1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static spinlock_t reg_indoor_lock; 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user); 135 136 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 137 { 138 return rcu_dereference_rtnl(cfg80211_regdomain); 139 } 140 141 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 142 { 143 return rcu_dereference_rtnl(wiphy->regd); 144 } 145 146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 147 { 148 switch (dfs_region) { 149 case NL80211_DFS_UNSET: 150 return "unset"; 151 case NL80211_DFS_FCC: 152 return "FCC"; 153 case NL80211_DFS_ETSI: 154 return "ETSI"; 155 case NL80211_DFS_JP: 156 return "JP"; 157 } 158 return "Unknown"; 159 } 160 161 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 162 { 163 const struct ieee80211_regdomain *regd = NULL; 164 const struct ieee80211_regdomain *wiphy_regd = NULL; 165 166 regd = get_cfg80211_regdom(); 167 if (!wiphy) 168 goto out; 169 170 wiphy_regd = get_wiphy_regdom(wiphy); 171 if (!wiphy_regd) 172 goto out; 173 174 if (wiphy_regd->dfs_region == regd->dfs_region) 175 goto out; 176 177 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 178 dev_name(&wiphy->dev), 179 reg_dfs_region_str(wiphy_regd->dfs_region), 180 reg_dfs_region_str(regd->dfs_region)); 181 182 out: 183 return regd->dfs_region; 184 } 185 186 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 187 { 188 if (!r) 189 return; 190 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 191 } 192 193 static struct regulatory_request *get_last_request(void) 194 { 195 return rcu_dereference_rtnl(last_request); 196 } 197 198 /* Used to queue up regulatory hints */ 199 static LIST_HEAD(reg_requests_list); 200 static spinlock_t reg_requests_lock; 201 202 /* Used to queue up beacon hints for review */ 203 static LIST_HEAD(reg_pending_beacons); 204 static spinlock_t reg_pending_beacons_lock; 205 206 /* Used to keep track of processed beacon hints */ 207 static LIST_HEAD(reg_beacon_list); 208 209 struct reg_beacon { 210 struct list_head list; 211 struct ieee80211_channel chan; 212 }; 213 214 static void reg_check_chans_work(struct work_struct *work); 215 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 216 217 static void reg_todo(struct work_struct *work); 218 static DECLARE_WORK(reg_work, reg_todo); 219 220 /* We keep a static world regulatory domain in case of the absence of CRDA */ 221 static const struct ieee80211_regdomain world_regdom = { 222 .n_reg_rules = 8, 223 .alpha2 = "00", 224 .reg_rules = { 225 /* IEEE 802.11b/g, channels 1..11 */ 226 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 227 /* IEEE 802.11b/g, channels 12..13. */ 228 REG_RULE(2467-10, 2472+10, 20, 6, 20, 229 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 230 /* IEEE 802.11 channel 14 - Only JP enables 231 * this and for 802.11b only */ 232 REG_RULE(2484-10, 2484+10, 20, 6, 20, 233 NL80211_RRF_NO_IR | 234 NL80211_RRF_NO_OFDM), 235 /* IEEE 802.11a, channel 36..48 */ 236 REG_RULE(5180-10, 5240+10, 80, 6, 20, 237 NL80211_RRF_NO_IR | 238 NL80211_RRF_AUTO_BW), 239 240 /* IEEE 802.11a, channel 52..64 - DFS required */ 241 REG_RULE(5260-10, 5320+10, 80, 6, 20, 242 NL80211_RRF_NO_IR | 243 NL80211_RRF_AUTO_BW | 244 NL80211_RRF_DFS), 245 246 /* IEEE 802.11a, channel 100..144 - DFS required */ 247 REG_RULE(5500-10, 5720+10, 160, 6, 20, 248 NL80211_RRF_NO_IR | 249 NL80211_RRF_DFS), 250 251 /* IEEE 802.11a, channel 149..165 */ 252 REG_RULE(5745-10, 5825+10, 80, 6, 20, 253 NL80211_RRF_NO_IR), 254 255 /* IEEE 802.11ad (60GHz), channels 1..3 */ 256 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 257 } 258 }; 259 260 /* protected by RTNL */ 261 static const struct ieee80211_regdomain *cfg80211_world_regdom = 262 &world_regdom; 263 264 static char *ieee80211_regdom = "00"; 265 static char user_alpha2[2]; 266 267 module_param(ieee80211_regdom, charp, 0444); 268 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 269 270 static void reg_free_request(struct regulatory_request *request) 271 { 272 if (request == &core_request_world) 273 return; 274 275 if (request != get_last_request()) 276 kfree(request); 277 } 278 279 static void reg_free_last_request(void) 280 { 281 struct regulatory_request *lr = get_last_request(); 282 283 if (lr != &core_request_world && lr) 284 kfree_rcu(lr, rcu_head); 285 } 286 287 static void reg_update_last_request(struct regulatory_request *request) 288 { 289 struct regulatory_request *lr; 290 291 lr = get_last_request(); 292 if (lr == request) 293 return; 294 295 reg_free_last_request(); 296 rcu_assign_pointer(last_request, request); 297 } 298 299 static void reset_regdomains(bool full_reset, 300 const struct ieee80211_regdomain *new_regdom) 301 { 302 const struct ieee80211_regdomain *r; 303 304 ASSERT_RTNL(); 305 306 r = get_cfg80211_regdom(); 307 308 /* avoid freeing static information or freeing something twice */ 309 if (r == cfg80211_world_regdom) 310 r = NULL; 311 if (cfg80211_world_regdom == &world_regdom) 312 cfg80211_world_regdom = NULL; 313 if (r == &world_regdom) 314 r = NULL; 315 316 rcu_free_regdom(r); 317 rcu_free_regdom(cfg80211_world_regdom); 318 319 cfg80211_world_regdom = &world_regdom; 320 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 321 322 if (!full_reset) 323 return; 324 325 reg_update_last_request(&core_request_world); 326 } 327 328 /* 329 * Dynamic world regulatory domain requested by the wireless 330 * core upon initialization 331 */ 332 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 333 { 334 struct regulatory_request *lr; 335 336 lr = get_last_request(); 337 338 WARN_ON(!lr); 339 340 reset_regdomains(false, rd); 341 342 cfg80211_world_regdom = rd; 343 } 344 345 bool is_world_regdom(const char *alpha2) 346 { 347 if (!alpha2) 348 return false; 349 return alpha2[0] == '0' && alpha2[1] == '0'; 350 } 351 352 static bool is_alpha2_set(const char *alpha2) 353 { 354 if (!alpha2) 355 return false; 356 return alpha2[0] && alpha2[1]; 357 } 358 359 static bool is_unknown_alpha2(const char *alpha2) 360 { 361 if (!alpha2) 362 return false; 363 /* 364 * Special case where regulatory domain was built by driver 365 * but a specific alpha2 cannot be determined 366 */ 367 return alpha2[0] == '9' && alpha2[1] == '9'; 368 } 369 370 static bool is_intersected_alpha2(const char *alpha2) 371 { 372 if (!alpha2) 373 return false; 374 /* 375 * Special case where regulatory domain is the 376 * result of an intersection between two regulatory domain 377 * structures 378 */ 379 return alpha2[0] == '9' && alpha2[1] == '8'; 380 } 381 382 static bool is_an_alpha2(const char *alpha2) 383 { 384 if (!alpha2) 385 return false; 386 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 387 } 388 389 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 390 { 391 if (!alpha2_x || !alpha2_y) 392 return false; 393 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 394 } 395 396 static bool regdom_changes(const char *alpha2) 397 { 398 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 399 400 if (!r) 401 return true; 402 return !alpha2_equal(r->alpha2, alpha2); 403 } 404 405 /* 406 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 407 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 408 * has ever been issued. 409 */ 410 static bool is_user_regdom_saved(void) 411 { 412 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 413 return false; 414 415 /* This would indicate a mistake on the design */ 416 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 417 "Unexpected user alpha2: %c%c\n", 418 user_alpha2[0], user_alpha2[1])) 419 return false; 420 421 return true; 422 } 423 424 static const struct ieee80211_regdomain * 425 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 426 { 427 struct ieee80211_regdomain *regd; 428 int size_of_regd, size_of_wmms; 429 unsigned int i; 430 struct ieee80211_wmm_rule *d_wmm, *s_wmm; 431 432 size_of_regd = 433 sizeof(struct ieee80211_regdomain) + 434 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); 435 size_of_wmms = src_regd->n_wmm_rules * 436 sizeof(struct ieee80211_wmm_rule); 437 438 regd = kzalloc(size_of_regd + size_of_wmms, GFP_KERNEL); 439 if (!regd) 440 return ERR_PTR(-ENOMEM); 441 442 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 443 444 d_wmm = (struct ieee80211_wmm_rule *)((u8 *)regd + size_of_regd); 445 s_wmm = (struct ieee80211_wmm_rule *)((u8 *)src_regd + size_of_regd); 446 memcpy(d_wmm, s_wmm, size_of_wmms); 447 448 for (i = 0; i < src_regd->n_reg_rules; i++) { 449 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 450 sizeof(struct ieee80211_reg_rule)); 451 if (!src_regd->reg_rules[i].wmm_rule) 452 continue; 453 454 regd->reg_rules[i].wmm_rule = d_wmm + 455 (src_regd->reg_rules[i].wmm_rule - s_wmm) / 456 sizeof(struct ieee80211_wmm_rule); 457 } 458 return regd; 459 } 460 461 struct reg_regdb_apply_request { 462 struct list_head list; 463 const struct ieee80211_regdomain *regdom; 464 }; 465 466 static LIST_HEAD(reg_regdb_apply_list); 467 static DEFINE_MUTEX(reg_regdb_apply_mutex); 468 469 static void reg_regdb_apply(struct work_struct *work) 470 { 471 struct reg_regdb_apply_request *request; 472 473 rtnl_lock(); 474 475 mutex_lock(®_regdb_apply_mutex); 476 while (!list_empty(®_regdb_apply_list)) { 477 request = list_first_entry(®_regdb_apply_list, 478 struct reg_regdb_apply_request, 479 list); 480 list_del(&request->list); 481 482 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 483 kfree(request); 484 } 485 mutex_unlock(®_regdb_apply_mutex); 486 487 rtnl_unlock(); 488 } 489 490 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 491 492 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 493 { 494 struct reg_regdb_apply_request *request; 495 496 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 497 if (!request) { 498 kfree(regdom); 499 return -ENOMEM; 500 } 501 502 request->regdom = regdom; 503 504 mutex_lock(®_regdb_apply_mutex); 505 list_add_tail(&request->list, ®_regdb_apply_list); 506 mutex_unlock(®_regdb_apply_mutex); 507 508 schedule_work(®_regdb_work); 509 return 0; 510 } 511 512 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 513 /* Max number of consecutive attempts to communicate with CRDA */ 514 #define REG_MAX_CRDA_TIMEOUTS 10 515 516 static u32 reg_crda_timeouts; 517 518 static void crda_timeout_work(struct work_struct *work); 519 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 520 521 static void crda_timeout_work(struct work_struct *work) 522 { 523 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 524 rtnl_lock(); 525 reg_crda_timeouts++; 526 restore_regulatory_settings(true); 527 rtnl_unlock(); 528 } 529 530 static void cancel_crda_timeout(void) 531 { 532 cancel_delayed_work(&crda_timeout); 533 } 534 535 static void cancel_crda_timeout_sync(void) 536 { 537 cancel_delayed_work_sync(&crda_timeout); 538 } 539 540 static void reset_crda_timeouts(void) 541 { 542 reg_crda_timeouts = 0; 543 } 544 545 /* 546 * This lets us keep regulatory code which is updated on a regulatory 547 * basis in userspace. 548 */ 549 static int call_crda(const char *alpha2) 550 { 551 char country[12]; 552 char *env[] = { country, NULL }; 553 int ret; 554 555 snprintf(country, sizeof(country), "COUNTRY=%c%c", 556 alpha2[0], alpha2[1]); 557 558 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 559 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 560 return -EINVAL; 561 } 562 563 if (!is_world_regdom((char *) alpha2)) 564 pr_debug("Calling CRDA for country: %c%c\n", 565 alpha2[0], alpha2[1]); 566 else 567 pr_debug("Calling CRDA to update world regulatory domain\n"); 568 569 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 570 if (ret) 571 return ret; 572 573 queue_delayed_work(system_power_efficient_wq, 574 &crda_timeout, msecs_to_jiffies(3142)); 575 return 0; 576 } 577 #else 578 static inline void cancel_crda_timeout(void) {} 579 static inline void cancel_crda_timeout_sync(void) {} 580 static inline void reset_crda_timeouts(void) {} 581 static inline int call_crda(const char *alpha2) 582 { 583 return -ENODATA; 584 } 585 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 586 587 /* code to directly load a firmware database through request_firmware */ 588 static const struct fwdb_header *regdb; 589 590 struct fwdb_country { 591 u8 alpha2[2]; 592 __be16 coll_ptr; 593 /* this struct cannot be extended */ 594 } __packed __aligned(4); 595 596 struct fwdb_collection { 597 u8 len; 598 u8 n_rules; 599 u8 dfs_region; 600 /* no optional data yet */ 601 /* aligned to 2, then followed by __be16 array of rule pointers */ 602 } __packed __aligned(4); 603 604 enum fwdb_flags { 605 FWDB_FLAG_NO_OFDM = BIT(0), 606 FWDB_FLAG_NO_OUTDOOR = BIT(1), 607 FWDB_FLAG_DFS = BIT(2), 608 FWDB_FLAG_NO_IR = BIT(3), 609 FWDB_FLAG_AUTO_BW = BIT(4), 610 }; 611 612 struct fwdb_wmm_ac { 613 u8 ecw; 614 u8 aifsn; 615 __be16 cot; 616 } __packed; 617 618 struct fwdb_wmm_rule { 619 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 620 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 621 } __packed; 622 623 struct fwdb_rule { 624 u8 len; 625 u8 flags; 626 __be16 max_eirp; 627 __be32 start, end, max_bw; 628 /* start of optional data */ 629 __be16 cac_timeout; 630 __be16 wmm_ptr; 631 } __packed __aligned(4); 632 633 #define FWDB_MAGIC 0x52474442 634 #define FWDB_VERSION 20 635 636 struct fwdb_header { 637 __be32 magic; 638 __be32 version; 639 struct fwdb_country country[]; 640 } __packed __aligned(4); 641 642 static int ecw2cw(int ecw) 643 { 644 return (1 << ecw) - 1; 645 } 646 647 static bool valid_wmm(struct fwdb_wmm_rule *rule) 648 { 649 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 650 int i; 651 652 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 653 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 654 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 655 u8 aifsn = ac[i].aifsn; 656 657 if (cw_min >= cw_max) 658 return false; 659 660 if (aifsn < 1) 661 return false; 662 } 663 664 return true; 665 } 666 667 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 668 { 669 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 670 671 if ((u8 *)rule + sizeof(rule->len) > data + size) 672 return false; 673 674 /* mandatory fields */ 675 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 676 return false; 677 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 678 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 679 struct fwdb_wmm_rule *wmm; 680 681 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 682 return false; 683 684 wmm = (void *)(data + wmm_ptr); 685 686 if (!valid_wmm(wmm)) 687 return false; 688 } 689 return true; 690 } 691 692 static bool valid_country(const u8 *data, unsigned int size, 693 const struct fwdb_country *country) 694 { 695 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 696 struct fwdb_collection *coll = (void *)(data + ptr); 697 __be16 *rules_ptr; 698 unsigned int i; 699 700 /* make sure we can read len/n_rules */ 701 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 702 return false; 703 704 /* make sure base struct and all rules fit */ 705 if ((u8 *)coll + ALIGN(coll->len, 2) + 706 (coll->n_rules * 2) > data + size) 707 return false; 708 709 /* mandatory fields must exist */ 710 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 711 return false; 712 713 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 714 715 for (i = 0; i < coll->n_rules; i++) { 716 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 717 718 if (!valid_rule(data, size, rule_ptr)) 719 return false; 720 } 721 722 return true; 723 } 724 725 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 726 static struct key *builtin_regdb_keys; 727 728 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen) 729 { 730 const u8 *end = p + buflen; 731 size_t plen; 732 key_ref_t key; 733 734 while (p < end) { 735 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more 736 * than 256 bytes in size. 737 */ 738 if (end - p < 4) 739 goto dodgy_cert; 740 if (p[0] != 0x30 && 741 p[1] != 0x82) 742 goto dodgy_cert; 743 plen = (p[2] << 8) | p[3]; 744 plen += 4; 745 if (plen > end - p) 746 goto dodgy_cert; 747 748 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1), 749 "asymmetric", NULL, p, plen, 750 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 751 KEY_USR_VIEW | KEY_USR_READ), 752 KEY_ALLOC_NOT_IN_QUOTA | 753 KEY_ALLOC_BUILT_IN | 754 KEY_ALLOC_BYPASS_RESTRICTION); 755 if (IS_ERR(key)) { 756 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n", 757 PTR_ERR(key)); 758 } else { 759 pr_notice("Loaded X.509 cert '%s'\n", 760 key_ref_to_ptr(key)->description); 761 key_ref_put(key); 762 } 763 p += plen; 764 } 765 766 return; 767 768 dodgy_cert: 769 pr_err("Problem parsing in-kernel X.509 certificate list\n"); 770 } 771 772 static int __init load_builtin_regdb_keys(void) 773 { 774 builtin_regdb_keys = 775 keyring_alloc(".builtin_regdb_keys", 776 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 777 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 778 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 779 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 780 if (IS_ERR(builtin_regdb_keys)) 781 return PTR_ERR(builtin_regdb_keys); 782 783 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 784 785 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 786 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len); 787 #endif 788 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 789 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 790 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len); 791 #endif 792 793 return 0; 794 } 795 796 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 797 { 798 const struct firmware *sig; 799 bool result; 800 801 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 802 return false; 803 804 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 805 builtin_regdb_keys, 806 VERIFYING_UNSPECIFIED_SIGNATURE, 807 NULL, NULL) == 0; 808 809 release_firmware(sig); 810 811 return result; 812 } 813 814 static void free_regdb_keyring(void) 815 { 816 key_put(builtin_regdb_keys); 817 } 818 #else 819 static int load_builtin_regdb_keys(void) 820 { 821 return 0; 822 } 823 824 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 825 { 826 return true; 827 } 828 829 static void free_regdb_keyring(void) 830 { 831 } 832 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 833 834 static bool valid_regdb(const u8 *data, unsigned int size) 835 { 836 const struct fwdb_header *hdr = (void *)data; 837 const struct fwdb_country *country; 838 839 if (size < sizeof(*hdr)) 840 return false; 841 842 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 843 return false; 844 845 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 846 return false; 847 848 if (!regdb_has_valid_signature(data, size)) 849 return false; 850 851 country = &hdr->country[0]; 852 while ((u8 *)(country + 1) <= data + size) { 853 if (!country->coll_ptr) 854 break; 855 if (!valid_country(data, size, country)) 856 return false; 857 country++; 858 } 859 860 return true; 861 } 862 863 static void set_wmm_rule(struct ieee80211_wmm_rule *rule, 864 struct fwdb_wmm_rule *wmm) 865 { 866 unsigned int i; 867 868 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 869 rule->client[i].cw_min = 870 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 871 rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 872 rule->client[i].aifsn = wmm->client[i].aifsn; 873 rule->client[i].cot = 1000 * be16_to_cpu(wmm->client[i].cot); 874 rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 875 rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 876 rule->ap[i].aifsn = wmm->ap[i].aifsn; 877 rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 878 } 879 } 880 881 static int __regdb_query_wmm(const struct fwdb_header *db, 882 const struct fwdb_country *country, int freq, 883 u32 *dbptr, struct ieee80211_wmm_rule *rule) 884 { 885 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 886 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 887 int i; 888 889 for (i = 0; i < coll->n_rules; i++) { 890 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 891 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 892 struct fwdb_rule *rrule = (void *)((u8 *)db + rule_ptr); 893 struct fwdb_wmm_rule *wmm; 894 unsigned int wmm_ptr; 895 896 if (rrule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 897 continue; 898 899 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rrule->start)) && 900 freq <= KHZ_TO_MHZ(be32_to_cpu(rrule->end))) { 901 wmm_ptr = be16_to_cpu(rrule->wmm_ptr) << 2; 902 wmm = (void *)((u8 *)db + wmm_ptr); 903 set_wmm_rule(rule, wmm); 904 if (dbptr) 905 *dbptr = wmm_ptr; 906 return 0; 907 } 908 } 909 910 return -ENODATA; 911 } 912 913 int reg_query_regdb_wmm(char *alpha2, int freq, u32 *dbptr, 914 struct ieee80211_wmm_rule *rule) 915 { 916 const struct fwdb_header *hdr = regdb; 917 const struct fwdb_country *country; 918 919 if (IS_ERR(regdb)) 920 return PTR_ERR(regdb); 921 922 country = &hdr->country[0]; 923 while (country->coll_ptr) { 924 if (alpha2_equal(alpha2, country->alpha2)) 925 return __regdb_query_wmm(regdb, country, freq, dbptr, 926 rule); 927 928 country++; 929 } 930 931 return -ENODATA; 932 } 933 EXPORT_SYMBOL(reg_query_regdb_wmm); 934 935 struct wmm_ptrs { 936 struct ieee80211_wmm_rule *rule; 937 u32 ptr; 938 }; 939 940 static struct ieee80211_wmm_rule *find_wmm_ptr(struct wmm_ptrs *wmm_ptrs, 941 u32 wmm_ptr, int n_wmms) 942 { 943 int i; 944 945 for (i = 0; i < n_wmms; i++) { 946 if (wmm_ptrs[i].ptr == wmm_ptr) 947 return wmm_ptrs[i].rule; 948 } 949 return NULL; 950 } 951 952 static int regdb_query_country(const struct fwdb_header *db, 953 const struct fwdb_country *country) 954 { 955 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 956 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 957 struct ieee80211_regdomain *regdom; 958 struct ieee80211_regdomain *tmp_rd; 959 unsigned int size_of_regd, i, n_wmms = 0; 960 struct wmm_ptrs *wmm_ptrs; 961 962 size_of_regd = sizeof(struct ieee80211_regdomain) + 963 coll->n_rules * sizeof(struct ieee80211_reg_rule); 964 965 regdom = kzalloc(size_of_regd, GFP_KERNEL); 966 if (!regdom) 967 return -ENOMEM; 968 969 wmm_ptrs = kcalloc(coll->n_rules, sizeof(*wmm_ptrs), GFP_KERNEL); 970 if (!wmm_ptrs) { 971 kfree(regdom); 972 return -ENOMEM; 973 } 974 975 regdom->n_reg_rules = coll->n_rules; 976 regdom->alpha2[0] = country->alpha2[0]; 977 regdom->alpha2[1] = country->alpha2[1]; 978 regdom->dfs_region = coll->dfs_region; 979 980 for (i = 0; i < regdom->n_reg_rules; i++) { 981 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 982 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 983 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 984 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 985 986 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 987 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 988 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 989 990 rrule->power_rule.max_antenna_gain = 0; 991 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 992 993 rrule->flags = 0; 994 if (rule->flags & FWDB_FLAG_NO_OFDM) 995 rrule->flags |= NL80211_RRF_NO_OFDM; 996 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 997 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 998 if (rule->flags & FWDB_FLAG_DFS) 999 rrule->flags |= NL80211_RRF_DFS; 1000 if (rule->flags & FWDB_FLAG_NO_IR) 1001 rrule->flags |= NL80211_RRF_NO_IR; 1002 if (rule->flags & FWDB_FLAG_AUTO_BW) 1003 rrule->flags |= NL80211_RRF_AUTO_BW; 1004 1005 rrule->dfs_cac_ms = 0; 1006 1007 /* handle optional data */ 1008 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 1009 rrule->dfs_cac_ms = 1010 1000 * be16_to_cpu(rule->cac_timeout); 1011 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 1012 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 1013 struct ieee80211_wmm_rule *wmm_pos = 1014 find_wmm_ptr(wmm_ptrs, wmm_ptr, n_wmms); 1015 struct fwdb_wmm_rule *wmm; 1016 struct ieee80211_wmm_rule *wmm_rule; 1017 1018 if (wmm_pos) { 1019 rrule->wmm_rule = wmm_pos; 1020 continue; 1021 } 1022 wmm = (void *)((u8 *)db + wmm_ptr); 1023 tmp_rd = krealloc(regdom, size_of_regd + (n_wmms + 1) * 1024 sizeof(struct ieee80211_wmm_rule), 1025 GFP_KERNEL); 1026 1027 if (!tmp_rd) { 1028 kfree(regdom); 1029 kfree(wmm_ptrs); 1030 return -ENOMEM; 1031 } 1032 regdom = tmp_rd; 1033 1034 wmm_rule = (struct ieee80211_wmm_rule *) 1035 ((u8 *)regdom + size_of_regd + n_wmms * 1036 sizeof(struct ieee80211_wmm_rule)); 1037 1038 set_wmm_rule(wmm_rule, wmm); 1039 wmm_ptrs[n_wmms].ptr = wmm_ptr; 1040 wmm_ptrs[n_wmms++].rule = wmm_rule; 1041 } 1042 } 1043 kfree(wmm_ptrs); 1044 1045 return reg_schedule_apply(regdom); 1046 } 1047 1048 static int query_regdb(const char *alpha2) 1049 { 1050 const struct fwdb_header *hdr = regdb; 1051 const struct fwdb_country *country; 1052 1053 ASSERT_RTNL(); 1054 1055 if (IS_ERR(regdb)) 1056 return PTR_ERR(regdb); 1057 1058 country = &hdr->country[0]; 1059 while (country->coll_ptr) { 1060 if (alpha2_equal(alpha2, country->alpha2)) 1061 return regdb_query_country(regdb, country); 1062 country++; 1063 } 1064 1065 return -ENODATA; 1066 } 1067 1068 static void regdb_fw_cb(const struct firmware *fw, void *context) 1069 { 1070 int set_error = 0; 1071 bool restore = true; 1072 void *db; 1073 1074 if (!fw) { 1075 pr_info("failed to load regulatory.db\n"); 1076 set_error = -ENODATA; 1077 } else if (!valid_regdb(fw->data, fw->size)) { 1078 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1079 set_error = -EINVAL; 1080 } 1081 1082 rtnl_lock(); 1083 if (WARN_ON(regdb && !IS_ERR(regdb))) { 1084 /* just restore and free new db */ 1085 } else if (set_error) { 1086 regdb = ERR_PTR(set_error); 1087 } else if (fw) { 1088 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1089 if (db) { 1090 regdb = db; 1091 restore = context && query_regdb(context); 1092 } else { 1093 restore = true; 1094 } 1095 } 1096 1097 if (restore) 1098 restore_regulatory_settings(true); 1099 1100 rtnl_unlock(); 1101 1102 kfree(context); 1103 1104 release_firmware(fw); 1105 } 1106 1107 static int query_regdb_file(const char *alpha2) 1108 { 1109 ASSERT_RTNL(); 1110 1111 if (regdb) 1112 return query_regdb(alpha2); 1113 1114 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1115 if (!alpha2) 1116 return -ENOMEM; 1117 1118 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1119 ®_pdev->dev, GFP_KERNEL, 1120 (void *)alpha2, regdb_fw_cb); 1121 } 1122 1123 int reg_reload_regdb(void) 1124 { 1125 const struct firmware *fw; 1126 void *db; 1127 int err; 1128 1129 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1130 if (err) 1131 return err; 1132 1133 if (!valid_regdb(fw->data, fw->size)) { 1134 err = -ENODATA; 1135 goto out; 1136 } 1137 1138 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1139 if (!db) { 1140 err = -ENOMEM; 1141 goto out; 1142 } 1143 1144 rtnl_lock(); 1145 if (!IS_ERR_OR_NULL(regdb)) 1146 kfree(regdb); 1147 regdb = db; 1148 rtnl_unlock(); 1149 1150 out: 1151 release_firmware(fw); 1152 return err; 1153 } 1154 1155 static bool reg_query_database(struct regulatory_request *request) 1156 { 1157 if (query_regdb_file(request->alpha2) == 0) 1158 return true; 1159 1160 if (call_crda(request->alpha2) == 0) 1161 return true; 1162 1163 return false; 1164 } 1165 1166 bool reg_is_valid_request(const char *alpha2) 1167 { 1168 struct regulatory_request *lr = get_last_request(); 1169 1170 if (!lr || lr->processed) 1171 return false; 1172 1173 return alpha2_equal(lr->alpha2, alpha2); 1174 } 1175 1176 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1177 { 1178 struct regulatory_request *lr = get_last_request(); 1179 1180 /* 1181 * Follow the driver's regulatory domain, if present, unless a country 1182 * IE has been processed or a user wants to help complaince further 1183 */ 1184 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1185 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1186 wiphy->regd) 1187 return get_wiphy_regdom(wiphy); 1188 1189 return get_cfg80211_regdom(); 1190 } 1191 1192 static unsigned int 1193 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1194 const struct ieee80211_reg_rule *rule) 1195 { 1196 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1197 const struct ieee80211_freq_range *freq_range_tmp; 1198 const struct ieee80211_reg_rule *tmp; 1199 u32 start_freq, end_freq, idx, no; 1200 1201 for (idx = 0; idx < rd->n_reg_rules; idx++) 1202 if (rule == &rd->reg_rules[idx]) 1203 break; 1204 1205 if (idx == rd->n_reg_rules) 1206 return 0; 1207 1208 /* get start_freq */ 1209 no = idx; 1210 1211 while (no) { 1212 tmp = &rd->reg_rules[--no]; 1213 freq_range_tmp = &tmp->freq_range; 1214 1215 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1216 break; 1217 1218 freq_range = freq_range_tmp; 1219 } 1220 1221 start_freq = freq_range->start_freq_khz; 1222 1223 /* get end_freq */ 1224 freq_range = &rule->freq_range; 1225 no = idx; 1226 1227 while (no < rd->n_reg_rules - 1) { 1228 tmp = &rd->reg_rules[++no]; 1229 freq_range_tmp = &tmp->freq_range; 1230 1231 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1232 break; 1233 1234 freq_range = freq_range_tmp; 1235 } 1236 1237 end_freq = freq_range->end_freq_khz; 1238 1239 return end_freq - start_freq; 1240 } 1241 1242 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1243 const struct ieee80211_reg_rule *rule) 1244 { 1245 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1246 1247 if (rule->flags & NL80211_RRF_NO_160MHZ) 1248 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1249 if (rule->flags & NL80211_RRF_NO_80MHZ) 1250 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1251 1252 /* 1253 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1254 * are not allowed. 1255 */ 1256 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1257 rule->flags & NL80211_RRF_NO_HT40PLUS) 1258 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1259 1260 return bw; 1261 } 1262 1263 /* Sanity check on a regulatory rule */ 1264 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1265 { 1266 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1267 u32 freq_diff; 1268 1269 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1270 return false; 1271 1272 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1273 return false; 1274 1275 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1276 1277 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1278 freq_range->max_bandwidth_khz > freq_diff) 1279 return false; 1280 1281 return true; 1282 } 1283 1284 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1285 { 1286 const struct ieee80211_reg_rule *reg_rule = NULL; 1287 unsigned int i; 1288 1289 if (!rd->n_reg_rules) 1290 return false; 1291 1292 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1293 return false; 1294 1295 for (i = 0; i < rd->n_reg_rules; i++) { 1296 reg_rule = &rd->reg_rules[i]; 1297 if (!is_valid_reg_rule(reg_rule)) 1298 return false; 1299 } 1300 1301 return true; 1302 } 1303 1304 /** 1305 * freq_in_rule_band - tells us if a frequency is in a frequency band 1306 * @freq_range: frequency rule we want to query 1307 * @freq_khz: frequency we are inquiring about 1308 * 1309 * This lets us know if a specific frequency rule is or is not relevant to 1310 * a specific frequency's band. Bands are device specific and artificial 1311 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1312 * however it is safe for now to assume that a frequency rule should not be 1313 * part of a frequency's band if the start freq or end freq are off by more 1314 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the 1315 * 60 GHz band. 1316 * This resolution can be lowered and should be considered as we add 1317 * regulatory rule support for other "bands". 1318 **/ 1319 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1320 u32 freq_khz) 1321 { 1322 #define ONE_GHZ_IN_KHZ 1000000 1323 /* 1324 * From 802.11ad: directional multi-gigabit (DMG): 1325 * Pertaining to operation in a frequency band containing a channel 1326 * with the Channel starting frequency above 45 GHz. 1327 */ 1328 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1329 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1330 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1331 return true; 1332 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1333 return true; 1334 return false; 1335 #undef ONE_GHZ_IN_KHZ 1336 } 1337 1338 /* 1339 * Later on we can perhaps use the more restrictive DFS 1340 * region but we don't have information for that yet so 1341 * for now simply disallow conflicts. 1342 */ 1343 static enum nl80211_dfs_regions 1344 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1345 const enum nl80211_dfs_regions dfs_region2) 1346 { 1347 if (dfs_region1 != dfs_region2) 1348 return NL80211_DFS_UNSET; 1349 return dfs_region1; 1350 } 1351 1352 /* 1353 * Helper for regdom_intersect(), this does the real 1354 * mathematical intersection fun 1355 */ 1356 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1357 const struct ieee80211_regdomain *rd2, 1358 const struct ieee80211_reg_rule *rule1, 1359 const struct ieee80211_reg_rule *rule2, 1360 struct ieee80211_reg_rule *intersected_rule) 1361 { 1362 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1363 struct ieee80211_freq_range *freq_range; 1364 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1365 struct ieee80211_power_rule *power_rule; 1366 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1367 1368 freq_range1 = &rule1->freq_range; 1369 freq_range2 = &rule2->freq_range; 1370 freq_range = &intersected_rule->freq_range; 1371 1372 power_rule1 = &rule1->power_rule; 1373 power_rule2 = &rule2->power_rule; 1374 power_rule = &intersected_rule->power_rule; 1375 1376 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1377 freq_range2->start_freq_khz); 1378 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1379 freq_range2->end_freq_khz); 1380 1381 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1382 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1383 1384 if (rule1->flags & NL80211_RRF_AUTO_BW) 1385 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1386 if (rule2->flags & NL80211_RRF_AUTO_BW) 1387 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1388 1389 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1390 1391 intersected_rule->flags = rule1->flags | rule2->flags; 1392 1393 /* 1394 * In case NL80211_RRF_AUTO_BW requested for both rules 1395 * set AUTO_BW in intersected rule also. Next we will 1396 * calculate BW correctly in handle_channel function. 1397 * In other case remove AUTO_BW flag while we calculate 1398 * maximum bandwidth correctly and auto calculation is 1399 * not required. 1400 */ 1401 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1402 (rule2->flags & NL80211_RRF_AUTO_BW)) 1403 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1404 else 1405 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1406 1407 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1408 if (freq_range->max_bandwidth_khz > freq_diff) 1409 freq_range->max_bandwidth_khz = freq_diff; 1410 1411 power_rule->max_eirp = min(power_rule1->max_eirp, 1412 power_rule2->max_eirp); 1413 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1414 power_rule2->max_antenna_gain); 1415 1416 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1417 rule2->dfs_cac_ms); 1418 1419 if (!is_valid_reg_rule(intersected_rule)) 1420 return -EINVAL; 1421 1422 return 0; 1423 } 1424 1425 /* check whether old rule contains new rule */ 1426 static bool rule_contains(struct ieee80211_reg_rule *r1, 1427 struct ieee80211_reg_rule *r2) 1428 { 1429 /* for simplicity, currently consider only same flags */ 1430 if (r1->flags != r2->flags) 1431 return false; 1432 1433 /* verify r1 is more restrictive */ 1434 if ((r1->power_rule.max_antenna_gain > 1435 r2->power_rule.max_antenna_gain) || 1436 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1437 return false; 1438 1439 /* make sure r2's range is contained within r1 */ 1440 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1441 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1442 return false; 1443 1444 /* and finally verify that r1.max_bw >= r2.max_bw */ 1445 if (r1->freq_range.max_bandwidth_khz < 1446 r2->freq_range.max_bandwidth_khz) 1447 return false; 1448 1449 return true; 1450 } 1451 1452 /* add or extend current rules. do nothing if rule is already contained */ 1453 static void add_rule(struct ieee80211_reg_rule *rule, 1454 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1455 { 1456 struct ieee80211_reg_rule *tmp_rule; 1457 int i; 1458 1459 for (i = 0; i < *n_rules; i++) { 1460 tmp_rule = ®_rules[i]; 1461 /* rule is already contained - do nothing */ 1462 if (rule_contains(tmp_rule, rule)) 1463 return; 1464 1465 /* extend rule if possible */ 1466 if (rule_contains(rule, tmp_rule)) { 1467 memcpy(tmp_rule, rule, sizeof(*rule)); 1468 return; 1469 } 1470 } 1471 1472 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1473 (*n_rules)++; 1474 } 1475 1476 /** 1477 * regdom_intersect - do the intersection between two regulatory domains 1478 * @rd1: first regulatory domain 1479 * @rd2: second regulatory domain 1480 * 1481 * Use this function to get the intersection between two regulatory domains. 1482 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1483 * as no one single alpha2 can represent this regulatory domain. 1484 * 1485 * Returns a pointer to the regulatory domain structure which will hold the 1486 * resulting intersection of rules between rd1 and rd2. We will 1487 * kzalloc() this structure for you. 1488 */ 1489 static struct ieee80211_regdomain * 1490 regdom_intersect(const struct ieee80211_regdomain *rd1, 1491 const struct ieee80211_regdomain *rd2) 1492 { 1493 int r, size_of_regd; 1494 unsigned int x, y; 1495 unsigned int num_rules = 0; 1496 const struct ieee80211_reg_rule *rule1, *rule2; 1497 struct ieee80211_reg_rule intersected_rule; 1498 struct ieee80211_regdomain *rd; 1499 1500 if (!rd1 || !rd2) 1501 return NULL; 1502 1503 /* 1504 * First we get a count of the rules we'll need, then we actually 1505 * build them. This is to so we can malloc() and free() a 1506 * regdomain once. The reason we use reg_rules_intersect() here 1507 * is it will return -EINVAL if the rule computed makes no sense. 1508 * All rules that do check out OK are valid. 1509 */ 1510 1511 for (x = 0; x < rd1->n_reg_rules; x++) { 1512 rule1 = &rd1->reg_rules[x]; 1513 for (y = 0; y < rd2->n_reg_rules; y++) { 1514 rule2 = &rd2->reg_rules[y]; 1515 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1516 &intersected_rule)) 1517 num_rules++; 1518 } 1519 } 1520 1521 if (!num_rules) 1522 return NULL; 1523 1524 size_of_regd = sizeof(struct ieee80211_regdomain) + 1525 num_rules * sizeof(struct ieee80211_reg_rule); 1526 1527 rd = kzalloc(size_of_regd, GFP_KERNEL); 1528 if (!rd) 1529 return NULL; 1530 1531 for (x = 0; x < rd1->n_reg_rules; x++) { 1532 rule1 = &rd1->reg_rules[x]; 1533 for (y = 0; y < rd2->n_reg_rules; y++) { 1534 rule2 = &rd2->reg_rules[y]; 1535 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1536 &intersected_rule); 1537 /* 1538 * No need to memset here the intersected rule here as 1539 * we're not using the stack anymore 1540 */ 1541 if (r) 1542 continue; 1543 1544 add_rule(&intersected_rule, rd->reg_rules, 1545 &rd->n_reg_rules); 1546 } 1547 } 1548 1549 rd->alpha2[0] = '9'; 1550 rd->alpha2[1] = '8'; 1551 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1552 rd2->dfs_region); 1553 1554 return rd; 1555 } 1556 1557 /* 1558 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1559 * want to just have the channel structure use these 1560 */ 1561 static u32 map_regdom_flags(u32 rd_flags) 1562 { 1563 u32 channel_flags = 0; 1564 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1565 channel_flags |= IEEE80211_CHAN_NO_IR; 1566 if (rd_flags & NL80211_RRF_DFS) 1567 channel_flags |= IEEE80211_CHAN_RADAR; 1568 if (rd_flags & NL80211_RRF_NO_OFDM) 1569 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1570 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1571 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1572 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1573 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1574 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1575 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1576 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1577 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1578 if (rd_flags & NL80211_RRF_NO_80MHZ) 1579 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1580 if (rd_flags & NL80211_RRF_NO_160MHZ) 1581 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1582 return channel_flags; 1583 } 1584 1585 static const struct ieee80211_reg_rule * 1586 freq_reg_info_regd(u32 center_freq, 1587 const struct ieee80211_regdomain *regd, u32 bw) 1588 { 1589 int i; 1590 bool band_rule_found = false; 1591 bool bw_fits = false; 1592 1593 if (!regd) 1594 return ERR_PTR(-EINVAL); 1595 1596 for (i = 0; i < regd->n_reg_rules; i++) { 1597 const struct ieee80211_reg_rule *rr; 1598 const struct ieee80211_freq_range *fr = NULL; 1599 1600 rr = ®d->reg_rules[i]; 1601 fr = &rr->freq_range; 1602 1603 /* 1604 * We only need to know if one frequency rule was 1605 * was in center_freq's band, that's enough, so lets 1606 * not overwrite it once found 1607 */ 1608 if (!band_rule_found) 1609 band_rule_found = freq_in_rule_band(fr, center_freq); 1610 1611 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1612 1613 if (band_rule_found && bw_fits) 1614 return rr; 1615 } 1616 1617 if (!band_rule_found) 1618 return ERR_PTR(-ERANGE); 1619 1620 return ERR_PTR(-EINVAL); 1621 } 1622 1623 static const struct ieee80211_reg_rule * 1624 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1625 { 1626 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1627 const struct ieee80211_reg_rule *reg_rule = NULL; 1628 u32 bw; 1629 1630 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 1631 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1632 if (!IS_ERR(reg_rule)) 1633 return reg_rule; 1634 } 1635 1636 return reg_rule; 1637 } 1638 1639 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1640 u32 center_freq) 1641 { 1642 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20)); 1643 } 1644 EXPORT_SYMBOL(freq_reg_info); 1645 1646 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1647 { 1648 switch (initiator) { 1649 case NL80211_REGDOM_SET_BY_CORE: 1650 return "core"; 1651 case NL80211_REGDOM_SET_BY_USER: 1652 return "user"; 1653 case NL80211_REGDOM_SET_BY_DRIVER: 1654 return "driver"; 1655 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1656 return "country IE"; 1657 default: 1658 WARN_ON(1); 1659 return "bug"; 1660 } 1661 } 1662 EXPORT_SYMBOL(reg_initiator_name); 1663 1664 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1665 const struct ieee80211_reg_rule *reg_rule, 1666 const struct ieee80211_channel *chan) 1667 { 1668 const struct ieee80211_freq_range *freq_range = NULL; 1669 u32 max_bandwidth_khz, bw_flags = 0; 1670 1671 freq_range = ®_rule->freq_range; 1672 1673 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1674 /* Check if auto calculation requested */ 1675 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1676 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1677 1678 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1679 if (!cfg80211_does_bw_fit_range(freq_range, 1680 MHZ_TO_KHZ(chan->center_freq), 1681 MHZ_TO_KHZ(10))) 1682 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1683 if (!cfg80211_does_bw_fit_range(freq_range, 1684 MHZ_TO_KHZ(chan->center_freq), 1685 MHZ_TO_KHZ(20))) 1686 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1687 1688 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1689 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1690 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1691 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1692 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1693 bw_flags |= IEEE80211_CHAN_NO_HT40; 1694 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1695 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1696 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1697 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1698 return bw_flags; 1699 } 1700 1701 /* 1702 * Note that right now we assume the desired channel bandwidth 1703 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1704 * per channel, the primary and the extension channel). 1705 */ 1706 static void handle_channel(struct wiphy *wiphy, 1707 enum nl80211_reg_initiator initiator, 1708 struct ieee80211_channel *chan) 1709 { 1710 u32 flags, bw_flags = 0; 1711 const struct ieee80211_reg_rule *reg_rule = NULL; 1712 const struct ieee80211_power_rule *power_rule = NULL; 1713 struct wiphy *request_wiphy = NULL; 1714 struct regulatory_request *lr = get_last_request(); 1715 const struct ieee80211_regdomain *regd; 1716 1717 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1718 1719 flags = chan->orig_flags; 1720 1721 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 1722 if (IS_ERR(reg_rule)) { 1723 /* 1724 * We will disable all channels that do not match our 1725 * received regulatory rule unless the hint is coming 1726 * from a Country IE and the Country IE had no information 1727 * about a band. The IEEE 802.11 spec allows for an AP 1728 * to send only a subset of the regulatory rules allowed, 1729 * so an AP in the US that only supports 2.4 GHz may only send 1730 * a country IE with information for the 2.4 GHz band 1731 * while 5 GHz is still supported. 1732 */ 1733 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1734 PTR_ERR(reg_rule) == -ERANGE) 1735 return; 1736 1737 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1738 request_wiphy && request_wiphy == wiphy && 1739 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1740 pr_debug("Disabling freq %d MHz for good\n", 1741 chan->center_freq); 1742 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1743 chan->flags = chan->orig_flags; 1744 } else { 1745 pr_debug("Disabling freq %d MHz\n", 1746 chan->center_freq); 1747 chan->flags |= IEEE80211_CHAN_DISABLED; 1748 } 1749 return; 1750 } 1751 1752 regd = reg_get_regdomain(wiphy); 1753 1754 power_rule = ®_rule->power_rule; 1755 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1756 1757 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1758 request_wiphy && request_wiphy == wiphy && 1759 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1760 /* 1761 * This guarantees the driver's requested regulatory domain 1762 * will always be used as a base for further regulatory 1763 * settings 1764 */ 1765 chan->flags = chan->orig_flags = 1766 map_regdom_flags(reg_rule->flags) | bw_flags; 1767 chan->max_antenna_gain = chan->orig_mag = 1768 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1769 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1770 (int) MBM_TO_DBM(power_rule->max_eirp); 1771 1772 if (chan->flags & IEEE80211_CHAN_RADAR) { 1773 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1774 if (reg_rule->dfs_cac_ms) 1775 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1776 } 1777 1778 return; 1779 } 1780 1781 chan->dfs_state = NL80211_DFS_USABLE; 1782 chan->dfs_state_entered = jiffies; 1783 1784 chan->beacon_found = false; 1785 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1786 chan->max_antenna_gain = 1787 min_t(int, chan->orig_mag, 1788 MBI_TO_DBI(power_rule->max_antenna_gain)); 1789 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1790 1791 if (chan->flags & IEEE80211_CHAN_RADAR) { 1792 if (reg_rule->dfs_cac_ms) 1793 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1794 else 1795 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1796 } 1797 1798 if (chan->orig_mpwr) { 1799 /* 1800 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1801 * will always follow the passed country IE power settings. 1802 */ 1803 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1804 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1805 chan->max_power = chan->max_reg_power; 1806 else 1807 chan->max_power = min(chan->orig_mpwr, 1808 chan->max_reg_power); 1809 } else 1810 chan->max_power = chan->max_reg_power; 1811 } 1812 1813 static void handle_band(struct wiphy *wiphy, 1814 enum nl80211_reg_initiator initiator, 1815 struct ieee80211_supported_band *sband) 1816 { 1817 unsigned int i; 1818 1819 if (!sband) 1820 return; 1821 1822 for (i = 0; i < sband->n_channels; i++) 1823 handle_channel(wiphy, initiator, &sband->channels[i]); 1824 } 1825 1826 static bool reg_request_cell_base(struct regulatory_request *request) 1827 { 1828 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1829 return false; 1830 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 1831 } 1832 1833 bool reg_last_request_cell_base(void) 1834 { 1835 return reg_request_cell_base(get_last_request()); 1836 } 1837 1838 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 1839 /* Core specific check */ 1840 static enum reg_request_treatment 1841 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1842 { 1843 struct regulatory_request *lr = get_last_request(); 1844 1845 if (!reg_num_devs_support_basehint) 1846 return REG_REQ_IGNORE; 1847 1848 if (reg_request_cell_base(lr) && 1849 !regdom_changes(pending_request->alpha2)) 1850 return REG_REQ_ALREADY_SET; 1851 1852 return REG_REQ_OK; 1853 } 1854 1855 /* Device specific check */ 1856 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1857 { 1858 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 1859 } 1860 #else 1861 static enum reg_request_treatment 1862 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1863 { 1864 return REG_REQ_IGNORE; 1865 } 1866 1867 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1868 { 1869 return true; 1870 } 1871 #endif 1872 1873 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 1874 { 1875 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 1876 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 1877 return true; 1878 return false; 1879 } 1880 1881 static bool ignore_reg_update(struct wiphy *wiphy, 1882 enum nl80211_reg_initiator initiator) 1883 { 1884 struct regulatory_request *lr = get_last_request(); 1885 1886 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 1887 return true; 1888 1889 if (!lr) { 1890 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 1891 reg_initiator_name(initiator)); 1892 return true; 1893 } 1894 1895 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1896 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 1897 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 1898 reg_initiator_name(initiator)); 1899 return true; 1900 } 1901 1902 /* 1903 * wiphy->regd will be set once the device has its own 1904 * desired regulatory domain set 1905 */ 1906 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1907 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1908 !is_world_regdom(lr->alpha2)) { 1909 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 1910 reg_initiator_name(initiator)); 1911 return true; 1912 } 1913 1914 if (reg_request_cell_base(lr)) 1915 return reg_dev_ignore_cell_hint(wiphy); 1916 1917 return false; 1918 } 1919 1920 static bool reg_is_world_roaming(struct wiphy *wiphy) 1921 { 1922 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1923 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1924 struct regulatory_request *lr = get_last_request(); 1925 1926 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1927 return true; 1928 1929 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1930 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1931 return true; 1932 1933 return false; 1934 } 1935 1936 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1937 struct reg_beacon *reg_beacon) 1938 { 1939 struct ieee80211_supported_band *sband; 1940 struct ieee80211_channel *chan; 1941 bool channel_changed = false; 1942 struct ieee80211_channel chan_before; 1943 1944 sband = wiphy->bands[reg_beacon->chan.band]; 1945 chan = &sband->channels[chan_idx]; 1946 1947 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1948 return; 1949 1950 if (chan->beacon_found) 1951 return; 1952 1953 chan->beacon_found = true; 1954 1955 if (!reg_is_world_roaming(wiphy)) 1956 return; 1957 1958 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 1959 return; 1960 1961 chan_before = *chan; 1962 1963 if (chan->flags & IEEE80211_CHAN_NO_IR) { 1964 chan->flags &= ~IEEE80211_CHAN_NO_IR; 1965 channel_changed = true; 1966 } 1967 1968 if (channel_changed) 1969 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1970 } 1971 1972 /* 1973 * Called when a scan on a wiphy finds a beacon on 1974 * new channel 1975 */ 1976 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1977 struct reg_beacon *reg_beacon) 1978 { 1979 unsigned int i; 1980 struct ieee80211_supported_band *sband; 1981 1982 if (!wiphy->bands[reg_beacon->chan.band]) 1983 return; 1984 1985 sband = wiphy->bands[reg_beacon->chan.band]; 1986 1987 for (i = 0; i < sband->n_channels; i++) 1988 handle_reg_beacon(wiphy, i, reg_beacon); 1989 } 1990 1991 /* 1992 * Called upon reg changes or a new wiphy is added 1993 */ 1994 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1995 { 1996 unsigned int i; 1997 struct ieee80211_supported_band *sband; 1998 struct reg_beacon *reg_beacon; 1999 2000 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 2001 if (!wiphy->bands[reg_beacon->chan.band]) 2002 continue; 2003 sband = wiphy->bands[reg_beacon->chan.band]; 2004 for (i = 0; i < sband->n_channels; i++) 2005 handle_reg_beacon(wiphy, i, reg_beacon); 2006 } 2007 } 2008 2009 /* Reap the advantages of previously found beacons */ 2010 static void reg_process_beacons(struct wiphy *wiphy) 2011 { 2012 /* 2013 * Means we are just firing up cfg80211, so no beacons would 2014 * have been processed yet. 2015 */ 2016 if (!last_request) 2017 return; 2018 wiphy_update_beacon_reg(wiphy); 2019 } 2020 2021 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2022 { 2023 if (!chan) 2024 return false; 2025 if (chan->flags & IEEE80211_CHAN_DISABLED) 2026 return false; 2027 /* This would happen when regulatory rules disallow HT40 completely */ 2028 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2029 return false; 2030 return true; 2031 } 2032 2033 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2034 struct ieee80211_channel *channel) 2035 { 2036 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2037 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2038 const struct ieee80211_regdomain *regd; 2039 unsigned int i; 2040 u32 flags; 2041 2042 if (!is_ht40_allowed(channel)) { 2043 channel->flags |= IEEE80211_CHAN_NO_HT40; 2044 return; 2045 } 2046 2047 /* 2048 * We need to ensure the extension channels exist to 2049 * be able to use HT40- or HT40+, this finds them (or not) 2050 */ 2051 for (i = 0; i < sband->n_channels; i++) { 2052 struct ieee80211_channel *c = &sband->channels[i]; 2053 2054 if (c->center_freq == (channel->center_freq - 20)) 2055 channel_before = c; 2056 if (c->center_freq == (channel->center_freq + 20)) 2057 channel_after = c; 2058 } 2059 2060 flags = 0; 2061 regd = get_wiphy_regdom(wiphy); 2062 if (regd) { 2063 const struct ieee80211_reg_rule *reg_rule = 2064 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2065 regd, MHZ_TO_KHZ(20)); 2066 2067 if (!IS_ERR(reg_rule)) 2068 flags = reg_rule->flags; 2069 } 2070 2071 /* 2072 * Please note that this assumes target bandwidth is 20 MHz, 2073 * if that ever changes we also need to change the below logic 2074 * to include that as well. 2075 */ 2076 if (!is_ht40_allowed(channel_before) || 2077 flags & NL80211_RRF_NO_HT40MINUS) 2078 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2079 else 2080 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2081 2082 if (!is_ht40_allowed(channel_after) || 2083 flags & NL80211_RRF_NO_HT40PLUS) 2084 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2085 else 2086 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2087 } 2088 2089 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2090 struct ieee80211_supported_band *sband) 2091 { 2092 unsigned int i; 2093 2094 if (!sband) 2095 return; 2096 2097 for (i = 0; i < sband->n_channels; i++) 2098 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2099 } 2100 2101 static void reg_process_ht_flags(struct wiphy *wiphy) 2102 { 2103 enum nl80211_band band; 2104 2105 if (!wiphy) 2106 return; 2107 2108 for (band = 0; band < NUM_NL80211_BANDS; band++) 2109 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2110 } 2111 2112 static void reg_call_notifier(struct wiphy *wiphy, 2113 struct regulatory_request *request) 2114 { 2115 if (wiphy->reg_notifier) 2116 wiphy->reg_notifier(wiphy, request); 2117 } 2118 2119 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2120 { 2121 struct cfg80211_chan_def chandef; 2122 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2123 enum nl80211_iftype iftype; 2124 2125 wdev_lock(wdev); 2126 iftype = wdev->iftype; 2127 2128 /* make sure the interface is active */ 2129 if (!wdev->netdev || !netif_running(wdev->netdev)) 2130 goto wdev_inactive_unlock; 2131 2132 switch (iftype) { 2133 case NL80211_IFTYPE_AP: 2134 case NL80211_IFTYPE_P2P_GO: 2135 if (!wdev->beacon_interval) 2136 goto wdev_inactive_unlock; 2137 chandef = wdev->chandef; 2138 break; 2139 case NL80211_IFTYPE_ADHOC: 2140 if (!wdev->ssid_len) 2141 goto wdev_inactive_unlock; 2142 chandef = wdev->chandef; 2143 break; 2144 case NL80211_IFTYPE_STATION: 2145 case NL80211_IFTYPE_P2P_CLIENT: 2146 if (!wdev->current_bss || 2147 !wdev->current_bss->pub.channel) 2148 goto wdev_inactive_unlock; 2149 2150 if (!rdev->ops->get_channel || 2151 rdev_get_channel(rdev, wdev, &chandef)) 2152 cfg80211_chandef_create(&chandef, 2153 wdev->current_bss->pub.channel, 2154 NL80211_CHAN_NO_HT); 2155 break; 2156 case NL80211_IFTYPE_MONITOR: 2157 case NL80211_IFTYPE_AP_VLAN: 2158 case NL80211_IFTYPE_P2P_DEVICE: 2159 /* no enforcement required */ 2160 break; 2161 default: 2162 /* others not implemented for now */ 2163 WARN_ON(1); 2164 break; 2165 } 2166 2167 wdev_unlock(wdev); 2168 2169 switch (iftype) { 2170 case NL80211_IFTYPE_AP: 2171 case NL80211_IFTYPE_P2P_GO: 2172 case NL80211_IFTYPE_ADHOC: 2173 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 2174 case NL80211_IFTYPE_STATION: 2175 case NL80211_IFTYPE_P2P_CLIENT: 2176 return cfg80211_chandef_usable(wiphy, &chandef, 2177 IEEE80211_CHAN_DISABLED); 2178 default: 2179 break; 2180 } 2181 2182 return true; 2183 2184 wdev_inactive_unlock: 2185 wdev_unlock(wdev); 2186 return true; 2187 } 2188 2189 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2190 { 2191 struct wireless_dev *wdev; 2192 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2193 2194 ASSERT_RTNL(); 2195 2196 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2197 if (!reg_wdev_chan_valid(wiphy, wdev)) 2198 cfg80211_leave(rdev, wdev); 2199 } 2200 2201 static void reg_check_chans_work(struct work_struct *work) 2202 { 2203 struct cfg80211_registered_device *rdev; 2204 2205 pr_debug("Verifying active interfaces after reg change\n"); 2206 rtnl_lock(); 2207 2208 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2209 if (!(rdev->wiphy.regulatory_flags & 2210 REGULATORY_IGNORE_STALE_KICKOFF)) 2211 reg_leave_invalid_chans(&rdev->wiphy); 2212 2213 rtnl_unlock(); 2214 } 2215 2216 static void reg_check_channels(void) 2217 { 2218 /* 2219 * Give usermode a chance to do something nicer (move to another 2220 * channel, orderly disconnection), before forcing a disconnection. 2221 */ 2222 mod_delayed_work(system_power_efficient_wq, 2223 ®_check_chans, 2224 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2225 } 2226 2227 static void wiphy_update_regulatory(struct wiphy *wiphy, 2228 enum nl80211_reg_initiator initiator) 2229 { 2230 enum nl80211_band band; 2231 struct regulatory_request *lr = get_last_request(); 2232 2233 if (ignore_reg_update(wiphy, initiator)) { 2234 /* 2235 * Regulatory updates set by CORE are ignored for custom 2236 * regulatory cards. Let us notify the changes to the driver, 2237 * as some drivers used this to restore its orig_* reg domain. 2238 */ 2239 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2240 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2241 reg_call_notifier(wiphy, lr); 2242 return; 2243 } 2244 2245 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2246 2247 for (band = 0; band < NUM_NL80211_BANDS; band++) 2248 handle_band(wiphy, initiator, wiphy->bands[band]); 2249 2250 reg_process_beacons(wiphy); 2251 reg_process_ht_flags(wiphy); 2252 reg_call_notifier(wiphy, lr); 2253 } 2254 2255 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2256 { 2257 struct cfg80211_registered_device *rdev; 2258 struct wiphy *wiphy; 2259 2260 ASSERT_RTNL(); 2261 2262 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2263 wiphy = &rdev->wiphy; 2264 wiphy_update_regulatory(wiphy, initiator); 2265 } 2266 2267 reg_check_channels(); 2268 } 2269 2270 static void handle_channel_custom(struct wiphy *wiphy, 2271 struct ieee80211_channel *chan, 2272 const struct ieee80211_regdomain *regd) 2273 { 2274 u32 bw_flags = 0; 2275 const struct ieee80211_reg_rule *reg_rule = NULL; 2276 const struct ieee80211_power_rule *power_rule = NULL; 2277 u32 bw; 2278 2279 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) { 2280 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq), 2281 regd, bw); 2282 if (!IS_ERR(reg_rule)) 2283 break; 2284 } 2285 2286 if (IS_ERR(reg_rule)) { 2287 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n", 2288 chan->center_freq); 2289 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2290 chan->flags |= IEEE80211_CHAN_DISABLED; 2291 } else { 2292 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2293 chan->flags = chan->orig_flags; 2294 } 2295 return; 2296 } 2297 2298 power_rule = ®_rule->power_rule; 2299 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2300 2301 chan->dfs_state_entered = jiffies; 2302 chan->dfs_state = NL80211_DFS_USABLE; 2303 2304 chan->beacon_found = false; 2305 2306 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2307 chan->flags = chan->orig_flags | bw_flags | 2308 map_regdom_flags(reg_rule->flags); 2309 else 2310 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2311 2312 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2313 chan->max_reg_power = chan->max_power = 2314 (int) MBM_TO_DBM(power_rule->max_eirp); 2315 2316 if (chan->flags & IEEE80211_CHAN_RADAR) { 2317 if (reg_rule->dfs_cac_ms) 2318 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2319 else 2320 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2321 } 2322 2323 chan->max_power = chan->max_reg_power; 2324 } 2325 2326 static void handle_band_custom(struct wiphy *wiphy, 2327 struct ieee80211_supported_band *sband, 2328 const struct ieee80211_regdomain *regd) 2329 { 2330 unsigned int i; 2331 2332 if (!sband) 2333 return; 2334 2335 for (i = 0; i < sband->n_channels; i++) 2336 handle_channel_custom(wiphy, &sband->channels[i], regd); 2337 } 2338 2339 /* Used by drivers prior to wiphy registration */ 2340 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2341 const struct ieee80211_regdomain *regd) 2342 { 2343 enum nl80211_band band; 2344 unsigned int bands_set = 0; 2345 2346 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2347 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2348 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2349 2350 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2351 if (!wiphy->bands[band]) 2352 continue; 2353 handle_band_custom(wiphy, wiphy->bands[band], regd); 2354 bands_set++; 2355 } 2356 2357 /* 2358 * no point in calling this if it won't have any effect 2359 * on your device's supported bands. 2360 */ 2361 WARN_ON(!bands_set); 2362 } 2363 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2364 2365 static void reg_set_request_processed(void) 2366 { 2367 bool need_more_processing = false; 2368 struct regulatory_request *lr = get_last_request(); 2369 2370 lr->processed = true; 2371 2372 spin_lock(®_requests_lock); 2373 if (!list_empty(®_requests_list)) 2374 need_more_processing = true; 2375 spin_unlock(®_requests_lock); 2376 2377 cancel_crda_timeout(); 2378 2379 if (need_more_processing) 2380 schedule_work(®_work); 2381 } 2382 2383 /** 2384 * reg_process_hint_core - process core regulatory requests 2385 * @pending_request: a pending core regulatory request 2386 * 2387 * The wireless subsystem can use this function to process 2388 * a regulatory request issued by the regulatory core. 2389 */ 2390 static enum reg_request_treatment 2391 reg_process_hint_core(struct regulatory_request *core_request) 2392 { 2393 if (reg_query_database(core_request)) { 2394 core_request->intersect = false; 2395 core_request->processed = false; 2396 reg_update_last_request(core_request); 2397 return REG_REQ_OK; 2398 } 2399 2400 return REG_REQ_IGNORE; 2401 } 2402 2403 static enum reg_request_treatment 2404 __reg_process_hint_user(struct regulatory_request *user_request) 2405 { 2406 struct regulatory_request *lr = get_last_request(); 2407 2408 if (reg_request_cell_base(user_request)) 2409 return reg_ignore_cell_hint(user_request); 2410 2411 if (reg_request_cell_base(lr)) 2412 return REG_REQ_IGNORE; 2413 2414 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2415 return REG_REQ_INTERSECT; 2416 /* 2417 * If the user knows better the user should set the regdom 2418 * to their country before the IE is picked up 2419 */ 2420 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2421 lr->intersect) 2422 return REG_REQ_IGNORE; 2423 /* 2424 * Process user requests only after previous user/driver/core 2425 * requests have been processed 2426 */ 2427 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2428 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2429 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2430 regdom_changes(lr->alpha2)) 2431 return REG_REQ_IGNORE; 2432 2433 if (!regdom_changes(user_request->alpha2)) 2434 return REG_REQ_ALREADY_SET; 2435 2436 return REG_REQ_OK; 2437 } 2438 2439 /** 2440 * reg_process_hint_user - process user regulatory requests 2441 * @user_request: a pending user regulatory request 2442 * 2443 * The wireless subsystem can use this function to process 2444 * a regulatory request initiated by userspace. 2445 */ 2446 static enum reg_request_treatment 2447 reg_process_hint_user(struct regulatory_request *user_request) 2448 { 2449 enum reg_request_treatment treatment; 2450 2451 treatment = __reg_process_hint_user(user_request); 2452 if (treatment == REG_REQ_IGNORE || 2453 treatment == REG_REQ_ALREADY_SET) 2454 return REG_REQ_IGNORE; 2455 2456 user_request->intersect = treatment == REG_REQ_INTERSECT; 2457 user_request->processed = false; 2458 2459 if (reg_query_database(user_request)) { 2460 reg_update_last_request(user_request); 2461 user_alpha2[0] = user_request->alpha2[0]; 2462 user_alpha2[1] = user_request->alpha2[1]; 2463 return REG_REQ_OK; 2464 } 2465 2466 return REG_REQ_IGNORE; 2467 } 2468 2469 static enum reg_request_treatment 2470 __reg_process_hint_driver(struct regulatory_request *driver_request) 2471 { 2472 struct regulatory_request *lr = get_last_request(); 2473 2474 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2475 if (regdom_changes(driver_request->alpha2)) 2476 return REG_REQ_OK; 2477 return REG_REQ_ALREADY_SET; 2478 } 2479 2480 /* 2481 * This would happen if you unplug and plug your card 2482 * back in or if you add a new device for which the previously 2483 * loaded card also agrees on the regulatory domain. 2484 */ 2485 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2486 !regdom_changes(driver_request->alpha2)) 2487 return REG_REQ_ALREADY_SET; 2488 2489 return REG_REQ_INTERSECT; 2490 } 2491 2492 /** 2493 * reg_process_hint_driver - process driver regulatory requests 2494 * @driver_request: a pending driver regulatory request 2495 * 2496 * The wireless subsystem can use this function to process 2497 * a regulatory request issued by an 802.11 driver. 2498 * 2499 * Returns one of the different reg request treatment values. 2500 */ 2501 static enum reg_request_treatment 2502 reg_process_hint_driver(struct wiphy *wiphy, 2503 struct regulatory_request *driver_request) 2504 { 2505 const struct ieee80211_regdomain *regd, *tmp; 2506 enum reg_request_treatment treatment; 2507 2508 treatment = __reg_process_hint_driver(driver_request); 2509 2510 switch (treatment) { 2511 case REG_REQ_OK: 2512 break; 2513 case REG_REQ_IGNORE: 2514 return REG_REQ_IGNORE; 2515 case REG_REQ_INTERSECT: 2516 case REG_REQ_ALREADY_SET: 2517 regd = reg_copy_regd(get_cfg80211_regdom()); 2518 if (IS_ERR(regd)) 2519 return REG_REQ_IGNORE; 2520 2521 tmp = get_wiphy_regdom(wiphy); 2522 rcu_assign_pointer(wiphy->regd, regd); 2523 rcu_free_regdom(tmp); 2524 } 2525 2526 2527 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2528 driver_request->processed = false; 2529 2530 /* 2531 * Since CRDA will not be called in this case as we already 2532 * have applied the requested regulatory domain before we just 2533 * inform userspace we have processed the request 2534 */ 2535 if (treatment == REG_REQ_ALREADY_SET) { 2536 nl80211_send_reg_change_event(driver_request); 2537 reg_update_last_request(driver_request); 2538 reg_set_request_processed(); 2539 return REG_REQ_ALREADY_SET; 2540 } 2541 2542 if (reg_query_database(driver_request)) { 2543 reg_update_last_request(driver_request); 2544 return REG_REQ_OK; 2545 } 2546 2547 return REG_REQ_IGNORE; 2548 } 2549 2550 static enum reg_request_treatment 2551 __reg_process_hint_country_ie(struct wiphy *wiphy, 2552 struct regulatory_request *country_ie_request) 2553 { 2554 struct wiphy *last_wiphy = NULL; 2555 struct regulatory_request *lr = get_last_request(); 2556 2557 if (reg_request_cell_base(lr)) { 2558 /* Trust a Cell base station over the AP's country IE */ 2559 if (regdom_changes(country_ie_request->alpha2)) 2560 return REG_REQ_IGNORE; 2561 return REG_REQ_ALREADY_SET; 2562 } else { 2563 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2564 return REG_REQ_IGNORE; 2565 } 2566 2567 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2568 return -EINVAL; 2569 2570 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2571 return REG_REQ_OK; 2572 2573 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2574 2575 if (last_wiphy != wiphy) { 2576 /* 2577 * Two cards with two APs claiming different 2578 * Country IE alpha2s. We could 2579 * intersect them, but that seems unlikely 2580 * to be correct. Reject second one for now. 2581 */ 2582 if (regdom_changes(country_ie_request->alpha2)) 2583 return REG_REQ_IGNORE; 2584 return REG_REQ_ALREADY_SET; 2585 } 2586 2587 if (regdom_changes(country_ie_request->alpha2)) 2588 return REG_REQ_OK; 2589 return REG_REQ_ALREADY_SET; 2590 } 2591 2592 /** 2593 * reg_process_hint_country_ie - process regulatory requests from country IEs 2594 * @country_ie_request: a regulatory request from a country IE 2595 * 2596 * The wireless subsystem can use this function to process 2597 * a regulatory request issued by a country Information Element. 2598 * 2599 * Returns one of the different reg request treatment values. 2600 */ 2601 static enum reg_request_treatment 2602 reg_process_hint_country_ie(struct wiphy *wiphy, 2603 struct regulatory_request *country_ie_request) 2604 { 2605 enum reg_request_treatment treatment; 2606 2607 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2608 2609 switch (treatment) { 2610 case REG_REQ_OK: 2611 break; 2612 case REG_REQ_IGNORE: 2613 return REG_REQ_IGNORE; 2614 case REG_REQ_ALREADY_SET: 2615 reg_free_request(country_ie_request); 2616 return REG_REQ_ALREADY_SET; 2617 case REG_REQ_INTERSECT: 2618 /* 2619 * This doesn't happen yet, not sure we 2620 * ever want to support it for this case. 2621 */ 2622 WARN_ONCE(1, "Unexpected intersection for country IEs"); 2623 return REG_REQ_IGNORE; 2624 } 2625 2626 country_ie_request->intersect = false; 2627 country_ie_request->processed = false; 2628 2629 if (reg_query_database(country_ie_request)) { 2630 reg_update_last_request(country_ie_request); 2631 return REG_REQ_OK; 2632 } 2633 2634 return REG_REQ_IGNORE; 2635 } 2636 2637 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2638 { 2639 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2640 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2641 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2642 bool dfs_domain_same; 2643 2644 rcu_read_lock(); 2645 2646 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2647 wiphy1_regd = rcu_dereference(wiphy1->regd); 2648 if (!wiphy1_regd) 2649 wiphy1_regd = cfg80211_regd; 2650 2651 wiphy2_regd = rcu_dereference(wiphy2->regd); 2652 if (!wiphy2_regd) 2653 wiphy2_regd = cfg80211_regd; 2654 2655 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2656 2657 rcu_read_unlock(); 2658 2659 return dfs_domain_same; 2660 } 2661 2662 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2663 struct ieee80211_channel *src_chan) 2664 { 2665 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2666 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2667 return; 2668 2669 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2670 src_chan->flags & IEEE80211_CHAN_DISABLED) 2671 return; 2672 2673 if (src_chan->center_freq == dst_chan->center_freq && 2674 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2675 dst_chan->dfs_state = src_chan->dfs_state; 2676 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2677 } 2678 } 2679 2680 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2681 struct wiphy *src_wiphy) 2682 { 2683 struct ieee80211_supported_band *src_sband, *dst_sband; 2684 struct ieee80211_channel *src_chan, *dst_chan; 2685 int i, j, band; 2686 2687 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2688 return; 2689 2690 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2691 dst_sband = dst_wiphy->bands[band]; 2692 src_sband = src_wiphy->bands[band]; 2693 if (!dst_sband || !src_sband) 2694 continue; 2695 2696 for (i = 0; i < dst_sband->n_channels; i++) { 2697 dst_chan = &dst_sband->channels[i]; 2698 for (j = 0; j < src_sband->n_channels; j++) { 2699 src_chan = &src_sband->channels[j]; 2700 reg_copy_dfs_chan_state(dst_chan, src_chan); 2701 } 2702 } 2703 } 2704 } 2705 2706 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2707 { 2708 struct cfg80211_registered_device *rdev; 2709 2710 ASSERT_RTNL(); 2711 2712 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2713 if (wiphy == &rdev->wiphy) 2714 continue; 2715 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2716 } 2717 } 2718 2719 /* This processes *all* regulatory hints */ 2720 static void reg_process_hint(struct regulatory_request *reg_request) 2721 { 2722 struct wiphy *wiphy = NULL; 2723 enum reg_request_treatment treatment; 2724 2725 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2726 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2727 2728 switch (reg_request->initiator) { 2729 case NL80211_REGDOM_SET_BY_CORE: 2730 treatment = reg_process_hint_core(reg_request); 2731 break; 2732 case NL80211_REGDOM_SET_BY_USER: 2733 treatment = reg_process_hint_user(reg_request); 2734 break; 2735 case NL80211_REGDOM_SET_BY_DRIVER: 2736 if (!wiphy) 2737 goto out_free; 2738 treatment = reg_process_hint_driver(wiphy, reg_request); 2739 break; 2740 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2741 if (!wiphy) 2742 goto out_free; 2743 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2744 break; 2745 default: 2746 WARN(1, "invalid initiator %d\n", reg_request->initiator); 2747 goto out_free; 2748 } 2749 2750 if (treatment == REG_REQ_IGNORE) 2751 goto out_free; 2752 2753 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 2754 "unexpected treatment value %d\n", treatment); 2755 2756 /* This is required so that the orig_* parameters are saved. 2757 * NOTE: treatment must be set for any case that reaches here! 2758 */ 2759 if (treatment == REG_REQ_ALREADY_SET && wiphy && 2760 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2761 wiphy_update_regulatory(wiphy, reg_request->initiator); 2762 wiphy_all_share_dfs_chan_state(wiphy); 2763 reg_check_channels(); 2764 } 2765 2766 return; 2767 2768 out_free: 2769 reg_free_request(reg_request); 2770 } 2771 2772 static bool reg_only_self_managed_wiphys(void) 2773 { 2774 struct cfg80211_registered_device *rdev; 2775 struct wiphy *wiphy; 2776 bool self_managed_found = false; 2777 2778 ASSERT_RTNL(); 2779 2780 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2781 wiphy = &rdev->wiphy; 2782 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2783 self_managed_found = true; 2784 else 2785 return false; 2786 } 2787 2788 /* make sure at least one self-managed wiphy exists */ 2789 return self_managed_found; 2790 } 2791 2792 /* 2793 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 2794 * Regulatory hints come on a first come first serve basis and we 2795 * must process each one atomically. 2796 */ 2797 static void reg_process_pending_hints(void) 2798 { 2799 struct regulatory_request *reg_request, *lr; 2800 2801 lr = get_last_request(); 2802 2803 /* When last_request->processed becomes true this will be rescheduled */ 2804 if (lr && !lr->processed) { 2805 reg_process_hint(lr); 2806 return; 2807 } 2808 2809 spin_lock(®_requests_lock); 2810 2811 if (list_empty(®_requests_list)) { 2812 spin_unlock(®_requests_lock); 2813 return; 2814 } 2815 2816 reg_request = list_first_entry(®_requests_list, 2817 struct regulatory_request, 2818 list); 2819 list_del_init(®_request->list); 2820 2821 spin_unlock(®_requests_lock); 2822 2823 if (reg_only_self_managed_wiphys()) { 2824 reg_free_request(reg_request); 2825 return; 2826 } 2827 2828 reg_process_hint(reg_request); 2829 2830 lr = get_last_request(); 2831 2832 spin_lock(®_requests_lock); 2833 if (!list_empty(®_requests_list) && lr && lr->processed) 2834 schedule_work(®_work); 2835 spin_unlock(®_requests_lock); 2836 } 2837 2838 /* Processes beacon hints -- this has nothing to do with country IEs */ 2839 static void reg_process_pending_beacon_hints(void) 2840 { 2841 struct cfg80211_registered_device *rdev; 2842 struct reg_beacon *pending_beacon, *tmp; 2843 2844 /* This goes through the _pending_ beacon list */ 2845 spin_lock_bh(®_pending_beacons_lock); 2846 2847 list_for_each_entry_safe(pending_beacon, tmp, 2848 ®_pending_beacons, list) { 2849 list_del_init(&pending_beacon->list); 2850 2851 /* Applies the beacon hint to current wiphys */ 2852 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2853 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 2854 2855 /* Remembers the beacon hint for new wiphys or reg changes */ 2856 list_add_tail(&pending_beacon->list, ®_beacon_list); 2857 } 2858 2859 spin_unlock_bh(®_pending_beacons_lock); 2860 } 2861 2862 static void reg_process_self_managed_hints(void) 2863 { 2864 struct cfg80211_registered_device *rdev; 2865 struct wiphy *wiphy; 2866 const struct ieee80211_regdomain *tmp; 2867 const struct ieee80211_regdomain *regd; 2868 enum nl80211_band band; 2869 struct regulatory_request request = {}; 2870 2871 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2872 wiphy = &rdev->wiphy; 2873 2874 spin_lock(®_requests_lock); 2875 regd = rdev->requested_regd; 2876 rdev->requested_regd = NULL; 2877 spin_unlock(®_requests_lock); 2878 2879 if (regd == NULL) 2880 continue; 2881 2882 tmp = get_wiphy_regdom(wiphy); 2883 rcu_assign_pointer(wiphy->regd, regd); 2884 rcu_free_regdom(tmp); 2885 2886 for (band = 0; band < NUM_NL80211_BANDS; band++) 2887 handle_band_custom(wiphy, wiphy->bands[band], regd); 2888 2889 reg_process_ht_flags(wiphy); 2890 2891 request.wiphy_idx = get_wiphy_idx(wiphy); 2892 request.alpha2[0] = regd->alpha2[0]; 2893 request.alpha2[1] = regd->alpha2[1]; 2894 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 2895 2896 nl80211_send_wiphy_reg_change_event(&request); 2897 } 2898 2899 reg_check_channels(); 2900 } 2901 2902 static void reg_todo(struct work_struct *work) 2903 { 2904 rtnl_lock(); 2905 reg_process_pending_hints(); 2906 reg_process_pending_beacon_hints(); 2907 reg_process_self_managed_hints(); 2908 rtnl_unlock(); 2909 } 2910 2911 static void queue_regulatory_request(struct regulatory_request *request) 2912 { 2913 request->alpha2[0] = toupper(request->alpha2[0]); 2914 request->alpha2[1] = toupper(request->alpha2[1]); 2915 2916 spin_lock(®_requests_lock); 2917 list_add_tail(&request->list, ®_requests_list); 2918 spin_unlock(®_requests_lock); 2919 2920 schedule_work(®_work); 2921 } 2922 2923 /* 2924 * Core regulatory hint -- happens during cfg80211_init() 2925 * and when we restore regulatory settings. 2926 */ 2927 static int regulatory_hint_core(const char *alpha2) 2928 { 2929 struct regulatory_request *request; 2930 2931 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2932 if (!request) 2933 return -ENOMEM; 2934 2935 request->alpha2[0] = alpha2[0]; 2936 request->alpha2[1] = alpha2[1]; 2937 request->initiator = NL80211_REGDOM_SET_BY_CORE; 2938 2939 queue_regulatory_request(request); 2940 2941 return 0; 2942 } 2943 2944 /* User hints */ 2945 int regulatory_hint_user(const char *alpha2, 2946 enum nl80211_user_reg_hint_type user_reg_hint_type) 2947 { 2948 struct regulatory_request *request; 2949 2950 if (WARN_ON(!alpha2)) 2951 return -EINVAL; 2952 2953 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2954 if (!request) 2955 return -ENOMEM; 2956 2957 request->wiphy_idx = WIPHY_IDX_INVALID; 2958 request->alpha2[0] = alpha2[0]; 2959 request->alpha2[1] = alpha2[1]; 2960 request->initiator = NL80211_REGDOM_SET_BY_USER; 2961 request->user_reg_hint_type = user_reg_hint_type; 2962 2963 /* Allow calling CRDA again */ 2964 reset_crda_timeouts(); 2965 2966 queue_regulatory_request(request); 2967 2968 return 0; 2969 } 2970 2971 int regulatory_hint_indoor(bool is_indoor, u32 portid) 2972 { 2973 spin_lock(®_indoor_lock); 2974 2975 /* It is possible that more than one user space process is trying to 2976 * configure the indoor setting. To handle such cases, clear the indoor 2977 * setting in case that some process does not think that the device 2978 * is operating in an indoor environment. In addition, if a user space 2979 * process indicates that it is controlling the indoor setting, save its 2980 * portid, i.e., make it the owner. 2981 */ 2982 reg_is_indoor = is_indoor; 2983 if (reg_is_indoor) { 2984 if (!reg_is_indoor_portid) 2985 reg_is_indoor_portid = portid; 2986 } else { 2987 reg_is_indoor_portid = 0; 2988 } 2989 2990 spin_unlock(®_indoor_lock); 2991 2992 if (!is_indoor) 2993 reg_check_channels(); 2994 2995 return 0; 2996 } 2997 2998 void regulatory_netlink_notify(u32 portid) 2999 { 3000 spin_lock(®_indoor_lock); 3001 3002 if (reg_is_indoor_portid != portid) { 3003 spin_unlock(®_indoor_lock); 3004 return; 3005 } 3006 3007 reg_is_indoor = false; 3008 reg_is_indoor_portid = 0; 3009 3010 spin_unlock(®_indoor_lock); 3011 3012 reg_check_channels(); 3013 } 3014 3015 /* Driver hints */ 3016 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3017 { 3018 struct regulatory_request *request; 3019 3020 if (WARN_ON(!alpha2 || !wiphy)) 3021 return -EINVAL; 3022 3023 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3024 3025 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3026 if (!request) 3027 return -ENOMEM; 3028 3029 request->wiphy_idx = get_wiphy_idx(wiphy); 3030 3031 request->alpha2[0] = alpha2[0]; 3032 request->alpha2[1] = alpha2[1]; 3033 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3034 3035 /* Allow calling CRDA again */ 3036 reset_crda_timeouts(); 3037 3038 queue_regulatory_request(request); 3039 3040 return 0; 3041 } 3042 EXPORT_SYMBOL(regulatory_hint); 3043 3044 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3045 const u8 *country_ie, u8 country_ie_len) 3046 { 3047 char alpha2[2]; 3048 enum environment_cap env = ENVIRON_ANY; 3049 struct regulatory_request *request = NULL, *lr; 3050 3051 /* IE len must be evenly divisible by 2 */ 3052 if (country_ie_len & 0x01) 3053 return; 3054 3055 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3056 return; 3057 3058 request = kzalloc(sizeof(*request), GFP_KERNEL); 3059 if (!request) 3060 return; 3061 3062 alpha2[0] = country_ie[0]; 3063 alpha2[1] = country_ie[1]; 3064 3065 if (country_ie[2] == 'I') 3066 env = ENVIRON_INDOOR; 3067 else if (country_ie[2] == 'O') 3068 env = ENVIRON_OUTDOOR; 3069 3070 rcu_read_lock(); 3071 lr = get_last_request(); 3072 3073 if (unlikely(!lr)) 3074 goto out; 3075 3076 /* 3077 * We will run this only upon a successful connection on cfg80211. 3078 * We leave conflict resolution to the workqueue, where can hold 3079 * the RTNL. 3080 */ 3081 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3082 lr->wiphy_idx != WIPHY_IDX_INVALID) 3083 goto out; 3084 3085 request->wiphy_idx = get_wiphy_idx(wiphy); 3086 request->alpha2[0] = alpha2[0]; 3087 request->alpha2[1] = alpha2[1]; 3088 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3089 request->country_ie_env = env; 3090 3091 /* Allow calling CRDA again */ 3092 reset_crda_timeouts(); 3093 3094 queue_regulatory_request(request); 3095 request = NULL; 3096 out: 3097 kfree(request); 3098 rcu_read_unlock(); 3099 } 3100 3101 static void restore_alpha2(char *alpha2, bool reset_user) 3102 { 3103 /* indicates there is no alpha2 to consider for restoration */ 3104 alpha2[0] = '9'; 3105 alpha2[1] = '7'; 3106 3107 /* The user setting has precedence over the module parameter */ 3108 if (is_user_regdom_saved()) { 3109 /* Unless we're asked to ignore it and reset it */ 3110 if (reset_user) { 3111 pr_debug("Restoring regulatory settings including user preference\n"); 3112 user_alpha2[0] = '9'; 3113 user_alpha2[1] = '7'; 3114 3115 /* 3116 * If we're ignoring user settings, we still need to 3117 * check the module parameter to ensure we put things 3118 * back as they were for a full restore. 3119 */ 3120 if (!is_world_regdom(ieee80211_regdom)) { 3121 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3122 ieee80211_regdom[0], ieee80211_regdom[1]); 3123 alpha2[0] = ieee80211_regdom[0]; 3124 alpha2[1] = ieee80211_regdom[1]; 3125 } 3126 } else { 3127 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3128 user_alpha2[0], user_alpha2[1]); 3129 alpha2[0] = user_alpha2[0]; 3130 alpha2[1] = user_alpha2[1]; 3131 } 3132 } else if (!is_world_regdom(ieee80211_regdom)) { 3133 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3134 ieee80211_regdom[0], ieee80211_regdom[1]); 3135 alpha2[0] = ieee80211_regdom[0]; 3136 alpha2[1] = ieee80211_regdom[1]; 3137 } else 3138 pr_debug("Restoring regulatory settings\n"); 3139 } 3140 3141 static void restore_custom_reg_settings(struct wiphy *wiphy) 3142 { 3143 struct ieee80211_supported_band *sband; 3144 enum nl80211_band band; 3145 struct ieee80211_channel *chan; 3146 int i; 3147 3148 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3149 sband = wiphy->bands[band]; 3150 if (!sband) 3151 continue; 3152 for (i = 0; i < sband->n_channels; i++) { 3153 chan = &sband->channels[i]; 3154 chan->flags = chan->orig_flags; 3155 chan->max_antenna_gain = chan->orig_mag; 3156 chan->max_power = chan->orig_mpwr; 3157 chan->beacon_found = false; 3158 } 3159 } 3160 } 3161 3162 /* 3163 * Restoring regulatory settings involves ingoring any 3164 * possibly stale country IE information and user regulatory 3165 * settings if so desired, this includes any beacon hints 3166 * learned as we could have traveled outside to another country 3167 * after disconnection. To restore regulatory settings we do 3168 * exactly what we did at bootup: 3169 * 3170 * - send a core regulatory hint 3171 * - send a user regulatory hint if applicable 3172 * 3173 * Device drivers that send a regulatory hint for a specific country 3174 * keep their own regulatory domain on wiphy->regd so that does does 3175 * not need to be remembered. 3176 */ 3177 static void restore_regulatory_settings(bool reset_user) 3178 { 3179 char alpha2[2]; 3180 char world_alpha2[2]; 3181 struct reg_beacon *reg_beacon, *btmp; 3182 LIST_HEAD(tmp_reg_req_list); 3183 struct cfg80211_registered_device *rdev; 3184 3185 ASSERT_RTNL(); 3186 3187 /* 3188 * Clear the indoor setting in case that it is not controlled by user 3189 * space, as otherwise there is no guarantee that the device is still 3190 * operating in an indoor environment. 3191 */ 3192 spin_lock(®_indoor_lock); 3193 if (reg_is_indoor && !reg_is_indoor_portid) { 3194 reg_is_indoor = false; 3195 reg_check_channels(); 3196 } 3197 spin_unlock(®_indoor_lock); 3198 3199 reset_regdomains(true, &world_regdom); 3200 restore_alpha2(alpha2, reset_user); 3201 3202 /* 3203 * If there's any pending requests we simply 3204 * stash them to a temporary pending queue and 3205 * add then after we've restored regulatory 3206 * settings. 3207 */ 3208 spin_lock(®_requests_lock); 3209 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3210 spin_unlock(®_requests_lock); 3211 3212 /* Clear beacon hints */ 3213 spin_lock_bh(®_pending_beacons_lock); 3214 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3215 list_del(®_beacon->list); 3216 kfree(reg_beacon); 3217 } 3218 spin_unlock_bh(®_pending_beacons_lock); 3219 3220 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3221 list_del(®_beacon->list); 3222 kfree(reg_beacon); 3223 } 3224 3225 /* First restore to the basic regulatory settings */ 3226 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3227 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3228 3229 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3230 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3231 continue; 3232 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3233 restore_custom_reg_settings(&rdev->wiphy); 3234 } 3235 3236 regulatory_hint_core(world_alpha2); 3237 3238 /* 3239 * This restores the ieee80211_regdom module parameter 3240 * preference or the last user requested regulatory 3241 * settings, user regulatory settings takes precedence. 3242 */ 3243 if (is_an_alpha2(alpha2)) 3244 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3245 3246 spin_lock(®_requests_lock); 3247 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3248 spin_unlock(®_requests_lock); 3249 3250 pr_debug("Kicking the queue\n"); 3251 3252 schedule_work(®_work); 3253 } 3254 3255 void regulatory_hint_disconnect(void) 3256 { 3257 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3258 restore_regulatory_settings(false); 3259 } 3260 3261 static bool freq_is_chan_12_13_14(u16 freq) 3262 { 3263 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3264 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3265 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3266 return true; 3267 return false; 3268 } 3269 3270 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3271 { 3272 struct reg_beacon *pending_beacon; 3273 3274 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3275 if (beacon_chan->center_freq == 3276 pending_beacon->chan.center_freq) 3277 return true; 3278 return false; 3279 } 3280 3281 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3282 struct ieee80211_channel *beacon_chan, 3283 gfp_t gfp) 3284 { 3285 struct reg_beacon *reg_beacon; 3286 bool processing; 3287 3288 if (beacon_chan->beacon_found || 3289 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3290 (beacon_chan->band == NL80211_BAND_2GHZ && 3291 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3292 return 0; 3293 3294 spin_lock_bh(®_pending_beacons_lock); 3295 processing = pending_reg_beacon(beacon_chan); 3296 spin_unlock_bh(®_pending_beacons_lock); 3297 3298 if (processing) 3299 return 0; 3300 3301 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3302 if (!reg_beacon) 3303 return -ENOMEM; 3304 3305 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 3306 beacon_chan->center_freq, 3307 ieee80211_frequency_to_channel(beacon_chan->center_freq), 3308 wiphy_name(wiphy)); 3309 3310 memcpy(®_beacon->chan, beacon_chan, 3311 sizeof(struct ieee80211_channel)); 3312 3313 /* 3314 * Since we can be called from BH or and non-BH context 3315 * we must use spin_lock_bh() 3316 */ 3317 spin_lock_bh(®_pending_beacons_lock); 3318 list_add_tail(®_beacon->list, ®_pending_beacons); 3319 spin_unlock_bh(®_pending_beacons_lock); 3320 3321 schedule_work(®_work); 3322 3323 return 0; 3324 } 3325 3326 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3327 { 3328 unsigned int i; 3329 const struct ieee80211_reg_rule *reg_rule = NULL; 3330 const struct ieee80211_freq_range *freq_range = NULL; 3331 const struct ieee80211_power_rule *power_rule = NULL; 3332 char bw[32], cac_time[32]; 3333 3334 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3335 3336 for (i = 0; i < rd->n_reg_rules; i++) { 3337 reg_rule = &rd->reg_rules[i]; 3338 freq_range = ®_rule->freq_range; 3339 power_rule = ®_rule->power_rule; 3340 3341 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3342 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 3343 freq_range->max_bandwidth_khz, 3344 reg_get_max_bandwidth(rd, reg_rule)); 3345 else 3346 snprintf(bw, sizeof(bw), "%d KHz", 3347 freq_range->max_bandwidth_khz); 3348 3349 if (reg_rule->flags & NL80211_RRF_DFS) 3350 scnprintf(cac_time, sizeof(cac_time), "%u s", 3351 reg_rule->dfs_cac_ms/1000); 3352 else 3353 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3354 3355 3356 /* 3357 * There may not be documentation for max antenna gain 3358 * in certain regions 3359 */ 3360 if (power_rule->max_antenna_gain) 3361 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3362 freq_range->start_freq_khz, 3363 freq_range->end_freq_khz, 3364 bw, 3365 power_rule->max_antenna_gain, 3366 power_rule->max_eirp, 3367 cac_time); 3368 else 3369 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3370 freq_range->start_freq_khz, 3371 freq_range->end_freq_khz, 3372 bw, 3373 power_rule->max_eirp, 3374 cac_time); 3375 } 3376 } 3377 3378 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3379 { 3380 switch (dfs_region) { 3381 case NL80211_DFS_UNSET: 3382 case NL80211_DFS_FCC: 3383 case NL80211_DFS_ETSI: 3384 case NL80211_DFS_JP: 3385 return true; 3386 default: 3387 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region); 3388 return false; 3389 } 3390 } 3391 3392 static void print_regdomain(const struct ieee80211_regdomain *rd) 3393 { 3394 struct regulatory_request *lr = get_last_request(); 3395 3396 if (is_intersected_alpha2(rd->alpha2)) { 3397 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3398 struct cfg80211_registered_device *rdev; 3399 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3400 if (rdev) { 3401 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3402 rdev->country_ie_alpha2[0], 3403 rdev->country_ie_alpha2[1]); 3404 } else 3405 pr_debug("Current regulatory domain intersected:\n"); 3406 } else 3407 pr_debug("Current regulatory domain intersected:\n"); 3408 } else if (is_world_regdom(rd->alpha2)) { 3409 pr_debug("World regulatory domain updated:\n"); 3410 } else { 3411 if (is_unknown_alpha2(rd->alpha2)) 3412 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3413 else { 3414 if (reg_request_cell_base(lr)) 3415 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3416 rd->alpha2[0], rd->alpha2[1]); 3417 else 3418 pr_debug("Regulatory domain changed to country: %c%c\n", 3419 rd->alpha2[0], rd->alpha2[1]); 3420 } 3421 } 3422 3423 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3424 print_rd_rules(rd); 3425 } 3426 3427 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3428 { 3429 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3430 print_rd_rules(rd); 3431 } 3432 3433 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3434 { 3435 if (!is_world_regdom(rd->alpha2)) 3436 return -EINVAL; 3437 update_world_regdomain(rd); 3438 return 0; 3439 } 3440 3441 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3442 struct regulatory_request *user_request) 3443 { 3444 const struct ieee80211_regdomain *intersected_rd = NULL; 3445 3446 if (!regdom_changes(rd->alpha2)) 3447 return -EALREADY; 3448 3449 if (!is_valid_rd(rd)) { 3450 pr_err("Invalid regulatory domain detected: %c%c\n", 3451 rd->alpha2[0], rd->alpha2[1]); 3452 print_regdomain_info(rd); 3453 return -EINVAL; 3454 } 3455 3456 if (!user_request->intersect) { 3457 reset_regdomains(false, rd); 3458 return 0; 3459 } 3460 3461 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3462 if (!intersected_rd) 3463 return -EINVAL; 3464 3465 kfree(rd); 3466 rd = NULL; 3467 reset_regdomains(false, intersected_rd); 3468 3469 return 0; 3470 } 3471 3472 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3473 struct regulatory_request *driver_request) 3474 { 3475 const struct ieee80211_regdomain *regd; 3476 const struct ieee80211_regdomain *intersected_rd = NULL; 3477 const struct ieee80211_regdomain *tmp; 3478 struct wiphy *request_wiphy; 3479 3480 if (is_world_regdom(rd->alpha2)) 3481 return -EINVAL; 3482 3483 if (!regdom_changes(rd->alpha2)) 3484 return -EALREADY; 3485 3486 if (!is_valid_rd(rd)) { 3487 pr_err("Invalid regulatory domain detected: %c%c\n", 3488 rd->alpha2[0], rd->alpha2[1]); 3489 print_regdomain_info(rd); 3490 return -EINVAL; 3491 } 3492 3493 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3494 if (!request_wiphy) 3495 return -ENODEV; 3496 3497 if (!driver_request->intersect) { 3498 if (request_wiphy->regd) 3499 return -EALREADY; 3500 3501 regd = reg_copy_regd(rd); 3502 if (IS_ERR(regd)) 3503 return PTR_ERR(regd); 3504 3505 rcu_assign_pointer(request_wiphy->regd, regd); 3506 reset_regdomains(false, rd); 3507 return 0; 3508 } 3509 3510 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3511 if (!intersected_rd) 3512 return -EINVAL; 3513 3514 /* 3515 * We can trash what CRDA provided now. 3516 * However if a driver requested this specific regulatory 3517 * domain we keep it for its private use 3518 */ 3519 tmp = get_wiphy_regdom(request_wiphy); 3520 rcu_assign_pointer(request_wiphy->regd, rd); 3521 rcu_free_regdom(tmp); 3522 3523 rd = NULL; 3524 3525 reset_regdomains(false, intersected_rd); 3526 3527 return 0; 3528 } 3529 3530 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3531 struct regulatory_request *country_ie_request) 3532 { 3533 struct wiphy *request_wiphy; 3534 3535 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3536 !is_unknown_alpha2(rd->alpha2)) 3537 return -EINVAL; 3538 3539 /* 3540 * Lets only bother proceeding on the same alpha2 if the current 3541 * rd is non static (it means CRDA was present and was used last) 3542 * and the pending request came in from a country IE 3543 */ 3544 3545 if (!is_valid_rd(rd)) { 3546 pr_err("Invalid regulatory domain detected: %c%c\n", 3547 rd->alpha2[0], rd->alpha2[1]); 3548 print_regdomain_info(rd); 3549 return -EINVAL; 3550 } 3551 3552 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3553 if (!request_wiphy) 3554 return -ENODEV; 3555 3556 if (country_ie_request->intersect) 3557 return -EINVAL; 3558 3559 reset_regdomains(false, rd); 3560 return 0; 3561 } 3562 3563 /* 3564 * Use this call to set the current regulatory domain. Conflicts with 3565 * multiple drivers can be ironed out later. Caller must've already 3566 * kmalloc'd the rd structure. 3567 */ 3568 int set_regdom(const struct ieee80211_regdomain *rd, 3569 enum ieee80211_regd_source regd_src) 3570 { 3571 struct regulatory_request *lr; 3572 bool user_reset = false; 3573 int r; 3574 3575 if (!reg_is_valid_request(rd->alpha2)) { 3576 kfree(rd); 3577 return -EINVAL; 3578 } 3579 3580 if (regd_src == REGD_SOURCE_CRDA) 3581 reset_crda_timeouts(); 3582 3583 lr = get_last_request(); 3584 3585 /* Note that this doesn't update the wiphys, this is done below */ 3586 switch (lr->initiator) { 3587 case NL80211_REGDOM_SET_BY_CORE: 3588 r = reg_set_rd_core(rd); 3589 break; 3590 case NL80211_REGDOM_SET_BY_USER: 3591 r = reg_set_rd_user(rd, lr); 3592 user_reset = true; 3593 break; 3594 case NL80211_REGDOM_SET_BY_DRIVER: 3595 r = reg_set_rd_driver(rd, lr); 3596 break; 3597 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3598 r = reg_set_rd_country_ie(rd, lr); 3599 break; 3600 default: 3601 WARN(1, "invalid initiator %d\n", lr->initiator); 3602 kfree(rd); 3603 return -EINVAL; 3604 } 3605 3606 if (r) { 3607 switch (r) { 3608 case -EALREADY: 3609 reg_set_request_processed(); 3610 break; 3611 default: 3612 /* Back to world regulatory in case of errors */ 3613 restore_regulatory_settings(user_reset); 3614 } 3615 3616 kfree(rd); 3617 return r; 3618 } 3619 3620 /* This would make this whole thing pointless */ 3621 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3622 return -EINVAL; 3623 3624 /* update all wiphys now with the new established regulatory domain */ 3625 update_all_wiphy_regulatory(lr->initiator); 3626 3627 print_regdomain(get_cfg80211_regdom()); 3628 3629 nl80211_send_reg_change_event(lr); 3630 3631 reg_set_request_processed(); 3632 3633 return 0; 3634 } 3635 3636 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 3637 struct ieee80211_regdomain *rd) 3638 { 3639 const struct ieee80211_regdomain *regd; 3640 const struct ieee80211_regdomain *prev_regd; 3641 struct cfg80211_registered_device *rdev; 3642 3643 if (WARN_ON(!wiphy || !rd)) 3644 return -EINVAL; 3645 3646 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 3647 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 3648 return -EPERM; 3649 3650 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { 3651 print_regdomain_info(rd); 3652 return -EINVAL; 3653 } 3654 3655 regd = reg_copy_regd(rd); 3656 if (IS_ERR(regd)) 3657 return PTR_ERR(regd); 3658 3659 rdev = wiphy_to_rdev(wiphy); 3660 3661 spin_lock(®_requests_lock); 3662 prev_regd = rdev->requested_regd; 3663 rdev->requested_regd = regd; 3664 spin_unlock(®_requests_lock); 3665 3666 kfree(prev_regd); 3667 return 0; 3668 } 3669 3670 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 3671 struct ieee80211_regdomain *rd) 3672 { 3673 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 3674 3675 if (ret) 3676 return ret; 3677 3678 schedule_work(®_work); 3679 return 0; 3680 } 3681 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 3682 3683 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, 3684 struct ieee80211_regdomain *rd) 3685 { 3686 int ret; 3687 3688 ASSERT_RTNL(); 3689 3690 ret = __regulatory_set_wiphy_regd(wiphy, rd); 3691 if (ret) 3692 return ret; 3693 3694 /* process the request immediately */ 3695 reg_process_self_managed_hints(); 3696 return 0; 3697 } 3698 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); 3699 3700 void wiphy_regulatory_register(struct wiphy *wiphy) 3701 { 3702 struct regulatory_request *lr; 3703 3704 /* self-managed devices ignore external hints */ 3705 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3706 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 3707 REGULATORY_COUNTRY_IE_IGNORE; 3708 3709 if (!reg_dev_ignore_cell_hint(wiphy)) 3710 reg_num_devs_support_basehint++; 3711 3712 lr = get_last_request(); 3713 wiphy_update_regulatory(wiphy, lr->initiator); 3714 wiphy_all_share_dfs_chan_state(wiphy); 3715 } 3716 3717 void wiphy_regulatory_deregister(struct wiphy *wiphy) 3718 { 3719 struct wiphy *request_wiphy = NULL; 3720 struct regulatory_request *lr; 3721 3722 lr = get_last_request(); 3723 3724 if (!reg_dev_ignore_cell_hint(wiphy)) 3725 reg_num_devs_support_basehint--; 3726 3727 rcu_free_regdom(get_wiphy_regdom(wiphy)); 3728 RCU_INIT_POINTER(wiphy->regd, NULL); 3729 3730 if (lr) 3731 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 3732 3733 if (!request_wiphy || request_wiphy != wiphy) 3734 return; 3735 3736 lr->wiphy_idx = WIPHY_IDX_INVALID; 3737 lr->country_ie_env = ENVIRON_ANY; 3738 } 3739 3740 /* 3741 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for 3742 * UNII band definitions 3743 */ 3744 int cfg80211_get_unii(int freq) 3745 { 3746 /* UNII-1 */ 3747 if (freq >= 5150 && freq <= 5250) 3748 return 0; 3749 3750 /* UNII-2A */ 3751 if (freq > 5250 && freq <= 5350) 3752 return 1; 3753 3754 /* UNII-2B */ 3755 if (freq > 5350 && freq <= 5470) 3756 return 2; 3757 3758 /* UNII-2C */ 3759 if (freq > 5470 && freq <= 5725) 3760 return 3; 3761 3762 /* UNII-3 */ 3763 if (freq > 5725 && freq <= 5825) 3764 return 4; 3765 3766 return -EINVAL; 3767 } 3768 3769 bool regulatory_indoor_allowed(void) 3770 { 3771 return reg_is_indoor; 3772 } 3773 3774 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 3775 { 3776 const struct ieee80211_regdomain *regd = NULL; 3777 const struct ieee80211_regdomain *wiphy_regd = NULL; 3778 bool pre_cac_allowed = false; 3779 3780 rcu_read_lock(); 3781 3782 regd = rcu_dereference(cfg80211_regdomain); 3783 wiphy_regd = rcu_dereference(wiphy->regd); 3784 if (!wiphy_regd) { 3785 if (regd->dfs_region == NL80211_DFS_ETSI) 3786 pre_cac_allowed = true; 3787 3788 rcu_read_unlock(); 3789 3790 return pre_cac_allowed; 3791 } 3792 3793 if (regd->dfs_region == wiphy_regd->dfs_region && 3794 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 3795 pre_cac_allowed = true; 3796 3797 rcu_read_unlock(); 3798 3799 return pre_cac_allowed; 3800 } 3801 3802 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 3803 struct cfg80211_chan_def *chandef, 3804 enum nl80211_dfs_state dfs_state, 3805 enum nl80211_radar_event event) 3806 { 3807 struct cfg80211_registered_device *rdev; 3808 3809 ASSERT_RTNL(); 3810 3811 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 3812 return; 3813 3814 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3815 if (wiphy == &rdev->wiphy) 3816 continue; 3817 3818 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 3819 continue; 3820 3821 if (!ieee80211_get_channel(&rdev->wiphy, 3822 chandef->chan->center_freq)) 3823 continue; 3824 3825 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 3826 3827 if (event == NL80211_RADAR_DETECTED || 3828 event == NL80211_RADAR_CAC_FINISHED) 3829 cfg80211_sched_dfs_chan_update(rdev); 3830 3831 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 3832 } 3833 } 3834 3835 static int __init regulatory_init_db(void) 3836 { 3837 int err; 3838 3839 err = load_builtin_regdb_keys(); 3840 if (err) 3841 return err; 3842 3843 /* We always try to get an update for the static regdomain */ 3844 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 3845 if (err) { 3846 if (err == -ENOMEM) { 3847 platform_device_unregister(reg_pdev); 3848 return err; 3849 } 3850 /* 3851 * N.B. kobject_uevent_env() can fail mainly for when we're out 3852 * memory which is handled and propagated appropriately above 3853 * but it can also fail during a netlink_broadcast() or during 3854 * early boot for call_usermodehelper(). For now treat these 3855 * errors as non-fatal. 3856 */ 3857 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 3858 } 3859 3860 /* 3861 * Finally, if the user set the module parameter treat it 3862 * as a user hint. 3863 */ 3864 if (!is_world_regdom(ieee80211_regdom)) 3865 regulatory_hint_user(ieee80211_regdom, 3866 NL80211_USER_REG_HINT_USER); 3867 3868 return 0; 3869 } 3870 #ifndef MODULE 3871 late_initcall(regulatory_init_db); 3872 #endif 3873 3874 int __init regulatory_init(void) 3875 { 3876 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 3877 if (IS_ERR(reg_pdev)) 3878 return PTR_ERR(reg_pdev); 3879 3880 spin_lock_init(®_requests_lock); 3881 spin_lock_init(®_pending_beacons_lock); 3882 spin_lock_init(®_indoor_lock); 3883 3884 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 3885 3886 user_alpha2[0] = '9'; 3887 user_alpha2[1] = '7'; 3888 3889 #ifdef MODULE 3890 return regulatory_init_db(); 3891 #else 3892 return 0; 3893 #endif 3894 } 3895 3896 void regulatory_exit(void) 3897 { 3898 struct regulatory_request *reg_request, *tmp; 3899 struct reg_beacon *reg_beacon, *btmp; 3900 3901 cancel_work_sync(®_work); 3902 cancel_crda_timeout_sync(); 3903 cancel_delayed_work_sync(®_check_chans); 3904 3905 /* Lock to suppress warnings */ 3906 rtnl_lock(); 3907 reset_regdomains(true, NULL); 3908 rtnl_unlock(); 3909 3910 dev_set_uevent_suppress(®_pdev->dev, true); 3911 3912 platform_device_unregister(reg_pdev); 3913 3914 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3915 list_del(®_beacon->list); 3916 kfree(reg_beacon); 3917 } 3918 3919 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3920 list_del(®_beacon->list); 3921 kfree(reg_beacon); 3922 } 3923 3924 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 3925 list_del(®_request->list); 3926 kfree(reg_request); 3927 } 3928 3929 if (!IS_ERR_OR_NULL(regdb)) 3930 kfree(regdb); 3931 3932 free_regdb_keyring(); 3933 } 3934