xref: /openbmc/linux/net/wireless/reg.c (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user);
135 
136 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
137 {
138 	return rcu_dereference_rtnl(cfg80211_regdomain);
139 }
140 
141 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
142 {
143 	return rcu_dereference_rtnl(wiphy->regd);
144 }
145 
146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
147 {
148 	switch (dfs_region) {
149 	case NL80211_DFS_UNSET:
150 		return "unset";
151 	case NL80211_DFS_FCC:
152 		return "FCC";
153 	case NL80211_DFS_ETSI:
154 		return "ETSI";
155 	case NL80211_DFS_JP:
156 		return "JP";
157 	}
158 	return "Unknown";
159 }
160 
161 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
162 {
163 	const struct ieee80211_regdomain *regd = NULL;
164 	const struct ieee80211_regdomain *wiphy_regd = NULL;
165 
166 	regd = get_cfg80211_regdom();
167 	if (!wiphy)
168 		goto out;
169 
170 	wiphy_regd = get_wiphy_regdom(wiphy);
171 	if (!wiphy_regd)
172 		goto out;
173 
174 	if (wiphy_regd->dfs_region == regd->dfs_region)
175 		goto out;
176 
177 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
178 		 dev_name(&wiphy->dev),
179 		 reg_dfs_region_str(wiphy_regd->dfs_region),
180 		 reg_dfs_region_str(regd->dfs_region));
181 
182 out:
183 	return regd->dfs_region;
184 }
185 
186 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
187 {
188 	if (!r)
189 		return;
190 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
191 }
192 
193 static struct regulatory_request *get_last_request(void)
194 {
195 	return rcu_dereference_rtnl(last_request);
196 }
197 
198 /* Used to queue up regulatory hints */
199 static LIST_HEAD(reg_requests_list);
200 static spinlock_t reg_requests_lock;
201 
202 /* Used to queue up beacon hints for review */
203 static LIST_HEAD(reg_pending_beacons);
204 static spinlock_t reg_pending_beacons_lock;
205 
206 /* Used to keep track of processed beacon hints */
207 static LIST_HEAD(reg_beacon_list);
208 
209 struct reg_beacon {
210 	struct list_head list;
211 	struct ieee80211_channel chan;
212 };
213 
214 static void reg_check_chans_work(struct work_struct *work);
215 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
216 
217 static void reg_todo(struct work_struct *work);
218 static DECLARE_WORK(reg_work, reg_todo);
219 
220 /* We keep a static world regulatory domain in case of the absence of CRDA */
221 static const struct ieee80211_regdomain world_regdom = {
222 	.n_reg_rules = 8,
223 	.alpha2 =  "00",
224 	.reg_rules = {
225 		/* IEEE 802.11b/g, channels 1..11 */
226 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
227 		/* IEEE 802.11b/g, channels 12..13. */
228 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
229 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
230 		/* IEEE 802.11 channel 14 - Only JP enables
231 		 * this and for 802.11b only */
232 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
233 			NL80211_RRF_NO_IR |
234 			NL80211_RRF_NO_OFDM),
235 		/* IEEE 802.11a, channel 36..48 */
236 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
237                         NL80211_RRF_NO_IR |
238                         NL80211_RRF_AUTO_BW),
239 
240 		/* IEEE 802.11a, channel 52..64 - DFS required */
241 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
242 			NL80211_RRF_NO_IR |
243 			NL80211_RRF_AUTO_BW |
244 			NL80211_RRF_DFS),
245 
246 		/* IEEE 802.11a, channel 100..144 - DFS required */
247 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
248 			NL80211_RRF_NO_IR |
249 			NL80211_RRF_DFS),
250 
251 		/* IEEE 802.11a, channel 149..165 */
252 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
253 			NL80211_RRF_NO_IR),
254 
255 		/* IEEE 802.11ad (60GHz), channels 1..3 */
256 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
257 	}
258 };
259 
260 /* protected by RTNL */
261 static const struct ieee80211_regdomain *cfg80211_world_regdom =
262 	&world_regdom;
263 
264 static char *ieee80211_regdom = "00";
265 static char user_alpha2[2];
266 
267 module_param(ieee80211_regdom, charp, 0444);
268 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
269 
270 static void reg_free_request(struct regulatory_request *request)
271 {
272 	if (request == &core_request_world)
273 		return;
274 
275 	if (request != get_last_request())
276 		kfree(request);
277 }
278 
279 static void reg_free_last_request(void)
280 {
281 	struct regulatory_request *lr = get_last_request();
282 
283 	if (lr != &core_request_world && lr)
284 		kfree_rcu(lr, rcu_head);
285 }
286 
287 static void reg_update_last_request(struct regulatory_request *request)
288 {
289 	struct regulatory_request *lr;
290 
291 	lr = get_last_request();
292 	if (lr == request)
293 		return;
294 
295 	reg_free_last_request();
296 	rcu_assign_pointer(last_request, request);
297 }
298 
299 static void reset_regdomains(bool full_reset,
300 			     const struct ieee80211_regdomain *new_regdom)
301 {
302 	const struct ieee80211_regdomain *r;
303 
304 	ASSERT_RTNL();
305 
306 	r = get_cfg80211_regdom();
307 
308 	/* avoid freeing static information or freeing something twice */
309 	if (r == cfg80211_world_regdom)
310 		r = NULL;
311 	if (cfg80211_world_regdom == &world_regdom)
312 		cfg80211_world_regdom = NULL;
313 	if (r == &world_regdom)
314 		r = NULL;
315 
316 	rcu_free_regdom(r);
317 	rcu_free_regdom(cfg80211_world_regdom);
318 
319 	cfg80211_world_regdom = &world_regdom;
320 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
321 
322 	if (!full_reset)
323 		return;
324 
325 	reg_update_last_request(&core_request_world);
326 }
327 
328 /*
329  * Dynamic world regulatory domain requested by the wireless
330  * core upon initialization
331  */
332 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
333 {
334 	struct regulatory_request *lr;
335 
336 	lr = get_last_request();
337 
338 	WARN_ON(!lr);
339 
340 	reset_regdomains(false, rd);
341 
342 	cfg80211_world_regdom = rd;
343 }
344 
345 bool is_world_regdom(const char *alpha2)
346 {
347 	if (!alpha2)
348 		return false;
349 	return alpha2[0] == '0' && alpha2[1] == '0';
350 }
351 
352 static bool is_alpha2_set(const char *alpha2)
353 {
354 	if (!alpha2)
355 		return false;
356 	return alpha2[0] && alpha2[1];
357 }
358 
359 static bool is_unknown_alpha2(const char *alpha2)
360 {
361 	if (!alpha2)
362 		return false;
363 	/*
364 	 * Special case where regulatory domain was built by driver
365 	 * but a specific alpha2 cannot be determined
366 	 */
367 	return alpha2[0] == '9' && alpha2[1] == '9';
368 }
369 
370 static bool is_intersected_alpha2(const char *alpha2)
371 {
372 	if (!alpha2)
373 		return false;
374 	/*
375 	 * Special case where regulatory domain is the
376 	 * result of an intersection between two regulatory domain
377 	 * structures
378 	 */
379 	return alpha2[0] == '9' && alpha2[1] == '8';
380 }
381 
382 static bool is_an_alpha2(const char *alpha2)
383 {
384 	if (!alpha2)
385 		return false;
386 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
387 }
388 
389 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
390 {
391 	if (!alpha2_x || !alpha2_y)
392 		return false;
393 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
394 }
395 
396 static bool regdom_changes(const char *alpha2)
397 {
398 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
399 
400 	if (!r)
401 		return true;
402 	return !alpha2_equal(r->alpha2, alpha2);
403 }
404 
405 /*
406  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
407  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
408  * has ever been issued.
409  */
410 static bool is_user_regdom_saved(void)
411 {
412 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
413 		return false;
414 
415 	/* This would indicate a mistake on the design */
416 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
417 		 "Unexpected user alpha2: %c%c\n",
418 		 user_alpha2[0], user_alpha2[1]))
419 		return false;
420 
421 	return true;
422 }
423 
424 static const struct ieee80211_regdomain *
425 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
426 {
427 	struct ieee80211_regdomain *regd;
428 	int size_of_regd, size_of_wmms;
429 	unsigned int i;
430 	struct ieee80211_wmm_rule *d_wmm, *s_wmm;
431 
432 	size_of_regd =
433 		sizeof(struct ieee80211_regdomain) +
434 		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
435 	size_of_wmms = src_regd->n_wmm_rules *
436 		sizeof(struct ieee80211_wmm_rule);
437 
438 	regd = kzalloc(size_of_regd + size_of_wmms, GFP_KERNEL);
439 	if (!regd)
440 		return ERR_PTR(-ENOMEM);
441 
442 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
443 
444 	d_wmm = (struct ieee80211_wmm_rule *)((u8 *)regd + size_of_regd);
445 	s_wmm = (struct ieee80211_wmm_rule *)((u8 *)src_regd + size_of_regd);
446 	memcpy(d_wmm, s_wmm, size_of_wmms);
447 
448 	for (i = 0; i < src_regd->n_reg_rules; i++) {
449 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
450 		       sizeof(struct ieee80211_reg_rule));
451 		if (!src_regd->reg_rules[i].wmm_rule)
452 			continue;
453 
454 		regd->reg_rules[i].wmm_rule = d_wmm +
455 			(src_regd->reg_rules[i].wmm_rule - s_wmm) /
456 			sizeof(struct ieee80211_wmm_rule);
457 	}
458 	return regd;
459 }
460 
461 struct reg_regdb_apply_request {
462 	struct list_head list;
463 	const struct ieee80211_regdomain *regdom;
464 };
465 
466 static LIST_HEAD(reg_regdb_apply_list);
467 static DEFINE_MUTEX(reg_regdb_apply_mutex);
468 
469 static void reg_regdb_apply(struct work_struct *work)
470 {
471 	struct reg_regdb_apply_request *request;
472 
473 	rtnl_lock();
474 
475 	mutex_lock(&reg_regdb_apply_mutex);
476 	while (!list_empty(&reg_regdb_apply_list)) {
477 		request = list_first_entry(&reg_regdb_apply_list,
478 					   struct reg_regdb_apply_request,
479 					   list);
480 		list_del(&request->list);
481 
482 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
483 		kfree(request);
484 	}
485 	mutex_unlock(&reg_regdb_apply_mutex);
486 
487 	rtnl_unlock();
488 }
489 
490 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
491 
492 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
493 {
494 	struct reg_regdb_apply_request *request;
495 
496 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
497 	if (!request) {
498 		kfree(regdom);
499 		return -ENOMEM;
500 	}
501 
502 	request->regdom = regdom;
503 
504 	mutex_lock(&reg_regdb_apply_mutex);
505 	list_add_tail(&request->list, &reg_regdb_apply_list);
506 	mutex_unlock(&reg_regdb_apply_mutex);
507 
508 	schedule_work(&reg_regdb_work);
509 	return 0;
510 }
511 
512 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
513 /* Max number of consecutive attempts to communicate with CRDA  */
514 #define REG_MAX_CRDA_TIMEOUTS 10
515 
516 static u32 reg_crda_timeouts;
517 
518 static void crda_timeout_work(struct work_struct *work);
519 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
520 
521 static void crda_timeout_work(struct work_struct *work)
522 {
523 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
524 	rtnl_lock();
525 	reg_crda_timeouts++;
526 	restore_regulatory_settings(true);
527 	rtnl_unlock();
528 }
529 
530 static void cancel_crda_timeout(void)
531 {
532 	cancel_delayed_work(&crda_timeout);
533 }
534 
535 static void cancel_crda_timeout_sync(void)
536 {
537 	cancel_delayed_work_sync(&crda_timeout);
538 }
539 
540 static void reset_crda_timeouts(void)
541 {
542 	reg_crda_timeouts = 0;
543 }
544 
545 /*
546  * This lets us keep regulatory code which is updated on a regulatory
547  * basis in userspace.
548  */
549 static int call_crda(const char *alpha2)
550 {
551 	char country[12];
552 	char *env[] = { country, NULL };
553 	int ret;
554 
555 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
556 		 alpha2[0], alpha2[1]);
557 
558 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
559 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
560 		return -EINVAL;
561 	}
562 
563 	if (!is_world_regdom((char *) alpha2))
564 		pr_debug("Calling CRDA for country: %c%c\n",
565 			 alpha2[0], alpha2[1]);
566 	else
567 		pr_debug("Calling CRDA to update world regulatory domain\n");
568 
569 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
570 	if (ret)
571 		return ret;
572 
573 	queue_delayed_work(system_power_efficient_wq,
574 			   &crda_timeout, msecs_to_jiffies(3142));
575 	return 0;
576 }
577 #else
578 static inline void cancel_crda_timeout(void) {}
579 static inline void cancel_crda_timeout_sync(void) {}
580 static inline void reset_crda_timeouts(void) {}
581 static inline int call_crda(const char *alpha2)
582 {
583 	return -ENODATA;
584 }
585 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
586 
587 /* code to directly load a firmware database through request_firmware */
588 static const struct fwdb_header *regdb;
589 
590 struct fwdb_country {
591 	u8 alpha2[2];
592 	__be16 coll_ptr;
593 	/* this struct cannot be extended */
594 } __packed __aligned(4);
595 
596 struct fwdb_collection {
597 	u8 len;
598 	u8 n_rules;
599 	u8 dfs_region;
600 	/* no optional data yet */
601 	/* aligned to 2, then followed by __be16 array of rule pointers */
602 } __packed __aligned(4);
603 
604 enum fwdb_flags {
605 	FWDB_FLAG_NO_OFDM	= BIT(0),
606 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
607 	FWDB_FLAG_DFS		= BIT(2),
608 	FWDB_FLAG_NO_IR		= BIT(3),
609 	FWDB_FLAG_AUTO_BW	= BIT(4),
610 };
611 
612 struct fwdb_wmm_ac {
613 	u8 ecw;
614 	u8 aifsn;
615 	__be16 cot;
616 } __packed;
617 
618 struct fwdb_wmm_rule {
619 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
620 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
621 } __packed;
622 
623 struct fwdb_rule {
624 	u8 len;
625 	u8 flags;
626 	__be16 max_eirp;
627 	__be32 start, end, max_bw;
628 	/* start of optional data */
629 	__be16 cac_timeout;
630 	__be16 wmm_ptr;
631 } __packed __aligned(4);
632 
633 #define FWDB_MAGIC 0x52474442
634 #define FWDB_VERSION 20
635 
636 struct fwdb_header {
637 	__be32 magic;
638 	__be32 version;
639 	struct fwdb_country country[];
640 } __packed __aligned(4);
641 
642 static int ecw2cw(int ecw)
643 {
644 	return (1 << ecw) - 1;
645 }
646 
647 static bool valid_wmm(struct fwdb_wmm_rule *rule)
648 {
649 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
650 	int i;
651 
652 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
653 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
654 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
655 		u8 aifsn = ac[i].aifsn;
656 
657 		if (cw_min >= cw_max)
658 			return false;
659 
660 		if (aifsn < 1)
661 			return false;
662 	}
663 
664 	return true;
665 }
666 
667 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
668 {
669 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
670 
671 	if ((u8 *)rule + sizeof(rule->len) > data + size)
672 		return false;
673 
674 	/* mandatory fields */
675 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
676 		return false;
677 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
678 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
679 		struct fwdb_wmm_rule *wmm;
680 
681 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
682 			return false;
683 
684 		wmm = (void *)(data + wmm_ptr);
685 
686 		if (!valid_wmm(wmm))
687 			return false;
688 	}
689 	return true;
690 }
691 
692 static bool valid_country(const u8 *data, unsigned int size,
693 			  const struct fwdb_country *country)
694 {
695 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
696 	struct fwdb_collection *coll = (void *)(data + ptr);
697 	__be16 *rules_ptr;
698 	unsigned int i;
699 
700 	/* make sure we can read len/n_rules */
701 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
702 		return false;
703 
704 	/* make sure base struct and all rules fit */
705 	if ((u8 *)coll + ALIGN(coll->len, 2) +
706 	    (coll->n_rules * 2) > data + size)
707 		return false;
708 
709 	/* mandatory fields must exist */
710 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
711 		return false;
712 
713 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
714 
715 	for (i = 0; i < coll->n_rules; i++) {
716 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
717 
718 		if (!valid_rule(data, size, rule_ptr))
719 			return false;
720 	}
721 
722 	return true;
723 }
724 
725 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
726 static struct key *builtin_regdb_keys;
727 
728 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
729 {
730 	const u8 *end = p + buflen;
731 	size_t plen;
732 	key_ref_t key;
733 
734 	while (p < end) {
735 		/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
736 		 * than 256 bytes in size.
737 		 */
738 		if (end - p < 4)
739 			goto dodgy_cert;
740 		if (p[0] != 0x30 &&
741 		    p[1] != 0x82)
742 			goto dodgy_cert;
743 		plen = (p[2] << 8) | p[3];
744 		plen += 4;
745 		if (plen > end - p)
746 			goto dodgy_cert;
747 
748 		key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
749 					   "asymmetric", NULL, p, plen,
750 					   ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
751 					    KEY_USR_VIEW | KEY_USR_READ),
752 					   KEY_ALLOC_NOT_IN_QUOTA |
753 					   KEY_ALLOC_BUILT_IN |
754 					   KEY_ALLOC_BYPASS_RESTRICTION);
755 		if (IS_ERR(key)) {
756 			pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
757 			       PTR_ERR(key));
758 		} else {
759 			pr_notice("Loaded X.509 cert '%s'\n",
760 				  key_ref_to_ptr(key)->description);
761 			key_ref_put(key);
762 		}
763 		p += plen;
764 	}
765 
766 	return;
767 
768 dodgy_cert:
769 	pr_err("Problem parsing in-kernel X.509 certificate list\n");
770 }
771 
772 static int __init load_builtin_regdb_keys(void)
773 {
774 	builtin_regdb_keys =
775 		keyring_alloc(".builtin_regdb_keys",
776 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
777 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
778 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
779 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
780 	if (IS_ERR(builtin_regdb_keys))
781 		return PTR_ERR(builtin_regdb_keys);
782 
783 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
784 
785 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
786 	load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
787 #endif
788 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
789 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
790 		load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
791 #endif
792 
793 	return 0;
794 }
795 
796 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
797 {
798 	const struct firmware *sig;
799 	bool result;
800 
801 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
802 		return false;
803 
804 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
805 					builtin_regdb_keys,
806 					VERIFYING_UNSPECIFIED_SIGNATURE,
807 					NULL, NULL) == 0;
808 
809 	release_firmware(sig);
810 
811 	return result;
812 }
813 
814 static void free_regdb_keyring(void)
815 {
816 	key_put(builtin_regdb_keys);
817 }
818 #else
819 static int load_builtin_regdb_keys(void)
820 {
821 	return 0;
822 }
823 
824 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
825 {
826 	return true;
827 }
828 
829 static void free_regdb_keyring(void)
830 {
831 }
832 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
833 
834 static bool valid_regdb(const u8 *data, unsigned int size)
835 {
836 	const struct fwdb_header *hdr = (void *)data;
837 	const struct fwdb_country *country;
838 
839 	if (size < sizeof(*hdr))
840 		return false;
841 
842 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
843 		return false;
844 
845 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
846 		return false;
847 
848 	if (!regdb_has_valid_signature(data, size))
849 		return false;
850 
851 	country = &hdr->country[0];
852 	while ((u8 *)(country + 1) <= data + size) {
853 		if (!country->coll_ptr)
854 			break;
855 		if (!valid_country(data, size, country))
856 			return false;
857 		country++;
858 	}
859 
860 	return true;
861 }
862 
863 static void set_wmm_rule(struct ieee80211_wmm_rule *rule,
864 			 struct fwdb_wmm_rule *wmm)
865 {
866 	unsigned int i;
867 
868 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
869 		rule->client[i].cw_min =
870 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
871 		rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
872 		rule->client[i].aifsn =  wmm->client[i].aifsn;
873 		rule->client[i].cot = 1000 * be16_to_cpu(wmm->client[i].cot);
874 		rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
875 		rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
876 		rule->ap[i].aifsn = wmm->ap[i].aifsn;
877 		rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
878 	}
879 }
880 
881 static int __regdb_query_wmm(const struct fwdb_header *db,
882 			     const struct fwdb_country *country, int freq,
883 			     u32 *dbptr, struct ieee80211_wmm_rule *rule)
884 {
885 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
886 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
887 	int i;
888 
889 	for (i = 0; i < coll->n_rules; i++) {
890 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
891 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
892 		struct fwdb_rule *rrule = (void *)((u8 *)db + rule_ptr);
893 		struct fwdb_wmm_rule *wmm;
894 		unsigned int wmm_ptr;
895 
896 		if (rrule->len < offsetofend(struct fwdb_rule, wmm_ptr))
897 			continue;
898 
899 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rrule->start)) &&
900 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rrule->end))) {
901 			wmm_ptr = be16_to_cpu(rrule->wmm_ptr) << 2;
902 			wmm = (void *)((u8 *)db + wmm_ptr);
903 			set_wmm_rule(rule, wmm);
904 			if (dbptr)
905 				*dbptr = wmm_ptr;
906 			return 0;
907 		}
908 	}
909 
910 	return -ENODATA;
911 }
912 
913 int reg_query_regdb_wmm(char *alpha2, int freq, u32 *dbptr,
914 			struct ieee80211_wmm_rule *rule)
915 {
916 	const struct fwdb_header *hdr = regdb;
917 	const struct fwdb_country *country;
918 
919 	if (IS_ERR(regdb))
920 		return PTR_ERR(regdb);
921 
922 	country = &hdr->country[0];
923 	while (country->coll_ptr) {
924 		if (alpha2_equal(alpha2, country->alpha2))
925 			return __regdb_query_wmm(regdb, country, freq, dbptr,
926 						 rule);
927 
928 		country++;
929 	}
930 
931 	return -ENODATA;
932 }
933 EXPORT_SYMBOL(reg_query_regdb_wmm);
934 
935 struct wmm_ptrs {
936 	struct ieee80211_wmm_rule *rule;
937 	u32 ptr;
938 };
939 
940 static struct ieee80211_wmm_rule *find_wmm_ptr(struct wmm_ptrs *wmm_ptrs,
941 					       u32 wmm_ptr, int n_wmms)
942 {
943 	int i;
944 
945 	for (i = 0; i < n_wmms; i++) {
946 		if (wmm_ptrs[i].ptr == wmm_ptr)
947 			return wmm_ptrs[i].rule;
948 	}
949 	return NULL;
950 }
951 
952 static int regdb_query_country(const struct fwdb_header *db,
953 			       const struct fwdb_country *country)
954 {
955 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
956 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
957 	struct ieee80211_regdomain *regdom;
958 	struct ieee80211_regdomain *tmp_rd;
959 	unsigned int size_of_regd, i, n_wmms = 0;
960 	struct wmm_ptrs *wmm_ptrs;
961 
962 	size_of_regd = sizeof(struct ieee80211_regdomain) +
963 		coll->n_rules * sizeof(struct ieee80211_reg_rule);
964 
965 	regdom = kzalloc(size_of_regd, GFP_KERNEL);
966 	if (!regdom)
967 		return -ENOMEM;
968 
969 	wmm_ptrs = kcalloc(coll->n_rules, sizeof(*wmm_ptrs), GFP_KERNEL);
970 	if (!wmm_ptrs) {
971 		kfree(regdom);
972 		return -ENOMEM;
973 	}
974 
975 	regdom->n_reg_rules = coll->n_rules;
976 	regdom->alpha2[0] = country->alpha2[0];
977 	regdom->alpha2[1] = country->alpha2[1];
978 	regdom->dfs_region = coll->dfs_region;
979 
980 	for (i = 0; i < regdom->n_reg_rules; i++) {
981 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
982 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
983 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
984 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
985 
986 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
987 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
988 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
989 
990 		rrule->power_rule.max_antenna_gain = 0;
991 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
992 
993 		rrule->flags = 0;
994 		if (rule->flags & FWDB_FLAG_NO_OFDM)
995 			rrule->flags |= NL80211_RRF_NO_OFDM;
996 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
997 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
998 		if (rule->flags & FWDB_FLAG_DFS)
999 			rrule->flags |= NL80211_RRF_DFS;
1000 		if (rule->flags & FWDB_FLAG_NO_IR)
1001 			rrule->flags |= NL80211_RRF_NO_IR;
1002 		if (rule->flags & FWDB_FLAG_AUTO_BW)
1003 			rrule->flags |= NL80211_RRF_AUTO_BW;
1004 
1005 		rrule->dfs_cac_ms = 0;
1006 
1007 		/* handle optional data */
1008 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1009 			rrule->dfs_cac_ms =
1010 				1000 * be16_to_cpu(rule->cac_timeout);
1011 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
1012 			u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
1013 			struct ieee80211_wmm_rule *wmm_pos =
1014 				find_wmm_ptr(wmm_ptrs, wmm_ptr, n_wmms);
1015 			struct fwdb_wmm_rule *wmm;
1016 			struct ieee80211_wmm_rule *wmm_rule;
1017 
1018 			if (wmm_pos) {
1019 				rrule->wmm_rule = wmm_pos;
1020 				continue;
1021 			}
1022 			wmm = (void *)((u8 *)db + wmm_ptr);
1023 			tmp_rd = krealloc(regdom, size_of_regd + (n_wmms + 1) *
1024 					  sizeof(struct ieee80211_wmm_rule),
1025 					  GFP_KERNEL);
1026 
1027 			if (!tmp_rd) {
1028 				kfree(regdom);
1029 				kfree(wmm_ptrs);
1030 				return -ENOMEM;
1031 			}
1032 			regdom = tmp_rd;
1033 
1034 			wmm_rule = (struct ieee80211_wmm_rule *)
1035 				((u8 *)regdom + size_of_regd + n_wmms *
1036 				sizeof(struct ieee80211_wmm_rule));
1037 
1038 			set_wmm_rule(wmm_rule, wmm);
1039 			wmm_ptrs[n_wmms].ptr = wmm_ptr;
1040 			wmm_ptrs[n_wmms++].rule = wmm_rule;
1041 		}
1042 	}
1043 	kfree(wmm_ptrs);
1044 
1045 	return reg_schedule_apply(regdom);
1046 }
1047 
1048 static int query_regdb(const char *alpha2)
1049 {
1050 	const struct fwdb_header *hdr = regdb;
1051 	const struct fwdb_country *country;
1052 
1053 	ASSERT_RTNL();
1054 
1055 	if (IS_ERR(regdb))
1056 		return PTR_ERR(regdb);
1057 
1058 	country = &hdr->country[0];
1059 	while (country->coll_ptr) {
1060 		if (alpha2_equal(alpha2, country->alpha2))
1061 			return regdb_query_country(regdb, country);
1062 		country++;
1063 	}
1064 
1065 	return -ENODATA;
1066 }
1067 
1068 static void regdb_fw_cb(const struct firmware *fw, void *context)
1069 {
1070 	int set_error = 0;
1071 	bool restore = true;
1072 	void *db;
1073 
1074 	if (!fw) {
1075 		pr_info("failed to load regulatory.db\n");
1076 		set_error = -ENODATA;
1077 	} else if (!valid_regdb(fw->data, fw->size)) {
1078 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1079 		set_error = -EINVAL;
1080 	}
1081 
1082 	rtnl_lock();
1083 	if (WARN_ON(regdb && !IS_ERR(regdb))) {
1084 		/* just restore and free new db */
1085 	} else if (set_error) {
1086 		regdb = ERR_PTR(set_error);
1087 	} else if (fw) {
1088 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1089 		if (db) {
1090 			regdb = db;
1091 			restore = context && query_regdb(context);
1092 		} else {
1093 			restore = true;
1094 		}
1095 	}
1096 
1097 	if (restore)
1098 		restore_regulatory_settings(true);
1099 
1100 	rtnl_unlock();
1101 
1102 	kfree(context);
1103 
1104 	release_firmware(fw);
1105 }
1106 
1107 static int query_regdb_file(const char *alpha2)
1108 {
1109 	ASSERT_RTNL();
1110 
1111 	if (regdb)
1112 		return query_regdb(alpha2);
1113 
1114 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1115 	if (!alpha2)
1116 		return -ENOMEM;
1117 
1118 	return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1119 				       &reg_pdev->dev, GFP_KERNEL,
1120 				       (void *)alpha2, regdb_fw_cb);
1121 }
1122 
1123 int reg_reload_regdb(void)
1124 {
1125 	const struct firmware *fw;
1126 	void *db;
1127 	int err;
1128 
1129 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1130 	if (err)
1131 		return err;
1132 
1133 	if (!valid_regdb(fw->data, fw->size)) {
1134 		err = -ENODATA;
1135 		goto out;
1136 	}
1137 
1138 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1139 	if (!db) {
1140 		err = -ENOMEM;
1141 		goto out;
1142 	}
1143 
1144 	rtnl_lock();
1145 	if (!IS_ERR_OR_NULL(regdb))
1146 		kfree(regdb);
1147 	regdb = db;
1148 	rtnl_unlock();
1149 
1150  out:
1151 	release_firmware(fw);
1152 	return err;
1153 }
1154 
1155 static bool reg_query_database(struct regulatory_request *request)
1156 {
1157 	if (query_regdb_file(request->alpha2) == 0)
1158 		return true;
1159 
1160 	if (call_crda(request->alpha2) == 0)
1161 		return true;
1162 
1163 	return false;
1164 }
1165 
1166 bool reg_is_valid_request(const char *alpha2)
1167 {
1168 	struct regulatory_request *lr = get_last_request();
1169 
1170 	if (!lr || lr->processed)
1171 		return false;
1172 
1173 	return alpha2_equal(lr->alpha2, alpha2);
1174 }
1175 
1176 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1177 {
1178 	struct regulatory_request *lr = get_last_request();
1179 
1180 	/*
1181 	 * Follow the driver's regulatory domain, if present, unless a country
1182 	 * IE has been processed or a user wants to help complaince further
1183 	 */
1184 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1185 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1186 	    wiphy->regd)
1187 		return get_wiphy_regdom(wiphy);
1188 
1189 	return get_cfg80211_regdom();
1190 }
1191 
1192 static unsigned int
1193 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1194 				 const struct ieee80211_reg_rule *rule)
1195 {
1196 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1197 	const struct ieee80211_freq_range *freq_range_tmp;
1198 	const struct ieee80211_reg_rule *tmp;
1199 	u32 start_freq, end_freq, idx, no;
1200 
1201 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1202 		if (rule == &rd->reg_rules[idx])
1203 			break;
1204 
1205 	if (idx == rd->n_reg_rules)
1206 		return 0;
1207 
1208 	/* get start_freq */
1209 	no = idx;
1210 
1211 	while (no) {
1212 		tmp = &rd->reg_rules[--no];
1213 		freq_range_tmp = &tmp->freq_range;
1214 
1215 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1216 			break;
1217 
1218 		freq_range = freq_range_tmp;
1219 	}
1220 
1221 	start_freq = freq_range->start_freq_khz;
1222 
1223 	/* get end_freq */
1224 	freq_range = &rule->freq_range;
1225 	no = idx;
1226 
1227 	while (no < rd->n_reg_rules - 1) {
1228 		tmp = &rd->reg_rules[++no];
1229 		freq_range_tmp = &tmp->freq_range;
1230 
1231 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1232 			break;
1233 
1234 		freq_range = freq_range_tmp;
1235 	}
1236 
1237 	end_freq = freq_range->end_freq_khz;
1238 
1239 	return end_freq - start_freq;
1240 }
1241 
1242 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1243 				   const struct ieee80211_reg_rule *rule)
1244 {
1245 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1246 
1247 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1248 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1249 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1250 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1251 
1252 	/*
1253 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1254 	 * are not allowed.
1255 	 */
1256 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1257 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1258 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1259 
1260 	return bw;
1261 }
1262 
1263 /* Sanity check on a regulatory rule */
1264 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1265 {
1266 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1267 	u32 freq_diff;
1268 
1269 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1270 		return false;
1271 
1272 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1273 		return false;
1274 
1275 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1276 
1277 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1278 	    freq_range->max_bandwidth_khz > freq_diff)
1279 		return false;
1280 
1281 	return true;
1282 }
1283 
1284 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1285 {
1286 	const struct ieee80211_reg_rule *reg_rule = NULL;
1287 	unsigned int i;
1288 
1289 	if (!rd->n_reg_rules)
1290 		return false;
1291 
1292 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1293 		return false;
1294 
1295 	for (i = 0; i < rd->n_reg_rules; i++) {
1296 		reg_rule = &rd->reg_rules[i];
1297 		if (!is_valid_reg_rule(reg_rule))
1298 			return false;
1299 	}
1300 
1301 	return true;
1302 }
1303 
1304 /**
1305  * freq_in_rule_band - tells us if a frequency is in a frequency band
1306  * @freq_range: frequency rule we want to query
1307  * @freq_khz: frequency we are inquiring about
1308  *
1309  * This lets us know if a specific frequency rule is or is not relevant to
1310  * a specific frequency's band. Bands are device specific and artificial
1311  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1312  * however it is safe for now to assume that a frequency rule should not be
1313  * part of a frequency's band if the start freq or end freq are off by more
1314  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
1315  * 60 GHz band.
1316  * This resolution can be lowered and should be considered as we add
1317  * regulatory rule support for other "bands".
1318  **/
1319 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1320 			      u32 freq_khz)
1321 {
1322 #define ONE_GHZ_IN_KHZ	1000000
1323 	/*
1324 	 * From 802.11ad: directional multi-gigabit (DMG):
1325 	 * Pertaining to operation in a frequency band containing a channel
1326 	 * with the Channel starting frequency above 45 GHz.
1327 	 */
1328 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1329 			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1330 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1331 		return true;
1332 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1333 		return true;
1334 	return false;
1335 #undef ONE_GHZ_IN_KHZ
1336 }
1337 
1338 /*
1339  * Later on we can perhaps use the more restrictive DFS
1340  * region but we don't have information for that yet so
1341  * for now simply disallow conflicts.
1342  */
1343 static enum nl80211_dfs_regions
1344 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1345 			 const enum nl80211_dfs_regions dfs_region2)
1346 {
1347 	if (dfs_region1 != dfs_region2)
1348 		return NL80211_DFS_UNSET;
1349 	return dfs_region1;
1350 }
1351 
1352 /*
1353  * Helper for regdom_intersect(), this does the real
1354  * mathematical intersection fun
1355  */
1356 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1357 			       const struct ieee80211_regdomain *rd2,
1358 			       const struct ieee80211_reg_rule *rule1,
1359 			       const struct ieee80211_reg_rule *rule2,
1360 			       struct ieee80211_reg_rule *intersected_rule)
1361 {
1362 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1363 	struct ieee80211_freq_range *freq_range;
1364 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1365 	struct ieee80211_power_rule *power_rule;
1366 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1367 
1368 	freq_range1 = &rule1->freq_range;
1369 	freq_range2 = &rule2->freq_range;
1370 	freq_range = &intersected_rule->freq_range;
1371 
1372 	power_rule1 = &rule1->power_rule;
1373 	power_rule2 = &rule2->power_rule;
1374 	power_rule = &intersected_rule->power_rule;
1375 
1376 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1377 					 freq_range2->start_freq_khz);
1378 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1379 				       freq_range2->end_freq_khz);
1380 
1381 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1382 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1383 
1384 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1385 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1386 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1387 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1388 
1389 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1390 
1391 	intersected_rule->flags = rule1->flags | rule2->flags;
1392 
1393 	/*
1394 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1395 	 * set AUTO_BW in intersected rule also. Next we will
1396 	 * calculate BW correctly in handle_channel function.
1397 	 * In other case remove AUTO_BW flag while we calculate
1398 	 * maximum bandwidth correctly and auto calculation is
1399 	 * not required.
1400 	 */
1401 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1402 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1403 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1404 	else
1405 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1406 
1407 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1408 	if (freq_range->max_bandwidth_khz > freq_diff)
1409 		freq_range->max_bandwidth_khz = freq_diff;
1410 
1411 	power_rule->max_eirp = min(power_rule1->max_eirp,
1412 		power_rule2->max_eirp);
1413 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1414 		power_rule2->max_antenna_gain);
1415 
1416 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1417 					   rule2->dfs_cac_ms);
1418 
1419 	if (!is_valid_reg_rule(intersected_rule))
1420 		return -EINVAL;
1421 
1422 	return 0;
1423 }
1424 
1425 /* check whether old rule contains new rule */
1426 static bool rule_contains(struct ieee80211_reg_rule *r1,
1427 			  struct ieee80211_reg_rule *r2)
1428 {
1429 	/* for simplicity, currently consider only same flags */
1430 	if (r1->flags != r2->flags)
1431 		return false;
1432 
1433 	/* verify r1 is more restrictive */
1434 	if ((r1->power_rule.max_antenna_gain >
1435 	     r2->power_rule.max_antenna_gain) ||
1436 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1437 		return false;
1438 
1439 	/* make sure r2's range is contained within r1 */
1440 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1441 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1442 		return false;
1443 
1444 	/* and finally verify that r1.max_bw >= r2.max_bw */
1445 	if (r1->freq_range.max_bandwidth_khz <
1446 	    r2->freq_range.max_bandwidth_khz)
1447 		return false;
1448 
1449 	return true;
1450 }
1451 
1452 /* add or extend current rules. do nothing if rule is already contained */
1453 static void add_rule(struct ieee80211_reg_rule *rule,
1454 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1455 {
1456 	struct ieee80211_reg_rule *tmp_rule;
1457 	int i;
1458 
1459 	for (i = 0; i < *n_rules; i++) {
1460 		tmp_rule = &reg_rules[i];
1461 		/* rule is already contained - do nothing */
1462 		if (rule_contains(tmp_rule, rule))
1463 			return;
1464 
1465 		/* extend rule if possible */
1466 		if (rule_contains(rule, tmp_rule)) {
1467 			memcpy(tmp_rule, rule, sizeof(*rule));
1468 			return;
1469 		}
1470 	}
1471 
1472 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1473 	(*n_rules)++;
1474 }
1475 
1476 /**
1477  * regdom_intersect - do the intersection between two regulatory domains
1478  * @rd1: first regulatory domain
1479  * @rd2: second regulatory domain
1480  *
1481  * Use this function to get the intersection between two regulatory domains.
1482  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1483  * as no one single alpha2 can represent this regulatory domain.
1484  *
1485  * Returns a pointer to the regulatory domain structure which will hold the
1486  * resulting intersection of rules between rd1 and rd2. We will
1487  * kzalloc() this structure for you.
1488  */
1489 static struct ieee80211_regdomain *
1490 regdom_intersect(const struct ieee80211_regdomain *rd1,
1491 		 const struct ieee80211_regdomain *rd2)
1492 {
1493 	int r, size_of_regd;
1494 	unsigned int x, y;
1495 	unsigned int num_rules = 0;
1496 	const struct ieee80211_reg_rule *rule1, *rule2;
1497 	struct ieee80211_reg_rule intersected_rule;
1498 	struct ieee80211_regdomain *rd;
1499 
1500 	if (!rd1 || !rd2)
1501 		return NULL;
1502 
1503 	/*
1504 	 * First we get a count of the rules we'll need, then we actually
1505 	 * build them. This is to so we can malloc() and free() a
1506 	 * regdomain once. The reason we use reg_rules_intersect() here
1507 	 * is it will return -EINVAL if the rule computed makes no sense.
1508 	 * All rules that do check out OK are valid.
1509 	 */
1510 
1511 	for (x = 0; x < rd1->n_reg_rules; x++) {
1512 		rule1 = &rd1->reg_rules[x];
1513 		for (y = 0; y < rd2->n_reg_rules; y++) {
1514 			rule2 = &rd2->reg_rules[y];
1515 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1516 						 &intersected_rule))
1517 				num_rules++;
1518 		}
1519 	}
1520 
1521 	if (!num_rules)
1522 		return NULL;
1523 
1524 	size_of_regd = sizeof(struct ieee80211_regdomain) +
1525 		       num_rules * sizeof(struct ieee80211_reg_rule);
1526 
1527 	rd = kzalloc(size_of_regd, GFP_KERNEL);
1528 	if (!rd)
1529 		return NULL;
1530 
1531 	for (x = 0; x < rd1->n_reg_rules; x++) {
1532 		rule1 = &rd1->reg_rules[x];
1533 		for (y = 0; y < rd2->n_reg_rules; y++) {
1534 			rule2 = &rd2->reg_rules[y];
1535 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1536 						&intersected_rule);
1537 			/*
1538 			 * No need to memset here the intersected rule here as
1539 			 * we're not using the stack anymore
1540 			 */
1541 			if (r)
1542 				continue;
1543 
1544 			add_rule(&intersected_rule, rd->reg_rules,
1545 				 &rd->n_reg_rules);
1546 		}
1547 	}
1548 
1549 	rd->alpha2[0] = '9';
1550 	rd->alpha2[1] = '8';
1551 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1552 						  rd2->dfs_region);
1553 
1554 	return rd;
1555 }
1556 
1557 /*
1558  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1559  * want to just have the channel structure use these
1560  */
1561 static u32 map_regdom_flags(u32 rd_flags)
1562 {
1563 	u32 channel_flags = 0;
1564 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1565 		channel_flags |= IEEE80211_CHAN_NO_IR;
1566 	if (rd_flags & NL80211_RRF_DFS)
1567 		channel_flags |= IEEE80211_CHAN_RADAR;
1568 	if (rd_flags & NL80211_RRF_NO_OFDM)
1569 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1570 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1571 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1572 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1573 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1574 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1575 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1576 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1577 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1578 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1579 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1580 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1581 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1582 	return channel_flags;
1583 }
1584 
1585 static const struct ieee80211_reg_rule *
1586 freq_reg_info_regd(u32 center_freq,
1587 		   const struct ieee80211_regdomain *regd, u32 bw)
1588 {
1589 	int i;
1590 	bool band_rule_found = false;
1591 	bool bw_fits = false;
1592 
1593 	if (!regd)
1594 		return ERR_PTR(-EINVAL);
1595 
1596 	for (i = 0; i < regd->n_reg_rules; i++) {
1597 		const struct ieee80211_reg_rule *rr;
1598 		const struct ieee80211_freq_range *fr = NULL;
1599 
1600 		rr = &regd->reg_rules[i];
1601 		fr = &rr->freq_range;
1602 
1603 		/*
1604 		 * We only need to know if one frequency rule was
1605 		 * was in center_freq's band, that's enough, so lets
1606 		 * not overwrite it once found
1607 		 */
1608 		if (!band_rule_found)
1609 			band_rule_found = freq_in_rule_band(fr, center_freq);
1610 
1611 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1612 
1613 		if (band_rule_found && bw_fits)
1614 			return rr;
1615 	}
1616 
1617 	if (!band_rule_found)
1618 		return ERR_PTR(-ERANGE);
1619 
1620 	return ERR_PTR(-EINVAL);
1621 }
1622 
1623 static const struct ieee80211_reg_rule *
1624 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1625 {
1626 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1627 	const struct ieee80211_reg_rule *reg_rule = NULL;
1628 	u32 bw;
1629 
1630 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1631 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1632 		if (!IS_ERR(reg_rule))
1633 			return reg_rule;
1634 	}
1635 
1636 	return reg_rule;
1637 }
1638 
1639 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1640 					       u32 center_freq)
1641 {
1642 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1643 }
1644 EXPORT_SYMBOL(freq_reg_info);
1645 
1646 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1647 {
1648 	switch (initiator) {
1649 	case NL80211_REGDOM_SET_BY_CORE:
1650 		return "core";
1651 	case NL80211_REGDOM_SET_BY_USER:
1652 		return "user";
1653 	case NL80211_REGDOM_SET_BY_DRIVER:
1654 		return "driver";
1655 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1656 		return "country IE";
1657 	default:
1658 		WARN_ON(1);
1659 		return "bug";
1660 	}
1661 }
1662 EXPORT_SYMBOL(reg_initiator_name);
1663 
1664 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1665 					  const struct ieee80211_reg_rule *reg_rule,
1666 					  const struct ieee80211_channel *chan)
1667 {
1668 	const struct ieee80211_freq_range *freq_range = NULL;
1669 	u32 max_bandwidth_khz, bw_flags = 0;
1670 
1671 	freq_range = &reg_rule->freq_range;
1672 
1673 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1674 	/* Check if auto calculation requested */
1675 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1676 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1677 
1678 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1679 	if (!cfg80211_does_bw_fit_range(freq_range,
1680 					MHZ_TO_KHZ(chan->center_freq),
1681 					MHZ_TO_KHZ(10)))
1682 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1683 	if (!cfg80211_does_bw_fit_range(freq_range,
1684 					MHZ_TO_KHZ(chan->center_freq),
1685 					MHZ_TO_KHZ(20)))
1686 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1687 
1688 	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1689 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1690 	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1691 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1692 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1693 		bw_flags |= IEEE80211_CHAN_NO_HT40;
1694 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1695 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1696 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1697 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1698 	return bw_flags;
1699 }
1700 
1701 /*
1702  * Note that right now we assume the desired channel bandwidth
1703  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1704  * per channel, the primary and the extension channel).
1705  */
1706 static void handle_channel(struct wiphy *wiphy,
1707 			   enum nl80211_reg_initiator initiator,
1708 			   struct ieee80211_channel *chan)
1709 {
1710 	u32 flags, bw_flags = 0;
1711 	const struct ieee80211_reg_rule *reg_rule = NULL;
1712 	const struct ieee80211_power_rule *power_rule = NULL;
1713 	struct wiphy *request_wiphy = NULL;
1714 	struct regulatory_request *lr = get_last_request();
1715 	const struct ieee80211_regdomain *regd;
1716 
1717 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1718 
1719 	flags = chan->orig_flags;
1720 
1721 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1722 	if (IS_ERR(reg_rule)) {
1723 		/*
1724 		 * We will disable all channels that do not match our
1725 		 * received regulatory rule unless the hint is coming
1726 		 * from a Country IE and the Country IE had no information
1727 		 * about a band. The IEEE 802.11 spec allows for an AP
1728 		 * to send only a subset of the regulatory rules allowed,
1729 		 * so an AP in the US that only supports 2.4 GHz may only send
1730 		 * a country IE with information for the 2.4 GHz band
1731 		 * while 5 GHz is still supported.
1732 		 */
1733 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1734 		    PTR_ERR(reg_rule) == -ERANGE)
1735 			return;
1736 
1737 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1738 		    request_wiphy && request_wiphy == wiphy &&
1739 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1740 			pr_debug("Disabling freq %d MHz for good\n",
1741 				 chan->center_freq);
1742 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1743 			chan->flags = chan->orig_flags;
1744 		} else {
1745 			pr_debug("Disabling freq %d MHz\n",
1746 				 chan->center_freq);
1747 			chan->flags |= IEEE80211_CHAN_DISABLED;
1748 		}
1749 		return;
1750 	}
1751 
1752 	regd = reg_get_regdomain(wiphy);
1753 
1754 	power_rule = &reg_rule->power_rule;
1755 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1756 
1757 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1758 	    request_wiphy && request_wiphy == wiphy &&
1759 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1760 		/*
1761 		 * This guarantees the driver's requested regulatory domain
1762 		 * will always be used as a base for further regulatory
1763 		 * settings
1764 		 */
1765 		chan->flags = chan->orig_flags =
1766 			map_regdom_flags(reg_rule->flags) | bw_flags;
1767 		chan->max_antenna_gain = chan->orig_mag =
1768 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1769 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1770 			(int) MBM_TO_DBM(power_rule->max_eirp);
1771 
1772 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1773 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1774 			if (reg_rule->dfs_cac_ms)
1775 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1776 		}
1777 
1778 		return;
1779 	}
1780 
1781 	chan->dfs_state = NL80211_DFS_USABLE;
1782 	chan->dfs_state_entered = jiffies;
1783 
1784 	chan->beacon_found = false;
1785 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1786 	chan->max_antenna_gain =
1787 		min_t(int, chan->orig_mag,
1788 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1789 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1790 
1791 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1792 		if (reg_rule->dfs_cac_ms)
1793 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1794 		else
1795 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1796 	}
1797 
1798 	if (chan->orig_mpwr) {
1799 		/*
1800 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1801 		 * will always follow the passed country IE power settings.
1802 		 */
1803 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1804 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1805 			chan->max_power = chan->max_reg_power;
1806 		else
1807 			chan->max_power = min(chan->orig_mpwr,
1808 					      chan->max_reg_power);
1809 	} else
1810 		chan->max_power = chan->max_reg_power;
1811 }
1812 
1813 static void handle_band(struct wiphy *wiphy,
1814 			enum nl80211_reg_initiator initiator,
1815 			struct ieee80211_supported_band *sband)
1816 {
1817 	unsigned int i;
1818 
1819 	if (!sband)
1820 		return;
1821 
1822 	for (i = 0; i < sband->n_channels; i++)
1823 		handle_channel(wiphy, initiator, &sband->channels[i]);
1824 }
1825 
1826 static bool reg_request_cell_base(struct regulatory_request *request)
1827 {
1828 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1829 		return false;
1830 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1831 }
1832 
1833 bool reg_last_request_cell_base(void)
1834 {
1835 	return reg_request_cell_base(get_last_request());
1836 }
1837 
1838 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1839 /* Core specific check */
1840 static enum reg_request_treatment
1841 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1842 {
1843 	struct regulatory_request *lr = get_last_request();
1844 
1845 	if (!reg_num_devs_support_basehint)
1846 		return REG_REQ_IGNORE;
1847 
1848 	if (reg_request_cell_base(lr) &&
1849 	    !regdom_changes(pending_request->alpha2))
1850 		return REG_REQ_ALREADY_SET;
1851 
1852 	return REG_REQ_OK;
1853 }
1854 
1855 /* Device specific check */
1856 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1857 {
1858 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1859 }
1860 #else
1861 static enum reg_request_treatment
1862 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1863 {
1864 	return REG_REQ_IGNORE;
1865 }
1866 
1867 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1868 {
1869 	return true;
1870 }
1871 #endif
1872 
1873 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1874 {
1875 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1876 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1877 		return true;
1878 	return false;
1879 }
1880 
1881 static bool ignore_reg_update(struct wiphy *wiphy,
1882 			      enum nl80211_reg_initiator initiator)
1883 {
1884 	struct regulatory_request *lr = get_last_request();
1885 
1886 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1887 		return true;
1888 
1889 	if (!lr) {
1890 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1891 			 reg_initiator_name(initiator));
1892 		return true;
1893 	}
1894 
1895 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1896 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1897 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1898 			 reg_initiator_name(initiator));
1899 		return true;
1900 	}
1901 
1902 	/*
1903 	 * wiphy->regd will be set once the device has its own
1904 	 * desired regulatory domain set
1905 	 */
1906 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1907 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1908 	    !is_world_regdom(lr->alpha2)) {
1909 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1910 			 reg_initiator_name(initiator));
1911 		return true;
1912 	}
1913 
1914 	if (reg_request_cell_base(lr))
1915 		return reg_dev_ignore_cell_hint(wiphy);
1916 
1917 	return false;
1918 }
1919 
1920 static bool reg_is_world_roaming(struct wiphy *wiphy)
1921 {
1922 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1923 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1924 	struct regulatory_request *lr = get_last_request();
1925 
1926 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1927 		return true;
1928 
1929 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1930 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1931 		return true;
1932 
1933 	return false;
1934 }
1935 
1936 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1937 			      struct reg_beacon *reg_beacon)
1938 {
1939 	struct ieee80211_supported_band *sband;
1940 	struct ieee80211_channel *chan;
1941 	bool channel_changed = false;
1942 	struct ieee80211_channel chan_before;
1943 
1944 	sband = wiphy->bands[reg_beacon->chan.band];
1945 	chan = &sband->channels[chan_idx];
1946 
1947 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1948 		return;
1949 
1950 	if (chan->beacon_found)
1951 		return;
1952 
1953 	chan->beacon_found = true;
1954 
1955 	if (!reg_is_world_roaming(wiphy))
1956 		return;
1957 
1958 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1959 		return;
1960 
1961 	chan_before = *chan;
1962 
1963 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1964 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1965 		channel_changed = true;
1966 	}
1967 
1968 	if (channel_changed)
1969 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1970 }
1971 
1972 /*
1973  * Called when a scan on a wiphy finds a beacon on
1974  * new channel
1975  */
1976 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1977 				    struct reg_beacon *reg_beacon)
1978 {
1979 	unsigned int i;
1980 	struct ieee80211_supported_band *sband;
1981 
1982 	if (!wiphy->bands[reg_beacon->chan.band])
1983 		return;
1984 
1985 	sband = wiphy->bands[reg_beacon->chan.band];
1986 
1987 	for (i = 0; i < sband->n_channels; i++)
1988 		handle_reg_beacon(wiphy, i, reg_beacon);
1989 }
1990 
1991 /*
1992  * Called upon reg changes or a new wiphy is added
1993  */
1994 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1995 {
1996 	unsigned int i;
1997 	struct ieee80211_supported_band *sband;
1998 	struct reg_beacon *reg_beacon;
1999 
2000 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2001 		if (!wiphy->bands[reg_beacon->chan.band])
2002 			continue;
2003 		sband = wiphy->bands[reg_beacon->chan.band];
2004 		for (i = 0; i < sband->n_channels; i++)
2005 			handle_reg_beacon(wiphy, i, reg_beacon);
2006 	}
2007 }
2008 
2009 /* Reap the advantages of previously found beacons */
2010 static void reg_process_beacons(struct wiphy *wiphy)
2011 {
2012 	/*
2013 	 * Means we are just firing up cfg80211, so no beacons would
2014 	 * have been processed yet.
2015 	 */
2016 	if (!last_request)
2017 		return;
2018 	wiphy_update_beacon_reg(wiphy);
2019 }
2020 
2021 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2022 {
2023 	if (!chan)
2024 		return false;
2025 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2026 		return false;
2027 	/* This would happen when regulatory rules disallow HT40 completely */
2028 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2029 		return false;
2030 	return true;
2031 }
2032 
2033 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2034 					 struct ieee80211_channel *channel)
2035 {
2036 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2037 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2038 	const struct ieee80211_regdomain *regd;
2039 	unsigned int i;
2040 	u32 flags;
2041 
2042 	if (!is_ht40_allowed(channel)) {
2043 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2044 		return;
2045 	}
2046 
2047 	/*
2048 	 * We need to ensure the extension channels exist to
2049 	 * be able to use HT40- or HT40+, this finds them (or not)
2050 	 */
2051 	for (i = 0; i < sband->n_channels; i++) {
2052 		struct ieee80211_channel *c = &sband->channels[i];
2053 
2054 		if (c->center_freq == (channel->center_freq - 20))
2055 			channel_before = c;
2056 		if (c->center_freq == (channel->center_freq + 20))
2057 			channel_after = c;
2058 	}
2059 
2060 	flags = 0;
2061 	regd = get_wiphy_regdom(wiphy);
2062 	if (regd) {
2063 		const struct ieee80211_reg_rule *reg_rule =
2064 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2065 					   regd, MHZ_TO_KHZ(20));
2066 
2067 		if (!IS_ERR(reg_rule))
2068 			flags = reg_rule->flags;
2069 	}
2070 
2071 	/*
2072 	 * Please note that this assumes target bandwidth is 20 MHz,
2073 	 * if that ever changes we also need to change the below logic
2074 	 * to include that as well.
2075 	 */
2076 	if (!is_ht40_allowed(channel_before) ||
2077 	    flags & NL80211_RRF_NO_HT40MINUS)
2078 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2079 	else
2080 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2081 
2082 	if (!is_ht40_allowed(channel_after) ||
2083 	    flags & NL80211_RRF_NO_HT40PLUS)
2084 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2085 	else
2086 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2087 }
2088 
2089 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2090 				      struct ieee80211_supported_band *sband)
2091 {
2092 	unsigned int i;
2093 
2094 	if (!sband)
2095 		return;
2096 
2097 	for (i = 0; i < sband->n_channels; i++)
2098 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2099 }
2100 
2101 static void reg_process_ht_flags(struct wiphy *wiphy)
2102 {
2103 	enum nl80211_band band;
2104 
2105 	if (!wiphy)
2106 		return;
2107 
2108 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2109 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2110 }
2111 
2112 static void reg_call_notifier(struct wiphy *wiphy,
2113 			      struct regulatory_request *request)
2114 {
2115 	if (wiphy->reg_notifier)
2116 		wiphy->reg_notifier(wiphy, request);
2117 }
2118 
2119 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2120 {
2121 	struct cfg80211_chan_def chandef;
2122 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2123 	enum nl80211_iftype iftype;
2124 
2125 	wdev_lock(wdev);
2126 	iftype = wdev->iftype;
2127 
2128 	/* make sure the interface is active */
2129 	if (!wdev->netdev || !netif_running(wdev->netdev))
2130 		goto wdev_inactive_unlock;
2131 
2132 	switch (iftype) {
2133 	case NL80211_IFTYPE_AP:
2134 	case NL80211_IFTYPE_P2P_GO:
2135 		if (!wdev->beacon_interval)
2136 			goto wdev_inactive_unlock;
2137 		chandef = wdev->chandef;
2138 		break;
2139 	case NL80211_IFTYPE_ADHOC:
2140 		if (!wdev->ssid_len)
2141 			goto wdev_inactive_unlock;
2142 		chandef = wdev->chandef;
2143 		break;
2144 	case NL80211_IFTYPE_STATION:
2145 	case NL80211_IFTYPE_P2P_CLIENT:
2146 		if (!wdev->current_bss ||
2147 		    !wdev->current_bss->pub.channel)
2148 			goto wdev_inactive_unlock;
2149 
2150 		if (!rdev->ops->get_channel ||
2151 		    rdev_get_channel(rdev, wdev, &chandef))
2152 			cfg80211_chandef_create(&chandef,
2153 						wdev->current_bss->pub.channel,
2154 						NL80211_CHAN_NO_HT);
2155 		break;
2156 	case NL80211_IFTYPE_MONITOR:
2157 	case NL80211_IFTYPE_AP_VLAN:
2158 	case NL80211_IFTYPE_P2P_DEVICE:
2159 		/* no enforcement required */
2160 		break;
2161 	default:
2162 		/* others not implemented for now */
2163 		WARN_ON(1);
2164 		break;
2165 	}
2166 
2167 	wdev_unlock(wdev);
2168 
2169 	switch (iftype) {
2170 	case NL80211_IFTYPE_AP:
2171 	case NL80211_IFTYPE_P2P_GO:
2172 	case NL80211_IFTYPE_ADHOC:
2173 		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2174 	case NL80211_IFTYPE_STATION:
2175 	case NL80211_IFTYPE_P2P_CLIENT:
2176 		return cfg80211_chandef_usable(wiphy, &chandef,
2177 					       IEEE80211_CHAN_DISABLED);
2178 	default:
2179 		break;
2180 	}
2181 
2182 	return true;
2183 
2184 wdev_inactive_unlock:
2185 	wdev_unlock(wdev);
2186 	return true;
2187 }
2188 
2189 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2190 {
2191 	struct wireless_dev *wdev;
2192 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2193 
2194 	ASSERT_RTNL();
2195 
2196 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2197 		if (!reg_wdev_chan_valid(wiphy, wdev))
2198 			cfg80211_leave(rdev, wdev);
2199 }
2200 
2201 static void reg_check_chans_work(struct work_struct *work)
2202 {
2203 	struct cfg80211_registered_device *rdev;
2204 
2205 	pr_debug("Verifying active interfaces after reg change\n");
2206 	rtnl_lock();
2207 
2208 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2209 		if (!(rdev->wiphy.regulatory_flags &
2210 		      REGULATORY_IGNORE_STALE_KICKOFF))
2211 			reg_leave_invalid_chans(&rdev->wiphy);
2212 
2213 	rtnl_unlock();
2214 }
2215 
2216 static void reg_check_channels(void)
2217 {
2218 	/*
2219 	 * Give usermode a chance to do something nicer (move to another
2220 	 * channel, orderly disconnection), before forcing a disconnection.
2221 	 */
2222 	mod_delayed_work(system_power_efficient_wq,
2223 			 &reg_check_chans,
2224 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2225 }
2226 
2227 static void wiphy_update_regulatory(struct wiphy *wiphy,
2228 				    enum nl80211_reg_initiator initiator)
2229 {
2230 	enum nl80211_band band;
2231 	struct regulatory_request *lr = get_last_request();
2232 
2233 	if (ignore_reg_update(wiphy, initiator)) {
2234 		/*
2235 		 * Regulatory updates set by CORE are ignored for custom
2236 		 * regulatory cards. Let us notify the changes to the driver,
2237 		 * as some drivers used this to restore its orig_* reg domain.
2238 		 */
2239 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2240 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2241 			reg_call_notifier(wiphy, lr);
2242 		return;
2243 	}
2244 
2245 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2246 
2247 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2248 		handle_band(wiphy, initiator, wiphy->bands[band]);
2249 
2250 	reg_process_beacons(wiphy);
2251 	reg_process_ht_flags(wiphy);
2252 	reg_call_notifier(wiphy, lr);
2253 }
2254 
2255 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2256 {
2257 	struct cfg80211_registered_device *rdev;
2258 	struct wiphy *wiphy;
2259 
2260 	ASSERT_RTNL();
2261 
2262 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2263 		wiphy = &rdev->wiphy;
2264 		wiphy_update_regulatory(wiphy, initiator);
2265 	}
2266 
2267 	reg_check_channels();
2268 }
2269 
2270 static void handle_channel_custom(struct wiphy *wiphy,
2271 				  struct ieee80211_channel *chan,
2272 				  const struct ieee80211_regdomain *regd)
2273 {
2274 	u32 bw_flags = 0;
2275 	const struct ieee80211_reg_rule *reg_rule = NULL;
2276 	const struct ieee80211_power_rule *power_rule = NULL;
2277 	u32 bw;
2278 
2279 	for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2280 		reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2281 					      regd, bw);
2282 		if (!IS_ERR(reg_rule))
2283 			break;
2284 	}
2285 
2286 	if (IS_ERR(reg_rule)) {
2287 		pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2288 			 chan->center_freq);
2289 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2290 			chan->flags |= IEEE80211_CHAN_DISABLED;
2291 		} else {
2292 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2293 			chan->flags = chan->orig_flags;
2294 		}
2295 		return;
2296 	}
2297 
2298 	power_rule = &reg_rule->power_rule;
2299 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2300 
2301 	chan->dfs_state_entered = jiffies;
2302 	chan->dfs_state = NL80211_DFS_USABLE;
2303 
2304 	chan->beacon_found = false;
2305 
2306 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2307 		chan->flags = chan->orig_flags | bw_flags |
2308 			      map_regdom_flags(reg_rule->flags);
2309 	else
2310 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2311 
2312 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2313 	chan->max_reg_power = chan->max_power =
2314 		(int) MBM_TO_DBM(power_rule->max_eirp);
2315 
2316 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2317 		if (reg_rule->dfs_cac_ms)
2318 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2319 		else
2320 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2321 	}
2322 
2323 	chan->max_power = chan->max_reg_power;
2324 }
2325 
2326 static void handle_band_custom(struct wiphy *wiphy,
2327 			       struct ieee80211_supported_band *sband,
2328 			       const struct ieee80211_regdomain *regd)
2329 {
2330 	unsigned int i;
2331 
2332 	if (!sband)
2333 		return;
2334 
2335 	for (i = 0; i < sband->n_channels; i++)
2336 		handle_channel_custom(wiphy, &sband->channels[i], regd);
2337 }
2338 
2339 /* Used by drivers prior to wiphy registration */
2340 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2341 				   const struct ieee80211_regdomain *regd)
2342 {
2343 	enum nl80211_band band;
2344 	unsigned int bands_set = 0;
2345 
2346 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2347 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2348 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2349 
2350 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2351 		if (!wiphy->bands[band])
2352 			continue;
2353 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2354 		bands_set++;
2355 	}
2356 
2357 	/*
2358 	 * no point in calling this if it won't have any effect
2359 	 * on your device's supported bands.
2360 	 */
2361 	WARN_ON(!bands_set);
2362 }
2363 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2364 
2365 static void reg_set_request_processed(void)
2366 {
2367 	bool need_more_processing = false;
2368 	struct regulatory_request *lr = get_last_request();
2369 
2370 	lr->processed = true;
2371 
2372 	spin_lock(&reg_requests_lock);
2373 	if (!list_empty(&reg_requests_list))
2374 		need_more_processing = true;
2375 	spin_unlock(&reg_requests_lock);
2376 
2377 	cancel_crda_timeout();
2378 
2379 	if (need_more_processing)
2380 		schedule_work(&reg_work);
2381 }
2382 
2383 /**
2384  * reg_process_hint_core - process core regulatory requests
2385  * @pending_request: a pending core regulatory request
2386  *
2387  * The wireless subsystem can use this function to process
2388  * a regulatory request issued by the regulatory core.
2389  */
2390 static enum reg_request_treatment
2391 reg_process_hint_core(struct regulatory_request *core_request)
2392 {
2393 	if (reg_query_database(core_request)) {
2394 		core_request->intersect = false;
2395 		core_request->processed = false;
2396 		reg_update_last_request(core_request);
2397 		return REG_REQ_OK;
2398 	}
2399 
2400 	return REG_REQ_IGNORE;
2401 }
2402 
2403 static enum reg_request_treatment
2404 __reg_process_hint_user(struct regulatory_request *user_request)
2405 {
2406 	struct regulatory_request *lr = get_last_request();
2407 
2408 	if (reg_request_cell_base(user_request))
2409 		return reg_ignore_cell_hint(user_request);
2410 
2411 	if (reg_request_cell_base(lr))
2412 		return REG_REQ_IGNORE;
2413 
2414 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2415 		return REG_REQ_INTERSECT;
2416 	/*
2417 	 * If the user knows better the user should set the regdom
2418 	 * to their country before the IE is picked up
2419 	 */
2420 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2421 	    lr->intersect)
2422 		return REG_REQ_IGNORE;
2423 	/*
2424 	 * Process user requests only after previous user/driver/core
2425 	 * requests have been processed
2426 	 */
2427 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2428 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2429 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2430 	    regdom_changes(lr->alpha2))
2431 		return REG_REQ_IGNORE;
2432 
2433 	if (!regdom_changes(user_request->alpha2))
2434 		return REG_REQ_ALREADY_SET;
2435 
2436 	return REG_REQ_OK;
2437 }
2438 
2439 /**
2440  * reg_process_hint_user - process user regulatory requests
2441  * @user_request: a pending user regulatory request
2442  *
2443  * The wireless subsystem can use this function to process
2444  * a regulatory request initiated by userspace.
2445  */
2446 static enum reg_request_treatment
2447 reg_process_hint_user(struct regulatory_request *user_request)
2448 {
2449 	enum reg_request_treatment treatment;
2450 
2451 	treatment = __reg_process_hint_user(user_request);
2452 	if (treatment == REG_REQ_IGNORE ||
2453 	    treatment == REG_REQ_ALREADY_SET)
2454 		return REG_REQ_IGNORE;
2455 
2456 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2457 	user_request->processed = false;
2458 
2459 	if (reg_query_database(user_request)) {
2460 		reg_update_last_request(user_request);
2461 		user_alpha2[0] = user_request->alpha2[0];
2462 		user_alpha2[1] = user_request->alpha2[1];
2463 		return REG_REQ_OK;
2464 	}
2465 
2466 	return REG_REQ_IGNORE;
2467 }
2468 
2469 static enum reg_request_treatment
2470 __reg_process_hint_driver(struct regulatory_request *driver_request)
2471 {
2472 	struct regulatory_request *lr = get_last_request();
2473 
2474 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2475 		if (regdom_changes(driver_request->alpha2))
2476 			return REG_REQ_OK;
2477 		return REG_REQ_ALREADY_SET;
2478 	}
2479 
2480 	/*
2481 	 * This would happen if you unplug and plug your card
2482 	 * back in or if you add a new device for which the previously
2483 	 * loaded card also agrees on the regulatory domain.
2484 	 */
2485 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2486 	    !regdom_changes(driver_request->alpha2))
2487 		return REG_REQ_ALREADY_SET;
2488 
2489 	return REG_REQ_INTERSECT;
2490 }
2491 
2492 /**
2493  * reg_process_hint_driver - process driver regulatory requests
2494  * @driver_request: a pending driver regulatory request
2495  *
2496  * The wireless subsystem can use this function to process
2497  * a regulatory request issued by an 802.11 driver.
2498  *
2499  * Returns one of the different reg request treatment values.
2500  */
2501 static enum reg_request_treatment
2502 reg_process_hint_driver(struct wiphy *wiphy,
2503 			struct regulatory_request *driver_request)
2504 {
2505 	const struct ieee80211_regdomain *regd, *tmp;
2506 	enum reg_request_treatment treatment;
2507 
2508 	treatment = __reg_process_hint_driver(driver_request);
2509 
2510 	switch (treatment) {
2511 	case REG_REQ_OK:
2512 		break;
2513 	case REG_REQ_IGNORE:
2514 		return REG_REQ_IGNORE;
2515 	case REG_REQ_INTERSECT:
2516 	case REG_REQ_ALREADY_SET:
2517 		regd = reg_copy_regd(get_cfg80211_regdom());
2518 		if (IS_ERR(regd))
2519 			return REG_REQ_IGNORE;
2520 
2521 		tmp = get_wiphy_regdom(wiphy);
2522 		rcu_assign_pointer(wiphy->regd, regd);
2523 		rcu_free_regdom(tmp);
2524 	}
2525 
2526 
2527 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2528 	driver_request->processed = false;
2529 
2530 	/*
2531 	 * Since CRDA will not be called in this case as we already
2532 	 * have applied the requested regulatory domain before we just
2533 	 * inform userspace we have processed the request
2534 	 */
2535 	if (treatment == REG_REQ_ALREADY_SET) {
2536 		nl80211_send_reg_change_event(driver_request);
2537 		reg_update_last_request(driver_request);
2538 		reg_set_request_processed();
2539 		return REG_REQ_ALREADY_SET;
2540 	}
2541 
2542 	if (reg_query_database(driver_request)) {
2543 		reg_update_last_request(driver_request);
2544 		return REG_REQ_OK;
2545 	}
2546 
2547 	return REG_REQ_IGNORE;
2548 }
2549 
2550 static enum reg_request_treatment
2551 __reg_process_hint_country_ie(struct wiphy *wiphy,
2552 			      struct regulatory_request *country_ie_request)
2553 {
2554 	struct wiphy *last_wiphy = NULL;
2555 	struct regulatory_request *lr = get_last_request();
2556 
2557 	if (reg_request_cell_base(lr)) {
2558 		/* Trust a Cell base station over the AP's country IE */
2559 		if (regdom_changes(country_ie_request->alpha2))
2560 			return REG_REQ_IGNORE;
2561 		return REG_REQ_ALREADY_SET;
2562 	} else {
2563 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2564 			return REG_REQ_IGNORE;
2565 	}
2566 
2567 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2568 		return -EINVAL;
2569 
2570 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2571 		return REG_REQ_OK;
2572 
2573 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2574 
2575 	if (last_wiphy != wiphy) {
2576 		/*
2577 		 * Two cards with two APs claiming different
2578 		 * Country IE alpha2s. We could
2579 		 * intersect them, but that seems unlikely
2580 		 * to be correct. Reject second one for now.
2581 		 */
2582 		if (regdom_changes(country_ie_request->alpha2))
2583 			return REG_REQ_IGNORE;
2584 		return REG_REQ_ALREADY_SET;
2585 	}
2586 
2587 	if (regdom_changes(country_ie_request->alpha2))
2588 		return REG_REQ_OK;
2589 	return REG_REQ_ALREADY_SET;
2590 }
2591 
2592 /**
2593  * reg_process_hint_country_ie - process regulatory requests from country IEs
2594  * @country_ie_request: a regulatory request from a country IE
2595  *
2596  * The wireless subsystem can use this function to process
2597  * a regulatory request issued by a country Information Element.
2598  *
2599  * Returns one of the different reg request treatment values.
2600  */
2601 static enum reg_request_treatment
2602 reg_process_hint_country_ie(struct wiphy *wiphy,
2603 			    struct regulatory_request *country_ie_request)
2604 {
2605 	enum reg_request_treatment treatment;
2606 
2607 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2608 
2609 	switch (treatment) {
2610 	case REG_REQ_OK:
2611 		break;
2612 	case REG_REQ_IGNORE:
2613 		return REG_REQ_IGNORE;
2614 	case REG_REQ_ALREADY_SET:
2615 		reg_free_request(country_ie_request);
2616 		return REG_REQ_ALREADY_SET;
2617 	case REG_REQ_INTERSECT:
2618 		/*
2619 		 * This doesn't happen yet, not sure we
2620 		 * ever want to support it for this case.
2621 		 */
2622 		WARN_ONCE(1, "Unexpected intersection for country IEs");
2623 		return REG_REQ_IGNORE;
2624 	}
2625 
2626 	country_ie_request->intersect = false;
2627 	country_ie_request->processed = false;
2628 
2629 	if (reg_query_database(country_ie_request)) {
2630 		reg_update_last_request(country_ie_request);
2631 		return REG_REQ_OK;
2632 	}
2633 
2634 	return REG_REQ_IGNORE;
2635 }
2636 
2637 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2638 {
2639 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2640 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2641 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2642 	bool dfs_domain_same;
2643 
2644 	rcu_read_lock();
2645 
2646 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2647 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2648 	if (!wiphy1_regd)
2649 		wiphy1_regd = cfg80211_regd;
2650 
2651 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2652 	if (!wiphy2_regd)
2653 		wiphy2_regd = cfg80211_regd;
2654 
2655 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2656 
2657 	rcu_read_unlock();
2658 
2659 	return dfs_domain_same;
2660 }
2661 
2662 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2663 				    struct ieee80211_channel *src_chan)
2664 {
2665 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2666 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2667 		return;
2668 
2669 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2670 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2671 		return;
2672 
2673 	if (src_chan->center_freq == dst_chan->center_freq &&
2674 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2675 		dst_chan->dfs_state = src_chan->dfs_state;
2676 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2677 	}
2678 }
2679 
2680 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2681 				       struct wiphy *src_wiphy)
2682 {
2683 	struct ieee80211_supported_band *src_sband, *dst_sband;
2684 	struct ieee80211_channel *src_chan, *dst_chan;
2685 	int i, j, band;
2686 
2687 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2688 		return;
2689 
2690 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2691 		dst_sband = dst_wiphy->bands[band];
2692 		src_sband = src_wiphy->bands[band];
2693 		if (!dst_sband || !src_sband)
2694 			continue;
2695 
2696 		for (i = 0; i < dst_sband->n_channels; i++) {
2697 			dst_chan = &dst_sband->channels[i];
2698 			for (j = 0; j < src_sband->n_channels; j++) {
2699 				src_chan = &src_sband->channels[j];
2700 				reg_copy_dfs_chan_state(dst_chan, src_chan);
2701 			}
2702 		}
2703 	}
2704 }
2705 
2706 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2707 {
2708 	struct cfg80211_registered_device *rdev;
2709 
2710 	ASSERT_RTNL();
2711 
2712 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2713 		if (wiphy == &rdev->wiphy)
2714 			continue;
2715 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2716 	}
2717 }
2718 
2719 /* This processes *all* regulatory hints */
2720 static void reg_process_hint(struct regulatory_request *reg_request)
2721 {
2722 	struct wiphy *wiphy = NULL;
2723 	enum reg_request_treatment treatment;
2724 
2725 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2726 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2727 
2728 	switch (reg_request->initiator) {
2729 	case NL80211_REGDOM_SET_BY_CORE:
2730 		treatment = reg_process_hint_core(reg_request);
2731 		break;
2732 	case NL80211_REGDOM_SET_BY_USER:
2733 		treatment = reg_process_hint_user(reg_request);
2734 		break;
2735 	case NL80211_REGDOM_SET_BY_DRIVER:
2736 		if (!wiphy)
2737 			goto out_free;
2738 		treatment = reg_process_hint_driver(wiphy, reg_request);
2739 		break;
2740 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2741 		if (!wiphy)
2742 			goto out_free;
2743 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2744 		break;
2745 	default:
2746 		WARN(1, "invalid initiator %d\n", reg_request->initiator);
2747 		goto out_free;
2748 	}
2749 
2750 	if (treatment == REG_REQ_IGNORE)
2751 		goto out_free;
2752 
2753 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2754 	     "unexpected treatment value %d\n", treatment);
2755 
2756 	/* This is required so that the orig_* parameters are saved.
2757 	 * NOTE: treatment must be set for any case that reaches here!
2758 	 */
2759 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2760 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2761 		wiphy_update_regulatory(wiphy, reg_request->initiator);
2762 		wiphy_all_share_dfs_chan_state(wiphy);
2763 		reg_check_channels();
2764 	}
2765 
2766 	return;
2767 
2768 out_free:
2769 	reg_free_request(reg_request);
2770 }
2771 
2772 static bool reg_only_self_managed_wiphys(void)
2773 {
2774 	struct cfg80211_registered_device *rdev;
2775 	struct wiphy *wiphy;
2776 	bool self_managed_found = false;
2777 
2778 	ASSERT_RTNL();
2779 
2780 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2781 		wiphy = &rdev->wiphy;
2782 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2783 			self_managed_found = true;
2784 		else
2785 			return false;
2786 	}
2787 
2788 	/* make sure at least one self-managed wiphy exists */
2789 	return self_managed_found;
2790 }
2791 
2792 /*
2793  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2794  * Regulatory hints come on a first come first serve basis and we
2795  * must process each one atomically.
2796  */
2797 static void reg_process_pending_hints(void)
2798 {
2799 	struct regulatory_request *reg_request, *lr;
2800 
2801 	lr = get_last_request();
2802 
2803 	/* When last_request->processed becomes true this will be rescheduled */
2804 	if (lr && !lr->processed) {
2805 		reg_process_hint(lr);
2806 		return;
2807 	}
2808 
2809 	spin_lock(&reg_requests_lock);
2810 
2811 	if (list_empty(&reg_requests_list)) {
2812 		spin_unlock(&reg_requests_lock);
2813 		return;
2814 	}
2815 
2816 	reg_request = list_first_entry(&reg_requests_list,
2817 				       struct regulatory_request,
2818 				       list);
2819 	list_del_init(&reg_request->list);
2820 
2821 	spin_unlock(&reg_requests_lock);
2822 
2823 	if (reg_only_self_managed_wiphys()) {
2824 		reg_free_request(reg_request);
2825 		return;
2826 	}
2827 
2828 	reg_process_hint(reg_request);
2829 
2830 	lr = get_last_request();
2831 
2832 	spin_lock(&reg_requests_lock);
2833 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
2834 		schedule_work(&reg_work);
2835 	spin_unlock(&reg_requests_lock);
2836 }
2837 
2838 /* Processes beacon hints -- this has nothing to do with country IEs */
2839 static void reg_process_pending_beacon_hints(void)
2840 {
2841 	struct cfg80211_registered_device *rdev;
2842 	struct reg_beacon *pending_beacon, *tmp;
2843 
2844 	/* This goes through the _pending_ beacon list */
2845 	spin_lock_bh(&reg_pending_beacons_lock);
2846 
2847 	list_for_each_entry_safe(pending_beacon, tmp,
2848 				 &reg_pending_beacons, list) {
2849 		list_del_init(&pending_beacon->list);
2850 
2851 		/* Applies the beacon hint to current wiphys */
2852 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2853 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2854 
2855 		/* Remembers the beacon hint for new wiphys or reg changes */
2856 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2857 	}
2858 
2859 	spin_unlock_bh(&reg_pending_beacons_lock);
2860 }
2861 
2862 static void reg_process_self_managed_hints(void)
2863 {
2864 	struct cfg80211_registered_device *rdev;
2865 	struct wiphy *wiphy;
2866 	const struct ieee80211_regdomain *tmp;
2867 	const struct ieee80211_regdomain *regd;
2868 	enum nl80211_band band;
2869 	struct regulatory_request request = {};
2870 
2871 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2872 		wiphy = &rdev->wiphy;
2873 
2874 		spin_lock(&reg_requests_lock);
2875 		regd = rdev->requested_regd;
2876 		rdev->requested_regd = NULL;
2877 		spin_unlock(&reg_requests_lock);
2878 
2879 		if (regd == NULL)
2880 			continue;
2881 
2882 		tmp = get_wiphy_regdom(wiphy);
2883 		rcu_assign_pointer(wiphy->regd, regd);
2884 		rcu_free_regdom(tmp);
2885 
2886 		for (band = 0; band < NUM_NL80211_BANDS; band++)
2887 			handle_band_custom(wiphy, wiphy->bands[band], regd);
2888 
2889 		reg_process_ht_flags(wiphy);
2890 
2891 		request.wiphy_idx = get_wiphy_idx(wiphy);
2892 		request.alpha2[0] = regd->alpha2[0];
2893 		request.alpha2[1] = regd->alpha2[1];
2894 		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2895 
2896 		nl80211_send_wiphy_reg_change_event(&request);
2897 	}
2898 
2899 	reg_check_channels();
2900 }
2901 
2902 static void reg_todo(struct work_struct *work)
2903 {
2904 	rtnl_lock();
2905 	reg_process_pending_hints();
2906 	reg_process_pending_beacon_hints();
2907 	reg_process_self_managed_hints();
2908 	rtnl_unlock();
2909 }
2910 
2911 static void queue_regulatory_request(struct regulatory_request *request)
2912 {
2913 	request->alpha2[0] = toupper(request->alpha2[0]);
2914 	request->alpha2[1] = toupper(request->alpha2[1]);
2915 
2916 	spin_lock(&reg_requests_lock);
2917 	list_add_tail(&request->list, &reg_requests_list);
2918 	spin_unlock(&reg_requests_lock);
2919 
2920 	schedule_work(&reg_work);
2921 }
2922 
2923 /*
2924  * Core regulatory hint -- happens during cfg80211_init()
2925  * and when we restore regulatory settings.
2926  */
2927 static int regulatory_hint_core(const char *alpha2)
2928 {
2929 	struct regulatory_request *request;
2930 
2931 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2932 	if (!request)
2933 		return -ENOMEM;
2934 
2935 	request->alpha2[0] = alpha2[0];
2936 	request->alpha2[1] = alpha2[1];
2937 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2938 
2939 	queue_regulatory_request(request);
2940 
2941 	return 0;
2942 }
2943 
2944 /* User hints */
2945 int regulatory_hint_user(const char *alpha2,
2946 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2947 {
2948 	struct regulatory_request *request;
2949 
2950 	if (WARN_ON(!alpha2))
2951 		return -EINVAL;
2952 
2953 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2954 	if (!request)
2955 		return -ENOMEM;
2956 
2957 	request->wiphy_idx = WIPHY_IDX_INVALID;
2958 	request->alpha2[0] = alpha2[0];
2959 	request->alpha2[1] = alpha2[1];
2960 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2961 	request->user_reg_hint_type = user_reg_hint_type;
2962 
2963 	/* Allow calling CRDA again */
2964 	reset_crda_timeouts();
2965 
2966 	queue_regulatory_request(request);
2967 
2968 	return 0;
2969 }
2970 
2971 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2972 {
2973 	spin_lock(&reg_indoor_lock);
2974 
2975 	/* It is possible that more than one user space process is trying to
2976 	 * configure the indoor setting. To handle such cases, clear the indoor
2977 	 * setting in case that some process does not think that the device
2978 	 * is operating in an indoor environment. In addition, if a user space
2979 	 * process indicates that it is controlling the indoor setting, save its
2980 	 * portid, i.e., make it the owner.
2981 	 */
2982 	reg_is_indoor = is_indoor;
2983 	if (reg_is_indoor) {
2984 		if (!reg_is_indoor_portid)
2985 			reg_is_indoor_portid = portid;
2986 	} else {
2987 		reg_is_indoor_portid = 0;
2988 	}
2989 
2990 	spin_unlock(&reg_indoor_lock);
2991 
2992 	if (!is_indoor)
2993 		reg_check_channels();
2994 
2995 	return 0;
2996 }
2997 
2998 void regulatory_netlink_notify(u32 portid)
2999 {
3000 	spin_lock(&reg_indoor_lock);
3001 
3002 	if (reg_is_indoor_portid != portid) {
3003 		spin_unlock(&reg_indoor_lock);
3004 		return;
3005 	}
3006 
3007 	reg_is_indoor = false;
3008 	reg_is_indoor_portid = 0;
3009 
3010 	spin_unlock(&reg_indoor_lock);
3011 
3012 	reg_check_channels();
3013 }
3014 
3015 /* Driver hints */
3016 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3017 {
3018 	struct regulatory_request *request;
3019 
3020 	if (WARN_ON(!alpha2 || !wiphy))
3021 		return -EINVAL;
3022 
3023 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3024 
3025 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3026 	if (!request)
3027 		return -ENOMEM;
3028 
3029 	request->wiphy_idx = get_wiphy_idx(wiphy);
3030 
3031 	request->alpha2[0] = alpha2[0];
3032 	request->alpha2[1] = alpha2[1];
3033 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3034 
3035 	/* Allow calling CRDA again */
3036 	reset_crda_timeouts();
3037 
3038 	queue_regulatory_request(request);
3039 
3040 	return 0;
3041 }
3042 EXPORT_SYMBOL(regulatory_hint);
3043 
3044 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3045 				const u8 *country_ie, u8 country_ie_len)
3046 {
3047 	char alpha2[2];
3048 	enum environment_cap env = ENVIRON_ANY;
3049 	struct regulatory_request *request = NULL, *lr;
3050 
3051 	/* IE len must be evenly divisible by 2 */
3052 	if (country_ie_len & 0x01)
3053 		return;
3054 
3055 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3056 		return;
3057 
3058 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3059 	if (!request)
3060 		return;
3061 
3062 	alpha2[0] = country_ie[0];
3063 	alpha2[1] = country_ie[1];
3064 
3065 	if (country_ie[2] == 'I')
3066 		env = ENVIRON_INDOOR;
3067 	else if (country_ie[2] == 'O')
3068 		env = ENVIRON_OUTDOOR;
3069 
3070 	rcu_read_lock();
3071 	lr = get_last_request();
3072 
3073 	if (unlikely(!lr))
3074 		goto out;
3075 
3076 	/*
3077 	 * We will run this only upon a successful connection on cfg80211.
3078 	 * We leave conflict resolution to the workqueue, where can hold
3079 	 * the RTNL.
3080 	 */
3081 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3082 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3083 		goto out;
3084 
3085 	request->wiphy_idx = get_wiphy_idx(wiphy);
3086 	request->alpha2[0] = alpha2[0];
3087 	request->alpha2[1] = alpha2[1];
3088 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3089 	request->country_ie_env = env;
3090 
3091 	/* Allow calling CRDA again */
3092 	reset_crda_timeouts();
3093 
3094 	queue_regulatory_request(request);
3095 	request = NULL;
3096 out:
3097 	kfree(request);
3098 	rcu_read_unlock();
3099 }
3100 
3101 static void restore_alpha2(char *alpha2, bool reset_user)
3102 {
3103 	/* indicates there is no alpha2 to consider for restoration */
3104 	alpha2[0] = '9';
3105 	alpha2[1] = '7';
3106 
3107 	/* The user setting has precedence over the module parameter */
3108 	if (is_user_regdom_saved()) {
3109 		/* Unless we're asked to ignore it and reset it */
3110 		if (reset_user) {
3111 			pr_debug("Restoring regulatory settings including user preference\n");
3112 			user_alpha2[0] = '9';
3113 			user_alpha2[1] = '7';
3114 
3115 			/*
3116 			 * If we're ignoring user settings, we still need to
3117 			 * check the module parameter to ensure we put things
3118 			 * back as they were for a full restore.
3119 			 */
3120 			if (!is_world_regdom(ieee80211_regdom)) {
3121 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3122 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3123 				alpha2[0] = ieee80211_regdom[0];
3124 				alpha2[1] = ieee80211_regdom[1];
3125 			}
3126 		} else {
3127 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3128 				 user_alpha2[0], user_alpha2[1]);
3129 			alpha2[0] = user_alpha2[0];
3130 			alpha2[1] = user_alpha2[1];
3131 		}
3132 	} else if (!is_world_regdom(ieee80211_regdom)) {
3133 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3134 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3135 		alpha2[0] = ieee80211_regdom[0];
3136 		alpha2[1] = ieee80211_regdom[1];
3137 	} else
3138 		pr_debug("Restoring regulatory settings\n");
3139 }
3140 
3141 static void restore_custom_reg_settings(struct wiphy *wiphy)
3142 {
3143 	struct ieee80211_supported_band *sband;
3144 	enum nl80211_band band;
3145 	struct ieee80211_channel *chan;
3146 	int i;
3147 
3148 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3149 		sband = wiphy->bands[band];
3150 		if (!sband)
3151 			continue;
3152 		for (i = 0; i < sband->n_channels; i++) {
3153 			chan = &sband->channels[i];
3154 			chan->flags = chan->orig_flags;
3155 			chan->max_antenna_gain = chan->orig_mag;
3156 			chan->max_power = chan->orig_mpwr;
3157 			chan->beacon_found = false;
3158 		}
3159 	}
3160 }
3161 
3162 /*
3163  * Restoring regulatory settings involves ingoring any
3164  * possibly stale country IE information and user regulatory
3165  * settings if so desired, this includes any beacon hints
3166  * learned as we could have traveled outside to another country
3167  * after disconnection. To restore regulatory settings we do
3168  * exactly what we did at bootup:
3169  *
3170  *   - send a core regulatory hint
3171  *   - send a user regulatory hint if applicable
3172  *
3173  * Device drivers that send a regulatory hint for a specific country
3174  * keep their own regulatory domain on wiphy->regd so that does does
3175  * not need to be remembered.
3176  */
3177 static void restore_regulatory_settings(bool reset_user)
3178 {
3179 	char alpha2[2];
3180 	char world_alpha2[2];
3181 	struct reg_beacon *reg_beacon, *btmp;
3182 	LIST_HEAD(tmp_reg_req_list);
3183 	struct cfg80211_registered_device *rdev;
3184 
3185 	ASSERT_RTNL();
3186 
3187 	/*
3188 	 * Clear the indoor setting in case that it is not controlled by user
3189 	 * space, as otherwise there is no guarantee that the device is still
3190 	 * operating in an indoor environment.
3191 	 */
3192 	spin_lock(&reg_indoor_lock);
3193 	if (reg_is_indoor && !reg_is_indoor_portid) {
3194 		reg_is_indoor = false;
3195 		reg_check_channels();
3196 	}
3197 	spin_unlock(&reg_indoor_lock);
3198 
3199 	reset_regdomains(true, &world_regdom);
3200 	restore_alpha2(alpha2, reset_user);
3201 
3202 	/*
3203 	 * If there's any pending requests we simply
3204 	 * stash them to a temporary pending queue and
3205 	 * add then after we've restored regulatory
3206 	 * settings.
3207 	 */
3208 	spin_lock(&reg_requests_lock);
3209 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3210 	spin_unlock(&reg_requests_lock);
3211 
3212 	/* Clear beacon hints */
3213 	spin_lock_bh(&reg_pending_beacons_lock);
3214 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3215 		list_del(&reg_beacon->list);
3216 		kfree(reg_beacon);
3217 	}
3218 	spin_unlock_bh(&reg_pending_beacons_lock);
3219 
3220 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3221 		list_del(&reg_beacon->list);
3222 		kfree(reg_beacon);
3223 	}
3224 
3225 	/* First restore to the basic regulatory settings */
3226 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3227 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3228 
3229 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3230 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3231 			continue;
3232 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3233 			restore_custom_reg_settings(&rdev->wiphy);
3234 	}
3235 
3236 	regulatory_hint_core(world_alpha2);
3237 
3238 	/*
3239 	 * This restores the ieee80211_regdom module parameter
3240 	 * preference or the last user requested regulatory
3241 	 * settings, user regulatory settings takes precedence.
3242 	 */
3243 	if (is_an_alpha2(alpha2))
3244 		regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3245 
3246 	spin_lock(&reg_requests_lock);
3247 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3248 	spin_unlock(&reg_requests_lock);
3249 
3250 	pr_debug("Kicking the queue\n");
3251 
3252 	schedule_work(&reg_work);
3253 }
3254 
3255 void regulatory_hint_disconnect(void)
3256 {
3257 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3258 	restore_regulatory_settings(false);
3259 }
3260 
3261 static bool freq_is_chan_12_13_14(u16 freq)
3262 {
3263 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3264 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3265 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3266 		return true;
3267 	return false;
3268 }
3269 
3270 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3271 {
3272 	struct reg_beacon *pending_beacon;
3273 
3274 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3275 		if (beacon_chan->center_freq ==
3276 		    pending_beacon->chan.center_freq)
3277 			return true;
3278 	return false;
3279 }
3280 
3281 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3282 				 struct ieee80211_channel *beacon_chan,
3283 				 gfp_t gfp)
3284 {
3285 	struct reg_beacon *reg_beacon;
3286 	bool processing;
3287 
3288 	if (beacon_chan->beacon_found ||
3289 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3290 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3291 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3292 		return 0;
3293 
3294 	spin_lock_bh(&reg_pending_beacons_lock);
3295 	processing = pending_reg_beacon(beacon_chan);
3296 	spin_unlock_bh(&reg_pending_beacons_lock);
3297 
3298 	if (processing)
3299 		return 0;
3300 
3301 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3302 	if (!reg_beacon)
3303 		return -ENOMEM;
3304 
3305 	pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3306 		 beacon_chan->center_freq,
3307 		 ieee80211_frequency_to_channel(beacon_chan->center_freq),
3308 		 wiphy_name(wiphy));
3309 
3310 	memcpy(&reg_beacon->chan, beacon_chan,
3311 	       sizeof(struct ieee80211_channel));
3312 
3313 	/*
3314 	 * Since we can be called from BH or and non-BH context
3315 	 * we must use spin_lock_bh()
3316 	 */
3317 	spin_lock_bh(&reg_pending_beacons_lock);
3318 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3319 	spin_unlock_bh(&reg_pending_beacons_lock);
3320 
3321 	schedule_work(&reg_work);
3322 
3323 	return 0;
3324 }
3325 
3326 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3327 {
3328 	unsigned int i;
3329 	const struct ieee80211_reg_rule *reg_rule = NULL;
3330 	const struct ieee80211_freq_range *freq_range = NULL;
3331 	const struct ieee80211_power_rule *power_rule = NULL;
3332 	char bw[32], cac_time[32];
3333 
3334 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3335 
3336 	for (i = 0; i < rd->n_reg_rules; i++) {
3337 		reg_rule = &rd->reg_rules[i];
3338 		freq_range = &reg_rule->freq_range;
3339 		power_rule = &reg_rule->power_rule;
3340 
3341 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3342 			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3343 				 freq_range->max_bandwidth_khz,
3344 				 reg_get_max_bandwidth(rd, reg_rule));
3345 		else
3346 			snprintf(bw, sizeof(bw), "%d KHz",
3347 				 freq_range->max_bandwidth_khz);
3348 
3349 		if (reg_rule->flags & NL80211_RRF_DFS)
3350 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3351 				  reg_rule->dfs_cac_ms/1000);
3352 		else
3353 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3354 
3355 
3356 		/*
3357 		 * There may not be documentation for max antenna gain
3358 		 * in certain regions
3359 		 */
3360 		if (power_rule->max_antenna_gain)
3361 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3362 				freq_range->start_freq_khz,
3363 				freq_range->end_freq_khz,
3364 				bw,
3365 				power_rule->max_antenna_gain,
3366 				power_rule->max_eirp,
3367 				cac_time);
3368 		else
3369 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3370 				freq_range->start_freq_khz,
3371 				freq_range->end_freq_khz,
3372 				bw,
3373 				power_rule->max_eirp,
3374 				cac_time);
3375 	}
3376 }
3377 
3378 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3379 {
3380 	switch (dfs_region) {
3381 	case NL80211_DFS_UNSET:
3382 	case NL80211_DFS_FCC:
3383 	case NL80211_DFS_ETSI:
3384 	case NL80211_DFS_JP:
3385 		return true;
3386 	default:
3387 		pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region);
3388 		return false;
3389 	}
3390 }
3391 
3392 static void print_regdomain(const struct ieee80211_regdomain *rd)
3393 {
3394 	struct regulatory_request *lr = get_last_request();
3395 
3396 	if (is_intersected_alpha2(rd->alpha2)) {
3397 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3398 			struct cfg80211_registered_device *rdev;
3399 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3400 			if (rdev) {
3401 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3402 					rdev->country_ie_alpha2[0],
3403 					rdev->country_ie_alpha2[1]);
3404 			} else
3405 				pr_debug("Current regulatory domain intersected:\n");
3406 		} else
3407 			pr_debug("Current regulatory domain intersected:\n");
3408 	} else if (is_world_regdom(rd->alpha2)) {
3409 		pr_debug("World regulatory domain updated:\n");
3410 	} else {
3411 		if (is_unknown_alpha2(rd->alpha2))
3412 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3413 		else {
3414 			if (reg_request_cell_base(lr))
3415 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3416 					rd->alpha2[0], rd->alpha2[1]);
3417 			else
3418 				pr_debug("Regulatory domain changed to country: %c%c\n",
3419 					rd->alpha2[0], rd->alpha2[1]);
3420 		}
3421 	}
3422 
3423 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3424 	print_rd_rules(rd);
3425 }
3426 
3427 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3428 {
3429 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3430 	print_rd_rules(rd);
3431 }
3432 
3433 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3434 {
3435 	if (!is_world_regdom(rd->alpha2))
3436 		return -EINVAL;
3437 	update_world_regdomain(rd);
3438 	return 0;
3439 }
3440 
3441 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3442 			   struct regulatory_request *user_request)
3443 {
3444 	const struct ieee80211_regdomain *intersected_rd = NULL;
3445 
3446 	if (!regdom_changes(rd->alpha2))
3447 		return -EALREADY;
3448 
3449 	if (!is_valid_rd(rd)) {
3450 		pr_err("Invalid regulatory domain detected: %c%c\n",
3451 		       rd->alpha2[0], rd->alpha2[1]);
3452 		print_regdomain_info(rd);
3453 		return -EINVAL;
3454 	}
3455 
3456 	if (!user_request->intersect) {
3457 		reset_regdomains(false, rd);
3458 		return 0;
3459 	}
3460 
3461 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3462 	if (!intersected_rd)
3463 		return -EINVAL;
3464 
3465 	kfree(rd);
3466 	rd = NULL;
3467 	reset_regdomains(false, intersected_rd);
3468 
3469 	return 0;
3470 }
3471 
3472 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3473 			     struct regulatory_request *driver_request)
3474 {
3475 	const struct ieee80211_regdomain *regd;
3476 	const struct ieee80211_regdomain *intersected_rd = NULL;
3477 	const struct ieee80211_regdomain *tmp;
3478 	struct wiphy *request_wiphy;
3479 
3480 	if (is_world_regdom(rd->alpha2))
3481 		return -EINVAL;
3482 
3483 	if (!regdom_changes(rd->alpha2))
3484 		return -EALREADY;
3485 
3486 	if (!is_valid_rd(rd)) {
3487 		pr_err("Invalid regulatory domain detected: %c%c\n",
3488 		       rd->alpha2[0], rd->alpha2[1]);
3489 		print_regdomain_info(rd);
3490 		return -EINVAL;
3491 	}
3492 
3493 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3494 	if (!request_wiphy)
3495 		return -ENODEV;
3496 
3497 	if (!driver_request->intersect) {
3498 		if (request_wiphy->regd)
3499 			return -EALREADY;
3500 
3501 		regd = reg_copy_regd(rd);
3502 		if (IS_ERR(regd))
3503 			return PTR_ERR(regd);
3504 
3505 		rcu_assign_pointer(request_wiphy->regd, regd);
3506 		reset_regdomains(false, rd);
3507 		return 0;
3508 	}
3509 
3510 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3511 	if (!intersected_rd)
3512 		return -EINVAL;
3513 
3514 	/*
3515 	 * We can trash what CRDA provided now.
3516 	 * However if a driver requested this specific regulatory
3517 	 * domain we keep it for its private use
3518 	 */
3519 	tmp = get_wiphy_regdom(request_wiphy);
3520 	rcu_assign_pointer(request_wiphy->regd, rd);
3521 	rcu_free_regdom(tmp);
3522 
3523 	rd = NULL;
3524 
3525 	reset_regdomains(false, intersected_rd);
3526 
3527 	return 0;
3528 }
3529 
3530 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3531 				 struct regulatory_request *country_ie_request)
3532 {
3533 	struct wiphy *request_wiphy;
3534 
3535 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3536 	    !is_unknown_alpha2(rd->alpha2))
3537 		return -EINVAL;
3538 
3539 	/*
3540 	 * Lets only bother proceeding on the same alpha2 if the current
3541 	 * rd is non static (it means CRDA was present and was used last)
3542 	 * and the pending request came in from a country IE
3543 	 */
3544 
3545 	if (!is_valid_rd(rd)) {
3546 		pr_err("Invalid regulatory domain detected: %c%c\n",
3547 		       rd->alpha2[0], rd->alpha2[1]);
3548 		print_regdomain_info(rd);
3549 		return -EINVAL;
3550 	}
3551 
3552 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3553 	if (!request_wiphy)
3554 		return -ENODEV;
3555 
3556 	if (country_ie_request->intersect)
3557 		return -EINVAL;
3558 
3559 	reset_regdomains(false, rd);
3560 	return 0;
3561 }
3562 
3563 /*
3564  * Use this call to set the current regulatory domain. Conflicts with
3565  * multiple drivers can be ironed out later. Caller must've already
3566  * kmalloc'd the rd structure.
3567  */
3568 int set_regdom(const struct ieee80211_regdomain *rd,
3569 	       enum ieee80211_regd_source regd_src)
3570 {
3571 	struct regulatory_request *lr;
3572 	bool user_reset = false;
3573 	int r;
3574 
3575 	if (!reg_is_valid_request(rd->alpha2)) {
3576 		kfree(rd);
3577 		return -EINVAL;
3578 	}
3579 
3580 	if (regd_src == REGD_SOURCE_CRDA)
3581 		reset_crda_timeouts();
3582 
3583 	lr = get_last_request();
3584 
3585 	/* Note that this doesn't update the wiphys, this is done below */
3586 	switch (lr->initiator) {
3587 	case NL80211_REGDOM_SET_BY_CORE:
3588 		r = reg_set_rd_core(rd);
3589 		break;
3590 	case NL80211_REGDOM_SET_BY_USER:
3591 		r = reg_set_rd_user(rd, lr);
3592 		user_reset = true;
3593 		break;
3594 	case NL80211_REGDOM_SET_BY_DRIVER:
3595 		r = reg_set_rd_driver(rd, lr);
3596 		break;
3597 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3598 		r = reg_set_rd_country_ie(rd, lr);
3599 		break;
3600 	default:
3601 		WARN(1, "invalid initiator %d\n", lr->initiator);
3602 		kfree(rd);
3603 		return -EINVAL;
3604 	}
3605 
3606 	if (r) {
3607 		switch (r) {
3608 		case -EALREADY:
3609 			reg_set_request_processed();
3610 			break;
3611 		default:
3612 			/* Back to world regulatory in case of errors */
3613 			restore_regulatory_settings(user_reset);
3614 		}
3615 
3616 		kfree(rd);
3617 		return r;
3618 	}
3619 
3620 	/* This would make this whole thing pointless */
3621 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3622 		return -EINVAL;
3623 
3624 	/* update all wiphys now with the new established regulatory domain */
3625 	update_all_wiphy_regulatory(lr->initiator);
3626 
3627 	print_regdomain(get_cfg80211_regdom());
3628 
3629 	nl80211_send_reg_change_event(lr);
3630 
3631 	reg_set_request_processed();
3632 
3633 	return 0;
3634 }
3635 
3636 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3637 				       struct ieee80211_regdomain *rd)
3638 {
3639 	const struct ieee80211_regdomain *regd;
3640 	const struct ieee80211_regdomain *prev_regd;
3641 	struct cfg80211_registered_device *rdev;
3642 
3643 	if (WARN_ON(!wiphy || !rd))
3644 		return -EINVAL;
3645 
3646 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3647 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3648 		return -EPERM;
3649 
3650 	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3651 		print_regdomain_info(rd);
3652 		return -EINVAL;
3653 	}
3654 
3655 	regd = reg_copy_regd(rd);
3656 	if (IS_ERR(regd))
3657 		return PTR_ERR(regd);
3658 
3659 	rdev = wiphy_to_rdev(wiphy);
3660 
3661 	spin_lock(&reg_requests_lock);
3662 	prev_regd = rdev->requested_regd;
3663 	rdev->requested_regd = regd;
3664 	spin_unlock(&reg_requests_lock);
3665 
3666 	kfree(prev_regd);
3667 	return 0;
3668 }
3669 
3670 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3671 			      struct ieee80211_regdomain *rd)
3672 {
3673 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3674 
3675 	if (ret)
3676 		return ret;
3677 
3678 	schedule_work(&reg_work);
3679 	return 0;
3680 }
3681 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3682 
3683 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3684 					struct ieee80211_regdomain *rd)
3685 {
3686 	int ret;
3687 
3688 	ASSERT_RTNL();
3689 
3690 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3691 	if (ret)
3692 		return ret;
3693 
3694 	/* process the request immediately */
3695 	reg_process_self_managed_hints();
3696 	return 0;
3697 }
3698 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3699 
3700 void wiphy_regulatory_register(struct wiphy *wiphy)
3701 {
3702 	struct regulatory_request *lr;
3703 
3704 	/* self-managed devices ignore external hints */
3705 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3706 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3707 					   REGULATORY_COUNTRY_IE_IGNORE;
3708 
3709 	if (!reg_dev_ignore_cell_hint(wiphy))
3710 		reg_num_devs_support_basehint++;
3711 
3712 	lr = get_last_request();
3713 	wiphy_update_regulatory(wiphy, lr->initiator);
3714 	wiphy_all_share_dfs_chan_state(wiphy);
3715 }
3716 
3717 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3718 {
3719 	struct wiphy *request_wiphy = NULL;
3720 	struct regulatory_request *lr;
3721 
3722 	lr = get_last_request();
3723 
3724 	if (!reg_dev_ignore_cell_hint(wiphy))
3725 		reg_num_devs_support_basehint--;
3726 
3727 	rcu_free_regdom(get_wiphy_regdom(wiphy));
3728 	RCU_INIT_POINTER(wiphy->regd, NULL);
3729 
3730 	if (lr)
3731 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3732 
3733 	if (!request_wiphy || request_wiphy != wiphy)
3734 		return;
3735 
3736 	lr->wiphy_idx = WIPHY_IDX_INVALID;
3737 	lr->country_ie_env = ENVIRON_ANY;
3738 }
3739 
3740 /*
3741  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3742  * UNII band definitions
3743  */
3744 int cfg80211_get_unii(int freq)
3745 {
3746 	/* UNII-1 */
3747 	if (freq >= 5150 && freq <= 5250)
3748 		return 0;
3749 
3750 	/* UNII-2A */
3751 	if (freq > 5250 && freq <= 5350)
3752 		return 1;
3753 
3754 	/* UNII-2B */
3755 	if (freq > 5350 && freq <= 5470)
3756 		return 2;
3757 
3758 	/* UNII-2C */
3759 	if (freq > 5470 && freq <= 5725)
3760 		return 3;
3761 
3762 	/* UNII-3 */
3763 	if (freq > 5725 && freq <= 5825)
3764 		return 4;
3765 
3766 	return -EINVAL;
3767 }
3768 
3769 bool regulatory_indoor_allowed(void)
3770 {
3771 	return reg_is_indoor;
3772 }
3773 
3774 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3775 {
3776 	const struct ieee80211_regdomain *regd = NULL;
3777 	const struct ieee80211_regdomain *wiphy_regd = NULL;
3778 	bool pre_cac_allowed = false;
3779 
3780 	rcu_read_lock();
3781 
3782 	regd = rcu_dereference(cfg80211_regdomain);
3783 	wiphy_regd = rcu_dereference(wiphy->regd);
3784 	if (!wiphy_regd) {
3785 		if (regd->dfs_region == NL80211_DFS_ETSI)
3786 			pre_cac_allowed = true;
3787 
3788 		rcu_read_unlock();
3789 
3790 		return pre_cac_allowed;
3791 	}
3792 
3793 	if (regd->dfs_region == wiphy_regd->dfs_region &&
3794 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3795 		pre_cac_allowed = true;
3796 
3797 	rcu_read_unlock();
3798 
3799 	return pre_cac_allowed;
3800 }
3801 
3802 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3803 				    struct cfg80211_chan_def *chandef,
3804 				    enum nl80211_dfs_state dfs_state,
3805 				    enum nl80211_radar_event event)
3806 {
3807 	struct cfg80211_registered_device *rdev;
3808 
3809 	ASSERT_RTNL();
3810 
3811 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3812 		return;
3813 
3814 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3815 		if (wiphy == &rdev->wiphy)
3816 			continue;
3817 
3818 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3819 			continue;
3820 
3821 		if (!ieee80211_get_channel(&rdev->wiphy,
3822 					   chandef->chan->center_freq))
3823 			continue;
3824 
3825 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3826 
3827 		if (event == NL80211_RADAR_DETECTED ||
3828 		    event == NL80211_RADAR_CAC_FINISHED)
3829 			cfg80211_sched_dfs_chan_update(rdev);
3830 
3831 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3832 	}
3833 }
3834 
3835 static int __init regulatory_init_db(void)
3836 {
3837 	int err;
3838 
3839 	err = load_builtin_regdb_keys();
3840 	if (err)
3841 		return err;
3842 
3843 	/* We always try to get an update for the static regdomain */
3844 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3845 	if (err) {
3846 		if (err == -ENOMEM) {
3847 			platform_device_unregister(reg_pdev);
3848 			return err;
3849 		}
3850 		/*
3851 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
3852 		 * memory which is handled and propagated appropriately above
3853 		 * but it can also fail during a netlink_broadcast() or during
3854 		 * early boot for call_usermodehelper(). For now treat these
3855 		 * errors as non-fatal.
3856 		 */
3857 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3858 	}
3859 
3860 	/*
3861 	 * Finally, if the user set the module parameter treat it
3862 	 * as a user hint.
3863 	 */
3864 	if (!is_world_regdom(ieee80211_regdom))
3865 		regulatory_hint_user(ieee80211_regdom,
3866 				     NL80211_USER_REG_HINT_USER);
3867 
3868 	return 0;
3869 }
3870 #ifndef MODULE
3871 late_initcall(regulatory_init_db);
3872 #endif
3873 
3874 int __init regulatory_init(void)
3875 {
3876 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3877 	if (IS_ERR(reg_pdev))
3878 		return PTR_ERR(reg_pdev);
3879 
3880 	spin_lock_init(&reg_requests_lock);
3881 	spin_lock_init(&reg_pending_beacons_lock);
3882 	spin_lock_init(&reg_indoor_lock);
3883 
3884 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3885 
3886 	user_alpha2[0] = '9';
3887 	user_alpha2[1] = '7';
3888 
3889 #ifdef MODULE
3890 	return regulatory_init_db();
3891 #else
3892 	return 0;
3893 #endif
3894 }
3895 
3896 void regulatory_exit(void)
3897 {
3898 	struct regulatory_request *reg_request, *tmp;
3899 	struct reg_beacon *reg_beacon, *btmp;
3900 
3901 	cancel_work_sync(&reg_work);
3902 	cancel_crda_timeout_sync();
3903 	cancel_delayed_work_sync(&reg_check_chans);
3904 
3905 	/* Lock to suppress warnings */
3906 	rtnl_lock();
3907 	reset_regdomains(true, NULL);
3908 	rtnl_unlock();
3909 
3910 	dev_set_uevent_suppress(&reg_pdev->dev, true);
3911 
3912 	platform_device_unregister(reg_pdev);
3913 
3914 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3915 		list_del(&reg_beacon->list);
3916 		kfree(reg_beacon);
3917 	}
3918 
3919 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3920 		list_del(&reg_beacon->list);
3921 		kfree(reg_beacon);
3922 	}
3923 
3924 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3925 		list_del(&reg_request->list);
3926 		kfree(reg_request);
3927 	}
3928 
3929 	if (!IS_ERR_OR_NULL(regdb))
3930 		kfree(regdb);
3931 
3932 	free_regdb_keyring();
3933 }
3934