1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 21 /** 22 * DOC: Wireless regulatory infrastructure 23 * 24 * The usual implementation is for a driver to read a device EEPROM to 25 * determine which regulatory domain it should be operating under, then 26 * looking up the allowable channels in a driver-local table and finally 27 * registering those channels in the wiphy structure. 28 * 29 * Another set of compliance enforcement is for drivers to use their 30 * own compliance limits which can be stored on the EEPROM. The host 31 * driver or firmware may ensure these are used. 32 * 33 * In addition to all this we provide an extra layer of regulatory 34 * conformance. For drivers which do not have any regulatory 35 * information CRDA provides the complete regulatory solution. 36 * For others it provides a community effort on further restrictions 37 * to enhance compliance. 38 * 39 * Note: When number of rules --> infinity we will not be able to 40 * index on alpha2 any more, instead we'll probably have to 41 * rely on some SHA1 checksum of the regdomain for example. 42 * 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/kernel.h> 48 #include <linux/export.h> 49 #include <linux/slab.h> 50 #include <linux/list.h> 51 #include <linux/ctype.h> 52 #include <linux/nl80211.h> 53 #include <linux/platform_device.h> 54 #include <linux/moduleparam.h> 55 #include <net/cfg80211.h> 56 #include "core.h" 57 #include "reg.h" 58 #include "regdb.h" 59 #include "nl80211.h" 60 61 #ifdef CONFIG_CFG80211_REG_DEBUG 62 #define REG_DBG_PRINT(format, args...) \ 63 printk(KERN_DEBUG pr_fmt(format), ##args) 64 #else 65 #define REG_DBG_PRINT(args...) 66 #endif 67 68 enum reg_request_treatment { 69 REG_REQ_OK, 70 REG_REQ_IGNORE, 71 REG_REQ_INTERSECT, 72 REG_REQ_ALREADY_SET, 73 }; 74 75 static struct regulatory_request core_request_world = { 76 .initiator = NL80211_REGDOM_SET_BY_CORE, 77 .alpha2[0] = '0', 78 .alpha2[1] = '0', 79 .intersect = false, 80 .processed = true, 81 .country_ie_env = ENVIRON_ANY, 82 }; 83 84 /* 85 * Receipt of information from last regulatory request, 86 * protected by RTNL (and can be accessed with RCU protection) 87 */ 88 static struct regulatory_request __rcu *last_request = 89 (void __rcu *)&core_request_world; 90 91 /* To trigger userspace events */ 92 static struct platform_device *reg_pdev; 93 94 static struct device_type reg_device_type = { 95 .uevent = reg_device_uevent, 96 }; 97 98 /* 99 * Central wireless core regulatory domains, we only need two, 100 * the current one and a world regulatory domain in case we have no 101 * information to give us an alpha2. 102 * (protected by RTNL, can be read under RCU) 103 */ 104 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 105 106 /* 107 * Number of devices that registered to the core 108 * that support cellular base station regulatory hints 109 * (protected by RTNL) 110 */ 111 static int reg_num_devs_support_basehint; 112 113 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 114 { 115 return rtnl_dereference(cfg80211_regdomain); 116 } 117 118 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 119 { 120 return rtnl_dereference(wiphy->regd); 121 } 122 123 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 124 { 125 if (!r) 126 return; 127 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 128 } 129 130 static struct regulatory_request *get_last_request(void) 131 { 132 return rcu_dereference_rtnl(last_request); 133 } 134 135 /* Used to queue up regulatory hints */ 136 static LIST_HEAD(reg_requests_list); 137 static spinlock_t reg_requests_lock; 138 139 /* Used to queue up beacon hints for review */ 140 static LIST_HEAD(reg_pending_beacons); 141 static spinlock_t reg_pending_beacons_lock; 142 143 /* Used to keep track of processed beacon hints */ 144 static LIST_HEAD(reg_beacon_list); 145 146 struct reg_beacon { 147 struct list_head list; 148 struct ieee80211_channel chan; 149 }; 150 151 static void reg_todo(struct work_struct *work); 152 static DECLARE_WORK(reg_work, reg_todo); 153 154 static void reg_timeout_work(struct work_struct *work); 155 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work); 156 157 /* We keep a static world regulatory domain in case of the absence of CRDA */ 158 static const struct ieee80211_regdomain world_regdom = { 159 .n_reg_rules = 6, 160 .alpha2 = "00", 161 .reg_rules = { 162 /* IEEE 802.11b/g, channels 1..11 */ 163 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 164 /* IEEE 802.11b/g, channels 12..13. */ 165 REG_RULE(2467-10, 2472+10, 40, 6, 20, 166 NL80211_RRF_PASSIVE_SCAN | 167 NL80211_RRF_NO_IBSS), 168 /* IEEE 802.11 channel 14 - Only JP enables 169 * this and for 802.11b only */ 170 REG_RULE(2484-10, 2484+10, 20, 6, 20, 171 NL80211_RRF_PASSIVE_SCAN | 172 NL80211_RRF_NO_IBSS | 173 NL80211_RRF_NO_OFDM), 174 /* IEEE 802.11a, channel 36..48 */ 175 REG_RULE(5180-10, 5240+10, 80, 6, 20, 176 NL80211_RRF_PASSIVE_SCAN | 177 NL80211_RRF_NO_IBSS), 178 179 /* NB: 5260 MHz - 5700 MHz requires DFS */ 180 181 /* IEEE 802.11a, channel 149..165 */ 182 REG_RULE(5745-10, 5825+10, 80, 6, 20, 183 NL80211_RRF_PASSIVE_SCAN | 184 NL80211_RRF_NO_IBSS), 185 186 /* IEEE 802.11ad (60gHz), channels 1..3 */ 187 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 188 } 189 }; 190 191 /* protected by RTNL */ 192 static const struct ieee80211_regdomain *cfg80211_world_regdom = 193 &world_regdom; 194 195 static char *ieee80211_regdom = "00"; 196 static char user_alpha2[2]; 197 198 module_param(ieee80211_regdom, charp, 0444); 199 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 200 201 static void reset_regdomains(bool full_reset, 202 const struct ieee80211_regdomain *new_regdom) 203 { 204 const struct ieee80211_regdomain *r; 205 struct regulatory_request *lr; 206 207 ASSERT_RTNL(); 208 209 r = get_cfg80211_regdom(); 210 211 /* avoid freeing static information or freeing something twice */ 212 if (r == cfg80211_world_regdom) 213 r = NULL; 214 if (cfg80211_world_regdom == &world_regdom) 215 cfg80211_world_regdom = NULL; 216 if (r == &world_regdom) 217 r = NULL; 218 219 rcu_free_regdom(r); 220 rcu_free_regdom(cfg80211_world_regdom); 221 222 cfg80211_world_regdom = &world_regdom; 223 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 224 225 if (!full_reset) 226 return; 227 228 lr = get_last_request(); 229 if (lr != &core_request_world && lr) 230 kfree_rcu(lr, rcu_head); 231 rcu_assign_pointer(last_request, &core_request_world); 232 } 233 234 /* 235 * Dynamic world regulatory domain requested by the wireless 236 * core upon initialization 237 */ 238 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 239 { 240 struct regulatory_request *lr; 241 242 lr = get_last_request(); 243 244 WARN_ON(!lr); 245 246 reset_regdomains(false, rd); 247 248 cfg80211_world_regdom = rd; 249 } 250 251 bool is_world_regdom(const char *alpha2) 252 { 253 if (!alpha2) 254 return false; 255 return alpha2[0] == '0' && alpha2[1] == '0'; 256 } 257 258 static bool is_alpha2_set(const char *alpha2) 259 { 260 if (!alpha2) 261 return false; 262 return alpha2[0] && alpha2[1]; 263 } 264 265 static bool is_unknown_alpha2(const char *alpha2) 266 { 267 if (!alpha2) 268 return false; 269 /* 270 * Special case where regulatory domain was built by driver 271 * but a specific alpha2 cannot be determined 272 */ 273 return alpha2[0] == '9' && alpha2[1] == '9'; 274 } 275 276 static bool is_intersected_alpha2(const char *alpha2) 277 { 278 if (!alpha2) 279 return false; 280 /* 281 * Special case where regulatory domain is the 282 * result of an intersection between two regulatory domain 283 * structures 284 */ 285 return alpha2[0] == '9' && alpha2[1] == '8'; 286 } 287 288 static bool is_an_alpha2(const char *alpha2) 289 { 290 if (!alpha2) 291 return false; 292 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 293 } 294 295 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 296 { 297 if (!alpha2_x || !alpha2_y) 298 return false; 299 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 300 } 301 302 static bool regdom_changes(const char *alpha2) 303 { 304 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 305 306 if (!r) 307 return true; 308 return !alpha2_equal(r->alpha2, alpha2); 309 } 310 311 /* 312 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 313 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 314 * has ever been issued. 315 */ 316 static bool is_user_regdom_saved(void) 317 { 318 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 319 return false; 320 321 /* This would indicate a mistake on the design */ 322 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 323 "Unexpected user alpha2: %c%c\n", 324 user_alpha2[0], user_alpha2[1])) 325 return false; 326 327 return true; 328 } 329 330 static const struct ieee80211_regdomain * 331 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 332 { 333 struct ieee80211_regdomain *regd; 334 int size_of_regd; 335 unsigned int i; 336 337 size_of_regd = 338 sizeof(struct ieee80211_regdomain) + 339 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); 340 341 regd = kzalloc(size_of_regd, GFP_KERNEL); 342 if (!regd) 343 return ERR_PTR(-ENOMEM); 344 345 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 346 347 for (i = 0; i < src_regd->n_reg_rules; i++) 348 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 349 sizeof(struct ieee80211_reg_rule)); 350 351 return regd; 352 } 353 354 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 355 struct reg_regdb_search_request { 356 char alpha2[2]; 357 struct list_head list; 358 }; 359 360 static LIST_HEAD(reg_regdb_search_list); 361 static DEFINE_MUTEX(reg_regdb_search_mutex); 362 363 static void reg_regdb_search(struct work_struct *work) 364 { 365 struct reg_regdb_search_request *request; 366 const struct ieee80211_regdomain *curdom, *regdom = NULL; 367 int i; 368 369 rtnl_lock(); 370 371 mutex_lock(®_regdb_search_mutex); 372 while (!list_empty(®_regdb_search_list)) { 373 request = list_first_entry(®_regdb_search_list, 374 struct reg_regdb_search_request, 375 list); 376 list_del(&request->list); 377 378 for (i = 0; i < reg_regdb_size; i++) { 379 curdom = reg_regdb[i]; 380 381 if (alpha2_equal(request->alpha2, curdom->alpha2)) { 382 regdom = reg_copy_regd(curdom); 383 break; 384 } 385 } 386 387 kfree(request); 388 } 389 mutex_unlock(®_regdb_search_mutex); 390 391 if (!IS_ERR_OR_NULL(regdom)) 392 set_regdom(regdom); 393 394 rtnl_unlock(); 395 } 396 397 static DECLARE_WORK(reg_regdb_work, reg_regdb_search); 398 399 static void reg_regdb_query(const char *alpha2) 400 { 401 struct reg_regdb_search_request *request; 402 403 if (!alpha2) 404 return; 405 406 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL); 407 if (!request) 408 return; 409 410 memcpy(request->alpha2, alpha2, 2); 411 412 mutex_lock(®_regdb_search_mutex); 413 list_add_tail(&request->list, ®_regdb_search_list); 414 mutex_unlock(®_regdb_search_mutex); 415 416 schedule_work(®_regdb_work); 417 } 418 419 /* Feel free to add any other sanity checks here */ 420 static void reg_regdb_size_check(void) 421 { 422 /* We should ideally BUILD_BUG_ON() but then random builds would fail */ 423 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it..."); 424 } 425 #else 426 static inline void reg_regdb_size_check(void) {} 427 static inline void reg_regdb_query(const char *alpha2) {} 428 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 429 430 /* 431 * This lets us keep regulatory code which is updated on a regulatory 432 * basis in userspace. Country information is filled in by 433 * reg_device_uevent 434 */ 435 static int call_crda(const char *alpha2) 436 { 437 if (!is_world_regdom((char *) alpha2)) 438 pr_info("Calling CRDA for country: %c%c\n", 439 alpha2[0], alpha2[1]); 440 else 441 pr_info("Calling CRDA to update world regulatory domain\n"); 442 443 /* query internal regulatory database (if it exists) */ 444 reg_regdb_query(alpha2); 445 446 return kobject_uevent(®_pdev->dev.kobj, KOBJ_CHANGE); 447 } 448 449 static bool reg_is_valid_request(const char *alpha2) 450 { 451 struct regulatory_request *lr = get_last_request(); 452 453 if (!lr || lr->processed) 454 return false; 455 456 return alpha2_equal(lr->alpha2, alpha2); 457 } 458 459 /* Sanity check on a regulatory rule */ 460 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 461 { 462 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 463 u32 freq_diff; 464 465 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 466 return false; 467 468 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 469 return false; 470 471 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 472 473 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 474 freq_range->max_bandwidth_khz > freq_diff) 475 return false; 476 477 return true; 478 } 479 480 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 481 { 482 const struct ieee80211_reg_rule *reg_rule = NULL; 483 unsigned int i; 484 485 if (!rd->n_reg_rules) 486 return false; 487 488 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 489 return false; 490 491 for (i = 0; i < rd->n_reg_rules; i++) { 492 reg_rule = &rd->reg_rules[i]; 493 if (!is_valid_reg_rule(reg_rule)) 494 return false; 495 } 496 497 return true; 498 } 499 500 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 501 u32 center_freq_khz, u32 bw_khz) 502 { 503 u32 start_freq_khz, end_freq_khz; 504 505 start_freq_khz = center_freq_khz - (bw_khz/2); 506 end_freq_khz = center_freq_khz + (bw_khz/2); 507 508 if (start_freq_khz >= freq_range->start_freq_khz && 509 end_freq_khz <= freq_range->end_freq_khz) 510 return true; 511 512 return false; 513 } 514 515 /** 516 * freq_in_rule_band - tells us if a frequency is in a frequency band 517 * @freq_range: frequency rule we want to query 518 * @freq_khz: frequency we are inquiring about 519 * 520 * This lets us know if a specific frequency rule is or is not relevant to 521 * a specific frequency's band. Bands are device specific and artificial 522 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 523 * however it is safe for now to assume that a frequency rule should not be 524 * part of a frequency's band if the start freq or end freq are off by more 525 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the 526 * 60 GHz band. 527 * This resolution can be lowered and should be considered as we add 528 * regulatory rule support for other "bands". 529 **/ 530 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 531 u32 freq_khz) 532 { 533 #define ONE_GHZ_IN_KHZ 1000000 534 /* 535 * From 802.11ad: directional multi-gigabit (DMG): 536 * Pertaining to operation in a frequency band containing a channel 537 * with the Channel starting frequency above 45 GHz. 538 */ 539 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 540 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 541 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 542 return true; 543 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 544 return true; 545 return false; 546 #undef ONE_GHZ_IN_KHZ 547 } 548 549 /* 550 * Helper for regdom_intersect(), this does the real 551 * mathematical intersection fun 552 */ 553 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1, 554 const struct ieee80211_reg_rule *rule2, 555 struct ieee80211_reg_rule *intersected_rule) 556 { 557 const struct ieee80211_freq_range *freq_range1, *freq_range2; 558 struct ieee80211_freq_range *freq_range; 559 const struct ieee80211_power_rule *power_rule1, *power_rule2; 560 struct ieee80211_power_rule *power_rule; 561 u32 freq_diff; 562 563 freq_range1 = &rule1->freq_range; 564 freq_range2 = &rule2->freq_range; 565 freq_range = &intersected_rule->freq_range; 566 567 power_rule1 = &rule1->power_rule; 568 power_rule2 = &rule2->power_rule; 569 power_rule = &intersected_rule->power_rule; 570 571 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 572 freq_range2->start_freq_khz); 573 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 574 freq_range2->end_freq_khz); 575 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz, 576 freq_range2->max_bandwidth_khz); 577 578 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 579 if (freq_range->max_bandwidth_khz > freq_diff) 580 freq_range->max_bandwidth_khz = freq_diff; 581 582 power_rule->max_eirp = min(power_rule1->max_eirp, 583 power_rule2->max_eirp); 584 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 585 power_rule2->max_antenna_gain); 586 587 intersected_rule->flags = rule1->flags | rule2->flags; 588 589 if (!is_valid_reg_rule(intersected_rule)) 590 return -EINVAL; 591 592 return 0; 593 } 594 595 /** 596 * regdom_intersect - do the intersection between two regulatory domains 597 * @rd1: first regulatory domain 598 * @rd2: second regulatory domain 599 * 600 * Use this function to get the intersection between two regulatory domains. 601 * Once completed we will mark the alpha2 for the rd as intersected, "98", 602 * as no one single alpha2 can represent this regulatory domain. 603 * 604 * Returns a pointer to the regulatory domain structure which will hold the 605 * resulting intersection of rules between rd1 and rd2. We will 606 * kzalloc() this structure for you. 607 */ 608 static struct ieee80211_regdomain * 609 regdom_intersect(const struct ieee80211_regdomain *rd1, 610 const struct ieee80211_regdomain *rd2) 611 { 612 int r, size_of_regd; 613 unsigned int x, y; 614 unsigned int num_rules = 0, rule_idx = 0; 615 const struct ieee80211_reg_rule *rule1, *rule2; 616 struct ieee80211_reg_rule *intersected_rule; 617 struct ieee80211_regdomain *rd; 618 /* This is just a dummy holder to help us count */ 619 struct ieee80211_reg_rule dummy_rule; 620 621 if (!rd1 || !rd2) 622 return NULL; 623 624 /* 625 * First we get a count of the rules we'll need, then we actually 626 * build them. This is to so we can malloc() and free() a 627 * regdomain once. The reason we use reg_rules_intersect() here 628 * is it will return -EINVAL if the rule computed makes no sense. 629 * All rules that do check out OK are valid. 630 */ 631 632 for (x = 0; x < rd1->n_reg_rules; x++) { 633 rule1 = &rd1->reg_rules[x]; 634 for (y = 0; y < rd2->n_reg_rules; y++) { 635 rule2 = &rd2->reg_rules[y]; 636 if (!reg_rules_intersect(rule1, rule2, &dummy_rule)) 637 num_rules++; 638 } 639 } 640 641 if (!num_rules) 642 return NULL; 643 644 size_of_regd = sizeof(struct ieee80211_regdomain) + 645 num_rules * sizeof(struct ieee80211_reg_rule); 646 647 rd = kzalloc(size_of_regd, GFP_KERNEL); 648 if (!rd) 649 return NULL; 650 651 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) { 652 rule1 = &rd1->reg_rules[x]; 653 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) { 654 rule2 = &rd2->reg_rules[y]; 655 /* 656 * This time around instead of using the stack lets 657 * write to the target rule directly saving ourselves 658 * a memcpy() 659 */ 660 intersected_rule = &rd->reg_rules[rule_idx]; 661 r = reg_rules_intersect(rule1, rule2, intersected_rule); 662 /* 663 * No need to memset here the intersected rule here as 664 * we're not using the stack anymore 665 */ 666 if (r) 667 continue; 668 rule_idx++; 669 } 670 } 671 672 if (rule_idx != num_rules) { 673 kfree(rd); 674 return NULL; 675 } 676 677 rd->n_reg_rules = num_rules; 678 rd->alpha2[0] = '9'; 679 rd->alpha2[1] = '8'; 680 681 return rd; 682 } 683 684 /* 685 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 686 * want to just have the channel structure use these 687 */ 688 static u32 map_regdom_flags(u32 rd_flags) 689 { 690 u32 channel_flags = 0; 691 if (rd_flags & NL80211_RRF_PASSIVE_SCAN) 692 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN; 693 if (rd_flags & NL80211_RRF_NO_IBSS) 694 channel_flags |= IEEE80211_CHAN_NO_IBSS; 695 if (rd_flags & NL80211_RRF_DFS) 696 channel_flags |= IEEE80211_CHAN_RADAR; 697 if (rd_flags & NL80211_RRF_NO_OFDM) 698 channel_flags |= IEEE80211_CHAN_NO_OFDM; 699 return channel_flags; 700 } 701 702 static const struct ieee80211_reg_rule * 703 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq, 704 const struct ieee80211_regdomain *regd) 705 { 706 int i; 707 bool band_rule_found = false; 708 bool bw_fits = false; 709 710 if (!regd) 711 return ERR_PTR(-EINVAL); 712 713 for (i = 0; i < regd->n_reg_rules; i++) { 714 const struct ieee80211_reg_rule *rr; 715 const struct ieee80211_freq_range *fr = NULL; 716 717 rr = ®d->reg_rules[i]; 718 fr = &rr->freq_range; 719 720 /* 721 * We only need to know if one frequency rule was 722 * was in center_freq's band, that's enough, so lets 723 * not overwrite it once found 724 */ 725 if (!band_rule_found) 726 band_rule_found = freq_in_rule_band(fr, center_freq); 727 728 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20)); 729 730 if (band_rule_found && bw_fits) 731 return rr; 732 } 733 734 if (!band_rule_found) 735 return ERR_PTR(-ERANGE); 736 737 return ERR_PTR(-EINVAL); 738 } 739 740 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 741 u32 center_freq) 742 { 743 const struct ieee80211_regdomain *regd; 744 struct regulatory_request *lr = get_last_request(); 745 746 /* 747 * Follow the driver's regulatory domain, if present, unless a country 748 * IE has been processed or a user wants to help complaince further 749 */ 750 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 751 lr->initiator != NL80211_REGDOM_SET_BY_USER && 752 wiphy->regd) 753 regd = get_wiphy_regdom(wiphy); 754 else 755 regd = get_cfg80211_regdom(); 756 757 return freq_reg_info_regd(wiphy, center_freq, regd); 758 } 759 EXPORT_SYMBOL(freq_reg_info); 760 761 #ifdef CONFIG_CFG80211_REG_DEBUG 762 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 763 { 764 switch (initiator) { 765 case NL80211_REGDOM_SET_BY_CORE: 766 return "Set by core"; 767 case NL80211_REGDOM_SET_BY_USER: 768 return "Set by user"; 769 case NL80211_REGDOM_SET_BY_DRIVER: 770 return "Set by driver"; 771 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 772 return "Set by country IE"; 773 default: 774 WARN_ON(1); 775 return "Set by bug"; 776 } 777 } 778 779 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 780 const struct ieee80211_reg_rule *reg_rule) 781 { 782 const struct ieee80211_power_rule *power_rule; 783 const struct ieee80211_freq_range *freq_range; 784 char max_antenna_gain[32]; 785 786 power_rule = ®_rule->power_rule; 787 freq_range = ®_rule->freq_range; 788 789 if (!power_rule->max_antenna_gain) 790 snprintf(max_antenna_gain, 32, "N/A"); 791 else 792 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain); 793 794 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n", 795 chan->center_freq); 796 797 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n", 798 freq_range->start_freq_khz, freq_range->end_freq_khz, 799 freq_range->max_bandwidth_khz, max_antenna_gain, 800 power_rule->max_eirp); 801 } 802 #else 803 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 804 const struct ieee80211_reg_rule *reg_rule) 805 { 806 return; 807 } 808 #endif 809 810 /* 811 * Note that right now we assume the desired channel bandwidth 812 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 813 * per channel, the primary and the extension channel). 814 */ 815 static void handle_channel(struct wiphy *wiphy, 816 enum nl80211_reg_initiator initiator, 817 struct ieee80211_channel *chan) 818 { 819 u32 flags, bw_flags = 0; 820 const struct ieee80211_reg_rule *reg_rule = NULL; 821 const struct ieee80211_power_rule *power_rule = NULL; 822 const struct ieee80211_freq_range *freq_range = NULL; 823 struct wiphy *request_wiphy = NULL; 824 struct regulatory_request *lr = get_last_request(); 825 826 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 827 828 flags = chan->orig_flags; 829 830 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 831 if (IS_ERR(reg_rule)) { 832 /* 833 * We will disable all channels that do not match our 834 * received regulatory rule unless the hint is coming 835 * from a Country IE and the Country IE had no information 836 * about a band. The IEEE 802.11 spec allows for an AP 837 * to send only a subset of the regulatory rules allowed, 838 * so an AP in the US that only supports 2.4 GHz may only send 839 * a country IE with information for the 2.4 GHz band 840 * while 5 GHz is still supported. 841 */ 842 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 843 PTR_ERR(reg_rule) == -ERANGE) 844 return; 845 846 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq); 847 chan->flags |= IEEE80211_CHAN_DISABLED; 848 return; 849 } 850 851 chan_reg_rule_print_dbg(chan, reg_rule); 852 853 power_rule = ®_rule->power_rule; 854 freq_range = ®_rule->freq_range; 855 856 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 857 bw_flags = IEEE80211_CHAN_NO_HT40; 858 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80)) 859 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 860 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160)) 861 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 862 863 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 864 request_wiphy && request_wiphy == wiphy && 865 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { 866 /* 867 * This guarantees the driver's requested regulatory domain 868 * will always be used as a base for further regulatory 869 * settings 870 */ 871 chan->flags = chan->orig_flags = 872 map_regdom_flags(reg_rule->flags) | bw_flags; 873 chan->max_antenna_gain = chan->orig_mag = 874 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 875 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 876 (int) MBM_TO_DBM(power_rule->max_eirp); 877 return; 878 } 879 880 chan->dfs_state = NL80211_DFS_USABLE; 881 chan->dfs_state_entered = jiffies; 882 883 chan->beacon_found = false; 884 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 885 chan->max_antenna_gain = 886 min_t(int, chan->orig_mag, 887 MBI_TO_DBI(power_rule->max_antenna_gain)); 888 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 889 if (chan->orig_mpwr) { 890 /* 891 * Devices that have their own custom regulatory domain 892 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the 893 * passed country IE power settings. 894 */ 895 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 896 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY && 897 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) 898 chan->max_power = chan->max_reg_power; 899 else 900 chan->max_power = min(chan->orig_mpwr, 901 chan->max_reg_power); 902 } else 903 chan->max_power = chan->max_reg_power; 904 } 905 906 static void handle_band(struct wiphy *wiphy, 907 enum nl80211_reg_initiator initiator, 908 struct ieee80211_supported_band *sband) 909 { 910 unsigned int i; 911 912 if (!sband) 913 return; 914 915 for (i = 0; i < sband->n_channels; i++) 916 handle_channel(wiphy, initiator, &sband->channels[i]); 917 } 918 919 static bool reg_request_cell_base(struct regulatory_request *request) 920 { 921 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 922 return false; 923 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 924 } 925 926 bool reg_last_request_cell_base(void) 927 { 928 return reg_request_cell_base(get_last_request()); 929 } 930 931 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS 932 /* Core specific check */ 933 static enum reg_request_treatment 934 reg_ignore_cell_hint(struct regulatory_request *pending_request) 935 { 936 struct regulatory_request *lr = get_last_request(); 937 938 if (!reg_num_devs_support_basehint) 939 return REG_REQ_IGNORE; 940 941 if (reg_request_cell_base(lr) && 942 !regdom_changes(pending_request->alpha2)) 943 return REG_REQ_ALREADY_SET; 944 945 return REG_REQ_OK; 946 } 947 948 /* Device specific check */ 949 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 950 { 951 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 952 } 953 #else 954 static int reg_ignore_cell_hint(struct regulatory_request *pending_request) 955 { 956 return REG_REQ_IGNORE; 957 } 958 959 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 960 { 961 return true; 962 } 963 #endif 964 965 966 static bool ignore_reg_update(struct wiphy *wiphy, 967 enum nl80211_reg_initiator initiator) 968 { 969 struct regulatory_request *lr = get_last_request(); 970 971 if (!lr) { 972 REG_DBG_PRINT("Ignoring regulatory request %s since last_request is not set\n", 973 reg_initiator_name(initiator)); 974 return true; 975 } 976 977 if (initiator == NL80211_REGDOM_SET_BY_CORE && 978 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) { 979 REG_DBG_PRINT("Ignoring regulatory request %s since the driver uses its own custom regulatory domain\n", 980 reg_initiator_name(initiator)); 981 return true; 982 } 983 984 /* 985 * wiphy->regd will be set once the device has its own 986 * desired regulatory domain set 987 */ 988 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd && 989 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 990 !is_world_regdom(lr->alpha2)) { 991 REG_DBG_PRINT("Ignoring regulatory request %s since the driver requires its own regulatory domain to be set first\n", 992 reg_initiator_name(initiator)); 993 return true; 994 } 995 996 if (reg_request_cell_base(lr)) 997 return reg_dev_ignore_cell_hint(wiphy); 998 999 return false; 1000 } 1001 1002 static bool reg_is_world_roaming(struct wiphy *wiphy) 1003 { 1004 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1005 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1006 struct regulatory_request *lr = get_last_request(); 1007 1008 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1009 return true; 1010 1011 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1012 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) 1013 return true; 1014 1015 return false; 1016 } 1017 1018 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1019 struct reg_beacon *reg_beacon) 1020 { 1021 struct ieee80211_supported_band *sband; 1022 struct ieee80211_channel *chan; 1023 bool channel_changed = false; 1024 struct ieee80211_channel chan_before; 1025 1026 sband = wiphy->bands[reg_beacon->chan.band]; 1027 chan = &sband->channels[chan_idx]; 1028 1029 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1030 return; 1031 1032 if (chan->beacon_found) 1033 return; 1034 1035 chan->beacon_found = true; 1036 1037 if (!reg_is_world_roaming(wiphy)) 1038 return; 1039 1040 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS) 1041 return; 1042 1043 chan_before.center_freq = chan->center_freq; 1044 chan_before.flags = chan->flags; 1045 1046 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) { 1047 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN; 1048 channel_changed = true; 1049 } 1050 1051 if (chan->flags & IEEE80211_CHAN_NO_IBSS) { 1052 chan->flags &= ~IEEE80211_CHAN_NO_IBSS; 1053 channel_changed = true; 1054 } 1055 1056 if (channel_changed) 1057 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1058 } 1059 1060 /* 1061 * Called when a scan on a wiphy finds a beacon on 1062 * new channel 1063 */ 1064 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1065 struct reg_beacon *reg_beacon) 1066 { 1067 unsigned int i; 1068 struct ieee80211_supported_band *sband; 1069 1070 if (!wiphy->bands[reg_beacon->chan.band]) 1071 return; 1072 1073 sband = wiphy->bands[reg_beacon->chan.band]; 1074 1075 for (i = 0; i < sband->n_channels; i++) 1076 handle_reg_beacon(wiphy, i, reg_beacon); 1077 } 1078 1079 /* 1080 * Called upon reg changes or a new wiphy is added 1081 */ 1082 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1083 { 1084 unsigned int i; 1085 struct ieee80211_supported_band *sband; 1086 struct reg_beacon *reg_beacon; 1087 1088 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1089 if (!wiphy->bands[reg_beacon->chan.band]) 1090 continue; 1091 sband = wiphy->bands[reg_beacon->chan.band]; 1092 for (i = 0; i < sband->n_channels; i++) 1093 handle_reg_beacon(wiphy, i, reg_beacon); 1094 } 1095 } 1096 1097 /* Reap the advantages of previously found beacons */ 1098 static void reg_process_beacons(struct wiphy *wiphy) 1099 { 1100 /* 1101 * Means we are just firing up cfg80211, so no beacons would 1102 * have been processed yet. 1103 */ 1104 if (!last_request) 1105 return; 1106 wiphy_update_beacon_reg(wiphy); 1107 } 1108 1109 static bool is_ht40_allowed(struct ieee80211_channel *chan) 1110 { 1111 if (!chan) 1112 return false; 1113 if (chan->flags & IEEE80211_CHAN_DISABLED) 1114 return false; 1115 /* This would happen when regulatory rules disallow HT40 completely */ 1116 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 1117 return false; 1118 return true; 1119 } 1120 1121 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1122 struct ieee80211_channel *channel) 1123 { 1124 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 1125 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1126 unsigned int i; 1127 1128 if (!is_ht40_allowed(channel)) { 1129 channel->flags |= IEEE80211_CHAN_NO_HT40; 1130 return; 1131 } 1132 1133 /* 1134 * We need to ensure the extension channels exist to 1135 * be able to use HT40- or HT40+, this finds them (or not) 1136 */ 1137 for (i = 0; i < sband->n_channels; i++) { 1138 struct ieee80211_channel *c = &sband->channels[i]; 1139 1140 if (c->center_freq == (channel->center_freq - 20)) 1141 channel_before = c; 1142 if (c->center_freq == (channel->center_freq + 20)) 1143 channel_after = c; 1144 } 1145 1146 /* 1147 * Please note that this assumes target bandwidth is 20 MHz, 1148 * if that ever changes we also need to change the below logic 1149 * to include that as well. 1150 */ 1151 if (!is_ht40_allowed(channel_before)) 1152 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1153 else 1154 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1155 1156 if (!is_ht40_allowed(channel_after)) 1157 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1158 else 1159 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1160 } 1161 1162 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1163 struct ieee80211_supported_band *sband) 1164 { 1165 unsigned int i; 1166 1167 if (!sband) 1168 return; 1169 1170 for (i = 0; i < sband->n_channels; i++) 1171 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 1172 } 1173 1174 static void reg_process_ht_flags(struct wiphy *wiphy) 1175 { 1176 enum ieee80211_band band; 1177 1178 if (!wiphy) 1179 return; 1180 1181 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1182 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 1183 } 1184 1185 static void wiphy_update_regulatory(struct wiphy *wiphy, 1186 enum nl80211_reg_initiator initiator) 1187 { 1188 enum ieee80211_band band; 1189 struct regulatory_request *lr = get_last_request(); 1190 1191 if (ignore_reg_update(wiphy, initiator)) 1192 return; 1193 1194 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 1195 1196 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1197 handle_band(wiphy, initiator, wiphy->bands[band]); 1198 1199 reg_process_beacons(wiphy); 1200 reg_process_ht_flags(wiphy); 1201 1202 if (wiphy->reg_notifier) 1203 wiphy->reg_notifier(wiphy, lr); 1204 } 1205 1206 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 1207 { 1208 struct cfg80211_registered_device *rdev; 1209 struct wiphy *wiphy; 1210 1211 ASSERT_RTNL(); 1212 1213 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1214 wiphy = &rdev->wiphy; 1215 wiphy_update_regulatory(wiphy, initiator); 1216 /* 1217 * Regulatory updates set by CORE are ignored for custom 1218 * regulatory cards. Let us notify the changes to the driver, 1219 * as some drivers used this to restore its orig_* reg domain. 1220 */ 1221 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1222 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY && 1223 wiphy->reg_notifier) 1224 wiphy->reg_notifier(wiphy, get_last_request()); 1225 } 1226 } 1227 1228 static void handle_channel_custom(struct wiphy *wiphy, 1229 struct ieee80211_channel *chan, 1230 const struct ieee80211_regdomain *regd) 1231 { 1232 u32 bw_flags = 0; 1233 const struct ieee80211_reg_rule *reg_rule = NULL; 1234 const struct ieee80211_power_rule *power_rule = NULL; 1235 const struct ieee80211_freq_range *freq_range = NULL; 1236 1237 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq), 1238 regd); 1239 1240 if (IS_ERR(reg_rule)) { 1241 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n", 1242 chan->center_freq); 1243 chan->flags = IEEE80211_CHAN_DISABLED; 1244 return; 1245 } 1246 1247 chan_reg_rule_print_dbg(chan, reg_rule); 1248 1249 power_rule = ®_rule->power_rule; 1250 freq_range = ®_rule->freq_range; 1251 1252 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 1253 bw_flags = IEEE80211_CHAN_NO_HT40; 1254 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80)) 1255 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1256 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160)) 1257 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1258 1259 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1260 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1261 chan->max_reg_power = chan->max_power = 1262 (int) MBM_TO_DBM(power_rule->max_eirp); 1263 } 1264 1265 static void handle_band_custom(struct wiphy *wiphy, 1266 struct ieee80211_supported_band *sband, 1267 const struct ieee80211_regdomain *regd) 1268 { 1269 unsigned int i; 1270 1271 if (!sband) 1272 return; 1273 1274 for (i = 0; i < sband->n_channels; i++) 1275 handle_channel_custom(wiphy, &sband->channels[i], regd); 1276 } 1277 1278 /* Used by drivers prior to wiphy registration */ 1279 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1280 const struct ieee80211_regdomain *regd) 1281 { 1282 enum ieee80211_band band; 1283 unsigned int bands_set = 0; 1284 1285 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1286 if (!wiphy->bands[band]) 1287 continue; 1288 handle_band_custom(wiphy, wiphy->bands[band], regd); 1289 bands_set++; 1290 } 1291 1292 /* 1293 * no point in calling this if it won't have any effect 1294 * on your device's supported bands. 1295 */ 1296 WARN_ON(!bands_set); 1297 } 1298 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1299 1300 /* This has the logic which determines when a new request 1301 * should be ignored. */ 1302 static enum reg_request_treatment 1303 get_reg_request_treatment(struct wiphy *wiphy, 1304 struct regulatory_request *pending_request) 1305 { 1306 struct wiphy *last_wiphy = NULL; 1307 struct regulatory_request *lr = get_last_request(); 1308 1309 /* All initial requests are respected */ 1310 if (!lr) 1311 return REG_REQ_OK; 1312 1313 switch (pending_request->initiator) { 1314 case NL80211_REGDOM_SET_BY_CORE: 1315 return REG_REQ_OK; 1316 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1317 if (reg_request_cell_base(lr)) { 1318 /* Trust a Cell base station over the AP's country IE */ 1319 if (regdom_changes(pending_request->alpha2)) 1320 return REG_REQ_IGNORE; 1321 return REG_REQ_ALREADY_SET; 1322 } 1323 1324 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1325 1326 if (unlikely(!is_an_alpha2(pending_request->alpha2))) 1327 return -EINVAL; 1328 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1329 if (last_wiphy != wiphy) { 1330 /* 1331 * Two cards with two APs claiming different 1332 * Country IE alpha2s. We could 1333 * intersect them, but that seems unlikely 1334 * to be correct. Reject second one for now. 1335 */ 1336 if (regdom_changes(pending_request->alpha2)) 1337 return REG_REQ_IGNORE; 1338 return REG_REQ_ALREADY_SET; 1339 } 1340 /* 1341 * Two consecutive Country IE hints on the same wiphy. 1342 * This should be picked up early by the driver/stack 1343 */ 1344 if (WARN_ON(regdom_changes(pending_request->alpha2))) 1345 return REG_REQ_OK; 1346 return REG_REQ_ALREADY_SET; 1347 } 1348 return REG_REQ_OK; 1349 case NL80211_REGDOM_SET_BY_DRIVER: 1350 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 1351 if (regdom_changes(pending_request->alpha2)) 1352 return REG_REQ_OK; 1353 return REG_REQ_ALREADY_SET; 1354 } 1355 1356 /* 1357 * This would happen if you unplug and plug your card 1358 * back in or if you add a new device for which the previously 1359 * loaded card also agrees on the regulatory domain. 1360 */ 1361 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1362 !regdom_changes(pending_request->alpha2)) 1363 return REG_REQ_ALREADY_SET; 1364 1365 return REG_REQ_INTERSECT; 1366 case NL80211_REGDOM_SET_BY_USER: 1367 if (reg_request_cell_base(pending_request)) 1368 return reg_ignore_cell_hint(pending_request); 1369 1370 if (reg_request_cell_base(lr)) 1371 return REG_REQ_IGNORE; 1372 1373 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1374 return REG_REQ_INTERSECT; 1375 /* 1376 * If the user knows better the user should set the regdom 1377 * to their country before the IE is picked up 1378 */ 1379 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 1380 lr->intersect) 1381 return REG_REQ_IGNORE; 1382 /* 1383 * Process user requests only after previous user/driver/core 1384 * requests have been processed 1385 */ 1386 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 1387 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1388 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 1389 regdom_changes(lr->alpha2)) 1390 return REG_REQ_IGNORE; 1391 1392 if (!regdom_changes(pending_request->alpha2)) 1393 return REG_REQ_ALREADY_SET; 1394 1395 return REG_REQ_OK; 1396 } 1397 1398 return REG_REQ_IGNORE; 1399 } 1400 1401 static void reg_set_request_processed(void) 1402 { 1403 bool need_more_processing = false; 1404 struct regulatory_request *lr = get_last_request(); 1405 1406 lr->processed = true; 1407 1408 spin_lock(®_requests_lock); 1409 if (!list_empty(®_requests_list)) 1410 need_more_processing = true; 1411 spin_unlock(®_requests_lock); 1412 1413 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 1414 cancel_delayed_work(®_timeout); 1415 1416 if (need_more_processing) 1417 schedule_work(®_work); 1418 } 1419 1420 /** 1421 * __regulatory_hint - hint to the wireless core a regulatory domain 1422 * @wiphy: if the hint comes from country information from an AP, this 1423 * is required to be set to the wiphy that received the information 1424 * @pending_request: the regulatory request currently being processed 1425 * 1426 * The Wireless subsystem can use this function to hint to the wireless core 1427 * what it believes should be the current regulatory domain. 1428 * 1429 * Returns one of the different reg request treatment values. 1430 */ 1431 static enum reg_request_treatment 1432 __regulatory_hint(struct wiphy *wiphy, 1433 struct regulatory_request *pending_request) 1434 { 1435 const struct ieee80211_regdomain *regd; 1436 bool intersect = false; 1437 enum reg_request_treatment treatment; 1438 struct regulatory_request *lr; 1439 1440 treatment = get_reg_request_treatment(wiphy, pending_request); 1441 1442 switch (treatment) { 1443 case REG_REQ_INTERSECT: 1444 if (pending_request->initiator == 1445 NL80211_REGDOM_SET_BY_DRIVER) { 1446 regd = reg_copy_regd(get_cfg80211_regdom()); 1447 if (IS_ERR(regd)) { 1448 kfree(pending_request); 1449 return PTR_ERR(regd); 1450 } 1451 rcu_assign_pointer(wiphy->regd, regd); 1452 } 1453 intersect = true; 1454 break; 1455 case REG_REQ_OK: 1456 break; 1457 default: 1458 /* 1459 * If the regulatory domain being requested by the 1460 * driver has already been set just copy it to the 1461 * wiphy 1462 */ 1463 if (treatment == REG_REQ_ALREADY_SET && 1464 pending_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) { 1465 regd = reg_copy_regd(get_cfg80211_regdom()); 1466 if (IS_ERR(regd)) { 1467 kfree(pending_request); 1468 return REG_REQ_IGNORE; 1469 } 1470 treatment = REG_REQ_ALREADY_SET; 1471 rcu_assign_pointer(wiphy->regd, regd); 1472 goto new_request; 1473 } 1474 kfree(pending_request); 1475 return treatment; 1476 } 1477 1478 new_request: 1479 lr = get_last_request(); 1480 if (lr != &core_request_world && lr) 1481 kfree_rcu(lr, rcu_head); 1482 1483 pending_request->intersect = intersect; 1484 pending_request->processed = false; 1485 rcu_assign_pointer(last_request, pending_request); 1486 lr = pending_request; 1487 1488 pending_request = NULL; 1489 1490 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) { 1491 user_alpha2[0] = lr->alpha2[0]; 1492 user_alpha2[1] = lr->alpha2[1]; 1493 } 1494 1495 /* When r == REG_REQ_INTERSECT we do need to call CRDA */ 1496 if (treatment != REG_REQ_OK && treatment != REG_REQ_INTERSECT) { 1497 /* 1498 * Since CRDA will not be called in this case as we already 1499 * have applied the requested regulatory domain before we just 1500 * inform userspace we have processed the request 1501 */ 1502 if (treatment == REG_REQ_ALREADY_SET) { 1503 nl80211_send_reg_change_event(lr); 1504 reg_set_request_processed(); 1505 } 1506 return treatment; 1507 } 1508 1509 if (call_crda(lr->alpha2)) 1510 return REG_REQ_IGNORE; 1511 return REG_REQ_OK; 1512 } 1513 1514 /* This processes *all* regulatory hints */ 1515 static void reg_process_hint(struct regulatory_request *reg_request, 1516 enum nl80211_reg_initiator reg_initiator) 1517 { 1518 struct wiphy *wiphy = NULL; 1519 1520 if (WARN_ON(!reg_request->alpha2)) 1521 return; 1522 1523 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 1524 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 1525 1526 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) { 1527 kfree(reg_request); 1528 return; 1529 } 1530 1531 switch (__regulatory_hint(wiphy, reg_request)) { 1532 case REG_REQ_ALREADY_SET: 1533 /* This is required so that the orig_* parameters are saved */ 1534 if (wiphy && wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) 1535 wiphy_update_regulatory(wiphy, reg_initiator); 1536 break; 1537 default: 1538 if (reg_initiator == NL80211_REGDOM_SET_BY_USER) 1539 schedule_delayed_work(®_timeout, 1540 msecs_to_jiffies(3142)); 1541 break; 1542 } 1543 } 1544 1545 /* 1546 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 1547 * Regulatory hints come on a first come first serve basis and we 1548 * must process each one atomically. 1549 */ 1550 static void reg_process_pending_hints(void) 1551 { 1552 struct regulatory_request *reg_request, *lr; 1553 1554 lr = get_last_request(); 1555 1556 /* When last_request->processed becomes true this will be rescheduled */ 1557 if (lr && !lr->processed) { 1558 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n"); 1559 return; 1560 } 1561 1562 spin_lock(®_requests_lock); 1563 1564 if (list_empty(®_requests_list)) { 1565 spin_unlock(®_requests_lock); 1566 return; 1567 } 1568 1569 reg_request = list_first_entry(®_requests_list, 1570 struct regulatory_request, 1571 list); 1572 list_del_init(®_request->list); 1573 1574 spin_unlock(®_requests_lock); 1575 1576 reg_process_hint(reg_request, reg_request->initiator); 1577 } 1578 1579 /* Processes beacon hints -- this has nothing to do with country IEs */ 1580 static void reg_process_pending_beacon_hints(void) 1581 { 1582 struct cfg80211_registered_device *rdev; 1583 struct reg_beacon *pending_beacon, *tmp; 1584 1585 /* This goes through the _pending_ beacon list */ 1586 spin_lock_bh(®_pending_beacons_lock); 1587 1588 list_for_each_entry_safe(pending_beacon, tmp, 1589 ®_pending_beacons, list) { 1590 list_del_init(&pending_beacon->list); 1591 1592 /* Applies the beacon hint to current wiphys */ 1593 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1594 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 1595 1596 /* Remembers the beacon hint for new wiphys or reg changes */ 1597 list_add_tail(&pending_beacon->list, ®_beacon_list); 1598 } 1599 1600 spin_unlock_bh(®_pending_beacons_lock); 1601 } 1602 1603 static void reg_todo(struct work_struct *work) 1604 { 1605 rtnl_lock(); 1606 reg_process_pending_hints(); 1607 reg_process_pending_beacon_hints(); 1608 rtnl_unlock(); 1609 } 1610 1611 static void queue_regulatory_request(struct regulatory_request *request) 1612 { 1613 request->alpha2[0] = toupper(request->alpha2[0]); 1614 request->alpha2[1] = toupper(request->alpha2[1]); 1615 1616 spin_lock(®_requests_lock); 1617 list_add_tail(&request->list, ®_requests_list); 1618 spin_unlock(®_requests_lock); 1619 1620 schedule_work(®_work); 1621 } 1622 1623 /* 1624 * Core regulatory hint -- happens during cfg80211_init() 1625 * and when we restore regulatory settings. 1626 */ 1627 static int regulatory_hint_core(const char *alpha2) 1628 { 1629 struct regulatory_request *request; 1630 1631 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1632 if (!request) 1633 return -ENOMEM; 1634 1635 request->alpha2[0] = alpha2[0]; 1636 request->alpha2[1] = alpha2[1]; 1637 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1638 1639 queue_regulatory_request(request); 1640 1641 return 0; 1642 } 1643 1644 /* User hints */ 1645 int regulatory_hint_user(const char *alpha2, 1646 enum nl80211_user_reg_hint_type user_reg_hint_type) 1647 { 1648 struct regulatory_request *request; 1649 1650 if (WARN_ON(!alpha2)) 1651 return -EINVAL; 1652 1653 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1654 if (!request) 1655 return -ENOMEM; 1656 1657 request->wiphy_idx = WIPHY_IDX_INVALID; 1658 request->alpha2[0] = alpha2[0]; 1659 request->alpha2[1] = alpha2[1]; 1660 request->initiator = NL80211_REGDOM_SET_BY_USER; 1661 request->user_reg_hint_type = user_reg_hint_type; 1662 1663 queue_regulatory_request(request); 1664 1665 return 0; 1666 } 1667 1668 /* Driver hints */ 1669 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 1670 { 1671 struct regulatory_request *request; 1672 1673 if (WARN_ON(!alpha2 || !wiphy)) 1674 return -EINVAL; 1675 1676 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1677 if (!request) 1678 return -ENOMEM; 1679 1680 request->wiphy_idx = get_wiphy_idx(wiphy); 1681 1682 request->alpha2[0] = alpha2[0]; 1683 request->alpha2[1] = alpha2[1]; 1684 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 1685 1686 queue_regulatory_request(request); 1687 1688 return 0; 1689 } 1690 EXPORT_SYMBOL(regulatory_hint); 1691 1692 void regulatory_hint_11d(struct wiphy *wiphy, enum ieee80211_band band, 1693 const u8 *country_ie, u8 country_ie_len) 1694 { 1695 char alpha2[2]; 1696 enum environment_cap env = ENVIRON_ANY; 1697 struct regulatory_request *request = NULL, *lr; 1698 1699 /* IE len must be evenly divisible by 2 */ 1700 if (country_ie_len & 0x01) 1701 return; 1702 1703 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 1704 return; 1705 1706 request = kzalloc(sizeof(*request), GFP_KERNEL); 1707 if (!request) 1708 return; 1709 1710 alpha2[0] = country_ie[0]; 1711 alpha2[1] = country_ie[1]; 1712 1713 if (country_ie[2] == 'I') 1714 env = ENVIRON_INDOOR; 1715 else if (country_ie[2] == 'O') 1716 env = ENVIRON_OUTDOOR; 1717 1718 rcu_read_lock(); 1719 lr = get_last_request(); 1720 1721 if (unlikely(!lr)) 1722 goto out; 1723 1724 /* 1725 * We will run this only upon a successful connection on cfg80211. 1726 * We leave conflict resolution to the workqueue, where can hold 1727 * the RTNL. 1728 */ 1729 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1730 lr->wiphy_idx != WIPHY_IDX_INVALID) 1731 goto out; 1732 1733 request->wiphy_idx = get_wiphy_idx(wiphy); 1734 request->alpha2[0] = alpha2[0]; 1735 request->alpha2[1] = alpha2[1]; 1736 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 1737 request->country_ie_env = env; 1738 1739 queue_regulatory_request(request); 1740 request = NULL; 1741 out: 1742 kfree(request); 1743 rcu_read_unlock(); 1744 } 1745 1746 static void restore_alpha2(char *alpha2, bool reset_user) 1747 { 1748 /* indicates there is no alpha2 to consider for restoration */ 1749 alpha2[0] = '9'; 1750 alpha2[1] = '7'; 1751 1752 /* The user setting has precedence over the module parameter */ 1753 if (is_user_regdom_saved()) { 1754 /* Unless we're asked to ignore it and reset it */ 1755 if (reset_user) { 1756 REG_DBG_PRINT("Restoring regulatory settings including user preference\n"); 1757 user_alpha2[0] = '9'; 1758 user_alpha2[1] = '7'; 1759 1760 /* 1761 * If we're ignoring user settings, we still need to 1762 * check the module parameter to ensure we put things 1763 * back as they were for a full restore. 1764 */ 1765 if (!is_world_regdom(ieee80211_regdom)) { 1766 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 1767 ieee80211_regdom[0], ieee80211_regdom[1]); 1768 alpha2[0] = ieee80211_regdom[0]; 1769 alpha2[1] = ieee80211_regdom[1]; 1770 } 1771 } else { 1772 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n", 1773 user_alpha2[0], user_alpha2[1]); 1774 alpha2[0] = user_alpha2[0]; 1775 alpha2[1] = user_alpha2[1]; 1776 } 1777 } else if (!is_world_regdom(ieee80211_regdom)) { 1778 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 1779 ieee80211_regdom[0], ieee80211_regdom[1]); 1780 alpha2[0] = ieee80211_regdom[0]; 1781 alpha2[1] = ieee80211_regdom[1]; 1782 } else 1783 REG_DBG_PRINT("Restoring regulatory settings\n"); 1784 } 1785 1786 static void restore_custom_reg_settings(struct wiphy *wiphy) 1787 { 1788 struct ieee80211_supported_band *sband; 1789 enum ieee80211_band band; 1790 struct ieee80211_channel *chan; 1791 int i; 1792 1793 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1794 sband = wiphy->bands[band]; 1795 if (!sband) 1796 continue; 1797 for (i = 0; i < sband->n_channels; i++) { 1798 chan = &sband->channels[i]; 1799 chan->flags = chan->orig_flags; 1800 chan->max_antenna_gain = chan->orig_mag; 1801 chan->max_power = chan->orig_mpwr; 1802 chan->beacon_found = false; 1803 } 1804 } 1805 } 1806 1807 /* 1808 * Restoring regulatory settings involves ingoring any 1809 * possibly stale country IE information and user regulatory 1810 * settings if so desired, this includes any beacon hints 1811 * learned as we could have traveled outside to another country 1812 * after disconnection. To restore regulatory settings we do 1813 * exactly what we did at bootup: 1814 * 1815 * - send a core regulatory hint 1816 * - send a user regulatory hint if applicable 1817 * 1818 * Device drivers that send a regulatory hint for a specific country 1819 * keep their own regulatory domain on wiphy->regd so that does does 1820 * not need to be remembered. 1821 */ 1822 static void restore_regulatory_settings(bool reset_user) 1823 { 1824 char alpha2[2]; 1825 char world_alpha2[2]; 1826 struct reg_beacon *reg_beacon, *btmp; 1827 struct regulatory_request *reg_request, *tmp; 1828 LIST_HEAD(tmp_reg_req_list); 1829 struct cfg80211_registered_device *rdev; 1830 1831 ASSERT_RTNL(); 1832 1833 reset_regdomains(true, &world_regdom); 1834 restore_alpha2(alpha2, reset_user); 1835 1836 /* 1837 * If there's any pending requests we simply 1838 * stash them to a temporary pending queue and 1839 * add then after we've restored regulatory 1840 * settings. 1841 */ 1842 spin_lock(®_requests_lock); 1843 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 1844 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER) 1845 continue; 1846 list_move_tail(®_request->list, &tmp_reg_req_list); 1847 } 1848 spin_unlock(®_requests_lock); 1849 1850 /* Clear beacon hints */ 1851 spin_lock_bh(®_pending_beacons_lock); 1852 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 1853 list_del(®_beacon->list); 1854 kfree(reg_beacon); 1855 } 1856 spin_unlock_bh(®_pending_beacons_lock); 1857 1858 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 1859 list_del(®_beacon->list); 1860 kfree(reg_beacon); 1861 } 1862 1863 /* First restore to the basic regulatory settings */ 1864 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 1865 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 1866 1867 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1868 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY) 1869 restore_custom_reg_settings(&rdev->wiphy); 1870 } 1871 1872 regulatory_hint_core(world_alpha2); 1873 1874 /* 1875 * This restores the ieee80211_regdom module parameter 1876 * preference or the last user requested regulatory 1877 * settings, user regulatory settings takes precedence. 1878 */ 1879 if (is_an_alpha2(alpha2)) 1880 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER); 1881 1882 spin_lock(®_requests_lock); 1883 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 1884 spin_unlock(®_requests_lock); 1885 1886 REG_DBG_PRINT("Kicking the queue\n"); 1887 1888 schedule_work(®_work); 1889 } 1890 1891 void regulatory_hint_disconnect(void) 1892 { 1893 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n"); 1894 restore_regulatory_settings(false); 1895 } 1896 1897 static bool freq_is_chan_12_13_14(u16 freq) 1898 { 1899 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || 1900 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || 1901 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) 1902 return true; 1903 return false; 1904 } 1905 1906 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 1907 { 1908 struct reg_beacon *pending_beacon; 1909 1910 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 1911 if (beacon_chan->center_freq == 1912 pending_beacon->chan.center_freq) 1913 return true; 1914 return false; 1915 } 1916 1917 int regulatory_hint_found_beacon(struct wiphy *wiphy, 1918 struct ieee80211_channel *beacon_chan, 1919 gfp_t gfp) 1920 { 1921 struct reg_beacon *reg_beacon; 1922 bool processing; 1923 1924 if (beacon_chan->beacon_found || 1925 beacon_chan->flags & IEEE80211_CHAN_RADAR || 1926 (beacon_chan->band == IEEE80211_BAND_2GHZ && 1927 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 1928 return 0; 1929 1930 spin_lock_bh(®_pending_beacons_lock); 1931 processing = pending_reg_beacon(beacon_chan); 1932 spin_unlock_bh(®_pending_beacons_lock); 1933 1934 if (processing) 1935 return 0; 1936 1937 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 1938 if (!reg_beacon) 1939 return -ENOMEM; 1940 1941 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 1942 beacon_chan->center_freq, 1943 ieee80211_frequency_to_channel(beacon_chan->center_freq), 1944 wiphy_name(wiphy)); 1945 1946 memcpy(®_beacon->chan, beacon_chan, 1947 sizeof(struct ieee80211_channel)); 1948 1949 /* 1950 * Since we can be called from BH or and non-BH context 1951 * we must use spin_lock_bh() 1952 */ 1953 spin_lock_bh(®_pending_beacons_lock); 1954 list_add_tail(®_beacon->list, ®_pending_beacons); 1955 spin_unlock_bh(®_pending_beacons_lock); 1956 1957 schedule_work(®_work); 1958 1959 return 0; 1960 } 1961 1962 static void print_rd_rules(const struct ieee80211_regdomain *rd) 1963 { 1964 unsigned int i; 1965 const struct ieee80211_reg_rule *reg_rule = NULL; 1966 const struct ieee80211_freq_range *freq_range = NULL; 1967 const struct ieee80211_power_rule *power_rule = NULL; 1968 1969 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n"); 1970 1971 for (i = 0; i < rd->n_reg_rules; i++) { 1972 reg_rule = &rd->reg_rules[i]; 1973 freq_range = ®_rule->freq_range; 1974 power_rule = ®_rule->power_rule; 1975 1976 /* 1977 * There may not be documentation for max antenna gain 1978 * in certain regions 1979 */ 1980 if (power_rule->max_antenna_gain) 1981 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n", 1982 freq_range->start_freq_khz, 1983 freq_range->end_freq_khz, 1984 freq_range->max_bandwidth_khz, 1985 power_rule->max_antenna_gain, 1986 power_rule->max_eirp); 1987 else 1988 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n", 1989 freq_range->start_freq_khz, 1990 freq_range->end_freq_khz, 1991 freq_range->max_bandwidth_khz, 1992 power_rule->max_eirp); 1993 } 1994 } 1995 1996 bool reg_supported_dfs_region(u8 dfs_region) 1997 { 1998 switch (dfs_region) { 1999 case NL80211_DFS_UNSET: 2000 case NL80211_DFS_FCC: 2001 case NL80211_DFS_ETSI: 2002 case NL80211_DFS_JP: 2003 return true; 2004 default: 2005 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n", 2006 dfs_region); 2007 return false; 2008 } 2009 } 2010 2011 static void print_dfs_region(u8 dfs_region) 2012 { 2013 if (!dfs_region) 2014 return; 2015 2016 switch (dfs_region) { 2017 case NL80211_DFS_FCC: 2018 pr_info(" DFS Master region FCC"); 2019 break; 2020 case NL80211_DFS_ETSI: 2021 pr_info(" DFS Master region ETSI"); 2022 break; 2023 case NL80211_DFS_JP: 2024 pr_info(" DFS Master region JP"); 2025 break; 2026 default: 2027 pr_info(" DFS Master region Unknown"); 2028 break; 2029 } 2030 } 2031 2032 static void print_regdomain(const struct ieee80211_regdomain *rd) 2033 { 2034 struct regulatory_request *lr = get_last_request(); 2035 2036 if (is_intersected_alpha2(rd->alpha2)) { 2037 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2038 struct cfg80211_registered_device *rdev; 2039 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 2040 if (rdev) { 2041 pr_info("Current regulatory domain updated by AP to: %c%c\n", 2042 rdev->country_ie_alpha2[0], 2043 rdev->country_ie_alpha2[1]); 2044 } else 2045 pr_info("Current regulatory domain intersected:\n"); 2046 } else 2047 pr_info("Current regulatory domain intersected:\n"); 2048 } else if (is_world_regdom(rd->alpha2)) { 2049 pr_info("World regulatory domain updated:\n"); 2050 } else { 2051 if (is_unknown_alpha2(rd->alpha2)) 2052 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); 2053 else { 2054 if (reg_request_cell_base(lr)) 2055 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n", 2056 rd->alpha2[0], rd->alpha2[1]); 2057 else 2058 pr_info("Regulatory domain changed to country: %c%c\n", 2059 rd->alpha2[0], rd->alpha2[1]); 2060 } 2061 } 2062 2063 print_dfs_region(rd->dfs_region); 2064 print_rd_rules(rd); 2065 } 2066 2067 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 2068 { 2069 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 2070 print_rd_rules(rd); 2071 } 2072 2073 /* Takes ownership of rd only if it doesn't fail */ 2074 static int __set_regdom(const struct ieee80211_regdomain *rd) 2075 { 2076 const struct ieee80211_regdomain *regd; 2077 const struct ieee80211_regdomain *intersected_rd = NULL; 2078 struct wiphy *request_wiphy; 2079 struct regulatory_request *lr = get_last_request(); 2080 2081 /* Some basic sanity checks first */ 2082 2083 if (!reg_is_valid_request(rd->alpha2)) 2084 return -EINVAL; 2085 2086 if (is_world_regdom(rd->alpha2)) { 2087 update_world_regdomain(rd); 2088 return 0; 2089 } 2090 2091 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 2092 !is_unknown_alpha2(rd->alpha2)) 2093 return -EINVAL; 2094 2095 /* 2096 * Lets only bother proceeding on the same alpha2 if the current 2097 * rd is non static (it means CRDA was present and was used last) 2098 * and the pending request came in from a country IE 2099 */ 2100 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2101 /* 2102 * If someone else asked us to change the rd lets only bother 2103 * checking if the alpha2 changes if CRDA was already called 2104 */ 2105 if (!regdom_changes(rd->alpha2)) 2106 return -EALREADY; 2107 } 2108 2109 /* 2110 * Now lets set the regulatory domain, update all driver channels 2111 * and finally inform them of what we have done, in case they want 2112 * to review or adjust their own settings based on their own 2113 * internal EEPROM data 2114 */ 2115 2116 if (!is_valid_rd(rd)) { 2117 pr_err("Invalid regulatory domain detected:\n"); 2118 print_regdomain_info(rd); 2119 return -EINVAL; 2120 } 2121 2122 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2123 if (!request_wiphy && 2124 (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2125 lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) { 2126 schedule_delayed_work(®_timeout, 0); 2127 return -ENODEV; 2128 } 2129 2130 if (!lr->intersect) { 2131 if (lr->initiator != NL80211_REGDOM_SET_BY_DRIVER) { 2132 reset_regdomains(false, rd); 2133 return 0; 2134 } 2135 2136 /* 2137 * For a driver hint, lets copy the regulatory domain the 2138 * driver wanted to the wiphy to deal with conflicts 2139 */ 2140 2141 /* 2142 * Userspace could have sent two replies with only 2143 * one kernel request. 2144 */ 2145 if (request_wiphy->regd) 2146 return -EALREADY; 2147 2148 regd = reg_copy_regd(rd); 2149 if (IS_ERR(regd)) 2150 return PTR_ERR(regd); 2151 2152 rcu_assign_pointer(request_wiphy->regd, regd); 2153 reset_regdomains(false, rd); 2154 return 0; 2155 } 2156 2157 /* Intersection requires a bit more work */ 2158 2159 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2160 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2161 if (!intersected_rd) 2162 return -EINVAL; 2163 2164 /* 2165 * We can trash what CRDA provided now. 2166 * However if a driver requested this specific regulatory 2167 * domain we keep it for its private use 2168 */ 2169 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER) { 2170 const struct ieee80211_regdomain *tmp; 2171 2172 tmp = get_wiphy_regdom(request_wiphy); 2173 rcu_assign_pointer(request_wiphy->regd, rd); 2174 rcu_free_regdom(tmp); 2175 } else { 2176 kfree(rd); 2177 } 2178 2179 rd = NULL; 2180 2181 reset_regdomains(false, intersected_rd); 2182 2183 return 0; 2184 } 2185 2186 return -EINVAL; 2187 } 2188 2189 2190 /* 2191 * Use this call to set the current regulatory domain. Conflicts with 2192 * multiple drivers can be ironed out later. Caller must've already 2193 * kmalloc'd the rd structure. 2194 */ 2195 int set_regdom(const struct ieee80211_regdomain *rd) 2196 { 2197 struct regulatory_request *lr; 2198 int r; 2199 2200 lr = get_last_request(); 2201 2202 /* Note that this doesn't update the wiphys, this is done below */ 2203 r = __set_regdom(rd); 2204 if (r) { 2205 if (r == -EALREADY) 2206 reg_set_request_processed(); 2207 2208 kfree(rd); 2209 return r; 2210 } 2211 2212 /* This would make this whole thing pointless */ 2213 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 2214 return -EINVAL; 2215 2216 /* update all wiphys now with the new established regulatory domain */ 2217 update_all_wiphy_regulatory(lr->initiator); 2218 2219 print_regdomain(get_cfg80211_regdom()); 2220 2221 nl80211_send_reg_change_event(lr); 2222 2223 reg_set_request_processed(); 2224 2225 return 0; 2226 } 2227 2228 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) 2229 { 2230 struct regulatory_request *lr; 2231 u8 alpha2[2]; 2232 bool add = false; 2233 2234 rcu_read_lock(); 2235 lr = get_last_request(); 2236 if (lr && !lr->processed) { 2237 memcpy(alpha2, lr->alpha2, 2); 2238 add = true; 2239 } 2240 rcu_read_unlock(); 2241 2242 if (add) 2243 return add_uevent_var(env, "COUNTRY=%c%c", 2244 alpha2[0], alpha2[1]); 2245 return 0; 2246 } 2247 2248 void wiphy_regulatory_register(struct wiphy *wiphy) 2249 { 2250 struct regulatory_request *lr; 2251 2252 if (!reg_dev_ignore_cell_hint(wiphy)) 2253 reg_num_devs_support_basehint++; 2254 2255 lr = get_last_request(); 2256 wiphy_update_regulatory(wiphy, lr->initiator); 2257 } 2258 2259 void wiphy_regulatory_deregister(struct wiphy *wiphy) 2260 { 2261 struct wiphy *request_wiphy = NULL; 2262 struct regulatory_request *lr; 2263 2264 lr = get_last_request(); 2265 2266 if (!reg_dev_ignore_cell_hint(wiphy)) 2267 reg_num_devs_support_basehint--; 2268 2269 rcu_free_regdom(get_wiphy_regdom(wiphy)); 2270 rcu_assign_pointer(wiphy->regd, NULL); 2271 2272 if (lr) 2273 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2274 2275 if (!request_wiphy || request_wiphy != wiphy) 2276 return; 2277 2278 lr->wiphy_idx = WIPHY_IDX_INVALID; 2279 lr->country_ie_env = ENVIRON_ANY; 2280 } 2281 2282 static void reg_timeout_work(struct work_struct *work) 2283 { 2284 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 2285 rtnl_lock(); 2286 restore_regulatory_settings(true); 2287 rtnl_unlock(); 2288 } 2289 2290 int __init regulatory_init(void) 2291 { 2292 int err = 0; 2293 2294 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 2295 if (IS_ERR(reg_pdev)) 2296 return PTR_ERR(reg_pdev); 2297 2298 reg_pdev->dev.type = ®_device_type; 2299 2300 spin_lock_init(®_requests_lock); 2301 spin_lock_init(®_pending_beacons_lock); 2302 2303 reg_regdb_size_check(); 2304 2305 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 2306 2307 user_alpha2[0] = '9'; 2308 user_alpha2[1] = '7'; 2309 2310 /* We always try to get an update for the static regdomain */ 2311 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 2312 if (err) { 2313 if (err == -ENOMEM) 2314 return err; 2315 /* 2316 * N.B. kobject_uevent_env() can fail mainly for when we're out 2317 * memory which is handled and propagated appropriately above 2318 * but it can also fail during a netlink_broadcast() or during 2319 * early boot for call_usermodehelper(). For now treat these 2320 * errors as non-fatal. 2321 */ 2322 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 2323 } 2324 2325 /* 2326 * Finally, if the user set the module parameter treat it 2327 * as a user hint. 2328 */ 2329 if (!is_world_regdom(ieee80211_regdom)) 2330 regulatory_hint_user(ieee80211_regdom, 2331 NL80211_USER_REG_HINT_USER); 2332 2333 return 0; 2334 } 2335 2336 void regulatory_exit(void) 2337 { 2338 struct regulatory_request *reg_request, *tmp; 2339 struct reg_beacon *reg_beacon, *btmp; 2340 2341 cancel_work_sync(®_work); 2342 cancel_delayed_work_sync(®_timeout); 2343 2344 /* Lock to suppress warnings */ 2345 rtnl_lock(); 2346 reset_regdomains(true, NULL); 2347 rtnl_unlock(); 2348 2349 dev_set_uevent_suppress(®_pdev->dev, true); 2350 2351 platform_device_unregister(reg_pdev); 2352 2353 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 2354 list_del(®_beacon->list); 2355 kfree(reg_beacon); 2356 } 2357 2358 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 2359 list_del(®_beacon->list); 2360 kfree(reg_beacon); 2361 } 2362 2363 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 2364 list_del(®_request->list); 2365 kfree(reg_request); 2366 } 2367 } 2368