1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 /** 13 * DOC: Wireless regulatory infrastructure 14 * 15 * The usual implementation is for a driver to read a device EEPROM to 16 * determine which regulatory domain it should be operating under, then 17 * looking up the allowable channels in a driver-local table and finally 18 * registering those channels in the wiphy structure. 19 * 20 * Another set of compliance enforcement is for drivers to use their 21 * own compliance limits which can be stored on the EEPROM. The host 22 * driver or firmware may ensure these are used. 23 * 24 * In addition to all this we provide an extra layer of regulatory 25 * conformance. For drivers which do not have any regulatory 26 * information CRDA provides the complete regulatory solution. 27 * For others it provides a community effort on further restrictions 28 * to enhance compliance. 29 * 30 * Note: When number of rules --> infinity we will not be able to 31 * index on alpha2 any more, instead we'll probably have to 32 * rely on some SHA1 checksum of the regdomain for example. 33 * 34 */ 35 36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 37 38 #include <linux/kernel.h> 39 #include <linux/slab.h> 40 #include <linux/list.h> 41 #include <linux/random.h> 42 #include <linux/ctype.h> 43 #include <linux/nl80211.h> 44 #include <linux/platform_device.h> 45 #include <net/cfg80211.h> 46 #include "core.h" 47 #include "reg.h" 48 #include "regdb.h" 49 #include "nl80211.h" 50 51 #ifdef CONFIG_CFG80211_REG_DEBUG 52 #define REG_DBG_PRINT(format, args...) \ 53 do { \ 54 printk(KERN_DEBUG pr_fmt(format), ##args); \ 55 } while (0) 56 #else 57 #define REG_DBG_PRINT(args...) 58 #endif 59 60 /* Receipt of information from last regulatory request */ 61 static struct regulatory_request *last_request; 62 63 /* To trigger userspace events */ 64 static struct platform_device *reg_pdev; 65 66 static struct device_type reg_device_type = { 67 .uevent = reg_device_uevent, 68 }; 69 70 /* 71 * Central wireless core regulatory domains, we only need two, 72 * the current one and a world regulatory domain in case we have no 73 * information to give us an alpha2 74 */ 75 const struct ieee80211_regdomain *cfg80211_regdomain; 76 77 /* 78 * Protects static reg.c components: 79 * - cfg80211_world_regdom 80 * - cfg80211_regdom 81 * - last_request 82 */ 83 static DEFINE_MUTEX(reg_mutex); 84 85 static inline void assert_reg_lock(void) 86 { 87 lockdep_assert_held(®_mutex); 88 } 89 90 /* Used to queue up regulatory hints */ 91 static LIST_HEAD(reg_requests_list); 92 static spinlock_t reg_requests_lock; 93 94 /* Used to queue up beacon hints for review */ 95 static LIST_HEAD(reg_pending_beacons); 96 static spinlock_t reg_pending_beacons_lock; 97 98 /* Used to keep track of processed beacon hints */ 99 static LIST_HEAD(reg_beacon_list); 100 101 struct reg_beacon { 102 struct list_head list; 103 struct ieee80211_channel chan; 104 }; 105 106 static void reg_todo(struct work_struct *work); 107 static DECLARE_WORK(reg_work, reg_todo); 108 109 /* We keep a static world regulatory domain in case of the absence of CRDA */ 110 static const struct ieee80211_regdomain world_regdom = { 111 .n_reg_rules = 5, 112 .alpha2 = "00", 113 .reg_rules = { 114 /* IEEE 802.11b/g, channels 1..11 */ 115 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 116 /* IEEE 802.11b/g, channels 12..13. No HT40 117 * channel fits here. */ 118 REG_RULE(2467-10, 2472+10, 20, 6, 20, 119 NL80211_RRF_PASSIVE_SCAN | 120 NL80211_RRF_NO_IBSS), 121 /* IEEE 802.11 channel 14 - Only JP enables 122 * this and for 802.11b only */ 123 REG_RULE(2484-10, 2484+10, 20, 6, 20, 124 NL80211_RRF_PASSIVE_SCAN | 125 NL80211_RRF_NO_IBSS | 126 NL80211_RRF_NO_OFDM), 127 /* IEEE 802.11a, channel 36..48 */ 128 REG_RULE(5180-10, 5240+10, 40, 6, 20, 129 NL80211_RRF_PASSIVE_SCAN | 130 NL80211_RRF_NO_IBSS), 131 132 /* NB: 5260 MHz - 5700 MHz requies DFS */ 133 134 /* IEEE 802.11a, channel 149..165 */ 135 REG_RULE(5745-10, 5825+10, 40, 6, 20, 136 NL80211_RRF_PASSIVE_SCAN | 137 NL80211_RRF_NO_IBSS), 138 } 139 }; 140 141 static const struct ieee80211_regdomain *cfg80211_world_regdom = 142 &world_regdom; 143 144 static char *ieee80211_regdom = "00"; 145 static char user_alpha2[2]; 146 147 module_param(ieee80211_regdom, charp, 0444); 148 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 149 150 static void reset_regdomains(void) 151 { 152 /* avoid freeing static information or freeing something twice */ 153 if (cfg80211_regdomain == cfg80211_world_regdom) 154 cfg80211_regdomain = NULL; 155 if (cfg80211_world_regdom == &world_regdom) 156 cfg80211_world_regdom = NULL; 157 if (cfg80211_regdomain == &world_regdom) 158 cfg80211_regdomain = NULL; 159 160 kfree(cfg80211_regdomain); 161 kfree(cfg80211_world_regdom); 162 163 cfg80211_world_regdom = &world_regdom; 164 cfg80211_regdomain = NULL; 165 } 166 167 /* 168 * Dynamic world regulatory domain requested by the wireless 169 * core upon initialization 170 */ 171 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 172 { 173 BUG_ON(!last_request); 174 175 reset_regdomains(); 176 177 cfg80211_world_regdom = rd; 178 cfg80211_regdomain = rd; 179 } 180 181 bool is_world_regdom(const char *alpha2) 182 { 183 if (!alpha2) 184 return false; 185 if (alpha2[0] == '0' && alpha2[1] == '0') 186 return true; 187 return false; 188 } 189 190 static bool is_alpha2_set(const char *alpha2) 191 { 192 if (!alpha2) 193 return false; 194 if (alpha2[0] != 0 && alpha2[1] != 0) 195 return true; 196 return false; 197 } 198 199 static bool is_unknown_alpha2(const char *alpha2) 200 { 201 if (!alpha2) 202 return false; 203 /* 204 * Special case where regulatory domain was built by driver 205 * but a specific alpha2 cannot be determined 206 */ 207 if (alpha2[0] == '9' && alpha2[1] == '9') 208 return true; 209 return false; 210 } 211 212 static bool is_intersected_alpha2(const char *alpha2) 213 { 214 if (!alpha2) 215 return false; 216 /* 217 * Special case where regulatory domain is the 218 * result of an intersection between two regulatory domain 219 * structures 220 */ 221 if (alpha2[0] == '9' && alpha2[1] == '8') 222 return true; 223 return false; 224 } 225 226 static bool is_an_alpha2(const char *alpha2) 227 { 228 if (!alpha2) 229 return false; 230 if (isalpha(alpha2[0]) && isalpha(alpha2[1])) 231 return true; 232 return false; 233 } 234 235 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 236 { 237 if (!alpha2_x || !alpha2_y) 238 return false; 239 if (alpha2_x[0] == alpha2_y[0] && 240 alpha2_x[1] == alpha2_y[1]) 241 return true; 242 return false; 243 } 244 245 static bool regdom_changes(const char *alpha2) 246 { 247 assert_cfg80211_lock(); 248 249 if (!cfg80211_regdomain) 250 return true; 251 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2)) 252 return false; 253 return true; 254 } 255 256 /* 257 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 258 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 259 * has ever been issued. 260 */ 261 static bool is_user_regdom_saved(void) 262 { 263 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 264 return false; 265 266 /* This would indicate a mistake on the design */ 267 if (WARN((!is_world_regdom(user_alpha2) && 268 !is_an_alpha2(user_alpha2)), 269 "Unexpected user alpha2: %c%c\n", 270 user_alpha2[0], 271 user_alpha2[1])) 272 return false; 273 274 return true; 275 } 276 277 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd, 278 const struct ieee80211_regdomain *src_regd) 279 { 280 struct ieee80211_regdomain *regd; 281 int size_of_regd = 0; 282 unsigned int i; 283 284 size_of_regd = sizeof(struct ieee80211_regdomain) + 285 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule)); 286 287 regd = kzalloc(size_of_regd, GFP_KERNEL); 288 if (!regd) 289 return -ENOMEM; 290 291 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 292 293 for (i = 0; i < src_regd->n_reg_rules; i++) 294 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 295 sizeof(struct ieee80211_reg_rule)); 296 297 *dst_regd = regd; 298 return 0; 299 } 300 301 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 302 struct reg_regdb_search_request { 303 char alpha2[2]; 304 struct list_head list; 305 }; 306 307 static LIST_HEAD(reg_regdb_search_list); 308 static DEFINE_MUTEX(reg_regdb_search_mutex); 309 310 static void reg_regdb_search(struct work_struct *work) 311 { 312 struct reg_regdb_search_request *request; 313 const struct ieee80211_regdomain *curdom, *regdom; 314 int i, r; 315 316 mutex_lock(®_regdb_search_mutex); 317 while (!list_empty(®_regdb_search_list)) { 318 request = list_first_entry(®_regdb_search_list, 319 struct reg_regdb_search_request, 320 list); 321 list_del(&request->list); 322 323 for (i=0; i<reg_regdb_size; i++) { 324 curdom = reg_regdb[i]; 325 326 if (!memcmp(request->alpha2, curdom->alpha2, 2)) { 327 r = reg_copy_regd(®dom, curdom); 328 if (r) 329 break; 330 mutex_lock(&cfg80211_mutex); 331 set_regdom(regdom); 332 mutex_unlock(&cfg80211_mutex); 333 break; 334 } 335 } 336 337 kfree(request); 338 } 339 mutex_unlock(®_regdb_search_mutex); 340 } 341 342 static DECLARE_WORK(reg_regdb_work, reg_regdb_search); 343 344 static void reg_regdb_query(const char *alpha2) 345 { 346 struct reg_regdb_search_request *request; 347 348 if (!alpha2) 349 return; 350 351 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL); 352 if (!request) 353 return; 354 355 memcpy(request->alpha2, alpha2, 2); 356 357 mutex_lock(®_regdb_search_mutex); 358 list_add_tail(&request->list, ®_regdb_search_list); 359 mutex_unlock(®_regdb_search_mutex); 360 361 schedule_work(®_regdb_work); 362 } 363 #else 364 static inline void reg_regdb_query(const char *alpha2) {} 365 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 366 367 /* 368 * This lets us keep regulatory code which is updated on a regulatory 369 * basis in userspace. Country information is filled in by 370 * reg_device_uevent 371 */ 372 static int call_crda(const char *alpha2) 373 { 374 if (!is_world_regdom((char *) alpha2)) 375 pr_info("Calling CRDA for country: %c%c\n", 376 alpha2[0], alpha2[1]); 377 else 378 pr_info("Calling CRDA to update world regulatory domain\n"); 379 380 /* query internal regulatory database (if it exists) */ 381 reg_regdb_query(alpha2); 382 383 return kobject_uevent(®_pdev->dev.kobj, KOBJ_CHANGE); 384 } 385 386 /* Used by nl80211 before kmalloc'ing our regulatory domain */ 387 bool reg_is_valid_request(const char *alpha2) 388 { 389 assert_cfg80211_lock(); 390 391 if (!last_request) 392 return false; 393 394 return alpha2_equal(last_request->alpha2, alpha2); 395 } 396 397 /* Sanity check on a regulatory rule */ 398 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 399 { 400 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 401 u32 freq_diff; 402 403 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 404 return false; 405 406 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 407 return false; 408 409 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 410 411 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 412 freq_range->max_bandwidth_khz > freq_diff) 413 return false; 414 415 return true; 416 } 417 418 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 419 { 420 const struct ieee80211_reg_rule *reg_rule = NULL; 421 unsigned int i; 422 423 if (!rd->n_reg_rules) 424 return false; 425 426 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 427 return false; 428 429 for (i = 0; i < rd->n_reg_rules; i++) { 430 reg_rule = &rd->reg_rules[i]; 431 if (!is_valid_reg_rule(reg_rule)) 432 return false; 433 } 434 435 return true; 436 } 437 438 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 439 u32 center_freq_khz, 440 u32 bw_khz) 441 { 442 u32 start_freq_khz, end_freq_khz; 443 444 start_freq_khz = center_freq_khz - (bw_khz/2); 445 end_freq_khz = center_freq_khz + (bw_khz/2); 446 447 if (start_freq_khz >= freq_range->start_freq_khz && 448 end_freq_khz <= freq_range->end_freq_khz) 449 return true; 450 451 return false; 452 } 453 454 /** 455 * freq_in_rule_band - tells us if a frequency is in a frequency band 456 * @freq_range: frequency rule we want to query 457 * @freq_khz: frequency we are inquiring about 458 * 459 * This lets us know if a specific frequency rule is or is not relevant to 460 * a specific frequency's band. Bands are device specific and artificial 461 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is 462 * safe for now to assume that a frequency rule should not be part of a 463 * frequency's band if the start freq or end freq are off by more than 2 GHz. 464 * This resolution can be lowered and should be considered as we add 465 * regulatory rule support for other "bands". 466 **/ 467 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 468 u32 freq_khz) 469 { 470 #define ONE_GHZ_IN_KHZ 1000000 471 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) 472 return true; 473 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) 474 return true; 475 return false; 476 #undef ONE_GHZ_IN_KHZ 477 } 478 479 /* 480 * Helper for regdom_intersect(), this does the real 481 * mathematical intersection fun 482 */ 483 static int reg_rules_intersect( 484 const struct ieee80211_reg_rule *rule1, 485 const struct ieee80211_reg_rule *rule2, 486 struct ieee80211_reg_rule *intersected_rule) 487 { 488 const struct ieee80211_freq_range *freq_range1, *freq_range2; 489 struct ieee80211_freq_range *freq_range; 490 const struct ieee80211_power_rule *power_rule1, *power_rule2; 491 struct ieee80211_power_rule *power_rule; 492 u32 freq_diff; 493 494 freq_range1 = &rule1->freq_range; 495 freq_range2 = &rule2->freq_range; 496 freq_range = &intersected_rule->freq_range; 497 498 power_rule1 = &rule1->power_rule; 499 power_rule2 = &rule2->power_rule; 500 power_rule = &intersected_rule->power_rule; 501 502 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 503 freq_range2->start_freq_khz); 504 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 505 freq_range2->end_freq_khz); 506 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz, 507 freq_range2->max_bandwidth_khz); 508 509 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 510 if (freq_range->max_bandwidth_khz > freq_diff) 511 freq_range->max_bandwidth_khz = freq_diff; 512 513 power_rule->max_eirp = min(power_rule1->max_eirp, 514 power_rule2->max_eirp); 515 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 516 power_rule2->max_antenna_gain); 517 518 intersected_rule->flags = (rule1->flags | rule2->flags); 519 520 if (!is_valid_reg_rule(intersected_rule)) 521 return -EINVAL; 522 523 return 0; 524 } 525 526 /** 527 * regdom_intersect - do the intersection between two regulatory domains 528 * @rd1: first regulatory domain 529 * @rd2: second regulatory domain 530 * 531 * Use this function to get the intersection between two regulatory domains. 532 * Once completed we will mark the alpha2 for the rd as intersected, "98", 533 * as no one single alpha2 can represent this regulatory domain. 534 * 535 * Returns a pointer to the regulatory domain structure which will hold the 536 * resulting intersection of rules between rd1 and rd2. We will 537 * kzalloc() this structure for you. 538 */ 539 static struct ieee80211_regdomain *regdom_intersect( 540 const struct ieee80211_regdomain *rd1, 541 const struct ieee80211_regdomain *rd2) 542 { 543 int r, size_of_regd; 544 unsigned int x, y; 545 unsigned int num_rules = 0, rule_idx = 0; 546 const struct ieee80211_reg_rule *rule1, *rule2; 547 struct ieee80211_reg_rule *intersected_rule; 548 struct ieee80211_regdomain *rd; 549 /* This is just a dummy holder to help us count */ 550 struct ieee80211_reg_rule irule; 551 552 /* Uses the stack temporarily for counter arithmetic */ 553 intersected_rule = &irule; 554 555 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule)); 556 557 if (!rd1 || !rd2) 558 return NULL; 559 560 /* 561 * First we get a count of the rules we'll need, then we actually 562 * build them. This is to so we can malloc() and free() a 563 * regdomain once. The reason we use reg_rules_intersect() here 564 * is it will return -EINVAL if the rule computed makes no sense. 565 * All rules that do check out OK are valid. 566 */ 567 568 for (x = 0; x < rd1->n_reg_rules; x++) { 569 rule1 = &rd1->reg_rules[x]; 570 for (y = 0; y < rd2->n_reg_rules; y++) { 571 rule2 = &rd2->reg_rules[y]; 572 if (!reg_rules_intersect(rule1, rule2, 573 intersected_rule)) 574 num_rules++; 575 memset(intersected_rule, 0, 576 sizeof(struct ieee80211_reg_rule)); 577 } 578 } 579 580 if (!num_rules) 581 return NULL; 582 583 size_of_regd = sizeof(struct ieee80211_regdomain) + 584 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule)); 585 586 rd = kzalloc(size_of_regd, GFP_KERNEL); 587 if (!rd) 588 return NULL; 589 590 for (x = 0; x < rd1->n_reg_rules; x++) { 591 rule1 = &rd1->reg_rules[x]; 592 for (y = 0; y < rd2->n_reg_rules; y++) { 593 rule2 = &rd2->reg_rules[y]; 594 /* 595 * This time around instead of using the stack lets 596 * write to the target rule directly saving ourselves 597 * a memcpy() 598 */ 599 intersected_rule = &rd->reg_rules[rule_idx]; 600 r = reg_rules_intersect(rule1, rule2, 601 intersected_rule); 602 /* 603 * No need to memset here the intersected rule here as 604 * we're not using the stack anymore 605 */ 606 if (r) 607 continue; 608 rule_idx++; 609 } 610 } 611 612 if (rule_idx != num_rules) { 613 kfree(rd); 614 return NULL; 615 } 616 617 rd->n_reg_rules = num_rules; 618 rd->alpha2[0] = '9'; 619 rd->alpha2[1] = '8'; 620 621 return rd; 622 } 623 624 /* 625 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 626 * want to just have the channel structure use these 627 */ 628 static u32 map_regdom_flags(u32 rd_flags) 629 { 630 u32 channel_flags = 0; 631 if (rd_flags & NL80211_RRF_PASSIVE_SCAN) 632 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN; 633 if (rd_flags & NL80211_RRF_NO_IBSS) 634 channel_flags |= IEEE80211_CHAN_NO_IBSS; 635 if (rd_flags & NL80211_RRF_DFS) 636 channel_flags |= IEEE80211_CHAN_RADAR; 637 return channel_flags; 638 } 639 640 static int freq_reg_info_regd(struct wiphy *wiphy, 641 u32 center_freq, 642 u32 desired_bw_khz, 643 const struct ieee80211_reg_rule **reg_rule, 644 const struct ieee80211_regdomain *custom_regd) 645 { 646 int i; 647 bool band_rule_found = false; 648 const struct ieee80211_regdomain *regd; 649 bool bw_fits = false; 650 651 if (!desired_bw_khz) 652 desired_bw_khz = MHZ_TO_KHZ(20); 653 654 regd = custom_regd ? custom_regd : cfg80211_regdomain; 655 656 /* 657 * Follow the driver's regulatory domain, if present, unless a country 658 * IE has been processed or a user wants to help complaince further 659 */ 660 if (!custom_regd && 661 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 662 last_request->initiator != NL80211_REGDOM_SET_BY_USER && 663 wiphy->regd) 664 regd = wiphy->regd; 665 666 if (!regd) 667 return -EINVAL; 668 669 for (i = 0; i < regd->n_reg_rules; i++) { 670 const struct ieee80211_reg_rule *rr; 671 const struct ieee80211_freq_range *fr = NULL; 672 const struct ieee80211_power_rule *pr = NULL; 673 674 rr = ®d->reg_rules[i]; 675 fr = &rr->freq_range; 676 pr = &rr->power_rule; 677 678 /* 679 * We only need to know if one frequency rule was 680 * was in center_freq's band, that's enough, so lets 681 * not overwrite it once found 682 */ 683 if (!band_rule_found) 684 band_rule_found = freq_in_rule_band(fr, center_freq); 685 686 bw_fits = reg_does_bw_fit(fr, 687 center_freq, 688 desired_bw_khz); 689 690 if (band_rule_found && bw_fits) { 691 *reg_rule = rr; 692 return 0; 693 } 694 } 695 696 if (!band_rule_found) 697 return -ERANGE; 698 699 return -EINVAL; 700 } 701 702 int freq_reg_info(struct wiphy *wiphy, 703 u32 center_freq, 704 u32 desired_bw_khz, 705 const struct ieee80211_reg_rule **reg_rule) 706 { 707 assert_cfg80211_lock(); 708 return freq_reg_info_regd(wiphy, 709 center_freq, 710 desired_bw_khz, 711 reg_rule, 712 NULL); 713 } 714 EXPORT_SYMBOL(freq_reg_info); 715 716 #ifdef CONFIG_CFG80211_REG_DEBUG 717 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 718 { 719 switch (initiator) { 720 case NL80211_REGDOM_SET_BY_CORE: 721 return "Set by core"; 722 case NL80211_REGDOM_SET_BY_USER: 723 return "Set by user"; 724 case NL80211_REGDOM_SET_BY_DRIVER: 725 return "Set by driver"; 726 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 727 return "Set by country IE"; 728 default: 729 WARN_ON(1); 730 return "Set by bug"; 731 } 732 } 733 734 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 735 u32 desired_bw_khz, 736 const struct ieee80211_reg_rule *reg_rule) 737 { 738 const struct ieee80211_power_rule *power_rule; 739 const struct ieee80211_freq_range *freq_range; 740 char max_antenna_gain[32]; 741 742 power_rule = ®_rule->power_rule; 743 freq_range = ®_rule->freq_range; 744 745 if (!power_rule->max_antenna_gain) 746 snprintf(max_antenna_gain, 32, "N/A"); 747 else 748 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain); 749 750 REG_DBG_PRINT("Updating information on frequency %d MHz " 751 "for a %d MHz width channel with regulatory rule:\n", 752 chan->center_freq, 753 KHZ_TO_MHZ(desired_bw_khz)); 754 755 REG_DBG_PRINT("%d KHz - %d KHz @ KHz), (%s mBi, %d mBm)\n", 756 freq_range->start_freq_khz, 757 freq_range->end_freq_khz, 758 max_antenna_gain, 759 power_rule->max_eirp); 760 } 761 #else 762 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 763 u32 desired_bw_khz, 764 const struct ieee80211_reg_rule *reg_rule) 765 { 766 return; 767 } 768 #endif 769 770 /* 771 * Note that right now we assume the desired channel bandwidth 772 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 773 * per channel, the primary and the extension channel). To support 774 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a 775 * new ieee80211_channel.target_bw and re run the regulatory check 776 * on the wiphy with the target_bw specified. Then we can simply use 777 * that below for the desired_bw_khz below. 778 */ 779 static void handle_channel(struct wiphy *wiphy, 780 enum nl80211_reg_initiator initiator, 781 enum ieee80211_band band, 782 unsigned int chan_idx) 783 { 784 int r; 785 u32 flags, bw_flags = 0; 786 u32 desired_bw_khz = MHZ_TO_KHZ(20); 787 const struct ieee80211_reg_rule *reg_rule = NULL; 788 const struct ieee80211_power_rule *power_rule = NULL; 789 const struct ieee80211_freq_range *freq_range = NULL; 790 struct ieee80211_supported_band *sband; 791 struct ieee80211_channel *chan; 792 struct wiphy *request_wiphy = NULL; 793 794 assert_cfg80211_lock(); 795 796 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 797 798 sband = wiphy->bands[band]; 799 BUG_ON(chan_idx >= sband->n_channels); 800 chan = &sband->channels[chan_idx]; 801 802 flags = chan->orig_flags; 803 804 r = freq_reg_info(wiphy, 805 MHZ_TO_KHZ(chan->center_freq), 806 desired_bw_khz, 807 ®_rule); 808 809 if (r) { 810 /* 811 * We will disable all channels that do not match our 812 * recieved regulatory rule unless the hint is coming 813 * from a Country IE and the Country IE had no information 814 * about a band. The IEEE 802.11 spec allows for an AP 815 * to send only a subset of the regulatory rules allowed, 816 * so an AP in the US that only supports 2.4 GHz may only send 817 * a country IE with information for the 2.4 GHz band 818 * while 5 GHz is still supported. 819 */ 820 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 821 r == -ERANGE) 822 return; 823 824 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq); 825 chan->flags = IEEE80211_CHAN_DISABLED; 826 return; 827 } 828 829 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule); 830 831 power_rule = ®_rule->power_rule; 832 freq_range = ®_rule->freq_range; 833 834 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 835 bw_flags = IEEE80211_CHAN_NO_HT40; 836 837 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 838 request_wiphy && request_wiphy == wiphy && 839 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { 840 /* 841 * This gaurantees the driver's requested regulatory domain 842 * will always be used as a base for further regulatory 843 * settings 844 */ 845 chan->flags = chan->orig_flags = 846 map_regdom_flags(reg_rule->flags) | bw_flags; 847 chan->max_antenna_gain = chan->orig_mag = 848 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 849 chan->max_power = chan->orig_mpwr = 850 (int) MBM_TO_DBM(power_rule->max_eirp); 851 return; 852 } 853 854 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 855 chan->max_antenna_gain = min(chan->orig_mag, 856 (int) MBI_TO_DBI(power_rule->max_antenna_gain)); 857 if (chan->orig_mpwr) 858 chan->max_power = min(chan->orig_mpwr, 859 (int) MBM_TO_DBM(power_rule->max_eirp)); 860 else 861 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); 862 } 863 864 static void handle_band(struct wiphy *wiphy, 865 enum ieee80211_band band, 866 enum nl80211_reg_initiator initiator) 867 { 868 unsigned int i; 869 struct ieee80211_supported_band *sband; 870 871 BUG_ON(!wiphy->bands[band]); 872 sband = wiphy->bands[band]; 873 874 for (i = 0; i < sband->n_channels; i++) 875 handle_channel(wiphy, initiator, band, i); 876 } 877 878 static bool ignore_reg_update(struct wiphy *wiphy, 879 enum nl80211_reg_initiator initiator) 880 { 881 if (!last_request) { 882 REG_DBG_PRINT("Ignoring regulatory request %s since " 883 "last_request is not set\n", 884 reg_initiator_name(initiator)); 885 return true; 886 } 887 888 if (initiator == NL80211_REGDOM_SET_BY_CORE && 889 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) { 890 REG_DBG_PRINT("Ignoring regulatory request %s " 891 "since the driver uses its own custom " 892 "regulatory domain ", 893 reg_initiator_name(initiator)); 894 return true; 895 } 896 897 /* 898 * wiphy->regd will be set once the device has its own 899 * desired regulatory domain set 900 */ 901 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd && 902 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 903 !is_world_regdom(last_request->alpha2)) { 904 REG_DBG_PRINT("Ignoring regulatory request %s " 905 "since the driver requires its own regulaotry " 906 "domain to be set first", 907 reg_initiator_name(initiator)); 908 return true; 909 } 910 911 return false; 912 } 913 914 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 915 { 916 struct cfg80211_registered_device *rdev; 917 918 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 919 wiphy_update_regulatory(&rdev->wiphy, initiator); 920 } 921 922 static void handle_reg_beacon(struct wiphy *wiphy, 923 unsigned int chan_idx, 924 struct reg_beacon *reg_beacon) 925 { 926 struct ieee80211_supported_band *sband; 927 struct ieee80211_channel *chan; 928 bool channel_changed = false; 929 struct ieee80211_channel chan_before; 930 931 assert_cfg80211_lock(); 932 933 sband = wiphy->bands[reg_beacon->chan.band]; 934 chan = &sband->channels[chan_idx]; 935 936 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 937 return; 938 939 if (chan->beacon_found) 940 return; 941 942 chan->beacon_found = true; 943 944 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS) 945 return; 946 947 chan_before.center_freq = chan->center_freq; 948 chan_before.flags = chan->flags; 949 950 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) { 951 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN; 952 channel_changed = true; 953 } 954 955 if (chan->flags & IEEE80211_CHAN_NO_IBSS) { 956 chan->flags &= ~IEEE80211_CHAN_NO_IBSS; 957 channel_changed = true; 958 } 959 960 if (channel_changed) 961 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 962 } 963 964 /* 965 * Called when a scan on a wiphy finds a beacon on 966 * new channel 967 */ 968 static void wiphy_update_new_beacon(struct wiphy *wiphy, 969 struct reg_beacon *reg_beacon) 970 { 971 unsigned int i; 972 struct ieee80211_supported_band *sband; 973 974 assert_cfg80211_lock(); 975 976 if (!wiphy->bands[reg_beacon->chan.band]) 977 return; 978 979 sband = wiphy->bands[reg_beacon->chan.band]; 980 981 for (i = 0; i < sband->n_channels; i++) 982 handle_reg_beacon(wiphy, i, reg_beacon); 983 } 984 985 /* 986 * Called upon reg changes or a new wiphy is added 987 */ 988 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 989 { 990 unsigned int i; 991 struct ieee80211_supported_band *sband; 992 struct reg_beacon *reg_beacon; 993 994 assert_cfg80211_lock(); 995 996 if (list_empty(®_beacon_list)) 997 return; 998 999 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1000 if (!wiphy->bands[reg_beacon->chan.band]) 1001 continue; 1002 sband = wiphy->bands[reg_beacon->chan.band]; 1003 for (i = 0; i < sband->n_channels; i++) 1004 handle_reg_beacon(wiphy, i, reg_beacon); 1005 } 1006 } 1007 1008 static bool reg_is_world_roaming(struct wiphy *wiphy) 1009 { 1010 if (is_world_regdom(cfg80211_regdomain->alpha2) || 1011 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2))) 1012 return true; 1013 if (last_request && 1014 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1015 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) 1016 return true; 1017 return false; 1018 } 1019 1020 /* Reap the advantages of previously found beacons */ 1021 static void reg_process_beacons(struct wiphy *wiphy) 1022 { 1023 /* 1024 * Means we are just firing up cfg80211, so no beacons would 1025 * have been processed yet. 1026 */ 1027 if (!last_request) 1028 return; 1029 if (!reg_is_world_roaming(wiphy)) 1030 return; 1031 wiphy_update_beacon_reg(wiphy); 1032 } 1033 1034 static bool is_ht40_not_allowed(struct ieee80211_channel *chan) 1035 { 1036 if (!chan) 1037 return true; 1038 if (chan->flags & IEEE80211_CHAN_DISABLED) 1039 return true; 1040 /* This would happen when regulatory rules disallow HT40 completely */ 1041 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40))) 1042 return true; 1043 return false; 1044 } 1045 1046 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1047 enum ieee80211_band band, 1048 unsigned int chan_idx) 1049 { 1050 struct ieee80211_supported_band *sband; 1051 struct ieee80211_channel *channel; 1052 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1053 unsigned int i; 1054 1055 assert_cfg80211_lock(); 1056 1057 sband = wiphy->bands[band]; 1058 BUG_ON(chan_idx >= sband->n_channels); 1059 channel = &sband->channels[chan_idx]; 1060 1061 if (is_ht40_not_allowed(channel)) { 1062 channel->flags |= IEEE80211_CHAN_NO_HT40; 1063 return; 1064 } 1065 1066 /* 1067 * We need to ensure the extension channels exist to 1068 * be able to use HT40- or HT40+, this finds them (or not) 1069 */ 1070 for (i = 0; i < sband->n_channels; i++) { 1071 struct ieee80211_channel *c = &sband->channels[i]; 1072 if (c->center_freq == (channel->center_freq - 20)) 1073 channel_before = c; 1074 if (c->center_freq == (channel->center_freq + 20)) 1075 channel_after = c; 1076 } 1077 1078 /* 1079 * Please note that this assumes target bandwidth is 20 MHz, 1080 * if that ever changes we also need to change the below logic 1081 * to include that as well. 1082 */ 1083 if (is_ht40_not_allowed(channel_before)) 1084 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1085 else 1086 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1087 1088 if (is_ht40_not_allowed(channel_after)) 1089 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1090 else 1091 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1092 } 1093 1094 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1095 enum ieee80211_band band) 1096 { 1097 unsigned int i; 1098 struct ieee80211_supported_band *sband; 1099 1100 BUG_ON(!wiphy->bands[band]); 1101 sband = wiphy->bands[band]; 1102 1103 for (i = 0; i < sband->n_channels; i++) 1104 reg_process_ht_flags_channel(wiphy, band, i); 1105 } 1106 1107 static void reg_process_ht_flags(struct wiphy *wiphy) 1108 { 1109 enum ieee80211_band band; 1110 1111 if (!wiphy) 1112 return; 1113 1114 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1115 if (wiphy->bands[band]) 1116 reg_process_ht_flags_band(wiphy, band); 1117 } 1118 1119 } 1120 1121 void wiphy_update_regulatory(struct wiphy *wiphy, 1122 enum nl80211_reg_initiator initiator) 1123 { 1124 enum ieee80211_band band; 1125 1126 if (ignore_reg_update(wiphy, initiator)) 1127 goto out; 1128 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1129 if (wiphy->bands[band]) 1130 handle_band(wiphy, band, initiator); 1131 } 1132 out: 1133 reg_process_beacons(wiphy); 1134 reg_process_ht_flags(wiphy); 1135 if (wiphy->reg_notifier) 1136 wiphy->reg_notifier(wiphy, last_request); 1137 } 1138 1139 static void handle_channel_custom(struct wiphy *wiphy, 1140 enum ieee80211_band band, 1141 unsigned int chan_idx, 1142 const struct ieee80211_regdomain *regd) 1143 { 1144 int r; 1145 u32 desired_bw_khz = MHZ_TO_KHZ(20); 1146 u32 bw_flags = 0; 1147 const struct ieee80211_reg_rule *reg_rule = NULL; 1148 const struct ieee80211_power_rule *power_rule = NULL; 1149 const struct ieee80211_freq_range *freq_range = NULL; 1150 struct ieee80211_supported_band *sband; 1151 struct ieee80211_channel *chan; 1152 1153 assert_reg_lock(); 1154 1155 sband = wiphy->bands[band]; 1156 BUG_ON(chan_idx >= sband->n_channels); 1157 chan = &sband->channels[chan_idx]; 1158 1159 r = freq_reg_info_regd(wiphy, 1160 MHZ_TO_KHZ(chan->center_freq), 1161 desired_bw_khz, 1162 ®_rule, 1163 regd); 1164 1165 if (r) { 1166 REG_DBG_PRINT("Disabling freq %d MHz as custom " 1167 "regd has no rule that fits a %d MHz " 1168 "wide channel\n", 1169 chan->center_freq, 1170 KHZ_TO_MHZ(desired_bw_khz)); 1171 chan->flags = IEEE80211_CHAN_DISABLED; 1172 return; 1173 } 1174 1175 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule); 1176 1177 power_rule = ®_rule->power_rule; 1178 freq_range = ®_rule->freq_range; 1179 1180 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 1181 bw_flags = IEEE80211_CHAN_NO_HT40; 1182 1183 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1184 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1185 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1186 } 1187 1188 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band, 1189 const struct ieee80211_regdomain *regd) 1190 { 1191 unsigned int i; 1192 struct ieee80211_supported_band *sband; 1193 1194 BUG_ON(!wiphy->bands[band]); 1195 sband = wiphy->bands[band]; 1196 1197 for (i = 0; i < sband->n_channels; i++) 1198 handle_channel_custom(wiphy, band, i, regd); 1199 } 1200 1201 /* Used by drivers prior to wiphy registration */ 1202 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1203 const struct ieee80211_regdomain *regd) 1204 { 1205 enum ieee80211_band band; 1206 unsigned int bands_set = 0; 1207 1208 mutex_lock(®_mutex); 1209 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1210 if (!wiphy->bands[band]) 1211 continue; 1212 handle_band_custom(wiphy, band, regd); 1213 bands_set++; 1214 } 1215 mutex_unlock(®_mutex); 1216 1217 /* 1218 * no point in calling this if it won't have any effect 1219 * on your device's supportd bands. 1220 */ 1221 WARN_ON(!bands_set); 1222 } 1223 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1224 1225 /* 1226 * Return value which can be used by ignore_request() to indicate 1227 * it has been determined we should intersect two regulatory domains 1228 */ 1229 #define REG_INTERSECT 1 1230 1231 /* This has the logic which determines when a new request 1232 * should be ignored. */ 1233 static int ignore_request(struct wiphy *wiphy, 1234 struct regulatory_request *pending_request) 1235 { 1236 struct wiphy *last_wiphy = NULL; 1237 1238 assert_cfg80211_lock(); 1239 1240 /* All initial requests are respected */ 1241 if (!last_request) 1242 return 0; 1243 1244 switch (pending_request->initiator) { 1245 case NL80211_REGDOM_SET_BY_CORE: 1246 return 0; 1247 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1248 1249 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 1250 1251 if (unlikely(!is_an_alpha2(pending_request->alpha2))) 1252 return -EINVAL; 1253 if (last_request->initiator == 1254 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1255 if (last_wiphy != wiphy) { 1256 /* 1257 * Two cards with two APs claiming different 1258 * Country IE alpha2s. We could 1259 * intersect them, but that seems unlikely 1260 * to be correct. Reject second one for now. 1261 */ 1262 if (regdom_changes(pending_request->alpha2)) 1263 return -EOPNOTSUPP; 1264 return -EALREADY; 1265 } 1266 /* 1267 * Two consecutive Country IE hints on the same wiphy. 1268 * This should be picked up early by the driver/stack 1269 */ 1270 if (WARN_ON(regdom_changes(pending_request->alpha2))) 1271 return 0; 1272 return -EALREADY; 1273 } 1274 return 0; 1275 case NL80211_REGDOM_SET_BY_DRIVER: 1276 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) { 1277 if (regdom_changes(pending_request->alpha2)) 1278 return 0; 1279 return -EALREADY; 1280 } 1281 1282 /* 1283 * This would happen if you unplug and plug your card 1284 * back in or if you add a new device for which the previously 1285 * loaded card also agrees on the regulatory domain. 1286 */ 1287 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1288 !regdom_changes(pending_request->alpha2)) 1289 return -EALREADY; 1290 1291 return REG_INTERSECT; 1292 case NL80211_REGDOM_SET_BY_USER: 1293 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1294 return REG_INTERSECT; 1295 /* 1296 * If the user knows better the user should set the regdom 1297 * to their country before the IE is picked up 1298 */ 1299 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER && 1300 last_request->intersect) 1301 return -EOPNOTSUPP; 1302 /* 1303 * Process user requests only after previous user/driver/core 1304 * requests have been processed 1305 */ 1306 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE || 1307 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1308 last_request->initiator == NL80211_REGDOM_SET_BY_USER) { 1309 if (regdom_changes(last_request->alpha2)) 1310 return -EAGAIN; 1311 } 1312 1313 if (!regdom_changes(pending_request->alpha2)) 1314 return -EALREADY; 1315 1316 return 0; 1317 } 1318 1319 return -EINVAL; 1320 } 1321 1322 static void reg_set_request_processed(void) 1323 { 1324 bool need_more_processing = false; 1325 1326 last_request->processed = true; 1327 1328 spin_lock(®_requests_lock); 1329 if (!list_empty(®_requests_list)) 1330 need_more_processing = true; 1331 spin_unlock(®_requests_lock); 1332 1333 if (need_more_processing) 1334 schedule_work(®_work); 1335 } 1336 1337 /** 1338 * __regulatory_hint - hint to the wireless core a regulatory domain 1339 * @wiphy: if the hint comes from country information from an AP, this 1340 * is required to be set to the wiphy that received the information 1341 * @pending_request: the regulatory request currently being processed 1342 * 1343 * The Wireless subsystem can use this function to hint to the wireless core 1344 * what it believes should be the current regulatory domain. 1345 * 1346 * Returns zero if all went fine, %-EALREADY if a regulatory domain had 1347 * already been set or other standard error codes. 1348 * 1349 * Caller must hold &cfg80211_mutex and ®_mutex 1350 */ 1351 static int __regulatory_hint(struct wiphy *wiphy, 1352 struct regulatory_request *pending_request) 1353 { 1354 bool intersect = false; 1355 int r = 0; 1356 1357 assert_cfg80211_lock(); 1358 1359 r = ignore_request(wiphy, pending_request); 1360 1361 if (r == REG_INTERSECT) { 1362 if (pending_request->initiator == 1363 NL80211_REGDOM_SET_BY_DRIVER) { 1364 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); 1365 if (r) { 1366 kfree(pending_request); 1367 return r; 1368 } 1369 } 1370 intersect = true; 1371 } else if (r) { 1372 /* 1373 * If the regulatory domain being requested by the 1374 * driver has already been set just copy it to the 1375 * wiphy 1376 */ 1377 if (r == -EALREADY && 1378 pending_request->initiator == 1379 NL80211_REGDOM_SET_BY_DRIVER) { 1380 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); 1381 if (r) { 1382 kfree(pending_request); 1383 return r; 1384 } 1385 r = -EALREADY; 1386 goto new_request; 1387 } 1388 kfree(pending_request); 1389 return r; 1390 } 1391 1392 new_request: 1393 kfree(last_request); 1394 1395 last_request = pending_request; 1396 last_request->intersect = intersect; 1397 1398 pending_request = NULL; 1399 1400 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) { 1401 user_alpha2[0] = last_request->alpha2[0]; 1402 user_alpha2[1] = last_request->alpha2[1]; 1403 } 1404 1405 /* When r == REG_INTERSECT we do need to call CRDA */ 1406 if (r < 0) { 1407 /* 1408 * Since CRDA will not be called in this case as we already 1409 * have applied the requested regulatory domain before we just 1410 * inform userspace we have processed the request 1411 */ 1412 if (r == -EALREADY) { 1413 nl80211_send_reg_change_event(last_request); 1414 reg_set_request_processed(); 1415 } 1416 return r; 1417 } 1418 1419 return call_crda(last_request->alpha2); 1420 } 1421 1422 /* This processes *all* regulatory hints */ 1423 static void reg_process_hint(struct regulatory_request *reg_request) 1424 { 1425 int r = 0; 1426 struct wiphy *wiphy = NULL; 1427 enum nl80211_reg_initiator initiator = reg_request->initiator; 1428 1429 BUG_ON(!reg_request->alpha2); 1430 1431 if (wiphy_idx_valid(reg_request->wiphy_idx)) 1432 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 1433 1434 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1435 !wiphy) { 1436 kfree(reg_request); 1437 return; 1438 } 1439 1440 r = __regulatory_hint(wiphy, reg_request); 1441 /* This is required so that the orig_* parameters are saved */ 1442 if (r == -EALREADY && wiphy && 1443 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) 1444 wiphy_update_regulatory(wiphy, initiator); 1445 } 1446 1447 /* 1448 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 1449 * Regulatory hints come on a first come first serve basis and we 1450 * must process each one atomically. 1451 */ 1452 static void reg_process_pending_hints(void) 1453 { 1454 struct regulatory_request *reg_request; 1455 1456 mutex_lock(&cfg80211_mutex); 1457 mutex_lock(®_mutex); 1458 1459 /* When last_request->processed becomes true this will be rescheduled */ 1460 if (last_request && !last_request->processed) { 1461 REG_DBG_PRINT("Pending regulatory request, waiting " 1462 "for it to be processed..."); 1463 goto out; 1464 } 1465 1466 spin_lock(®_requests_lock); 1467 1468 if (list_empty(®_requests_list)) { 1469 spin_unlock(®_requests_lock); 1470 goto out; 1471 } 1472 1473 reg_request = list_first_entry(®_requests_list, 1474 struct regulatory_request, 1475 list); 1476 list_del_init(®_request->list); 1477 1478 spin_unlock(®_requests_lock); 1479 1480 reg_process_hint(reg_request); 1481 1482 out: 1483 mutex_unlock(®_mutex); 1484 mutex_unlock(&cfg80211_mutex); 1485 } 1486 1487 /* Processes beacon hints -- this has nothing to do with country IEs */ 1488 static void reg_process_pending_beacon_hints(void) 1489 { 1490 struct cfg80211_registered_device *rdev; 1491 struct reg_beacon *pending_beacon, *tmp; 1492 1493 /* 1494 * No need to hold the reg_mutex here as we just touch wiphys 1495 * and do not read or access regulatory variables. 1496 */ 1497 mutex_lock(&cfg80211_mutex); 1498 1499 /* This goes through the _pending_ beacon list */ 1500 spin_lock_bh(®_pending_beacons_lock); 1501 1502 if (list_empty(®_pending_beacons)) { 1503 spin_unlock_bh(®_pending_beacons_lock); 1504 goto out; 1505 } 1506 1507 list_for_each_entry_safe(pending_beacon, tmp, 1508 ®_pending_beacons, list) { 1509 1510 list_del_init(&pending_beacon->list); 1511 1512 /* Applies the beacon hint to current wiphys */ 1513 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1514 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 1515 1516 /* Remembers the beacon hint for new wiphys or reg changes */ 1517 list_add_tail(&pending_beacon->list, ®_beacon_list); 1518 } 1519 1520 spin_unlock_bh(®_pending_beacons_lock); 1521 out: 1522 mutex_unlock(&cfg80211_mutex); 1523 } 1524 1525 static void reg_todo(struct work_struct *work) 1526 { 1527 reg_process_pending_hints(); 1528 reg_process_pending_beacon_hints(); 1529 } 1530 1531 static void queue_regulatory_request(struct regulatory_request *request) 1532 { 1533 if (isalpha(request->alpha2[0])) 1534 request->alpha2[0] = toupper(request->alpha2[0]); 1535 if (isalpha(request->alpha2[1])) 1536 request->alpha2[1] = toupper(request->alpha2[1]); 1537 1538 spin_lock(®_requests_lock); 1539 list_add_tail(&request->list, ®_requests_list); 1540 spin_unlock(®_requests_lock); 1541 1542 schedule_work(®_work); 1543 } 1544 1545 /* 1546 * Core regulatory hint -- happens during cfg80211_init() 1547 * and when we restore regulatory settings. 1548 */ 1549 static int regulatory_hint_core(const char *alpha2) 1550 { 1551 struct regulatory_request *request; 1552 1553 kfree(last_request); 1554 last_request = NULL; 1555 1556 request = kzalloc(sizeof(struct regulatory_request), 1557 GFP_KERNEL); 1558 if (!request) 1559 return -ENOMEM; 1560 1561 request->alpha2[0] = alpha2[0]; 1562 request->alpha2[1] = alpha2[1]; 1563 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1564 1565 queue_regulatory_request(request); 1566 1567 return 0; 1568 } 1569 1570 /* User hints */ 1571 int regulatory_hint_user(const char *alpha2) 1572 { 1573 struct regulatory_request *request; 1574 1575 BUG_ON(!alpha2); 1576 1577 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1578 if (!request) 1579 return -ENOMEM; 1580 1581 request->wiphy_idx = WIPHY_IDX_STALE; 1582 request->alpha2[0] = alpha2[0]; 1583 request->alpha2[1] = alpha2[1]; 1584 request->initiator = NL80211_REGDOM_SET_BY_USER; 1585 1586 queue_regulatory_request(request); 1587 1588 return 0; 1589 } 1590 1591 /* Driver hints */ 1592 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 1593 { 1594 struct regulatory_request *request; 1595 1596 BUG_ON(!alpha2); 1597 BUG_ON(!wiphy); 1598 1599 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1600 if (!request) 1601 return -ENOMEM; 1602 1603 request->wiphy_idx = get_wiphy_idx(wiphy); 1604 1605 /* Must have registered wiphy first */ 1606 BUG_ON(!wiphy_idx_valid(request->wiphy_idx)); 1607 1608 request->alpha2[0] = alpha2[0]; 1609 request->alpha2[1] = alpha2[1]; 1610 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 1611 1612 queue_regulatory_request(request); 1613 1614 return 0; 1615 } 1616 EXPORT_SYMBOL(regulatory_hint); 1617 1618 /* 1619 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and 1620 * therefore cannot iterate over the rdev list here. 1621 */ 1622 void regulatory_hint_11d(struct wiphy *wiphy, 1623 enum ieee80211_band band, 1624 u8 *country_ie, 1625 u8 country_ie_len) 1626 { 1627 char alpha2[2]; 1628 enum environment_cap env = ENVIRON_ANY; 1629 struct regulatory_request *request; 1630 1631 mutex_lock(®_mutex); 1632 1633 if (unlikely(!last_request)) 1634 goto out; 1635 1636 /* IE len must be evenly divisible by 2 */ 1637 if (country_ie_len & 0x01) 1638 goto out; 1639 1640 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 1641 goto out; 1642 1643 alpha2[0] = country_ie[0]; 1644 alpha2[1] = country_ie[1]; 1645 1646 if (country_ie[2] == 'I') 1647 env = ENVIRON_INDOOR; 1648 else if (country_ie[2] == 'O') 1649 env = ENVIRON_OUTDOOR; 1650 1651 /* 1652 * We will run this only upon a successful connection on cfg80211. 1653 * We leave conflict resolution to the workqueue, where can hold 1654 * cfg80211_mutex. 1655 */ 1656 if (likely(last_request->initiator == 1657 NL80211_REGDOM_SET_BY_COUNTRY_IE && 1658 wiphy_idx_valid(last_request->wiphy_idx))) 1659 goto out; 1660 1661 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1662 if (!request) 1663 goto out; 1664 1665 request->wiphy_idx = get_wiphy_idx(wiphy); 1666 request->alpha2[0] = alpha2[0]; 1667 request->alpha2[1] = alpha2[1]; 1668 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 1669 request->country_ie_env = env; 1670 1671 mutex_unlock(®_mutex); 1672 1673 queue_regulatory_request(request); 1674 1675 return; 1676 1677 out: 1678 mutex_unlock(®_mutex); 1679 } 1680 1681 static void restore_alpha2(char *alpha2, bool reset_user) 1682 { 1683 /* indicates there is no alpha2 to consider for restoration */ 1684 alpha2[0] = '9'; 1685 alpha2[1] = '7'; 1686 1687 /* The user setting has precedence over the module parameter */ 1688 if (is_user_regdom_saved()) { 1689 /* Unless we're asked to ignore it and reset it */ 1690 if (reset_user) { 1691 REG_DBG_PRINT("Restoring regulatory settings " 1692 "including user preference\n"); 1693 user_alpha2[0] = '9'; 1694 user_alpha2[1] = '7'; 1695 1696 /* 1697 * If we're ignoring user settings, we still need to 1698 * check the module parameter to ensure we put things 1699 * back as they were for a full restore. 1700 */ 1701 if (!is_world_regdom(ieee80211_regdom)) { 1702 REG_DBG_PRINT("Keeping preference on " 1703 "module parameter ieee80211_regdom: %c%c\n", 1704 ieee80211_regdom[0], 1705 ieee80211_regdom[1]); 1706 alpha2[0] = ieee80211_regdom[0]; 1707 alpha2[1] = ieee80211_regdom[1]; 1708 } 1709 } else { 1710 REG_DBG_PRINT("Restoring regulatory settings " 1711 "while preserving user preference for: %c%c\n", 1712 user_alpha2[0], 1713 user_alpha2[1]); 1714 alpha2[0] = user_alpha2[0]; 1715 alpha2[1] = user_alpha2[1]; 1716 } 1717 } else if (!is_world_regdom(ieee80211_regdom)) { 1718 REG_DBG_PRINT("Keeping preference on " 1719 "module parameter ieee80211_regdom: %c%c\n", 1720 ieee80211_regdom[0], 1721 ieee80211_regdom[1]); 1722 alpha2[0] = ieee80211_regdom[0]; 1723 alpha2[1] = ieee80211_regdom[1]; 1724 } else 1725 REG_DBG_PRINT("Restoring regulatory settings\n"); 1726 } 1727 1728 /* 1729 * Restoring regulatory settings involves ingoring any 1730 * possibly stale country IE information and user regulatory 1731 * settings if so desired, this includes any beacon hints 1732 * learned as we could have traveled outside to another country 1733 * after disconnection. To restore regulatory settings we do 1734 * exactly what we did at bootup: 1735 * 1736 * - send a core regulatory hint 1737 * - send a user regulatory hint if applicable 1738 * 1739 * Device drivers that send a regulatory hint for a specific country 1740 * keep their own regulatory domain on wiphy->regd so that does does 1741 * not need to be remembered. 1742 */ 1743 static void restore_regulatory_settings(bool reset_user) 1744 { 1745 char alpha2[2]; 1746 struct reg_beacon *reg_beacon, *btmp; 1747 1748 mutex_lock(&cfg80211_mutex); 1749 mutex_lock(®_mutex); 1750 1751 reset_regdomains(); 1752 restore_alpha2(alpha2, reset_user); 1753 1754 /* Clear beacon hints */ 1755 spin_lock_bh(®_pending_beacons_lock); 1756 if (!list_empty(®_pending_beacons)) { 1757 list_for_each_entry_safe(reg_beacon, btmp, 1758 ®_pending_beacons, list) { 1759 list_del(®_beacon->list); 1760 kfree(reg_beacon); 1761 } 1762 } 1763 spin_unlock_bh(®_pending_beacons_lock); 1764 1765 if (!list_empty(®_beacon_list)) { 1766 list_for_each_entry_safe(reg_beacon, btmp, 1767 ®_beacon_list, list) { 1768 list_del(®_beacon->list); 1769 kfree(reg_beacon); 1770 } 1771 } 1772 1773 /* First restore to the basic regulatory settings */ 1774 cfg80211_regdomain = cfg80211_world_regdom; 1775 1776 mutex_unlock(®_mutex); 1777 mutex_unlock(&cfg80211_mutex); 1778 1779 regulatory_hint_core(cfg80211_regdomain->alpha2); 1780 1781 /* 1782 * This restores the ieee80211_regdom module parameter 1783 * preference or the last user requested regulatory 1784 * settings, user regulatory settings takes precedence. 1785 */ 1786 if (is_an_alpha2(alpha2)) 1787 regulatory_hint_user(user_alpha2); 1788 } 1789 1790 1791 void regulatory_hint_disconnect(void) 1792 { 1793 REG_DBG_PRINT("All devices are disconnected, going to " 1794 "restore regulatory settings\n"); 1795 restore_regulatory_settings(false); 1796 } 1797 1798 static bool freq_is_chan_12_13_14(u16 freq) 1799 { 1800 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || 1801 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || 1802 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) 1803 return true; 1804 return false; 1805 } 1806 1807 int regulatory_hint_found_beacon(struct wiphy *wiphy, 1808 struct ieee80211_channel *beacon_chan, 1809 gfp_t gfp) 1810 { 1811 struct reg_beacon *reg_beacon; 1812 1813 if (likely((beacon_chan->beacon_found || 1814 (beacon_chan->flags & IEEE80211_CHAN_RADAR) || 1815 (beacon_chan->band == IEEE80211_BAND_2GHZ && 1816 !freq_is_chan_12_13_14(beacon_chan->center_freq))))) 1817 return 0; 1818 1819 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 1820 if (!reg_beacon) 1821 return -ENOMEM; 1822 1823 REG_DBG_PRINT("Found new beacon on " 1824 "frequency: %d MHz (Ch %d) on %s\n", 1825 beacon_chan->center_freq, 1826 ieee80211_frequency_to_channel(beacon_chan->center_freq), 1827 wiphy_name(wiphy)); 1828 1829 memcpy(®_beacon->chan, beacon_chan, 1830 sizeof(struct ieee80211_channel)); 1831 1832 1833 /* 1834 * Since we can be called from BH or and non-BH context 1835 * we must use spin_lock_bh() 1836 */ 1837 spin_lock_bh(®_pending_beacons_lock); 1838 list_add_tail(®_beacon->list, ®_pending_beacons); 1839 spin_unlock_bh(®_pending_beacons_lock); 1840 1841 schedule_work(®_work); 1842 1843 return 0; 1844 } 1845 1846 static void print_rd_rules(const struct ieee80211_regdomain *rd) 1847 { 1848 unsigned int i; 1849 const struct ieee80211_reg_rule *reg_rule = NULL; 1850 const struct ieee80211_freq_range *freq_range = NULL; 1851 const struct ieee80211_power_rule *power_rule = NULL; 1852 1853 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n"); 1854 1855 for (i = 0; i < rd->n_reg_rules; i++) { 1856 reg_rule = &rd->reg_rules[i]; 1857 freq_range = ®_rule->freq_range; 1858 power_rule = ®_rule->power_rule; 1859 1860 /* 1861 * There may not be documentation for max antenna gain 1862 * in certain regions 1863 */ 1864 if (power_rule->max_antenna_gain) 1865 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n", 1866 freq_range->start_freq_khz, 1867 freq_range->end_freq_khz, 1868 freq_range->max_bandwidth_khz, 1869 power_rule->max_antenna_gain, 1870 power_rule->max_eirp); 1871 else 1872 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n", 1873 freq_range->start_freq_khz, 1874 freq_range->end_freq_khz, 1875 freq_range->max_bandwidth_khz, 1876 power_rule->max_eirp); 1877 } 1878 } 1879 1880 static void print_regdomain(const struct ieee80211_regdomain *rd) 1881 { 1882 1883 if (is_intersected_alpha2(rd->alpha2)) { 1884 1885 if (last_request->initiator == 1886 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1887 struct cfg80211_registered_device *rdev; 1888 rdev = cfg80211_rdev_by_wiphy_idx( 1889 last_request->wiphy_idx); 1890 if (rdev) { 1891 pr_info("Current regulatory domain updated by AP to: %c%c\n", 1892 rdev->country_ie_alpha2[0], 1893 rdev->country_ie_alpha2[1]); 1894 } else 1895 pr_info("Current regulatory domain intersected:\n"); 1896 } else 1897 pr_info("Current regulatory domain intersected:\n"); 1898 } else if (is_world_regdom(rd->alpha2)) 1899 pr_info("World regulatory domain updated:\n"); 1900 else { 1901 if (is_unknown_alpha2(rd->alpha2)) 1902 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); 1903 else 1904 pr_info("Regulatory domain changed to country: %c%c\n", 1905 rd->alpha2[0], rd->alpha2[1]); 1906 } 1907 print_rd_rules(rd); 1908 } 1909 1910 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 1911 { 1912 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 1913 print_rd_rules(rd); 1914 } 1915 1916 /* Takes ownership of rd only if it doesn't fail */ 1917 static int __set_regdom(const struct ieee80211_regdomain *rd) 1918 { 1919 const struct ieee80211_regdomain *intersected_rd = NULL; 1920 struct cfg80211_registered_device *rdev = NULL; 1921 struct wiphy *request_wiphy; 1922 /* Some basic sanity checks first */ 1923 1924 if (is_world_regdom(rd->alpha2)) { 1925 if (WARN_ON(!reg_is_valid_request(rd->alpha2))) 1926 return -EINVAL; 1927 update_world_regdomain(rd); 1928 return 0; 1929 } 1930 1931 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 1932 !is_unknown_alpha2(rd->alpha2)) 1933 return -EINVAL; 1934 1935 if (!last_request) 1936 return -EINVAL; 1937 1938 /* 1939 * Lets only bother proceeding on the same alpha2 if the current 1940 * rd is non static (it means CRDA was present and was used last) 1941 * and the pending request came in from a country IE 1942 */ 1943 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1944 /* 1945 * If someone else asked us to change the rd lets only bother 1946 * checking if the alpha2 changes if CRDA was already called 1947 */ 1948 if (!regdom_changes(rd->alpha2)) 1949 return -EINVAL; 1950 } 1951 1952 /* 1953 * Now lets set the regulatory domain, update all driver channels 1954 * and finally inform them of what we have done, in case they want 1955 * to review or adjust their own settings based on their own 1956 * internal EEPROM data 1957 */ 1958 1959 if (WARN_ON(!reg_is_valid_request(rd->alpha2))) 1960 return -EINVAL; 1961 1962 if (!is_valid_rd(rd)) { 1963 pr_err("Invalid regulatory domain detected:\n"); 1964 print_regdomain_info(rd); 1965 return -EINVAL; 1966 } 1967 1968 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 1969 1970 if (!last_request->intersect) { 1971 int r; 1972 1973 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) { 1974 reset_regdomains(); 1975 cfg80211_regdomain = rd; 1976 return 0; 1977 } 1978 1979 /* 1980 * For a driver hint, lets copy the regulatory domain the 1981 * driver wanted to the wiphy to deal with conflicts 1982 */ 1983 1984 /* 1985 * Userspace could have sent two replies with only 1986 * one kernel request. 1987 */ 1988 if (request_wiphy->regd) 1989 return -EALREADY; 1990 1991 r = reg_copy_regd(&request_wiphy->regd, rd); 1992 if (r) 1993 return r; 1994 1995 reset_regdomains(); 1996 cfg80211_regdomain = rd; 1997 return 0; 1998 } 1999 2000 /* Intersection requires a bit more work */ 2001 2002 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2003 2004 intersected_rd = regdom_intersect(rd, cfg80211_regdomain); 2005 if (!intersected_rd) 2006 return -EINVAL; 2007 2008 /* 2009 * We can trash what CRDA provided now. 2010 * However if a driver requested this specific regulatory 2011 * domain we keep it for its private use 2012 */ 2013 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) 2014 request_wiphy->regd = rd; 2015 else 2016 kfree(rd); 2017 2018 rd = NULL; 2019 2020 reset_regdomains(); 2021 cfg80211_regdomain = intersected_rd; 2022 2023 return 0; 2024 } 2025 2026 if (!intersected_rd) 2027 return -EINVAL; 2028 2029 rdev = wiphy_to_dev(request_wiphy); 2030 2031 rdev->country_ie_alpha2[0] = rd->alpha2[0]; 2032 rdev->country_ie_alpha2[1] = rd->alpha2[1]; 2033 rdev->env = last_request->country_ie_env; 2034 2035 BUG_ON(intersected_rd == rd); 2036 2037 kfree(rd); 2038 rd = NULL; 2039 2040 reset_regdomains(); 2041 cfg80211_regdomain = intersected_rd; 2042 2043 return 0; 2044 } 2045 2046 2047 /* 2048 * Use this call to set the current regulatory domain. Conflicts with 2049 * multiple drivers can be ironed out later. Caller must've already 2050 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex 2051 */ 2052 int set_regdom(const struct ieee80211_regdomain *rd) 2053 { 2054 int r; 2055 2056 assert_cfg80211_lock(); 2057 2058 mutex_lock(®_mutex); 2059 2060 /* Note that this doesn't update the wiphys, this is done below */ 2061 r = __set_regdom(rd); 2062 if (r) { 2063 kfree(rd); 2064 mutex_unlock(®_mutex); 2065 return r; 2066 } 2067 2068 /* This would make this whole thing pointless */ 2069 if (!last_request->intersect) 2070 BUG_ON(rd != cfg80211_regdomain); 2071 2072 /* update all wiphys now with the new established regulatory domain */ 2073 update_all_wiphy_regulatory(last_request->initiator); 2074 2075 print_regdomain(cfg80211_regdomain); 2076 2077 nl80211_send_reg_change_event(last_request); 2078 2079 reg_set_request_processed(); 2080 2081 mutex_unlock(®_mutex); 2082 2083 return r; 2084 } 2085 2086 #ifdef CONFIG_HOTPLUG 2087 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) 2088 { 2089 if (last_request && !last_request->processed) { 2090 if (add_uevent_var(env, "COUNTRY=%c%c", 2091 last_request->alpha2[0], 2092 last_request->alpha2[1])) 2093 return -ENOMEM; 2094 } 2095 2096 return 0; 2097 } 2098 #else 2099 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) 2100 { 2101 return -ENODEV; 2102 } 2103 #endif /* CONFIG_HOTPLUG */ 2104 2105 /* Caller must hold cfg80211_mutex */ 2106 void reg_device_remove(struct wiphy *wiphy) 2107 { 2108 struct wiphy *request_wiphy = NULL; 2109 2110 assert_cfg80211_lock(); 2111 2112 mutex_lock(®_mutex); 2113 2114 kfree(wiphy->regd); 2115 2116 if (last_request) 2117 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 2118 2119 if (!request_wiphy || request_wiphy != wiphy) 2120 goto out; 2121 2122 last_request->wiphy_idx = WIPHY_IDX_STALE; 2123 last_request->country_ie_env = ENVIRON_ANY; 2124 out: 2125 mutex_unlock(®_mutex); 2126 } 2127 2128 int __init regulatory_init(void) 2129 { 2130 int err = 0; 2131 2132 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 2133 if (IS_ERR(reg_pdev)) 2134 return PTR_ERR(reg_pdev); 2135 2136 reg_pdev->dev.type = ®_device_type; 2137 2138 spin_lock_init(®_requests_lock); 2139 spin_lock_init(®_pending_beacons_lock); 2140 2141 cfg80211_regdomain = cfg80211_world_regdom; 2142 2143 user_alpha2[0] = '9'; 2144 user_alpha2[1] = '7'; 2145 2146 /* We always try to get an update for the static regdomain */ 2147 err = regulatory_hint_core(cfg80211_regdomain->alpha2); 2148 if (err) { 2149 if (err == -ENOMEM) 2150 return err; 2151 /* 2152 * N.B. kobject_uevent_env() can fail mainly for when we're out 2153 * memory which is handled and propagated appropriately above 2154 * but it can also fail during a netlink_broadcast() or during 2155 * early boot for call_usermodehelper(). For now treat these 2156 * errors as non-fatal. 2157 */ 2158 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 2159 #ifdef CONFIG_CFG80211_REG_DEBUG 2160 /* We want to find out exactly why when debugging */ 2161 WARN_ON(err); 2162 #endif 2163 } 2164 2165 /* 2166 * Finally, if the user set the module parameter treat it 2167 * as a user hint. 2168 */ 2169 if (!is_world_regdom(ieee80211_regdom)) 2170 regulatory_hint_user(ieee80211_regdom); 2171 2172 return 0; 2173 } 2174 2175 void /* __init_or_exit */ regulatory_exit(void) 2176 { 2177 struct regulatory_request *reg_request, *tmp; 2178 struct reg_beacon *reg_beacon, *btmp; 2179 2180 cancel_work_sync(®_work); 2181 2182 mutex_lock(&cfg80211_mutex); 2183 mutex_lock(®_mutex); 2184 2185 reset_regdomains(); 2186 2187 kfree(last_request); 2188 2189 platform_device_unregister(reg_pdev); 2190 2191 spin_lock_bh(®_pending_beacons_lock); 2192 if (!list_empty(®_pending_beacons)) { 2193 list_for_each_entry_safe(reg_beacon, btmp, 2194 ®_pending_beacons, list) { 2195 list_del(®_beacon->list); 2196 kfree(reg_beacon); 2197 } 2198 } 2199 spin_unlock_bh(®_pending_beacons_lock); 2200 2201 if (!list_empty(®_beacon_list)) { 2202 list_for_each_entry_safe(reg_beacon, btmp, 2203 ®_beacon_list, list) { 2204 list_del(®_beacon->list); 2205 kfree(reg_beacon); 2206 } 2207 } 2208 2209 spin_lock(®_requests_lock); 2210 if (!list_empty(®_requests_list)) { 2211 list_for_each_entry_safe(reg_request, tmp, 2212 ®_requests_list, list) { 2213 list_del(®_request->list); 2214 kfree(reg_request); 2215 } 2216 } 2217 spin_unlock(®_requests_lock); 2218 2219 mutex_unlock(®_mutex); 2220 mutex_unlock(&cfg80211_mutex); 2221 } 2222