xref: /openbmc/linux/net/wireless/reg.c (revision 61cb9ac6)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2021 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 
137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 {
139 	return rcu_dereference_rtnl(cfg80211_regdomain);
140 }
141 
142 /*
143  * Returns the regulatory domain associated with the wiphy.
144  *
145  * Requires any of RTNL, wiphy mutex or RCU protection.
146  */
147 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
148 {
149 	return rcu_dereference_check(wiphy->regd,
150 				     lockdep_is_held(&wiphy->mtx) ||
151 				     lockdep_rtnl_is_held());
152 }
153 EXPORT_SYMBOL(get_wiphy_regdom);
154 
155 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
156 {
157 	switch (dfs_region) {
158 	case NL80211_DFS_UNSET:
159 		return "unset";
160 	case NL80211_DFS_FCC:
161 		return "FCC";
162 	case NL80211_DFS_ETSI:
163 		return "ETSI";
164 	case NL80211_DFS_JP:
165 		return "JP";
166 	}
167 	return "Unknown";
168 }
169 
170 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
171 {
172 	const struct ieee80211_regdomain *regd = NULL;
173 	const struct ieee80211_regdomain *wiphy_regd = NULL;
174 	enum nl80211_dfs_regions dfs_region;
175 
176 	rcu_read_lock();
177 	regd = get_cfg80211_regdom();
178 	dfs_region = regd->dfs_region;
179 
180 	if (!wiphy)
181 		goto out;
182 
183 	wiphy_regd = get_wiphy_regdom(wiphy);
184 	if (!wiphy_regd)
185 		goto out;
186 
187 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
188 		dfs_region = wiphy_regd->dfs_region;
189 		goto out;
190 	}
191 
192 	if (wiphy_regd->dfs_region == regd->dfs_region)
193 		goto out;
194 
195 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
196 		 dev_name(&wiphy->dev),
197 		 reg_dfs_region_str(wiphy_regd->dfs_region),
198 		 reg_dfs_region_str(regd->dfs_region));
199 
200 out:
201 	rcu_read_unlock();
202 
203 	return dfs_region;
204 }
205 
206 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
207 {
208 	if (!r)
209 		return;
210 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
211 }
212 
213 static struct regulatory_request *get_last_request(void)
214 {
215 	return rcu_dereference_rtnl(last_request);
216 }
217 
218 /* Used to queue up regulatory hints */
219 static LIST_HEAD(reg_requests_list);
220 static DEFINE_SPINLOCK(reg_requests_lock);
221 
222 /* Used to queue up beacon hints for review */
223 static LIST_HEAD(reg_pending_beacons);
224 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
225 
226 /* Used to keep track of processed beacon hints */
227 static LIST_HEAD(reg_beacon_list);
228 
229 struct reg_beacon {
230 	struct list_head list;
231 	struct ieee80211_channel chan;
232 };
233 
234 static void reg_check_chans_work(struct work_struct *work);
235 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
236 
237 static void reg_todo(struct work_struct *work);
238 static DECLARE_WORK(reg_work, reg_todo);
239 
240 /* We keep a static world regulatory domain in case of the absence of CRDA */
241 static const struct ieee80211_regdomain world_regdom = {
242 	.n_reg_rules = 8,
243 	.alpha2 =  "00",
244 	.reg_rules = {
245 		/* IEEE 802.11b/g, channels 1..11 */
246 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
247 		/* IEEE 802.11b/g, channels 12..13. */
248 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
249 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
250 		/* IEEE 802.11 channel 14 - Only JP enables
251 		 * this and for 802.11b only */
252 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
253 			NL80211_RRF_NO_IR |
254 			NL80211_RRF_NO_OFDM),
255 		/* IEEE 802.11a, channel 36..48 */
256 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
257                         NL80211_RRF_NO_IR |
258                         NL80211_RRF_AUTO_BW),
259 
260 		/* IEEE 802.11a, channel 52..64 - DFS required */
261 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
262 			NL80211_RRF_NO_IR |
263 			NL80211_RRF_AUTO_BW |
264 			NL80211_RRF_DFS),
265 
266 		/* IEEE 802.11a, channel 100..144 - DFS required */
267 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
268 			NL80211_RRF_NO_IR |
269 			NL80211_RRF_DFS),
270 
271 		/* IEEE 802.11a, channel 149..165 */
272 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
273 			NL80211_RRF_NO_IR),
274 
275 		/* IEEE 802.11ad (60GHz), channels 1..3 */
276 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
277 	}
278 };
279 
280 /* protected by RTNL */
281 static const struct ieee80211_regdomain *cfg80211_world_regdom =
282 	&world_regdom;
283 
284 static char *ieee80211_regdom = "00";
285 static char user_alpha2[2];
286 static const struct ieee80211_regdomain *cfg80211_user_regdom;
287 
288 module_param(ieee80211_regdom, charp, 0444);
289 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
290 
291 static void reg_free_request(struct regulatory_request *request)
292 {
293 	if (request == &core_request_world)
294 		return;
295 
296 	if (request != get_last_request())
297 		kfree(request);
298 }
299 
300 static void reg_free_last_request(void)
301 {
302 	struct regulatory_request *lr = get_last_request();
303 
304 	if (lr != &core_request_world && lr)
305 		kfree_rcu(lr, rcu_head);
306 }
307 
308 static void reg_update_last_request(struct regulatory_request *request)
309 {
310 	struct regulatory_request *lr;
311 
312 	lr = get_last_request();
313 	if (lr == request)
314 		return;
315 
316 	reg_free_last_request();
317 	rcu_assign_pointer(last_request, request);
318 }
319 
320 static void reset_regdomains(bool full_reset,
321 			     const struct ieee80211_regdomain *new_regdom)
322 {
323 	const struct ieee80211_regdomain *r;
324 
325 	ASSERT_RTNL();
326 
327 	r = get_cfg80211_regdom();
328 
329 	/* avoid freeing static information or freeing something twice */
330 	if (r == cfg80211_world_regdom)
331 		r = NULL;
332 	if (cfg80211_world_regdom == &world_regdom)
333 		cfg80211_world_regdom = NULL;
334 	if (r == &world_regdom)
335 		r = NULL;
336 
337 	rcu_free_regdom(r);
338 	rcu_free_regdom(cfg80211_world_regdom);
339 
340 	cfg80211_world_regdom = &world_regdom;
341 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
342 
343 	if (!full_reset)
344 		return;
345 
346 	reg_update_last_request(&core_request_world);
347 }
348 
349 /*
350  * Dynamic world regulatory domain requested by the wireless
351  * core upon initialization
352  */
353 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
354 {
355 	struct regulatory_request *lr;
356 
357 	lr = get_last_request();
358 
359 	WARN_ON(!lr);
360 
361 	reset_regdomains(false, rd);
362 
363 	cfg80211_world_regdom = rd;
364 }
365 
366 bool is_world_regdom(const char *alpha2)
367 {
368 	if (!alpha2)
369 		return false;
370 	return alpha2[0] == '0' && alpha2[1] == '0';
371 }
372 
373 static bool is_alpha2_set(const char *alpha2)
374 {
375 	if (!alpha2)
376 		return false;
377 	return alpha2[0] && alpha2[1];
378 }
379 
380 static bool is_unknown_alpha2(const char *alpha2)
381 {
382 	if (!alpha2)
383 		return false;
384 	/*
385 	 * Special case where regulatory domain was built by driver
386 	 * but a specific alpha2 cannot be determined
387 	 */
388 	return alpha2[0] == '9' && alpha2[1] == '9';
389 }
390 
391 static bool is_intersected_alpha2(const char *alpha2)
392 {
393 	if (!alpha2)
394 		return false;
395 	/*
396 	 * Special case where regulatory domain is the
397 	 * result of an intersection between two regulatory domain
398 	 * structures
399 	 */
400 	return alpha2[0] == '9' && alpha2[1] == '8';
401 }
402 
403 static bool is_an_alpha2(const char *alpha2)
404 {
405 	if (!alpha2)
406 		return false;
407 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
408 }
409 
410 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
411 {
412 	if (!alpha2_x || !alpha2_y)
413 		return false;
414 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
415 }
416 
417 static bool regdom_changes(const char *alpha2)
418 {
419 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
420 
421 	if (!r)
422 		return true;
423 	return !alpha2_equal(r->alpha2, alpha2);
424 }
425 
426 /*
427  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
428  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
429  * has ever been issued.
430  */
431 static bool is_user_regdom_saved(void)
432 {
433 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
434 		return false;
435 
436 	/* This would indicate a mistake on the design */
437 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
438 		 "Unexpected user alpha2: %c%c\n",
439 		 user_alpha2[0], user_alpha2[1]))
440 		return false;
441 
442 	return true;
443 }
444 
445 static const struct ieee80211_regdomain *
446 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
447 {
448 	struct ieee80211_regdomain *regd;
449 	unsigned int i;
450 
451 	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
452 		       GFP_KERNEL);
453 	if (!regd)
454 		return ERR_PTR(-ENOMEM);
455 
456 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
457 
458 	for (i = 0; i < src_regd->n_reg_rules; i++)
459 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
460 		       sizeof(struct ieee80211_reg_rule));
461 
462 	return regd;
463 }
464 
465 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
466 {
467 	ASSERT_RTNL();
468 
469 	if (!IS_ERR(cfg80211_user_regdom))
470 		kfree(cfg80211_user_regdom);
471 	cfg80211_user_regdom = reg_copy_regd(rd);
472 }
473 
474 struct reg_regdb_apply_request {
475 	struct list_head list;
476 	const struct ieee80211_regdomain *regdom;
477 };
478 
479 static LIST_HEAD(reg_regdb_apply_list);
480 static DEFINE_MUTEX(reg_regdb_apply_mutex);
481 
482 static void reg_regdb_apply(struct work_struct *work)
483 {
484 	struct reg_regdb_apply_request *request;
485 
486 	rtnl_lock();
487 
488 	mutex_lock(&reg_regdb_apply_mutex);
489 	while (!list_empty(&reg_regdb_apply_list)) {
490 		request = list_first_entry(&reg_regdb_apply_list,
491 					   struct reg_regdb_apply_request,
492 					   list);
493 		list_del(&request->list);
494 
495 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
496 		kfree(request);
497 	}
498 	mutex_unlock(&reg_regdb_apply_mutex);
499 
500 	rtnl_unlock();
501 }
502 
503 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
504 
505 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
506 {
507 	struct reg_regdb_apply_request *request;
508 
509 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
510 	if (!request) {
511 		kfree(regdom);
512 		return -ENOMEM;
513 	}
514 
515 	request->regdom = regdom;
516 
517 	mutex_lock(&reg_regdb_apply_mutex);
518 	list_add_tail(&request->list, &reg_regdb_apply_list);
519 	mutex_unlock(&reg_regdb_apply_mutex);
520 
521 	schedule_work(&reg_regdb_work);
522 	return 0;
523 }
524 
525 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
526 /* Max number of consecutive attempts to communicate with CRDA  */
527 #define REG_MAX_CRDA_TIMEOUTS 10
528 
529 static u32 reg_crda_timeouts;
530 
531 static void crda_timeout_work(struct work_struct *work);
532 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
533 
534 static void crda_timeout_work(struct work_struct *work)
535 {
536 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
537 	rtnl_lock();
538 	reg_crda_timeouts++;
539 	restore_regulatory_settings(true, false);
540 	rtnl_unlock();
541 }
542 
543 static void cancel_crda_timeout(void)
544 {
545 	cancel_delayed_work(&crda_timeout);
546 }
547 
548 static void cancel_crda_timeout_sync(void)
549 {
550 	cancel_delayed_work_sync(&crda_timeout);
551 }
552 
553 static void reset_crda_timeouts(void)
554 {
555 	reg_crda_timeouts = 0;
556 }
557 
558 /*
559  * This lets us keep regulatory code which is updated on a regulatory
560  * basis in userspace.
561  */
562 static int call_crda(const char *alpha2)
563 {
564 	char country[12];
565 	char *env[] = { country, NULL };
566 	int ret;
567 
568 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
569 		 alpha2[0], alpha2[1]);
570 
571 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
572 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
573 		return -EINVAL;
574 	}
575 
576 	if (!is_world_regdom((char *) alpha2))
577 		pr_debug("Calling CRDA for country: %c%c\n",
578 			 alpha2[0], alpha2[1]);
579 	else
580 		pr_debug("Calling CRDA to update world regulatory domain\n");
581 
582 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
583 	if (ret)
584 		return ret;
585 
586 	queue_delayed_work(system_power_efficient_wq,
587 			   &crda_timeout, msecs_to_jiffies(3142));
588 	return 0;
589 }
590 #else
591 static inline void cancel_crda_timeout(void) {}
592 static inline void cancel_crda_timeout_sync(void) {}
593 static inline void reset_crda_timeouts(void) {}
594 static inline int call_crda(const char *alpha2)
595 {
596 	return -ENODATA;
597 }
598 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
599 
600 /* code to directly load a firmware database through request_firmware */
601 static const struct fwdb_header *regdb;
602 
603 struct fwdb_country {
604 	u8 alpha2[2];
605 	__be16 coll_ptr;
606 	/* this struct cannot be extended */
607 } __packed __aligned(4);
608 
609 struct fwdb_collection {
610 	u8 len;
611 	u8 n_rules;
612 	u8 dfs_region;
613 	/* no optional data yet */
614 	/* aligned to 2, then followed by __be16 array of rule pointers */
615 } __packed __aligned(4);
616 
617 enum fwdb_flags {
618 	FWDB_FLAG_NO_OFDM	= BIT(0),
619 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
620 	FWDB_FLAG_DFS		= BIT(2),
621 	FWDB_FLAG_NO_IR		= BIT(3),
622 	FWDB_FLAG_AUTO_BW	= BIT(4),
623 };
624 
625 struct fwdb_wmm_ac {
626 	u8 ecw;
627 	u8 aifsn;
628 	__be16 cot;
629 } __packed;
630 
631 struct fwdb_wmm_rule {
632 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
633 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
634 } __packed;
635 
636 struct fwdb_rule {
637 	u8 len;
638 	u8 flags;
639 	__be16 max_eirp;
640 	__be32 start, end, max_bw;
641 	/* start of optional data */
642 	__be16 cac_timeout;
643 	__be16 wmm_ptr;
644 } __packed __aligned(4);
645 
646 #define FWDB_MAGIC 0x52474442
647 #define FWDB_VERSION 20
648 
649 struct fwdb_header {
650 	__be32 magic;
651 	__be32 version;
652 	struct fwdb_country country[];
653 } __packed __aligned(4);
654 
655 static int ecw2cw(int ecw)
656 {
657 	return (1 << ecw) - 1;
658 }
659 
660 static bool valid_wmm(struct fwdb_wmm_rule *rule)
661 {
662 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
663 	int i;
664 
665 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
666 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
667 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
668 		u8 aifsn = ac[i].aifsn;
669 
670 		if (cw_min >= cw_max)
671 			return false;
672 
673 		if (aifsn < 1)
674 			return false;
675 	}
676 
677 	return true;
678 }
679 
680 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
681 {
682 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
683 
684 	if ((u8 *)rule + sizeof(rule->len) > data + size)
685 		return false;
686 
687 	/* mandatory fields */
688 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
689 		return false;
690 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
691 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
692 		struct fwdb_wmm_rule *wmm;
693 
694 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
695 			return false;
696 
697 		wmm = (void *)(data + wmm_ptr);
698 
699 		if (!valid_wmm(wmm))
700 			return false;
701 	}
702 	return true;
703 }
704 
705 static bool valid_country(const u8 *data, unsigned int size,
706 			  const struct fwdb_country *country)
707 {
708 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
709 	struct fwdb_collection *coll = (void *)(data + ptr);
710 	__be16 *rules_ptr;
711 	unsigned int i;
712 
713 	/* make sure we can read len/n_rules */
714 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
715 		return false;
716 
717 	/* make sure base struct and all rules fit */
718 	if ((u8 *)coll + ALIGN(coll->len, 2) +
719 	    (coll->n_rules * 2) > data + size)
720 		return false;
721 
722 	/* mandatory fields must exist */
723 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
724 		return false;
725 
726 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
727 
728 	for (i = 0; i < coll->n_rules; i++) {
729 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
730 
731 		if (!valid_rule(data, size, rule_ptr))
732 			return false;
733 	}
734 
735 	return true;
736 }
737 
738 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
739 static struct key *builtin_regdb_keys;
740 
741 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
742 {
743 	const u8 *end = p + buflen;
744 	size_t plen;
745 	key_ref_t key;
746 
747 	while (p < end) {
748 		/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
749 		 * than 256 bytes in size.
750 		 */
751 		if (end - p < 4)
752 			goto dodgy_cert;
753 		if (p[0] != 0x30 &&
754 		    p[1] != 0x82)
755 			goto dodgy_cert;
756 		plen = (p[2] << 8) | p[3];
757 		plen += 4;
758 		if (plen > end - p)
759 			goto dodgy_cert;
760 
761 		key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
762 					   "asymmetric", NULL, p, plen,
763 					   ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
764 					    KEY_USR_VIEW | KEY_USR_READ),
765 					   KEY_ALLOC_NOT_IN_QUOTA |
766 					   KEY_ALLOC_BUILT_IN |
767 					   KEY_ALLOC_BYPASS_RESTRICTION);
768 		if (IS_ERR(key)) {
769 			pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
770 			       PTR_ERR(key));
771 		} else {
772 			pr_notice("Loaded X.509 cert '%s'\n",
773 				  key_ref_to_ptr(key)->description);
774 			key_ref_put(key);
775 		}
776 		p += plen;
777 	}
778 
779 	return;
780 
781 dodgy_cert:
782 	pr_err("Problem parsing in-kernel X.509 certificate list\n");
783 }
784 
785 static int __init load_builtin_regdb_keys(void)
786 {
787 	builtin_regdb_keys =
788 		keyring_alloc(".builtin_regdb_keys",
789 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
790 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
791 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
792 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
793 	if (IS_ERR(builtin_regdb_keys))
794 		return PTR_ERR(builtin_regdb_keys);
795 
796 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
797 
798 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
799 	load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
800 #endif
801 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
802 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
803 		load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
804 #endif
805 
806 	return 0;
807 }
808 
809 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
810 {
811 	const struct firmware *sig;
812 	bool result;
813 
814 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
815 		return false;
816 
817 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
818 					builtin_regdb_keys,
819 					VERIFYING_UNSPECIFIED_SIGNATURE,
820 					NULL, NULL) == 0;
821 
822 	release_firmware(sig);
823 
824 	return result;
825 }
826 
827 static void free_regdb_keyring(void)
828 {
829 	key_put(builtin_regdb_keys);
830 }
831 #else
832 static int load_builtin_regdb_keys(void)
833 {
834 	return 0;
835 }
836 
837 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
838 {
839 	return true;
840 }
841 
842 static void free_regdb_keyring(void)
843 {
844 }
845 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
846 
847 static bool valid_regdb(const u8 *data, unsigned int size)
848 {
849 	const struct fwdb_header *hdr = (void *)data;
850 	const struct fwdb_country *country;
851 
852 	if (size < sizeof(*hdr))
853 		return false;
854 
855 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
856 		return false;
857 
858 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
859 		return false;
860 
861 	if (!regdb_has_valid_signature(data, size))
862 		return false;
863 
864 	country = &hdr->country[0];
865 	while ((u8 *)(country + 1) <= data + size) {
866 		if (!country->coll_ptr)
867 			break;
868 		if (!valid_country(data, size, country))
869 			return false;
870 		country++;
871 	}
872 
873 	return true;
874 }
875 
876 static void set_wmm_rule(const struct fwdb_header *db,
877 			 const struct fwdb_country *country,
878 			 const struct fwdb_rule *rule,
879 			 struct ieee80211_reg_rule *rrule)
880 {
881 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
882 	struct fwdb_wmm_rule *wmm;
883 	unsigned int i, wmm_ptr;
884 
885 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
886 	wmm = (void *)((u8 *)db + wmm_ptr);
887 
888 	if (!valid_wmm(wmm)) {
889 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
890 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
891 		       country->alpha2[0], country->alpha2[1]);
892 		return;
893 	}
894 
895 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
896 		wmm_rule->client[i].cw_min =
897 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
898 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
899 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
900 		wmm_rule->client[i].cot =
901 			1000 * be16_to_cpu(wmm->client[i].cot);
902 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
903 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
904 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
905 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
906 	}
907 
908 	rrule->has_wmm = true;
909 }
910 
911 static int __regdb_query_wmm(const struct fwdb_header *db,
912 			     const struct fwdb_country *country, int freq,
913 			     struct ieee80211_reg_rule *rrule)
914 {
915 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
916 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
917 	int i;
918 
919 	for (i = 0; i < coll->n_rules; i++) {
920 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
921 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
922 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
923 
924 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
925 			continue;
926 
927 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
928 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
929 			set_wmm_rule(db, country, rule, rrule);
930 			return 0;
931 		}
932 	}
933 
934 	return -ENODATA;
935 }
936 
937 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
938 {
939 	const struct fwdb_header *hdr = regdb;
940 	const struct fwdb_country *country;
941 
942 	if (!regdb)
943 		return -ENODATA;
944 
945 	if (IS_ERR(regdb))
946 		return PTR_ERR(regdb);
947 
948 	country = &hdr->country[0];
949 	while (country->coll_ptr) {
950 		if (alpha2_equal(alpha2, country->alpha2))
951 			return __regdb_query_wmm(regdb, country, freq, rule);
952 
953 		country++;
954 	}
955 
956 	return -ENODATA;
957 }
958 EXPORT_SYMBOL(reg_query_regdb_wmm);
959 
960 static int regdb_query_country(const struct fwdb_header *db,
961 			       const struct fwdb_country *country)
962 {
963 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
964 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
965 	struct ieee80211_regdomain *regdom;
966 	unsigned int i;
967 
968 	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
969 			 GFP_KERNEL);
970 	if (!regdom)
971 		return -ENOMEM;
972 
973 	regdom->n_reg_rules = coll->n_rules;
974 	regdom->alpha2[0] = country->alpha2[0];
975 	regdom->alpha2[1] = country->alpha2[1];
976 	regdom->dfs_region = coll->dfs_region;
977 
978 	for (i = 0; i < regdom->n_reg_rules; i++) {
979 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
980 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
981 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
982 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
983 
984 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
985 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
986 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
987 
988 		rrule->power_rule.max_antenna_gain = 0;
989 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
990 
991 		rrule->flags = 0;
992 		if (rule->flags & FWDB_FLAG_NO_OFDM)
993 			rrule->flags |= NL80211_RRF_NO_OFDM;
994 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
995 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
996 		if (rule->flags & FWDB_FLAG_DFS)
997 			rrule->flags |= NL80211_RRF_DFS;
998 		if (rule->flags & FWDB_FLAG_NO_IR)
999 			rrule->flags |= NL80211_RRF_NO_IR;
1000 		if (rule->flags & FWDB_FLAG_AUTO_BW)
1001 			rrule->flags |= NL80211_RRF_AUTO_BW;
1002 
1003 		rrule->dfs_cac_ms = 0;
1004 
1005 		/* handle optional data */
1006 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1007 			rrule->dfs_cac_ms =
1008 				1000 * be16_to_cpu(rule->cac_timeout);
1009 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1010 			set_wmm_rule(db, country, rule, rrule);
1011 	}
1012 
1013 	return reg_schedule_apply(regdom);
1014 }
1015 
1016 static int query_regdb(const char *alpha2)
1017 {
1018 	const struct fwdb_header *hdr = regdb;
1019 	const struct fwdb_country *country;
1020 
1021 	ASSERT_RTNL();
1022 
1023 	if (IS_ERR(regdb))
1024 		return PTR_ERR(regdb);
1025 
1026 	country = &hdr->country[0];
1027 	while (country->coll_ptr) {
1028 		if (alpha2_equal(alpha2, country->alpha2))
1029 			return regdb_query_country(regdb, country);
1030 		country++;
1031 	}
1032 
1033 	return -ENODATA;
1034 }
1035 
1036 static void regdb_fw_cb(const struct firmware *fw, void *context)
1037 {
1038 	int set_error = 0;
1039 	bool restore = true;
1040 	void *db;
1041 
1042 	if (!fw) {
1043 		pr_info("failed to load regulatory.db\n");
1044 		set_error = -ENODATA;
1045 	} else if (!valid_regdb(fw->data, fw->size)) {
1046 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1047 		set_error = -EINVAL;
1048 	}
1049 
1050 	rtnl_lock();
1051 	if (regdb && !IS_ERR(regdb)) {
1052 		/* negative case - a bug
1053 		 * positive case - can happen due to race in case of multiple cb's in
1054 		 * queue, due to usage of asynchronous callback
1055 		 *
1056 		 * Either case, just restore and free new db.
1057 		 */
1058 	} else if (set_error) {
1059 		regdb = ERR_PTR(set_error);
1060 	} else if (fw) {
1061 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1062 		if (db) {
1063 			regdb = db;
1064 			restore = context && query_regdb(context);
1065 		} else {
1066 			restore = true;
1067 		}
1068 	}
1069 
1070 	if (restore)
1071 		restore_regulatory_settings(true, false);
1072 
1073 	rtnl_unlock();
1074 
1075 	kfree(context);
1076 
1077 	release_firmware(fw);
1078 }
1079 
1080 static int query_regdb_file(const char *alpha2)
1081 {
1082 	ASSERT_RTNL();
1083 
1084 	if (regdb)
1085 		return query_regdb(alpha2);
1086 
1087 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1088 	if (!alpha2)
1089 		return -ENOMEM;
1090 
1091 	return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1092 				       &reg_pdev->dev, GFP_KERNEL,
1093 				       (void *)alpha2, regdb_fw_cb);
1094 }
1095 
1096 int reg_reload_regdb(void)
1097 {
1098 	const struct firmware *fw;
1099 	void *db;
1100 	int err;
1101 
1102 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1103 	if (err)
1104 		return err;
1105 
1106 	if (!valid_regdb(fw->data, fw->size)) {
1107 		err = -ENODATA;
1108 		goto out;
1109 	}
1110 
1111 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1112 	if (!db) {
1113 		err = -ENOMEM;
1114 		goto out;
1115 	}
1116 
1117 	rtnl_lock();
1118 	if (!IS_ERR_OR_NULL(regdb))
1119 		kfree(regdb);
1120 	regdb = db;
1121 	rtnl_unlock();
1122 
1123  out:
1124 	release_firmware(fw);
1125 	return err;
1126 }
1127 
1128 static bool reg_query_database(struct regulatory_request *request)
1129 {
1130 	if (query_regdb_file(request->alpha2) == 0)
1131 		return true;
1132 
1133 	if (call_crda(request->alpha2) == 0)
1134 		return true;
1135 
1136 	return false;
1137 }
1138 
1139 bool reg_is_valid_request(const char *alpha2)
1140 {
1141 	struct regulatory_request *lr = get_last_request();
1142 
1143 	if (!lr || lr->processed)
1144 		return false;
1145 
1146 	return alpha2_equal(lr->alpha2, alpha2);
1147 }
1148 
1149 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1150 {
1151 	struct regulatory_request *lr = get_last_request();
1152 
1153 	/*
1154 	 * Follow the driver's regulatory domain, if present, unless a country
1155 	 * IE has been processed or a user wants to help complaince further
1156 	 */
1157 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1158 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1159 	    wiphy->regd)
1160 		return get_wiphy_regdom(wiphy);
1161 
1162 	return get_cfg80211_regdom();
1163 }
1164 
1165 static unsigned int
1166 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1167 				 const struct ieee80211_reg_rule *rule)
1168 {
1169 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1170 	const struct ieee80211_freq_range *freq_range_tmp;
1171 	const struct ieee80211_reg_rule *tmp;
1172 	u32 start_freq, end_freq, idx, no;
1173 
1174 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1175 		if (rule == &rd->reg_rules[idx])
1176 			break;
1177 
1178 	if (idx == rd->n_reg_rules)
1179 		return 0;
1180 
1181 	/* get start_freq */
1182 	no = idx;
1183 
1184 	while (no) {
1185 		tmp = &rd->reg_rules[--no];
1186 		freq_range_tmp = &tmp->freq_range;
1187 
1188 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1189 			break;
1190 
1191 		freq_range = freq_range_tmp;
1192 	}
1193 
1194 	start_freq = freq_range->start_freq_khz;
1195 
1196 	/* get end_freq */
1197 	freq_range = &rule->freq_range;
1198 	no = idx;
1199 
1200 	while (no < rd->n_reg_rules - 1) {
1201 		tmp = &rd->reg_rules[++no];
1202 		freq_range_tmp = &tmp->freq_range;
1203 
1204 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1205 			break;
1206 
1207 		freq_range = freq_range_tmp;
1208 	}
1209 
1210 	end_freq = freq_range->end_freq_khz;
1211 
1212 	return end_freq - start_freq;
1213 }
1214 
1215 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1216 				   const struct ieee80211_reg_rule *rule)
1217 {
1218 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1219 
1220 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1221 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1222 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1223 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1224 
1225 	/*
1226 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1227 	 * are not allowed.
1228 	 */
1229 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1230 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1231 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1232 
1233 	return bw;
1234 }
1235 
1236 /* Sanity check on a regulatory rule */
1237 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1238 {
1239 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1240 	u32 freq_diff;
1241 
1242 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1243 		return false;
1244 
1245 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1246 		return false;
1247 
1248 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1249 
1250 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1251 	    freq_range->max_bandwidth_khz > freq_diff)
1252 		return false;
1253 
1254 	return true;
1255 }
1256 
1257 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1258 {
1259 	const struct ieee80211_reg_rule *reg_rule = NULL;
1260 	unsigned int i;
1261 
1262 	if (!rd->n_reg_rules)
1263 		return false;
1264 
1265 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1266 		return false;
1267 
1268 	for (i = 0; i < rd->n_reg_rules; i++) {
1269 		reg_rule = &rd->reg_rules[i];
1270 		if (!is_valid_reg_rule(reg_rule))
1271 			return false;
1272 	}
1273 
1274 	return true;
1275 }
1276 
1277 /**
1278  * freq_in_rule_band - tells us if a frequency is in a frequency band
1279  * @freq_range: frequency rule we want to query
1280  * @freq_khz: frequency we are inquiring about
1281  *
1282  * This lets us know if a specific frequency rule is or is not relevant to
1283  * a specific frequency's band. Bands are device specific and artificial
1284  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1285  * however it is safe for now to assume that a frequency rule should not be
1286  * part of a frequency's band if the start freq or end freq are off by more
1287  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1288  * 60 GHz band.
1289  * This resolution can be lowered and should be considered as we add
1290  * regulatory rule support for other "bands".
1291  **/
1292 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1293 			      u32 freq_khz)
1294 {
1295 #define ONE_GHZ_IN_KHZ	1000000
1296 	/*
1297 	 * From 802.11ad: directional multi-gigabit (DMG):
1298 	 * Pertaining to operation in a frequency band containing a channel
1299 	 * with the Channel starting frequency above 45 GHz.
1300 	 */
1301 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1302 			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1303 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1304 		return true;
1305 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1306 		return true;
1307 	return false;
1308 #undef ONE_GHZ_IN_KHZ
1309 }
1310 
1311 /*
1312  * Later on we can perhaps use the more restrictive DFS
1313  * region but we don't have information for that yet so
1314  * for now simply disallow conflicts.
1315  */
1316 static enum nl80211_dfs_regions
1317 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1318 			 const enum nl80211_dfs_regions dfs_region2)
1319 {
1320 	if (dfs_region1 != dfs_region2)
1321 		return NL80211_DFS_UNSET;
1322 	return dfs_region1;
1323 }
1324 
1325 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1326 				    const struct ieee80211_wmm_ac *wmm_ac2,
1327 				    struct ieee80211_wmm_ac *intersect)
1328 {
1329 	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1330 	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1331 	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1332 	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1333 }
1334 
1335 /*
1336  * Helper for regdom_intersect(), this does the real
1337  * mathematical intersection fun
1338  */
1339 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1340 			       const struct ieee80211_regdomain *rd2,
1341 			       const struct ieee80211_reg_rule *rule1,
1342 			       const struct ieee80211_reg_rule *rule2,
1343 			       struct ieee80211_reg_rule *intersected_rule)
1344 {
1345 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1346 	struct ieee80211_freq_range *freq_range;
1347 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1348 	struct ieee80211_power_rule *power_rule;
1349 	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1350 	struct ieee80211_wmm_rule *wmm_rule;
1351 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1352 
1353 	freq_range1 = &rule1->freq_range;
1354 	freq_range2 = &rule2->freq_range;
1355 	freq_range = &intersected_rule->freq_range;
1356 
1357 	power_rule1 = &rule1->power_rule;
1358 	power_rule2 = &rule2->power_rule;
1359 	power_rule = &intersected_rule->power_rule;
1360 
1361 	wmm_rule1 = &rule1->wmm_rule;
1362 	wmm_rule2 = &rule2->wmm_rule;
1363 	wmm_rule = &intersected_rule->wmm_rule;
1364 
1365 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1366 					 freq_range2->start_freq_khz);
1367 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1368 				       freq_range2->end_freq_khz);
1369 
1370 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1371 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1372 
1373 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1374 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1375 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1376 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1377 
1378 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1379 
1380 	intersected_rule->flags = rule1->flags | rule2->flags;
1381 
1382 	/*
1383 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1384 	 * set AUTO_BW in intersected rule also. Next we will
1385 	 * calculate BW correctly in handle_channel function.
1386 	 * In other case remove AUTO_BW flag while we calculate
1387 	 * maximum bandwidth correctly and auto calculation is
1388 	 * not required.
1389 	 */
1390 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1391 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1392 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1393 	else
1394 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1395 
1396 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1397 	if (freq_range->max_bandwidth_khz > freq_diff)
1398 		freq_range->max_bandwidth_khz = freq_diff;
1399 
1400 	power_rule->max_eirp = min(power_rule1->max_eirp,
1401 		power_rule2->max_eirp);
1402 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1403 		power_rule2->max_antenna_gain);
1404 
1405 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1406 					   rule2->dfs_cac_ms);
1407 
1408 	if (rule1->has_wmm && rule2->has_wmm) {
1409 		u8 ac;
1410 
1411 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1412 			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1413 						&wmm_rule2->client[ac],
1414 						&wmm_rule->client[ac]);
1415 			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1416 						&wmm_rule2->ap[ac],
1417 						&wmm_rule->ap[ac]);
1418 		}
1419 
1420 		intersected_rule->has_wmm = true;
1421 	} else if (rule1->has_wmm) {
1422 		*wmm_rule = *wmm_rule1;
1423 		intersected_rule->has_wmm = true;
1424 	} else if (rule2->has_wmm) {
1425 		*wmm_rule = *wmm_rule2;
1426 		intersected_rule->has_wmm = true;
1427 	} else {
1428 		intersected_rule->has_wmm = false;
1429 	}
1430 
1431 	if (!is_valid_reg_rule(intersected_rule))
1432 		return -EINVAL;
1433 
1434 	return 0;
1435 }
1436 
1437 /* check whether old rule contains new rule */
1438 static bool rule_contains(struct ieee80211_reg_rule *r1,
1439 			  struct ieee80211_reg_rule *r2)
1440 {
1441 	/* for simplicity, currently consider only same flags */
1442 	if (r1->flags != r2->flags)
1443 		return false;
1444 
1445 	/* verify r1 is more restrictive */
1446 	if ((r1->power_rule.max_antenna_gain >
1447 	     r2->power_rule.max_antenna_gain) ||
1448 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1449 		return false;
1450 
1451 	/* make sure r2's range is contained within r1 */
1452 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1453 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1454 		return false;
1455 
1456 	/* and finally verify that r1.max_bw >= r2.max_bw */
1457 	if (r1->freq_range.max_bandwidth_khz <
1458 	    r2->freq_range.max_bandwidth_khz)
1459 		return false;
1460 
1461 	return true;
1462 }
1463 
1464 /* add or extend current rules. do nothing if rule is already contained */
1465 static void add_rule(struct ieee80211_reg_rule *rule,
1466 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1467 {
1468 	struct ieee80211_reg_rule *tmp_rule;
1469 	int i;
1470 
1471 	for (i = 0; i < *n_rules; i++) {
1472 		tmp_rule = &reg_rules[i];
1473 		/* rule is already contained - do nothing */
1474 		if (rule_contains(tmp_rule, rule))
1475 			return;
1476 
1477 		/* extend rule if possible */
1478 		if (rule_contains(rule, tmp_rule)) {
1479 			memcpy(tmp_rule, rule, sizeof(*rule));
1480 			return;
1481 		}
1482 	}
1483 
1484 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1485 	(*n_rules)++;
1486 }
1487 
1488 /**
1489  * regdom_intersect - do the intersection between two regulatory domains
1490  * @rd1: first regulatory domain
1491  * @rd2: second regulatory domain
1492  *
1493  * Use this function to get the intersection between two regulatory domains.
1494  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1495  * as no one single alpha2 can represent this regulatory domain.
1496  *
1497  * Returns a pointer to the regulatory domain structure which will hold the
1498  * resulting intersection of rules between rd1 and rd2. We will
1499  * kzalloc() this structure for you.
1500  */
1501 static struct ieee80211_regdomain *
1502 regdom_intersect(const struct ieee80211_regdomain *rd1,
1503 		 const struct ieee80211_regdomain *rd2)
1504 {
1505 	int r;
1506 	unsigned int x, y;
1507 	unsigned int num_rules = 0;
1508 	const struct ieee80211_reg_rule *rule1, *rule2;
1509 	struct ieee80211_reg_rule intersected_rule;
1510 	struct ieee80211_regdomain *rd;
1511 
1512 	if (!rd1 || !rd2)
1513 		return NULL;
1514 
1515 	/*
1516 	 * First we get a count of the rules we'll need, then we actually
1517 	 * build them. This is to so we can malloc() and free() a
1518 	 * regdomain once. The reason we use reg_rules_intersect() here
1519 	 * is it will return -EINVAL if the rule computed makes no sense.
1520 	 * All rules that do check out OK are valid.
1521 	 */
1522 
1523 	for (x = 0; x < rd1->n_reg_rules; x++) {
1524 		rule1 = &rd1->reg_rules[x];
1525 		for (y = 0; y < rd2->n_reg_rules; y++) {
1526 			rule2 = &rd2->reg_rules[y];
1527 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1528 						 &intersected_rule))
1529 				num_rules++;
1530 		}
1531 	}
1532 
1533 	if (!num_rules)
1534 		return NULL;
1535 
1536 	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1537 	if (!rd)
1538 		return NULL;
1539 
1540 	for (x = 0; x < rd1->n_reg_rules; x++) {
1541 		rule1 = &rd1->reg_rules[x];
1542 		for (y = 0; y < rd2->n_reg_rules; y++) {
1543 			rule2 = &rd2->reg_rules[y];
1544 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1545 						&intersected_rule);
1546 			/*
1547 			 * No need to memset here the intersected rule here as
1548 			 * we're not using the stack anymore
1549 			 */
1550 			if (r)
1551 				continue;
1552 
1553 			add_rule(&intersected_rule, rd->reg_rules,
1554 				 &rd->n_reg_rules);
1555 		}
1556 	}
1557 
1558 	rd->alpha2[0] = '9';
1559 	rd->alpha2[1] = '8';
1560 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1561 						  rd2->dfs_region);
1562 
1563 	return rd;
1564 }
1565 
1566 /*
1567  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1568  * want to just have the channel structure use these
1569  */
1570 static u32 map_regdom_flags(u32 rd_flags)
1571 {
1572 	u32 channel_flags = 0;
1573 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1574 		channel_flags |= IEEE80211_CHAN_NO_IR;
1575 	if (rd_flags & NL80211_RRF_DFS)
1576 		channel_flags |= IEEE80211_CHAN_RADAR;
1577 	if (rd_flags & NL80211_RRF_NO_OFDM)
1578 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1579 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1580 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1581 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1582 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1583 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1584 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1585 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1586 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1587 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1588 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1589 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1590 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1591 	if (rd_flags & NL80211_RRF_NO_HE)
1592 		channel_flags |= IEEE80211_CHAN_NO_HE;
1593 	return channel_flags;
1594 }
1595 
1596 static const struct ieee80211_reg_rule *
1597 freq_reg_info_regd(u32 center_freq,
1598 		   const struct ieee80211_regdomain *regd, u32 bw)
1599 {
1600 	int i;
1601 	bool band_rule_found = false;
1602 	bool bw_fits = false;
1603 
1604 	if (!regd)
1605 		return ERR_PTR(-EINVAL);
1606 
1607 	for (i = 0; i < regd->n_reg_rules; i++) {
1608 		const struct ieee80211_reg_rule *rr;
1609 		const struct ieee80211_freq_range *fr = NULL;
1610 
1611 		rr = &regd->reg_rules[i];
1612 		fr = &rr->freq_range;
1613 
1614 		/*
1615 		 * We only need to know if one frequency rule was
1616 		 * in center_freq's band, that's enough, so let's
1617 		 * not overwrite it once found
1618 		 */
1619 		if (!band_rule_found)
1620 			band_rule_found = freq_in_rule_band(fr, center_freq);
1621 
1622 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1623 
1624 		if (band_rule_found && bw_fits)
1625 			return rr;
1626 	}
1627 
1628 	if (!band_rule_found)
1629 		return ERR_PTR(-ERANGE);
1630 
1631 	return ERR_PTR(-EINVAL);
1632 }
1633 
1634 static const struct ieee80211_reg_rule *
1635 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1636 {
1637 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1638 	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1639 	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1640 	int i = ARRAY_SIZE(bws) - 1;
1641 	u32 bw;
1642 
1643 	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1644 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1645 		if (!IS_ERR(reg_rule))
1646 			return reg_rule;
1647 	}
1648 
1649 	return reg_rule;
1650 }
1651 
1652 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1653 					       u32 center_freq)
1654 {
1655 	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1656 
1657 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1658 }
1659 EXPORT_SYMBOL(freq_reg_info);
1660 
1661 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1662 {
1663 	switch (initiator) {
1664 	case NL80211_REGDOM_SET_BY_CORE:
1665 		return "core";
1666 	case NL80211_REGDOM_SET_BY_USER:
1667 		return "user";
1668 	case NL80211_REGDOM_SET_BY_DRIVER:
1669 		return "driver";
1670 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1671 		return "country element";
1672 	default:
1673 		WARN_ON(1);
1674 		return "bug";
1675 	}
1676 }
1677 EXPORT_SYMBOL(reg_initiator_name);
1678 
1679 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1680 					  const struct ieee80211_reg_rule *reg_rule,
1681 					  const struct ieee80211_channel *chan)
1682 {
1683 	const struct ieee80211_freq_range *freq_range = NULL;
1684 	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1685 	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1686 
1687 	freq_range = &reg_rule->freq_range;
1688 
1689 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1690 	center_freq_khz = ieee80211_channel_to_khz(chan);
1691 	/* Check if auto calculation requested */
1692 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1693 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1694 
1695 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1696 	if (!cfg80211_does_bw_fit_range(freq_range,
1697 					center_freq_khz,
1698 					MHZ_TO_KHZ(10)))
1699 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1700 	if (!cfg80211_does_bw_fit_range(freq_range,
1701 					center_freq_khz,
1702 					MHZ_TO_KHZ(20)))
1703 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1704 
1705 	if (is_s1g) {
1706 		/* S1G is strict about non overlapping channels. We can
1707 		 * calculate which bandwidth is allowed per channel by finding
1708 		 * the largest bandwidth which cleanly divides the freq_range.
1709 		 */
1710 		int edge_offset;
1711 		int ch_bw = max_bandwidth_khz;
1712 
1713 		while (ch_bw) {
1714 			edge_offset = (center_freq_khz - ch_bw / 2) -
1715 				      freq_range->start_freq_khz;
1716 			if (edge_offset % ch_bw == 0) {
1717 				switch (KHZ_TO_MHZ(ch_bw)) {
1718 				case 1:
1719 					bw_flags |= IEEE80211_CHAN_1MHZ;
1720 					break;
1721 				case 2:
1722 					bw_flags |= IEEE80211_CHAN_2MHZ;
1723 					break;
1724 				case 4:
1725 					bw_flags |= IEEE80211_CHAN_4MHZ;
1726 					break;
1727 				case 8:
1728 					bw_flags |= IEEE80211_CHAN_8MHZ;
1729 					break;
1730 				case 16:
1731 					bw_flags |= IEEE80211_CHAN_16MHZ;
1732 					break;
1733 				default:
1734 					/* If we got here, no bandwidths fit on
1735 					 * this frequency, ie. band edge.
1736 					 */
1737 					bw_flags |= IEEE80211_CHAN_DISABLED;
1738 					break;
1739 				}
1740 				break;
1741 			}
1742 			ch_bw /= 2;
1743 		}
1744 	} else {
1745 		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1746 			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1747 		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1748 			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1749 		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1750 			bw_flags |= IEEE80211_CHAN_NO_HT40;
1751 		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1752 			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1753 		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1754 			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1755 	}
1756 	return bw_flags;
1757 }
1758 
1759 static void handle_channel_single_rule(struct wiphy *wiphy,
1760 				       enum nl80211_reg_initiator initiator,
1761 				       struct ieee80211_channel *chan,
1762 				       u32 flags,
1763 				       struct regulatory_request *lr,
1764 				       struct wiphy *request_wiphy,
1765 				       const struct ieee80211_reg_rule *reg_rule)
1766 {
1767 	u32 bw_flags = 0;
1768 	const struct ieee80211_power_rule *power_rule = NULL;
1769 	const struct ieee80211_regdomain *regd;
1770 
1771 	regd = reg_get_regdomain(wiphy);
1772 
1773 	power_rule = &reg_rule->power_rule;
1774 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1775 
1776 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1777 	    request_wiphy && request_wiphy == wiphy &&
1778 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1779 		/*
1780 		 * This guarantees the driver's requested regulatory domain
1781 		 * will always be used as a base for further regulatory
1782 		 * settings
1783 		 */
1784 		chan->flags = chan->orig_flags =
1785 			map_regdom_flags(reg_rule->flags) | bw_flags;
1786 		chan->max_antenna_gain = chan->orig_mag =
1787 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1788 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1789 			(int) MBM_TO_DBM(power_rule->max_eirp);
1790 
1791 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1792 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1793 			if (reg_rule->dfs_cac_ms)
1794 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1795 		}
1796 
1797 		return;
1798 	}
1799 
1800 	chan->dfs_state = NL80211_DFS_USABLE;
1801 	chan->dfs_state_entered = jiffies;
1802 
1803 	chan->beacon_found = false;
1804 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1805 	chan->max_antenna_gain =
1806 		min_t(int, chan->orig_mag,
1807 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1808 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1809 
1810 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1811 		if (reg_rule->dfs_cac_ms)
1812 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1813 		else
1814 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1815 	}
1816 
1817 	if (chan->orig_mpwr) {
1818 		/*
1819 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1820 		 * will always follow the passed country IE power settings.
1821 		 */
1822 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1823 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1824 			chan->max_power = chan->max_reg_power;
1825 		else
1826 			chan->max_power = min(chan->orig_mpwr,
1827 					      chan->max_reg_power);
1828 	} else
1829 		chan->max_power = chan->max_reg_power;
1830 }
1831 
1832 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1833 					  enum nl80211_reg_initiator initiator,
1834 					  struct ieee80211_channel *chan,
1835 					  u32 flags,
1836 					  struct regulatory_request *lr,
1837 					  struct wiphy *request_wiphy,
1838 					  const struct ieee80211_reg_rule *rrule1,
1839 					  const struct ieee80211_reg_rule *rrule2,
1840 					  struct ieee80211_freq_range *comb_range)
1841 {
1842 	u32 bw_flags1 = 0;
1843 	u32 bw_flags2 = 0;
1844 	const struct ieee80211_power_rule *power_rule1 = NULL;
1845 	const struct ieee80211_power_rule *power_rule2 = NULL;
1846 	const struct ieee80211_regdomain *regd;
1847 
1848 	regd = reg_get_regdomain(wiphy);
1849 
1850 	power_rule1 = &rrule1->power_rule;
1851 	power_rule2 = &rrule2->power_rule;
1852 	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1853 	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1854 
1855 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1856 	    request_wiphy && request_wiphy == wiphy &&
1857 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1858 		/* This guarantees the driver's requested regulatory domain
1859 		 * will always be used as a base for further regulatory
1860 		 * settings
1861 		 */
1862 		chan->flags =
1863 			map_regdom_flags(rrule1->flags) |
1864 			map_regdom_flags(rrule2->flags) |
1865 			bw_flags1 |
1866 			bw_flags2;
1867 		chan->orig_flags = chan->flags;
1868 		chan->max_antenna_gain =
1869 			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1870 			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1871 		chan->orig_mag = chan->max_antenna_gain;
1872 		chan->max_reg_power =
1873 			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1874 			      MBM_TO_DBM(power_rule2->max_eirp));
1875 		chan->max_power = chan->max_reg_power;
1876 		chan->orig_mpwr = chan->max_reg_power;
1877 
1878 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1879 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1880 			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1881 				chan->dfs_cac_ms = max_t(unsigned int,
1882 							 rrule1->dfs_cac_ms,
1883 							 rrule2->dfs_cac_ms);
1884 		}
1885 
1886 		return;
1887 	}
1888 
1889 	chan->dfs_state = NL80211_DFS_USABLE;
1890 	chan->dfs_state_entered = jiffies;
1891 
1892 	chan->beacon_found = false;
1893 	chan->flags = flags | bw_flags1 | bw_flags2 |
1894 		      map_regdom_flags(rrule1->flags) |
1895 		      map_regdom_flags(rrule2->flags);
1896 
1897 	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1898 	 * (otherwise no adj. rule case), recheck therefore
1899 	 */
1900 	if (cfg80211_does_bw_fit_range(comb_range,
1901 				       ieee80211_channel_to_khz(chan),
1902 				       MHZ_TO_KHZ(10)))
1903 		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1904 	if (cfg80211_does_bw_fit_range(comb_range,
1905 				       ieee80211_channel_to_khz(chan),
1906 				       MHZ_TO_KHZ(20)))
1907 		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1908 
1909 	chan->max_antenna_gain =
1910 		min_t(int, chan->orig_mag,
1911 		      min_t(int,
1912 			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1913 			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1914 	chan->max_reg_power = min_t(int,
1915 				    MBM_TO_DBM(power_rule1->max_eirp),
1916 				    MBM_TO_DBM(power_rule2->max_eirp));
1917 
1918 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1919 		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1920 			chan->dfs_cac_ms = max_t(unsigned int,
1921 						 rrule1->dfs_cac_ms,
1922 						 rrule2->dfs_cac_ms);
1923 		else
1924 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1925 	}
1926 
1927 	if (chan->orig_mpwr) {
1928 		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1929 		 * will always follow the passed country IE power settings.
1930 		 */
1931 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1932 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1933 			chan->max_power = chan->max_reg_power;
1934 		else
1935 			chan->max_power = min(chan->orig_mpwr,
1936 					      chan->max_reg_power);
1937 	} else {
1938 		chan->max_power = chan->max_reg_power;
1939 	}
1940 }
1941 
1942 /* Note that right now we assume the desired channel bandwidth
1943  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1944  * per channel, the primary and the extension channel).
1945  */
1946 static void handle_channel(struct wiphy *wiphy,
1947 			   enum nl80211_reg_initiator initiator,
1948 			   struct ieee80211_channel *chan)
1949 {
1950 	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1951 	struct regulatory_request *lr = get_last_request();
1952 	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1953 	const struct ieee80211_reg_rule *rrule = NULL;
1954 	const struct ieee80211_reg_rule *rrule1 = NULL;
1955 	const struct ieee80211_reg_rule *rrule2 = NULL;
1956 
1957 	u32 flags = chan->orig_flags;
1958 
1959 	rrule = freq_reg_info(wiphy, orig_chan_freq);
1960 	if (IS_ERR(rrule)) {
1961 		/* check for adjacent match, therefore get rules for
1962 		 * chan - 20 MHz and chan + 20 MHz and test
1963 		 * if reg rules are adjacent
1964 		 */
1965 		rrule1 = freq_reg_info(wiphy,
1966 				       orig_chan_freq - MHZ_TO_KHZ(20));
1967 		rrule2 = freq_reg_info(wiphy,
1968 				       orig_chan_freq + MHZ_TO_KHZ(20));
1969 		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1970 			struct ieee80211_freq_range comb_range;
1971 
1972 			if (rrule1->freq_range.end_freq_khz !=
1973 			    rrule2->freq_range.start_freq_khz)
1974 				goto disable_chan;
1975 
1976 			comb_range.start_freq_khz =
1977 				rrule1->freq_range.start_freq_khz;
1978 			comb_range.end_freq_khz =
1979 				rrule2->freq_range.end_freq_khz;
1980 			comb_range.max_bandwidth_khz =
1981 				min_t(u32,
1982 				      rrule1->freq_range.max_bandwidth_khz,
1983 				      rrule2->freq_range.max_bandwidth_khz);
1984 
1985 			if (!cfg80211_does_bw_fit_range(&comb_range,
1986 							orig_chan_freq,
1987 							MHZ_TO_KHZ(20)))
1988 				goto disable_chan;
1989 
1990 			handle_channel_adjacent_rules(wiphy, initiator, chan,
1991 						      flags, lr, request_wiphy,
1992 						      rrule1, rrule2,
1993 						      &comb_range);
1994 			return;
1995 		}
1996 
1997 disable_chan:
1998 		/* We will disable all channels that do not match our
1999 		 * received regulatory rule unless the hint is coming
2000 		 * from a Country IE and the Country IE had no information
2001 		 * about a band. The IEEE 802.11 spec allows for an AP
2002 		 * to send only a subset of the regulatory rules allowed,
2003 		 * so an AP in the US that only supports 2.4 GHz may only send
2004 		 * a country IE with information for the 2.4 GHz band
2005 		 * while 5 GHz is still supported.
2006 		 */
2007 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2008 		    PTR_ERR(rrule) == -ERANGE)
2009 			return;
2010 
2011 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2012 		    request_wiphy && request_wiphy == wiphy &&
2013 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2014 			pr_debug("Disabling freq %d.%03d MHz for good\n",
2015 				 chan->center_freq, chan->freq_offset);
2016 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2017 			chan->flags = chan->orig_flags;
2018 		} else {
2019 			pr_debug("Disabling freq %d.%03d MHz\n",
2020 				 chan->center_freq, chan->freq_offset);
2021 			chan->flags |= IEEE80211_CHAN_DISABLED;
2022 		}
2023 		return;
2024 	}
2025 
2026 	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2027 				   request_wiphy, rrule);
2028 }
2029 
2030 static void handle_band(struct wiphy *wiphy,
2031 			enum nl80211_reg_initiator initiator,
2032 			struct ieee80211_supported_band *sband)
2033 {
2034 	unsigned int i;
2035 
2036 	if (!sband)
2037 		return;
2038 
2039 	for (i = 0; i < sband->n_channels; i++)
2040 		handle_channel(wiphy, initiator, &sband->channels[i]);
2041 }
2042 
2043 static bool reg_request_cell_base(struct regulatory_request *request)
2044 {
2045 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2046 		return false;
2047 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2048 }
2049 
2050 bool reg_last_request_cell_base(void)
2051 {
2052 	return reg_request_cell_base(get_last_request());
2053 }
2054 
2055 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2056 /* Core specific check */
2057 static enum reg_request_treatment
2058 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2059 {
2060 	struct regulatory_request *lr = get_last_request();
2061 
2062 	if (!reg_num_devs_support_basehint)
2063 		return REG_REQ_IGNORE;
2064 
2065 	if (reg_request_cell_base(lr) &&
2066 	    !regdom_changes(pending_request->alpha2))
2067 		return REG_REQ_ALREADY_SET;
2068 
2069 	return REG_REQ_OK;
2070 }
2071 
2072 /* Device specific check */
2073 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2074 {
2075 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2076 }
2077 #else
2078 static enum reg_request_treatment
2079 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2080 {
2081 	return REG_REQ_IGNORE;
2082 }
2083 
2084 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2085 {
2086 	return true;
2087 }
2088 #endif
2089 
2090 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2091 {
2092 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2093 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2094 		return true;
2095 	return false;
2096 }
2097 
2098 static bool ignore_reg_update(struct wiphy *wiphy,
2099 			      enum nl80211_reg_initiator initiator)
2100 {
2101 	struct regulatory_request *lr = get_last_request();
2102 
2103 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2104 		return true;
2105 
2106 	if (!lr) {
2107 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2108 			 reg_initiator_name(initiator));
2109 		return true;
2110 	}
2111 
2112 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2113 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2114 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2115 			 reg_initiator_name(initiator));
2116 		return true;
2117 	}
2118 
2119 	/*
2120 	 * wiphy->regd will be set once the device has its own
2121 	 * desired regulatory domain set
2122 	 */
2123 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2124 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2125 	    !is_world_regdom(lr->alpha2)) {
2126 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2127 			 reg_initiator_name(initiator));
2128 		return true;
2129 	}
2130 
2131 	if (reg_request_cell_base(lr))
2132 		return reg_dev_ignore_cell_hint(wiphy);
2133 
2134 	return false;
2135 }
2136 
2137 static bool reg_is_world_roaming(struct wiphy *wiphy)
2138 {
2139 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2140 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2141 	struct regulatory_request *lr = get_last_request();
2142 
2143 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2144 		return true;
2145 
2146 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2147 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2148 		return true;
2149 
2150 	return false;
2151 }
2152 
2153 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2154 			      struct reg_beacon *reg_beacon)
2155 {
2156 	struct ieee80211_supported_band *sband;
2157 	struct ieee80211_channel *chan;
2158 	bool channel_changed = false;
2159 	struct ieee80211_channel chan_before;
2160 
2161 	sband = wiphy->bands[reg_beacon->chan.band];
2162 	chan = &sband->channels[chan_idx];
2163 
2164 	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2165 		return;
2166 
2167 	if (chan->beacon_found)
2168 		return;
2169 
2170 	chan->beacon_found = true;
2171 
2172 	if (!reg_is_world_roaming(wiphy))
2173 		return;
2174 
2175 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2176 		return;
2177 
2178 	chan_before = *chan;
2179 
2180 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2181 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2182 		channel_changed = true;
2183 	}
2184 
2185 	if (channel_changed)
2186 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2187 }
2188 
2189 /*
2190  * Called when a scan on a wiphy finds a beacon on
2191  * new channel
2192  */
2193 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2194 				    struct reg_beacon *reg_beacon)
2195 {
2196 	unsigned int i;
2197 	struct ieee80211_supported_band *sband;
2198 
2199 	if (!wiphy->bands[reg_beacon->chan.band])
2200 		return;
2201 
2202 	sband = wiphy->bands[reg_beacon->chan.band];
2203 
2204 	for (i = 0; i < sband->n_channels; i++)
2205 		handle_reg_beacon(wiphy, i, reg_beacon);
2206 }
2207 
2208 /*
2209  * Called upon reg changes or a new wiphy is added
2210  */
2211 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2212 {
2213 	unsigned int i;
2214 	struct ieee80211_supported_band *sband;
2215 	struct reg_beacon *reg_beacon;
2216 
2217 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2218 		if (!wiphy->bands[reg_beacon->chan.band])
2219 			continue;
2220 		sband = wiphy->bands[reg_beacon->chan.band];
2221 		for (i = 0; i < sband->n_channels; i++)
2222 			handle_reg_beacon(wiphy, i, reg_beacon);
2223 	}
2224 }
2225 
2226 /* Reap the advantages of previously found beacons */
2227 static void reg_process_beacons(struct wiphy *wiphy)
2228 {
2229 	/*
2230 	 * Means we are just firing up cfg80211, so no beacons would
2231 	 * have been processed yet.
2232 	 */
2233 	if (!last_request)
2234 		return;
2235 	wiphy_update_beacon_reg(wiphy);
2236 }
2237 
2238 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2239 {
2240 	if (!chan)
2241 		return false;
2242 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2243 		return false;
2244 	/* This would happen when regulatory rules disallow HT40 completely */
2245 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2246 		return false;
2247 	return true;
2248 }
2249 
2250 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2251 					 struct ieee80211_channel *channel)
2252 {
2253 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2254 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2255 	const struct ieee80211_regdomain *regd;
2256 	unsigned int i;
2257 	u32 flags;
2258 
2259 	if (!is_ht40_allowed(channel)) {
2260 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2261 		return;
2262 	}
2263 
2264 	/*
2265 	 * We need to ensure the extension channels exist to
2266 	 * be able to use HT40- or HT40+, this finds them (or not)
2267 	 */
2268 	for (i = 0; i < sband->n_channels; i++) {
2269 		struct ieee80211_channel *c = &sband->channels[i];
2270 
2271 		if (c->center_freq == (channel->center_freq - 20))
2272 			channel_before = c;
2273 		if (c->center_freq == (channel->center_freq + 20))
2274 			channel_after = c;
2275 	}
2276 
2277 	flags = 0;
2278 	regd = get_wiphy_regdom(wiphy);
2279 	if (regd) {
2280 		const struct ieee80211_reg_rule *reg_rule =
2281 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2282 					   regd, MHZ_TO_KHZ(20));
2283 
2284 		if (!IS_ERR(reg_rule))
2285 			flags = reg_rule->flags;
2286 	}
2287 
2288 	/*
2289 	 * Please note that this assumes target bandwidth is 20 MHz,
2290 	 * if that ever changes we also need to change the below logic
2291 	 * to include that as well.
2292 	 */
2293 	if (!is_ht40_allowed(channel_before) ||
2294 	    flags & NL80211_RRF_NO_HT40MINUS)
2295 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2296 	else
2297 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2298 
2299 	if (!is_ht40_allowed(channel_after) ||
2300 	    flags & NL80211_RRF_NO_HT40PLUS)
2301 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2302 	else
2303 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2304 }
2305 
2306 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2307 				      struct ieee80211_supported_band *sband)
2308 {
2309 	unsigned int i;
2310 
2311 	if (!sband)
2312 		return;
2313 
2314 	for (i = 0; i < sband->n_channels; i++)
2315 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2316 }
2317 
2318 static void reg_process_ht_flags(struct wiphy *wiphy)
2319 {
2320 	enum nl80211_band band;
2321 
2322 	if (!wiphy)
2323 		return;
2324 
2325 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2326 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2327 }
2328 
2329 static void reg_call_notifier(struct wiphy *wiphy,
2330 			      struct regulatory_request *request)
2331 {
2332 	if (wiphy->reg_notifier)
2333 		wiphy->reg_notifier(wiphy, request);
2334 }
2335 
2336 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2337 {
2338 	struct cfg80211_chan_def chandef = {};
2339 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2340 	enum nl80211_iftype iftype;
2341 
2342 	wdev_lock(wdev);
2343 	iftype = wdev->iftype;
2344 
2345 	/* make sure the interface is active */
2346 	if (!wdev->netdev || !netif_running(wdev->netdev))
2347 		goto wdev_inactive_unlock;
2348 
2349 	switch (iftype) {
2350 	case NL80211_IFTYPE_AP:
2351 	case NL80211_IFTYPE_P2P_GO:
2352 		if (!wdev->beacon_interval)
2353 			goto wdev_inactive_unlock;
2354 		chandef = wdev->chandef;
2355 		break;
2356 	case NL80211_IFTYPE_ADHOC:
2357 		if (!wdev->ssid_len)
2358 			goto wdev_inactive_unlock;
2359 		chandef = wdev->chandef;
2360 		break;
2361 	case NL80211_IFTYPE_STATION:
2362 	case NL80211_IFTYPE_P2P_CLIENT:
2363 		if (!wdev->current_bss ||
2364 		    !wdev->current_bss->pub.channel)
2365 			goto wdev_inactive_unlock;
2366 
2367 		if (!rdev->ops->get_channel ||
2368 		    rdev_get_channel(rdev, wdev, &chandef))
2369 			cfg80211_chandef_create(&chandef,
2370 						wdev->current_bss->pub.channel,
2371 						NL80211_CHAN_NO_HT);
2372 		break;
2373 	case NL80211_IFTYPE_MONITOR:
2374 	case NL80211_IFTYPE_AP_VLAN:
2375 	case NL80211_IFTYPE_P2P_DEVICE:
2376 		/* no enforcement required */
2377 		break;
2378 	default:
2379 		/* others not implemented for now */
2380 		WARN_ON(1);
2381 		break;
2382 	}
2383 
2384 	wdev_unlock(wdev);
2385 
2386 	switch (iftype) {
2387 	case NL80211_IFTYPE_AP:
2388 	case NL80211_IFTYPE_P2P_GO:
2389 	case NL80211_IFTYPE_ADHOC:
2390 		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2391 	case NL80211_IFTYPE_STATION:
2392 	case NL80211_IFTYPE_P2P_CLIENT:
2393 		return cfg80211_chandef_usable(wiphy, &chandef,
2394 					       IEEE80211_CHAN_DISABLED);
2395 	default:
2396 		break;
2397 	}
2398 
2399 	return true;
2400 
2401 wdev_inactive_unlock:
2402 	wdev_unlock(wdev);
2403 	return true;
2404 }
2405 
2406 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2407 {
2408 	struct wireless_dev *wdev;
2409 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2410 
2411 	ASSERT_RTNL();
2412 
2413 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2414 		if (!reg_wdev_chan_valid(wiphy, wdev))
2415 			cfg80211_leave(rdev, wdev);
2416 }
2417 
2418 static void reg_check_chans_work(struct work_struct *work)
2419 {
2420 	struct cfg80211_registered_device *rdev;
2421 
2422 	pr_debug("Verifying active interfaces after reg change\n");
2423 	rtnl_lock();
2424 
2425 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2426 		if (!(rdev->wiphy.regulatory_flags &
2427 		      REGULATORY_IGNORE_STALE_KICKOFF))
2428 			reg_leave_invalid_chans(&rdev->wiphy);
2429 
2430 	rtnl_unlock();
2431 }
2432 
2433 static void reg_check_channels(void)
2434 {
2435 	/*
2436 	 * Give usermode a chance to do something nicer (move to another
2437 	 * channel, orderly disconnection), before forcing a disconnection.
2438 	 */
2439 	mod_delayed_work(system_power_efficient_wq,
2440 			 &reg_check_chans,
2441 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2442 }
2443 
2444 static void wiphy_update_regulatory(struct wiphy *wiphy,
2445 				    enum nl80211_reg_initiator initiator)
2446 {
2447 	enum nl80211_band band;
2448 	struct regulatory_request *lr = get_last_request();
2449 
2450 	if (ignore_reg_update(wiphy, initiator)) {
2451 		/*
2452 		 * Regulatory updates set by CORE are ignored for custom
2453 		 * regulatory cards. Let us notify the changes to the driver,
2454 		 * as some drivers used this to restore its orig_* reg domain.
2455 		 */
2456 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2457 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2458 		    !(wiphy->regulatory_flags &
2459 		      REGULATORY_WIPHY_SELF_MANAGED))
2460 			reg_call_notifier(wiphy, lr);
2461 		return;
2462 	}
2463 
2464 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2465 
2466 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2467 		handle_band(wiphy, initiator, wiphy->bands[band]);
2468 
2469 	reg_process_beacons(wiphy);
2470 	reg_process_ht_flags(wiphy);
2471 	reg_call_notifier(wiphy, lr);
2472 }
2473 
2474 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2475 {
2476 	struct cfg80211_registered_device *rdev;
2477 	struct wiphy *wiphy;
2478 
2479 	ASSERT_RTNL();
2480 
2481 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2482 		wiphy = &rdev->wiphy;
2483 		wiphy_update_regulatory(wiphy, initiator);
2484 	}
2485 
2486 	reg_check_channels();
2487 }
2488 
2489 static void handle_channel_custom(struct wiphy *wiphy,
2490 				  struct ieee80211_channel *chan,
2491 				  const struct ieee80211_regdomain *regd,
2492 				  u32 min_bw)
2493 {
2494 	u32 bw_flags = 0;
2495 	const struct ieee80211_reg_rule *reg_rule = NULL;
2496 	const struct ieee80211_power_rule *power_rule = NULL;
2497 	u32 bw, center_freq_khz;
2498 
2499 	center_freq_khz = ieee80211_channel_to_khz(chan);
2500 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2501 		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2502 		if (!IS_ERR(reg_rule))
2503 			break;
2504 	}
2505 
2506 	if (IS_ERR_OR_NULL(reg_rule)) {
2507 		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2508 			 chan->center_freq, chan->freq_offset);
2509 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2510 			chan->flags |= IEEE80211_CHAN_DISABLED;
2511 		} else {
2512 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2513 			chan->flags = chan->orig_flags;
2514 		}
2515 		return;
2516 	}
2517 
2518 	power_rule = &reg_rule->power_rule;
2519 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2520 
2521 	chan->dfs_state_entered = jiffies;
2522 	chan->dfs_state = NL80211_DFS_USABLE;
2523 
2524 	chan->beacon_found = false;
2525 
2526 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2527 		chan->flags = chan->orig_flags | bw_flags |
2528 			      map_regdom_flags(reg_rule->flags);
2529 	else
2530 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2531 
2532 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2533 	chan->max_reg_power = chan->max_power =
2534 		(int) MBM_TO_DBM(power_rule->max_eirp);
2535 
2536 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2537 		if (reg_rule->dfs_cac_ms)
2538 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2539 		else
2540 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2541 	}
2542 
2543 	chan->max_power = chan->max_reg_power;
2544 }
2545 
2546 static void handle_band_custom(struct wiphy *wiphy,
2547 			       struct ieee80211_supported_band *sband,
2548 			       const struct ieee80211_regdomain *regd)
2549 {
2550 	unsigned int i;
2551 
2552 	if (!sband)
2553 		return;
2554 
2555 	/*
2556 	 * We currently assume that you always want at least 20 MHz,
2557 	 * otherwise channel 12 might get enabled if this rule is
2558 	 * compatible to US, which permits 2402 - 2472 MHz.
2559 	 */
2560 	for (i = 0; i < sband->n_channels; i++)
2561 		handle_channel_custom(wiphy, &sband->channels[i], regd,
2562 				      MHZ_TO_KHZ(20));
2563 }
2564 
2565 /* Used by drivers prior to wiphy registration */
2566 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2567 				   const struct ieee80211_regdomain *regd)
2568 {
2569 	const struct ieee80211_regdomain *new_regd, *tmp;
2570 	enum nl80211_band band;
2571 	unsigned int bands_set = 0;
2572 
2573 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2574 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2575 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2576 
2577 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2578 		if (!wiphy->bands[band])
2579 			continue;
2580 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2581 		bands_set++;
2582 	}
2583 
2584 	/*
2585 	 * no point in calling this if it won't have any effect
2586 	 * on your device's supported bands.
2587 	 */
2588 	WARN_ON(!bands_set);
2589 	new_regd = reg_copy_regd(regd);
2590 	if (IS_ERR(new_regd))
2591 		return;
2592 
2593 	rtnl_lock();
2594 	wiphy_lock(wiphy);
2595 
2596 	tmp = get_wiphy_regdom(wiphy);
2597 	rcu_assign_pointer(wiphy->regd, new_regd);
2598 	rcu_free_regdom(tmp);
2599 
2600 	wiphy_unlock(wiphy);
2601 	rtnl_unlock();
2602 }
2603 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2604 
2605 static void reg_set_request_processed(void)
2606 {
2607 	bool need_more_processing = false;
2608 	struct regulatory_request *lr = get_last_request();
2609 
2610 	lr->processed = true;
2611 
2612 	spin_lock(&reg_requests_lock);
2613 	if (!list_empty(&reg_requests_list))
2614 		need_more_processing = true;
2615 	spin_unlock(&reg_requests_lock);
2616 
2617 	cancel_crda_timeout();
2618 
2619 	if (need_more_processing)
2620 		schedule_work(&reg_work);
2621 }
2622 
2623 /**
2624  * reg_process_hint_core - process core regulatory requests
2625  * @core_request: a pending core regulatory request
2626  *
2627  * The wireless subsystem can use this function to process
2628  * a regulatory request issued by the regulatory core.
2629  */
2630 static enum reg_request_treatment
2631 reg_process_hint_core(struct regulatory_request *core_request)
2632 {
2633 	if (reg_query_database(core_request)) {
2634 		core_request->intersect = false;
2635 		core_request->processed = false;
2636 		reg_update_last_request(core_request);
2637 		return REG_REQ_OK;
2638 	}
2639 
2640 	return REG_REQ_IGNORE;
2641 }
2642 
2643 static enum reg_request_treatment
2644 __reg_process_hint_user(struct regulatory_request *user_request)
2645 {
2646 	struct regulatory_request *lr = get_last_request();
2647 
2648 	if (reg_request_cell_base(user_request))
2649 		return reg_ignore_cell_hint(user_request);
2650 
2651 	if (reg_request_cell_base(lr))
2652 		return REG_REQ_IGNORE;
2653 
2654 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2655 		return REG_REQ_INTERSECT;
2656 	/*
2657 	 * If the user knows better the user should set the regdom
2658 	 * to their country before the IE is picked up
2659 	 */
2660 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2661 	    lr->intersect)
2662 		return REG_REQ_IGNORE;
2663 	/*
2664 	 * Process user requests only after previous user/driver/core
2665 	 * requests have been processed
2666 	 */
2667 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2668 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2669 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2670 	    regdom_changes(lr->alpha2))
2671 		return REG_REQ_IGNORE;
2672 
2673 	if (!regdom_changes(user_request->alpha2))
2674 		return REG_REQ_ALREADY_SET;
2675 
2676 	return REG_REQ_OK;
2677 }
2678 
2679 /**
2680  * reg_process_hint_user - process user regulatory requests
2681  * @user_request: a pending user regulatory request
2682  *
2683  * The wireless subsystem can use this function to process
2684  * a regulatory request initiated by userspace.
2685  */
2686 static enum reg_request_treatment
2687 reg_process_hint_user(struct regulatory_request *user_request)
2688 {
2689 	enum reg_request_treatment treatment;
2690 
2691 	treatment = __reg_process_hint_user(user_request);
2692 	if (treatment == REG_REQ_IGNORE ||
2693 	    treatment == REG_REQ_ALREADY_SET)
2694 		return REG_REQ_IGNORE;
2695 
2696 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2697 	user_request->processed = false;
2698 
2699 	if (reg_query_database(user_request)) {
2700 		reg_update_last_request(user_request);
2701 		user_alpha2[0] = user_request->alpha2[0];
2702 		user_alpha2[1] = user_request->alpha2[1];
2703 		return REG_REQ_OK;
2704 	}
2705 
2706 	return REG_REQ_IGNORE;
2707 }
2708 
2709 static enum reg_request_treatment
2710 __reg_process_hint_driver(struct regulatory_request *driver_request)
2711 {
2712 	struct regulatory_request *lr = get_last_request();
2713 
2714 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2715 		if (regdom_changes(driver_request->alpha2))
2716 			return REG_REQ_OK;
2717 		return REG_REQ_ALREADY_SET;
2718 	}
2719 
2720 	/*
2721 	 * This would happen if you unplug and plug your card
2722 	 * back in or if you add a new device for which the previously
2723 	 * loaded card also agrees on the regulatory domain.
2724 	 */
2725 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2726 	    !regdom_changes(driver_request->alpha2))
2727 		return REG_REQ_ALREADY_SET;
2728 
2729 	return REG_REQ_INTERSECT;
2730 }
2731 
2732 /**
2733  * reg_process_hint_driver - process driver regulatory requests
2734  * @wiphy: the wireless device for the regulatory request
2735  * @driver_request: a pending driver regulatory request
2736  *
2737  * The wireless subsystem can use this function to process
2738  * a regulatory request issued by an 802.11 driver.
2739  *
2740  * Returns one of the different reg request treatment values.
2741  */
2742 static enum reg_request_treatment
2743 reg_process_hint_driver(struct wiphy *wiphy,
2744 			struct regulatory_request *driver_request)
2745 {
2746 	const struct ieee80211_regdomain *regd, *tmp;
2747 	enum reg_request_treatment treatment;
2748 
2749 	treatment = __reg_process_hint_driver(driver_request);
2750 
2751 	switch (treatment) {
2752 	case REG_REQ_OK:
2753 		break;
2754 	case REG_REQ_IGNORE:
2755 		return REG_REQ_IGNORE;
2756 	case REG_REQ_INTERSECT:
2757 	case REG_REQ_ALREADY_SET:
2758 		regd = reg_copy_regd(get_cfg80211_regdom());
2759 		if (IS_ERR(regd))
2760 			return REG_REQ_IGNORE;
2761 
2762 		tmp = get_wiphy_regdom(wiphy);
2763 		ASSERT_RTNL();
2764 		wiphy_lock(wiphy);
2765 		rcu_assign_pointer(wiphy->regd, regd);
2766 		wiphy_unlock(wiphy);
2767 		rcu_free_regdom(tmp);
2768 	}
2769 
2770 
2771 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2772 	driver_request->processed = false;
2773 
2774 	/*
2775 	 * Since CRDA will not be called in this case as we already
2776 	 * have applied the requested regulatory domain before we just
2777 	 * inform userspace we have processed the request
2778 	 */
2779 	if (treatment == REG_REQ_ALREADY_SET) {
2780 		nl80211_send_reg_change_event(driver_request);
2781 		reg_update_last_request(driver_request);
2782 		reg_set_request_processed();
2783 		return REG_REQ_ALREADY_SET;
2784 	}
2785 
2786 	if (reg_query_database(driver_request)) {
2787 		reg_update_last_request(driver_request);
2788 		return REG_REQ_OK;
2789 	}
2790 
2791 	return REG_REQ_IGNORE;
2792 }
2793 
2794 static enum reg_request_treatment
2795 __reg_process_hint_country_ie(struct wiphy *wiphy,
2796 			      struct regulatory_request *country_ie_request)
2797 {
2798 	struct wiphy *last_wiphy = NULL;
2799 	struct regulatory_request *lr = get_last_request();
2800 
2801 	if (reg_request_cell_base(lr)) {
2802 		/* Trust a Cell base station over the AP's country IE */
2803 		if (regdom_changes(country_ie_request->alpha2))
2804 			return REG_REQ_IGNORE;
2805 		return REG_REQ_ALREADY_SET;
2806 	} else {
2807 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2808 			return REG_REQ_IGNORE;
2809 	}
2810 
2811 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2812 		return -EINVAL;
2813 
2814 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2815 		return REG_REQ_OK;
2816 
2817 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2818 
2819 	if (last_wiphy != wiphy) {
2820 		/*
2821 		 * Two cards with two APs claiming different
2822 		 * Country IE alpha2s. We could
2823 		 * intersect them, but that seems unlikely
2824 		 * to be correct. Reject second one for now.
2825 		 */
2826 		if (regdom_changes(country_ie_request->alpha2))
2827 			return REG_REQ_IGNORE;
2828 		return REG_REQ_ALREADY_SET;
2829 	}
2830 
2831 	if (regdom_changes(country_ie_request->alpha2))
2832 		return REG_REQ_OK;
2833 	return REG_REQ_ALREADY_SET;
2834 }
2835 
2836 /**
2837  * reg_process_hint_country_ie - process regulatory requests from country IEs
2838  * @wiphy: the wireless device for the regulatory request
2839  * @country_ie_request: a regulatory request from a country IE
2840  *
2841  * The wireless subsystem can use this function to process
2842  * a regulatory request issued by a country Information Element.
2843  *
2844  * Returns one of the different reg request treatment values.
2845  */
2846 static enum reg_request_treatment
2847 reg_process_hint_country_ie(struct wiphy *wiphy,
2848 			    struct regulatory_request *country_ie_request)
2849 {
2850 	enum reg_request_treatment treatment;
2851 
2852 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2853 
2854 	switch (treatment) {
2855 	case REG_REQ_OK:
2856 		break;
2857 	case REG_REQ_IGNORE:
2858 		return REG_REQ_IGNORE;
2859 	case REG_REQ_ALREADY_SET:
2860 		reg_free_request(country_ie_request);
2861 		return REG_REQ_ALREADY_SET;
2862 	case REG_REQ_INTERSECT:
2863 		/*
2864 		 * This doesn't happen yet, not sure we
2865 		 * ever want to support it for this case.
2866 		 */
2867 		WARN_ONCE(1, "Unexpected intersection for country elements");
2868 		return REG_REQ_IGNORE;
2869 	}
2870 
2871 	country_ie_request->intersect = false;
2872 	country_ie_request->processed = false;
2873 
2874 	if (reg_query_database(country_ie_request)) {
2875 		reg_update_last_request(country_ie_request);
2876 		return REG_REQ_OK;
2877 	}
2878 
2879 	return REG_REQ_IGNORE;
2880 }
2881 
2882 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2883 {
2884 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2885 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2886 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2887 	bool dfs_domain_same;
2888 
2889 	rcu_read_lock();
2890 
2891 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2892 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2893 	if (!wiphy1_regd)
2894 		wiphy1_regd = cfg80211_regd;
2895 
2896 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2897 	if (!wiphy2_regd)
2898 		wiphy2_regd = cfg80211_regd;
2899 
2900 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2901 
2902 	rcu_read_unlock();
2903 
2904 	return dfs_domain_same;
2905 }
2906 
2907 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2908 				    struct ieee80211_channel *src_chan)
2909 {
2910 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2911 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2912 		return;
2913 
2914 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2915 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2916 		return;
2917 
2918 	if (src_chan->center_freq == dst_chan->center_freq &&
2919 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2920 		dst_chan->dfs_state = src_chan->dfs_state;
2921 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2922 	}
2923 }
2924 
2925 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2926 				       struct wiphy *src_wiphy)
2927 {
2928 	struct ieee80211_supported_band *src_sband, *dst_sband;
2929 	struct ieee80211_channel *src_chan, *dst_chan;
2930 	int i, j, band;
2931 
2932 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2933 		return;
2934 
2935 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2936 		dst_sband = dst_wiphy->bands[band];
2937 		src_sband = src_wiphy->bands[band];
2938 		if (!dst_sband || !src_sband)
2939 			continue;
2940 
2941 		for (i = 0; i < dst_sband->n_channels; i++) {
2942 			dst_chan = &dst_sband->channels[i];
2943 			for (j = 0; j < src_sband->n_channels; j++) {
2944 				src_chan = &src_sband->channels[j];
2945 				reg_copy_dfs_chan_state(dst_chan, src_chan);
2946 			}
2947 		}
2948 	}
2949 }
2950 
2951 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2952 {
2953 	struct cfg80211_registered_device *rdev;
2954 
2955 	ASSERT_RTNL();
2956 
2957 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2958 		if (wiphy == &rdev->wiphy)
2959 			continue;
2960 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2961 	}
2962 }
2963 
2964 /* This processes *all* regulatory hints */
2965 static void reg_process_hint(struct regulatory_request *reg_request)
2966 {
2967 	struct wiphy *wiphy = NULL;
2968 	enum reg_request_treatment treatment;
2969 	enum nl80211_reg_initiator initiator = reg_request->initiator;
2970 
2971 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2972 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2973 
2974 	switch (initiator) {
2975 	case NL80211_REGDOM_SET_BY_CORE:
2976 		treatment = reg_process_hint_core(reg_request);
2977 		break;
2978 	case NL80211_REGDOM_SET_BY_USER:
2979 		treatment = reg_process_hint_user(reg_request);
2980 		break;
2981 	case NL80211_REGDOM_SET_BY_DRIVER:
2982 		if (!wiphy)
2983 			goto out_free;
2984 		treatment = reg_process_hint_driver(wiphy, reg_request);
2985 		break;
2986 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2987 		if (!wiphy)
2988 			goto out_free;
2989 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2990 		break;
2991 	default:
2992 		WARN(1, "invalid initiator %d\n", initiator);
2993 		goto out_free;
2994 	}
2995 
2996 	if (treatment == REG_REQ_IGNORE)
2997 		goto out_free;
2998 
2999 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3000 	     "unexpected treatment value %d\n", treatment);
3001 
3002 	/* This is required so that the orig_* parameters are saved.
3003 	 * NOTE: treatment must be set for any case that reaches here!
3004 	 */
3005 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3006 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3007 		wiphy_update_regulatory(wiphy, initiator);
3008 		wiphy_all_share_dfs_chan_state(wiphy);
3009 		reg_check_channels();
3010 	}
3011 
3012 	return;
3013 
3014 out_free:
3015 	reg_free_request(reg_request);
3016 }
3017 
3018 static void notify_self_managed_wiphys(struct regulatory_request *request)
3019 {
3020 	struct cfg80211_registered_device *rdev;
3021 	struct wiphy *wiphy;
3022 
3023 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3024 		wiphy = &rdev->wiphy;
3025 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3026 		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3027 			reg_call_notifier(wiphy, request);
3028 	}
3029 }
3030 
3031 /*
3032  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3033  * Regulatory hints come on a first come first serve basis and we
3034  * must process each one atomically.
3035  */
3036 static void reg_process_pending_hints(void)
3037 {
3038 	struct regulatory_request *reg_request, *lr;
3039 
3040 	lr = get_last_request();
3041 
3042 	/* When last_request->processed becomes true this will be rescheduled */
3043 	if (lr && !lr->processed) {
3044 		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3045 		return;
3046 	}
3047 
3048 	spin_lock(&reg_requests_lock);
3049 
3050 	if (list_empty(&reg_requests_list)) {
3051 		spin_unlock(&reg_requests_lock);
3052 		return;
3053 	}
3054 
3055 	reg_request = list_first_entry(&reg_requests_list,
3056 				       struct regulatory_request,
3057 				       list);
3058 	list_del_init(&reg_request->list);
3059 
3060 	spin_unlock(&reg_requests_lock);
3061 
3062 	notify_self_managed_wiphys(reg_request);
3063 
3064 	reg_process_hint(reg_request);
3065 
3066 	lr = get_last_request();
3067 
3068 	spin_lock(&reg_requests_lock);
3069 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3070 		schedule_work(&reg_work);
3071 	spin_unlock(&reg_requests_lock);
3072 }
3073 
3074 /* Processes beacon hints -- this has nothing to do with country IEs */
3075 static void reg_process_pending_beacon_hints(void)
3076 {
3077 	struct cfg80211_registered_device *rdev;
3078 	struct reg_beacon *pending_beacon, *tmp;
3079 
3080 	/* This goes through the _pending_ beacon list */
3081 	spin_lock_bh(&reg_pending_beacons_lock);
3082 
3083 	list_for_each_entry_safe(pending_beacon, tmp,
3084 				 &reg_pending_beacons, list) {
3085 		list_del_init(&pending_beacon->list);
3086 
3087 		/* Applies the beacon hint to current wiphys */
3088 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3089 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3090 
3091 		/* Remembers the beacon hint for new wiphys or reg changes */
3092 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3093 	}
3094 
3095 	spin_unlock_bh(&reg_pending_beacons_lock);
3096 }
3097 
3098 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3099 {
3100 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3101 	const struct ieee80211_regdomain *tmp;
3102 	const struct ieee80211_regdomain *regd;
3103 	enum nl80211_band band;
3104 	struct regulatory_request request = {};
3105 
3106 	ASSERT_RTNL();
3107 	lockdep_assert_wiphy(wiphy);
3108 
3109 	spin_lock(&reg_requests_lock);
3110 	regd = rdev->requested_regd;
3111 	rdev->requested_regd = NULL;
3112 	spin_unlock(&reg_requests_lock);
3113 
3114 	if (!regd)
3115 		return;
3116 
3117 	tmp = get_wiphy_regdom(wiphy);
3118 	rcu_assign_pointer(wiphy->regd, regd);
3119 	rcu_free_regdom(tmp);
3120 
3121 	for (band = 0; band < NUM_NL80211_BANDS; band++)
3122 		handle_band_custom(wiphy, wiphy->bands[band], regd);
3123 
3124 	reg_process_ht_flags(wiphy);
3125 
3126 	request.wiphy_idx = get_wiphy_idx(wiphy);
3127 	request.alpha2[0] = regd->alpha2[0];
3128 	request.alpha2[1] = regd->alpha2[1];
3129 	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3130 
3131 	nl80211_send_wiphy_reg_change_event(&request);
3132 }
3133 
3134 static void reg_process_self_managed_hints(void)
3135 {
3136 	struct cfg80211_registered_device *rdev;
3137 
3138 	ASSERT_RTNL();
3139 
3140 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3141 		wiphy_lock(&rdev->wiphy);
3142 		reg_process_self_managed_hint(&rdev->wiphy);
3143 		wiphy_unlock(&rdev->wiphy);
3144 	}
3145 
3146 	reg_check_channels();
3147 }
3148 
3149 static void reg_todo(struct work_struct *work)
3150 {
3151 	rtnl_lock();
3152 	reg_process_pending_hints();
3153 	reg_process_pending_beacon_hints();
3154 	reg_process_self_managed_hints();
3155 	rtnl_unlock();
3156 }
3157 
3158 static void queue_regulatory_request(struct regulatory_request *request)
3159 {
3160 	request->alpha2[0] = toupper(request->alpha2[0]);
3161 	request->alpha2[1] = toupper(request->alpha2[1]);
3162 
3163 	spin_lock(&reg_requests_lock);
3164 	list_add_tail(&request->list, &reg_requests_list);
3165 	spin_unlock(&reg_requests_lock);
3166 
3167 	schedule_work(&reg_work);
3168 }
3169 
3170 /*
3171  * Core regulatory hint -- happens during cfg80211_init()
3172  * and when we restore regulatory settings.
3173  */
3174 static int regulatory_hint_core(const char *alpha2)
3175 {
3176 	struct regulatory_request *request;
3177 
3178 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3179 	if (!request)
3180 		return -ENOMEM;
3181 
3182 	request->alpha2[0] = alpha2[0];
3183 	request->alpha2[1] = alpha2[1];
3184 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3185 	request->wiphy_idx = WIPHY_IDX_INVALID;
3186 
3187 	queue_regulatory_request(request);
3188 
3189 	return 0;
3190 }
3191 
3192 /* User hints */
3193 int regulatory_hint_user(const char *alpha2,
3194 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3195 {
3196 	struct regulatory_request *request;
3197 
3198 	if (WARN_ON(!alpha2))
3199 		return -EINVAL;
3200 
3201 	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3202 		return -EINVAL;
3203 
3204 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3205 	if (!request)
3206 		return -ENOMEM;
3207 
3208 	request->wiphy_idx = WIPHY_IDX_INVALID;
3209 	request->alpha2[0] = alpha2[0];
3210 	request->alpha2[1] = alpha2[1];
3211 	request->initiator = NL80211_REGDOM_SET_BY_USER;
3212 	request->user_reg_hint_type = user_reg_hint_type;
3213 
3214 	/* Allow calling CRDA again */
3215 	reset_crda_timeouts();
3216 
3217 	queue_regulatory_request(request);
3218 
3219 	return 0;
3220 }
3221 
3222 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3223 {
3224 	spin_lock(&reg_indoor_lock);
3225 
3226 	/* It is possible that more than one user space process is trying to
3227 	 * configure the indoor setting. To handle such cases, clear the indoor
3228 	 * setting in case that some process does not think that the device
3229 	 * is operating in an indoor environment. In addition, if a user space
3230 	 * process indicates that it is controlling the indoor setting, save its
3231 	 * portid, i.e., make it the owner.
3232 	 */
3233 	reg_is_indoor = is_indoor;
3234 	if (reg_is_indoor) {
3235 		if (!reg_is_indoor_portid)
3236 			reg_is_indoor_portid = portid;
3237 	} else {
3238 		reg_is_indoor_portid = 0;
3239 	}
3240 
3241 	spin_unlock(&reg_indoor_lock);
3242 
3243 	if (!is_indoor)
3244 		reg_check_channels();
3245 
3246 	return 0;
3247 }
3248 
3249 void regulatory_netlink_notify(u32 portid)
3250 {
3251 	spin_lock(&reg_indoor_lock);
3252 
3253 	if (reg_is_indoor_portid != portid) {
3254 		spin_unlock(&reg_indoor_lock);
3255 		return;
3256 	}
3257 
3258 	reg_is_indoor = false;
3259 	reg_is_indoor_portid = 0;
3260 
3261 	spin_unlock(&reg_indoor_lock);
3262 
3263 	reg_check_channels();
3264 }
3265 
3266 /* Driver hints */
3267 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3268 {
3269 	struct regulatory_request *request;
3270 
3271 	if (WARN_ON(!alpha2 || !wiphy))
3272 		return -EINVAL;
3273 
3274 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3275 
3276 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3277 	if (!request)
3278 		return -ENOMEM;
3279 
3280 	request->wiphy_idx = get_wiphy_idx(wiphy);
3281 
3282 	request->alpha2[0] = alpha2[0];
3283 	request->alpha2[1] = alpha2[1];
3284 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3285 
3286 	/* Allow calling CRDA again */
3287 	reset_crda_timeouts();
3288 
3289 	queue_regulatory_request(request);
3290 
3291 	return 0;
3292 }
3293 EXPORT_SYMBOL(regulatory_hint);
3294 
3295 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3296 				const u8 *country_ie, u8 country_ie_len)
3297 {
3298 	char alpha2[2];
3299 	enum environment_cap env = ENVIRON_ANY;
3300 	struct regulatory_request *request = NULL, *lr;
3301 
3302 	/* IE len must be evenly divisible by 2 */
3303 	if (country_ie_len & 0x01)
3304 		return;
3305 
3306 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3307 		return;
3308 
3309 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3310 	if (!request)
3311 		return;
3312 
3313 	alpha2[0] = country_ie[0];
3314 	alpha2[1] = country_ie[1];
3315 
3316 	if (country_ie[2] == 'I')
3317 		env = ENVIRON_INDOOR;
3318 	else if (country_ie[2] == 'O')
3319 		env = ENVIRON_OUTDOOR;
3320 
3321 	rcu_read_lock();
3322 	lr = get_last_request();
3323 
3324 	if (unlikely(!lr))
3325 		goto out;
3326 
3327 	/*
3328 	 * We will run this only upon a successful connection on cfg80211.
3329 	 * We leave conflict resolution to the workqueue, where can hold
3330 	 * the RTNL.
3331 	 */
3332 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3333 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3334 		goto out;
3335 
3336 	request->wiphy_idx = get_wiphy_idx(wiphy);
3337 	request->alpha2[0] = alpha2[0];
3338 	request->alpha2[1] = alpha2[1];
3339 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3340 	request->country_ie_env = env;
3341 
3342 	/* Allow calling CRDA again */
3343 	reset_crda_timeouts();
3344 
3345 	queue_regulatory_request(request);
3346 	request = NULL;
3347 out:
3348 	kfree(request);
3349 	rcu_read_unlock();
3350 }
3351 
3352 static void restore_alpha2(char *alpha2, bool reset_user)
3353 {
3354 	/* indicates there is no alpha2 to consider for restoration */
3355 	alpha2[0] = '9';
3356 	alpha2[1] = '7';
3357 
3358 	/* The user setting has precedence over the module parameter */
3359 	if (is_user_regdom_saved()) {
3360 		/* Unless we're asked to ignore it and reset it */
3361 		if (reset_user) {
3362 			pr_debug("Restoring regulatory settings including user preference\n");
3363 			user_alpha2[0] = '9';
3364 			user_alpha2[1] = '7';
3365 
3366 			/*
3367 			 * If we're ignoring user settings, we still need to
3368 			 * check the module parameter to ensure we put things
3369 			 * back as they were for a full restore.
3370 			 */
3371 			if (!is_world_regdom(ieee80211_regdom)) {
3372 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3373 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3374 				alpha2[0] = ieee80211_regdom[0];
3375 				alpha2[1] = ieee80211_regdom[1];
3376 			}
3377 		} else {
3378 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3379 				 user_alpha2[0], user_alpha2[1]);
3380 			alpha2[0] = user_alpha2[0];
3381 			alpha2[1] = user_alpha2[1];
3382 		}
3383 	} else if (!is_world_regdom(ieee80211_regdom)) {
3384 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3385 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3386 		alpha2[0] = ieee80211_regdom[0];
3387 		alpha2[1] = ieee80211_regdom[1];
3388 	} else
3389 		pr_debug("Restoring regulatory settings\n");
3390 }
3391 
3392 static void restore_custom_reg_settings(struct wiphy *wiphy)
3393 {
3394 	struct ieee80211_supported_band *sband;
3395 	enum nl80211_band band;
3396 	struct ieee80211_channel *chan;
3397 	int i;
3398 
3399 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3400 		sband = wiphy->bands[band];
3401 		if (!sband)
3402 			continue;
3403 		for (i = 0; i < sband->n_channels; i++) {
3404 			chan = &sband->channels[i];
3405 			chan->flags = chan->orig_flags;
3406 			chan->max_antenna_gain = chan->orig_mag;
3407 			chan->max_power = chan->orig_mpwr;
3408 			chan->beacon_found = false;
3409 		}
3410 	}
3411 }
3412 
3413 /*
3414  * Restoring regulatory settings involves ignoring any
3415  * possibly stale country IE information and user regulatory
3416  * settings if so desired, this includes any beacon hints
3417  * learned as we could have traveled outside to another country
3418  * after disconnection. To restore regulatory settings we do
3419  * exactly what we did at bootup:
3420  *
3421  *   - send a core regulatory hint
3422  *   - send a user regulatory hint if applicable
3423  *
3424  * Device drivers that send a regulatory hint for a specific country
3425  * keep their own regulatory domain on wiphy->regd so that does
3426  * not need to be remembered.
3427  */
3428 static void restore_regulatory_settings(bool reset_user, bool cached)
3429 {
3430 	char alpha2[2];
3431 	char world_alpha2[2];
3432 	struct reg_beacon *reg_beacon, *btmp;
3433 	LIST_HEAD(tmp_reg_req_list);
3434 	struct cfg80211_registered_device *rdev;
3435 
3436 	ASSERT_RTNL();
3437 
3438 	/*
3439 	 * Clear the indoor setting in case that it is not controlled by user
3440 	 * space, as otherwise there is no guarantee that the device is still
3441 	 * operating in an indoor environment.
3442 	 */
3443 	spin_lock(&reg_indoor_lock);
3444 	if (reg_is_indoor && !reg_is_indoor_portid) {
3445 		reg_is_indoor = false;
3446 		reg_check_channels();
3447 	}
3448 	spin_unlock(&reg_indoor_lock);
3449 
3450 	reset_regdomains(true, &world_regdom);
3451 	restore_alpha2(alpha2, reset_user);
3452 
3453 	/*
3454 	 * If there's any pending requests we simply
3455 	 * stash them to a temporary pending queue and
3456 	 * add then after we've restored regulatory
3457 	 * settings.
3458 	 */
3459 	spin_lock(&reg_requests_lock);
3460 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3461 	spin_unlock(&reg_requests_lock);
3462 
3463 	/* Clear beacon hints */
3464 	spin_lock_bh(&reg_pending_beacons_lock);
3465 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3466 		list_del(&reg_beacon->list);
3467 		kfree(reg_beacon);
3468 	}
3469 	spin_unlock_bh(&reg_pending_beacons_lock);
3470 
3471 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3472 		list_del(&reg_beacon->list);
3473 		kfree(reg_beacon);
3474 	}
3475 
3476 	/* First restore to the basic regulatory settings */
3477 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3478 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3479 
3480 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3481 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3482 			continue;
3483 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3484 			restore_custom_reg_settings(&rdev->wiphy);
3485 	}
3486 
3487 	if (cached && (!is_an_alpha2(alpha2) ||
3488 		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3489 		reset_regdomains(false, cfg80211_world_regdom);
3490 		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3491 		print_regdomain(get_cfg80211_regdom());
3492 		nl80211_send_reg_change_event(&core_request_world);
3493 		reg_set_request_processed();
3494 
3495 		if (is_an_alpha2(alpha2) &&
3496 		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3497 			struct regulatory_request *ureq;
3498 
3499 			spin_lock(&reg_requests_lock);
3500 			ureq = list_last_entry(&reg_requests_list,
3501 					       struct regulatory_request,
3502 					       list);
3503 			list_del(&ureq->list);
3504 			spin_unlock(&reg_requests_lock);
3505 
3506 			notify_self_managed_wiphys(ureq);
3507 			reg_update_last_request(ureq);
3508 			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3509 				   REGD_SOURCE_CACHED);
3510 		}
3511 	} else {
3512 		regulatory_hint_core(world_alpha2);
3513 
3514 		/*
3515 		 * This restores the ieee80211_regdom module parameter
3516 		 * preference or the last user requested regulatory
3517 		 * settings, user regulatory settings takes precedence.
3518 		 */
3519 		if (is_an_alpha2(alpha2))
3520 			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3521 	}
3522 
3523 	spin_lock(&reg_requests_lock);
3524 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3525 	spin_unlock(&reg_requests_lock);
3526 
3527 	pr_debug("Kicking the queue\n");
3528 
3529 	schedule_work(&reg_work);
3530 }
3531 
3532 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3533 {
3534 	struct cfg80211_registered_device *rdev;
3535 	struct wireless_dev *wdev;
3536 
3537 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3538 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3539 			wdev_lock(wdev);
3540 			if (!(wdev->wiphy->regulatory_flags & flag)) {
3541 				wdev_unlock(wdev);
3542 				return false;
3543 			}
3544 			wdev_unlock(wdev);
3545 		}
3546 	}
3547 
3548 	return true;
3549 }
3550 
3551 void regulatory_hint_disconnect(void)
3552 {
3553 	/* Restore of regulatory settings is not required when wiphy(s)
3554 	 * ignore IE from connected access point but clearance of beacon hints
3555 	 * is required when wiphy(s) supports beacon hints.
3556 	 */
3557 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3558 		struct reg_beacon *reg_beacon, *btmp;
3559 
3560 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3561 			return;
3562 
3563 		spin_lock_bh(&reg_pending_beacons_lock);
3564 		list_for_each_entry_safe(reg_beacon, btmp,
3565 					 &reg_pending_beacons, list) {
3566 			list_del(&reg_beacon->list);
3567 			kfree(reg_beacon);
3568 		}
3569 		spin_unlock_bh(&reg_pending_beacons_lock);
3570 
3571 		list_for_each_entry_safe(reg_beacon, btmp,
3572 					 &reg_beacon_list, list) {
3573 			list_del(&reg_beacon->list);
3574 			kfree(reg_beacon);
3575 		}
3576 
3577 		return;
3578 	}
3579 
3580 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3581 	restore_regulatory_settings(false, true);
3582 }
3583 
3584 static bool freq_is_chan_12_13_14(u32 freq)
3585 {
3586 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3587 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3588 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3589 		return true;
3590 	return false;
3591 }
3592 
3593 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3594 {
3595 	struct reg_beacon *pending_beacon;
3596 
3597 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3598 		if (ieee80211_channel_equal(beacon_chan,
3599 					    &pending_beacon->chan))
3600 			return true;
3601 	return false;
3602 }
3603 
3604 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3605 				 struct ieee80211_channel *beacon_chan,
3606 				 gfp_t gfp)
3607 {
3608 	struct reg_beacon *reg_beacon;
3609 	bool processing;
3610 
3611 	if (beacon_chan->beacon_found ||
3612 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3613 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3614 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3615 		return 0;
3616 
3617 	spin_lock_bh(&reg_pending_beacons_lock);
3618 	processing = pending_reg_beacon(beacon_chan);
3619 	spin_unlock_bh(&reg_pending_beacons_lock);
3620 
3621 	if (processing)
3622 		return 0;
3623 
3624 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3625 	if (!reg_beacon)
3626 		return -ENOMEM;
3627 
3628 	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3629 		 beacon_chan->center_freq, beacon_chan->freq_offset,
3630 		 ieee80211_freq_khz_to_channel(
3631 			 ieee80211_channel_to_khz(beacon_chan)),
3632 		 wiphy_name(wiphy));
3633 
3634 	memcpy(&reg_beacon->chan, beacon_chan,
3635 	       sizeof(struct ieee80211_channel));
3636 
3637 	/*
3638 	 * Since we can be called from BH or and non-BH context
3639 	 * we must use spin_lock_bh()
3640 	 */
3641 	spin_lock_bh(&reg_pending_beacons_lock);
3642 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3643 	spin_unlock_bh(&reg_pending_beacons_lock);
3644 
3645 	schedule_work(&reg_work);
3646 
3647 	return 0;
3648 }
3649 
3650 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3651 {
3652 	unsigned int i;
3653 	const struct ieee80211_reg_rule *reg_rule = NULL;
3654 	const struct ieee80211_freq_range *freq_range = NULL;
3655 	const struct ieee80211_power_rule *power_rule = NULL;
3656 	char bw[32], cac_time[32];
3657 
3658 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3659 
3660 	for (i = 0; i < rd->n_reg_rules; i++) {
3661 		reg_rule = &rd->reg_rules[i];
3662 		freq_range = &reg_rule->freq_range;
3663 		power_rule = &reg_rule->power_rule;
3664 
3665 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3666 			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3667 				 freq_range->max_bandwidth_khz,
3668 				 reg_get_max_bandwidth(rd, reg_rule));
3669 		else
3670 			snprintf(bw, sizeof(bw), "%d KHz",
3671 				 freq_range->max_bandwidth_khz);
3672 
3673 		if (reg_rule->flags & NL80211_RRF_DFS)
3674 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3675 				  reg_rule->dfs_cac_ms/1000);
3676 		else
3677 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3678 
3679 
3680 		/*
3681 		 * There may not be documentation for max antenna gain
3682 		 * in certain regions
3683 		 */
3684 		if (power_rule->max_antenna_gain)
3685 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3686 				freq_range->start_freq_khz,
3687 				freq_range->end_freq_khz,
3688 				bw,
3689 				power_rule->max_antenna_gain,
3690 				power_rule->max_eirp,
3691 				cac_time);
3692 		else
3693 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3694 				freq_range->start_freq_khz,
3695 				freq_range->end_freq_khz,
3696 				bw,
3697 				power_rule->max_eirp,
3698 				cac_time);
3699 	}
3700 }
3701 
3702 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3703 {
3704 	switch (dfs_region) {
3705 	case NL80211_DFS_UNSET:
3706 	case NL80211_DFS_FCC:
3707 	case NL80211_DFS_ETSI:
3708 	case NL80211_DFS_JP:
3709 		return true;
3710 	default:
3711 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3712 		return false;
3713 	}
3714 }
3715 
3716 static void print_regdomain(const struct ieee80211_regdomain *rd)
3717 {
3718 	struct regulatory_request *lr = get_last_request();
3719 
3720 	if (is_intersected_alpha2(rd->alpha2)) {
3721 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3722 			struct cfg80211_registered_device *rdev;
3723 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3724 			if (rdev) {
3725 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3726 					rdev->country_ie_alpha2[0],
3727 					rdev->country_ie_alpha2[1]);
3728 			} else
3729 				pr_debug("Current regulatory domain intersected:\n");
3730 		} else
3731 			pr_debug("Current regulatory domain intersected:\n");
3732 	} else if (is_world_regdom(rd->alpha2)) {
3733 		pr_debug("World regulatory domain updated:\n");
3734 	} else {
3735 		if (is_unknown_alpha2(rd->alpha2))
3736 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3737 		else {
3738 			if (reg_request_cell_base(lr))
3739 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3740 					rd->alpha2[0], rd->alpha2[1]);
3741 			else
3742 				pr_debug("Regulatory domain changed to country: %c%c\n",
3743 					rd->alpha2[0], rd->alpha2[1]);
3744 		}
3745 	}
3746 
3747 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3748 	print_rd_rules(rd);
3749 }
3750 
3751 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3752 {
3753 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3754 	print_rd_rules(rd);
3755 }
3756 
3757 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3758 {
3759 	if (!is_world_regdom(rd->alpha2))
3760 		return -EINVAL;
3761 	update_world_regdomain(rd);
3762 	return 0;
3763 }
3764 
3765 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3766 			   struct regulatory_request *user_request)
3767 {
3768 	const struct ieee80211_regdomain *intersected_rd = NULL;
3769 
3770 	if (!regdom_changes(rd->alpha2))
3771 		return -EALREADY;
3772 
3773 	if (!is_valid_rd(rd)) {
3774 		pr_err("Invalid regulatory domain detected: %c%c\n",
3775 		       rd->alpha2[0], rd->alpha2[1]);
3776 		print_regdomain_info(rd);
3777 		return -EINVAL;
3778 	}
3779 
3780 	if (!user_request->intersect) {
3781 		reset_regdomains(false, rd);
3782 		return 0;
3783 	}
3784 
3785 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3786 	if (!intersected_rd)
3787 		return -EINVAL;
3788 
3789 	kfree(rd);
3790 	rd = NULL;
3791 	reset_regdomains(false, intersected_rd);
3792 
3793 	return 0;
3794 }
3795 
3796 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3797 			     struct regulatory_request *driver_request)
3798 {
3799 	const struct ieee80211_regdomain *regd;
3800 	const struct ieee80211_regdomain *intersected_rd = NULL;
3801 	const struct ieee80211_regdomain *tmp;
3802 	struct wiphy *request_wiphy;
3803 
3804 	if (is_world_regdom(rd->alpha2))
3805 		return -EINVAL;
3806 
3807 	if (!regdom_changes(rd->alpha2))
3808 		return -EALREADY;
3809 
3810 	if (!is_valid_rd(rd)) {
3811 		pr_err("Invalid regulatory domain detected: %c%c\n",
3812 		       rd->alpha2[0], rd->alpha2[1]);
3813 		print_regdomain_info(rd);
3814 		return -EINVAL;
3815 	}
3816 
3817 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3818 	if (!request_wiphy)
3819 		return -ENODEV;
3820 
3821 	if (!driver_request->intersect) {
3822 		ASSERT_RTNL();
3823 		wiphy_lock(request_wiphy);
3824 		if (request_wiphy->regd) {
3825 			wiphy_unlock(request_wiphy);
3826 			return -EALREADY;
3827 		}
3828 
3829 		regd = reg_copy_regd(rd);
3830 		if (IS_ERR(regd)) {
3831 			wiphy_unlock(request_wiphy);
3832 			return PTR_ERR(regd);
3833 		}
3834 
3835 		rcu_assign_pointer(request_wiphy->regd, regd);
3836 		wiphy_unlock(request_wiphy);
3837 		reset_regdomains(false, rd);
3838 		return 0;
3839 	}
3840 
3841 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3842 	if (!intersected_rd)
3843 		return -EINVAL;
3844 
3845 	/*
3846 	 * We can trash what CRDA provided now.
3847 	 * However if a driver requested this specific regulatory
3848 	 * domain we keep it for its private use
3849 	 */
3850 	tmp = get_wiphy_regdom(request_wiphy);
3851 	rcu_assign_pointer(request_wiphy->regd, rd);
3852 	rcu_free_regdom(tmp);
3853 
3854 	rd = NULL;
3855 
3856 	reset_regdomains(false, intersected_rd);
3857 
3858 	return 0;
3859 }
3860 
3861 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3862 				 struct regulatory_request *country_ie_request)
3863 {
3864 	struct wiphy *request_wiphy;
3865 
3866 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3867 	    !is_unknown_alpha2(rd->alpha2))
3868 		return -EINVAL;
3869 
3870 	/*
3871 	 * Lets only bother proceeding on the same alpha2 if the current
3872 	 * rd is non static (it means CRDA was present and was used last)
3873 	 * and the pending request came in from a country IE
3874 	 */
3875 
3876 	if (!is_valid_rd(rd)) {
3877 		pr_err("Invalid regulatory domain detected: %c%c\n",
3878 		       rd->alpha2[0], rd->alpha2[1]);
3879 		print_regdomain_info(rd);
3880 		return -EINVAL;
3881 	}
3882 
3883 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3884 	if (!request_wiphy)
3885 		return -ENODEV;
3886 
3887 	if (country_ie_request->intersect)
3888 		return -EINVAL;
3889 
3890 	reset_regdomains(false, rd);
3891 	return 0;
3892 }
3893 
3894 /*
3895  * Use this call to set the current regulatory domain. Conflicts with
3896  * multiple drivers can be ironed out later. Caller must've already
3897  * kmalloc'd the rd structure.
3898  */
3899 int set_regdom(const struct ieee80211_regdomain *rd,
3900 	       enum ieee80211_regd_source regd_src)
3901 {
3902 	struct regulatory_request *lr;
3903 	bool user_reset = false;
3904 	int r;
3905 
3906 	if (IS_ERR_OR_NULL(rd))
3907 		return -ENODATA;
3908 
3909 	if (!reg_is_valid_request(rd->alpha2)) {
3910 		kfree(rd);
3911 		return -EINVAL;
3912 	}
3913 
3914 	if (regd_src == REGD_SOURCE_CRDA)
3915 		reset_crda_timeouts();
3916 
3917 	lr = get_last_request();
3918 
3919 	/* Note that this doesn't update the wiphys, this is done below */
3920 	switch (lr->initiator) {
3921 	case NL80211_REGDOM_SET_BY_CORE:
3922 		r = reg_set_rd_core(rd);
3923 		break;
3924 	case NL80211_REGDOM_SET_BY_USER:
3925 		cfg80211_save_user_regdom(rd);
3926 		r = reg_set_rd_user(rd, lr);
3927 		user_reset = true;
3928 		break;
3929 	case NL80211_REGDOM_SET_BY_DRIVER:
3930 		r = reg_set_rd_driver(rd, lr);
3931 		break;
3932 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3933 		r = reg_set_rd_country_ie(rd, lr);
3934 		break;
3935 	default:
3936 		WARN(1, "invalid initiator %d\n", lr->initiator);
3937 		kfree(rd);
3938 		return -EINVAL;
3939 	}
3940 
3941 	if (r) {
3942 		switch (r) {
3943 		case -EALREADY:
3944 			reg_set_request_processed();
3945 			break;
3946 		default:
3947 			/* Back to world regulatory in case of errors */
3948 			restore_regulatory_settings(user_reset, false);
3949 		}
3950 
3951 		kfree(rd);
3952 		return r;
3953 	}
3954 
3955 	/* This would make this whole thing pointless */
3956 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3957 		return -EINVAL;
3958 
3959 	/* update all wiphys now with the new established regulatory domain */
3960 	update_all_wiphy_regulatory(lr->initiator);
3961 
3962 	print_regdomain(get_cfg80211_regdom());
3963 
3964 	nl80211_send_reg_change_event(lr);
3965 
3966 	reg_set_request_processed();
3967 
3968 	return 0;
3969 }
3970 
3971 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3972 				       struct ieee80211_regdomain *rd)
3973 {
3974 	const struct ieee80211_regdomain *regd;
3975 	const struct ieee80211_regdomain *prev_regd;
3976 	struct cfg80211_registered_device *rdev;
3977 
3978 	if (WARN_ON(!wiphy || !rd))
3979 		return -EINVAL;
3980 
3981 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3982 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3983 		return -EPERM;
3984 
3985 	if (WARN(!is_valid_rd(rd),
3986 		 "Invalid regulatory domain detected: %c%c\n",
3987 		 rd->alpha2[0], rd->alpha2[1])) {
3988 		print_regdomain_info(rd);
3989 		return -EINVAL;
3990 	}
3991 
3992 	regd = reg_copy_regd(rd);
3993 	if (IS_ERR(regd))
3994 		return PTR_ERR(regd);
3995 
3996 	rdev = wiphy_to_rdev(wiphy);
3997 
3998 	spin_lock(&reg_requests_lock);
3999 	prev_regd = rdev->requested_regd;
4000 	rdev->requested_regd = regd;
4001 	spin_unlock(&reg_requests_lock);
4002 
4003 	kfree(prev_regd);
4004 	return 0;
4005 }
4006 
4007 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4008 			      struct ieee80211_regdomain *rd)
4009 {
4010 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4011 
4012 	if (ret)
4013 		return ret;
4014 
4015 	schedule_work(&reg_work);
4016 	return 0;
4017 }
4018 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4019 
4020 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4021 				   struct ieee80211_regdomain *rd)
4022 {
4023 	int ret;
4024 
4025 	ASSERT_RTNL();
4026 
4027 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4028 	if (ret)
4029 		return ret;
4030 
4031 	/* process the request immediately */
4032 	reg_process_self_managed_hint(wiphy);
4033 	reg_check_channels();
4034 	return 0;
4035 }
4036 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4037 
4038 void wiphy_regulatory_register(struct wiphy *wiphy)
4039 {
4040 	struct regulatory_request *lr = get_last_request();
4041 
4042 	/* self-managed devices ignore beacon hints and country IE */
4043 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4044 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4045 					   REGULATORY_COUNTRY_IE_IGNORE;
4046 
4047 		/*
4048 		 * The last request may have been received before this
4049 		 * registration call. Call the driver notifier if
4050 		 * initiator is USER.
4051 		 */
4052 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4053 			reg_call_notifier(wiphy, lr);
4054 	}
4055 
4056 	if (!reg_dev_ignore_cell_hint(wiphy))
4057 		reg_num_devs_support_basehint++;
4058 
4059 	wiphy_update_regulatory(wiphy, lr->initiator);
4060 	wiphy_all_share_dfs_chan_state(wiphy);
4061 	reg_process_self_managed_hints();
4062 }
4063 
4064 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4065 {
4066 	struct wiphy *request_wiphy = NULL;
4067 	struct regulatory_request *lr;
4068 
4069 	lr = get_last_request();
4070 
4071 	if (!reg_dev_ignore_cell_hint(wiphy))
4072 		reg_num_devs_support_basehint--;
4073 
4074 	rcu_free_regdom(get_wiphy_regdom(wiphy));
4075 	RCU_INIT_POINTER(wiphy->regd, NULL);
4076 
4077 	if (lr)
4078 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4079 
4080 	if (!request_wiphy || request_wiphy != wiphy)
4081 		return;
4082 
4083 	lr->wiphy_idx = WIPHY_IDX_INVALID;
4084 	lr->country_ie_env = ENVIRON_ANY;
4085 }
4086 
4087 /*
4088  * See FCC notices for UNII band definitions
4089  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4090  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4091  */
4092 int cfg80211_get_unii(int freq)
4093 {
4094 	/* UNII-1 */
4095 	if (freq >= 5150 && freq <= 5250)
4096 		return 0;
4097 
4098 	/* UNII-2A */
4099 	if (freq > 5250 && freq <= 5350)
4100 		return 1;
4101 
4102 	/* UNII-2B */
4103 	if (freq > 5350 && freq <= 5470)
4104 		return 2;
4105 
4106 	/* UNII-2C */
4107 	if (freq > 5470 && freq <= 5725)
4108 		return 3;
4109 
4110 	/* UNII-3 */
4111 	if (freq > 5725 && freq <= 5825)
4112 		return 4;
4113 
4114 	/* UNII-5 */
4115 	if (freq > 5925 && freq <= 6425)
4116 		return 5;
4117 
4118 	/* UNII-6 */
4119 	if (freq > 6425 && freq <= 6525)
4120 		return 6;
4121 
4122 	/* UNII-7 */
4123 	if (freq > 6525 && freq <= 6875)
4124 		return 7;
4125 
4126 	/* UNII-8 */
4127 	if (freq > 6875 && freq <= 7125)
4128 		return 8;
4129 
4130 	return -EINVAL;
4131 }
4132 
4133 bool regulatory_indoor_allowed(void)
4134 {
4135 	return reg_is_indoor;
4136 }
4137 
4138 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4139 {
4140 	const struct ieee80211_regdomain *regd = NULL;
4141 	const struct ieee80211_regdomain *wiphy_regd = NULL;
4142 	bool pre_cac_allowed = false;
4143 
4144 	rcu_read_lock();
4145 
4146 	regd = rcu_dereference(cfg80211_regdomain);
4147 	wiphy_regd = rcu_dereference(wiphy->regd);
4148 	if (!wiphy_regd) {
4149 		if (regd->dfs_region == NL80211_DFS_ETSI)
4150 			pre_cac_allowed = true;
4151 
4152 		rcu_read_unlock();
4153 
4154 		return pre_cac_allowed;
4155 	}
4156 
4157 	if (regd->dfs_region == wiphy_regd->dfs_region &&
4158 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4159 		pre_cac_allowed = true;
4160 
4161 	rcu_read_unlock();
4162 
4163 	return pre_cac_allowed;
4164 }
4165 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4166 
4167 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4168 {
4169 	struct wireless_dev *wdev;
4170 	/* If we finished CAC or received radar, we should end any
4171 	 * CAC running on the same channels.
4172 	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4173 	 * either all channels are available - those the CAC_FINISHED
4174 	 * event has effected another wdev state, or there is a channel
4175 	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4176 	 * event has effected another wdev state.
4177 	 * In both cases we should end the CAC on the wdev.
4178 	 */
4179 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4180 		if (wdev->cac_started &&
4181 		    !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
4182 			rdev_end_cac(rdev, wdev->netdev);
4183 	}
4184 }
4185 
4186 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4187 				    struct cfg80211_chan_def *chandef,
4188 				    enum nl80211_dfs_state dfs_state,
4189 				    enum nl80211_radar_event event)
4190 {
4191 	struct cfg80211_registered_device *rdev;
4192 
4193 	ASSERT_RTNL();
4194 
4195 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4196 		return;
4197 
4198 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4199 		if (wiphy == &rdev->wiphy)
4200 			continue;
4201 
4202 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4203 			continue;
4204 
4205 		if (!ieee80211_get_channel(&rdev->wiphy,
4206 					   chandef->chan->center_freq))
4207 			continue;
4208 
4209 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4210 
4211 		if (event == NL80211_RADAR_DETECTED ||
4212 		    event == NL80211_RADAR_CAC_FINISHED) {
4213 			cfg80211_sched_dfs_chan_update(rdev);
4214 			cfg80211_check_and_end_cac(rdev);
4215 		}
4216 
4217 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4218 	}
4219 }
4220 
4221 static int __init regulatory_init_db(void)
4222 {
4223 	int err;
4224 
4225 	/*
4226 	 * It's possible that - due to other bugs/issues - cfg80211
4227 	 * never called regulatory_init() below, or that it failed;
4228 	 * in that case, don't try to do any further work here as
4229 	 * it's doomed to lead to crashes.
4230 	 */
4231 	if (IS_ERR_OR_NULL(reg_pdev))
4232 		return -EINVAL;
4233 
4234 	err = load_builtin_regdb_keys();
4235 	if (err)
4236 		return err;
4237 
4238 	/* We always try to get an update for the static regdomain */
4239 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4240 	if (err) {
4241 		if (err == -ENOMEM) {
4242 			platform_device_unregister(reg_pdev);
4243 			return err;
4244 		}
4245 		/*
4246 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4247 		 * memory which is handled and propagated appropriately above
4248 		 * but it can also fail during a netlink_broadcast() or during
4249 		 * early boot for call_usermodehelper(). For now treat these
4250 		 * errors as non-fatal.
4251 		 */
4252 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4253 	}
4254 
4255 	/*
4256 	 * Finally, if the user set the module parameter treat it
4257 	 * as a user hint.
4258 	 */
4259 	if (!is_world_regdom(ieee80211_regdom))
4260 		regulatory_hint_user(ieee80211_regdom,
4261 				     NL80211_USER_REG_HINT_USER);
4262 
4263 	return 0;
4264 }
4265 #ifndef MODULE
4266 late_initcall(regulatory_init_db);
4267 #endif
4268 
4269 int __init regulatory_init(void)
4270 {
4271 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4272 	if (IS_ERR(reg_pdev))
4273 		return PTR_ERR(reg_pdev);
4274 
4275 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4276 
4277 	user_alpha2[0] = '9';
4278 	user_alpha2[1] = '7';
4279 
4280 #ifdef MODULE
4281 	return regulatory_init_db();
4282 #else
4283 	return 0;
4284 #endif
4285 }
4286 
4287 void regulatory_exit(void)
4288 {
4289 	struct regulatory_request *reg_request, *tmp;
4290 	struct reg_beacon *reg_beacon, *btmp;
4291 
4292 	cancel_work_sync(&reg_work);
4293 	cancel_crda_timeout_sync();
4294 	cancel_delayed_work_sync(&reg_check_chans);
4295 
4296 	/* Lock to suppress warnings */
4297 	rtnl_lock();
4298 	reset_regdomains(true, NULL);
4299 	rtnl_unlock();
4300 
4301 	dev_set_uevent_suppress(&reg_pdev->dev, true);
4302 
4303 	platform_device_unregister(reg_pdev);
4304 
4305 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4306 		list_del(&reg_beacon->list);
4307 		kfree(reg_beacon);
4308 	}
4309 
4310 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4311 		list_del(&reg_beacon->list);
4312 		kfree(reg_beacon);
4313 	}
4314 
4315 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4316 		list_del(&reg_request->list);
4317 		kfree(reg_request);
4318 	}
4319 
4320 	if (!IS_ERR_OR_NULL(regdb))
4321 		kfree(regdb);
4322 	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4323 		kfree(cfg80211_user_regdom);
4324 
4325 	free_regdb_keyring();
4326 }
4327