1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 21 /** 22 * DOC: Wireless regulatory infrastructure 23 * 24 * The usual implementation is for a driver to read a device EEPROM to 25 * determine which regulatory domain it should be operating under, then 26 * looking up the allowable channels in a driver-local table and finally 27 * registering those channels in the wiphy structure. 28 * 29 * Another set of compliance enforcement is for drivers to use their 30 * own compliance limits which can be stored on the EEPROM. The host 31 * driver or firmware may ensure these are used. 32 * 33 * In addition to all this we provide an extra layer of regulatory 34 * conformance. For drivers which do not have any regulatory 35 * information CRDA provides the complete regulatory solution. 36 * For others it provides a community effort on further restrictions 37 * to enhance compliance. 38 * 39 * Note: When number of rules --> infinity we will not be able to 40 * index on alpha2 any more, instead we'll probably have to 41 * rely on some SHA1 checksum of the regdomain for example. 42 * 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/kernel.h> 48 #include <linux/export.h> 49 #include <linux/slab.h> 50 #include <linux/list.h> 51 #include <linux/random.h> 52 #include <linux/ctype.h> 53 #include <linux/nl80211.h> 54 #include <linux/platform_device.h> 55 #include <linux/moduleparam.h> 56 #include <net/cfg80211.h> 57 #include "core.h" 58 #include "reg.h" 59 #include "regdb.h" 60 #include "nl80211.h" 61 62 #ifdef CONFIG_CFG80211_REG_DEBUG 63 #define REG_DBG_PRINT(format, args...) \ 64 printk(KERN_DEBUG pr_fmt(format), ##args) 65 #else 66 #define REG_DBG_PRINT(args...) 67 #endif 68 69 static struct regulatory_request core_request_world = { 70 .initiator = NL80211_REGDOM_SET_BY_CORE, 71 .alpha2[0] = '0', 72 .alpha2[1] = '0', 73 .intersect = false, 74 .processed = true, 75 .country_ie_env = ENVIRON_ANY, 76 }; 77 78 /* Receipt of information from last regulatory request */ 79 static struct regulatory_request *last_request = &core_request_world; 80 81 /* To trigger userspace events */ 82 static struct platform_device *reg_pdev; 83 84 static struct device_type reg_device_type = { 85 .uevent = reg_device_uevent, 86 }; 87 88 /* 89 * Central wireless core regulatory domains, we only need two, 90 * the current one and a world regulatory domain in case we have no 91 * information to give us an alpha2 92 */ 93 const struct ieee80211_regdomain *cfg80211_regdomain; 94 95 /* 96 * Protects static reg.c components: 97 * - cfg80211_world_regdom 98 * - cfg80211_regdom 99 * - last_request 100 */ 101 static DEFINE_MUTEX(reg_mutex); 102 103 static inline void assert_reg_lock(void) 104 { 105 lockdep_assert_held(®_mutex); 106 } 107 108 /* Used to queue up regulatory hints */ 109 static LIST_HEAD(reg_requests_list); 110 static spinlock_t reg_requests_lock; 111 112 /* Used to queue up beacon hints for review */ 113 static LIST_HEAD(reg_pending_beacons); 114 static spinlock_t reg_pending_beacons_lock; 115 116 /* Used to keep track of processed beacon hints */ 117 static LIST_HEAD(reg_beacon_list); 118 119 struct reg_beacon { 120 struct list_head list; 121 struct ieee80211_channel chan; 122 }; 123 124 static void reg_todo(struct work_struct *work); 125 static DECLARE_WORK(reg_work, reg_todo); 126 127 static void reg_timeout_work(struct work_struct *work); 128 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work); 129 130 /* We keep a static world regulatory domain in case of the absence of CRDA */ 131 static const struct ieee80211_regdomain world_regdom = { 132 .n_reg_rules = 5, 133 .alpha2 = "00", 134 .reg_rules = { 135 /* IEEE 802.11b/g, channels 1..11 */ 136 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 137 /* IEEE 802.11b/g, channels 12..13. No HT40 138 * channel fits here. */ 139 REG_RULE(2467-10, 2472+10, 20, 6, 20, 140 NL80211_RRF_PASSIVE_SCAN | 141 NL80211_RRF_NO_IBSS), 142 /* IEEE 802.11 channel 14 - Only JP enables 143 * this and for 802.11b only */ 144 REG_RULE(2484-10, 2484+10, 20, 6, 20, 145 NL80211_RRF_PASSIVE_SCAN | 146 NL80211_RRF_NO_IBSS | 147 NL80211_RRF_NO_OFDM), 148 /* IEEE 802.11a, channel 36..48 */ 149 REG_RULE(5180-10, 5240+10, 40, 6, 20, 150 NL80211_RRF_PASSIVE_SCAN | 151 NL80211_RRF_NO_IBSS), 152 153 /* NB: 5260 MHz - 5700 MHz requies DFS */ 154 155 /* IEEE 802.11a, channel 149..165 */ 156 REG_RULE(5745-10, 5825+10, 40, 6, 20, 157 NL80211_RRF_PASSIVE_SCAN | 158 NL80211_RRF_NO_IBSS), 159 } 160 }; 161 162 static const struct ieee80211_regdomain *cfg80211_world_regdom = 163 &world_regdom; 164 165 static char *ieee80211_regdom = "00"; 166 static char user_alpha2[2]; 167 168 module_param(ieee80211_regdom, charp, 0444); 169 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 170 171 static void reset_regdomains(bool full_reset) 172 { 173 /* avoid freeing static information or freeing something twice */ 174 if (cfg80211_regdomain == cfg80211_world_regdom) 175 cfg80211_regdomain = NULL; 176 if (cfg80211_world_regdom == &world_regdom) 177 cfg80211_world_regdom = NULL; 178 if (cfg80211_regdomain == &world_regdom) 179 cfg80211_regdomain = NULL; 180 181 kfree(cfg80211_regdomain); 182 kfree(cfg80211_world_regdom); 183 184 cfg80211_world_regdom = &world_regdom; 185 cfg80211_regdomain = NULL; 186 187 if (!full_reset) 188 return; 189 190 if (last_request != &core_request_world) 191 kfree(last_request); 192 last_request = &core_request_world; 193 } 194 195 /* 196 * Dynamic world regulatory domain requested by the wireless 197 * core upon initialization 198 */ 199 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 200 { 201 BUG_ON(!last_request); 202 203 reset_regdomains(false); 204 205 cfg80211_world_regdom = rd; 206 cfg80211_regdomain = rd; 207 } 208 209 bool is_world_regdom(const char *alpha2) 210 { 211 if (!alpha2) 212 return false; 213 if (alpha2[0] == '0' && alpha2[1] == '0') 214 return true; 215 return false; 216 } 217 218 static bool is_alpha2_set(const char *alpha2) 219 { 220 if (!alpha2) 221 return false; 222 if (alpha2[0] != 0 && alpha2[1] != 0) 223 return true; 224 return false; 225 } 226 227 static bool is_unknown_alpha2(const char *alpha2) 228 { 229 if (!alpha2) 230 return false; 231 /* 232 * Special case where regulatory domain was built by driver 233 * but a specific alpha2 cannot be determined 234 */ 235 if (alpha2[0] == '9' && alpha2[1] == '9') 236 return true; 237 return false; 238 } 239 240 static bool is_intersected_alpha2(const char *alpha2) 241 { 242 if (!alpha2) 243 return false; 244 /* 245 * Special case where regulatory domain is the 246 * result of an intersection between two regulatory domain 247 * structures 248 */ 249 if (alpha2[0] == '9' && alpha2[1] == '8') 250 return true; 251 return false; 252 } 253 254 static bool is_an_alpha2(const char *alpha2) 255 { 256 if (!alpha2) 257 return false; 258 if (isalpha(alpha2[0]) && isalpha(alpha2[1])) 259 return true; 260 return false; 261 } 262 263 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 264 { 265 if (!alpha2_x || !alpha2_y) 266 return false; 267 if (alpha2_x[0] == alpha2_y[0] && 268 alpha2_x[1] == alpha2_y[1]) 269 return true; 270 return false; 271 } 272 273 static bool regdom_changes(const char *alpha2) 274 { 275 assert_cfg80211_lock(); 276 277 if (!cfg80211_regdomain) 278 return true; 279 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2)) 280 return false; 281 return true; 282 } 283 284 /* 285 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 286 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 287 * has ever been issued. 288 */ 289 static bool is_user_regdom_saved(void) 290 { 291 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 292 return false; 293 294 /* This would indicate a mistake on the design */ 295 if (WARN((!is_world_regdom(user_alpha2) && 296 !is_an_alpha2(user_alpha2)), 297 "Unexpected user alpha2: %c%c\n", 298 user_alpha2[0], 299 user_alpha2[1])) 300 return false; 301 302 return true; 303 } 304 305 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd, 306 const struct ieee80211_regdomain *src_regd) 307 { 308 struct ieee80211_regdomain *regd; 309 int size_of_regd = 0; 310 unsigned int i; 311 312 size_of_regd = sizeof(struct ieee80211_regdomain) + 313 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule)); 314 315 regd = kzalloc(size_of_regd, GFP_KERNEL); 316 if (!regd) 317 return -ENOMEM; 318 319 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 320 321 for (i = 0; i < src_regd->n_reg_rules; i++) 322 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 323 sizeof(struct ieee80211_reg_rule)); 324 325 *dst_regd = regd; 326 return 0; 327 } 328 329 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 330 struct reg_regdb_search_request { 331 char alpha2[2]; 332 struct list_head list; 333 }; 334 335 static LIST_HEAD(reg_regdb_search_list); 336 static DEFINE_MUTEX(reg_regdb_search_mutex); 337 338 static void reg_regdb_search(struct work_struct *work) 339 { 340 struct reg_regdb_search_request *request; 341 const struct ieee80211_regdomain *curdom, *regdom; 342 int i, r; 343 344 mutex_lock(®_regdb_search_mutex); 345 while (!list_empty(®_regdb_search_list)) { 346 request = list_first_entry(®_regdb_search_list, 347 struct reg_regdb_search_request, 348 list); 349 list_del(&request->list); 350 351 for (i=0; i<reg_regdb_size; i++) { 352 curdom = reg_regdb[i]; 353 354 if (!memcmp(request->alpha2, curdom->alpha2, 2)) { 355 r = reg_copy_regd(®dom, curdom); 356 if (r) 357 break; 358 mutex_lock(&cfg80211_mutex); 359 set_regdom(regdom); 360 mutex_unlock(&cfg80211_mutex); 361 break; 362 } 363 } 364 365 kfree(request); 366 } 367 mutex_unlock(®_regdb_search_mutex); 368 } 369 370 static DECLARE_WORK(reg_regdb_work, reg_regdb_search); 371 372 static void reg_regdb_query(const char *alpha2) 373 { 374 struct reg_regdb_search_request *request; 375 376 if (!alpha2) 377 return; 378 379 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL); 380 if (!request) 381 return; 382 383 memcpy(request->alpha2, alpha2, 2); 384 385 mutex_lock(®_regdb_search_mutex); 386 list_add_tail(&request->list, ®_regdb_search_list); 387 mutex_unlock(®_regdb_search_mutex); 388 389 schedule_work(®_regdb_work); 390 } 391 #else 392 static inline void reg_regdb_query(const char *alpha2) {} 393 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 394 395 /* 396 * This lets us keep regulatory code which is updated on a regulatory 397 * basis in userspace. Country information is filled in by 398 * reg_device_uevent 399 */ 400 static int call_crda(const char *alpha2) 401 { 402 if (!is_world_regdom((char *) alpha2)) 403 pr_info("Calling CRDA for country: %c%c\n", 404 alpha2[0], alpha2[1]); 405 else 406 pr_info("Calling CRDA to update world regulatory domain\n"); 407 408 /* query internal regulatory database (if it exists) */ 409 reg_regdb_query(alpha2); 410 411 return kobject_uevent(®_pdev->dev.kobj, KOBJ_CHANGE); 412 } 413 414 /* Used by nl80211 before kmalloc'ing our regulatory domain */ 415 bool reg_is_valid_request(const char *alpha2) 416 { 417 assert_cfg80211_lock(); 418 419 if (!last_request) 420 return false; 421 422 return alpha2_equal(last_request->alpha2, alpha2); 423 } 424 425 /* Sanity check on a regulatory rule */ 426 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 427 { 428 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 429 u32 freq_diff; 430 431 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 432 return false; 433 434 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 435 return false; 436 437 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 438 439 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 440 freq_range->max_bandwidth_khz > freq_diff) 441 return false; 442 443 return true; 444 } 445 446 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 447 { 448 const struct ieee80211_reg_rule *reg_rule = NULL; 449 unsigned int i; 450 451 if (!rd->n_reg_rules) 452 return false; 453 454 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 455 return false; 456 457 for (i = 0; i < rd->n_reg_rules; i++) { 458 reg_rule = &rd->reg_rules[i]; 459 if (!is_valid_reg_rule(reg_rule)) 460 return false; 461 } 462 463 return true; 464 } 465 466 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 467 u32 center_freq_khz, 468 u32 bw_khz) 469 { 470 u32 start_freq_khz, end_freq_khz; 471 472 start_freq_khz = center_freq_khz - (bw_khz/2); 473 end_freq_khz = center_freq_khz + (bw_khz/2); 474 475 if (start_freq_khz >= freq_range->start_freq_khz && 476 end_freq_khz <= freq_range->end_freq_khz) 477 return true; 478 479 return false; 480 } 481 482 /** 483 * freq_in_rule_band - tells us if a frequency is in a frequency band 484 * @freq_range: frequency rule we want to query 485 * @freq_khz: frequency we are inquiring about 486 * 487 * This lets us know if a specific frequency rule is or is not relevant to 488 * a specific frequency's band. Bands are device specific and artificial 489 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is 490 * safe for now to assume that a frequency rule should not be part of a 491 * frequency's band if the start freq or end freq are off by more than 2 GHz. 492 * This resolution can be lowered and should be considered as we add 493 * regulatory rule support for other "bands". 494 **/ 495 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 496 u32 freq_khz) 497 { 498 #define ONE_GHZ_IN_KHZ 1000000 499 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) 500 return true; 501 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) 502 return true; 503 return false; 504 #undef ONE_GHZ_IN_KHZ 505 } 506 507 /* 508 * Helper for regdom_intersect(), this does the real 509 * mathematical intersection fun 510 */ 511 static int reg_rules_intersect( 512 const struct ieee80211_reg_rule *rule1, 513 const struct ieee80211_reg_rule *rule2, 514 struct ieee80211_reg_rule *intersected_rule) 515 { 516 const struct ieee80211_freq_range *freq_range1, *freq_range2; 517 struct ieee80211_freq_range *freq_range; 518 const struct ieee80211_power_rule *power_rule1, *power_rule2; 519 struct ieee80211_power_rule *power_rule; 520 u32 freq_diff; 521 522 freq_range1 = &rule1->freq_range; 523 freq_range2 = &rule2->freq_range; 524 freq_range = &intersected_rule->freq_range; 525 526 power_rule1 = &rule1->power_rule; 527 power_rule2 = &rule2->power_rule; 528 power_rule = &intersected_rule->power_rule; 529 530 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 531 freq_range2->start_freq_khz); 532 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 533 freq_range2->end_freq_khz); 534 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz, 535 freq_range2->max_bandwidth_khz); 536 537 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 538 if (freq_range->max_bandwidth_khz > freq_diff) 539 freq_range->max_bandwidth_khz = freq_diff; 540 541 power_rule->max_eirp = min(power_rule1->max_eirp, 542 power_rule2->max_eirp); 543 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 544 power_rule2->max_antenna_gain); 545 546 intersected_rule->flags = (rule1->flags | rule2->flags); 547 548 if (!is_valid_reg_rule(intersected_rule)) 549 return -EINVAL; 550 551 return 0; 552 } 553 554 /** 555 * regdom_intersect - do the intersection between two regulatory domains 556 * @rd1: first regulatory domain 557 * @rd2: second regulatory domain 558 * 559 * Use this function to get the intersection between two regulatory domains. 560 * Once completed we will mark the alpha2 for the rd as intersected, "98", 561 * as no one single alpha2 can represent this regulatory domain. 562 * 563 * Returns a pointer to the regulatory domain structure which will hold the 564 * resulting intersection of rules between rd1 and rd2. We will 565 * kzalloc() this structure for you. 566 */ 567 static struct ieee80211_regdomain *regdom_intersect( 568 const struct ieee80211_regdomain *rd1, 569 const struct ieee80211_regdomain *rd2) 570 { 571 int r, size_of_regd; 572 unsigned int x, y; 573 unsigned int num_rules = 0, rule_idx = 0; 574 const struct ieee80211_reg_rule *rule1, *rule2; 575 struct ieee80211_reg_rule *intersected_rule; 576 struct ieee80211_regdomain *rd; 577 /* This is just a dummy holder to help us count */ 578 struct ieee80211_reg_rule irule; 579 580 /* Uses the stack temporarily for counter arithmetic */ 581 intersected_rule = &irule; 582 583 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule)); 584 585 if (!rd1 || !rd2) 586 return NULL; 587 588 /* 589 * First we get a count of the rules we'll need, then we actually 590 * build them. This is to so we can malloc() and free() a 591 * regdomain once. The reason we use reg_rules_intersect() here 592 * is it will return -EINVAL if the rule computed makes no sense. 593 * All rules that do check out OK are valid. 594 */ 595 596 for (x = 0; x < rd1->n_reg_rules; x++) { 597 rule1 = &rd1->reg_rules[x]; 598 for (y = 0; y < rd2->n_reg_rules; y++) { 599 rule2 = &rd2->reg_rules[y]; 600 if (!reg_rules_intersect(rule1, rule2, 601 intersected_rule)) 602 num_rules++; 603 memset(intersected_rule, 0, 604 sizeof(struct ieee80211_reg_rule)); 605 } 606 } 607 608 if (!num_rules) 609 return NULL; 610 611 size_of_regd = sizeof(struct ieee80211_regdomain) + 612 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule)); 613 614 rd = kzalloc(size_of_regd, GFP_KERNEL); 615 if (!rd) 616 return NULL; 617 618 for (x = 0; x < rd1->n_reg_rules; x++) { 619 rule1 = &rd1->reg_rules[x]; 620 for (y = 0; y < rd2->n_reg_rules; y++) { 621 rule2 = &rd2->reg_rules[y]; 622 /* 623 * This time around instead of using the stack lets 624 * write to the target rule directly saving ourselves 625 * a memcpy() 626 */ 627 intersected_rule = &rd->reg_rules[rule_idx]; 628 r = reg_rules_intersect(rule1, rule2, 629 intersected_rule); 630 /* 631 * No need to memset here the intersected rule here as 632 * we're not using the stack anymore 633 */ 634 if (r) 635 continue; 636 rule_idx++; 637 } 638 } 639 640 if (rule_idx != num_rules) { 641 kfree(rd); 642 return NULL; 643 } 644 645 rd->n_reg_rules = num_rules; 646 rd->alpha2[0] = '9'; 647 rd->alpha2[1] = '8'; 648 649 return rd; 650 } 651 652 /* 653 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 654 * want to just have the channel structure use these 655 */ 656 static u32 map_regdom_flags(u32 rd_flags) 657 { 658 u32 channel_flags = 0; 659 if (rd_flags & NL80211_RRF_PASSIVE_SCAN) 660 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN; 661 if (rd_flags & NL80211_RRF_NO_IBSS) 662 channel_flags |= IEEE80211_CHAN_NO_IBSS; 663 if (rd_flags & NL80211_RRF_DFS) 664 channel_flags |= IEEE80211_CHAN_RADAR; 665 return channel_flags; 666 } 667 668 static int freq_reg_info_regd(struct wiphy *wiphy, 669 u32 center_freq, 670 u32 desired_bw_khz, 671 const struct ieee80211_reg_rule **reg_rule, 672 const struct ieee80211_regdomain *custom_regd) 673 { 674 int i; 675 bool band_rule_found = false; 676 const struct ieee80211_regdomain *regd; 677 bool bw_fits = false; 678 679 if (!desired_bw_khz) 680 desired_bw_khz = MHZ_TO_KHZ(20); 681 682 regd = custom_regd ? custom_regd : cfg80211_regdomain; 683 684 /* 685 * Follow the driver's regulatory domain, if present, unless a country 686 * IE has been processed or a user wants to help complaince further 687 */ 688 if (!custom_regd && 689 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 690 last_request->initiator != NL80211_REGDOM_SET_BY_USER && 691 wiphy->regd) 692 regd = wiphy->regd; 693 694 if (!regd) 695 return -EINVAL; 696 697 for (i = 0; i < regd->n_reg_rules; i++) { 698 const struct ieee80211_reg_rule *rr; 699 const struct ieee80211_freq_range *fr = NULL; 700 701 rr = ®d->reg_rules[i]; 702 fr = &rr->freq_range; 703 704 /* 705 * We only need to know if one frequency rule was 706 * was in center_freq's band, that's enough, so lets 707 * not overwrite it once found 708 */ 709 if (!band_rule_found) 710 band_rule_found = freq_in_rule_band(fr, center_freq); 711 712 bw_fits = reg_does_bw_fit(fr, 713 center_freq, 714 desired_bw_khz); 715 716 if (band_rule_found && bw_fits) { 717 *reg_rule = rr; 718 return 0; 719 } 720 } 721 722 if (!band_rule_found) 723 return -ERANGE; 724 725 return -EINVAL; 726 } 727 728 int freq_reg_info(struct wiphy *wiphy, 729 u32 center_freq, 730 u32 desired_bw_khz, 731 const struct ieee80211_reg_rule **reg_rule) 732 { 733 assert_cfg80211_lock(); 734 return freq_reg_info_regd(wiphy, 735 center_freq, 736 desired_bw_khz, 737 reg_rule, 738 NULL); 739 } 740 EXPORT_SYMBOL(freq_reg_info); 741 742 #ifdef CONFIG_CFG80211_REG_DEBUG 743 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 744 { 745 switch (initiator) { 746 case NL80211_REGDOM_SET_BY_CORE: 747 return "Set by core"; 748 case NL80211_REGDOM_SET_BY_USER: 749 return "Set by user"; 750 case NL80211_REGDOM_SET_BY_DRIVER: 751 return "Set by driver"; 752 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 753 return "Set by country IE"; 754 default: 755 WARN_ON(1); 756 return "Set by bug"; 757 } 758 } 759 760 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 761 u32 desired_bw_khz, 762 const struct ieee80211_reg_rule *reg_rule) 763 { 764 const struct ieee80211_power_rule *power_rule; 765 const struct ieee80211_freq_range *freq_range; 766 char max_antenna_gain[32]; 767 768 power_rule = ®_rule->power_rule; 769 freq_range = ®_rule->freq_range; 770 771 if (!power_rule->max_antenna_gain) 772 snprintf(max_antenna_gain, 32, "N/A"); 773 else 774 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain); 775 776 REG_DBG_PRINT("Updating information on frequency %d MHz " 777 "for a %d MHz width channel with regulatory rule:\n", 778 chan->center_freq, 779 KHZ_TO_MHZ(desired_bw_khz)); 780 781 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n", 782 freq_range->start_freq_khz, 783 freq_range->end_freq_khz, 784 freq_range->max_bandwidth_khz, 785 max_antenna_gain, 786 power_rule->max_eirp); 787 } 788 #else 789 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 790 u32 desired_bw_khz, 791 const struct ieee80211_reg_rule *reg_rule) 792 { 793 return; 794 } 795 #endif 796 797 /* 798 * Note that right now we assume the desired channel bandwidth 799 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 800 * per channel, the primary and the extension channel). To support 801 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a 802 * new ieee80211_channel.target_bw and re run the regulatory check 803 * on the wiphy with the target_bw specified. Then we can simply use 804 * that below for the desired_bw_khz below. 805 */ 806 static void handle_channel(struct wiphy *wiphy, 807 enum nl80211_reg_initiator initiator, 808 enum ieee80211_band band, 809 unsigned int chan_idx) 810 { 811 int r; 812 u32 flags, bw_flags = 0; 813 u32 desired_bw_khz = MHZ_TO_KHZ(20); 814 const struct ieee80211_reg_rule *reg_rule = NULL; 815 const struct ieee80211_power_rule *power_rule = NULL; 816 const struct ieee80211_freq_range *freq_range = NULL; 817 struct ieee80211_supported_band *sband; 818 struct ieee80211_channel *chan; 819 struct wiphy *request_wiphy = NULL; 820 821 assert_cfg80211_lock(); 822 823 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 824 825 sband = wiphy->bands[band]; 826 BUG_ON(chan_idx >= sband->n_channels); 827 chan = &sband->channels[chan_idx]; 828 829 flags = chan->orig_flags; 830 831 r = freq_reg_info(wiphy, 832 MHZ_TO_KHZ(chan->center_freq), 833 desired_bw_khz, 834 ®_rule); 835 836 if (r) { 837 /* 838 * We will disable all channels that do not match our 839 * received regulatory rule unless the hint is coming 840 * from a Country IE and the Country IE had no information 841 * about a band. The IEEE 802.11 spec allows for an AP 842 * to send only a subset of the regulatory rules allowed, 843 * so an AP in the US that only supports 2.4 GHz may only send 844 * a country IE with information for the 2.4 GHz band 845 * while 5 GHz is still supported. 846 */ 847 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 848 r == -ERANGE) 849 return; 850 851 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq); 852 chan->flags = IEEE80211_CHAN_DISABLED; 853 return; 854 } 855 856 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule); 857 858 power_rule = ®_rule->power_rule; 859 freq_range = ®_rule->freq_range; 860 861 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 862 bw_flags = IEEE80211_CHAN_NO_HT40; 863 864 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 865 request_wiphy && request_wiphy == wiphy && 866 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { 867 /* 868 * This guarantees the driver's requested regulatory domain 869 * will always be used as a base for further regulatory 870 * settings 871 */ 872 chan->flags = chan->orig_flags = 873 map_regdom_flags(reg_rule->flags) | bw_flags; 874 chan->max_antenna_gain = chan->orig_mag = 875 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 876 chan->max_power = chan->orig_mpwr = 877 (int) MBM_TO_DBM(power_rule->max_eirp); 878 return; 879 } 880 881 chan->beacon_found = false; 882 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 883 chan->max_antenna_gain = min(chan->orig_mag, 884 (int) MBI_TO_DBI(power_rule->max_antenna_gain)); 885 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 886 chan->max_power = min(chan->max_power, chan->max_reg_power); 887 } 888 889 static void handle_band(struct wiphy *wiphy, 890 enum ieee80211_band band, 891 enum nl80211_reg_initiator initiator) 892 { 893 unsigned int i; 894 struct ieee80211_supported_band *sband; 895 896 BUG_ON(!wiphy->bands[band]); 897 sband = wiphy->bands[band]; 898 899 for (i = 0; i < sband->n_channels; i++) 900 handle_channel(wiphy, initiator, band, i); 901 } 902 903 static bool ignore_reg_update(struct wiphy *wiphy, 904 enum nl80211_reg_initiator initiator) 905 { 906 if (!last_request) { 907 REG_DBG_PRINT("Ignoring regulatory request %s since " 908 "last_request is not set\n", 909 reg_initiator_name(initiator)); 910 return true; 911 } 912 913 if (initiator == NL80211_REGDOM_SET_BY_CORE && 914 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) { 915 REG_DBG_PRINT("Ignoring regulatory request %s " 916 "since the driver uses its own custom " 917 "regulatory domain\n", 918 reg_initiator_name(initiator)); 919 return true; 920 } 921 922 /* 923 * wiphy->regd will be set once the device has its own 924 * desired regulatory domain set 925 */ 926 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd && 927 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 928 !is_world_regdom(last_request->alpha2)) { 929 REG_DBG_PRINT("Ignoring regulatory request %s " 930 "since the driver requires its own regulatory " 931 "domain to be set first\n", 932 reg_initiator_name(initiator)); 933 return true; 934 } 935 936 return false; 937 } 938 939 static void handle_reg_beacon(struct wiphy *wiphy, 940 unsigned int chan_idx, 941 struct reg_beacon *reg_beacon) 942 { 943 struct ieee80211_supported_band *sband; 944 struct ieee80211_channel *chan; 945 bool channel_changed = false; 946 struct ieee80211_channel chan_before; 947 948 assert_cfg80211_lock(); 949 950 sband = wiphy->bands[reg_beacon->chan.band]; 951 chan = &sband->channels[chan_idx]; 952 953 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 954 return; 955 956 if (chan->beacon_found) 957 return; 958 959 chan->beacon_found = true; 960 961 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS) 962 return; 963 964 chan_before.center_freq = chan->center_freq; 965 chan_before.flags = chan->flags; 966 967 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) { 968 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN; 969 channel_changed = true; 970 } 971 972 if (chan->flags & IEEE80211_CHAN_NO_IBSS) { 973 chan->flags &= ~IEEE80211_CHAN_NO_IBSS; 974 channel_changed = true; 975 } 976 977 if (channel_changed) 978 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 979 } 980 981 /* 982 * Called when a scan on a wiphy finds a beacon on 983 * new channel 984 */ 985 static void wiphy_update_new_beacon(struct wiphy *wiphy, 986 struct reg_beacon *reg_beacon) 987 { 988 unsigned int i; 989 struct ieee80211_supported_band *sband; 990 991 assert_cfg80211_lock(); 992 993 if (!wiphy->bands[reg_beacon->chan.band]) 994 return; 995 996 sband = wiphy->bands[reg_beacon->chan.band]; 997 998 for (i = 0; i < sband->n_channels; i++) 999 handle_reg_beacon(wiphy, i, reg_beacon); 1000 } 1001 1002 /* 1003 * Called upon reg changes or a new wiphy is added 1004 */ 1005 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1006 { 1007 unsigned int i; 1008 struct ieee80211_supported_band *sband; 1009 struct reg_beacon *reg_beacon; 1010 1011 assert_cfg80211_lock(); 1012 1013 if (list_empty(®_beacon_list)) 1014 return; 1015 1016 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1017 if (!wiphy->bands[reg_beacon->chan.band]) 1018 continue; 1019 sband = wiphy->bands[reg_beacon->chan.band]; 1020 for (i = 0; i < sband->n_channels; i++) 1021 handle_reg_beacon(wiphy, i, reg_beacon); 1022 } 1023 } 1024 1025 static bool reg_is_world_roaming(struct wiphy *wiphy) 1026 { 1027 if (is_world_regdom(cfg80211_regdomain->alpha2) || 1028 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2))) 1029 return true; 1030 if (last_request && 1031 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1032 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) 1033 return true; 1034 return false; 1035 } 1036 1037 /* Reap the advantages of previously found beacons */ 1038 static void reg_process_beacons(struct wiphy *wiphy) 1039 { 1040 /* 1041 * Means we are just firing up cfg80211, so no beacons would 1042 * have been processed yet. 1043 */ 1044 if (!last_request) 1045 return; 1046 if (!reg_is_world_roaming(wiphy)) 1047 return; 1048 wiphy_update_beacon_reg(wiphy); 1049 } 1050 1051 static bool is_ht40_not_allowed(struct ieee80211_channel *chan) 1052 { 1053 if (!chan) 1054 return true; 1055 if (chan->flags & IEEE80211_CHAN_DISABLED) 1056 return true; 1057 /* This would happen when regulatory rules disallow HT40 completely */ 1058 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40))) 1059 return true; 1060 return false; 1061 } 1062 1063 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1064 enum ieee80211_band band, 1065 unsigned int chan_idx) 1066 { 1067 struct ieee80211_supported_band *sband; 1068 struct ieee80211_channel *channel; 1069 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1070 unsigned int i; 1071 1072 assert_cfg80211_lock(); 1073 1074 sband = wiphy->bands[band]; 1075 BUG_ON(chan_idx >= sband->n_channels); 1076 channel = &sband->channels[chan_idx]; 1077 1078 if (is_ht40_not_allowed(channel)) { 1079 channel->flags |= IEEE80211_CHAN_NO_HT40; 1080 return; 1081 } 1082 1083 /* 1084 * We need to ensure the extension channels exist to 1085 * be able to use HT40- or HT40+, this finds them (or not) 1086 */ 1087 for (i = 0; i < sband->n_channels; i++) { 1088 struct ieee80211_channel *c = &sband->channels[i]; 1089 if (c->center_freq == (channel->center_freq - 20)) 1090 channel_before = c; 1091 if (c->center_freq == (channel->center_freq + 20)) 1092 channel_after = c; 1093 } 1094 1095 /* 1096 * Please note that this assumes target bandwidth is 20 MHz, 1097 * if that ever changes we also need to change the below logic 1098 * to include that as well. 1099 */ 1100 if (is_ht40_not_allowed(channel_before)) 1101 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1102 else 1103 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1104 1105 if (is_ht40_not_allowed(channel_after)) 1106 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1107 else 1108 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1109 } 1110 1111 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1112 enum ieee80211_band band) 1113 { 1114 unsigned int i; 1115 struct ieee80211_supported_band *sband; 1116 1117 BUG_ON(!wiphy->bands[band]); 1118 sband = wiphy->bands[band]; 1119 1120 for (i = 0; i < sband->n_channels; i++) 1121 reg_process_ht_flags_channel(wiphy, band, i); 1122 } 1123 1124 static void reg_process_ht_flags(struct wiphy *wiphy) 1125 { 1126 enum ieee80211_band band; 1127 1128 if (!wiphy) 1129 return; 1130 1131 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1132 if (wiphy->bands[band]) 1133 reg_process_ht_flags_band(wiphy, band); 1134 } 1135 1136 } 1137 1138 static void wiphy_update_regulatory(struct wiphy *wiphy, 1139 enum nl80211_reg_initiator initiator) 1140 { 1141 enum ieee80211_band band; 1142 1143 assert_reg_lock(); 1144 1145 if (ignore_reg_update(wiphy, initiator)) 1146 return; 1147 1148 last_request->dfs_region = cfg80211_regdomain->dfs_region; 1149 1150 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1151 if (wiphy->bands[band]) 1152 handle_band(wiphy, band, initiator); 1153 } 1154 1155 reg_process_beacons(wiphy); 1156 reg_process_ht_flags(wiphy); 1157 if (wiphy->reg_notifier) 1158 wiphy->reg_notifier(wiphy, last_request); 1159 } 1160 1161 void regulatory_update(struct wiphy *wiphy, 1162 enum nl80211_reg_initiator setby) 1163 { 1164 mutex_lock(®_mutex); 1165 wiphy_update_regulatory(wiphy, setby); 1166 mutex_unlock(®_mutex); 1167 } 1168 1169 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 1170 { 1171 struct cfg80211_registered_device *rdev; 1172 struct wiphy *wiphy; 1173 1174 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1175 wiphy = &rdev->wiphy; 1176 wiphy_update_regulatory(wiphy, initiator); 1177 /* 1178 * Regulatory updates set by CORE are ignored for custom 1179 * regulatory cards. Let us notify the changes to the driver, 1180 * as some drivers used this to restore its orig_* reg domain. 1181 */ 1182 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1183 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY && 1184 wiphy->reg_notifier) 1185 wiphy->reg_notifier(wiphy, last_request); 1186 } 1187 } 1188 1189 static void handle_channel_custom(struct wiphy *wiphy, 1190 enum ieee80211_band band, 1191 unsigned int chan_idx, 1192 const struct ieee80211_regdomain *regd) 1193 { 1194 int r; 1195 u32 desired_bw_khz = MHZ_TO_KHZ(20); 1196 u32 bw_flags = 0; 1197 const struct ieee80211_reg_rule *reg_rule = NULL; 1198 const struct ieee80211_power_rule *power_rule = NULL; 1199 const struct ieee80211_freq_range *freq_range = NULL; 1200 struct ieee80211_supported_band *sband; 1201 struct ieee80211_channel *chan; 1202 1203 assert_reg_lock(); 1204 1205 sband = wiphy->bands[band]; 1206 BUG_ON(chan_idx >= sband->n_channels); 1207 chan = &sband->channels[chan_idx]; 1208 1209 r = freq_reg_info_regd(wiphy, 1210 MHZ_TO_KHZ(chan->center_freq), 1211 desired_bw_khz, 1212 ®_rule, 1213 regd); 1214 1215 if (r) { 1216 REG_DBG_PRINT("Disabling freq %d MHz as custom " 1217 "regd has no rule that fits a %d MHz " 1218 "wide channel\n", 1219 chan->center_freq, 1220 KHZ_TO_MHZ(desired_bw_khz)); 1221 chan->flags = IEEE80211_CHAN_DISABLED; 1222 return; 1223 } 1224 1225 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule); 1226 1227 power_rule = ®_rule->power_rule; 1228 freq_range = ®_rule->freq_range; 1229 1230 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 1231 bw_flags = IEEE80211_CHAN_NO_HT40; 1232 1233 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1234 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1235 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1236 } 1237 1238 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band, 1239 const struct ieee80211_regdomain *regd) 1240 { 1241 unsigned int i; 1242 struct ieee80211_supported_band *sband; 1243 1244 BUG_ON(!wiphy->bands[band]); 1245 sband = wiphy->bands[band]; 1246 1247 for (i = 0; i < sband->n_channels; i++) 1248 handle_channel_custom(wiphy, band, i, regd); 1249 } 1250 1251 /* Used by drivers prior to wiphy registration */ 1252 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1253 const struct ieee80211_regdomain *regd) 1254 { 1255 enum ieee80211_band band; 1256 unsigned int bands_set = 0; 1257 1258 mutex_lock(®_mutex); 1259 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1260 if (!wiphy->bands[band]) 1261 continue; 1262 handle_band_custom(wiphy, band, regd); 1263 bands_set++; 1264 } 1265 mutex_unlock(®_mutex); 1266 1267 /* 1268 * no point in calling this if it won't have any effect 1269 * on your device's supportd bands. 1270 */ 1271 WARN_ON(!bands_set); 1272 } 1273 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1274 1275 /* 1276 * Return value which can be used by ignore_request() to indicate 1277 * it has been determined we should intersect two regulatory domains 1278 */ 1279 #define REG_INTERSECT 1 1280 1281 /* This has the logic which determines when a new request 1282 * should be ignored. */ 1283 static int ignore_request(struct wiphy *wiphy, 1284 struct regulatory_request *pending_request) 1285 { 1286 struct wiphy *last_wiphy = NULL; 1287 1288 assert_cfg80211_lock(); 1289 1290 /* All initial requests are respected */ 1291 if (!last_request) 1292 return 0; 1293 1294 switch (pending_request->initiator) { 1295 case NL80211_REGDOM_SET_BY_CORE: 1296 return 0; 1297 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1298 1299 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 1300 1301 if (unlikely(!is_an_alpha2(pending_request->alpha2))) 1302 return -EINVAL; 1303 if (last_request->initiator == 1304 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1305 if (last_wiphy != wiphy) { 1306 /* 1307 * Two cards with two APs claiming different 1308 * Country IE alpha2s. We could 1309 * intersect them, but that seems unlikely 1310 * to be correct. Reject second one for now. 1311 */ 1312 if (regdom_changes(pending_request->alpha2)) 1313 return -EOPNOTSUPP; 1314 return -EALREADY; 1315 } 1316 /* 1317 * Two consecutive Country IE hints on the same wiphy. 1318 * This should be picked up early by the driver/stack 1319 */ 1320 if (WARN_ON(regdom_changes(pending_request->alpha2))) 1321 return 0; 1322 return -EALREADY; 1323 } 1324 return 0; 1325 case NL80211_REGDOM_SET_BY_DRIVER: 1326 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) { 1327 if (regdom_changes(pending_request->alpha2)) 1328 return 0; 1329 return -EALREADY; 1330 } 1331 1332 /* 1333 * This would happen if you unplug and plug your card 1334 * back in or if you add a new device for which the previously 1335 * loaded card also agrees on the regulatory domain. 1336 */ 1337 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1338 !regdom_changes(pending_request->alpha2)) 1339 return -EALREADY; 1340 1341 return REG_INTERSECT; 1342 case NL80211_REGDOM_SET_BY_USER: 1343 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1344 return REG_INTERSECT; 1345 /* 1346 * If the user knows better the user should set the regdom 1347 * to their country before the IE is picked up 1348 */ 1349 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER && 1350 last_request->intersect) 1351 return -EOPNOTSUPP; 1352 /* 1353 * Process user requests only after previous user/driver/core 1354 * requests have been processed 1355 */ 1356 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE || 1357 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1358 last_request->initiator == NL80211_REGDOM_SET_BY_USER) { 1359 if (regdom_changes(last_request->alpha2)) 1360 return -EAGAIN; 1361 } 1362 1363 if (!regdom_changes(pending_request->alpha2)) 1364 return -EALREADY; 1365 1366 return 0; 1367 } 1368 1369 return -EINVAL; 1370 } 1371 1372 static void reg_set_request_processed(void) 1373 { 1374 bool need_more_processing = false; 1375 1376 last_request->processed = true; 1377 1378 spin_lock(®_requests_lock); 1379 if (!list_empty(®_requests_list)) 1380 need_more_processing = true; 1381 spin_unlock(®_requests_lock); 1382 1383 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) 1384 cancel_delayed_work_sync(®_timeout); 1385 1386 if (need_more_processing) 1387 schedule_work(®_work); 1388 } 1389 1390 /** 1391 * __regulatory_hint - hint to the wireless core a regulatory domain 1392 * @wiphy: if the hint comes from country information from an AP, this 1393 * is required to be set to the wiphy that received the information 1394 * @pending_request: the regulatory request currently being processed 1395 * 1396 * The Wireless subsystem can use this function to hint to the wireless core 1397 * what it believes should be the current regulatory domain. 1398 * 1399 * Returns zero if all went fine, %-EALREADY if a regulatory domain had 1400 * already been set or other standard error codes. 1401 * 1402 * Caller must hold &cfg80211_mutex and ®_mutex 1403 */ 1404 static int __regulatory_hint(struct wiphy *wiphy, 1405 struct regulatory_request *pending_request) 1406 { 1407 bool intersect = false; 1408 int r = 0; 1409 1410 assert_cfg80211_lock(); 1411 1412 r = ignore_request(wiphy, pending_request); 1413 1414 if (r == REG_INTERSECT) { 1415 if (pending_request->initiator == 1416 NL80211_REGDOM_SET_BY_DRIVER) { 1417 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); 1418 if (r) { 1419 kfree(pending_request); 1420 return r; 1421 } 1422 } 1423 intersect = true; 1424 } else if (r) { 1425 /* 1426 * If the regulatory domain being requested by the 1427 * driver has already been set just copy it to the 1428 * wiphy 1429 */ 1430 if (r == -EALREADY && 1431 pending_request->initiator == 1432 NL80211_REGDOM_SET_BY_DRIVER) { 1433 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); 1434 if (r) { 1435 kfree(pending_request); 1436 return r; 1437 } 1438 r = -EALREADY; 1439 goto new_request; 1440 } 1441 kfree(pending_request); 1442 return r; 1443 } 1444 1445 new_request: 1446 if (last_request != &core_request_world) 1447 kfree(last_request); 1448 1449 last_request = pending_request; 1450 last_request->intersect = intersect; 1451 1452 pending_request = NULL; 1453 1454 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) { 1455 user_alpha2[0] = last_request->alpha2[0]; 1456 user_alpha2[1] = last_request->alpha2[1]; 1457 } 1458 1459 /* When r == REG_INTERSECT we do need to call CRDA */ 1460 if (r < 0) { 1461 /* 1462 * Since CRDA will not be called in this case as we already 1463 * have applied the requested regulatory domain before we just 1464 * inform userspace we have processed the request 1465 */ 1466 if (r == -EALREADY) { 1467 nl80211_send_reg_change_event(last_request); 1468 reg_set_request_processed(); 1469 } 1470 return r; 1471 } 1472 1473 return call_crda(last_request->alpha2); 1474 } 1475 1476 /* This processes *all* regulatory hints */ 1477 static void reg_process_hint(struct regulatory_request *reg_request, 1478 enum nl80211_reg_initiator reg_initiator) 1479 { 1480 int r = 0; 1481 struct wiphy *wiphy = NULL; 1482 1483 BUG_ON(!reg_request->alpha2); 1484 1485 if (wiphy_idx_valid(reg_request->wiphy_idx)) 1486 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 1487 1488 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && 1489 !wiphy) { 1490 kfree(reg_request); 1491 return; 1492 } 1493 1494 r = __regulatory_hint(wiphy, reg_request); 1495 /* This is required so that the orig_* parameters are saved */ 1496 if (r == -EALREADY && wiphy && 1497 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { 1498 wiphy_update_regulatory(wiphy, reg_initiator); 1499 return; 1500 } 1501 1502 /* 1503 * We only time out user hints, given that they should be the only 1504 * source of bogus requests. 1505 */ 1506 if (r != -EALREADY && 1507 reg_initiator == NL80211_REGDOM_SET_BY_USER) 1508 schedule_delayed_work(®_timeout, msecs_to_jiffies(3142)); 1509 } 1510 1511 /* 1512 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 1513 * Regulatory hints come on a first come first serve basis and we 1514 * must process each one atomically. 1515 */ 1516 static void reg_process_pending_hints(void) 1517 { 1518 struct regulatory_request *reg_request; 1519 1520 mutex_lock(&cfg80211_mutex); 1521 mutex_lock(®_mutex); 1522 1523 /* When last_request->processed becomes true this will be rescheduled */ 1524 if (last_request && !last_request->processed) { 1525 REG_DBG_PRINT("Pending regulatory request, waiting " 1526 "for it to be processed...\n"); 1527 goto out; 1528 } 1529 1530 spin_lock(®_requests_lock); 1531 1532 if (list_empty(®_requests_list)) { 1533 spin_unlock(®_requests_lock); 1534 goto out; 1535 } 1536 1537 reg_request = list_first_entry(®_requests_list, 1538 struct regulatory_request, 1539 list); 1540 list_del_init(®_request->list); 1541 1542 spin_unlock(®_requests_lock); 1543 1544 reg_process_hint(reg_request, reg_request->initiator); 1545 1546 out: 1547 mutex_unlock(®_mutex); 1548 mutex_unlock(&cfg80211_mutex); 1549 } 1550 1551 /* Processes beacon hints -- this has nothing to do with country IEs */ 1552 static void reg_process_pending_beacon_hints(void) 1553 { 1554 struct cfg80211_registered_device *rdev; 1555 struct reg_beacon *pending_beacon, *tmp; 1556 1557 /* 1558 * No need to hold the reg_mutex here as we just touch wiphys 1559 * and do not read or access regulatory variables. 1560 */ 1561 mutex_lock(&cfg80211_mutex); 1562 1563 /* This goes through the _pending_ beacon list */ 1564 spin_lock_bh(®_pending_beacons_lock); 1565 1566 if (list_empty(®_pending_beacons)) { 1567 spin_unlock_bh(®_pending_beacons_lock); 1568 goto out; 1569 } 1570 1571 list_for_each_entry_safe(pending_beacon, tmp, 1572 ®_pending_beacons, list) { 1573 1574 list_del_init(&pending_beacon->list); 1575 1576 /* Applies the beacon hint to current wiphys */ 1577 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1578 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 1579 1580 /* Remembers the beacon hint for new wiphys or reg changes */ 1581 list_add_tail(&pending_beacon->list, ®_beacon_list); 1582 } 1583 1584 spin_unlock_bh(®_pending_beacons_lock); 1585 out: 1586 mutex_unlock(&cfg80211_mutex); 1587 } 1588 1589 static void reg_todo(struct work_struct *work) 1590 { 1591 reg_process_pending_hints(); 1592 reg_process_pending_beacon_hints(); 1593 } 1594 1595 static void queue_regulatory_request(struct regulatory_request *request) 1596 { 1597 if (isalpha(request->alpha2[0])) 1598 request->alpha2[0] = toupper(request->alpha2[0]); 1599 if (isalpha(request->alpha2[1])) 1600 request->alpha2[1] = toupper(request->alpha2[1]); 1601 1602 spin_lock(®_requests_lock); 1603 list_add_tail(&request->list, ®_requests_list); 1604 spin_unlock(®_requests_lock); 1605 1606 schedule_work(®_work); 1607 } 1608 1609 /* 1610 * Core regulatory hint -- happens during cfg80211_init() 1611 * and when we restore regulatory settings. 1612 */ 1613 static int regulatory_hint_core(const char *alpha2) 1614 { 1615 struct regulatory_request *request; 1616 1617 request = kzalloc(sizeof(struct regulatory_request), 1618 GFP_KERNEL); 1619 if (!request) 1620 return -ENOMEM; 1621 1622 request->alpha2[0] = alpha2[0]; 1623 request->alpha2[1] = alpha2[1]; 1624 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1625 1626 queue_regulatory_request(request); 1627 1628 return 0; 1629 } 1630 1631 /* User hints */ 1632 int regulatory_hint_user(const char *alpha2) 1633 { 1634 struct regulatory_request *request; 1635 1636 BUG_ON(!alpha2); 1637 1638 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1639 if (!request) 1640 return -ENOMEM; 1641 1642 request->wiphy_idx = WIPHY_IDX_STALE; 1643 request->alpha2[0] = alpha2[0]; 1644 request->alpha2[1] = alpha2[1]; 1645 request->initiator = NL80211_REGDOM_SET_BY_USER; 1646 1647 queue_regulatory_request(request); 1648 1649 return 0; 1650 } 1651 1652 /* Driver hints */ 1653 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 1654 { 1655 struct regulatory_request *request; 1656 1657 BUG_ON(!alpha2); 1658 BUG_ON(!wiphy); 1659 1660 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1661 if (!request) 1662 return -ENOMEM; 1663 1664 request->wiphy_idx = get_wiphy_idx(wiphy); 1665 1666 /* Must have registered wiphy first */ 1667 BUG_ON(!wiphy_idx_valid(request->wiphy_idx)); 1668 1669 request->alpha2[0] = alpha2[0]; 1670 request->alpha2[1] = alpha2[1]; 1671 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 1672 1673 queue_regulatory_request(request); 1674 1675 return 0; 1676 } 1677 EXPORT_SYMBOL(regulatory_hint); 1678 1679 /* 1680 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and 1681 * therefore cannot iterate over the rdev list here. 1682 */ 1683 void regulatory_hint_11d(struct wiphy *wiphy, 1684 enum ieee80211_band band, 1685 u8 *country_ie, 1686 u8 country_ie_len) 1687 { 1688 char alpha2[2]; 1689 enum environment_cap env = ENVIRON_ANY; 1690 struct regulatory_request *request; 1691 1692 mutex_lock(®_mutex); 1693 1694 if (unlikely(!last_request)) 1695 goto out; 1696 1697 /* IE len must be evenly divisible by 2 */ 1698 if (country_ie_len & 0x01) 1699 goto out; 1700 1701 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 1702 goto out; 1703 1704 alpha2[0] = country_ie[0]; 1705 alpha2[1] = country_ie[1]; 1706 1707 if (country_ie[2] == 'I') 1708 env = ENVIRON_INDOOR; 1709 else if (country_ie[2] == 'O') 1710 env = ENVIRON_OUTDOOR; 1711 1712 /* 1713 * We will run this only upon a successful connection on cfg80211. 1714 * We leave conflict resolution to the workqueue, where can hold 1715 * cfg80211_mutex. 1716 */ 1717 if (likely(last_request->initiator == 1718 NL80211_REGDOM_SET_BY_COUNTRY_IE && 1719 wiphy_idx_valid(last_request->wiphy_idx))) 1720 goto out; 1721 1722 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1723 if (!request) 1724 goto out; 1725 1726 request->wiphy_idx = get_wiphy_idx(wiphy); 1727 request->alpha2[0] = alpha2[0]; 1728 request->alpha2[1] = alpha2[1]; 1729 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 1730 request->country_ie_env = env; 1731 1732 mutex_unlock(®_mutex); 1733 1734 queue_regulatory_request(request); 1735 1736 return; 1737 1738 out: 1739 mutex_unlock(®_mutex); 1740 } 1741 1742 static void restore_alpha2(char *alpha2, bool reset_user) 1743 { 1744 /* indicates there is no alpha2 to consider for restoration */ 1745 alpha2[0] = '9'; 1746 alpha2[1] = '7'; 1747 1748 /* The user setting has precedence over the module parameter */ 1749 if (is_user_regdom_saved()) { 1750 /* Unless we're asked to ignore it and reset it */ 1751 if (reset_user) { 1752 REG_DBG_PRINT("Restoring regulatory settings " 1753 "including user preference\n"); 1754 user_alpha2[0] = '9'; 1755 user_alpha2[1] = '7'; 1756 1757 /* 1758 * If we're ignoring user settings, we still need to 1759 * check the module parameter to ensure we put things 1760 * back as they were for a full restore. 1761 */ 1762 if (!is_world_regdom(ieee80211_regdom)) { 1763 REG_DBG_PRINT("Keeping preference on " 1764 "module parameter ieee80211_regdom: %c%c\n", 1765 ieee80211_regdom[0], 1766 ieee80211_regdom[1]); 1767 alpha2[0] = ieee80211_regdom[0]; 1768 alpha2[1] = ieee80211_regdom[1]; 1769 } 1770 } else { 1771 REG_DBG_PRINT("Restoring regulatory settings " 1772 "while preserving user preference for: %c%c\n", 1773 user_alpha2[0], 1774 user_alpha2[1]); 1775 alpha2[0] = user_alpha2[0]; 1776 alpha2[1] = user_alpha2[1]; 1777 } 1778 } else if (!is_world_regdom(ieee80211_regdom)) { 1779 REG_DBG_PRINT("Keeping preference on " 1780 "module parameter ieee80211_regdom: %c%c\n", 1781 ieee80211_regdom[0], 1782 ieee80211_regdom[1]); 1783 alpha2[0] = ieee80211_regdom[0]; 1784 alpha2[1] = ieee80211_regdom[1]; 1785 } else 1786 REG_DBG_PRINT("Restoring regulatory settings\n"); 1787 } 1788 1789 static void restore_custom_reg_settings(struct wiphy *wiphy) 1790 { 1791 struct ieee80211_supported_band *sband; 1792 enum ieee80211_band band; 1793 struct ieee80211_channel *chan; 1794 int i; 1795 1796 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1797 sband = wiphy->bands[band]; 1798 if (!sband) 1799 continue; 1800 for (i = 0; i < sband->n_channels; i++) { 1801 chan = &sband->channels[i]; 1802 chan->flags = chan->orig_flags; 1803 chan->max_antenna_gain = chan->orig_mag; 1804 chan->max_power = chan->orig_mpwr; 1805 } 1806 } 1807 } 1808 1809 /* 1810 * Restoring regulatory settings involves ingoring any 1811 * possibly stale country IE information and user regulatory 1812 * settings if so desired, this includes any beacon hints 1813 * learned as we could have traveled outside to another country 1814 * after disconnection. To restore regulatory settings we do 1815 * exactly what we did at bootup: 1816 * 1817 * - send a core regulatory hint 1818 * - send a user regulatory hint if applicable 1819 * 1820 * Device drivers that send a regulatory hint for a specific country 1821 * keep their own regulatory domain on wiphy->regd so that does does 1822 * not need to be remembered. 1823 */ 1824 static void restore_regulatory_settings(bool reset_user) 1825 { 1826 char alpha2[2]; 1827 char world_alpha2[2]; 1828 struct reg_beacon *reg_beacon, *btmp; 1829 struct regulatory_request *reg_request, *tmp; 1830 LIST_HEAD(tmp_reg_req_list); 1831 struct cfg80211_registered_device *rdev; 1832 1833 mutex_lock(&cfg80211_mutex); 1834 mutex_lock(®_mutex); 1835 1836 reset_regdomains(true); 1837 restore_alpha2(alpha2, reset_user); 1838 1839 /* 1840 * If there's any pending requests we simply 1841 * stash them to a temporary pending queue and 1842 * add then after we've restored regulatory 1843 * settings. 1844 */ 1845 spin_lock(®_requests_lock); 1846 if (!list_empty(®_requests_list)) { 1847 list_for_each_entry_safe(reg_request, tmp, 1848 ®_requests_list, list) { 1849 if (reg_request->initiator != 1850 NL80211_REGDOM_SET_BY_USER) 1851 continue; 1852 list_del(®_request->list); 1853 list_add_tail(®_request->list, &tmp_reg_req_list); 1854 } 1855 } 1856 spin_unlock(®_requests_lock); 1857 1858 /* Clear beacon hints */ 1859 spin_lock_bh(®_pending_beacons_lock); 1860 if (!list_empty(®_pending_beacons)) { 1861 list_for_each_entry_safe(reg_beacon, btmp, 1862 ®_pending_beacons, list) { 1863 list_del(®_beacon->list); 1864 kfree(reg_beacon); 1865 } 1866 } 1867 spin_unlock_bh(®_pending_beacons_lock); 1868 1869 if (!list_empty(®_beacon_list)) { 1870 list_for_each_entry_safe(reg_beacon, btmp, 1871 ®_beacon_list, list) { 1872 list_del(®_beacon->list); 1873 kfree(reg_beacon); 1874 } 1875 } 1876 1877 /* First restore to the basic regulatory settings */ 1878 cfg80211_regdomain = cfg80211_world_regdom; 1879 world_alpha2[0] = cfg80211_regdomain->alpha2[0]; 1880 world_alpha2[1] = cfg80211_regdomain->alpha2[1]; 1881 1882 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1883 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY) 1884 restore_custom_reg_settings(&rdev->wiphy); 1885 } 1886 1887 mutex_unlock(®_mutex); 1888 mutex_unlock(&cfg80211_mutex); 1889 1890 regulatory_hint_core(world_alpha2); 1891 1892 /* 1893 * This restores the ieee80211_regdom module parameter 1894 * preference or the last user requested regulatory 1895 * settings, user regulatory settings takes precedence. 1896 */ 1897 if (is_an_alpha2(alpha2)) 1898 regulatory_hint_user(user_alpha2); 1899 1900 if (list_empty(&tmp_reg_req_list)) 1901 return; 1902 1903 mutex_lock(&cfg80211_mutex); 1904 mutex_lock(®_mutex); 1905 1906 spin_lock(®_requests_lock); 1907 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) { 1908 REG_DBG_PRINT("Adding request for country %c%c back " 1909 "into the queue\n", 1910 reg_request->alpha2[0], 1911 reg_request->alpha2[1]); 1912 list_del(®_request->list); 1913 list_add_tail(®_request->list, ®_requests_list); 1914 } 1915 spin_unlock(®_requests_lock); 1916 1917 mutex_unlock(®_mutex); 1918 mutex_unlock(&cfg80211_mutex); 1919 1920 REG_DBG_PRINT("Kicking the queue\n"); 1921 1922 schedule_work(®_work); 1923 } 1924 1925 void regulatory_hint_disconnect(void) 1926 { 1927 REG_DBG_PRINT("All devices are disconnected, going to " 1928 "restore regulatory settings\n"); 1929 restore_regulatory_settings(false); 1930 } 1931 1932 static bool freq_is_chan_12_13_14(u16 freq) 1933 { 1934 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || 1935 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || 1936 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) 1937 return true; 1938 return false; 1939 } 1940 1941 int regulatory_hint_found_beacon(struct wiphy *wiphy, 1942 struct ieee80211_channel *beacon_chan, 1943 gfp_t gfp) 1944 { 1945 struct reg_beacon *reg_beacon; 1946 1947 if (likely((beacon_chan->beacon_found || 1948 (beacon_chan->flags & IEEE80211_CHAN_RADAR) || 1949 (beacon_chan->band == IEEE80211_BAND_2GHZ && 1950 !freq_is_chan_12_13_14(beacon_chan->center_freq))))) 1951 return 0; 1952 1953 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 1954 if (!reg_beacon) 1955 return -ENOMEM; 1956 1957 REG_DBG_PRINT("Found new beacon on " 1958 "frequency: %d MHz (Ch %d) on %s\n", 1959 beacon_chan->center_freq, 1960 ieee80211_frequency_to_channel(beacon_chan->center_freq), 1961 wiphy_name(wiphy)); 1962 1963 memcpy(®_beacon->chan, beacon_chan, 1964 sizeof(struct ieee80211_channel)); 1965 1966 1967 /* 1968 * Since we can be called from BH or and non-BH context 1969 * we must use spin_lock_bh() 1970 */ 1971 spin_lock_bh(®_pending_beacons_lock); 1972 list_add_tail(®_beacon->list, ®_pending_beacons); 1973 spin_unlock_bh(®_pending_beacons_lock); 1974 1975 schedule_work(®_work); 1976 1977 return 0; 1978 } 1979 1980 static void print_rd_rules(const struct ieee80211_regdomain *rd) 1981 { 1982 unsigned int i; 1983 const struct ieee80211_reg_rule *reg_rule = NULL; 1984 const struct ieee80211_freq_range *freq_range = NULL; 1985 const struct ieee80211_power_rule *power_rule = NULL; 1986 1987 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n"); 1988 1989 for (i = 0; i < rd->n_reg_rules; i++) { 1990 reg_rule = &rd->reg_rules[i]; 1991 freq_range = ®_rule->freq_range; 1992 power_rule = ®_rule->power_rule; 1993 1994 /* 1995 * There may not be documentation for max antenna gain 1996 * in certain regions 1997 */ 1998 if (power_rule->max_antenna_gain) 1999 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n", 2000 freq_range->start_freq_khz, 2001 freq_range->end_freq_khz, 2002 freq_range->max_bandwidth_khz, 2003 power_rule->max_antenna_gain, 2004 power_rule->max_eirp); 2005 else 2006 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n", 2007 freq_range->start_freq_khz, 2008 freq_range->end_freq_khz, 2009 freq_range->max_bandwidth_khz, 2010 power_rule->max_eirp); 2011 } 2012 } 2013 2014 bool reg_supported_dfs_region(u8 dfs_region) 2015 { 2016 switch (dfs_region) { 2017 case NL80211_DFS_UNSET: 2018 case NL80211_DFS_FCC: 2019 case NL80211_DFS_ETSI: 2020 case NL80211_DFS_JP: 2021 return true; 2022 default: 2023 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n", 2024 dfs_region); 2025 return false; 2026 } 2027 } 2028 2029 static void print_dfs_region(u8 dfs_region) 2030 { 2031 if (!dfs_region) 2032 return; 2033 2034 switch (dfs_region) { 2035 case NL80211_DFS_FCC: 2036 pr_info(" DFS Master region FCC"); 2037 break; 2038 case NL80211_DFS_ETSI: 2039 pr_info(" DFS Master region ETSI"); 2040 break; 2041 case NL80211_DFS_JP: 2042 pr_info(" DFS Master region JP"); 2043 break; 2044 default: 2045 pr_info(" DFS Master region Uknown"); 2046 break; 2047 } 2048 } 2049 2050 static void print_regdomain(const struct ieee80211_regdomain *rd) 2051 { 2052 2053 if (is_intersected_alpha2(rd->alpha2)) { 2054 2055 if (last_request->initiator == 2056 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2057 struct cfg80211_registered_device *rdev; 2058 rdev = cfg80211_rdev_by_wiphy_idx( 2059 last_request->wiphy_idx); 2060 if (rdev) { 2061 pr_info("Current regulatory domain updated by AP to: %c%c\n", 2062 rdev->country_ie_alpha2[0], 2063 rdev->country_ie_alpha2[1]); 2064 } else 2065 pr_info("Current regulatory domain intersected:\n"); 2066 } else 2067 pr_info("Current regulatory domain intersected:\n"); 2068 } else if (is_world_regdom(rd->alpha2)) 2069 pr_info("World regulatory domain updated:\n"); 2070 else { 2071 if (is_unknown_alpha2(rd->alpha2)) 2072 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); 2073 else 2074 pr_info("Regulatory domain changed to country: %c%c\n", 2075 rd->alpha2[0], rd->alpha2[1]); 2076 } 2077 print_dfs_region(rd->dfs_region); 2078 print_rd_rules(rd); 2079 } 2080 2081 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 2082 { 2083 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 2084 print_rd_rules(rd); 2085 } 2086 2087 /* Takes ownership of rd only if it doesn't fail */ 2088 static int __set_regdom(const struct ieee80211_regdomain *rd) 2089 { 2090 const struct ieee80211_regdomain *intersected_rd = NULL; 2091 struct cfg80211_registered_device *rdev = NULL; 2092 struct wiphy *request_wiphy; 2093 /* Some basic sanity checks first */ 2094 2095 if (is_world_regdom(rd->alpha2)) { 2096 if (WARN_ON(!reg_is_valid_request(rd->alpha2))) 2097 return -EINVAL; 2098 update_world_regdomain(rd); 2099 return 0; 2100 } 2101 2102 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 2103 !is_unknown_alpha2(rd->alpha2)) 2104 return -EINVAL; 2105 2106 if (!last_request) 2107 return -EINVAL; 2108 2109 /* 2110 * Lets only bother proceeding on the same alpha2 if the current 2111 * rd is non static (it means CRDA was present and was used last) 2112 * and the pending request came in from a country IE 2113 */ 2114 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2115 /* 2116 * If someone else asked us to change the rd lets only bother 2117 * checking if the alpha2 changes if CRDA was already called 2118 */ 2119 if (!regdom_changes(rd->alpha2)) 2120 return -EINVAL; 2121 } 2122 2123 /* 2124 * Now lets set the regulatory domain, update all driver channels 2125 * and finally inform them of what we have done, in case they want 2126 * to review or adjust their own settings based on their own 2127 * internal EEPROM data 2128 */ 2129 2130 if (WARN_ON(!reg_is_valid_request(rd->alpha2))) 2131 return -EINVAL; 2132 2133 if (!is_valid_rd(rd)) { 2134 pr_err("Invalid regulatory domain detected:\n"); 2135 print_regdomain_info(rd); 2136 return -EINVAL; 2137 } 2138 2139 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 2140 if (!request_wiphy && 2141 (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2142 last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) { 2143 schedule_delayed_work(®_timeout, 0); 2144 return -ENODEV; 2145 } 2146 2147 if (!last_request->intersect) { 2148 int r; 2149 2150 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) { 2151 reset_regdomains(false); 2152 cfg80211_regdomain = rd; 2153 return 0; 2154 } 2155 2156 /* 2157 * For a driver hint, lets copy the regulatory domain the 2158 * driver wanted to the wiphy to deal with conflicts 2159 */ 2160 2161 /* 2162 * Userspace could have sent two replies with only 2163 * one kernel request. 2164 */ 2165 if (request_wiphy->regd) 2166 return -EALREADY; 2167 2168 r = reg_copy_regd(&request_wiphy->regd, rd); 2169 if (r) 2170 return r; 2171 2172 reset_regdomains(false); 2173 cfg80211_regdomain = rd; 2174 return 0; 2175 } 2176 2177 /* Intersection requires a bit more work */ 2178 2179 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2180 2181 intersected_rd = regdom_intersect(rd, cfg80211_regdomain); 2182 if (!intersected_rd) 2183 return -EINVAL; 2184 2185 /* 2186 * We can trash what CRDA provided now. 2187 * However if a driver requested this specific regulatory 2188 * domain we keep it for its private use 2189 */ 2190 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) 2191 request_wiphy->regd = rd; 2192 else 2193 kfree(rd); 2194 2195 rd = NULL; 2196 2197 reset_regdomains(false); 2198 cfg80211_regdomain = intersected_rd; 2199 2200 return 0; 2201 } 2202 2203 if (!intersected_rd) 2204 return -EINVAL; 2205 2206 rdev = wiphy_to_dev(request_wiphy); 2207 2208 rdev->country_ie_alpha2[0] = rd->alpha2[0]; 2209 rdev->country_ie_alpha2[1] = rd->alpha2[1]; 2210 rdev->env = last_request->country_ie_env; 2211 2212 BUG_ON(intersected_rd == rd); 2213 2214 kfree(rd); 2215 rd = NULL; 2216 2217 reset_regdomains(false); 2218 cfg80211_regdomain = intersected_rd; 2219 2220 return 0; 2221 } 2222 2223 2224 /* 2225 * Use this call to set the current regulatory domain. Conflicts with 2226 * multiple drivers can be ironed out later. Caller must've already 2227 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex 2228 */ 2229 int set_regdom(const struct ieee80211_regdomain *rd) 2230 { 2231 int r; 2232 2233 assert_cfg80211_lock(); 2234 2235 mutex_lock(®_mutex); 2236 2237 /* Note that this doesn't update the wiphys, this is done below */ 2238 r = __set_regdom(rd); 2239 if (r) { 2240 kfree(rd); 2241 mutex_unlock(®_mutex); 2242 return r; 2243 } 2244 2245 /* This would make this whole thing pointless */ 2246 if (!last_request->intersect) 2247 BUG_ON(rd != cfg80211_regdomain); 2248 2249 /* update all wiphys now with the new established regulatory domain */ 2250 update_all_wiphy_regulatory(last_request->initiator); 2251 2252 print_regdomain(cfg80211_regdomain); 2253 2254 nl80211_send_reg_change_event(last_request); 2255 2256 reg_set_request_processed(); 2257 2258 mutex_unlock(®_mutex); 2259 2260 return r; 2261 } 2262 2263 #ifdef CONFIG_HOTPLUG 2264 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) 2265 { 2266 if (last_request && !last_request->processed) { 2267 if (add_uevent_var(env, "COUNTRY=%c%c", 2268 last_request->alpha2[0], 2269 last_request->alpha2[1])) 2270 return -ENOMEM; 2271 } 2272 2273 return 0; 2274 } 2275 #else 2276 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) 2277 { 2278 return -ENODEV; 2279 } 2280 #endif /* CONFIG_HOTPLUG */ 2281 2282 /* Caller must hold cfg80211_mutex */ 2283 void reg_device_remove(struct wiphy *wiphy) 2284 { 2285 struct wiphy *request_wiphy = NULL; 2286 2287 assert_cfg80211_lock(); 2288 2289 mutex_lock(®_mutex); 2290 2291 kfree(wiphy->regd); 2292 2293 if (last_request) 2294 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 2295 2296 if (!request_wiphy || request_wiphy != wiphy) 2297 goto out; 2298 2299 last_request->wiphy_idx = WIPHY_IDX_STALE; 2300 last_request->country_ie_env = ENVIRON_ANY; 2301 out: 2302 mutex_unlock(®_mutex); 2303 } 2304 2305 static void reg_timeout_work(struct work_struct *work) 2306 { 2307 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, " 2308 "restoring regulatory settings\n"); 2309 restore_regulatory_settings(true); 2310 } 2311 2312 int __init regulatory_init(void) 2313 { 2314 int err = 0; 2315 2316 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 2317 if (IS_ERR(reg_pdev)) 2318 return PTR_ERR(reg_pdev); 2319 2320 reg_pdev->dev.type = ®_device_type; 2321 2322 spin_lock_init(®_requests_lock); 2323 spin_lock_init(®_pending_beacons_lock); 2324 2325 cfg80211_regdomain = cfg80211_world_regdom; 2326 2327 user_alpha2[0] = '9'; 2328 user_alpha2[1] = '7'; 2329 2330 /* We always try to get an update for the static regdomain */ 2331 err = regulatory_hint_core(cfg80211_regdomain->alpha2); 2332 if (err) { 2333 if (err == -ENOMEM) 2334 return err; 2335 /* 2336 * N.B. kobject_uevent_env() can fail mainly for when we're out 2337 * memory which is handled and propagated appropriately above 2338 * but it can also fail during a netlink_broadcast() or during 2339 * early boot for call_usermodehelper(). For now treat these 2340 * errors as non-fatal. 2341 */ 2342 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 2343 #ifdef CONFIG_CFG80211_REG_DEBUG 2344 /* We want to find out exactly why when debugging */ 2345 WARN_ON(err); 2346 #endif 2347 } 2348 2349 /* 2350 * Finally, if the user set the module parameter treat it 2351 * as a user hint. 2352 */ 2353 if (!is_world_regdom(ieee80211_regdom)) 2354 regulatory_hint_user(ieee80211_regdom); 2355 2356 return 0; 2357 } 2358 2359 void /* __init_or_exit */ regulatory_exit(void) 2360 { 2361 struct regulatory_request *reg_request, *tmp; 2362 struct reg_beacon *reg_beacon, *btmp; 2363 2364 cancel_work_sync(®_work); 2365 cancel_delayed_work_sync(®_timeout); 2366 2367 mutex_lock(&cfg80211_mutex); 2368 mutex_lock(®_mutex); 2369 2370 reset_regdomains(true); 2371 2372 dev_set_uevent_suppress(®_pdev->dev, true); 2373 2374 platform_device_unregister(reg_pdev); 2375 2376 spin_lock_bh(®_pending_beacons_lock); 2377 if (!list_empty(®_pending_beacons)) { 2378 list_for_each_entry_safe(reg_beacon, btmp, 2379 ®_pending_beacons, list) { 2380 list_del(®_beacon->list); 2381 kfree(reg_beacon); 2382 } 2383 } 2384 spin_unlock_bh(®_pending_beacons_lock); 2385 2386 if (!list_empty(®_beacon_list)) { 2387 list_for_each_entry_safe(reg_beacon, btmp, 2388 ®_beacon_list, list) { 2389 list_del(®_beacon->list); 2390 kfree(reg_beacon); 2391 } 2392 } 2393 2394 spin_lock(®_requests_lock); 2395 if (!list_empty(®_requests_list)) { 2396 list_for_each_entry_safe(reg_request, tmp, 2397 ®_requests_list, list) { 2398 list_del(®_request->list); 2399 kfree(reg_request); 2400 } 2401 } 2402 spin_unlock(®_requests_lock); 2403 2404 mutex_unlock(®_mutex); 2405 mutex_unlock(&cfg80211_mutex); 2406 } 2407