xref: /openbmc/linux/net/wireless/reg.c (revision 63dc02bd)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/random.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61 
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...)			\
64 	printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68 
69 static struct regulatory_request core_request_world = {
70 	.initiator = NL80211_REGDOM_SET_BY_CORE,
71 	.alpha2[0] = '0',
72 	.alpha2[1] = '0',
73 	.intersect = false,
74 	.processed = true,
75 	.country_ie_env = ENVIRON_ANY,
76 };
77 
78 /* Receipt of information from last regulatory request */
79 static struct regulatory_request *last_request = &core_request_world;
80 
81 /* To trigger userspace events */
82 static struct platform_device *reg_pdev;
83 
84 static struct device_type reg_device_type = {
85 	.uevent = reg_device_uevent,
86 };
87 
88 /*
89  * Central wireless core regulatory domains, we only need two,
90  * the current one and a world regulatory domain in case we have no
91  * information to give us an alpha2
92  */
93 const struct ieee80211_regdomain *cfg80211_regdomain;
94 
95 /*
96  * Protects static reg.c components:
97  *     - cfg80211_world_regdom
98  *     - cfg80211_regdom
99  *     - last_request
100  */
101 static DEFINE_MUTEX(reg_mutex);
102 
103 static inline void assert_reg_lock(void)
104 {
105 	lockdep_assert_held(&reg_mutex);
106 }
107 
108 /* Used to queue up regulatory hints */
109 static LIST_HEAD(reg_requests_list);
110 static spinlock_t reg_requests_lock;
111 
112 /* Used to queue up beacon hints for review */
113 static LIST_HEAD(reg_pending_beacons);
114 static spinlock_t reg_pending_beacons_lock;
115 
116 /* Used to keep track of processed beacon hints */
117 static LIST_HEAD(reg_beacon_list);
118 
119 struct reg_beacon {
120 	struct list_head list;
121 	struct ieee80211_channel chan;
122 };
123 
124 static void reg_todo(struct work_struct *work);
125 static DECLARE_WORK(reg_work, reg_todo);
126 
127 static void reg_timeout_work(struct work_struct *work);
128 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
129 
130 /* We keep a static world regulatory domain in case of the absence of CRDA */
131 static const struct ieee80211_regdomain world_regdom = {
132 	.n_reg_rules = 5,
133 	.alpha2 =  "00",
134 	.reg_rules = {
135 		/* IEEE 802.11b/g, channels 1..11 */
136 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
137 		/* IEEE 802.11b/g, channels 12..13. No HT40
138 		 * channel fits here. */
139 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
140 			NL80211_RRF_PASSIVE_SCAN |
141 			NL80211_RRF_NO_IBSS),
142 		/* IEEE 802.11 channel 14 - Only JP enables
143 		 * this and for 802.11b only */
144 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
145 			NL80211_RRF_PASSIVE_SCAN |
146 			NL80211_RRF_NO_IBSS |
147 			NL80211_RRF_NO_OFDM),
148 		/* IEEE 802.11a, channel 36..48 */
149 		REG_RULE(5180-10, 5240+10, 40, 6, 20,
150                         NL80211_RRF_PASSIVE_SCAN |
151                         NL80211_RRF_NO_IBSS),
152 
153 		/* NB: 5260 MHz - 5700 MHz requies DFS */
154 
155 		/* IEEE 802.11a, channel 149..165 */
156 		REG_RULE(5745-10, 5825+10, 40, 6, 20,
157 			NL80211_RRF_PASSIVE_SCAN |
158 			NL80211_RRF_NO_IBSS),
159 	}
160 };
161 
162 static const struct ieee80211_regdomain *cfg80211_world_regdom =
163 	&world_regdom;
164 
165 static char *ieee80211_regdom = "00";
166 static char user_alpha2[2];
167 
168 module_param(ieee80211_regdom, charp, 0444);
169 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
170 
171 static void reset_regdomains(bool full_reset)
172 {
173 	/* avoid freeing static information or freeing something twice */
174 	if (cfg80211_regdomain == cfg80211_world_regdom)
175 		cfg80211_regdomain = NULL;
176 	if (cfg80211_world_regdom == &world_regdom)
177 		cfg80211_world_regdom = NULL;
178 	if (cfg80211_regdomain == &world_regdom)
179 		cfg80211_regdomain = NULL;
180 
181 	kfree(cfg80211_regdomain);
182 	kfree(cfg80211_world_regdom);
183 
184 	cfg80211_world_regdom = &world_regdom;
185 	cfg80211_regdomain = NULL;
186 
187 	if (!full_reset)
188 		return;
189 
190 	if (last_request != &core_request_world)
191 		kfree(last_request);
192 	last_request = &core_request_world;
193 }
194 
195 /*
196  * Dynamic world regulatory domain requested by the wireless
197  * core upon initialization
198  */
199 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
200 {
201 	BUG_ON(!last_request);
202 
203 	reset_regdomains(false);
204 
205 	cfg80211_world_regdom = rd;
206 	cfg80211_regdomain = rd;
207 }
208 
209 bool is_world_regdom(const char *alpha2)
210 {
211 	if (!alpha2)
212 		return false;
213 	if (alpha2[0] == '0' && alpha2[1] == '0')
214 		return true;
215 	return false;
216 }
217 
218 static bool is_alpha2_set(const char *alpha2)
219 {
220 	if (!alpha2)
221 		return false;
222 	if (alpha2[0] != 0 && alpha2[1] != 0)
223 		return true;
224 	return false;
225 }
226 
227 static bool is_unknown_alpha2(const char *alpha2)
228 {
229 	if (!alpha2)
230 		return false;
231 	/*
232 	 * Special case where regulatory domain was built by driver
233 	 * but a specific alpha2 cannot be determined
234 	 */
235 	if (alpha2[0] == '9' && alpha2[1] == '9')
236 		return true;
237 	return false;
238 }
239 
240 static bool is_intersected_alpha2(const char *alpha2)
241 {
242 	if (!alpha2)
243 		return false;
244 	/*
245 	 * Special case where regulatory domain is the
246 	 * result of an intersection between two regulatory domain
247 	 * structures
248 	 */
249 	if (alpha2[0] == '9' && alpha2[1] == '8')
250 		return true;
251 	return false;
252 }
253 
254 static bool is_an_alpha2(const char *alpha2)
255 {
256 	if (!alpha2)
257 		return false;
258 	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
259 		return true;
260 	return false;
261 }
262 
263 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
264 {
265 	if (!alpha2_x || !alpha2_y)
266 		return false;
267 	if (alpha2_x[0] == alpha2_y[0] &&
268 		alpha2_x[1] == alpha2_y[1])
269 		return true;
270 	return false;
271 }
272 
273 static bool regdom_changes(const char *alpha2)
274 {
275 	assert_cfg80211_lock();
276 
277 	if (!cfg80211_regdomain)
278 		return true;
279 	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
280 		return false;
281 	return true;
282 }
283 
284 /*
285  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
286  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
287  * has ever been issued.
288  */
289 static bool is_user_regdom_saved(void)
290 {
291 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
292 		return false;
293 
294 	/* This would indicate a mistake on the design */
295 	if (WARN((!is_world_regdom(user_alpha2) &&
296 		  !is_an_alpha2(user_alpha2)),
297 		 "Unexpected user alpha2: %c%c\n",
298 		 user_alpha2[0],
299 	         user_alpha2[1]))
300 		return false;
301 
302 	return true;
303 }
304 
305 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
306 			 const struct ieee80211_regdomain *src_regd)
307 {
308 	struct ieee80211_regdomain *regd;
309 	int size_of_regd = 0;
310 	unsigned int i;
311 
312 	size_of_regd = sizeof(struct ieee80211_regdomain) +
313 	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
314 
315 	regd = kzalloc(size_of_regd, GFP_KERNEL);
316 	if (!regd)
317 		return -ENOMEM;
318 
319 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
320 
321 	for (i = 0; i < src_regd->n_reg_rules; i++)
322 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
323 			sizeof(struct ieee80211_reg_rule));
324 
325 	*dst_regd = regd;
326 	return 0;
327 }
328 
329 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
330 struct reg_regdb_search_request {
331 	char alpha2[2];
332 	struct list_head list;
333 };
334 
335 static LIST_HEAD(reg_regdb_search_list);
336 static DEFINE_MUTEX(reg_regdb_search_mutex);
337 
338 static void reg_regdb_search(struct work_struct *work)
339 {
340 	struct reg_regdb_search_request *request;
341 	const struct ieee80211_regdomain *curdom, *regdom;
342 	int i, r;
343 
344 	mutex_lock(&reg_regdb_search_mutex);
345 	while (!list_empty(&reg_regdb_search_list)) {
346 		request = list_first_entry(&reg_regdb_search_list,
347 					   struct reg_regdb_search_request,
348 					   list);
349 		list_del(&request->list);
350 
351 		for (i=0; i<reg_regdb_size; i++) {
352 			curdom = reg_regdb[i];
353 
354 			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
355 				r = reg_copy_regd(&regdom, curdom);
356 				if (r)
357 					break;
358 				mutex_lock(&cfg80211_mutex);
359 				set_regdom(regdom);
360 				mutex_unlock(&cfg80211_mutex);
361 				break;
362 			}
363 		}
364 
365 		kfree(request);
366 	}
367 	mutex_unlock(&reg_regdb_search_mutex);
368 }
369 
370 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
371 
372 static void reg_regdb_query(const char *alpha2)
373 {
374 	struct reg_regdb_search_request *request;
375 
376 	if (!alpha2)
377 		return;
378 
379 	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
380 	if (!request)
381 		return;
382 
383 	memcpy(request->alpha2, alpha2, 2);
384 
385 	mutex_lock(&reg_regdb_search_mutex);
386 	list_add_tail(&request->list, &reg_regdb_search_list);
387 	mutex_unlock(&reg_regdb_search_mutex);
388 
389 	schedule_work(&reg_regdb_work);
390 }
391 #else
392 static inline void reg_regdb_query(const char *alpha2) {}
393 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
394 
395 /*
396  * This lets us keep regulatory code which is updated on a regulatory
397  * basis in userspace. Country information is filled in by
398  * reg_device_uevent
399  */
400 static int call_crda(const char *alpha2)
401 {
402 	if (!is_world_regdom((char *) alpha2))
403 		pr_info("Calling CRDA for country: %c%c\n",
404 			alpha2[0], alpha2[1]);
405 	else
406 		pr_info("Calling CRDA to update world regulatory domain\n");
407 
408 	/* query internal regulatory database (if it exists) */
409 	reg_regdb_query(alpha2);
410 
411 	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
412 }
413 
414 /* Used by nl80211 before kmalloc'ing our regulatory domain */
415 bool reg_is_valid_request(const char *alpha2)
416 {
417 	assert_cfg80211_lock();
418 
419 	if (!last_request)
420 		return false;
421 
422 	return alpha2_equal(last_request->alpha2, alpha2);
423 }
424 
425 /* Sanity check on a regulatory rule */
426 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
427 {
428 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
429 	u32 freq_diff;
430 
431 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
432 		return false;
433 
434 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
435 		return false;
436 
437 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
438 
439 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
440 			freq_range->max_bandwidth_khz > freq_diff)
441 		return false;
442 
443 	return true;
444 }
445 
446 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
447 {
448 	const struct ieee80211_reg_rule *reg_rule = NULL;
449 	unsigned int i;
450 
451 	if (!rd->n_reg_rules)
452 		return false;
453 
454 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
455 		return false;
456 
457 	for (i = 0; i < rd->n_reg_rules; i++) {
458 		reg_rule = &rd->reg_rules[i];
459 		if (!is_valid_reg_rule(reg_rule))
460 			return false;
461 	}
462 
463 	return true;
464 }
465 
466 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
467 			    u32 center_freq_khz,
468 			    u32 bw_khz)
469 {
470 	u32 start_freq_khz, end_freq_khz;
471 
472 	start_freq_khz = center_freq_khz - (bw_khz/2);
473 	end_freq_khz = center_freq_khz + (bw_khz/2);
474 
475 	if (start_freq_khz >= freq_range->start_freq_khz &&
476 	    end_freq_khz <= freq_range->end_freq_khz)
477 		return true;
478 
479 	return false;
480 }
481 
482 /**
483  * freq_in_rule_band - tells us if a frequency is in a frequency band
484  * @freq_range: frequency rule we want to query
485  * @freq_khz: frequency we are inquiring about
486  *
487  * This lets us know if a specific frequency rule is or is not relevant to
488  * a specific frequency's band. Bands are device specific and artificial
489  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
490  * safe for now to assume that a frequency rule should not be part of a
491  * frequency's band if the start freq or end freq are off by more than 2 GHz.
492  * This resolution can be lowered and should be considered as we add
493  * regulatory rule support for other "bands".
494  **/
495 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
496 	u32 freq_khz)
497 {
498 #define ONE_GHZ_IN_KHZ	1000000
499 	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
500 		return true;
501 	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
502 		return true;
503 	return false;
504 #undef ONE_GHZ_IN_KHZ
505 }
506 
507 /*
508  * Helper for regdom_intersect(), this does the real
509  * mathematical intersection fun
510  */
511 static int reg_rules_intersect(
512 	const struct ieee80211_reg_rule *rule1,
513 	const struct ieee80211_reg_rule *rule2,
514 	struct ieee80211_reg_rule *intersected_rule)
515 {
516 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
517 	struct ieee80211_freq_range *freq_range;
518 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
519 	struct ieee80211_power_rule *power_rule;
520 	u32 freq_diff;
521 
522 	freq_range1 = &rule1->freq_range;
523 	freq_range2 = &rule2->freq_range;
524 	freq_range = &intersected_rule->freq_range;
525 
526 	power_rule1 = &rule1->power_rule;
527 	power_rule2 = &rule2->power_rule;
528 	power_rule = &intersected_rule->power_rule;
529 
530 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
531 		freq_range2->start_freq_khz);
532 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
533 		freq_range2->end_freq_khz);
534 	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
535 		freq_range2->max_bandwidth_khz);
536 
537 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
538 	if (freq_range->max_bandwidth_khz > freq_diff)
539 		freq_range->max_bandwidth_khz = freq_diff;
540 
541 	power_rule->max_eirp = min(power_rule1->max_eirp,
542 		power_rule2->max_eirp);
543 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
544 		power_rule2->max_antenna_gain);
545 
546 	intersected_rule->flags = (rule1->flags | rule2->flags);
547 
548 	if (!is_valid_reg_rule(intersected_rule))
549 		return -EINVAL;
550 
551 	return 0;
552 }
553 
554 /**
555  * regdom_intersect - do the intersection between two regulatory domains
556  * @rd1: first regulatory domain
557  * @rd2: second regulatory domain
558  *
559  * Use this function to get the intersection between two regulatory domains.
560  * Once completed we will mark the alpha2 for the rd as intersected, "98",
561  * as no one single alpha2 can represent this regulatory domain.
562  *
563  * Returns a pointer to the regulatory domain structure which will hold the
564  * resulting intersection of rules between rd1 and rd2. We will
565  * kzalloc() this structure for you.
566  */
567 static struct ieee80211_regdomain *regdom_intersect(
568 	const struct ieee80211_regdomain *rd1,
569 	const struct ieee80211_regdomain *rd2)
570 {
571 	int r, size_of_regd;
572 	unsigned int x, y;
573 	unsigned int num_rules = 0, rule_idx = 0;
574 	const struct ieee80211_reg_rule *rule1, *rule2;
575 	struct ieee80211_reg_rule *intersected_rule;
576 	struct ieee80211_regdomain *rd;
577 	/* This is just a dummy holder to help us count */
578 	struct ieee80211_reg_rule irule;
579 
580 	/* Uses the stack temporarily for counter arithmetic */
581 	intersected_rule = &irule;
582 
583 	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
584 
585 	if (!rd1 || !rd2)
586 		return NULL;
587 
588 	/*
589 	 * First we get a count of the rules we'll need, then we actually
590 	 * build them. This is to so we can malloc() and free() a
591 	 * regdomain once. The reason we use reg_rules_intersect() here
592 	 * is it will return -EINVAL if the rule computed makes no sense.
593 	 * All rules that do check out OK are valid.
594 	 */
595 
596 	for (x = 0; x < rd1->n_reg_rules; x++) {
597 		rule1 = &rd1->reg_rules[x];
598 		for (y = 0; y < rd2->n_reg_rules; y++) {
599 			rule2 = &rd2->reg_rules[y];
600 			if (!reg_rules_intersect(rule1, rule2,
601 					intersected_rule))
602 				num_rules++;
603 			memset(intersected_rule, 0,
604 					sizeof(struct ieee80211_reg_rule));
605 		}
606 	}
607 
608 	if (!num_rules)
609 		return NULL;
610 
611 	size_of_regd = sizeof(struct ieee80211_regdomain) +
612 		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
613 
614 	rd = kzalloc(size_of_regd, GFP_KERNEL);
615 	if (!rd)
616 		return NULL;
617 
618 	for (x = 0; x < rd1->n_reg_rules; x++) {
619 		rule1 = &rd1->reg_rules[x];
620 		for (y = 0; y < rd2->n_reg_rules; y++) {
621 			rule2 = &rd2->reg_rules[y];
622 			/*
623 			 * This time around instead of using the stack lets
624 			 * write to the target rule directly saving ourselves
625 			 * a memcpy()
626 			 */
627 			intersected_rule = &rd->reg_rules[rule_idx];
628 			r = reg_rules_intersect(rule1, rule2,
629 				intersected_rule);
630 			/*
631 			 * No need to memset here the intersected rule here as
632 			 * we're not using the stack anymore
633 			 */
634 			if (r)
635 				continue;
636 			rule_idx++;
637 		}
638 	}
639 
640 	if (rule_idx != num_rules) {
641 		kfree(rd);
642 		return NULL;
643 	}
644 
645 	rd->n_reg_rules = num_rules;
646 	rd->alpha2[0] = '9';
647 	rd->alpha2[1] = '8';
648 
649 	return rd;
650 }
651 
652 /*
653  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
654  * want to just have the channel structure use these
655  */
656 static u32 map_regdom_flags(u32 rd_flags)
657 {
658 	u32 channel_flags = 0;
659 	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
660 		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
661 	if (rd_flags & NL80211_RRF_NO_IBSS)
662 		channel_flags |= IEEE80211_CHAN_NO_IBSS;
663 	if (rd_flags & NL80211_RRF_DFS)
664 		channel_flags |= IEEE80211_CHAN_RADAR;
665 	return channel_flags;
666 }
667 
668 static int freq_reg_info_regd(struct wiphy *wiphy,
669 			      u32 center_freq,
670 			      u32 desired_bw_khz,
671 			      const struct ieee80211_reg_rule **reg_rule,
672 			      const struct ieee80211_regdomain *custom_regd)
673 {
674 	int i;
675 	bool band_rule_found = false;
676 	const struct ieee80211_regdomain *regd;
677 	bool bw_fits = false;
678 
679 	if (!desired_bw_khz)
680 		desired_bw_khz = MHZ_TO_KHZ(20);
681 
682 	regd = custom_regd ? custom_regd : cfg80211_regdomain;
683 
684 	/*
685 	 * Follow the driver's regulatory domain, if present, unless a country
686 	 * IE has been processed or a user wants to help complaince further
687 	 */
688 	if (!custom_regd &&
689 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
690 	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
691 	    wiphy->regd)
692 		regd = wiphy->regd;
693 
694 	if (!regd)
695 		return -EINVAL;
696 
697 	for (i = 0; i < regd->n_reg_rules; i++) {
698 		const struct ieee80211_reg_rule *rr;
699 		const struct ieee80211_freq_range *fr = NULL;
700 
701 		rr = &regd->reg_rules[i];
702 		fr = &rr->freq_range;
703 
704 		/*
705 		 * We only need to know if one frequency rule was
706 		 * was in center_freq's band, that's enough, so lets
707 		 * not overwrite it once found
708 		 */
709 		if (!band_rule_found)
710 			band_rule_found = freq_in_rule_band(fr, center_freq);
711 
712 		bw_fits = reg_does_bw_fit(fr,
713 					  center_freq,
714 					  desired_bw_khz);
715 
716 		if (band_rule_found && bw_fits) {
717 			*reg_rule = rr;
718 			return 0;
719 		}
720 	}
721 
722 	if (!band_rule_found)
723 		return -ERANGE;
724 
725 	return -EINVAL;
726 }
727 
728 int freq_reg_info(struct wiphy *wiphy,
729 		  u32 center_freq,
730 		  u32 desired_bw_khz,
731 		  const struct ieee80211_reg_rule **reg_rule)
732 {
733 	assert_cfg80211_lock();
734 	return freq_reg_info_regd(wiphy,
735 				  center_freq,
736 				  desired_bw_khz,
737 				  reg_rule,
738 				  NULL);
739 }
740 EXPORT_SYMBOL(freq_reg_info);
741 
742 #ifdef CONFIG_CFG80211_REG_DEBUG
743 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
744 {
745 	switch (initiator) {
746 	case NL80211_REGDOM_SET_BY_CORE:
747 		return "Set by core";
748 	case NL80211_REGDOM_SET_BY_USER:
749 		return "Set by user";
750 	case NL80211_REGDOM_SET_BY_DRIVER:
751 		return "Set by driver";
752 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
753 		return "Set by country IE";
754 	default:
755 		WARN_ON(1);
756 		return "Set by bug";
757 	}
758 }
759 
760 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
761 				    u32 desired_bw_khz,
762 				    const struct ieee80211_reg_rule *reg_rule)
763 {
764 	const struct ieee80211_power_rule *power_rule;
765 	const struct ieee80211_freq_range *freq_range;
766 	char max_antenna_gain[32];
767 
768 	power_rule = &reg_rule->power_rule;
769 	freq_range = &reg_rule->freq_range;
770 
771 	if (!power_rule->max_antenna_gain)
772 		snprintf(max_antenna_gain, 32, "N/A");
773 	else
774 		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
775 
776 	REG_DBG_PRINT("Updating information on frequency %d MHz "
777 		      "for a %d MHz width channel with regulatory rule:\n",
778 		      chan->center_freq,
779 		      KHZ_TO_MHZ(desired_bw_khz));
780 
781 	REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
782 		      freq_range->start_freq_khz,
783 		      freq_range->end_freq_khz,
784 		      freq_range->max_bandwidth_khz,
785 		      max_antenna_gain,
786 		      power_rule->max_eirp);
787 }
788 #else
789 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
790 				    u32 desired_bw_khz,
791 				    const struct ieee80211_reg_rule *reg_rule)
792 {
793 	return;
794 }
795 #endif
796 
797 /*
798  * Note that right now we assume the desired channel bandwidth
799  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
800  * per channel, the primary and the extension channel). To support
801  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
802  * new ieee80211_channel.target_bw and re run the regulatory check
803  * on the wiphy with the target_bw specified. Then we can simply use
804  * that below for the desired_bw_khz below.
805  */
806 static void handle_channel(struct wiphy *wiphy,
807 			   enum nl80211_reg_initiator initiator,
808 			   enum ieee80211_band band,
809 			   unsigned int chan_idx)
810 {
811 	int r;
812 	u32 flags, bw_flags = 0;
813 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
814 	const struct ieee80211_reg_rule *reg_rule = NULL;
815 	const struct ieee80211_power_rule *power_rule = NULL;
816 	const struct ieee80211_freq_range *freq_range = NULL;
817 	struct ieee80211_supported_band *sband;
818 	struct ieee80211_channel *chan;
819 	struct wiphy *request_wiphy = NULL;
820 
821 	assert_cfg80211_lock();
822 
823 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
824 
825 	sband = wiphy->bands[band];
826 	BUG_ON(chan_idx >= sband->n_channels);
827 	chan = &sband->channels[chan_idx];
828 
829 	flags = chan->orig_flags;
830 
831 	r = freq_reg_info(wiphy,
832 			  MHZ_TO_KHZ(chan->center_freq),
833 			  desired_bw_khz,
834 			  &reg_rule);
835 
836 	if (r) {
837 		/*
838 		 * We will disable all channels that do not match our
839 		 * received regulatory rule unless the hint is coming
840 		 * from a Country IE and the Country IE had no information
841 		 * about a band. The IEEE 802.11 spec allows for an AP
842 		 * to send only a subset of the regulatory rules allowed,
843 		 * so an AP in the US that only supports 2.4 GHz may only send
844 		 * a country IE with information for the 2.4 GHz band
845 		 * while 5 GHz is still supported.
846 		 */
847 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
848 		    r == -ERANGE)
849 			return;
850 
851 		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
852 		chan->flags = IEEE80211_CHAN_DISABLED;
853 		return;
854 	}
855 
856 	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
857 
858 	power_rule = &reg_rule->power_rule;
859 	freq_range = &reg_rule->freq_range;
860 
861 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
862 		bw_flags = IEEE80211_CHAN_NO_HT40;
863 
864 	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
865 	    request_wiphy && request_wiphy == wiphy &&
866 	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
867 		/*
868 		 * This guarantees the driver's requested regulatory domain
869 		 * will always be used as a base for further regulatory
870 		 * settings
871 		 */
872 		chan->flags = chan->orig_flags =
873 			map_regdom_flags(reg_rule->flags) | bw_flags;
874 		chan->max_antenna_gain = chan->orig_mag =
875 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
876 		chan->max_power = chan->orig_mpwr =
877 			(int) MBM_TO_DBM(power_rule->max_eirp);
878 		return;
879 	}
880 
881 	chan->beacon_found = false;
882 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
883 	chan->max_antenna_gain = min(chan->orig_mag,
884 		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
885 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
886 	chan->max_power = min(chan->max_power, chan->max_reg_power);
887 }
888 
889 static void handle_band(struct wiphy *wiphy,
890 			enum ieee80211_band band,
891 			enum nl80211_reg_initiator initiator)
892 {
893 	unsigned int i;
894 	struct ieee80211_supported_band *sband;
895 
896 	BUG_ON(!wiphy->bands[band]);
897 	sband = wiphy->bands[band];
898 
899 	for (i = 0; i < sband->n_channels; i++)
900 		handle_channel(wiphy, initiator, band, i);
901 }
902 
903 static bool ignore_reg_update(struct wiphy *wiphy,
904 			      enum nl80211_reg_initiator initiator)
905 {
906 	if (!last_request) {
907 		REG_DBG_PRINT("Ignoring regulatory request %s since "
908 			      "last_request is not set\n",
909 			      reg_initiator_name(initiator));
910 		return true;
911 	}
912 
913 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
914 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
915 		REG_DBG_PRINT("Ignoring regulatory request %s "
916 			      "since the driver uses its own custom "
917 			      "regulatory domain\n",
918 			      reg_initiator_name(initiator));
919 		return true;
920 	}
921 
922 	/*
923 	 * wiphy->regd will be set once the device has its own
924 	 * desired regulatory domain set
925 	 */
926 	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
927 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
928 	    !is_world_regdom(last_request->alpha2)) {
929 		REG_DBG_PRINT("Ignoring regulatory request %s "
930 			      "since the driver requires its own regulatory "
931 			      "domain to be set first\n",
932 			      reg_initiator_name(initiator));
933 		return true;
934 	}
935 
936 	return false;
937 }
938 
939 static void handle_reg_beacon(struct wiphy *wiphy,
940 			      unsigned int chan_idx,
941 			      struct reg_beacon *reg_beacon)
942 {
943 	struct ieee80211_supported_band *sband;
944 	struct ieee80211_channel *chan;
945 	bool channel_changed = false;
946 	struct ieee80211_channel chan_before;
947 
948 	assert_cfg80211_lock();
949 
950 	sband = wiphy->bands[reg_beacon->chan.band];
951 	chan = &sband->channels[chan_idx];
952 
953 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
954 		return;
955 
956 	if (chan->beacon_found)
957 		return;
958 
959 	chan->beacon_found = true;
960 
961 	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
962 		return;
963 
964 	chan_before.center_freq = chan->center_freq;
965 	chan_before.flags = chan->flags;
966 
967 	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
968 		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
969 		channel_changed = true;
970 	}
971 
972 	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
973 		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
974 		channel_changed = true;
975 	}
976 
977 	if (channel_changed)
978 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
979 }
980 
981 /*
982  * Called when a scan on a wiphy finds a beacon on
983  * new channel
984  */
985 static void wiphy_update_new_beacon(struct wiphy *wiphy,
986 				    struct reg_beacon *reg_beacon)
987 {
988 	unsigned int i;
989 	struct ieee80211_supported_band *sband;
990 
991 	assert_cfg80211_lock();
992 
993 	if (!wiphy->bands[reg_beacon->chan.band])
994 		return;
995 
996 	sband = wiphy->bands[reg_beacon->chan.band];
997 
998 	for (i = 0; i < sband->n_channels; i++)
999 		handle_reg_beacon(wiphy, i, reg_beacon);
1000 }
1001 
1002 /*
1003  * Called upon reg changes or a new wiphy is added
1004  */
1005 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1006 {
1007 	unsigned int i;
1008 	struct ieee80211_supported_band *sband;
1009 	struct reg_beacon *reg_beacon;
1010 
1011 	assert_cfg80211_lock();
1012 
1013 	if (list_empty(&reg_beacon_list))
1014 		return;
1015 
1016 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1017 		if (!wiphy->bands[reg_beacon->chan.band])
1018 			continue;
1019 		sband = wiphy->bands[reg_beacon->chan.band];
1020 		for (i = 0; i < sband->n_channels; i++)
1021 			handle_reg_beacon(wiphy, i, reg_beacon);
1022 	}
1023 }
1024 
1025 static bool reg_is_world_roaming(struct wiphy *wiphy)
1026 {
1027 	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1028 	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1029 		return true;
1030 	if (last_request &&
1031 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1032 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1033 		return true;
1034 	return false;
1035 }
1036 
1037 /* Reap the advantages of previously found beacons */
1038 static void reg_process_beacons(struct wiphy *wiphy)
1039 {
1040 	/*
1041 	 * Means we are just firing up cfg80211, so no beacons would
1042 	 * have been processed yet.
1043 	 */
1044 	if (!last_request)
1045 		return;
1046 	if (!reg_is_world_roaming(wiphy))
1047 		return;
1048 	wiphy_update_beacon_reg(wiphy);
1049 }
1050 
1051 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1052 {
1053 	if (!chan)
1054 		return true;
1055 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1056 		return true;
1057 	/* This would happen when regulatory rules disallow HT40 completely */
1058 	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1059 		return true;
1060 	return false;
1061 }
1062 
1063 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1064 					 enum ieee80211_band band,
1065 					 unsigned int chan_idx)
1066 {
1067 	struct ieee80211_supported_band *sband;
1068 	struct ieee80211_channel *channel;
1069 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1070 	unsigned int i;
1071 
1072 	assert_cfg80211_lock();
1073 
1074 	sband = wiphy->bands[band];
1075 	BUG_ON(chan_idx >= sband->n_channels);
1076 	channel = &sband->channels[chan_idx];
1077 
1078 	if (is_ht40_not_allowed(channel)) {
1079 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1080 		return;
1081 	}
1082 
1083 	/*
1084 	 * We need to ensure the extension channels exist to
1085 	 * be able to use HT40- or HT40+, this finds them (or not)
1086 	 */
1087 	for (i = 0; i < sband->n_channels; i++) {
1088 		struct ieee80211_channel *c = &sband->channels[i];
1089 		if (c->center_freq == (channel->center_freq - 20))
1090 			channel_before = c;
1091 		if (c->center_freq == (channel->center_freq + 20))
1092 			channel_after = c;
1093 	}
1094 
1095 	/*
1096 	 * Please note that this assumes target bandwidth is 20 MHz,
1097 	 * if that ever changes we also need to change the below logic
1098 	 * to include that as well.
1099 	 */
1100 	if (is_ht40_not_allowed(channel_before))
1101 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1102 	else
1103 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1104 
1105 	if (is_ht40_not_allowed(channel_after))
1106 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1107 	else
1108 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1109 }
1110 
1111 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1112 				      enum ieee80211_band band)
1113 {
1114 	unsigned int i;
1115 	struct ieee80211_supported_band *sband;
1116 
1117 	BUG_ON(!wiphy->bands[band]);
1118 	sband = wiphy->bands[band];
1119 
1120 	for (i = 0; i < sband->n_channels; i++)
1121 		reg_process_ht_flags_channel(wiphy, band, i);
1122 }
1123 
1124 static void reg_process_ht_flags(struct wiphy *wiphy)
1125 {
1126 	enum ieee80211_band band;
1127 
1128 	if (!wiphy)
1129 		return;
1130 
1131 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1132 		if (wiphy->bands[band])
1133 			reg_process_ht_flags_band(wiphy, band);
1134 	}
1135 
1136 }
1137 
1138 static void wiphy_update_regulatory(struct wiphy *wiphy,
1139 				    enum nl80211_reg_initiator initiator)
1140 {
1141 	enum ieee80211_band band;
1142 
1143 	assert_reg_lock();
1144 
1145 	if (ignore_reg_update(wiphy, initiator))
1146 		return;
1147 
1148 	last_request->dfs_region = cfg80211_regdomain->dfs_region;
1149 
1150 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1151 		if (wiphy->bands[band])
1152 			handle_band(wiphy, band, initiator);
1153 	}
1154 
1155 	reg_process_beacons(wiphy);
1156 	reg_process_ht_flags(wiphy);
1157 	if (wiphy->reg_notifier)
1158 		wiphy->reg_notifier(wiphy, last_request);
1159 }
1160 
1161 void regulatory_update(struct wiphy *wiphy,
1162 		       enum nl80211_reg_initiator setby)
1163 {
1164 	mutex_lock(&reg_mutex);
1165 	wiphy_update_regulatory(wiphy, setby);
1166 	mutex_unlock(&reg_mutex);
1167 }
1168 
1169 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1170 {
1171 	struct cfg80211_registered_device *rdev;
1172 	struct wiphy *wiphy;
1173 
1174 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1175 		wiphy = &rdev->wiphy;
1176 		wiphy_update_regulatory(wiphy, initiator);
1177 		/*
1178 		 * Regulatory updates set by CORE are ignored for custom
1179 		 * regulatory cards. Let us notify the changes to the driver,
1180 		 * as some drivers used this to restore its orig_* reg domain.
1181 		 */
1182 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1183 		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1184 		    wiphy->reg_notifier)
1185 			wiphy->reg_notifier(wiphy, last_request);
1186 	}
1187 }
1188 
1189 static void handle_channel_custom(struct wiphy *wiphy,
1190 				  enum ieee80211_band band,
1191 				  unsigned int chan_idx,
1192 				  const struct ieee80211_regdomain *regd)
1193 {
1194 	int r;
1195 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
1196 	u32 bw_flags = 0;
1197 	const struct ieee80211_reg_rule *reg_rule = NULL;
1198 	const struct ieee80211_power_rule *power_rule = NULL;
1199 	const struct ieee80211_freq_range *freq_range = NULL;
1200 	struct ieee80211_supported_band *sband;
1201 	struct ieee80211_channel *chan;
1202 
1203 	assert_reg_lock();
1204 
1205 	sband = wiphy->bands[band];
1206 	BUG_ON(chan_idx >= sband->n_channels);
1207 	chan = &sband->channels[chan_idx];
1208 
1209 	r = freq_reg_info_regd(wiphy,
1210 			       MHZ_TO_KHZ(chan->center_freq),
1211 			       desired_bw_khz,
1212 			       &reg_rule,
1213 			       regd);
1214 
1215 	if (r) {
1216 		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1217 			      "regd has no rule that fits a %d MHz "
1218 			      "wide channel\n",
1219 			      chan->center_freq,
1220 			      KHZ_TO_MHZ(desired_bw_khz));
1221 		chan->flags = IEEE80211_CHAN_DISABLED;
1222 		return;
1223 	}
1224 
1225 	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1226 
1227 	power_rule = &reg_rule->power_rule;
1228 	freq_range = &reg_rule->freq_range;
1229 
1230 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1231 		bw_flags = IEEE80211_CHAN_NO_HT40;
1232 
1233 	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1234 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1235 	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1236 }
1237 
1238 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1239 			       const struct ieee80211_regdomain *regd)
1240 {
1241 	unsigned int i;
1242 	struct ieee80211_supported_band *sband;
1243 
1244 	BUG_ON(!wiphy->bands[band]);
1245 	sband = wiphy->bands[band];
1246 
1247 	for (i = 0; i < sband->n_channels; i++)
1248 		handle_channel_custom(wiphy, band, i, regd);
1249 }
1250 
1251 /* Used by drivers prior to wiphy registration */
1252 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1253 				   const struct ieee80211_regdomain *regd)
1254 {
1255 	enum ieee80211_band band;
1256 	unsigned int bands_set = 0;
1257 
1258 	mutex_lock(&reg_mutex);
1259 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1260 		if (!wiphy->bands[band])
1261 			continue;
1262 		handle_band_custom(wiphy, band, regd);
1263 		bands_set++;
1264 	}
1265 	mutex_unlock(&reg_mutex);
1266 
1267 	/*
1268 	 * no point in calling this if it won't have any effect
1269 	 * on your device's supportd bands.
1270 	 */
1271 	WARN_ON(!bands_set);
1272 }
1273 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1274 
1275 /*
1276  * Return value which can be used by ignore_request() to indicate
1277  * it has been determined we should intersect two regulatory domains
1278  */
1279 #define REG_INTERSECT	1
1280 
1281 /* This has the logic which determines when a new request
1282  * should be ignored. */
1283 static int ignore_request(struct wiphy *wiphy,
1284 			  struct regulatory_request *pending_request)
1285 {
1286 	struct wiphy *last_wiphy = NULL;
1287 
1288 	assert_cfg80211_lock();
1289 
1290 	/* All initial requests are respected */
1291 	if (!last_request)
1292 		return 0;
1293 
1294 	switch (pending_request->initiator) {
1295 	case NL80211_REGDOM_SET_BY_CORE:
1296 		return 0;
1297 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1298 
1299 		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1300 
1301 		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1302 			return -EINVAL;
1303 		if (last_request->initiator ==
1304 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1305 			if (last_wiphy != wiphy) {
1306 				/*
1307 				 * Two cards with two APs claiming different
1308 				 * Country IE alpha2s. We could
1309 				 * intersect them, but that seems unlikely
1310 				 * to be correct. Reject second one for now.
1311 				 */
1312 				if (regdom_changes(pending_request->alpha2))
1313 					return -EOPNOTSUPP;
1314 				return -EALREADY;
1315 			}
1316 			/*
1317 			 * Two consecutive Country IE hints on the same wiphy.
1318 			 * This should be picked up early by the driver/stack
1319 			 */
1320 			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1321 				return 0;
1322 			return -EALREADY;
1323 		}
1324 		return 0;
1325 	case NL80211_REGDOM_SET_BY_DRIVER:
1326 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1327 			if (regdom_changes(pending_request->alpha2))
1328 				return 0;
1329 			return -EALREADY;
1330 		}
1331 
1332 		/*
1333 		 * This would happen if you unplug and plug your card
1334 		 * back in or if you add a new device for which the previously
1335 		 * loaded card also agrees on the regulatory domain.
1336 		 */
1337 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1338 		    !regdom_changes(pending_request->alpha2))
1339 			return -EALREADY;
1340 
1341 		return REG_INTERSECT;
1342 	case NL80211_REGDOM_SET_BY_USER:
1343 		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1344 			return REG_INTERSECT;
1345 		/*
1346 		 * If the user knows better the user should set the regdom
1347 		 * to their country before the IE is picked up
1348 		 */
1349 		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1350 			  last_request->intersect)
1351 			return -EOPNOTSUPP;
1352 		/*
1353 		 * Process user requests only after previous user/driver/core
1354 		 * requests have been processed
1355 		 */
1356 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1357 		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1358 		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1359 			if (regdom_changes(last_request->alpha2))
1360 				return -EAGAIN;
1361 		}
1362 
1363 		if (!regdom_changes(pending_request->alpha2))
1364 			return -EALREADY;
1365 
1366 		return 0;
1367 	}
1368 
1369 	return -EINVAL;
1370 }
1371 
1372 static void reg_set_request_processed(void)
1373 {
1374 	bool need_more_processing = false;
1375 
1376 	last_request->processed = true;
1377 
1378 	spin_lock(&reg_requests_lock);
1379 	if (!list_empty(&reg_requests_list))
1380 		need_more_processing = true;
1381 	spin_unlock(&reg_requests_lock);
1382 
1383 	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1384 		cancel_delayed_work_sync(&reg_timeout);
1385 
1386 	if (need_more_processing)
1387 		schedule_work(&reg_work);
1388 }
1389 
1390 /**
1391  * __regulatory_hint - hint to the wireless core a regulatory domain
1392  * @wiphy: if the hint comes from country information from an AP, this
1393  *	is required to be set to the wiphy that received the information
1394  * @pending_request: the regulatory request currently being processed
1395  *
1396  * The Wireless subsystem can use this function to hint to the wireless core
1397  * what it believes should be the current regulatory domain.
1398  *
1399  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1400  * already been set or other standard error codes.
1401  *
1402  * Caller must hold &cfg80211_mutex and &reg_mutex
1403  */
1404 static int __regulatory_hint(struct wiphy *wiphy,
1405 			     struct regulatory_request *pending_request)
1406 {
1407 	bool intersect = false;
1408 	int r = 0;
1409 
1410 	assert_cfg80211_lock();
1411 
1412 	r = ignore_request(wiphy, pending_request);
1413 
1414 	if (r == REG_INTERSECT) {
1415 		if (pending_request->initiator ==
1416 		    NL80211_REGDOM_SET_BY_DRIVER) {
1417 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1418 			if (r) {
1419 				kfree(pending_request);
1420 				return r;
1421 			}
1422 		}
1423 		intersect = true;
1424 	} else if (r) {
1425 		/*
1426 		 * If the regulatory domain being requested by the
1427 		 * driver has already been set just copy it to the
1428 		 * wiphy
1429 		 */
1430 		if (r == -EALREADY &&
1431 		    pending_request->initiator ==
1432 		    NL80211_REGDOM_SET_BY_DRIVER) {
1433 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1434 			if (r) {
1435 				kfree(pending_request);
1436 				return r;
1437 			}
1438 			r = -EALREADY;
1439 			goto new_request;
1440 		}
1441 		kfree(pending_request);
1442 		return r;
1443 	}
1444 
1445 new_request:
1446 	if (last_request != &core_request_world)
1447 		kfree(last_request);
1448 
1449 	last_request = pending_request;
1450 	last_request->intersect = intersect;
1451 
1452 	pending_request = NULL;
1453 
1454 	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1455 		user_alpha2[0] = last_request->alpha2[0];
1456 		user_alpha2[1] = last_request->alpha2[1];
1457 	}
1458 
1459 	/* When r == REG_INTERSECT we do need to call CRDA */
1460 	if (r < 0) {
1461 		/*
1462 		 * Since CRDA will not be called in this case as we already
1463 		 * have applied the requested regulatory domain before we just
1464 		 * inform userspace we have processed the request
1465 		 */
1466 		if (r == -EALREADY) {
1467 			nl80211_send_reg_change_event(last_request);
1468 			reg_set_request_processed();
1469 		}
1470 		return r;
1471 	}
1472 
1473 	return call_crda(last_request->alpha2);
1474 }
1475 
1476 /* This processes *all* regulatory hints */
1477 static void reg_process_hint(struct regulatory_request *reg_request,
1478 			     enum nl80211_reg_initiator reg_initiator)
1479 {
1480 	int r = 0;
1481 	struct wiphy *wiphy = NULL;
1482 
1483 	BUG_ON(!reg_request->alpha2);
1484 
1485 	if (wiphy_idx_valid(reg_request->wiphy_idx))
1486 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1487 
1488 	if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1489 	    !wiphy) {
1490 		kfree(reg_request);
1491 		return;
1492 	}
1493 
1494 	r = __regulatory_hint(wiphy, reg_request);
1495 	/* This is required so that the orig_* parameters are saved */
1496 	if (r == -EALREADY && wiphy &&
1497 	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1498 		wiphy_update_regulatory(wiphy, reg_initiator);
1499 		return;
1500 	}
1501 
1502 	/*
1503 	 * We only time out user hints, given that they should be the only
1504 	 * source of bogus requests.
1505 	 */
1506 	if (r != -EALREADY &&
1507 	    reg_initiator == NL80211_REGDOM_SET_BY_USER)
1508 		schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1509 }
1510 
1511 /*
1512  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1513  * Regulatory hints come on a first come first serve basis and we
1514  * must process each one atomically.
1515  */
1516 static void reg_process_pending_hints(void)
1517 {
1518 	struct regulatory_request *reg_request;
1519 
1520 	mutex_lock(&cfg80211_mutex);
1521 	mutex_lock(&reg_mutex);
1522 
1523 	/* When last_request->processed becomes true this will be rescheduled */
1524 	if (last_request && !last_request->processed) {
1525 		REG_DBG_PRINT("Pending regulatory request, waiting "
1526 			      "for it to be processed...\n");
1527 		goto out;
1528 	}
1529 
1530 	spin_lock(&reg_requests_lock);
1531 
1532 	if (list_empty(&reg_requests_list)) {
1533 		spin_unlock(&reg_requests_lock);
1534 		goto out;
1535 	}
1536 
1537 	reg_request = list_first_entry(&reg_requests_list,
1538 				       struct regulatory_request,
1539 				       list);
1540 	list_del_init(&reg_request->list);
1541 
1542 	spin_unlock(&reg_requests_lock);
1543 
1544 	reg_process_hint(reg_request, reg_request->initiator);
1545 
1546 out:
1547 	mutex_unlock(&reg_mutex);
1548 	mutex_unlock(&cfg80211_mutex);
1549 }
1550 
1551 /* Processes beacon hints -- this has nothing to do with country IEs */
1552 static void reg_process_pending_beacon_hints(void)
1553 {
1554 	struct cfg80211_registered_device *rdev;
1555 	struct reg_beacon *pending_beacon, *tmp;
1556 
1557 	/*
1558 	 * No need to hold the reg_mutex here as we just touch wiphys
1559 	 * and do not read or access regulatory variables.
1560 	 */
1561 	mutex_lock(&cfg80211_mutex);
1562 
1563 	/* This goes through the _pending_ beacon list */
1564 	spin_lock_bh(&reg_pending_beacons_lock);
1565 
1566 	if (list_empty(&reg_pending_beacons)) {
1567 		spin_unlock_bh(&reg_pending_beacons_lock);
1568 		goto out;
1569 	}
1570 
1571 	list_for_each_entry_safe(pending_beacon, tmp,
1572 				 &reg_pending_beacons, list) {
1573 
1574 		list_del_init(&pending_beacon->list);
1575 
1576 		/* Applies the beacon hint to current wiphys */
1577 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1578 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1579 
1580 		/* Remembers the beacon hint for new wiphys or reg changes */
1581 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
1582 	}
1583 
1584 	spin_unlock_bh(&reg_pending_beacons_lock);
1585 out:
1586 	mutex_unlock(&cfg80211_mutex);
1587 }
1588 
1589 static void reg_todo(struct work_struct *work)
1590 {
1591 	reg_process_pending_hints();
1592 	reg_process_pending_beacon_hints();
1593 }
1594 
1595 static void queue_regulatory_request(struct regulatory_request *request)
1596 {
1597 	if (isalpha(request->alpha2[0]))
1598 		request->alpha2[0] = toupper(request->alpha2[0]);
1599 	if (isalpha(request->alpha2[1]))
1600 		request->alpha2[1] = toupper(request->alpha2[1]);
1601 
1602 	spin_lock(&reg_requests_lock);
1603 	list_add_tail(&request->list, &reg_requests_list);
1604 	spin_unlock(&reg_requests_lock);
1605 
1606 	schedule_work(&reg_work);
1607 }
1608 
1609 /*
1610  * Core regulatory hint -- happens during cfg80211_init()
1611  * and when we restore regulatory settings.
1612  */
1613 static int regulatory_hint_core(const char *alpha2)
1614 {
1615 	struct regulatory_request *request;
1616 
1617 	request = kzalloc(sizeof(struct regulatory_request),
1618 			  GFP_KERNEL);
1619 	if (!request)
1620 		return -ENOMEM;
1621 
1622 	request->alpha2[0] = alpha2[0];
1623 	request->alpha2[1] = alpha2[1];
1624 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1625 
1626 	queue_regulatory_request(request);
1627 
1628 	return 0;
1629 }
1630 
1631 /* User hints */
1632 int regulatory_hint_user(const char *alpha2)
1633 {
1634 	struct regulatory_request *request;
1635 
1636 	BUG_ON(!alpha2);
1637 
1638 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1639 	if (!request)
1640 		return -ENOMEM;
1641 
1642 	request->wiphy_idx = WIPHY_IDX_STALE;
1643 	request->alpha2[0] = alpha2[0];
1644 	request->alpha2[1] = alpha2[1];
1645 	request->initiator = NL80211_REGDOM_SET_BY_USER;
1646 
1647 	queue_regulatory_request(request);
1648 
1649 	return 0;
1650 }
1651 
1652 /* Driver hints */
1653 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1654 {
1655 	struct regulatory_request *request;
1656 
1657 	BUG_ON(!alpha2);
1658 	BUG_ON(!wiphy);
1659 
1660 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1661 	if (!request)
1662 		return -ENOMEM;
1663 
1664 	request->wiphy_idx = get_wiphy_idx(wiphy);
1665 
1666 	/* Must have registered wiphy first */
1667 	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1668 
1669 	request->alpha2[0] = alpha2[0];
1670 	request->alpha2[1] = alpha2[1];
1671 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1672 
1673 	queue_regulatory_request(request);
1674 
1675 	return 0;
1676 }
1677 EXPORT_SYMBOL(regulatory_hint);
1678 
1679 /*
1680  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1681  * therefore cannot iterate over the rdev list here.
1682  */
1683 void regulatory_hint_11d(struct wiphy *wiphy,
1684 			 enum ieee80211_band band,
1685 			 u8 *country_ie,
1686 			 u8 country_ie_len)
1687 {
1688 	char alpha2[2];
1689 	enum environment_cap env = ENVIRON_ANY;
1690 	struct regulatory_request *request;
1691 
1692 	mutex_lock(&reg_mutex);
1693 
1694 	if (unlikely(!last_request))
1695 		goto out;
1696 
1697 	/* IE len must be evenly divisible by 2 */
1698 	if (country_ie_len & 0x01)
1699 		goto out;
1700 
1701 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1702 		goto out;
1703 
1704 	alpha2[0] = country_ie[0];
1705 	alpha2[1] = country_ie[1];
1706 
1707 	if (country_ie[2] == 'I')
1708 		env = ENVIRON_INDOOR;
1709 	else if (country_ie[2] == 'O')
1710 		env = ENVIRON_OUTDOOR;
1711 
1712 	/*
1713 	 * We will run this only upon a successful connection on cfg80211.
1714 	 * We leave conflict resolution to the workqueue, where can hold
1715 	 * cfg80211_mutex.
1716 	 */
1717 	if (likely(last_request->initiator ==
1718 	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1719 	    wiphy_idx_valid(last_request->wiphy_idx)))
1720 		goto out;
1721 
1722 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1723 	if (!request)
1724 		goto out;
1725 
1726 	request->wiphy_idx = get_wiphy_idx(wiphy);
1727 	request->alpha2[0] = alpha2[0];
1728 	request->alpha2[1] = alpha2[1];
1729 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1730 	request->country_ie_env = env;
1731 
1732 	mutex_unlock(&reg_mutex);
1733 
1734 	queue_regulatory_request(request);
1735 
1736 	return;
1737 
1738 out:
1739 	mutex_unlock(&reg_mutex);
1740 }
1741 
1742 static void restore_alpha2(char *alpha2, bool reset_user)
1743 {
1744 	/* indicates there is no alpha2 to consider for restoration */
1745 	alpha2[0] = '9';
1746 	alpha2[1] = '7';
1747 
1748 	/* The user setting has precedence over the module parameter */
1749 	if (is_user_regdom_saved()) {
1750 		/* Unless we're asked to ignore it and reset it */
1751 		if (reset_user) {
1752 			REG_DBG_PRINT("Restoring regulatory settings "
1753 			       "including user preference\n");
1754 			user_alpha2[0] = '9';
1755 			user_alpha2[1] = '7';
1756 
1757 			/*
1758 			 * If we're ignoring user settings, we still need to
1759 			 * check the module parameter to ensure we put things
1760 			 * back as they were for a full restore.
1761 			 */
1762 			if (!is_world_regdom(ieee80211_regdom)) {
1763 				REG_DBG_PRINT("Keeping preference on "
1764 				       "module parameter ieee80211_regdom: %c%c\n",
1765 				       ieee80211_regdom[0],
1766 				       ieee80211_regdom[1]);
1767 				alpha2[0] = ieee80211_regdom[0];
1768 				alpha2[1] = ieee80211_regdom[1];
1769 			}
1770 		} else {
1771 			REG_DBG_PRINT("Restoring regulatory settings "
1772 			       "while preserving user preference for: %c%c\n",
1773 			       user_alpha2[0],
1774 			       user_alpha2[1]);
1775 			alpha2[0] = user_alpha2[0];
1776 			alpha2[1] = user_alpha2[1];
1777 		}
1778 	} else if (!is_world_regdom(ieee80211_regdom)) {
1779 		REG_DBG_PRINT("Keeping preference on "
1780 		       "module parameter ieee80211_regdom: %c%c\n",
1781 		       ieee80211_regdom[0],
1782 		       ieee80211_regdom[1]);
1783 		alpha2[0] = ieee80211_regdom[0];
1784 		alpha2[1] = ieee80211_regdom[1];
1785 	} else
1786 		REG_DBG_PRINT("Restoring regulatory settings\n");
1787 }
1788 
1789 static void restore_custom_reg_settings(struct wiphy *wiphy)
1790 {
1791 	struct ieee80211_supported_band *sband;
1792 	enum ieee80211_band band;
1793 	struct ieee80211_channel *chan;
1794 	int i;
1795 
1796 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1797 		sband = wiphy->bands[band];
1798 		if (!sband)
1799 			continue;
1800 		for (i = 0; i < sband->n_channels; i++) {
1801 			chan = &sband->channels[i];
1802 			chan->flags = chan->orig_flags;
1803 			chan->max_antenna_gain = chan->orig_mag;
1804 			chan->max_power = chan->orig_mpwr;
1805 		}
1806 	}
1807 }
1808 
1809 /*
1810  * Restoring regulatory settings involves ingoring any
1811  * possibly stale country IE information and user regulatory
1812  * settings if so desired, this includes any beacon hints
1813  * learned as we could have traveled outside to another country
1814  * after disconnection. To restore regulatory settings we do
1815  * exactly what we did at bootup:
1816  *
1817  *   - send a core regulatory hint
1818  *   - send a user regulatory hint if applicable
1819  *
1820  * Device drivers that send a regulatory hint for a specific country
1821  * keep their own regulatory domain on wiphy->regd so that does does
1822  * not need to be remembered.
1823  */
1824 static void restore_regulatory_settings(bool reset_user)
1825 {
1826 	char alpha2[2];
1827 	char world_alpha2[2];
1828 	struct reg_beacon *reg_beacon, *btmp;
1829 	struct regulatory_request *reg_request, *tmp;
1830 	LIST_HEAD(tmp_reg_req_list);
1831 	struct cfg80211_registered_device *rdev;
1832 
1833 	mutex_lock(&cfg80211_mutex);
1834 	mutex_lock(&reg_mutex);
1835 
1836 	reset_regdomains(true);
1837 	restore_alpha2(alpha2, reset_user);
1838 
1839 	/*
1840 	 * If there's any pending requests we simply
1841 	 * stash them to a temporary pending queue and
1842 	 * add then after we've restored regulatory
1843 	 * settings.
1844 	 */
1845 	spin_lock(&reg_requests_lock);
1846 	if (!list_empty(&reg_requests_list)) {
1847 		list_for_each_entry_safe(reg_request, tmp,
1848 					 &reg_requests_list, list) {
1849 			if (reg_request->initiator !=
1850 			    NL80211_REGDOM_SET_BY_USER)
1851 				continue;
1852 			list_del(&reg_request->list);
1853 			list_add_tail(&reg_request->list, &tmp_reg_req_list);
1854 		}
1855 	}
1856 	spin_unlock(&reg_requests_lock);
1857 
1858 	/* Clear beacon hints */
1859 	spin_lock_bh(&reg_pending_beacons_lock);
1860 	if (!list_empty(&reg_pending_beacons)) {
1861 		list_for_each_entry_safe(reg_beacon, btmp,
1862 					 &reg_pending_beacons, list) {
1863 			list_del(&reg_beacon->list);
1864 			kfree(reg_beacon);
1865 		}
1866 	}
1867 	spin_unlock_bh(&reg_pending_beacons_lock);
1868 
1869 	if (!list_empty(&reg_beacon_list)) {
1870 		list_for_each_entry_safe(reg_beacon, btmp,
1871 					 &reg_beacon_list, list) {
1872 			list_del(&reg_beacon->list);
1873 			kfree(reg_beacon);
1874 		}
1875 	}
1876 
1877 	/* First restore to the basic regulatory settings */
1878 	cfg80211_regdomain = cfg80211_world_regdom;
1879 	world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1880 	world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1881 
1882 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1883 		if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1884 			restore_custom_reg_settings(&rdev->wiphy);
1885 	}
1886 
1887 	mutex_unlock(&reg_mutex);
1888 	mutex_unlock(&cfg80211_mutex);
1889 
1890 	regulatory_hint_core(world_alpha2);
1891 
1892 	/*
1893 	 * This restores the ieee80211_regdom module parameter
1894 	 * preference or the last user requested regulatory
1895 	 * settings, user regulatory settings takes precedence.
1896 	 */
1897 	if (is_an_alpha2(alpha2))
1898 		regulatory_hint_user(user_alpha2);
1899 
1900 	if (list_empty(&tmp_reg_req_list))
1901 		return;
1902 
1903 	mutex_lock(&cfg80211_mutex);
1904 	mutex_lock(&reg_mutex);
1905 
1906 	spin_lock(&reg_requests_lock);
1907 	list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1908 		REG_DBG_PRINT("Adding request for country %c%c back "
1909 			      "into the queue\n",
1910 			      reg_request->alpha2[0],
1911 			      reg_request->alpha2[1]);
1912 		list_del(&reg_request->list);
1913 		list_add_tail(&reg_request->list, &reg_requests_list);
1914 	}
1915 	spin_unlock(&reg_requests_lock);
1916 
1917 	mutex_unlock(&reg_mutex);
1918 	mutex_unlock(&cfg80211_mutex);
1919 
1920 	REG_DBG_PRINT("Kicking the queue\n");
1921 
1922 	schedule_work(&reg_work);
1923 }
1924 
1925 void regulatory_hint_disconnect(void)
1926 {
1927 	REG_DBG_PRINT("All devices are disconnected, going to "
1928 		      "restore regulatory settings\n");
1929 	restore_regulatory_settings(false);
1930 }
1931 
1932 static bool freq_is_chan_12_13_14(u16 freq)
1933 {
1934 	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1935 	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1936 	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1937 		return true;
1938 	return false;
1939 }
1940 
1941 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1942 				 struct ieee80211_channel *beacon_chan,
1943 				 gfp_t gfp)
1944 {
1945 	struct reg_beacon *reg_beacon;
1946 
1947 	if (likely((beacon_chan->beacon_found ||
1948 	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1949 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1950 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1951 		return 0;
1952 
1953 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1954 	if (!reg_beacon)
1955 		return -ENOMEM;
1956 
1957 	REG_DBG_PRINT("Found new beacon on "
1958 		      "frequency: %d MHz (Ch %d) on %s\n",
1959 		      beacon_chan->center_freq,
1960 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
1961 		      wiphy_name(wiphy));
1962 
1963 	memcpy(&reg_beacon->chan, beacon_chan,
1964 		sizeof(struct ieee80211_channel));
1965 
1966 
1967 	/*
1968 	 * Since we can be called from BH or and non-BH context
1969 	 * we must use spin_lock_bh()
1970 	 */
1971 	spin_lock_bh(&reg_pending_beacons_lock);
1972 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1973 	spin_unlock_bh(&reg_pending_beacons_lock);
1974 
1975 	schedule_work(&reg_work);
1976 
1977 	return 0;
1978 }
1979 
1980 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1981 {
1982 	unsigned int i;
1983 	const struct ieee80211_reg_rule *reg_rule = NULL;
1984 	const struct ieee80211_freq_range *freq_range = NULL;
1985 	const struct ieee80211_power_rule *power_rule = NULL;
1986 
1987 	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1988 
1989 	for (i = 0; i < rd->n_reg_rules; i++) {
1990 		reg_rule = &rd->reg_rules[i];
1991 		freq_range = &reg_rule->freq_range;
1992 		power_rule = &reg_rule->power_rule;
1993 
1994 		/*
1995 		 * There may not be documentation for max antenna gain
1996 		 * in certain regions
1997 		 */
1998 		if (power_rule->max_antenna_gain)
1999 			pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2000 				freq_range->start_freq_khz,
2001 				freq_range->end_freq_khz,
2002 				freq_range->max_bandwidth_khz,
2003 				power_rule->max_antenna_gain,
2004 				power_rule->max_eirp);
2005 		else
2006 			pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2007 				freq_range->start_freq_khz,
2008 				freq_range->end_freq_khz,
2009 				freq_range->max_bandwidth_khz,
2010 				power_rule->max_eirp);
2011 	}
2012 }
2013 
2014 bool reg_supported_dfs_region(u8 dfs_region)
2015 {
2016 	switch (dfs_region) {
2017 	case NL80211_DFS_UNSET:
2018 	case NL80211_DFS_FCC:
2019 	case NL80211_DFS_ETSI:
2020 	case NL80211_DFS_JP:
2021 		return true;
2022 	default:
2023 		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2024 			      dfs_region);
2025 		return false;
2026 	}
2027 }
2028 
2029 static void print_dfs_region(u8 dfs_region)
2030 {
2031 	if (!dfs_region)
2032 		return;
2033 
2034 	switch (dfs_region) {
2035 	case NL80211_DFS_FCC:
2036 		pr_info(" DFS Master region FCC");
2037 		break;
2038 	case NL80211_DFS_ETSI:
2039 		pr_info(" DFS Master region ETSI");
2040 		break;
2041 	case NL80211_DFS_JP:
2042 		pr_info(" DFS Master region JP");
2043 		break;
2044 	default:
2045 		pr_info(" DFS Master region Uknown");
2046 		break;
2047 	}
2048 }
2049 
2050 static void print_regdomain(const struct ieee80211_regdomain *rd)
2051 {
2052 
2053 	if (is_intersected_alpha2(rd->alpha2)) {
2054 
2055 		if (last_request->initiator ==
2056 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2057 			struct cfg80211_registered_device *rdev;
2058 			rdev = cfg80211_rdev_by_wiphy_idx(
2059 				last_request->wiphy_idx);
2060 			if (rdev) {
2061 				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2062 					rdev->country_ie_alpha2[0],
2063 					rdev->country_ie_alpha2[1]);
2064 			} else
2065 				pr_info("Current regulatory domain intersected:\n");
2066 		} else
2067 			pr_info("Current regulatory domain intersected:\n");
2068 	} else if (is_world_regdom(rd->alpha2))
2069 		pr_info("World regulatory domain updated:\n");
2070 	else {
2071 		if (is_unknown_alpha2(rd->alpha2))
2072 			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2073 		else
2074 			pr_info("Regulatory domain changed to country: %c%c\n",
2075 				rd->alpha2[0], rd->alpha2[1]);
2076 	}
2077 	print_dfs_region(rd->dfs_region);
2078 	print_rd_rules(rd);
2079 }
2080 
2081 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2082 {
2083 	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2084 	print_rd_rules(rd);
2085 }
2086 
2087 /* Takes ownership of rd only if it doesn't fail */
2088 static int __set_regdom(const struct ieee80211_regdomain *rd)
2089 {
2090 	const struct ieee80211_regdomain *intersected_rd = NULL;
2091 	struct cfg80211_registered_device *rdev = NULL;
2092 	struct wiphy *request_wiphy;
2093 	/* Some basic sanity checks first */
2094 
2095 	if (is_world_regdom(rd->alpha2)) {
2096 		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2097 			return -EINVAL;
2098 		update_world_regdomain(rd);
2099 		return 0;
2100 	}
2101 
2102 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2103 			!is_unknown_alpha2(rd->alpha2))
2104 		return -EINVAL;
2105 
2106 	if (!last_request)
2107 		return -EINVAL;
2108 
2109 	/*
2110 	 * Lets only bother proceeding on the same alpha2 if the current
2111 	 * rd is non static (it means CRDA was present and was used last)
2112 	 * and the pending request came in from a country IE
2113 	 */
2114 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2115 		/*
2116 		 * If someone else asked us to change the rd lets only bother
2117 		 * checking if the alpha2 changes if CRDA was already called
2118 		 */
2119 		if (!regdom_changes(rd->alpha2))
2120 			return -EINVAL;
2121 	}
2122 
2123 	/*
2124 	 * Now lets set the regulatory domain, update all driver channels
2125 	 * and finally inform them of what we have done, in case they want
2126 	 * to review or adjust their own settings based on their own
2127 	 * internal EEPROM data
2128 	 */
2129 
2130 	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2131 		return -EINVAL;
2132 
2133 	if (!is_valid_rd(rd)) {
2134 		pr_err("Invalid regulatory domain detected:\n");
2135 		print_regdomain_info(rd);
2136 		return -EINVAL;
2137 	}
2138 
2139 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2140 	if (!request_wiphy &&
2141 	    (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2142 	     last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2143 		schedule_delayed_work(&reg_timeout, 0);
2144 		return -ENODEV;
2145 	}
2146 
2147 	if (!last_request->intersect) {
2148 		int r;
2149 
2150 		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2151 			reset_regdomains(false);
2152 			cfg80211_regdomain = rd;
2153 			return 0;
2154 		}
2155 
2156 		/*
2157 		 * For a driver hint, lets copy the regulatory domain the
2158 		 * driver wanted to the wiphy to deal with conflicts
2159 		 */
2160 
2161 		/*
2162 		 * Userspace could have sent two replies with only
2163 		 * one kernel request.
2164 		 */
2165 		if (request_wiphy->regd)
2166 			return -EALREADY;
2167 
2168 		r = reg_copy_regd(&request_wiphy->regd, rd);
2169 		if (r)
2170 			return r;
2171 
2172 		reset_regdomains(false);
2173 		cfg80211_regdomain = rd;
2174 		return 0;
2175 	}
2176 
2177 	/* Intersection requires a bit more work */
2178 
2179 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2180 
2181 		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2182 		if (!intersected_rd)
2183 			return -EINVAL;
2184 
2185 		/*
2186 		 * We can trash what CRDA provided now.
2187 		 * However if a driver requested this specific regulatory
2188 		 * domain we keep it for its private use
2189 		 */
2190 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2191 			request_wiphy->regd = rd;
2192 		else
2193 			kfree(rd);
2194 
2195 		rd = NULL;
2196 
2197 		reset_regdomains(false);
2198 		cfg80211_regdomain = intersected_rd;
2199 
2200 		return 0;
2201 	}
2202 
2203 	if (!intersected_rd)
2204 		return -EINVAL;
2205 
2206 	rdev = wiphy_to_dev(request_wiphy);
2207 
2208 	rdev->country_ie_alpha2[0] = rd->alpha2[0];
2209 	rdev->country_ie_alpha2[1] = rd->alpha2[1];
2210 	rdev->env = last_request->country_ie_env;
2211 
2212 	BUG_ON(intersected_rd == rd);
2213 
2214 	kfree(rd);
2215 	rd = NULL;
2216 
2217 	reset_regdomains(false);
2218 	cfg80211_regdomain = intersected_rd;
2219 
2220 	return 0;
2221 }
2222 
2223 
2224 /*
2225  * Use this call to set the current regulatory domain. Conflicts with
2226  * multiple drivers can be ironed out later. Caller must've already
2227  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2228  */
2229 int set_regdom(const struct ieee80211_regdomain *rd)
2230 {
2231 	int r;
2232 
2233 	assert_cfg80211_lock();
2234 
2235 	mutex_lock(&reg_mutex);
2236 
2237 	/* Note that this doesn't update the wiphys, this is done below */
2238 	r = __set_regdom(rd);
2239 	if (r) {
2240 		kfree(rd);
2241 		mutex_unlock(&reg_mutex);
2242 		return r;
2243 	}
2244 
2245 	/* This would make this whole thing pointless */
2246 	if (!last_request->intersect)
2247 		BUG_ON(rd != cfg80211_regdomain);
2248 
2249 	/* update all wiphys now with the new established regulatory domain */
2250 	update_all_wiphy_regulatory(last_request->initiator);
2251 
2252 	print_regdomain(cfg80211_regdomain);
2253 
2254 	nl80211_send_reg_change_event(last_request);
2255 
2256 	reg_set_request_processed();
2257 
2258 	mutex_unlock(&reg_mutex);
2259 
2260 	return r;
2261 }
2262 
2263 #ifdef CONFIG_HOTPLUG
2264 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2265 {
2266 	if (last_request && !last_request->processed) {
2267 		if (add_uevent_var(env, "COUNTRY=%c%c",
2268 				   last_request->alpha2[0],
2269 				   last_request->alpha2[1]))
2270 			return -ENOMEM;
2271 	}
2272 
2273 	return 0;
2274 }
2275 #else
2276 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2277 {
2278 	return -ENODEV;
2279 }
2280 #endif /* CONFIG_HOTPLUG */
2281 
2282 /* Caller must hold cfg80211_mutex */
2283 void reg_device_remove(struct wiphy *wiphy)
2284 {
2285 	struct wiphy *request_wiphy = NULL;
2286 
2287 	assert_cfg80211_lock();
2288 
2289 	mutex_lock(&reg_mutex);
2290 
2291 	kfree(wiphy->regd);
2292 
2293 	if (last_request)
2294 		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2295 
2296 	if (!request_wiphy || request_wiphy != wiphy)
2297 		goto out;
2298 
2299 	last_request->wiphy_idx = WIPHY_IDX_STALE;
2300 	last_request->country_ie_env = ENVIRON_ANY;
2301 out:
2302 	mutex_unlock(&reg_mutex);
2303 }
2304 
2305 static void reg_timeout_work(struct work_struct *work)
2306 {
2307 	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2308 		      "restoring regulatory settings\n");
2309 	restore_regulatory_settings(true);
2310 }
2311 
2312 int __init regulatory_init(void)
2313 {
2314 	int err = 0;
2315 
2316 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2317 	if (IS_ERR(reg_pdev))
2318 		return PTR_ERR(reg_pdev);
2319 
2320 	reg_pdev->dev.type = &reg_device_type;
2321 
2322 	spin_lock_init(&reg_requests_lock);
2323 	spin_lock_init(&reg_pending_beacons_lock);
2324 
2325 	cfg80211_regdomain = cfg80211_world_regdom;
2326 
2327 	user_alpha2[0] = '9';
2328 	user_alpha2[1] = '7';
2329 
2330 	/* We always try to get an update for the static regdomain */
2331 	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2332 	if (err) {
2333 		if (err == -ENOMEM)
2334 			return err;
2335 		/*
2336 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
2337 		 * memory which is handled and propagated appropriately above
2338 		 * but it can also fail during a netlink_broadcast() or during
2339 		 * early boot for call_usermodehelper(). For now treat these
2340 		 * errors as non-fatal.
2341 		 */
2342 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2343 #ifdef CONFIG_CFG80211_REG_DEBUG
2344 		/* We want to find out exactly why when debugging */
2345 		WARN_ON(err);
2346 #endif
2347 	}
2348 
2349 	/*
2350 	 * Finally, if the user set the module parameter treat it
2351 	 * as a user hint.
2352 	 */
2353 	if (!is_world_regdom(ieee80211_regdom))
2354 		regulatory_hint_user(ieee80211_regdom);
2355 
2356 	return 0;
2357 }
2358 
2359 void /* __init_or_exit */ regulatory_exit(void)
2360 {
2361 	struct regulatory_request *reg_request, *tmp;
2362 	struct reg_beacon *reg_beacon, *btmp;
2363 
2364 	cancel_work_sync(&reg_work);
2365 	cancel_delayed_work_sync(&reg_timeout);
2366 
2367 	mutex_lock(&cfg80211_mutex);
2368 	mutex_lock(&reg_mutex);
2369 
2370 	reset_regdomains(true);
2371 
2372 	dev_set_uevent_suppress(&reg_pdev->dev, true);
2373 
2374 	platform_device_unregister(reg_pdev);
2375 
2376 	spin_lock_bh(&reg_pending_beacons_lock);
2377 	if (!list_empty(&reg_pending_beacons)) {
2378 		list_for_each_entry_safe(reg_beacon, btmp,
2379 					 &reg_pending_beacons, list) {
2380 			list_del(&reg_beacon->list);
2381 			kfree(reg_beacon);
2382 		}
2383 	}
2384 	spin_unlock_bh(&reg_pending_beacons_lock);
2385 
2386 	if (!list_empty(&reg_beacon_list)) {
2387 		list_for_each_entry_safe(reg_beacon, btmp,
2388 					 &reg_beacon_list, list) {
2389 			list_del(&reg_beacon->list);
2390 			kfree(reg_beacon);
2391 		}
2392 	}
2393 
2394 	spin_lock(&reg_requests_lock);
2395 	if (!list_empty(&reg_requests_list)) {
2396 		list_for_each_entry_safe(reg_request, tmp,
2397 					 &reg_requests_list, list) {
2398 			list_del(&reg_request->list);
2399 			kfree(reg_request);
2400 		}
2401 	}
2402 	spin_unlock(&reg_requests_lock);
2403 
2404 	mutex_unlock(&reg_mutex);
2405 	mutex_unlock(&cfg80211_mutex);
2406 }
2407