chan_12_13_14(u16 freq)
2625 {
2626 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
2627 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
2628 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
2629 		return true;
2630 	return false;
2631 }
2632 
2633 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2634 {
2635 	struct reg_beacon *pending_beacon;
2636 
2637 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2638 		if (beacon_chan->center_freq ==
2639 		    pending_beacon->chan.center_freq)
2640 			return true;
2641 	return false;
2642 }
2643 
2644 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2645 				 struct ieee80211_channel *beacon_chan,
2646 				 gfp_t gfp)
2647 {
2648 	struct reg_beacon *reg_beacon;
2649 	bool processing;
2650 
2651 	if (beacon_chan->beacon_found ||
2652 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2653 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
2654 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2655 		return 0;
2656 
2657 	spin_lock_bh(&reg_pending_beacons_lock);
2658 	processing = pending_reg_beacon(beacon_chan);
2659 	spin_unlock_bh(&reg_pending_beacons_lock);
2660 
2661 	if (processing)
2662 		return 0;
2663 
2664 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2665 	if (!reg_beacon)
2666 		return -ENOMEM;
2667 
2668 	pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2669 		 beacon_chan->center_freq,
2670 		 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2671 		 wiphy_name(wiphy));
2672 
2673 	memcpy(&reg_beacon->chan, beacon_chan,
2674 	       sizeof(struct ieee80211_channel));
2675 
2676 	/*
2677 	 * Since we can be called from BH or and non-BH context
2678 	 * we must use spin_lock_bh()
2679 	 */
2680 	spin_lock_bh(&reg_pending_beacons_lock);
2681 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2682 	spin_unlock_bh(&reg_pending_beacons_lock);
2683 
2684 	schedule_work(&reg_work);
2685 
2686 	return 0;
2687 }
2688 
2689 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2690 {
2691 	unsigned int i;
2692 	const struct ieee80211_reg_rule *reg_rule = NULL;
2693 	const struct ieee80211_freq_range *freq_range = NULL;
2694 	const struct ieee80211_power_rule *power_rule = NULL;
2695 	char bw[32], cac_time[32];
2696 
2697 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2698 
2699 	for (i = 0; i < rd->n_reg_rules; i++) {
2700 		reg_rule = &rd->reg_rules[i];
2701 		freq_range = &reg_rule->freq_range;
2702 		power_rule = &reg_rule->power_rule;
2703 
2704 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2705 			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2706 				 freq_range->max_bandwidth_khz,
2707 				 reg_get_max_bandwidth(rd, reg_rule));
2708 		else
2709 			snprintf(bw, sizeof(bw), "%d KHz",
2710 				 freq_range->max_bandwidth_khz);
2711 
2712 		if (reg_rule->flags & NL80211_RRF_DFS)
2713 			scnprintf(cac_time, sizeof(cac_time), "%u s",
2714 				  reg_rule->dfs_cac_ms/1000);
2715 		else
2716 			scnprintf(cac_time, sizeof(cac_time), "N/A");
2717 
2718 
2719 		/*
2720 		 * There may not be documentation for max antenna gain
2721 		 * in certain regions
2722 		 */
2723 		if (power_rule->max_antenna_gain)
2724 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2725 				freq_range->start_freq_khz,
2726 				freq_range->end_freq_khz,
2727 				bw,
2728 				power_rule->max_antenna_gain,
2729 				power_rule->max_eirp,
2730 				cac_time);
2731 		else
2732 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2733 				freq_range->start_freq_khz,
2734 				freq_range->end_freq_khz,
2735 				bw,
2736 				power_rule->max_eirp,
2737 				cac_time);
2738 	}
2739 }
2740 
2741 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2742 {
2743 	switch (dfs_region) {
2744 	case NL80211_DFS_UNSET:
2745 	case NL80211_DFS_FCC:
2746 	case NL80211_DFS_ETSI:
2747 	case NL80211_DFS_JP:
2748 		return true;
2749 	default:
2750 		pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region);
2751 		return false;
2752 	}
2753 }
2754 
2755 static void print_regdomain(const struct ieee80211_regdomain *rd)
2756 {
2757 	struct regulatory_request *lr = get_last_request();
2758 
2759 	if (is_intersected_alpha2(rd->alpha2)) {
2760 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2761 			struct cfg80211_registered_device *rdev;
2762 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2763 			if (rdev) {
2764 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
2765 					rdev->country_ie_alpha2[0],
2766 					rdev->country_ie_alpha2[1]);
2767 			} else
2768 				pr_debug("Current regulatory domain intersected:\n");
2769 		} else
2770 			pr_debug("Current regulatory domain intersected:\n");
2771 	} else if (is_world_regdom(rd->alpha2)) {
2772 		pr_debug("World regulatory domain updated:\n");
2773 	} else {
2774 		if (is_unknown_alpha2(rd->alpha2))
2775 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
2776 		else {
2777 			if (reg_request_cell_base(lr))
2778 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
2779 					rd->alpha2[0], rd->alpha2[1]);
2780 			else
2781 				pr_debug("Regulatory domain changed to country: %c%c\n",
2782 					rd->alpha2[0], rd->alpha2[1]);
2783 		}
2784 	}
2785 
2786 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2787 	print_rd_rules(rd);
2788 }
2789 
2790 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2791 {
2792 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2793 	print_rd_rules(rd);
2794 }
2795 
2796 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2797 {
2798 	if (!is_world_regdom(rd->alpha2))
2799 		return -EINVAL;
2800 	update_world_regdomain(rd);
2801 	return 0;
2802 }
2803 
2804 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2805 			   struct regulatory_request *user_request)
2806 {
2807 	const struct ieee80211_regdomain *intersected_rd = NULL;
2808 
2809 	if (!regdom_changes(rd->alpha2))
2810 		return -EALREADY;
2811 
2812 	if (!is_valid_rd(rd)) {
2813 		pr_err("Invalid regulatory domain detected: %c%c\n",
2814 		       rd->alpha2[0], rd->alpha2[1]);
2815 		print_regdomain_info(rd);
2816 		return -EINVAL;
2817 	}
2818 
2819 	if (!user_request->intersect) {
2820 		reset_regdomains(false, rd);
2821 		return 0;
2822 	}
2823 
2824 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2825 	if (!intersected_rd)
2826 		return -EINVAL;
2827 
2828 	kfree(rd);
2829 	rd = NULL;
2830 	reset_regdomains(false, intersected_rd);
2831 
2832 	return 0;
2833 }
2834 
2835 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2836 			     struct regulatory_request *driver_request)
2837 {
2838 	const struct ieee80211_regdomain *regd;
2839 	const struct ieee80211_regdomain *intersected_rd = NULL;
2840 	const struct ieee80211_regdomain *tmp;
2841 	struct wiphy *request_wiphy;
2842 
2843 	if (is_world_regdom(rd->alpha2))
2844 		return -EINVAL;
2845 
2846 	if (!regdom_changes(rd->alpha2))
2847 		return -EALREADY;
2848 
2849 	if (!is_valid_rd(rd)) {
2850 		pr_err("Invalid regulatory domain detected: %c%c\n",
2851 		       rd->alpha2[0], rd->alpha2[1]);
2852 		print_regdomain_info(rd);
2853 		return -EINVAL;
2854 	}
2855 
2856 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2857 	if (!request_wiphy)
2858 		return -ENODEV;
2859 
2860 	if (!driver_request->intersect) {
2861 		if (request_wiphy->regd)
2862 			return -EALREADY;
2863 
2864 		regd = reg_copy_regd(rd);
2865 		if (IS_ERR(regd))
2866 			return PTR_ERR(regd);
2867 
2868 		rcu_assign_pointer(request_wiphy->regd, regd);
2869 		reset_regdomains(false, rd);
2870 		return 0;
2871 	}
2872 
2873 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2874 	if (!intersected_rd)
2875 		return -EINVAL;
2876 
2877 	/*
2878 	 * We can trash what CRDA provided now.
2879 	 * However if a driver requested this specific regulatory
2880 	 * domain we keep it for its private use
2881 	 */
2882 	tmp = get_wiphy_regdom(request_wiphy);
2883 	rcu_assign_pointer(request_wiphy->regd, rd);
2884 	rcu_free_regdom(tmp);
2885 
2886 	rd = NULL;
2887 
2888 	reset_regdomains(false, intersected_rd);
2889 
2890 	return 0;
2891 }
2892 
2893 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2894 				 struct regulatory_request *country_ie_request)
2895 {
2896 	struct wiphy *request_wiphy;
2897 
2898 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2899 	    !is_unknown_alpha2(rd->alpha2))
2900 		return -EINVAL;
2901 
2902 	/*
2903 	 * Lets only bother proceeding on the same alpha2 if the current
2904 	 * rd is non static (it means CRDA was present and was used last)
2905 	 * and the pending request came in from a country IE
2906 	 */
2907 
2908 	if (!is_valid_rd(rd)) {
2909 		pr_err("Invalid regulatory domain detected: %c%c\n",
2910 		       rd->alpha2[0], rd->alpha2[1]);
2911 		print_regdomain_info(rd);
2912 		return -EINVAL;
2913 	}
2914 
2915 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2916 	if (!request_wiphy)
2917 		return -ENODEV;
2918 
2919 	if (country_ie_request->intersect)
2920 		return -EINVAL;
2921 
2922 	reset_regdomains(false, rd);
2923 	return 0;
2924 }
2925 
2926 /*
2927  * Use this call to set the current regulatory domain. Conflicts with
2928  * multiple drivers can be ironed out later. Caller must've already
2929  * kmalloc'd the rd structure.
2930  */
2931 int set_regdom(const struct ieee80211_regdomain *rd,
2932 	       enum ieee80211_regd_source regd_src)
2933 {
2934 	struct regulatory_request *lr;
2935 	bool user_reset = false;
2936 	int r;
2937 
2938 	if (!reg_is_valid_request(rd->alpha2)) {
2939 		kfree(rd);
2940 		return -EINVAL;
2941 	}
2942 
2943 	if (regd_src == REGD_SOURCE_CRDA)
2944 		reset_crda_timeouts();
2945 
2946 	lr = get_last_request();
2947 
2948 	/* Note that this doesn't update the wiphys, this is done below */
2949 	switch (lr->initiator) {
2950 	case NL80211_REGDOM_SET_BY_CORE:
2951 		r = reg_set_rd_core(rd);
2952 		break;
2953 	case NL80211_REGDOM_SET_BY_USER:
2954 		r = reg_set_rd_user(rd, lr);
2955 		user_reset = true;
2956 		break;
2957 	case NL80211_REGDOM_SET_BY_DRIVER:
2958 		r = reg_set_rd_driver(rd, lr);
2959 		break;
2960 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2961 		r = reg_set_rd_country_ie(rd, lr);
2962 		break;
2963 	default:
2964 		WARN(1, "invalid initiator %d\n", lr->initiator);
2965 		kfree(rd);
2966 		return -EINVAL;
2967 	}
2968 
2969 	if (r) {
2970 		switch (r) {
2971 		case -EALREADY:
2972 			reg_set_request_processed();
2973 			break;
2974 		default:
2975 			/* Back to world regulatory in case of errors */
2976 			restore_regulatory_settings(user_reset);
2977 		}
2978 
2979 		kfree(rd);
2980 		return r;
2981 	}
2982 
2983 	/* This would make this whole thing pointless */
2984 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2985 		return -EINVAL;
2986 
2987 	/* update all wiphys now with the new established regulatory domain */
2988 	update_all_wiphy_regulatory(lr->initiator);
2989 
2990 	print_regdomain(get_cfg80211_regdom());
2991 
2992 	nl80211_send_reg_change_event(lr);
2993 
2994 	reg_set_request_processed();
2995 
2996 	return 0;
2997 }
2998 
2999 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3000 				       struct ieee80211_regdomain *rd)
3001 {
3002 	const struct ieee80211_regdomain *regd;
3003 	const struct ieee80211_regdomain *prev_regd;
3004 	struct cfg80211_registered_device *rdev;
3005 
3006 	if (WARN_ON(!wiphy || !rd))
3007 		return -EINVAL;
3008 
3009 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3010 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3011 		return -EPERM;
3012 
3013 	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3014 		print_regdomain_info(rd);
3015 		return -EINVAL;
3016 	}
3017 
3018 	regd = reg_copy_regd(rd);
3019 	if (IS_ERR(regd))
3020 		return PTR_ERR(regd);
3021 
3022 	rdev = wiphy_to_rdev(wiphy);
3023 
3024 	spin_lock(&reg_requests_lock);
3025 	prev_regd = rdev->requested_regd;
3026 	rdev->requested_regd = regd;
3027 	spin_unlock(&reg_requests_lock);
3028 
3029 	kfree(prev_regd);
3030 	return 0;
3031 }
3032 
3033 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3034 			      struct ieee80211_regdomain *rd)
3035 {
3036 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3037 
3038 	if (ret)
3039 		return ret;
3040 
3041 	schedule_work(&reg_work);
3042 	return 0;
3043 }
3044 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3045 
3046 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3047 					struct ieee80211_regdomain *rd)
3048 {
3049 	int ret;
3050 
3051 	ASSERT_RTNL();
3052 
3053 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3054 	if (ret)
3055 		return ret;
3056 
3057 	/* process the request immediately */
3058 	reg_process_self_managed_hints();
3059 	return 0;
3060 }
3061 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3062 
3063 void wiphy_regulatory_register(struct wiphy *wiphy)
3064 {
3065 	struct regulatory_request *lr;
3066 
3067 	/* self-managed devices ignore external hints */
3068 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3069 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3070 					   REGULATORY_COUNTRY_IE_IGNORE;
3071 
3072 	if (!reg_dev_ignore_cell_hint(wiphy))
3073 		reg_num_devs_support_basehint++;
3074 
3075 	lr = get_last_request();
3076 	wiphy_update_regulatory(wiphy, lr->initiator);
3077 }
3078 
3079 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3080 {
3081 	struct wiphy *request_wiphy = NULL;
3082 	struct regulatory_request *lr;
3083 
3084 	lr = get_last_request();
3085 
3086 	if (!reg_dev_ignore_cell_hint(wiphy))
3087 		reg_num_devs_support_basehint--;
3088 
3089 	rcu_free_regdom(get_wiphy_regdom(wiphy));
3090 	RCU_INIT_POINTER(wiphy->regd, NULL);
3091 
3092 	if (lr)
3093 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3094 
3095 	if (!request_wiphy || request_wiphy != wiphy)
3096 		return;
3097 
3098 	lr->wiphy_idx = WIPHY_IDX_INVALID;
3099 	lr->country_ie_env = ENVIRON_ANY;
3100 }
3101 
3102 /*
3103  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3104  * UNII band definitions
3105  */
3106 int cfg80211_get_unii(int freq)
3107 {
3108 	/* UNII-1 */
3109 	if (freq >= 5150 && freq <= 5250)
3110 		return 0;
3111 
3112 	/* UNII-2A */
3113 	if (freq > 5250 && freq <= 5350)
3114 		return 1;
3115 
3116 	/* UNII-2B */
3117 	if (freq > 5350 && freq <= 5470)
3118 		return 2;
3119 
3120 	/* UNII-2C */
3121 	if (freq > 5470 && freq <= 5725)
3122 		return 3;
3123 
3124 	/* UNII-3 */
3125 	if (freq > 5725 && freq <= 5825)
3126 		return 4;
3127 
3128 	return -EINVAL;
3129 }
3130 
3131 bool regulatory_indoor_allowed(void)
3132 {
3133 	return reg_is_indoor;
3134 }
3135 
3136 int __init regulatory_init(void)
3137 {
3138 	int err = 0;
3139 
3140 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3141 	if (IS_ERR(reg_pdev))
3142 		return PTR_ERR(reg_pdev);
3143 
3144 	spin_lock_init(&reg_requests_lock);
3145 	spin_lock_init(&reg_pending_beacons_lock);
3146 	spin_lock_init(&reg_indoor_lock);
3147 
3148 	reg_regdb_size_check();
3149 
3150 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3151 
3152 	user_alpha2[0] = '9';
3153 	user_alpha2[1] = '7';
3154 
3155 	/* We always try to get an update for the static regdomain */
3156 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3157 	if (err) {
3158 		if (err == -ENOMEM) {
3159 			platform_device_unregister(reg_pdev);
3160 			return err;
3161 		}
3162 		/*
3163 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
3164 		 * memory which is handled and propagated appropriately above
3165 		 * but it can also fail during a netlink_broadcast() or during
3166 		 * early boot for call_usermodehelper(). For now treat these
3167 		 * errors as non-fatal.
3168 		 */
3169 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3170 	}
3171 
3172 	/*
3173 	 * Finally, if the user set the module parameter treat it
3174 	 * as a user hint.
3175 	 */
3176 	if (!is_world_regdom(ieee80211_regdom))
3177 		regulatory_hint_user(ieee80211_regdom,
3178 				     NL80211_USER_REG_HINT_USER);
3179 
3180 	return 0;
3181 }
3182 
3183 void regulatory_exit(void)
3184 {
3185 	struct regulatory_request *reg_request, *tmp;
3186 	struct reg_beacon *reg_beacon, *btmp;
3187 
3188 	cancel_work_sync(&reg_work);
3189 	cancel_crda_timeout_sync();
3190 	cancel_delayed_work_sync(&reg_check_chans);
3191 
3192 	/* Lock to suppress warnings */
3193 	rtnl_lock();
3194 	reset_regdomains(true, NULL);
3195 	rtnl_unlock();
3196 
3197 	dev_set_uevent_suppress(&reg_pdev->dev, true);
3198 
3199 	platform_device_unregister(reg_pdev);
3200 
3201 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3202 		list_del(&reg_beacon->list);
3203 		kfree(reg_beacon);
3204 	}
3205 
3206 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3207 		list_del(&reg_beacon->list);
3208 		kfree(reg_beacon);
3209 	}
3210 
3211 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3212 		list_del(&reg_request->list);
3213 		kfree(reg_request);
3214 	}
3215 }
3216