xref: /openbmc/linux/net/wireless/reg.c (revision 5b628549)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2019 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 
137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 {
139 	return rcu_dereference_rtnl(cfg80211_regdomain);
140 }
141 
142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
143 {
144 	return rcu_dereference_rtnl(wiphy->regd);
145 }
146 
147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
148 {
149 	switch (dfs_region) {
150 	case NL80211_DFS_UNSET:
151 		return "unset";
152 	case NL80211_DFS_FCC:
153 		return "FCC";
154 	case NL80211_DFS_ETSI:
155 		return "ETSI";
156 	case NL80211_DFS_JP:
157 		return "JP";
158 	}
159 	return "Unknown";
160 }
161 
162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
163 {
164 	const struct ieee80211_regdomain *regd = NULL;
165 	const struct ieee80211_regdomain *wiphy_regd = NULL;
166 
167 	regd = get_cfg80211_regdom();
168 	if (!wiphy)
169 		goto out;
170 
171 	wiphy_regd = get_wiphy_regdom(wiphy);
172 	if (!wiphy_regd)
173 		goto out;
174 
175 	if (wiphy_regd->dfs_region == regd->dfs_region)
176 		goto out;
177 
178 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179 		 dev_name(&wiphy->dev),
180 		 reg_dfs_region_str(wiphy_regd->dfs_region),
181 		 reg_dfs_region_str(regd->dfs_region));
182 
183 out:
184 	return regd->dfs_region;
185 }
186 
187 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
188 {
189 	if (!r)
190 		return;
191 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
192 }
193 
194 static struct regulatory_request *get_last_request(void)
195 {
196 	return rcu_dereference_rtnl(last_request);
197 }
198 
199 /* Used to queue up regulatory hints */
200 static LIST_HEAD(reg_requests_list);
201 static spinlock_t reg_requests_lock;
202 
203 /* Used to queue up beacon hints for review */
204 static LIST_HEAD(reg_pending_beacons);
205 static spinlock_t reg_pending_beacons_lock;
206 
207 /* Used to keep track of processed beacon hints */
208 static LIST_HEAD(reg_beacon_list);
209 
210 struct reg_beacon {
211 	struct list_head list;
212 	struct ieee80211_channel chan;
213 };
214 
215 static void reg_check_chans_work(struct work_struct *work);
216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
217 
218 static void reg_todo(struct work_struct *work);
219 static DECLARE_WORK(reg_work, reg_todo);
220 
221 /* We keep a static world regulatory domain in case of the absence of CRDA */
222 static const struct ieee80211_regdomain world_regdom = {
223 	.n_reg_rules = 8,
224 	.alpha2 =  "00",
225 	.reg_rules = {
226 		/* IEEE 802.11b/g, channels 1..11 */
227 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228 		/* IEEE 802.11b/g, channels 12..13. */
229 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
230 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
231 		/* IEEE 802.11 channel 14 - Only JP enables
232 		 * this and for 802.11b only */
233 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
234 			NL80211_RRF_NO_IR |
235 			NL80211_RRF_NO_OFDM),
236 		/* IEEE 802.11a, channel 36..48 */
237 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
238                         NL80211_RRF_NO_IR |
239                         NL80211_RRF_AUTO_BW),
240 
241 		/* IEEE 802.11a, channel 52..64 - DFS required */
242 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
243 			NL80211_RRF_NO_IR |
244 			NL80211_RRF_AUTO_BW |
245 			NL80211_RRF_DFS),
246 
247 		/* IEEE 802.11a, channel 100..144 - DFS required */
248 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
249 			NL80211_RRF_NO_IR |
250 			NL80211_RRF_DFS),
251 
252 		/* IEEE 802.11a, channel 149..165 */
253 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
254 			NL80211_RRF_NO_IR),
255 
256 		/* IEEE 802.11ad (60GHz), channels 1..3 */
257 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
258 	}
259 };
260 
261 /* protected by RTNL */
262 static const struct ieee80211_regdomain *cfg80211_world_regdom =
263 	&world_regdom;
264 
265 static char *ieee80211_regdom = "00";
266 static char user_alpha2[2];
267 static const struct ieee80211_regdomain *cfg80211_user_regdom;
268 
269 module_param(ieee80211_regdom, charp, 0444);
270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
271 
272 static void reg_free_request(struct regulatory_request *request)
273 {
274 	if (request == &core_request_world)
275 		return;
276 
277 	if (request != get_last_request())
278 		kfree(request);
279 }
280 
281 static void reg_free_last_request(void)
282 {
283 	struct regulatory_request *lr = get_last_request();
284 
285 	if (lr != &core_request_world && lr)
286 		kfree_rcu(lr, rcu_head);
287 }
288 
289 static void reg_update_last_request(struct regulatory_request *request)
290 {
291 	struct regulatory_request *lr;
292 
293 	lr = get_last_request();
294 	if (lr == request)
295 		return;
296 
297 	reg_free_last_request();
298 	rcu_assign_pointer(last_request, request);
299 }
300 
301 static void reset_regdomains(bool full_reset,
302 			     const struct ieee80211_regdomain *new_regdom)
303 {
304 	const struct ieee80211_regdomain *r;
305 
306 	ASSERT_RTNL();
307 
308 	r = get_cfg80211_regdom();
309 
310 	/* avoid freeing static information or freeing something twice */
311 	if (r == cfg80211_world_regdom)
312 		r = NULL;
313 	if (cfg80211_world_regdom == &world_regdom)
314 		cfg80211_world_regdom = NULL;
315 	if (r == &world_regdom)
316 		r = NULL;
317 
318 	rcu_free_regdom(r);
319 	rcu_free_regdom(cfg80211_world_regdom);
320 
321 	cfg80211_world_regdom = &world_regdom;
322 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
323 
324 	if (!full_reset)
325 		return;
326 
327 	reg_update_last_request(&core_request_world);
328 }
329 
330 /*
331  * Dynamic world regulatory domain requested by the wireless
332  * core upon initialization
333  */
334 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
335 {
336 	struct regulatory_request *lr;
337 
338 	lr = get_last_request();
339 
340 	WARN_ON(!lr);
341 
342 	reset_regdomains(false, rd);
343 
344 	cfg80211_world_regdom = rd;
345 }
346 
347 bool is_world_regdom(const char *alpha2)
348 {
349 	if (!alpha2)
350 		return false;
351 	return alpha2[0] == '0' && alpha2[1] == '0';
352 }
353 
354 static bool is_alpha2_set(const char *alpha2)
355 {
356 	if (!alpha2)
357 		return false;
358 	return alpha2[0] && alpha2[1];
359 }
360 
361 static bool is_unknown_alpha2(const char *alpha2)
362 {
363 	if (!alpha2)
364 		return false;
365 	/*
366 	 * Special case where regulatory domain was built by driver
367 	 * but a specific alpha2 cannot be determined
368 	 */
369 	return alpha2[0] == '9' && alpha2[1] == '9';
370 }
371 
372 static bool is_intersected_alpha2(const char *alpha2)
373 {
374 	if (!alpha2)
375 		return false;
376 	/*
377 	 * Special case where regulatory domain is the
378 	 * result of an intersection between two regulatory domain
379 	 * structures
380 	 */
381 	return alpha2[0] == '9' && alpha2[1] == '8';
382 }
383 
384 static bool is_an_alpha2(const char *alpha2)
385 {
386 	if (!alpha2)
387 		return false;
388 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
389 }
390 
391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
392 {
393 	if (!alpha2_x || !alpha2_y)
394 		return false;
395 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
396 }
397 
398 static bool regdom_changes(const char *alpha2)
399 {
400 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
401 
402 	if (!r)
403 		return true;
404 	return !alpha2_equal(r->alpha2, alpha2);
405 }
406 
407 /*
408  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410  * has ever been issued.
411  */
412 static bool is_user_regdom_saved(void)
413 {
414 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
415 		return false;
416 
417 	/* This would indicate a mistake on the design */
418 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
419 		 "Unexpected user alpha2: %c%c\n",
420 		 user_alpha2[0], user_alpha2[1]))
421 		return false;
422 
423 	return true;
424 }
425 
426 static const struct ieee80211_regdomain *
427 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
428 {
429 	struct ieee80211_regdomain *regd;
430 	int size_of_regd;
431 	unsigned int i;
432 
433 	size_of_regd =
434 		sizeof(struct ieee80211_regdomain) +
435 		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
436 
437 	regd = kzalloc(size_of_regd, GFP_KERNEL);
438 	if (!regd)
439 		return ERR_PTR(-ENOMEM);
440 
441 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
442 
443 	for (i = 0; i < src_regd->n_reg_rules; i++)
444 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
445 		       sizeof(struct ieee80211_reg_rule));
446 
447 	return regd;
448 }
449 
450 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
451 {
452 	ASSERT_RTNL();
453 
454 	if (!IS_ERR(cfg80211_user_regdom))
455 		kfree(cfg80211_user_regdom);
456 	cfg80211_user_regdom = reg_copy_regd(rd);
457 }
458 
459 struct reg_regdb_apply_request {
460 	struct list_head list;
461 	const struct ieee80211_regdomain *regdom;
462 };
463 
464 static LIST_HEAD(reg_regdb_apply_list);
465 static DEFINE_MUTEX(reg_regdb_apply_mutex);
466 
467 static void reg_regdb_apply(struct work_struct *work)
468 {
469 	struct reg_regdb_apply_request *request;
470 
471 	rtnl_lock();
472 
473 	mutex_lock(&reg_regdb_apply_mutex);
474 	while (!list_empty(&reg_regdb_apply_list)) {
475 		request = list_first_entry(&reg_regdb_apply_list,
476 					   struct reg_regdb_apply_request,
477 					   list);
478 		list_del(&request->list);
479 
480 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
481 		kfree(request);
482 	}
483 	mutex_unlock(&reg_regdb_apply_mutex);
484 
485 	rtnl_unlock();
486 }
487 
488 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
489 
490 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
491 {
492 	struct reg_regdb_apply_request *request;
493 
494 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
495 	if (!request) {
496 		kfree(regdom);
497 		return -ENOMEM;
498 	}
499 
500 	request->regdom = regdom;
501 
502 	mutex_lock(&reg_regdb_apply_mutex);
503 	list_add_tail(&request->list, &reg_regdb_apply_list);
504 	mutex_unlock(&reg_regdb_apply_mutex);
505 
506 	schedule_work(&reg_regdb_work);
507 	return 0;
508 }
509 
510 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
511 /* Max number of consecutive attempts to communicate with CRDA  */
512 #define REG_MAX_CRDA_TIMEOUTS 10
513 
514 static u32 reg_crda_timeouts;
515 
516 static void crda_timeout_work(struct work_struct *work);
517 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
518 
519 static void crda_timeout_work(struct work_struct *work)
520 {
521 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
522 	rtnl_lock();
523 	reg_crda_timeouts++;
524 	restore_regulatory_settings(true, false);
525 	rtnl_unlock();
526 }
527 
528 static void cancel_crda_timeout(void)
529 {
530 	cancel_delayed_work(&crda_timeout);
531 }
532 
533 static void cancel_crda_timeout_sync(void)
534 {
535 	cancel_delayed_work_sync(&crda_timeout);
536 }
537 
538 static void reset_crda_timeouts(void)
539 {
540 	reg_crda_timeouts = 0;
541 }
542 
543 /*
544  * This lets us keep regulatory code which is updated on a regulatory
545  * basis in userspace.
546  */
547 static int call_crda(const char *alpha2)
548 {
549 	char country[12];
550 	char *env[] = { country, NULL };
551 	int ret;
552 
553 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
554 		 alpha2[0], alpha2[1]);
555 
556 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
557 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
558 		return -EINVAL;
559 	}
560 
561 	if (!is_world_regdom((char *) alpha2))
562 		pr_debug("Calling CRDA for country: %c%c\n",
563 			 alpha2[0], alpha2[1]);
564 	else
565 		pr_debug("Calling CRDA to update world regulatory domain\n");
566 
567 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
568 	if (ret)
569 		return ret;
570 
571 	queue_delayed_work(system_power_efficient_wq,
572 			   &crda_timeout, msecs_to_jiffies(3142));
573 	return 0;
574 }
575 #else
576 static inline void cancel_crda_timeout(void) {}
577 static inline void cancel_crda_timeout_sync(void) {}
578 static inline void reset_crda_timeouts(void) {}
579 static inline int call_crda(const char *alpha2)
580 {
581 	return -ENODATA;
582 }
583 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
584 
585 /* code to directly load a firmware database through request_firmware */
586 static const struct fwdb_header *regdb;
587 
588 struct fwdb_country {
589 	u8 alpha2[2];
590 	__be16 coll_ptr;
591 	/* this struct cannot be extended */
592 } __packed __aligned(4);
593 
594 struct fwdb_collection {
595 	u8 len;
596 	u8 n_rules;
597 	u8 dfs_region;
598 	/* no optional data yet */
599 	/* aligned to 2, then followed by __be16 array of rule pointers */
600 } __packed __aligned(4);
601 
602 enum fwdb_flags {
603 	FWDB_FLAG_NO_OFDM	= BIT(0),
604 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
605 	FWDB_FLAG_DFS		= BIT(2),
606 	FWDB_FLAG_NO_IR		= BIT(3),
607 	FWDB_FLAG_AUTO_BW	= BIT(4),
608 };
609 
610 struct fwdb_wmm_ac {
611 	u8 ecw;
612 	u8 aifsn;
613 	__be16 cot;
614 } __packed;
615 
616 struct fwdb_wmm_rule {
617 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
618 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
619 } __packed;
620 
621 struct fwdb_rule {
622 	u8 len;
623 	u8 flags;
624 	__be16 max_eirp;
625 	__be32 start, end, max_bw;
626 	/* start of optional data */
627 	__be16 cac_timeout;
628 	__be16 wmm_ptr;
629 } __packed __aligned(4);
630 
631 #define FWDB_MAGIC 0x52474442
632 #define FWDB_VERSION 20
633 
634 struct fwdb_header {
635 	__be32 magic;
636 	__be32 version;
637 	struct fwdb_country country[];
638 } __packed __aligned(4);
639 
640 static int ecw2cw(int ecw)
641 {
642 	return (1 << ecw) - 1;
643 }
644 
645 static bool valid_wmm(struct fwdb_wmm_rule *rule)
646 {
647 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
648 	int i;
649 
650 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
651 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
652 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
653 		u8 aifsn = ac[i].aifsn;
654 
655 		if (cw_min >= cw_max)
656 			return false;
657 
658 		if (aifsn < 1)
659 			return false;
660 	}
661 
662 	return true;
663 }
664 
665 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
666 {
667 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
668 
669 	if ((u8 *)rule + sizeof(rule->len) > data + size)
670 		return false;
671 
672 	/* mandatory fields */
673 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
674 		return false;
675 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
676 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
677 		struct fwdb_wmm_rule *wmm;
678 
679 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
680 			return false;
681 
682 		wmm = (void *)(data + wmm_ptr);
683 
684 		if (!valid_wmm(wmm))
685 			return false;
686 	}
687 	return true;
688 }
689 
690 static bool valid_country(const u8 *data, unsigned int size,
691 			  const struct fwdb_country *country)
692 {
693 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
694 	struct fwdb_collection *coll = (void *)(data + ptr);
695 	__be16 *rules_ptr;
696 	unsigned int i;
697 
698 	/* make sure we can read len/n_rules */
699 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
700 		return false;
701 
702 	/* make sure base struct and all rules fit */
703 	if ((u8 *)coll + ALIGN(coll->len, 2) +
704 	    (coll->n_rules * 2) > data + size)
705 		return false;
706 
707 	/* mandatory fields must exist */
708 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
709 		return false;
710 
711 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
712 
713 	for (i = 0; i < coll->n_rules; i++) {
714 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
715 
716 		if (!valid_rule(data, size, rule_ptr))
717 			return false;
718 	}
719 
720 	return true;
721 }
722 
723 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
724 static struct key *builtin_regdb_keys;
725 
726 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
727 {
728 	const u8 *end = p + buflen;
729 	size_t plen;
730 	key_ref_t key;
731 
732 	while (p < end) {
733 		/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
734 		 * than 256 bytes in size.
735 		 */
736 		if (end - p < 4)
737 			goto dodgy_cert;
738 		if (p[0] != 0x30 &&
739 		    p[1] != 0x82)
740 			goto dodgy_cert;
741 		plen = (p[2] << 8) | p[3];
742 		plen += 4;
743 		if (plen > end - p)
744 			goto dodgy_cert;
745 
746 		key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
747 					   "asymmetric", NULL, p, plen,
748 					   ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
749 					    KEY_USR_VIEW | KEY_USR_READ),
750 					   KEY_ALLOC_NOT_IN_QUOTA |
751 					   KEY_ALLOC_BUILT_IN |
752 					   KEY_ALLOC_BYPASS_RESTRICTION);
753 		if (IS_ERR(key)) {
754 			pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
755 			       PTR_ERR(key));
756 		} else {
757 			pr_notice("Loaded X.509 cert '%s'\n",
758 				  key_ref_to_ptr(key)->description);
759 			key_ref_put(key);
760 		}
761 		p += plen;
762 	}
763 
764 	return;
765 
766 dodgy_cert:
767 	pr_err("Problem parsing in-kernel X.509 certificate list\n");
768 }
769 
770 static int __init load_builtin_regdb_keys(void)
771 {
772 	builtin_regdb_keys =
773 		keyring_alloc(".builtin_regdb_keys",
774 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
775 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
776 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
777 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
778 	if (IS_ERR(builtin_regdb_keys))
779 		return PTR_ERR(builtin_regdb_keys);
780 
781 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
782 
783 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
784 	load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
785 #endif
786 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
787 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
788 		load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
789 #endif
790 
791 	return 0;
792 }
793 
794 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
795 {
796 	const struct firmware *sig;
797 	bool result;
798 
799 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
800 		return false;
801 
802 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
803 					builtin_regdb_keys,
804 					VERIFYING_UNSPECIFIED_SIGNATURE,
805 					NULL, NULL) == 0;
806 
807 	release_firmware(sig);
808 
809 	return result;
810 }
811 
812 static void free_regdb_keyring(void)
813 {
814 	key_put(builtin_regdb_keys);
815 }
816 #else
817 static int load_builtin_regdb_keys(void)
818 {
819 	return 0;
820 }
821 
822 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
823 {
824 	return true;
825 }
826 
827 static void free_regdb_keyring(void)
828 {
829 }
830 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
831 
832 static bool valid_regdb(const u8 *data, unsigned int size)
833 {
834 	const struct fwdb_header *hdr = (void *)data;
835 	const struct fwdb_country *country;
836 
837 	if (size < sizeof(*hdr))
838 		return false;
839 
840 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
841 		return false;
842 
843 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
844 		return false;
845 
846 	if (!regdb_has_valid_signature(data, size))
847 		return false;
848 
849 	country = &hdr->country[0];
850 	while ((u8 *)(country + 1) <= data + size) {
851 		if (!country->coll_ptr)
852 			break;
853 		if (!valid_country(data, size, country))
854 			return false;
855 		country++;
856 	}
857 
858 	return true;
859 }
860 
861 static void set_wmm_rule(const struct fwdb_header *db,
862 			 const struct fwdb_country *country,
863 			 const struct fwdb_rule *rule,
864 			 struct ieee80211_reg_rule *rrule)
865 {
866 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
867 	struct fwdb_wmm_rule *wmm;
868 	unsigned int i, wmm_ptr;
869 
870 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
871 	wmm = (void *)((u8 *)db + wmm_ptr);
872 
873 	if (!valid_wmm(wmm)) {
874 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
875 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
876 		       country->alpha2[0], country->alpha2[1]);
877 		return;
878 	}
879 
880 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
881 		wmm_rule->client[i].cw_min =
882 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
883 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
884 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
885 		wmm_rule->client[i].cot =
886 			1000 * be16_to_cpu(wmm->client[i].cot);
887 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
888 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
889 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
890 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
891 	}
892 
893 	rrule->has_wmm = true;
894 }
895 
896 static int __regdb_query_wmm(const struct fwdb_header *db,
897 			     const struct fwdb_country *country, int freq,
898 			     struct ieee80211_reg_rule *rrule)
899 {
900 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
901 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
902 	int i;
903 
904 	for (i = 0; i < coll->n_rules; i++) {
905 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
906 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
907 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
908 
909 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
910 			continue;
911 
912 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
913 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
914 			set_wmm_rule(db, country, rule, rrule);
915 			return 0;
916 		}
917 	}
918 
919 	return -ENODATA;
920 }
921 
922 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
923 {
924 	const struct fwdb_header *hdr = regdb;
925 	const struct fwdb_country *country;
926 
927 	if (!regdb)
928 		return -ENODATA;
929 
930 	if (IS_ERR(regdb))
931 		return PTR_ERR(regdb);
932 
933 	country = &hdr->country[0];
934 	while (country->coll_ptr) {
935 		if (alpha2_equal(alpha2, country->alpha2))
936 			return __regdb_query_wmm(regdb, country, freq, rule);
937 
938 		country++;
939 	}
940 
941 	return -ENODATA;
942 }
943 EXPORT_SYMBOL(reg_query_regdb_wmm);
944 
945 static int regdb_query_country(const struct fwdb_header *db,
946 			       const struct fwdb_country *country)
947 {
948 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
949 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
950 	struct ieee80211_regdomain *regdom;
951 	unsigned int size_of_regd, i;
952 
953 	size_of_regd = sizeof(struct ieee80211_regdomain) +
954 		coll->n_rules * sizeof(struct ieee80211_reg_rule);
955 
956 	regdom = kzalloc(size_of_regd, GFP_KERNEL);
957 	if (!regdom)
958 		return -ENOMEM;
959 
960 	regdom->n_reg_rules = coll->n_rules;
961 	regdom->alpha2[0] = country->alpha2[0];
962 	regdom->alpha2[1] = country->alpha2[1];
963 	regdom->dfs_region = coll->dfs_region;
964 
965 	for (i = 0; i < regdom->n_reg_rules; i++) {
966 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
967 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
968 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
969 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
970 
971 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
972 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
973 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
974 
975 		rrule->power_rule.max_antenna_gain = 0;
976 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
977 
978 		rrule->flags = 0;
979 		if (rule->flags & FWDB_FLAG_NO_OFDM)
980 			rrule->flags |= NL80211_RRF_NO_OFDM;
981 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
982 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
983 		if (rule->flags & FWDB_FLAG_DFS)
984 			rrule->flags |= NL80211_RRF_DFS;
985 		if (rule->flags & FWDB_FLAG_NO_IR)
986 			rrule->flags |= NL80211_RRF_NO_IR;
987 		if (rule->flags & FWDB_FLAG_AUTO_BW)
988 			rrule->flags |= NL80211_RRF_AUTO_BW;
989 
990 		rrule->dfs_cac_ms = 0;
991 
992 		/* handle optional data */
993 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
994 			rrule->dfs_cac_ms =
995 				1000 * be16_to_cpu(rule->cac_timeout);
996 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
997 			set_wmm_rule(db, country, rule, rrule);
998 	}
999 
1000 	return reg_schedule_apply(regdom);
1001 }
1002 
1003 static int query_regdb(const char *alpha2)
1004 {
1005 	const struct fwdb_header *hdr = regdb;
1006 	const struct fwdb_country *country;
1007 
1008 	ASSERT_RTNL();
1009 
1010 	if (IS_ERR(regdb))
1011 		return PTR_ERR(regdb);
1012 
1013 	country = &hdr->country[0];
1014 	while (country->coll_ptr) {
1015 		if (alpha2_equal(alpha2, country->alpha2))
1016 			return regdb_query_country(regdb, country);
1017 		country++;
1018 	}
1019 
1020 	return -ENODATA;
1021 }
1022 
1023 static void regdb_fw_cb(const struct firmware *fw, void *context)
1024 {
1025 	int set_error = 0;
1026 	bool restore = true;
1027 	void *db;
1028 
1029 	if (!fw) {
1030 		pr_info("failed to load regulatory.db\n");
1031 		set_error = -ENODATA;
1032 	} else if (!valid_regdb(fw->data, fw->size)) {
1033 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1034 		set_error = -EINVAL;
1035 	}
1036 
1037 	rtnl_lock();
1038 	if (regdb && !IS_ERR(regdb)) {
1039 		/* negative case - a bug
1040 		 * positive case - can happen due to race in case of multiple cb's in
1041 		 * queue, due to usage of asynchronous callback
1042 		 *
1043 		 * Either case, just restore and free new db.
1044 		 */
1045 	} else if (set_error) {
1046 		regdb = ERR_PTR(set_error);
1047 	} else if (fw) {
1048 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1049 		if (db) {
1050 			regdb = db;
1051 			restore = context && query_regdb(context);
1052 		} else {
1053 			restore = true;
1054 		}
1055 	}
1056 
1057 	if (restore)
1058 		restore_regulatory_settings(true, false);
1059 
1060 	rtnl_unlock();
1061 
1062 	kfree(context);
1063 
1064 	release_firmware(fw);
1065 }
1066 
1067 static int query_regdb_file(const char *alpha2)
1068 {
1069 	ASSERT_RTNL();
1070 
1071 	if (regdb)
1072 		return query_regdb(alpha2);
1073 
1074 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1075 	if (!alpha2)
1076 		return -ENOMEM;
1077 
1078 	return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1079 				       &reg_pdev->dev, GFP_KERNEL,
1080 				       (void *)alpha2, regdb_fw_cb);
1081 }
1082 
1083 int reg_reload_regdb(void)
1084 {
1085 	const struct firmware *fw;
1086 	void *db;
1087 	int err;
1088 
1089 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1090 	if (err)
1091 		return err;
1092 
1093 	if (!valid_regdb(fw->data, fw->size)) {
1094 		err = -ENODATA;
1095 		goto out;
1096 	}
1097 
1098 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1099 	if (!db) {
1100 		err = -ENOMEM;
1101 		goto out;
1102 	}
1103 
1104 	rtnl_lock();
1105 	if (!IS_ERR_OR_NULL(regdb))
1106 		kfree(regdb);
1107 	regdb = db;
1108 	rtnl_unlock();
1109 
1110  out:
1111 	release_firmware(fw);
1112 	return err;
1113 }
1114 
1115 static bool reg_query_database(struct regulatory_request *request)
1116 {
1117 	if (query_regdb_file(request->alpha2) == 0)
1118 		return true;
1119 
1120 	if (call_crda(request->alpha2) == 0)
1121 		return true;
1122 
1123 	return false;
1124 }
1125 
1126 bool reg_is_valid_request(const char *alpha2)
1127 {
1128 	struct regulatory_request *lr = get_last_request();
1129 
1130 	if (!lr || lr->processed)
1131 		return false;
1132 
1133 	return alpha2_equal(lr->alpha2, alpha2);
1134 }
1135 
1136 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1137 {
1138 	struct regulatory_request *lr = get_last_request();
1139 
1140 	/*
1141 	 * Follow the driver's regulatory domain, if present, unless a country
1142 	 * IE has been processed or a user wants to help complaince further
1143 	 */
1144 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1145 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1146 	    wiphy->regd)
1147 		return get_wiphy_regdom(wiphy);
1148 
1149 	return get_cfg80211_regdom();
1150 }
1151 
1152 static unsigned int
1153 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1154 				 const struct ieee80211_reg_rule *rule)
1155 {
1156 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1157 	const struct ieee80211_freq_range *freq_range_tmp;
1158 	const struct ieee80211_reg_rule *tmp;
1159 	u32 start_freq, end_freq, idx, no;
1160 
1161 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1162 		if (rule == &rd->reg_rules[idx])
1163 			break;
1164 
1165 	if (idx == rd->n_reg_rules)
1166 		return 0;
1167 
1168 	/* get start_freq */
1169 	no = idx;
1170 
1171 	while (no) {
1172 		tmp = &rd->reg_rules[--no];
1173 		freq_range_tmp = &tmp->freq_range;
1174 
1175 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1176 			break;
1177 
1178 		freq_range = freq_range_tmp;
1179 	}
1180 
1181 	start_freq = freq_range->start_freq_khz;
1182 
1183 	/* get end_freq */
1184 	freq_range = &rule->freq_range;
1185 	no = idx;
1186 
1187 	while (no < rd->n_reg_rules - 1) {
1188 		tmp = &rd->reg_rules[++no];
1189 		freq_range_tmp = &tmp->freq_range;
1190 
1191 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1192 			break;
1193 
1194 		freq_range = freq_range_tmp;
1195 	}
1196 
1197 	end_freq = freq_range->end_freq_khz;
1198 
1199 	return end_freq - start_freq;
1200 }
1201 
1202 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1203 				   const struct ieee80211_reg_rule *rule)
1204 {
1205 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1206 
1207 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1208 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1209 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1210 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1211 
1212 	/*
1213 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1214 	 * are not allowed.
1215 	 */
1216 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1217 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1218 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1219 
1220 	return bw;
1221 }
1222 
1223 /* Sanity check on a regulatory rule */
1224 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1225 {
1226 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1227 	u32 freq_diff;
1228 
1229 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1230 		return false;
1231 
1232 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1233 		return false;
1234 
1235 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1236 
1237 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1238 	    freq_range->max_bandwidth_khz > freq_diff)
1239 		return false;
1240 
1241 	return true;
1242 }
1243 
1244 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1245 {
1246 	const struct ieee80211_reg_rule *reg_rule = NULL;
1247 	unsigned int i;
1248 
1249 	if (!rd->n_reg_rules)
1250 		return false;
1251 
1252 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1253 		return false;
1254 
1255 	for (i = 0; i < rd->n_reg_rules; i++) {
1256 		reg_rule = &rd->reg_rules[i];
1257 		if (!is_valid_reg_rule(reg_rule))
1258 			return false;
1259 	}
1260 
1261 	return true;
1262 }
1263 
1264 /**
1265  * freq_in_rule_band - tells us if a frequency is in a frequency band
1266  * @freq_range: frequency rule we want to query
1267  * @freq_khz: frequency we are inquiring about
1268  *
1269  * This lets us know if a specific frequency rule is or is not relevant to
1270  * a specific frequency's band. Bands are device specific and artificial
1271  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1272  * however it is safe for now to assume that a frequency rule should not be
1273  * part of a frequency's band if the start freq or end freq are off by more
1274  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1275  * 60 GHz band.
1276  * This resolution can be lowered and should be considered as we add
1277  * regulatory rule support for other "bands".
1278  **/
1279 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1280 			      u32 freq_khz)
1281 {
1282 #define ONE_GHZ_IN_KHZ	1000000
1283 	/*
1284 	 * From 802.11ad: directional multi-gigabit (DMG):
1285 	 * Pertaining to operation in a frequency band containing a channel
1286 	 * with the Channel starting frequency above 45 GHz.
1287 	 */
1288 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1289 			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1290 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1291 		return true;
1292 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1293 		return true;
1294 	return false;
1295 #undef ONE_GHZ_IN_KHZ
1296 }
1297 
1298 /*
1299  * Later on we can perhaps use the more restrictive DFS
1300  * region but we don't have information for that yet so
1301  * for now simply disallow conflicts.
1302  */
1303 static enum nl80211_dfs_regions
1304 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1305 			 const enum nl80211_dfs_regions dfs_region2)
1306 {
1307 	if (dfs_region1 != dfs_region2)
1308 		return NL80211_DFS_UNSET;
1309 	return dfs_region1;
1310 }
1311 
1312 /*
1313  * Helper for regdom_intersect(), this does the real
1314  * mathematical intersection fun
1315  */
1316 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1317 			       const struct ieee80211_regdomain *rd2,
1318 			       const struct ieee80211_reg_rule *rule1,
1319 			       const struct ieee80211_reg_rule *rule2,
1320 			       struct ieee80211_reg_rule *intersected_rule)
1321 {
1322 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1323 	struct ieee80211_freq_range *freq_range;
1324 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1325 	struct ieee80211_power_rule *power_rule;
1326 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1327 
1328 	freq_range1 = &rule1->freq_range;
1329 	freq_range2 = &rule2->freq_range;
1330 	freq_range = &intersected_rule->freq_range;
1331 
1332 	power_rule1 = &rule1->power_rule;
1333 	power_rule2 = &rule2->power_rule;
1334 	power_rule = &intersected_rule->power_rule;
1335 
1336 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1337 					 freq_range2->start_freq_khz);
1338 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1339 				       freq_range2->end_freq_khz);
1340 
1341 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1342 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1343 
1344 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1345 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1346 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1347 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1348 
1349 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1350 
1351 	intersected_rule->flags = rule1->flags | rule2->flags;
1352 
1353 	/*
1354 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1355 	 * set AUTO_BW in intersected rule also. Next we will
1356 	 * calculate BW correctly in handle_channel function.
1357 	 * In other case remove AUTO_BW flag while we calculate
1358 	 * maximum bandwidth correctly and auto calculation is
1359 	 * not required.
1360 	 */
1361 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1362 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1363 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1364 	else
1365 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1366 
1367 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1368 	if (freq_range->max_bandwidth_khz > freq_diff)
1369 		freq_range->max_bandwidth_khz = freq_diff;
1370 
1371 	power_rule->max_eirp = min(power_rule1->max_eirp,
1372 		power_rule2->max_eirp);
1373 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1374 		power_rule2->max_antenna_gain);
1375 
1376 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1377 					   rule2->dfs_cac_ms);
1378 
1379 	if (!is_valid_reg_rule(intersected_rule))
1380 		return -EINVAL;
1381 
1382 	return 0;
1383 }
1384 
1385 /* check whether old rule contains new rule */
1386 static bool rule_contains(struct ieee80211_reg_rule *r1,
1387 			  struct ieee80211_reg_rule *r2)
1388 {
1389 	/* for simplicity, currently consider only same flags */
1390 	if (r1->flags != r2->flags)
1391 		return false;
1392 
1393 	/* verify r1 is more restrictive */
1394 	if ((r1->power_rule.max_antenna_gain >
1395 	     r2->power_rule.max_antenna_gain) ||
1396 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1397 		return false;
1398 
1399 	/* make sure r2's range is contained within r1 */
1400 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1401 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1402 		return false;
1403 
1404 	/* and finally verify that r1.max_bw >= r2.max_bw */
1405 	if (r1->freq_range.max_bandwidth_khz <
1406 	    r2->freq_range.max_bandwidth_khz)
1407 		return false;
1408 
1409 	return true;
1410 }
1411 
1412 /* add or extend current rules. do nothing if rule is already contained */
1413 static void add_rule(struct ieee80211_reg_rule *rule,
1414 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1415 {
1416 	struct ieee80211_reg_rule *tmp_rule;
1417 	int i;
1418 
1419 	for (i = 0; i < *n_rules; i++) {
1420 		tmp_rule = &reg_rules[i];
1421 		/* rule is already contained - do nothing */
1422 		if (rule_contains(tmp_rule, rule))
1423 			return;
1424 
1425 		/* extend rule if possible */
1426 		if (rule_contains(rule, tmp_rule)) {
1427 			memcpy(tmp_rule, rule, sizeof(*rule));
1428 			return;
1429 		}
1430 	}
1431 
1432 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1433 	(*n_rules)++;
1434 }
1435 
1436 /**
1437  * regdom_intersect - do the intersection between two regulatory domains
1438  * @rd1: first regulatory domain
1439  * @rd2: second regulatory domain
1440  *
1441  * Use this function to get the intersection between two regulatory domains.
1442  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1443  * as no one single alpha2 can represent this regulatory domain.
1444  *
1445  * Returns a pointer to the regulatory domain structure which will hold the
1446  * resulting intersection of rules between rd1 and rd2. We will
1447  * kzalloc() this structure for you.
1448  */
1449 static struct ieee80211_regdomain *
1450 regdom_intersect(const struct ieee80211_regdomain *rd1,
1451 		 const struct ieee80211_regdomain *rd2)
1452 {
1453 	int r, size_of_regd;
1454 	unsigned int x, y;
1455 	unsigned int num_rules = 0;
1456 	const struct ieee80211_reg_rule *rule1, *rule2;
1457 	struct ieee80211_reg_rule intersected_rule;
1458 	struct ieee80211_regdomain *rd;
1459 
1460 	if (!rd1 || !rd2)
1461 		return NULL;
1462 
1463 	/*
1464 	 * First we get a count of the rules we'll need, then we actually
1465 	 * build them. This is to so we can malloc() and free() a
1466 	 * regdomain once. The reason we use reg_rules_intersect() here
1467 	 * is it will return -EINVAL if the rule computed makes no sense.
1468 	 * All rules that do check out OK are valid.
1469 	 */
1470 
1471 	for (x = 0; x < rd1->n_reg_rules; x++) {
1472 		rule1 = &rd1->reg_rules[x];
1473 		for (y = 0; y < rd2->n_reg_rules; y++) {
1474 			rule2 = &rd2->reg_rules[y];
1475 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1476 						 &intersected_rule))
1477 				num_rules++;
1478 		}
1479 	}
1480 
1481 	if (!num_rules)
1482 		return NULL;
1483 
1484 	size_of_regd = sizeof(struct ieee80211_regdomain) +
1485 		       num_rules * sizeof(struct ieee80211_reg_rule);
1486 
1487 	rd = kzalloc(size_of_regd, GFP_KERNEL);
1488 	if (!rd)
1489 		return NULL;
1490 
1491 	for (x = 0; x < rd1->n_reg_rules; x++) {
1492 		rule1 = &rd1->reg_rules[x];
1493 		for (y = 0; y < rd2->n_reg_rules; y++) {
1494 			rule2 = &rd2->reg_rules[y];
1495 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1496 						&intersected_rule);
1497 			/*
1498 			 * No need to memset here the intersected rule here as
1499 			 * we're not using the stack anymore
1500 			 */
1501 			if (r)
1502 				continue;
1503 
1504 			add_rule(&intersected_rule, rd->reg_rules,
1505 				 &rd->n_reg_rules);
1506 		}
1507 	}
1508 
1509 	rd->alpha2[0] = '9';
1510 	rd->alpha2[1] = '8';
1511 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1512 						  rd2->dfs_region);
1513 
1514 	return rd;
1515 }
1516 
1517 /*
1518  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1519  * want to just have the channel structure use these
1520  */
1521 static u32 map_regdom_flags(u32 rd_flags)
1522 {
1523 	u32 channel_flags = 0;
1524 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1525 		channel_flags |= IEEE80211_CHAN_NO_IR;
1526 	if (rd_flags & NL80211_RRF_DFS)
1527 		channel_flags |= IEEE80211_CHAN_RADAR;
1528 	if (rd_flags & NL80211_RRF_NO_OFDM)
1529 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1530 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1531 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1532 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1533 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1534 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1535 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1536 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1537 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1538 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1539 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1540 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1541 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1542 	return channel_flags;
1543 }
1544 
1545 static const struct ieee80211_reg_rule *
1546 freq_reg_info_regd(u32 center_freq,
1547 		   const struct ieee80211_regdomain *regd, u32 bw)
1548 {
1549 	int i;
1550 	bool band_rule_found = false;
1551 	bool bw_fits = false;
1552 
1553 	if (!regd)
1554 		return ERR_PTR(-EINVAL);
1555 
1556 	for (i = 0; i < regd->n_reg_rules; i++) {
1557 		const struct ieee80211_reg_rule *rr;
1558 		const struct ieee80211_freq_range *fr = NULL;
1559 
1560 		rr = &regd->reg_rules[i];
1561 		fr = &rr->freq_range;
1562 
1563 		/*
1564 		 * We only need to know if one frequency rule was
1565 		 * was in center_freq's band, that's enough, so lets
1566 		 * not overwrite it once found
1567 		 */
1568 		if (!band_rule_found)
1569 			band_rule_found = freq_in_rule_band(fr, center_freq);
1570 
1571 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1572 
1573 		if (band_rule_found && bw_fits)
1574 			return rr;
1575 	}
1576 
1577 	if (!band_rule_found)
1578 		return ERR_PTR(-ERANGE);
1579 
1580 	return ERR_PTR(-EINVAL);
1581 }
1582 
1583 static const struct ieee80211_reg_rule *
1584 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1585 {
1586 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1587 	const struct ieee80211_reg_rule *reg_rule = NULL;
1588 	u32 bw;
1589 
1590 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1591 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1592 		if (!IS_ERR(reg_rule))
1593 			return reg_rule;
1594 	}
1595 
1596 	return reg_rule;
1597 }
1598 
1599 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1600 					       u32 center_freq)
1601 {
1602 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1603 }
1604 EXPORT_SYMBOL(freq_reg_info);
1605 
1606 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1607 {
1608 	switch (initiator) {
1609 	case NL80211_REGDOM_SET_BY_CORE:
1610 		return "core";
1611 	case NL80211_REGDOM_SET_BY_USER:
1612 		return "user";
1613 	case NL80211_REGDOM_SET_BY_DRIVER:
1614 		return "driver";
1615 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1616 		return "country element";
1617 	default:
1618 		WARN_ON(1);
1619 		return "bug";
1620 	}
1621 }
1622 EXPORT_SYMBOL(reg_initiator_name);
1623 
1624 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1625 					  const struct ieee80211_reg_rule *reg_rule,
1626 					  const struct ieee80211_channel *chan)
1627 {
1628 	const struct ieee80211_freq_range *freq_range = NULL;
1629 	u32 max_bandwidth_khz, bw_flags = 0;
1630 
1631 	freq_range = &reg_rule->freq_range;
1632 
1633 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1634 	/* Check if auto calculation requested */
1635 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1636 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1637 
1638 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1639 	if (!cfg80211_does_bw_fit_range(freq_range,
1640 					MHZ_TO_KHZ(chan->center_freq),
1641 					MHZ_TO_KHZ(10)))
1642 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1643 	if (!cfg80211_does_bw_fit_range(freq_range,
1644 					MHZ_TO_KHZ(chan->center_freq),
1645 					MHZ_TO_KHZ(20)))
1646 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1647 
1648 	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1649 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1650 	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1651 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1652 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1653 		bw_flags |= IEEE80211_CHAN_NO_HT40;
1654 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1655 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1656 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1657 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1658 	return bw_flags;
1659 }
1660 
1661 /*
1662  * Note that right now we assume the desired channel bandwidth
1663  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1664  * per channel, the primary and the extension channel).
1665  */
1666 static void handle_channel(struct wiphy *wiphy,
1667 			   enum nl80211_reg_initiator initiator,
1668 			   struct ieee80211_channel *chan)
1669 {
1670 	u32 flags, bw_flags = 0;
1671 	const struct ieee80211_reg_rule *reg_rule = NULL;
1672 	const struct ieee80211_power_rule *power_rule = NULL;
1673 	struct wiphy *request_wiphy = NULL;
1674 	struct regulatory_request *lr = get_last_request();
1675 	const struct ieee80211_regdomain *regd;
1676 
1677 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1678 
1679 	flags = chan->orig_flags;
1680 
1681 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1682 	if (IS_ERR(reg_rule)) {
1683 		/*
1684 		 * We will disable all channels that do not match our
1685 		 * received regulatory rule unless the hint is coming
1686 		 * from a Country IE and the Country IE had no information
1687 		 * about a band. The IEEE 802.11 spec allows for an AP
1688 		 * to send only a subset of the regulatory rules allowed,
1689 		 * so an AP in the US that only supports 2.4 GHz may only send
1690 		 * a country IE with information for the 2.4 GHz band
1691 		 * while 5 GHz is still supported.
1692 		 */
1693 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1694 		    PTR_ERR(reg_rule) == -ERANGE)
1695 			return;
1696 
1697 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1698 		    request_wiphy && request_wiphy == wiphy &&
1699 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1700 			pr_debug("Disabling freq %d MHz for good\n",
1701 				 chan->center_freq);
1702 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1703 			chan->flags = chan->orig_flags;
1704 		} else {
1705 			pr_debug("Disabling freq %d MHz\n",
1706 				 chan->center_freq);
1707 			chan->flags |= IEEE80211_CHAN_DISABLED;
1708 		}
1709 		return;
1710 	}
1711 
1712 	regd = reg_get_regdomain(wiphy);
1713 
1714 	power_rule = &reg_rule->power_rule;
1715 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1716 
1717 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1718 	    request_wiphy && request_wiphy == wiphy &&
1719 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1720 		/*
1721 		 * This guarantees the driver's requested regulatory domain
1722 		 * will always be used as a base for further regulatory
1723 		 * settings
1724 		 */
1725 		chan->flags = chan->orig_flags =
1726 			map_regdom_flags(reg_rule->flags) | bw_flags;
1727 		chan->max_antenna_gain = chan->orig_mag =
1728 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1729 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1730 			(int) MBM_TO_DBM(power_rule->max_eirp);
1731 
1732 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1733 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1734 			if (reg_rule->dfs_cac_ms)
1735 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1736 		}
1737 
1738 		return;
1739 	}
1740 
1741 	chan->dfs_state = NL80211_DFS_USABLE;
1742 	chan->dfs_state_entered = jiffies;
1743 
1744 	chan->beacon_found = false;
1745 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1746 	chan->max_antenna_gain =
1747 		min_t(int, chan->orig_mag,
1748 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1749 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1750 
1751 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1752 		if (reg_rule->dfs_cac_ms)
1753 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1754 		else
1755 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1756 	}
1757 
1758 	if (chan->orig_mpwr) {
1759 		/*
1760 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1761 		 * will always follow the passed country IE power settings.
1762 		 */
1763 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1764 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1765 			chan->max_power = chan->max_reg_power;
1766 		else
1767 			chan->max_power = min(chan->orig_mpwr,
1768 					      chan->max_reg_power);
1769 	} else
1770 		chan->max_power = chan->max_reg_power;
1771 }
1772 
1773 static void handle_band(struct wiphy *wiphy,
1774 			enum nl80211_reg_initiator initiator,
1775 			struct ieee80211_supported_band *sband)
1776 {
1777 	unsigned int i;
1778 
1779 	if (!sband)
1780 		return;
1781 
1782 	for (i = 0; i < sband->n_channels; i++)
1783 		handle_channel(wiphy, initiator, &sband->channels[i]);
1784 }
1785 
1786 static bool reg_request_cell_base(struct regulatory_request *request)
1787 {
1788 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1789 		return false;
1790 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1791 }
1792 
1793 bool reg_last_request_cell_base(void)
1794 {
1795 	return reg_request_cell_base(get_last_request());
1796 }
1797 
1798 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1799 /* Core specific check */
1800 static enum reg_request_treatment
1801 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1802 {
1803 	struct regulatory_request *lr = get_last_request();
1804 
1805 	if (!reg_num_devs_support_basehint)
1806 		return REG_REQ_IGNORE;
1807 
1808 	if (reg_request_cell_base(lr) &&
1809 	    !regdom_changes(pending_request->alpha2))
1810 		return REG_REQ_ALREADY_SET;
1811 
1812 	return REG_REQ_OK;
1813 }
1814 
1815 /* Device specific check */
1816 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1817 {
1818 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1819 }
1820 #else
1821 static enum reg_request_treatment
1822 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1823 {
1824 	return REG_REQ_IGNORE;
1825 }
1826 
1827 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1828 {
1829 	return true;
1830 }
1831 #endif
1832 
1833 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1834 {
1835 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1836 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1837 		return true;
1838 	return false;
1839 }
1840 
1841 static bool ignore_reg_update(struct wiphy *wiphy,
1842 			      enum nl80211_reg_initiator initiator)
1843 {
1844 	struct regulatory_request *lr = get_last_request();
1845 
1846 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1847 		return true;
1848 
1849 	if (!lr) {
1850 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1851 			 reg_initiator_name(initiator));
1852 		return true;
1853 	}
1854 
1855 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1856 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1857 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1858 			 reg_initiator_name(initiator));
1859 		return true;
1860 	}
1861 
1862 	/*
1863 	 * wiphy->regd will be set once the device has its own
1864 	 * desired regulatory domain set
1865 	 */
1866 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1867 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1868 	    !is_world_regdom(lr->alpha2)) {
1869 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1870 			 reg_initiator_name(initiator));
1871 		return true;
1872 	}
1873 
1874 	if (reg_request_cell_base(lr))
1875 		return reg_dev_ignore_cell_hint(wiphy);
1876 
1877 	return false;
1878 }
1879 
1880 static bool reg_is_world_roaming(struct wiphy *wiphy)
1881 {
1882 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1883 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1884 	struct regulatory_request *lr = get_last_request();
1885 
1886 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1887 		return true;
1888 
1889 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1890 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1891 		return true;
1892 
1893 	return false;
1894 }
1895 
1896 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1897 			      struct reg_beacon *reg_beacon)
1898 {
1899 	struct ieee80211_supported_band *sband;
1900 	struct ieee80211_channel *chan;
1901 	bool channel_changed = false;
1902 	struct ieee80211_channel chan_before;
1903 
1904 	sband = wiphy->bands[reg_beacon->chan.band];
1905 	chan = &sband->channels[chan_idx];
1906 
1907 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1908 		return;
1909 
1910 	if (chan->beacon_found)
1911 		return;
1912 
1913 	chan->beacon_found = true;
1914 
1915 	if (!reg_is_world_roaming(wiphy))
1916 		return;
1917 
1918 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1919 		return;
1920 
1921 	chan_before = *chan;
1922 
1923 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1924 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1925 		channel_changed = true;
1926 	}
1927 
1928 	if (channel_changed)
1929 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1930 }
1931 
1932 /*
1933  * Called when a scan on a wiphy finds a beacon on
1934  * new channel
1935  */
1936 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1937 				    struct reg_beacon *reg_beacon)
1938 {
1939 	unsigned int i;
1940 	struct ieee80211_supported_band *sband;
1941 
1942 	if (!wiphy->bands[reg_beacon->chan.band])
1943 		return;
1944 
1945 	sband = wiphy->bands[reg_beacon->chan.band];
1946 
1947 	for (i = 0; i < sband->n_channels; i++)
1948 		handle_reg_beacon(wiphy, i, reg_beacon);
1949 }
1950 
1951 /*
1952  * Called upon reg changes or a new wiphy is added
1953  */
1954 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1955 {
1956 	unsigned int i;
1957 	struct ieee80211_supported_band *sband;
1958 	struct reg_beacon *reg_beacon;
1959 
1960 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1961 		if (!wiphy->bands[reg_beacon->chan.band])
1962 			continue;
1963 		sband = wiphy->bands[reg_beacon->chan.band];
1964 		for (i = 0; i < sband->n_channels; i++)
1965 			handle_reg_beacon(wiphy, i, reg_beacon);
1966 	}
1967 }
1968 
1969 /* Reap the advantages of previously found beacons */
1970 static void reg_process_beacons(struct wiphy *wiphy)
1971 {
1972 	/*
1973 	 * Means we are just firing up cfg80211, so no beacons would
1974 	 * have been processed yet.
1975 	 */
1976 	if (!last_request)
1977 		return;
1978 	wiphy_update_beacon_reg(wiphy);
1979 }
1980 
1981 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1982 {
1983 	if (!chan)
1984 		return false;
1985 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1986 		return false;
1987 	/* This would happen when regulatory rules disallow HT40 completely */
1988 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1989 		return false;
1990 	return true;
1991 }
1992 
1993 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1994 					 struct ieee80211_channel *channel)
1995 {
1996 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1997 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1998 	const struct ieee80211_regdomain *regd;
1999 	unsigned int i;
2000 	u32 flags;
2001 
2002 	if (!is_ht40_allowed(channel)) {
2003 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2004 		return;
2005 	}
2006 
2007 	/*
2008 	 * We need to ensure the extension channels exist to
2009 	 * be able to use HT40- or HT40+, this finds them (or not)
2010 	 */
2011 	for (i = 0; i < sband->n_channels; i++) {
2012 		struct ieee80211_channel *c = &sband->channels[i];
2013 
2014 		if (c->center_freq == (channel->center_freq - 20))
2015 			channel_before = c;
2016 		if (c->center_freq == (channel->center_freq + 20))
2017 			channel_after = c;
2018 	}
2019 
2020 	flags = 0;
2021 	regd = get_wiphy_regdom(wiphy);
2022 	if (regd) {
2023 		const struct ieee80211_reg_rule *reg_rule =
2024 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2025 					   regd, MHZ_TO_KHZ(20));
2026 
2027 		if (!IS_ERR(reg_rule))
2028 			flags = reg_rule->flags;
2029 	}
2030 
2031 	/*
2032 	 * Please note that this assumes target bandwidth is 20 MHz,
2033 	 * if that ever changes we also need to change the below logic
2034 	 * to include that as well.
2035 	 */
2036 	if (!is_ht40_allowed(channel_before) ||
2037 	    flags & NL80211_RRF_NO_HT40MINUS)
2038 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2039 	else
2040 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2041 
2042 	if (!is_ht40_allowed(channel_after) ||
2043 	    flags & NL80211_RRF_NO_HT40PLUS)
2044 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2045 	else
2046 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2047 }
2048 
2049 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2050 				      struct ieee80211_supported_band *sband)
2051 {
2052 	unsigned int i;
2053 
2054 	if (!sband)
2055 		return;
2056 
2057 	for (i = 0; i < sband->n_channels; i++)
2058 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2059 }
2060 
2061 static void reg_process_ht_flags(struct wiphy *wiphy)
2062 {
2063 	enum nl80211_band band;
2064 
2065 	if (!wiphy)
2066 		return;
2067 
2068 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2069 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2070 }
2071 
2072 static void reg_call_notifier(struct wiphy *wiphy,
2073 			      struct regulatory_request *request)
2074 {
2075 	if (wiphy->reg_notifier)
2076 		wiphy->reg_notifier(wiphy, request);
2077 }
2078 
2079 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2080 {
2081 	struct cfg80211_chan_def chandef;
2082 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2083 	enum nl80211_iftype iftype;
2084 
2085 	wdev_lock(wdev);
2086 	iftype = wdev->iftype;
2087 
2088 	/* make sure the interface is active */
2089 	if (!wdev->netdev || !netif_running(wdev->netdev))
2090 		goto wdev_inactive_unlock;
2091 
2092 	switch (iftype) {
2093 	case NL80211_IFTYPE_AP:
2094 	case NL80211_IFTYPE_P2P_GO:
2095 		if (!wdev->beacon_interval)
2096 			goto wdev_inactive_unlock;
2097 		chandef = wdev->chandef;
2098 		break;
2099 	case NL80211_IFTYPE_ADHOC:
2100 		if (!wdev->ssid_len)
2101 			goto wdev_inactive_unlock;
2102 		chandef = wdev->chandef;
2103 		break;
2104 	case NL80211_IFTYPE_STATION:
2105 	case NL80211_IFTYPE_P2P_CLIENT:
2106 		if (!wdev->current_bss ||
2107 		    !wdev->current_bss->pub.channel)
2108 			goto wdev_inactive_unlock;
2109 
2110 		if (!rdev->ops->get_channel ||
2111 		    rdev_get_channel(rdev, wdev, &chandef))
2112 			cfg80211_chandef_create(&chandef,
2113 						wdev->current_bss->pub.channel,
2114 						NL80211_CHAN_NO_HT);
2115 		break;
2116 	case NL80211_IFTYPE_MONITOR:
2117 	case NL80211_IFTYPE_AP_VLAN:
2118 	case NL80211_IFTYPE_P2P_DEVICE:
2119 		/* no enforcement required */
2120 		break;
2121 	default:
2122 		/* others not implemented for now */
2123 		WARN_ON(1);
2124 		break;
2125 	}
2126 
2127 	wdev_unlock(wdev);
2128 
2129 	switch (iftype) {
2130 	case NL80211_IFTYPE_AP:
2131 	case NL80211_IFTYPE_P2P_GO:
2132 	case NL80211_IFTYPE_ADHOC:
2133 		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2134 	case NL80211_IFTYPE_STATION:
2135 	case NL80211_IFTYPE_P2P_CLIENT:
2136 		return cfg80211_chandef_usable(wiphy, &chandef,
2137 					       IEEE80211_CHAN_DISABLED);
2138 	default:
2139 		break;
2140 	}
2141 
2142 	return true;
2143 
2144 wdev_inactive_unlock:
2145 	wdev_unlock(wdev);
2146 	return true;
2147 }
2148 
2149 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2150 {
2151 	struct wireless_dev *wdev;
2152 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2153 
2154 	ASSERT_RTNL();
2155 
2156 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2157 		if (!reg_wdev_chan_valid(wiphy, wdev))
2158 			cfg80211_leave(rdev, wdev);
2159 }
2160 
2161 static void reg_check_chans_work(struct work_struct *work)
2162 {
2163 	struct cfg80211_registered_device *rdev;
2164 
2165 	pr_debug("Verifying active interfaces after reg change\n");
2166 	rtnl_lock();
2167 
2168 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2169 		if (!(rdev->wiphy.regulatory_flags &
2170 		      REGULATORY_IGNORE_STALE_KICKOFF))
2171 			reg_leave_invalid_chans(&rdev->wiphy);
2172 
2173 	rtnl_unlock();
2174 }
2175 
2176 static void reg_check_channels(void)
2177 {
2178 	/*
2179 	 * Give usermode a chance to do something nicer (move to another
2180 	 * channel, orderly disconnection), before forcing a disconnection.
2181 	 */
2182 	mod_delayed_work(system_power_efficient_wq,
2183 			 &reg_check_chans,
2184 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2185 }
2186 
2187 static void wiphy_update_regulatory(struct wiphy *wiphy,
2188 				    enum nl80211_reg_initiator initiator)
2189 {
2190 	enum nl80211_band band;
2191 	struct regulatory_request *lr = get_last_request();
2192 
2193 	if (ignore_reg_update(wiphy, initiator)) {
2194 		/*
2195 		 * Regulatory updates set by CORE are ignored for custom
2196 		 * regulatory cards. Let us notify the changes to the driver,
2197 		 * as some drivers used this to restore its orig_* reg domain.
2198 		 */
2199 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2200 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2201 		    !(wiphy->regulatory_flags &
2202 		      REGULATORY_WIPHY_SELF_MANAGED))
2203 			reg_call_notifier(wiphy, lr);
2204 		return;
2205 	}
2206 
2207 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2208 
2209 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2210 		handle_band(wiphy, initiator, wiphy->bands[band]);
2211 
2212 	reg_process_beacons(wiphy);
2213 	reg_process_ht_flags(wiphy);
2214 	reg_call_notifier(wiphy, lr);
2215 }
2216 
2217 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2218 {
2219 	struct cfg80211_registered_device *rdev;
2220 	struct wiphy *wiphy;
2221 
2222 	ASSERT_RTNL();
2223 
2224 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2225 		wiphy = &rdev->wiphy;
2226 		wiphy_update_regulatory(wiphy, initiator);
2227 	}
2228 
2229 	reg_check_channels();
2230 }
2231 
2232 static void handle_channel_custom(struct wiphy *wiphy,
2233 				  struct ieee80211_channel *chan,
2234 				  const struct ieee80211_regdomain *regd)
2235 {
2236 	u32 bw_flags = 0;
2237 	const struct ieee80211_reg_rule *reg_rule = NULL;
2238 	const struct ieee80211_power_rule *power_rule = NULL;
2239 	u32 bw;
2240 
2241 	for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2242 		reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2243 					      regd, bw);
2244 		if (!IS_ERR(reg_rule))
2245 			break;
2246 	}
2247 
2248 	if (IS_ERR(reg_rule)) {
2249 		pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2250 			 chan->center_freq);
2251 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2252 			chan->flags |= IEEE80211_CHAN_DISABLED;
2253 		} else {
2254 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2255 			chan->flags = chan->orig_flags;
2256 		}
2257 		return;
2258 	}
2259 
2260 	power_rule = &reg_rule->power_rule;
2261 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2262 
2263 	chan->dfs_state_entered = jiffies;
2264 	chan->dfs_state = NL80211_DFS_USABLE;
2265 
2266 	chan->beacon_found = false;
2267 
2268 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2269 		chan->flags = chan->orig_flags | bw_flags |
2270 			      map_regdom_flags(reg_rule->flags);
2271 	else
2272 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2273 
2274 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2275 	chan->max_reg_power = chan->max_power =
2276 		(int) MBM_TO_DBM(power_rule->max_eirp);
2277 
2278 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2279 		if (reg_rule->dfs_cac_ms)
2280 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2281 		else
2282 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2283 	}
2284 
2285 	chan->max_power = chan->max_reg_power;
2286 }
2287 
2288 static void handle_band_custom(struct wiphy *wiphy,
2289 			       struct ieee80211_supported_band *sband,
2290 			       const struct ieee80211_regdomain *regd)
2291 {
2292 	unsigned int i;
2293 
2294 	if (!sband)
2295 		return;
2296 
2297 	for (i = 0; i < sband->n_channels; i++)
2298 		handle_channel_custom(wiphy, &sband->channels[i], regd);
2299 }
2300 
2301 /* Used by drivers prior to wiphy registration */
2302 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2303 				   const struct ieee80211_regdomain *regd)
2304 {
2305 	enum nl80211_band band;
2306 	unsigned int bands_set = 0;
2307 
2308 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2309 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2310 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2311 
2312 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2313 		if (!wiphy->bands[band])
2314 			continue;
2315 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2316 		bands_set++;
2317 	}
2318 
2319 	/*
2320 	 * no point in calling this if it won't have any effect
2321 	 * on your device's supported bands.
2322 	 */
2323 	WARN_ON(!bands_set);
2324 }
2325 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2326 
2327 static void reg_set_request_processed(void)
2328 {
2329 	bool need_more_processing = false;
2330 	struct regulatory_request *lr = get_last_request();
2331 
2332 	lr->processed = true;
2333 
2334 	spin_lock(&reg_requests_lock);
2335 	if (!list_empty(&reg_requests_list))
2336 		need_more_processing = true;
2337 	spin_unlock(&reg_requests_lock);
2338 
2339 	cancel_crda_timeout();
2340 
2341 	if (need_more_processing)
2342 		schedule_work(&reg_work);
2343 }
2344 
2345 /**
2346  * reg_process_hint_core - process core regulatory requests
2347  * @pending_request: a pending core regulatory request
2348  *
2349  * The wireless subsystem can use this function to process
2350  * a regulatory request issued by the regulatory core.
2351  */
2352 static enum reg_request_treatment
2353 reg_process_hint_core(struct regulatory_request *core_request)
2354 {
2355 	if (reg_query_database(core_request)) {
2356 		core_request->intersect = false;
2357 		core_request->processed = false;
2358 		reg_update_last_request(core_request);
2359 		return REG_REQ_OK;
2360 	}
2361 
2362 	return REG_REQ_IGNORE;
2363 }
2364 
2365 static enum reg_request_treatment
2366 __reg_process_hint_user(struct regulatory_request *user_request)
2367 {
2368 	struct regulatory_request *lr = get_last_request();
2369 
2370 	if (reg_request_cell_base(user_request))
2371 		return reg_ignore_cell_hint(user_request);
2372 
2373 	if (reg_request_cell_base(lr))
2374 		return REG_REQ_IGNORE;
2375 
2376 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2377 		return REG_REQ_INTERSECT;
2378 	/*
2379 	 * If the user knows better the user should set the regdom
2380 	 * to their country before the IE is picked up
2381 	 */
2382 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2383 	    lr->intersect)
2384 		return REG_REQ_IGNORE;
2385 	/*
2386 	 * Process user requests only after previous user/driver/core
2387 	 * requests have been processed
2388 	 */
2389 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2390 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2391 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2392 	    regdom_changes(lr->alpha2))
2393 		return REG_REQ_IGNORE;
2394 
2395 	if (!regdom_changes(user_request->alpha2))
2396 		return REG_REQ_ALREADY_SET;
2397 
2398 	return REG_REQ_OK;
2399 }
2400 
2401 /**
2402  * reg_process_hint_user - process user regulatory requests
2403  * @user_request: a pending user regulatory request
2404  *
2405  * The wireless subsystem can use this function to process
2406  * a regulatory request initiated by userspace.
2407  */
2408 static enum reg_request_treatment
2409 reg_process_hint_user(struct regulatory_request *user_request)
2410 {
2411 	enum reg_request_treatment treatment;
2412 
2413 	treatment = __reg_process_hint_user(user_request);
2414 	if (treatment == REG_REQ_IGNORE ||
2415 	    treatment == REG_REQ_ALREADY_SET)
2416 		return REG_REQ_IGNORE;
2417 
2418 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2419 	user_request->processed = false;
2420 
2421 	if (reg_query_database(user_request)) {
2422 		reg_update_last_request(user_request);
2423 		user_alpha2[0] = user_request->alpha2[0];
2424 		user_alpha2[1] = user_request->alpha2[1];
2425 		return REG_REQ_OK;
2426 	}
2427 
2428 	return REG_REQ_IGNORE;
2429 }
2430 
2431 static enum reg_request_treatment
2432 __reg_process_hint_driver(struct regulatory_request *driver_request)
2433 {
2434 	struct regulatory_request *lr = get_last_request();
2435 
2436 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2437 		if (regdom_changes(driver_request->alpha2))
2438 			return REG_REQ_OK;
2439 		return REG_REQ_ALREADY_SET;
2440 	}
2441 
2442 	/*
2443 	 * This would happen if you unplug and plug your card
2444 	 * back in or if you add a new device for which the previously
2445 	 * loaded card also agrees on the regulatory domain.
2446 	 */
2447 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2448 	    !regdom_changes(driver_request->alpha2))
2449 		return REG_REQ_ALREADY_SET;
2450 
2451 	return REG_REQ_INTERSECT;
2452 }
2453 
2454 /**
2455  * reg_process_hint_driver - process driver regulatory requests
2456  * @driver_request: a pending driver regulatory request
2457  *
2458  * The wireless subsystem can use this function to process
2459  * a regulatory request issued by an 802.11 driver.
2460  *
2461  * Returns one of the different reg request treatment values.
2462  */
2463 static enum reg_request_treatment
2464 reg_process_hint_driver(struct wiphy *wiphy,
2465 			struct regulatory_request *driver_request)
2466 {
2467 	const struct ieee80211_regdomain *regd, *tmp;
2468 	enum reg_request_treatment treatment;
2469 
2470 	treatment = __reg_process_hint_driver(driver_request);
2471 
2472 	switch (treatment) {
2473 	case REG_REQ_OK:
2474 		break;
2475 	case REG_REQ_IGNORE:
2476 		return REG_REQ_IGNORE;
2477 	case REG_REQ_INTERSECT:
2478 	case REG_REQ_ALREADY_SET:
2479 		regd = reg_copy_regd(get_cfg80211_regdom());
2480 		if (IS_ERR(regd))
2481 			return REG_REQ_IGNORE;
2482 
2483 		tmp = get_wiphy_regdom(wiphy);
2484 		rcu_assign_pointer(wiphy->regd, regd);
2485 		rcu_free_regdom(tmp);
2486 	}
2487 
2488 
2489 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2490 	driver_request->processed = false;
2491 
2492 	/*
2493 	 * Since CRDA will not be called in this case as we already
2494 	 * have applied the requested regulatory domain before we just
2495 	 * inform userspace we have processed the request
2496 	 */
2497 	if (treatment == REG_REQ_ALREADY_SET) {
2498 		nl80211_send_reg_change_event(driver_request);
2499 		reg_update_last_request(driver_request);
2500 		reg_set_request_processed();
2501 		return REG_REQ_ALREADY_SET;
2502 	}
2503 
2504 	if (reg_query_database(driver_request)) {
2505 		reg_update_last_request(driver_request);
2506 		return REG_REQ_OK;
2507 	}
2508 
2509 	return REG_REQ_IGNORE;
2510 }
2511 
2512 static enum reg_request_treatment
2513 __reg_process_hint_country_ie(struct wiphy *wiphy,
2514 			      struct regulatory_request *country_ie_request)
2515 {
2516 	struct wiphy *last_wiphy = NULL;
2517 	struct regulatory_request *lr = get_last_request();
2518 
2519 	if (reg_request_cell_base(lr)) {
2520 		/* Trust a Cell base station over the AP's country IE */
2521 		if (regdom_changes(country_ie_request->alpha2))
2522 			return REG_REQ_IGNORE;
2523 		return REG_REQ_ALREADY_SET;
2524 	} else {
2525 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2526 			return REG_REQ_IGNORE;
2527 	}
2528 
2529 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2530 		return -EINVAL;
2531 
2532 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2533 		return REG_REQ_OK;
2534 
2535 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2536 
2537 	if (last_wiphy != wiphy) {
2538 		/*
2539 		 * Two cards with two APs claiming different
2540 		 * Country IE alpha2s. We could
2541 		 * intersect them, but that seems unlikely
2542 		 * to be correct. Reject second one for now.
2543 		 */
2544 		if (regdom_changes(country_ie_request->alpha2))
2545 			return REG_REQ_IGNORE;
2546 		return REG_REQ_ALREADY_SET;
2547 	}
2548 
2549 	if (regdom_changes(country_ie_request->alpha2))
2550 		return REG_REQ_OK;
2551 	return REG_REQ_ALREADY_SET;
2552 }
2553 
2554 /**
2555  * reg_process_hint_country_ie - process regulatory requests from country IEs
2556  * @country_ie_request: a regulatory request from a country IE
2557  *
2558  * The wireless subsystem can use this function to process
2559  * a regulatory request issued by a country Information Element.
2560  *
2561  * Returns one of the different reg request treatment values.
2562  */
2563 static enum reg_request_treatment
2564 reg_process_hint_country_ie(struct wiphy *wiphy,
2565 			    struct regulatory_request *country_ie_request)
2566 {
2567 	enum reg_request_treatment treatment;
2568 
2569 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2570 
2571 	switch (treatment) {
2572 	case REG_REQ_OK:
2573 		break;
2574 	case REG_REQ_IGNORE:
2575 		return REG_REQ_IGNORE;
2576 	case REG_REQ_ALREADY_SET:
2577 		reg_free_request(country_ie_request);
2578 		return REG_REQ_ALREADY_SET;
2579 	case REG_REQ_INTERSECT:
2580 		/*
2581 		 * This doesn't happen yet, not sure we
2582 		 * ever want to support it for this case.
2583 		 */
2584 		WARN_ONCE(1, "Unexpected intersection for country elements");
2585 		return REG_REQ_IGNORE;
2586 	}
2587 
2588 	country_ie_request->intersect = false;
2589 	country_ie_request->processed = false;
2590 
2591 	if (reg_query_database(country_ie_request)) {
2592 		reg_update_last_request(country_ie_request);
2593 		return REG_REQ_OK;
2594 	}
2595 
2596 	return REG_REQ_IGNORE;
2597 }
2598 
2599 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2600 {
2601 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2602 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2603 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2604 	bool dfs_domain_same;
2605 
2606 	rcu_read_lock();
2607 
2608 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2609 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2610 	if (!wiphy1_regd)
2611 		wiphy1_regd = cfg80211_regd;
2612 
2613 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2614 	if (!wiphy2_regd)
2615 		wiphy2_regd = cfg80211_regd;
2616 
2617 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2618 
2619 	rcu_read_unlock();
2620 
2621 	return dfs_domain_same;
2622 }
2623 
2624 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2625 				    struct ieee80211_channel *src_chan)
2626 {
2627 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2628 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2629 		return;
2630 
2631 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2632 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2633 		return;
2634 
2635 	if (src_chan->center_freq == dst_chan->center_freq &&
2636 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2637 		dst_chan->dfs_state = src_chan->dfs_state;
2638 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2639 	}
2640 }
2641 
2642 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2643 				       struct wiphy *src_wiphy)
2644 {
2645 	struct ieee80211_supported_band *src_sband, *dst_sband;
2646 	struct ieee80211_channel *src_chan, *dst_chan;
2647 	int i, j, band;
2648 
2649 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2650 		return;
2651 
2652 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2653 		dst_sband = dst_wiphy->bands[band];
2654 		src_sband = src_wiphy->bands[band];
2655 		if (!dst_sband || !src_sband)
2656 			continue;
2657 
2658 		for (i = 0; i < dst_sband->n_channels; i++) {
2659 			dst_chan = &dst_sband->channels[i];
2660 			for (j = 0; j < src_sband->n_channels; j++) {
2661 				src_chan = &src_sband->channels[j];
2662 				reg_copy_dfs_chan_state(dst_chan, src_chan);
2663 			}
2664 		}
2665 	}
2666 }
2667 
2668 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2669 {
2670 	struct cfg80211_registered_device *rdev;
2671 
2672 	ASSERT_RTNL();
2673 
2674 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2675 		if (wiphy == &rdev->wiphy)
2676 			continue;
2677 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2678 	}
2679 }
2680 
2681 /* This processes *all* regulatory hints */
2682 static void reg_process_hint(struct regulatory_request *reg_request)
2683 {
2684 	struct wiphy *wiphy = NULL;
2685 	enum reg_request_treatment treatment;
2686 	enum nl80211_reg_initiator initiator = reg_request->initiator;
2687 
2688 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2689 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2690 
2691 	switch (initiator) {
2692 	case NL80211_REGDOM_SET_BY_CORE:
2693 		treatment = reg_process_hint_core(reg_request);
2694 		break;
2695 	case NL80211_REGDOM_SET_BY_USER:
2696 		treatment = reg_process_hint_user(reg_request);
2697 		break;
2698 	case NL80211_REGDOM_SET_BY_DRIVER:
2699 		if (!wiphy)
2700 			goto out_free;
2701 		treatment = reg_process_hint_driver(wiphy, reg_request);
2702 		break;
2703 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2704 		if (!wiphy)
2705 			goto out_free;
2706 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2707 		break;
2708 	default:
2709 		WARN(1, "invalid initiator %d\n", initiator);
2710 		goto out_free;
2711 	}
2712 
2713 	if (treatment == REG_REQ_IGNORE)
2714 		goto out_free;
2715 
2716 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2717 	     "unexpected treatment value %d\n", treatment);
2718 
2719 	/* This is required so that the orig_* parameters are saved.
2720 	 * NOTE: treatment must be set for any case that reaches here!
2721 	 */
2722 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2723 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2724 		wiphy_update_regulatory(wiphy, initiator);
2725 		wiphy_all_share_dfs_chan_state(wiphy);
2726 		reg_check_channels();
2727 	}
2728 
2729 	return;
2730 
2731 out_free:
2732 	reg_free_request(reg_request);
2733 }
2734 
2735 static void notify_self_managed_wiphys(struct regulatory_request *request)
2736 {
2737 	struct cfg80211_registered_device *rdev;
2738 	struct wiphy *wiphy;
2739 
2740 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2741 		wiphy = &rdev->wiphy;
2742 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2743 		    request->initiator == NL80211_REGDOM_SET_BY_USER)
2744 			reg_call_notifier(wiphy, request);
2745 	}
2746 }
2747 
2748 /*
2749  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2750  * Regulatory hints come on a first come first serve basis and we
2751  * must process each one atomically.
2752  */
2753 static void reg_process_pending_hints(void)
2754 {
2755 	struct regulatory_request *reg_request, *lr;
2756 
2757 	lr = get_last_request();
2758 
2759 	/* When last_request->processed becomes true this will be rescheduled */
2760 	if (lr && !lr->processed) {
2761 		reg_process_hint(lr);
2762 		return;
2763 	}
2764 
2765 	spin_lock(&reg_requests_lock);
2766 
2767 	if (list_empty(&reg_requests_list)) {
2768 		spin_unlock(&reg_requests_lock);
2769 		return;
2770 	}
2771 
2772 	reg_request = list_first_entry(&reg_requests_list,
2773 				       struct regulatory_request,
2774 				       list);
2775 	list_del_init(&reg_request->list);
2776 
2777 	spin_unlock(&reg_requests_lock);
2778 
2779 	notify_self_managed_wiphys(reg_request);
2780 
2781 	reg_process_hint(reg_request);
2782 
2783 	lr = get_last_request();
2784 
2785 	spin_lock(&reg_requests_lock);
2786 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
2787 		schedule_work(&reg_work);
2788 	spin_unlock(&reg_requests_lock);
2789 }
2790 
2791 /* Processes beacon hints -- this has nothing to do with country IEs */
2792 static void reg_process_pending_beacon_hints(void)
2793 {
2794 	struct cfg80211_registered_device *rdev;
2795 	struct reg_beacon *pending_beacon, *tmp;
2796 
2797 	/* This goes through the _pending_ beacon list */
2798 	spin_lock_bh(&reg_pending_beacons_lock);
2799 
2800 	list_for_each_entry_safe(pending_beacon, tmp,
2801 				 &reg_pending_beacons, list) {
2802 		list_del_init(&pending_beacon->list);
2803 
2804 		/* Applies the beacon hint to current wiphys */
2805 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2806 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2807 
2808 		/* Remembers the beacon hint for new wiphys or reg changes */
2809 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2810 	}
2811 
2812 	spin_unlock_bh(&reg_pending_beacons_lock);
2813 }
2814 
2815 static void reg_process_self_managed_hints(void)
2816 {
2817 	struct cfg80211_registered_device *rdev;
2818 	struct wiphy *wiphy;
2819 	const struct ieee80211_regdomain *tmp;
2820 	const struct ieee80211_regdomain *regd;
2821 	enum nl80211_band band;
2822 	struct regulatory_request request = {};
2823 
2824 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2825 		wiphy = &rdev->wiphy;
2826 
2827 		spin_lock(&reg_requests_lock);
2828 		regd = rdev->requested_regd;
2829 		rdev->requested_regd = NULL;
2830 		spin_unlock(&reg_requests_lock);
2831 
2832 		if (regd == NULL)
2833 			continue;
2834 
2835 		tmp = get_wiphy_regdom(wiphy);
2836 		rcu_assign_pointer(wiphy->regd, regd);
2837 		rcu_free_regdom(tmp);
2838 
2839 		for (band = 0; band < NUM_NL80211_BANDS; band++)
2840 			handle_band_custom(wiphy, wiphy->bands[band], regd);
2841 
2842 		reg_process_ht_flags(wiphy);
2843 
2844 		request.wiphy_idx = get_wiphy_idx(wiphy);
2845 		request.alpha2[0] = regd->alpha2[0];
2846 		request.alpha2[1] = regd->alpha2[1];
2847 		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2848 
2849 		nl80211_send_wiphy_reg_change_event(&request);
2850 	}
2851 
2852 	reg_check_channels();
2853 }
2854 
2855 static void reg_todo(struct work_struct *work)
2856 {
2857 	rtnl_lock();
2858 	reg_process_pending_hints();
2859 	reg_process_pending_beacon_hints();
2860 	reg_process_self_managed_hints();
2861 	rtnl_unlock();
2862 }
2863 
2864 static void queue_regulatory_request(struct regulatory_request *request)
2865 {
2866 	request->alpha2[0] = toupper(request->alpha2[0]);
2867 	request->alpha2[1] = toupper(request->alpha2[1]);
2868 
2869 	spin_lock(&reg_requests_lock);
2870 	list_add_tail(&request->list, &reg_requests_list);
2871 	spin_unlock(&reg_requests_lock);
2872 
2873 	schedule_work(&reg_work);
2874 }
2875 
2876 /*
2877  * Core regulatory hint -- happens during cfg80211_init()
2878  * and when we restore regulatory settings.
2879  */
2880 static int regulatory_hint_core(const char *alpha2)
2881 {
2882 	struct regulatory_request *request;
2883 
2884 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2885 	if (!request)
2886 		return -ENOMEM;
2887 
2888 	request->alpha2[0] = alpha2[0];
2889 	request->alpha2[1] = alpha2[1];
2890 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2891 	request->wiphy_idx = WIPHY_IDX_INVALID;
2892 
2893 	queue_regulatory_request(request);
2894 
2895 	return 0;
2896 }
2897 
2898 /* User hints */
2899 int regulatory_hint_user(const char *alpha2,
2900 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2901 {
2902 	struct regulatory_request *request;
2903 
2904 	if (WARN_ON(!alpha2))
2905 		return -EINVAL;
2906 
2907 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2908 	if (!request)
2909 		return -ENOMEM;
2910 
2911 	request->wiphy_idx = WIPHY_IDX_INVALID;
2912 	request->alpha2[0] = alpha2[0];
2913 	request->alpha2[1] = alpha2[1];
2914 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2915 	request->user_reg_hint_type = user_reg_hint_type;
2916 
2917 	/* Allow calling CRDA again */
2918 	reset_crda_timeouts();
2919 
2920 	queue_regulatory_request(request);
2921 
2922 	return 0;
2923 }
2924 
2925 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2926 {
2927 	spin_lock(&reg_indoor_lock);
2928 
2929 	/* It is possible that more than one user space process is trying to
2930 	 * configure the indoor setting. To handle such cases, clear the indoor
2931 	 * setting in case that some process does not think that the device
2932 	 * is operating in an indoor environment. In addition, if a user space
2933 	 * process indicates that it is controlling the indoor setting, save its
2934 	 * portid, i.e., make it the owner.
2935 	 */
2936 	reg_is_indoor = is_indoor;
2937 	if (reg_is_indoor) {
2938 		if (!reg_is_indoor_portid)
2939 			reg_is_indoor_portid = portid;
2940 	} else {
2941 		reg_is_indoor_portid = 0;
2942 	}
2943 
2944 	spin_unlock(&reg_indoor_lock);
2945 
2946 	if (!is_indoor)
2947 		reg_check_channels();
2948 
2949 	return 0;
2950 }
2951 
2952 void regulatory_netlink_notify(u32 portid)
2953 {
2954 	spin_lock(&reg_indoor_lock);
2955 
2956 	if (reg_is_indoor_portid != portid) {
2957 		spin_unlock(&reg_indoor_lock);
2958 		return;
2959 	}
2960 
2961 	reg_is_indoor = false;
2962 	reg_is_indoor_portid = 0;
2963 
2964 	spin_unlock(&reg_indoor_lock);
2965 
2966 	reg_check_channels();
2967 }
2968 
2969 /* Driver hints */
2970 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2971 {
2972 	struct regulatory_request *request;
2973 
2974 	if (WARN_ON(!alpha2 || !wiphy))
2975 		return -EINVAL;
2976 
2977 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2978 
2979 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2980 	if (!request)
2981 		return -ENOMEM;
2982 
2983 	request->wiphy_idx = get_wiphy_idx(wiphy);
2984 
2985 	request->alpha2[0] = alpha2[0];
2986 	request->alpha2[1] = alpha2[1];
2987 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2988 
2989 	/* Allow calling CRDA again */
2990 	reset_crda_timeouts();
2991 
2992 	queue_regulatory_request(request);
2993 
2994 	return 0;
2995 }
2996 EXPORT_SYMBOL(regulatory_hint);
2997 
2998 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2999 				const u8 *country_ie, u8 country_ie_len)
3000 {
3001 	char alpha2[2];
3002 	enum environment_cap env = ENVIRON_ANY;
3003 	struct regulatory_request *request = NULL, *lr;
3004 
3005 	/* IE len must be evenly divisible by 2 */
3006 	if (country_ie_len & 0x01)
3007 		return;
3008 
3009 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3010 		return;
3011 
3012 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3013 	if (!request)
3014 		return;
3015 
3016 	alpha2[0] = country_ie[0];
3017 	alpha2[1] = country_ie[1];
3018 
3019 	if (country_ie[2] == 'I')
3020 		env = ENVIRON_INDOOR;
3021 	else if (country_ie[2] == 'O')
3022 		env = ENVIRON_OUTDOOR;
3023 
3024 	rcu_read_lock();
3025 	lr = get_last_request();
3026 
3027 	if (unlikely(!lr))
3028 		goto out;
3029 
3030 	/*
3031 	 * We will run this only upon a successful connection on cfg80211.
3032 	 * We leave conflict resolution to the workqueue, where can hold
3033 	 * the RTNL.
3034 	 */
3035 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3036 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3037 		goto out;
3038 
3039 	request->wiphy_idx = get_wiphy_idx(wiphy);
3040 	request->alpha2[0] = alpha2[0];
3041 	request->alpha2[1] = alpha2[1];
3042 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3043 	request->country_ie_env = env;
3044 
3045 	/* Allow calling CRDA again */
3046 	reset_crda_timeouts();
3047 
3048 	queue_regulatory_request(request);
3049 	request = NULL;
3050 out:
3051 	kfree(request);
3052 	rcu_read_unlock();
3053 }
3054 
3055 static void restore_alpha2(char *alpha2, bool reset_user)
3056 {
3057 	/* indicates there is no alpha2 to consider for restoration */
3058 	alpha2[0] = '9';
3059 	alpha2[1] = '7';
3060 
3061 	/* The user setting has precedence over the module parameter */
3062 	if (is_user_regdom_saved()) {
3063 		/* Unless we're asked to ignore it and reset it */
3064 		if (reset_user) {
3065 			pr_debug("Restoring regulatory settings including user preference\n");
3066 			user_alpha2[0] = '9';
3067 			user_alpha2[1] = '7';
3068 
3069 			/*
3070 			 * If we're ignoring user settings, we still need to
3071 			 * check the module parameter to ensure we put things
3072 			 * back as they were for a full restore.
3073 			 */
3074 			if (!is_world_regdom(ieee80211_regdom)) {
3075 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3076 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3077 				alpha2[0] = ieee80211_regdom[0];
3078 				alpha2[1] = ieee80211_regdom[1];
3079 			}
3080 		} else {
3081 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3082 				 user_alpha2[0], user_alpha2[1]);
3083 			alpha2[0] = user_alpha2[0];
3084 			alpha2[1] = user_alpha2[1];
3085 		}
3086 	} else if (!is_world_regdom(ieee80211_regdom)) {
3087 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3088 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3089 		alpha2[0] = ieee80211_regdom[0];
3090 		alpha2[1] = ieee80211_regdom[1];
3091 	} else
3092 		pr_debug("Restoring regulatory settings\n");
3093 }
3094 
3095 static void restore_custom_reg_settings(struct wiphy *wiphy)
3096 {
3097 	struct ieee80211_supported_band *sband;
3098 	enum nl80211_band band;
3099 	struct ieee80211_channel *chan;
3100 	int i;
3101 
3102 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3103 		sband = wiphy->bands[band];
3104 		if (!sband)
3105 			continue;
3106 		for (i = 0; i < sband->n_channels; i++) {
3107 			chan = &sband->channels[i];
3108 			chan->flags = chan->orig_flags;
3109 			chan->max_antenna_gain = chan->orig_mag;
3110 			chan->max_power = chan->orig_mpwr;
3111 			chan->beacon_found = false;
3112 		}
3113 	}
3114 }
3115 
3116 /*
3117  * Restoring regulatory settings involves ingoring any
3118  * possibly stale country IE information and user regulatory
3119  * settings if so desired, this includes any beacon hints
3120  * learned as we could have traveled outside to another country
3121  * after disconnection. To restore regulatory settings we do
3122  * exactly what we did at bootup:
3123  *
3124  *   - send a core regulatory hint
3125  *   - send a user regulatory hint if applicable
3126  *
3127  * Device drivers that send a regulatory hint for a specific country
3128  * keep their own regulatory domain on wiphy->regd so that does does
3129  * not need to be remembered.
3130  */
3131 static void restore_regulatory_settings(bool reset_user, bool cached)
3132 {
3133 	char alpha2[2];
3134 	char world_alpha2[2];
3135 	struct reg_beacon *reg_beacon, *btmp;
3136 	LIST_HEAD(tmp_reg_req_list);
3137 	struct cfg80211_registered_device *rdev;
3138 
3139 	ASSERT_RTNL();
3140 
3141 	/*
3142 	 * Clear the indoor setting in case that it is not controlled by user
3143 	 * space, as otherwise there is no guarantee that the device is still
3144 	 * operating in an indoor environment.
3145 	 */
3146 	spin_lock(&reg_indoor_lock);
3147 	if (reg_is_indoor && !reg_is_indoor_portid) {
3148 		reg_is_indoor = false;
3149 		reg_check_channels();
3150 	}
3151 	spin_unlock(&reg_indoor_lock);
3152 
3153 	reset_regdomains(true, &world_regdom);
3154 	restore_alpha2(alpha2, reset_user);
3155 
3156 	/*
3157 	 * If there's any pending requests we simply
3158 	 * stash them to a temporary pending queue and
3159 	 * add then after we've restored regulatory
3160 	 * settings.
3161 	 */
3162 	spin_lock(&reg_requests_lock);
3163 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3164 	spin_unlock(&reg_requests_lock);
3165 
3166 	/* Clear beacon hints */
3167 	spin_lock_bh(&reg_pending_beacons_lock);
3168 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3169 		list_del(&reg_beacon->list);
3170 		kfree(reg_beacon);
3171 	}
3172 	spin_unlock_bh(&reg_pending_beacons_lock);
3173 
3174 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3175 		list_del(&reg_beacon->list);
3176 		kfree(reg_beacon);
3177 	}
3178 
3179 	/* First restore to the basic regulatory settings */
3180 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3181 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3182 
3183 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3184 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3185 			continue;
3186 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3187 			restore_custom_reg_settings(&rdev->wiphy);
3188 	}
3189 
3190 	if (cached && (!is_an_alpha2(alpha2) ||
3191 		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3192 		reset_regdomains(false, cfg80211_world_regdom);
3193 		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3194 		print_regdomain(get_cfg80211_regdom());
3195 		nl80211_send_reg_change_event(&core_request_world);
3196 		reg_set_request_processed();
3197 
3198 		if (is_an_alpha2(alpha2) &&
3199 		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3200 			struct regulatory_request *ureq;
3201 
3202 			spin_lock(&reg_requests_lock);
3203 			ureq = list_last_entry(&reg_requests_list,
3204 					       struct regulatory_request,
3205 					       list);
3206 			list_del(&ureq->list);
3207 			spin_unlock(&reg_requests_lock);
3208 
3209 			notify_self_managed_wiphys(ureq);
3210 			reg_update_last_request(ureq);
3211 			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3212 				   REGD_SOURCE_CACHED);
3213 		}
3214 	} else {
3215 		regulatory_hint_core(world_alpha2);
3216 
3217 		/*
3218 		 * This restores the ieee80211_regdom module parameter
3219 		 * preference or the last user requested regulatory
3220 		 * settings, user regulatory settings takes precedence.
3221 		 */
3222 		if (is_an_alpha2(alpha2))
3223 			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3224 	}
3225 
3226 	spin_lock(&reg_requests_lock);
3227 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3228 	spin_unlock(&reg_requests_lock);
3229 
3230 	pr_debug("Kicking the queue\n");
3231 
3232 	schedule_work(&reg_work);
3233 }
3234 
3235 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3236 {
3237 	struct cfg80211_registered_device *rdev;
3238 	struct wireless_dev *wdev;
3239 
3240 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3241 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3242 			wdev_lock(wdev);
3243 			if (!(wdev->wiphy->regulatory_flags & flag)) {
3244 				wdev_unlock(wdev);
3245 				return false;
3246 			}
3247 			wdev_unlock(wdev);
3248 		}
3249 	}
3250 
3251 	return true;
3252 }
3253 
3254 void regulatory_hint_disconnect(void)
3255 {
3256 	/* Restore of regulatory settings is not required when wiphy(s)
3257 	 * ignore IE from connected access point but clearance of beacon hints
3258 	 * is required when wiphy(s) supports beacon hints.
3259 	 */
3260 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3261 		struct reg_beacon *reg_beacon, *btmp;
3262 
3263 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3264 			return;
3265 
3266 		spin_lock_bh(&reg_pending_beacons_lock);
3267 		list_for_each_entry_safe(reg_beacon, btmp,
3268 					 &reg_pending_beacons, list) {
3269 			list_del(&reg_beacon->list);
3270 			kfree(reg_beacon);
3271 		}
3272 		spin_unlock_bh(&reg_pending_beacons_lock);
3273 
3274 		list_for_each_entry_safe(reg_beacon, btmp,
3275 					 &reg_beacon_list, list) {
3276 			list_del(&reg_beacon->list);
3277 			kfree(reg_beacon);
3278 		}
3279 
3280 		return;
3281 	}
3282 
3283 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3284 	restore_regulatory_settings(false, true);
3285 }
3286 
3287 static bool freq_is_chan_12_13_14(u32 freq)
3288 {
3289 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3290 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3291 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3292 		return true;
3293 	return false;
3294 }
3295 
3296 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3297 {
3298 	struct reg_beacon *pending_beacon;
3299 
3300 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3301 		if (beacon_chan->center_freq ==
3302 		    pending_beacon->chan.center_freq)
3303 			return true;
3304 	return false;
3305 }
3306 
3307 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3308 				 struct ieee80211_channel *beacon_chan,
3309 				 gfp_t gfp)
3310 {
3311 	struct reg_beacon *reg_beacon;
3312 	bool processing;
3313 
3314 	if (beacon_chan->beacon_found ||
3315 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3316 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3317 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3318 		return 0;
3319 
3320 	spin_lock_bh(&reg_pending_beacons_lock);
3321 	processing = pending_reg_beacon(beacon_chan);
3322 	spin_unlock_bh(&reg_pending_beacons_lock);
3323 
3324 	if (processing)
3325 		return 0;
3326 
3327 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3328 	if (!reg_beacon)
3329 		return -ENOMEM;
3330 
3331 	pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3332 		 beacon_chan->center_freq,
3333 		 ieee80211_frequency_to_channel(beacon_chan->center_freq),
3334 		 wiphy_name(wiphy));
3335 
3336 	memcpy(&reg_beacon->chan, beacon_chan,
3337 	       sizeof(struct ieee80211_channel));
3338 
3339 	/*
3340 	 * Since we can be called from BH or and non-BH context
3341 	 * we must use spin_lock_bh()
3342 	 */
3343 	spin_lock_bh(&reg_pending_beacons_lock);
3344 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3345 	spin_unlock_bh(&reg_pending_beacons_lock);
3346 
3347 	schedule_work(&reg_work);
3348 
3349 	return 0;
3350 }
3351 
3352 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3353 {
3354 	unsigned int i;
3355 	const struct ieee80211_reg_rule *reg_rule = NULL;
3356 	const struct ieee80211_freq_range *freq_range = NULL;
3357 	const struct ieee80211_power_rule *power_rule = NULL;
3358 	char bw[32], cac_time[32];
3359 
3360 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3361 
3362 	for (i = 0; i < rd->n_reg_rules; i++) {
3363 		reg_rule = &rd->reg_rules[i];
3364 		freq_range = &reg_rule->freq_range;
3365 		power_rule = &reg_rule->power_rule;
3366 
3367 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3368 			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3369 				 freq_range->max_bandwidth_khz,
3370 				 reg_get_max_bandwidth(rd, reg_rule));
3371 		else
3372 			snprintf(bw, sizeof(bw), "%d KHz",
3373 				 freq_range->max_bandwidth_khz);
3374 
3375 		if (reg_rule->flags & NL80211_RRF_DFS)
3376 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3377 				  reg_rule->dfs_cac_ms/1000);
3378 		else
3379 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3380 
3381 
3382 		/*
3383 		 * There may not be documentation for max antenna gain
3384 		 * in certain regions
3385 		 */
3386 		if (power_rule->max_antenna_gain)
3387 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3388 				freq_range->start_freq_khz,
3389 				freq_range->end_freq_khz,
3390 				bw,
3391 				power_rule->max_antenna_gain,
3392 				power_rule->max_eirp,
3393 				cac_time);
3394 		else
3395 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3396 				freq_range->start_freq_khz,
3397 				freq_range->end_freq_khz,
3398 				bw,
3399 				power_rule->max_eirp,
3400 				cac_time);
3401 	}
3402 }
3403 
3404 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3405 {
3406 	switch (dfs_region) {
3407 	case NL80211_DFS_UNSET:
3408 	case NL80211_DFS_FCC:
3409 	case NL80211_DFS_ETSI:
3410 	case NL80211_DFS_JP:
3411 		return true;
3412 	default:
3413 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3414 		return false;
3415 	}
3416 }
3417 
3418 static void print_regdomain(const struct ieee80211_regdomain *rd)
3419 {
3420 	struct regulatory_request *lr = get_last_request();
3421 
3422 	if (is_intersected_alpha2(rd->alpha2)) {
3423 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3424 			struct cfg80211_registered_device *rdev;
3425 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3426 			if (rdev) {
3427 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3428 					rdev->country_ie_alpha2[0],
3429 					rdev->country_ie_alpha2[1]);
3430 			} else
3431 				pr_debug("Current regulatory domain intersected:\n");
3432 		} else
3433 			pr_debug("Current regulatory domain intersected:\n");
3434 	} else if (is_world_regdom(rd->alpha2)) {
3435 		pr_debug("World regulatory domain updated:\n");
3436 	} else {
3437 		if (is_unknown_alpha2(rd->alpha2))
3438 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3439 		else {
3440 			if (reg_request_cell_base(lr))
3441 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3442 					rd->alpha2[0], rd->alpha2[1]);
3443 			else
3444 				pr_debug("Regulatory domain changed to country: %c%c\n",
3445 					rd->alpha2[0], rd->alpha2[1]);
3446 		}
3447 	}
3448 
3449 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3450 	print_rd_rules(rd);
3451 }
3452 
3453 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3454 {
3455 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3456 	print_rd_rules(rd);
3457 }
3458 
3459 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3460 {
3461 	if (!is_world_regdom(rd->alpha2))
3462 		return -EINVAL;
3463 	update_world_regdomain(rd);
3464 	return 0;
3465 }
3466 
3467 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3468 			   struct regulatory_request *user_request)
3469 {
3470 	const struct ieee80211_regdomain *intersected_rd = NULL;
3471 
3472 	if (!regdom_changes(rd->alpha2))
3473 		return -EALREADY;
3474 
3475 	if (!is_valid_rd(rd)) {
3476 		pr_err("Invalid regulatory domain detected: %c%c\n",
3477 		       rd->alpha2[0], rd->alpha2[1]);
3478 		print_regdomain_info(rd);
3479 		return -EINVAL;
3480 	}
3481 
3482 	if (!user_request->intersect) {
3483 		reset_regdomains(false, rd);
3484 		return 0;
3485 	}
3486 
3487 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3488 	if (!intersected_rd)
3489 		return -EINVAL;
3490 
3491 	kfree(rd);
3492 	rd = NULL;
3493 	reset_regdomains(false, intersected_rd);
3494 
3495 	return 0;
3496 }
3497 
3498 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3499 			     struct regulatory_request *driver_request)
3500 {
3501 	const struct ieee80211_regdomain *regd;
3502 	const struct ieee80211_regdomain *intersected_rd = NULL;
3503 	const struct ieee80211_regdomain *tmp;
3504 	struct wiphy *request_wiphy;
3505 
3506 	if (is_world_regdom(rd->alpha2))
3507 		return -EINVAL;
3508 
3509 	if (!regdom_changes(rd->alpha2))
3510 		return -EALREADY;
3511 
3512 	if (!is_valid_rd(rd)) {
3513 		pr_err("Invalid regulatory domain detected: %c%c\n",
3514 		       rd->alpha2[0], rd->alpha2[1]);
3515 		print_regdomain_info(rd);
3516 		return -EINVAL;
3517 	}
3518 
3519 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3520 	if (!request_wiphy)
3521 		return -ENODEV;
3522 
3523 	if (!driver_request->intersect) {
3524 		if (request_wiphy->regd)
3525 			return -EALREADY;
3526 
3527 		regd = reg_copy_regd(rd);
3528 		if (IS_ERR(regd))
3529 			return PTR_ERR(regd);
3530 
3531 		rcu_assign_pointer(request_wiphy->regd, regd);
3532 		reset_regdomains(false, rd);
3533 		return 0;
3534 	}
3535 
3536 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3537 	if (!intersected_rd)
3538 		return -EINVAL;
3539 
3540 	/*
3541 	 * We can trash what CRDA provided now.
3542 	 * However if a driver requested this specific regulatory
3543 	 * domain we keep it for its private use
3544 	 */
3545 	tmp = get_wiphy_regdom(request_wiphy);
3546 	rcu_assign_pointer(request_wiphy->regd, rd);
3547 	rcu_free_regdom(tmp);
3548 
3549 	rd = NULL;
3550 
3551 	reset_regdomains(false, intersected_rd);
3552 
3553 	return 0;
3554 }
3555 
3556 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3557 				 struct regulatory_request *country_ie_request)
3558 {
3559 	struct wiphy *request_wiphy;
3560 
3561 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3562 	    !is_unknown_alpha2(rd->alpha2))
3563 		return -EINVAL;
3564 
3565 	/*
3566 	 * Lets only bother proceeding on the same alpha2 if the current
3567 	 * rd is non static (it means CRDA was present and was used last)
3568 	 * and the pending request came in from a country IE
3569 	 */
3570 
3571 	if (!is_valid_rd(rd)) {
3572 		pr_err("Invalid regulatory domain detected: %c%c\n",
3573 		       rd->alpha2[0], rd->alpha2[1]);
3574 		print_regdomain_info(rd);
3575 		return -EINVAL;
3576 	}
3577 
3578 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3579 	if (!request_wiphy)
3580 		return -ENODEV;
3581 
3582 	if (country_ie_request->intersect)
3583 		return -EINVAL;
3584 
3585 	reset_regdomains(false, rd);
3586 	return 0;
3587 }
3588 
3589 /*
3590  * Use this call to set the current regulatory domain. Conflicts with
3591  * multiple drivers can be ironed out later. Caller must've already
3592  * kmalloc'd the rd structure.
3593  */
3594 int set_regdom(const struct ieee80211_regdomain *rd,
3595 	       enum ieee80211_regd_source regd_src)
3596 {
3597 	struct regulatory_request *lr;
3598 	bool user_reset = false;
3599 	int r;
3600 
3601 	if (IS_ERR_OR_NULL(rd))
3602 		return -ENODATA;
3603 
3604 	if (!reg_is_valid_request(rd->alpha2)) {
3605 		kfree(rd);
3606 		return -EINVAL;
3607 	}
3608 
3609 	if (regd_src == REGD_SOURCE_CRDA)
3610 		reset_crda_timeouts();
3611 
3612 	lr = get_last_request();
3613 
3614 	/* Note that this doesn't update the wiphys, this is done below */
3615 	switch (lr->initiator) {
3616 	case NL80211_REGDOM_SET_BY_CORE:
3617 		r = reg_set_rd_core(rd);
3618 		break;
3619 	case NL80211_REGDOM_SET_BY_USER:
3620 		cfg80211_save_user_regdom(rd);
3621 		r = reg_set_rd_user(rd, lr);
3622 		user_reset = true;
3623 		break;
3624 	case NL80211_REGDOM_SET_BY_DRIVER:
3625 		r = reg_set_rd_driver(rd, lr);
3626 		break;
3627 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3628 		r = reg_set_rd_country_ie(rd, lr);
3629 		break;
3630 	default:
3631 		WARN(1, "invalid initiator %d\n", lr->initiator);
3632 		kfree(rd);
3633 		return -EINVAL;
3634 	}
3635 
3636 	if (r) {
3637 		switch (r) {
3638 		case -EALREADY:
3639 			reg_set_request_processed();
3640 			break;
3641 		default:
3642 			/* Back to world regulatory in case of errors */
3643 			restore_regulatory_settings(user_reset, false);
3644 		}
3645 
3646 		kfree(rd);
3647 		return r;
3648 	}
3649 
3650 	/* This would make this whole thing pointless */
3651 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3652 		return -EINVAL;
3653 
3654 	/* update all wiphys now with the new established regulatory domain */
3655 	update_all_wiphy_regulatory(lr->initiator);
3656 
3657 	print_regdomain(get_cfg80211_regdom());
3658 
3659 	nl80211_send_reg_change_event(lr);
3660 
3661 	reg_set_request_processed();
3662 
3663 	return 0;
3664 }
3665 
3666 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3667 				       struct ieee80211_regdomain *rd)
3668 {
3669 	const struct ieee80211_regdomain *regd;
3670 	const struct ieee80211_regdomain *prev_regd;
3671 	struct cfg80211_registered_device *rdev;
3672 
3673 	if (WARN_ON(!wiphy || !rd))
3674 		return -EINVAL;
3675 
3676 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3677 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3678 		return -EPERM;
3679 
3680 	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3681 		print_regdomain_info(rd);
3682 		return -EINVAL;
3683 	}
3684 
3685 	regd = reg_copy_regd(rd);
3686 	if (IS_ERR(regd))
3687 		return PTR_ERR(regd);
3688 
3689 	rdev = wiphy_to_rdev(wiphy);
3690 
3691 	spin_lock(&reg_requests_lock);
3692 	prev_regd = rdev->requested_regd;
3693 	rdev->requested_regd = regd;
3694 	spin_unlock(&reg_requests_lock);
3695 
3696 	kfree(prev_regd);
3697 	return 0;
3698 }
3699 
3700 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3701 			      struct ieee80211_regdomain *rd)
3702 {
3703 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3704 
3705 	if (ret)
3706 		return ret;
3707 
3708 	schedule_work(&reg_work);
3709 	return 0;
3710 }
3711 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3712 
3713 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3714 					struct ieee80211_regdomain *rd)
3715 {
3716 	int ret;
3717 
3718 	ASSERT_RTNL();
3719 
3720 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3721 	if (ret)
3722 		return ret;
3723 
3724 	/* process the request immediately */
3725 	reg_process_self_managed_hints();
3726 	return 0;
3727 }
3728 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3729 
3730 void wiphy_regulatory_register(struct wiphy *wiphy)
3731 {
3732 	struct regulatory_request *lr = get_last_request();
3733 
3734 	/* self-managed devices ignore beacon hints and country IE */
3735 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3736 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3737 					   REGULATORY_COUNTRY_IE_IGNORE;
3738 
3739 		/*
3740 		 * The last request may have been received before this
3741 		 * registration call. Call the driver notifier if
3742 		 * initiator is USER and user type is CELL_BASE.
3743 		 */
3744 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
3745 		    lr->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE)
3746 			reg_call_notifier(wiphy, lr);
3747 	}
3748 
3749 	if (!reg_dev_ignore_cell_hint(wiphy))
3750 		reg_num_devs_support_basehint++;
3751 
3752 	wiphy_update_regulatory(wiphy, lr->initiator);
3753 	wiphy_all_share_dfs_chan_state(wiphy);
3754 }
3755 
3756 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3757 {
3758 	struct wiphy *request_wiphy = NULL;
3759 	struct regulatory_request *lr;
3760 
3761 	lr = get_last_request();
3762 
3763 	if (!reg_dev_ignore_cell_hint(wiphy))
3764 		reg_num_devs_support_basehint--;
3765 
3766 	rcu_free_regdom(get_wiphy_regdom(wiphy));
3767 	RCU_INIT_POINTER(wiphy->regd, NULL);
3768 
3769 	if (lr)
3770 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3771 
3772 	if (!request_wiphy || request_wiphy != wiphy)
3773 		return;
3774 
3775 	lr->wiphy_idx = WIPHY_IDX_INVALID;
3776 	lr->country_ie_env = ENVIRON_ANY;
3777 }
3778 
3779 /*
3780  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3781  * UNII band definitions
3782  */
3783 int cfg80211_get_unii(int freq)
3784 {
3785 	/* UNII-1 */
3786 	if (freq >= 5150 && freq <= 5250)
3787 		return 0;
3788 
3789 	/* UNII-2A */
3790 	if (freq > 5250 && freq <= 5350)
3791 		return 1;
3792 
3793 	/* UNII-2B */
3794 	if (freq > 5350 && freq <= 5470)
3795 		return 2;
3796 
3797 	/* UNII-2C */
3798 	if (freq > 5470 && freq <= 5725)
3799 		return 3;
3800 
3801 	/* UNII-3 */
3802 	if (freq > 5725 && freq <= 5825)
3803 		return 4;
3804 
3805 	return -EINVAL;
3806 }
3807 
3808 bool regulatory_indoor_allowed(void)
3809 {
3810 	return reg_is_indoor;
3811 }
3812 
3813 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3814 {
3815 	const struct ieee80211_regdomain *regd = NULL;
3816 	const struct ieee80211_regdomain *wiphy_regd = NULL;
3817 	bool pre_cac_allowed = false;
3818 
3819 	rcu_read_lock();
3820 
3821 	regd = rcu_dereference(cfg80211_regdomain);
3822 	wiphy_regd = rcu_dereference(wiphy->regd);
3823 	if (!wiphy_regd) {
3824 		if (regd->dfs_region == NL80211_DFS_ETSI)
3825 			pre_cac_allowed = true;
3826 
3827 		rcu_read_unlock();
3828 
3829 		return pre_cac_allowed;
3830 	}
3831 
3832 	if (regd->dfs_region == wiphy_regd->dfs_region &&
3833 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3834 		pre_cac_allowed = true;
3835 
3836 	rcu_read_unlock();
3837 
3838 	return pre_cac_allowed;
3839 }
3840 
3841 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3842 				    struct cfg80211_chan_def *chandef,
3843 				    enum nl80211_dfs_state dfs_state,
3844 				    enum nl80211_radar_event event)
3845 {
3846 	struct cfg80211_registered_device *rdev;
3847 
3848 	ASSERT_RTNL();
3849 
3850 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3851 		return;
3852 
3853 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3854 		if (wiphy == &rdev->wiphy)
3855 			continue;
3856 
3857 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3858 			continue;
3859 
3860 		if (!ieee80211_get_channel(&rdev->wiphy,
3861 					   chandef->chan->center_freq))
3862 			continue;
3863 
3864 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3865 
3866 		if (event == NL80211_RADAR_DETECTED ||
3867 		    event == NL80211_RADAR_CAC_FINISHED)
3868 			cfg80211_sched_dfs_chan_update(rdev);
3869 
3870 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3871 	}
3872 }
3873 
3874 static int __init regulatory_init_db(void)
3875 {
3876 	int err;
3877 
3878 	/*
3879 	 * It's possible that - due to other bugs/issues - cfg80211
3880 	 * never called regulatory_init() below, or that it failed;
3881 	 * in that case, don't try to do any further work here as
3882 	 * it's doomed to lead to crashes.
3883 	 */
3884 	if (IS_ERR_OR_NULL(reg_pdev))
3885 		return -EINVAL;
3886 
3887 	err = load_builtin_regdb_keys();
3888 	if (err)
3889 		return err;
3890 
3891 	/* We always try to get an update for the static regdomain */
3892 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3893 	if (err) {
3894 		if (err == -ENOMEM) {
3895 			platform_device_unregister(reg_pdev);
3896 			return err;
3897 		}
3898 		/*
3899 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
3900 		 * memory which is handled and propagated appropriately above
3901 		 * but it can also fail during a netlink_broadcast() or during
3902 		 * early boot for call_usermodehelper(). For now treat these
3903 		 * errors as non-fatal.
3904 		 */
3905 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3906 	}
3907 
3908 	/*
3909 	 * Finally, if the user set the module parameter treat it
3910 	 * as a user hint.
3911 	 */
3912 	if (!is_world_regdom(ieee80211_regdom))
3913 		regulatory_hint_user(ieee80211_regdom,
3914 				     NL80211_USER_REG_HINT_USER);
3915 
3916 	return 0;
3917 }
3918 #ifndef MODULE
3919 late_initcall(regulatory_init_db);
3920 #endif
3921 
3922 int __init regulatory_init(void)
3923 {
3924 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3925 	if (IS_ERR(reg_pdev))
3926 		return PTR_ERR(reg_pdev);
3927 
3928 	spin_lock_init(&reg_requests_lock);
3929 	spin_lock_init(&reg_pending_beacons_lock);
3930 	spin_lock_init(&reg_indoor_lock);
3931 
3932 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3933 
3934 	user_alpha2[0] = '9';
3935 	user_alpha2[1] = '7';
3936 
3937 #ifdef MODULE
3938 	return regulatory_init_db();
3939 #else
3940 	return 0;
3941 #endif
3942 }
3943 
3944 void regulatory_exit(void)
3945 {
3946 	struct regulatory_request *reg_request, *tmp;
3947 	struct reg_beacon *reg_beacon, *btmp;
3948 
3949 	cancel_work_sync(&reg_work);
3950 	cancel_crda_timeout_sync();
3951 	cancel_delayed_work_sync(&reg_check_chans);
3952 
3953 	/* Lock to suppress warnings */
3954 	rtnl_lock();
3955 	reset_regdomains(true, NULL);
3956 	rtnl_unlock();
3957 
3958 	dev_set_uevent_suppress(&reg_pdev->dev, true);
3959 
3960 	platform_device_unregister(reg_pdev);
3961 
3962 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3963 		list_del(&reg_beacon->list);
3964 		kfree(reg_beacon);
3965 	}
3966 
3967 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3968 		list_del(&reg_beacon->list);
3969 		kfree(reg_beacon);
3970 	}
3971 
3972 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3973 		list_del(&reg_request->list);
3974 		kfree(reg_request);
3975 	}
3976 
3977 	if (!IS_ERR_OR_NULL(regdb))
3978 		kfree(regdb);
3979 	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
3980 		kfree(cfg80211_user_regdom);
3981 
3982 	free_regdb_keyring();
3983 }
3984