xref: /openbmc/linux/net/wireless/reg.c (revision 565d76cb)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/ctype.h>
43 #include <linux/nl80211.h>
44 #include <linux/platform_device.h>
45 #include <net/cfg80211.h>
46 #include "core.h"
47 #include "reg.h"
48 #include "regdb.h"
49 #include "nl80211.h"
50 
51 #ifdef CONFIG_CFG80211_REG_DEBUG
52 #define REG_DBG_PRINT(format, args...) \
53 	do { \
54 		printk(KERN_DEBUG pr_fmt(format), ##args);	\
55 	} while (0)
56 #else
57 #define REG_DBG_PRINT(args...)
58 #endif
59 
60 /* Receipt of information from last regulatory request */
61 static struct regulatory_request *last_request;
62 
63 /* To trigger userspace events */
64 static struct platform_device *reg_pdev;
65 
66 static struct device_type reg_device_type = {
67 	.uevent = reg_device_uevent,
68 };
69 
70 /*
71  * Central wireless core regulatory domains, we only need two,
72  * the current one and a world regulatory domain in case we have no
73  * information to give us an alpha2
74  */
75 const struct ieee80211_regdomain *cfg80211_regdomain;
76 
77 /*
78  * Protects static reg.c components:
79  *     - cfg80211_world_regdom
80  *     - cfg80211_regdom
81  *     - last_request
82  */
83 static DEFINE_MUTEX(reg_mutex);
84 
85 static inline void assert_reg_lock(void)
86 {
87 	lockdep_assert_held(&reg_mutex);
88 }
89 
90 /* Used to queue up regulatory hints */
91 static LIST_HEAD(reg_requests_list);
92 static spinlock_t reg_requests_lock;
93 
94 /* Used to queue up beacon hints for review */
95 static LIST_HEAD(reg_pending_beacons);
96 static spinlock_t reg_pending_beacons_lock;
97 
98 /* Used to keep track of processed beacon hints */
99 static LIST_HEAD(reg_beacon_list);
100 
101 struct reg_beacon {
102 	struct list_head list;
103 	struct ieee80211_channel chan;
104 };
105 
106 static void reg_todo(struct work_struct *work);
107 static DECLARE_WORK(reg_work, reg_todo);
108 
109 /* We keep a static world regulatory domain in case of the absence of CRDA */
110 static const struct ieee80211_regdomain world_regdom = {
111 	.n_reg_rules = 5,
112 	.alpha2 =  "00",
113 	.reg_rules = {
114 		/* IEEE 802.11b/g, channels 1..11 */
115 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
116 		/* IEEE 802.11b/g, channels 12..13. No HT40
117 		 * channel fits here. */
118 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
119 			NL80211_RRF_PASSIVE_SCAN |
120 			NL80211_RRF_NO_IBSS),
121 		/* IEEE 802.11 channel 14 - Only JP enables
122 		 * this and for 802.11b only */
123 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
124 			NL80211_RRF_PASSIVE_SCAN |
125 			NL80211_RRF_NO_IBSS |
126 			NL80211_RRF_NO_OFDM),
127 		/* IEEE 802.11a, channel 36..48 */
128 		REG_RULE(5180-10, 5240+10, 40, 6, 20,
129                         NL80211_RRF_PASSIVE_SCAN |
130                         NL80211_RRF_NO_IBSS),
131 
132 		/* NB: 5260 MHz - 5700 MHz requies DFS */
133 
134 		/* IEEE 802.11a, channel 149..165 */
135 		REG_RULE(5745-10, 5825+10, 40, 6, 20,
136 			NL80211_RRF_PASSIVE_SCAN |
137 			NL80211_RRF_NO_IBSS),
138 	}
139 };
140 
141 static const struct ieee80211_regdomain *cfg80211_world_regdom =
142 	&world_regdom;
143 
144 static char *ieee80211_regdom = "00";
145 static char user_alpha2[2];
146 
147 module_param(ieee80211_regdom, charp, 0444);
148 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
149 
150 static void reset_regdomains(void)
151 {
152 	/* avoid freeing static information or freeing something twice */
153 	if (cfg80211_regdomain == cfg80211_world_regdom)
154 		cfg80211_regdomain = NULL;
155 	if (cfg80211_world_regdom == &world_regdom)
156 		cfg80211_world_regdom = NULL;
157 	if (cfg80211_regdomain == &world_regdom)
158 		cfg80211_regdomain = NULL;
159 
160 	kfree(cfg80211_regdomain);
161 	kfree(cfg80211_world_regdom);
162 
163 	cfg80211_world_regdom = &world_regdom;
164 	cfg80211_regdomain = NULL;
165 }
166 
167 /*
168  * Dynamic world regulatory domain requested by the wireless
169  * core upon initialization
170  */
171 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
172 {
173 	BUG_ON(!last_request);
174 
175 	reset_regdomains();
176 
177 	cfg80211_world_regdom = rd;
178 	cfg80211_regdomain = rd;
179 }
180 
181 bool is_world_regdom(const char *alpha2)
182 {
183 	if (!alpha2)
184 		return false;
185 	if (alpha2[0] == '0' && alpha2[1] == '0')
186 		return true;
187 	return false;
188 }
189 
190 static bool is_alpha2_set(const char *alpha2)
191 {
192 	if (!alpha2)
193 		return false;
194 	if (alpha2[0] != 0 && alpha2[1] != 0)
195 		return true;
196 	return false;
197 }
198 
199 static bool is_unknown_alpha2(const char *alpha2)
200 {
201 	if (!alpha2)
202 		return false;
203 	/*
204 	 * Special case where regulatory domain was built by driver
205 	 * but a specific alpha2 cannot be determined
206 	 */
207 	if (alpha2[0] == '9' && alpha2[1] == '9')
208 		return true;
209 	return false;
210 }
211 
212 static bool is_intersected_alpha2(const char *alpha2)
213 {
214 	if (!alpha2)
215 		return false;
216 	/*
217 	 * Special case where regulatory domain is the
218 	 * result of an intersection between two regulatory domain
219 	 * structures
220 	 */
221 	if (alpha2[0] == '9' && alpha2[1] == '8')
222 		return true;
223 	return false;
224 }
225 
226 static bool is_an_alpha2(const char *alpha2)
227 {
228 	if (!alpha2)
229 		return false;
230 	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
231 		return true;
232 	return false;
233 }
234 
235 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
236 {
237 	if (!alpha2_x || !alpha2_y)
238 		return false;
239 	if (alpha2_x[0] == alpha2_y[0] &&
240 		alpha2_x[1] == alpha2_y[1])
241 		return true;
242 	return false;
243 }
244 
245 static bool regdom_changes(const char *alpha2)
246 {
247 	assert_cfg80211_lock();
248 
249 	if (!cfg80211_regdomain)
250 		return true;
251 	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
252 		return false;
253 	return true;
254 }
255 
256 /*
257  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
258  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
259  * has ever been issued.
260  */
261 static bool is_user_regdom_saved(void)
262 {
263 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
264 		return false;
265 
266 	/* This would indicate a mistake on the design */
267 	if (WARN((!is_world_regdom(user_alpha2) &&
268 		  !is_an_alpha2(user_alpha2)),
269 		 "Unexpected user alpha2: %c%c\n",
270 		 user_alpha2[0],
271 	         user_alpha2[1]))
272 		return false;
273 
274 	return true;
275 }
276 
277 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
278 			 const struct ieee80211_regdomain *src_regd)
279 {
280 	struct ieee80211_regdomain *regd;
281 	int size_of_regd = 0;
282 	unsigned int i;
283 
284 	size_of_regd = sizeof(struct ieee80211_regdomain) +
285 	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
286 
287 	regd = kzalloc(size_of_regd, GFP_KERNEL);
288 	if (!regd)
289 		return -ENOMEM;
290 
291 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
292 
293 	for (i = 0; i < src_regd->n_reg_rules; i++)
294 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
295 			sizeof(struct ieee80211_reg_rule));
296 
297 	*dst_regd = regd;
298 	return 0;
299 }
300 
301 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
302 struct reg_regdb_search_request {
303 	char alpha2[2];
304 	struct list_head list;
305 };
306 
307 static LIST_HEAD(reg_regdb_search_list);
308 static DEFINE_MUTEX(reg_regdb_search_mutex);
309 
310 static void reg_regdb_search(struct work_struct *work)
311 {
312 	struct reg_regdb_search_request *request;
313 	const struct ieee80211_regdomain *curdom, *regdom;
314 	int i, r;
315 
316 	mutex_lock(&reg_regdb_search_mutex);
317 	while (!list_empty(&reg_regdb_search_list)) {
318 		request = list_first_entry(&reg_regdb_search_list,
319 					   struct reg_regdb_search_request,
320 					   list);
321 		list_del(&request->list);
322 
323 		for (i=0; i<reg_regdb_size; i++) {
324 			curdom = reg_regdb[i];
325 
326 			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
327 				r = reg_copy_regd(&regdom, curdom);
328 				if (r)
329 					break;
330 				mutex_lock(&cfg80211_mutex);
331 				set_regdom(regdom);
332 				mutex_unlock(&cfg80211_mutex);
333 				break;
334 			}
335 		}
336 
337 		kfree(request);
338 	}
339 	mutex_unlock(&reg_regdb_search_mutex);
340 }
341 
342 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
343 
344 static void reg_regdb_query(const char *alpha2)
345 {
346 	struct reg_regdb_search_request *request;
347 
348 	if (!alpha2)
349 		return;
350 
351 	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
352 	if (!request)
353 		return;
354 
355 	memcpy(request->alpha2, alpha2, 2);
356 
357 	mutex_lock(&reg_regdb_search_mutex);
358 	list_add_tail(&request->list, &reg_regdb_search_list);
359 	mutex_unlock(&reg_regdb_search_mutex);
360 
361 	schedule_work(&reg_regdb_work);
362 }
363 #else
364 static inline void reg_regdb_query(const char *alpha2) {}
365 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
366 
367 /*
368  * This lets us keep regulatory code which is updated on a regulatory
369  * basis in userspace. Country information is filled in by
370  * reg_device_uevent
371  */
372 static int call_crda(const char *alpha2)
373 {
374 	if (!is_world_regdom((char *) alpha2))
375 		pr_info("Calling CRDA for country: %c%c\n",
376 			alpha2[0], alpha2[1]);
377 	else
378 		pr_info("Calling CRDA to update world regulatory domain\n");
379 
380 	/* query internal regulatory database (if it exists) */
381 	reg_regdb_query(alpha2);
382 
383 	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
384 }
385 
386 /* Used by nl80211 before kmalloc'ing our regulatory domain */
387 bool reg_is_valid_request(const char *alpha2)
388 {
389 	assert_cfg80211_lock();
390 
391 	if (!last_request)
392 		return false;
393 
394 	return alpha2_equal(last_request->alpha2, alpha2);
395 }
396 
397 /* Sanity check on a regulatory rule */
398 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
399 {
400 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
401 	u32 freq_diff;
402 
403 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
404 		return false;
405 
406 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
407 		return false;
408 
409 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
410 
411 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
412 			freq_range->max_bandwidth_khz > freq_diff)
413 		return false;
414 
415 	return true;
416 }
417 
418 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
419 {
420 	const struct ieee80211_reg_rule *reg_rule = NULL;
421 	unsigned int i;
422 
423 	if (!rd->n_reg_rules)
424 		return false;
425 
426 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
427 		return false;
428 
429 	for (i = 0; i < rd->n_reg_rules; i++) {
430 		reg_rule = &rd->reg_rules[i];
431 		if (!is_valid_reg_rule(reg_rule))
432 			return false;
433 	}
434 
435 	return true;
436 }
437 
438 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
439 			    u32 center_freq_khz,
440 			    u32 bw_khz)
441 {
442 	u32 start_freq_khz, end_freq_khz;
443 
444 	start_freq_khz = center_freq_khz - (bw_khz/2);
445 	end_freq_khz = center_freq_khz + (bw_khz/2);
446 
447 	if (start_freq_khz >= freq_range->start_freq_khz &&
448 	    end_freq_khz <= freq_range->end_freq_khz)
449 		return true;
450 
451 	return false;
452 }
453 
454 /**
455  * freq_in_rule_band - tells us if a frequency is in a frequency band
456  * @freq_range: frequency rule we want to query
457  * @freq_khz: frequency we are inquiring about
458  *
459  * This lets us know if a specific frequency rule is or is not relevant to
460  * a specific frequency's band. Bands are device specific and artificial
461  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
462  * safe for now to assume that a frequency rule should not be part of a
463  * frequency's band if the start freq or end freq are off by more than 2 GHz.
464  * This resolution can be lowered and should be considered as we add
465  * regulatory rule support for other "bands".
466  **/
467 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
468 	u32 freq_khz)
469 {
470 #define ONE_GHZ_IN_KHZ	1000000
471 	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
472 		return true;
473 	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
474 		return true;
475 	return false;
476 #undef ONE_GHZ_IN_KHZ
477 }
478 
479 /*
480  * Helper for regdom_intersect(), this does the real
481  * mathematical intersection fun
482  */
483 static int reg_rules_intersect(
484 	const struct ieee80211_reg_rule *rule1,
485 	const struct ieee80211_reg_rule *rule2,
486 	struct ieee80211_reg_rule *intersected_rule)
487 {
488 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
489 	struct ieee80211_freq_range *freq_range;
490 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
491 	struct ieee80211_power_rule *power_rule;
492 	u32 freq_diff;
493 
494 	freq_range1 = &rule1->freq_range;
495 	freq_range2 = &rule2->freq_range;
496 	freq_range = &intersected_rule->freq_range;
497 
498 	power_rule1 = &rule1->power_rule;
499 	power_rule2 = &rule2->power_rule;
500 	power_rule = &intersected_rule->power_rule;
501 
502 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
503 		freq_range2->start_freq_khz);
504 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
505 		freq_range2->end_freq_khz);
506 	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
507 		freq_range2->max_bandwidth_khz);
508 
509 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
510 	if (freq_range->max_bandwidth_khz > freq_diff)
511 		freq_range->max_bandwidth_khz = freq_diff;
512 
513 	power_rule->max_eirp = min(power_rule1->max_eirp,
514 		power_rule2->max_eirp);
515 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
516 		power_rule2->max_antenna_gain);
517 
518 	intersected_rule->flags = (rule1->flags | rule2->flags);
519 
520 	if (!is_valid_reg_rule(intersected_rule))
521 		return -EINVAL;
522 
523 	return 0;
524 }
525 
526 /**
527  * regdom_intersect - do the intersection between two regulatory domains
528  * @rd1: first regulatory domain
529  * @rd2: second regulatory domain
530  *
531  * Use this function to get the intersection between two regulatory domains.
532  * Once completed we will mark the alpha2 for the rd as intersected, "98",
533  * as no one single alpha2 can represent this regulatory domain.
534  *
535  * Returns a pointer to the regulatory domain structure which will hold the
536  * resulting intersection of rules between rd1 and rd2. We will
537  * kzalloc() this structure for you.
538  */
539 static struct ieee80211_regdomain *regdom_intersect(
540 	const struct ieee80211_regdomain *rd1,
541 	const struct ieee80211_regdomain *rd2)
542 {
543 	int r, size_of_regd;
544 	unsigned int x, y;
545 	unsigned int num_rules = 0, rule_idx = 0;
546 	const struct ieee80211_reg_rule *rule1, *rule2;
547 	struct ieee80211_reg_rule *intersected_rule;
548 	struct ieee80211_regdomain *rd;
549 	/* This is just a dummy holder to help us count */
550 	struct ieee80211_reg_rule irule;
551 
552 	/* Uses the stack temporarily for counter arithmetic */
553 	intersected_rule = &irule;
554 
555 	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
556 
557 	if (!rd1 || !rd2)
558 		return NULL;
559 
560 	/*
561 	 * First we get a count of the rules we'll need, then we actually
562 	 * build them. This is to so we can malloc() and free() a
563 	 * regdomain once. The reason we use reg_rules_intersect() here
564 	 * is it will return -EINVAL if the rule computed makes no sense.
565 	 * All rules that do check out OK are valid.
566 	 */
567 
568 	for (x = 0; x < rd1->n_reg_rules; x++) {
569 		rule1 = &rd1->reg_rules[x];
570 		for (y = 0; y < rd2->n_reg_rules; y++) {
571 			rule2 = &rd2->reg_rules[y];
572 			if (!reg_rules_intersect(rule1, rule2,
573 					intersected_rule))
574 				num_rules++;
575 			memset(intersected_rule, 0,
576 					sizeof(struct ieee80211_reg_rule));
577 		}
578 	}
579 
580 	if (!num_rules)
581 		return NULL;
582 
583 	size_of_regd = sizeof(struct ieee80211_regdomain) +
584 		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
585 
586 	rd = kzalloc(size_of_regd, GFP_KERNEL);
587 	if (!rd)
588 		return NULL;
589 
590 	for (x = 0; x < rd1->n_reg_rules; x++) {
591 		rule1 = &rd1->reg_rules[x];
592 		for (y = 0; y < rd2->n_reg_rules; y++) {
593 			rule2 = &rd2->reg_rules[y];
594 			/*
595 			 * This time around instead of using the stack lets
596 			 * write to the target rule directly saving ourselves
597 			 * a memcpy()
598 			 */
599 			intersected_rule = &rd->reg_rules[rule_idx];
600 			r = reg_rules_intersect(rule1, rule2,
601 				intersected_rule);
602 			/*
603 			 * No need to memset here the intersected rule here as
604 			 * we're not using the stack anymore
605 			 */
606 			if (r)
607 				continue;
608 			rule_idx++;
609 		}
610 	}
611 
612 	if (rule_idx != num_rules) {
613 		kfree(rd);
614 		return NULL;
615 	}
616 
617 	rd->n_reg_rules = num_rules;
618 	rd->alpha2[0] = '9';
619 	rd->alpha2[1] = '8';
620 
621 	return rd;
622 }
623 
624 /*
625  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
626  * want to just have the channel structure use these
627  */
628 static u32 map_regdom_flags(u32 rd_flags)
629 {
630 	u32 channel_flags = 0;
631 	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
632 		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
633 	if (rd_flags & NL80211_RRF_NO_IBSS)
634 		channel_flags |= IEEE80211_CHAN_NO_IBSS;
635 	if (rd_flags & NL80211_RRF_DFS)
636 		channel_flags |= IEEE80211_CHAN_RADAR;
637 	return channel_flags;
638 }
639 
640 static int freq_reg_info_regd(struct wiphy *wiphy,
641 			      u32 center_freq,
642 			      u32 desired_bw_khz,
643 			      const struct ieee80211_reg_rule **reg_rule,
644 			      const struct ieee80211_regdomain *custom_regd)
645 {
646 	int i;
647 	bool band_rule_found = false;
648 	const struct ieee80211_regdomain *regd;
649 	bool bw_fits = false;
650 
651 	if (!desired_bw_khz)
652 		desired_bw_khz = MHZ_TO_KHZ(20);
653 
654 	regd = custom_regd ? custom_regd : cfg80211_regdomain;
655 
656 	/*
657 	 * Follow the driver's regulatory domain, if present, unless a country
658 	 * IE has been processed or a user wants to help complaince further
659 	 */
660 	if (!custom_regd &&
661 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
662 	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
663 	    wiphy->regd)
664 		regd = wiphy->regd;
665 
666 	if (!regd)
667 		return -EINVAL;
668 
669 	for (i = 0; i < regd->n_reg_rules; i++) {
670 		const struct ieee80211_reg_rule *rr;
671 		const struct ieee80211_freq_range *fr = NULL;
672 		const struct ieee80211_power_rule *pr = NULL;
673 
674 		rr = &regd->reg_rules[i];
675 		fr = &rr->freq_range;
676 		pr = &rr->power_rule;
677 
678 		/*
679 		 * We only need to know if one frequency rule was
680 		 * was in center_freq's band, that's enough, so lets
681 		 * not overwrite it once found
682 		 */
683 		if (!band_rule_found)
684 			band_rule_found = freq_in_rule_band(fr, center_freq);
685 
686 		bw_fits = reg_does_bw_fit(fr,
687 					  center_freq,
688 					  desired_bw_khz);
689 
690 		if (band_rule_found && bw_fits) {
691 			*reg_rule = rr;
692 			return 0;
693 		}
694 	}
695 
696 	if (!band_rule_found)
697 		return -ERANGE;
698 
699 	return -EINVAL;
700 }
701 
702 int freq_reg_info(struct wiphy *wiphy,
703 		  u32 center_freq,
704 		  u32 desired_bw_khz,
705 		  const struct ieee80211_reg_rule **reg_rule)
706 {
707 	assert_cfg80211_lock();
708 	return freq_reg_info_regd(wiphy,
709 				  center_freq,
710 				  desired_bw_khz,
711 				  reg_rule,
712 				  NULL);
713 }
714 EXPORT_SYMBOL(freq_reg_info);
715 
716 #ifdef CONFIG_CFG80211_REG_DEBUG
717 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
718 {
719 	switch (initiator) {
720 	case NL80211_REGDOM_SET_BY_CORE:
721 		return "Set by core";
722 	case NL80211_REGDOM_SET_BY_USER:
723 		return "Set by user";
724 	case NL80211_REGDOM_SET_BY_DRIVER:
725 		return "Set by driver";
726 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
727 		return "Set by country IE";
728 	default:
729 		WARN_ON(1);
730 		return "Set by bug";
731 	}
732 }
733 
734 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
735 				    u32 desired_bw_khz,
736 				    const struct ieee80211_reg_rule *reg_rule)
737 {
738 	const struct ieee80211_power_rule *power_rule;
739 	const struct ieee80211_freq_range *freq_range;
740 	char max_antenna_gain[32];
741 
742 	power_rule = &reg_rule->power_rule;
743 	freq_range = &reg_rule->freq_range;
744 
745 	if (!power_rule->max_antenna_gain)
746 		snprintf(max_antenna_gain, 32, "N/A");
747 	else
748 		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
749 
750 	REG_DBG_PRINT("Updating information on frequency %d MHz "
751 		      "for a %d MHz width channel with regulatory rule:\n",
752 		      chan->center_freq,
753 		      KHZ_TO_MHZ(desired_bw_khz));
754 
755 	REG_DBG_PRINT("%d KHz - %d KHz @  KHz), (%s mBi, %d mBm)\n",
756 		      freq_range->start_freq_khz,
757 		      freq_range->end_freq_khz,
758 		      max_antenna_gain,
759 		      power_rule->max_eirp);
760 }
761 #else
762 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
763 				    u32 desired_bw_khz,
764 				    const struct ieee80211_reg_rule *reg_rule)
765 {
766 	return;
767 }
768 #endif
769 
770 /*
771  * Note that right now we assume the desired channel bandwidth
772  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
773  * per channel, the primary and the extension channel). To support
774  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
775  * new ieee80211_channel.target_bw and re run the regulatory check
776  * on the wiphy with the target_bw specified. Then we can simply use
777  * that below for the desired_bw_khz below.
778  */
779 static void handle_channel(struct wiphy *wiphy,
780 			   enum nl80211_reg_initiator initiator,
781 			   enum ieee80211_band band,
782 			   unsigned int chan_idx)
783 {
784 	int r;
785 	u32 flags, bw_flags = 0;
786 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
787 	const struct ieee80211_reg_rule *reg_rule = NULL;
788 	const struct ieee80211_power_rule *power_rule = NULL;
789 	const struct ieee80211_freq_range *freq_range = NULL;
790 	struct ieee80211_supported_band *sband;
791 	struct ieee80211_channel *chan;
792 	struct wiphy *request_wiphy = NULL;
793 
794 	assert_cfg80211_lock();
795 
796 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
797 
798 	sband = wiphy->bands[band];
799 	BUG_ON(chan_idx >= sband->n_channels);
800 	chan = &sband->channels[chan_idx];
801 
802 	flags = chan->orig_flags;
803 
804 	r = freq_reg_info(wiphy,
805 			  MHZ_TO_KHZ(chan->center_freq),
806 			  desired_bw_khz,
807 			  &reg_rule);
808 
809 	if (r) {
810 		/*
811 		 * We will disable all channels that do not match our
812 		 * recieved regulatory rule unless the hint is coming
813 		 * from a Country IE and the Country IE had no information
814 		 * about a band. The IEEE 802.11 spec allows for an AP
815 		 * to send only a subset of the regulatory rules allowed,
816 		 * so an AP in the US that only supports 2.4 GHz may only send
817 		 * a country IE with information for the 2.4 GHz band
818 		 * while 5 GHz is still supported.
819 		 */
820 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
821 		    r == -ERANGE)
822 			return;
823 
824 		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
825 		chan->flags = IEEE80211_CHAN_DISABLED;
826 		return;
827 	}
828 
829 	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
830 
831 	power_rule = &reg_rule->power_rule;
832 	freq_range = &reg_rule->freq_range;
833 
834 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
835 		bw_flags = IEEE80211_CHAN_NO_HT40;
836 
837 	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
838 	    request_wiphy && request_wiphy == wiphy &&
839 	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
840 		/*
841 		 * This gaurantees the driver's requested regulatory domain
842 		 * will always be used as a base for further regulatory
843 		 * settings
844 		 */
845 		chan->flags = chan->orig_flags =
846 			map_regdom_flags(reg_rule->flags) | bw_flags;
847 		chan->max_antenna_gain = chan->orig_mag =
848 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
849 		chan->max_power = chan->orig_mpwr =
850 			(int) MBM_TO_DBM(power_rule->max_eirp);
851 		return;
852 	}
853 
854 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
855 	chan->max_antenna_gain = min(chan->orig_mag,
856 		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
857 	if (chan->orig_mpwr)
858 		chan->max_power = min(chan->orig_mpwr,
859 			(int) MBM_TO_DBM(power_rule->max_eirp));
860 	else
861 		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
862 }
863 
864 static void handle_band(struct wiphy *wiphy,
865 			enum ieee80211_band band,
866 			enum nl80211_reg_initiator initiator)
867 {
868 	unsigned int i;
869 	struct ieee80211_supported_band *sband;
870 
871 	BUG_ON(!wiphy->bands[band]);
872 	sband = wiphy->bands[band];
873 
874 	for (i = 0; i < sband->n_channels; i++)
875 		handle_channel(wiphy, initiator, band, i);
876 }
877 
878 static bool ignore_reg_update(struct wiphy *wiphy,
879 			      enum nl80211_reg_initiator initiator)
880 {
881 	if (!last_request) {
882 		REG_DBG_PRINT("Ignoring regulatory request %s since "
883 			      "last_request is not set\n",
884 			      reg_initiator_name(initiator));
885 		return true;
886 	}
887 
888 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
889 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
890 		REG_DBG_PRINT("Ignoring regulatory request %s "
891 			      "since the driver uses its own custom "
892 			      "regulatory domain ",
893 			      reg_initiator_name(initiator));
894 		return true;
895 	}
896 
897 	/*
898 	 * wiphy->regd will be set once the device has its own
899 	 * desired regulatory domain set
900 	 */
901 	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
902 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
903 	    !is_world_regdom(last_request->alpha2)) {
904 		REG_DBG_PRINT("Ignoring regulatory request %s "
905 			      "since the driver requires its own regulaotry "
906 			      "domain to be set first",
907 			      reg_initiator_name(initiator));
908 		return true;
909 	}
910 
911 	return false;
912 }
913 
914 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
915 {
916 	struct cfg80211_registered_device *rdev;
917 
918 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
919 		wiphy_update_regulatory(&rdev->wiphy, initiator);
920 }
921 
922 static void handle_reg_beacon(struct wiphy *wiphy,
923 			      unsigned int chan_idx,
924 			      struct reg_beacon *reg_beacon)
925 {
926 	struct ieee80211_supported_band *sband;
927 	struct ieee80211_channel *chan;
928 	bool channel_changed = false;
929 	struct ieee80211_channel chan_before;
930 
931 	assert_cfg80211_lock();
932 
933 	sband = wiphy->bands[reg_beacon->chan.band];
934 	chan = &sband->channels[chan_idx];
935 
936 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
937 		return;
938 
939 	if (chan->beacon_found)
940 		return;
941 
942 	chan->beacon_found = true;
943 
944 	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
945 		return;
946 
947 	chan_before.center_freq = chan->center_freq;
948 	chan_before.flags = chan->flags;
949 
950 	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
951 		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
952 		channel_changed = true;
953 	}
954 
955 	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
956 		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
957 		channel_changed = true;
958 	}
959 
960 	if (channel_changed)
961 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
962 }
963 
964 /*
965  * Called when a scan on a wiphy finds a beacon on
966  * new channel
967  */
968 static void wiphy_update_new_beacon(struct wiphy *wiphy,
969 				    struct reg_beacon *reg_beacon)
970 {
971 	unsigned int i;
972 	struct ieee80211_supported_band *sband;
973 
974 	assert_cfg80211_lock();
975 
976 	if (!wiphy->bands[reg_beacon->chan.band])
977 		return;
978 
979 	sband = wiphy->bands[reg_beacon->chan.band];
980 
981 	for (i = 0; i < sband->n_channels; i++)
982 		handle_reg_beacon(wiphy, i, reg_beacon);
983 }
984 
985 /*
986  * Called upon reg changes or a new wiphy is added
987  */
988 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
989 {
990 	unsigned int i;
991 	struct ieee80211_supported_band *sband;
992 	struct reg_beacon *reg_beacon;
993 
994 	assert_cfg80211_lock();
995 
996 	if (list_empty(&reg_beacon_list))
997 		return;
998 
999 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1000 		if (!wiphy->bands[reg_beacon->chan.band])
1001 			continue;
1002 		sband = wiphy->bands[reg_beacon->chan.band];
1003 		for (i = 0; i < sband->n_channels; i++)
1004 			handle_reg_beacon(wiphy, i, reg_beacon);
1005 	}
1006 }
1007 
1008 static bool reg_is_world_roaming(struct wiphy *wiphy)
1009 {
1010 	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1011 	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1012 		return true;
1013 	if (last_request &&
1014 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1015 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1016 		return true;
1017 	return false;
1018 }
1019 
1020 /* Reap the advantages of previously found beacons */
1021 static void reg_process_beacons(struct wiphy *wiphy)
1022 {
1023 	/*
1024 	 * Means we are just firing up cfg80211, so no beacons would
1025 	 * have been processed yet.
1026 	 */
1027 	if (!last_request)
1028 		return;
1029 	if (!reg_is_world_roaming(wiphy))
1030 		return;
1031 	wiphy_update_beacon_reg(wiphy);
1032 }
1033 
1034 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1035 {
1036 	if (!chan)
1037 		return true;
1038 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1039 		return true;
1040 	/* This would happen when regulatory rules disallow HT40 completely */
1041 	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1042 		return true;
1043 	return false;
1044 }
1045 
1046 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1047 					 enum ieee80211_band band,
1048 					 unsigned int chan_idx)
1049 {
1050 	struct ieee80211_supported_band *sband;
1051 	struct ieee80211_channel *channel;
1052 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1053 	unsigned int i;
1054 
1055 	assert_cfg80211_lock();
1056 
1057 	sband = wiphy->bands[band];
1058 	BUG_ON(chan_idx >= sband->n_channels);
1059 	channel = &sband->channels[chan_idx];
1060 
1061 	if (is_ht40_not_allowed(channel)) {
1062 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1063 		return;
1064 	}
1065 
1066 	/*
1067 	 * We need to ensure the extension channels exist to
1068 	 * be able to use HT40- or HT40+, this finds them (or not)
1069 	 */
1070 	for (i = 0; i < sband->n_channels; i++) {
1071 		struct ieee80211_channel *c = &sband->channels[i];
1072 		if (c->center_freq == (channel->center_freq - 20))
1073 			channel_before = c;
1074 		if (c->center_freq == (channel->center_freq + 20))
1075 			channel_after = c;
1076 	}
1077 
1078 	/*
1079 	 * Please note that this assumes target bandwidth is 20 MHz,
1080 	 * if that ever changes we also need to change the below logic
1081 	 * to include that as well.
1082 	 */
1083 	if (is_ht40_not_allowed(channel_before))
1084 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1085 	else
1086 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1087 
1088 	if (is_ht40_not_allowed(channel_after))
1089 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1090 	else
1091 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1092 }
1093 
1094 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1095 				      enum ieee80211_band band)
1096 {
1097 	unsigned int i;
1098 	struct ieee80211_supported_band *sband;
1099 
1100 	BUG_ON(!wiphy->bands[band]);
1101 	sband = wiphy->bands[band];
1102 
1103 	for (i = 0; i < sband->n_channels; i++)
1104 		reg_process_ht_flags_channel(wiphy, band, i);
1105 }
1106 
1107 static void reg_process_ht_flags(struct wiphy *wiphy)
1108 {
1109 	enum ieee80211_band band;
1110 
1111 	if (!wiphy)
1112 		return;
1113 
1114 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1115 		if (wiphy->bands[band])
1116 			reg_process_ht_flags_band(wiphy, band);
1117 	}
1118 
1119 }
1120 
1121 void wiphy_update_regulatory(struct wiphy *wiphy,
1122 			     enum nl80211_reg_initiator initiator)
1123 {
1124 	enum ieee80211_band band;
1125 
1126 	if (ignore_reg_update(wiphy, initiator))
1127 		goto out;
1128 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1129 		if (wiphy->bands[band])
1130 			handle_band(wiphy, band, initiator);
1131 	}
1132 out:
1133 	reg_process_beacons(wiphy);
1134 	reg_process_ht_flags(wiphy);
1135 	if (wiphy->reg_notifier)
1136 		wiphy->reg_notifier(wiphy, last_request);
1137 }
1138 
1139 static void handle_channel_custom(struct wiphy *wiphy,
1140 				  enum ieee80211_band band,
1141 				  unsigned int chan_idx,
1142 				  const struct ieee80211_regdomain *regd)
1143 {
1144 	int r;
1145 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
1146 	u32 bw_flags = 0;
1147 	const struct ieee80211_reg_rule *reg_rule = NULL;
1148 	const struct ieee80211_power_rule *power_rule = NULL;
1149 	const struct ieee80211_freq_range *freq_range = NULL;
1150 	struct ieee80211_supported_band *sband;
1151 	struct ieee80211_channel *chan;
1152 
1153 	assert_reg_lock();
1154 
1155 	sband = wiphy->bands[band];
1156 	BUG_ON(chan_idx >= sband->n_channels);
1157 	chan = &sband->channels[chan_idx];
1158 
1159 	r = freq_reg_info_regd(wiphy,
1160 			       MHZ_TO_KHZ(chan->center_freq),
1161 			       desired_bw_khz,
1162 			       &reg_rule,
1163 			       regd);
1164 
1165 	if (r) {
1166 		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1167 			      "regd has no rule that fits a %d MHz "
1168 			      "wide channel\n",
1169 			      chan->center_freq,
1170 			      KHZ_TO_MHZ(desired_bw_khz));
1171 		chan->flags = IEEE80211_CHAN_DISABLED;
1172 		return;
1173 	}
1174 
1175 	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1176 
1177 	power_rule = &reg_rule->power_rule;
1178 	freq_range = &reg_rule->freq_range;
1179 
1180 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1181 		bw_flags = IEEE80211_CHAN_NO_HT40;
1182 
1183 	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1184 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1185 	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1186 }
1187 
1188 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1189 			       const struct ieee80211_regdomain *regd)
1190 {
1191 	unsigned int i;
1192 	struct ieee80211_supported_band *sband;
1193 
1194 	BUG_ON(!wiphy->bands[band]);
1195 	sband = wiphy->bands[band];
1196 
1197 	for (i = 0; i < sband->n_channels; i++)
1198 		handle_channel_custom(wiphy, band, i, regd);
1199 }
1200 
1201 /* Used by drivers prior to wiphy registration */
1202 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1203 				   const struct ieee80211_regdomain *regd)
1204 {
1205 	enum ieee80211_band band;
1206 	unsigned int bands_set = 0;
1207 
1208 	mutex_lock(&reg_mutex);
1209 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1210 		if (!wiphy->bands[band])
1211 			continue;
1212 		handle_band_custom(wiphy, band, regd);
1213 		bands_set++;
1214 	}
1215 	mutex_unlock(&reg_mutex);
1216 
1217 	/*
1218 	 * no point in calling this if it won't have any effect
1219 	 * on your device's supportd bands.
1220 	 */
1221 	WARN_ON(!bands_set);
1222 }
1223 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1224 
1225 /*
1226  * Return value which can be used by ignore_request() to indicate
1227  * it has been determined we should intersect two regulatory domains
1228  */
1229 #define REG_INTERSECT	1
1230 
1231 /* This has the logic which determines when a new request
1232  * should be ignored. */
1233 static int ignore_request(struct wiphy *wiphy,
1234 			  struct regulatory_request *pending_request)
1235 {
1236 	struct wiphy *last_wiphy = NULL;
1237 
1238 	assert_cfg80211_lock();
1239 
1240 	/* All initial requests are respected */
1241 	if (!last_request)
1242 		return 0;
1243 
1244 	switch (pending_request->initiator) {
1245 	case NL80211_REGDOM_SET_BY_CORE:
1246 		return 0;
1247 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1248 
1249 		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1250 
1251 		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1252 			return -EINVAL;
1253 		if (last_request->initiator ==
1254 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1255 			if (last_wiphy != wiphy) {
1256 				/*
1257 				 * Two cards with two APs claiming different
1258 				 * Country IE alpha2s. We could
1259 				 * intersect them, but that seems unlikely
1260 				 * to be correct. Reject second one for now.
1261 				 */
1262 				if (regdom_changes(pending_request->alpha2))
1263 					return -EOPNOTSUPP;
1264 				return -EALREADY;
1265 			}
1266 			/*
1267 			 * Two consecutive Country IE hints on the same wiphy.
1268 			 * This should be picked up early by the driver/stack
1269 			 */
1270 			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1271 				return 0;
1272 			return -EALREADY;
1273 		}
1274 		return 0;
1275 	case NL80211_REGDOM_SET_BY_DRIVER:
1276 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1277 			if (regdom_changes(pending_request->alpha2))
1278 				return 0;
1279 			return -EALREADY;
1280 		}
1281 
1282 		/*
1283 		 * This would happen if you unplug and plug your card
1284 		 * back in or if you add a new device for which the previously
1285 		 * loaded card also agrees on the regulatory domain.
1286 		 */
1287 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1288 		    !regdom_changes(pending_request->alpha2))
1289 			return -EALREADY;
1290 
1291 		return REG_INTERSECT;
1292 	case NL80211_REGDOM_SET_BY_USER:
1293 		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1294 			return REG_INTERSECT;
1295 		/*
1296 		 * If the user knows better the user should set the regdom
1297 		 * to their country before the IE is picked up
1298 		 */
1299 		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1300 			  last_request->intersect)
1301 			return -EOPNOTSUPP;
1302 		/*
1303 		 * Process user requests only after previous user/driver/core
1304 		 * requests have been processed
1305 		 */
1306 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1307 		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1308 		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1309 			if (regdom_changes(last_request->alpha2))
1310 				return -EAGAIN;
1311 		}
1312 
1313 		if (!regdom_changes(pending_request->alpha2))
1314 			return -EALREADY;
1315 
1316 		return 0;
1317 	}
1318 
1319 	return -EINVAL;
1320 }
1321 
1322 static void reg_set_request_processed(void)
1323 {
1324 	bool need_more_processing = false;
1325 
1326 	last_request->processed = true;
1327 
1328 	spin_lock(&reg_requests_lock);
1329 	if (!list_empty(&reg_requests_list))
1330 		need_more_processing = true;
1331 	spin_unlock(&reg_requests_lock);
1332 
1333 	if (need_more_processing)
1334 		schedule_work(&reg_work);
1335 }
1336 
1337 /**
1338  * __regulatory_hint - hint to the wireless core a regulatory domain
1339  * @wiphy: if the hint comes from country information from an AP, this
1340  *	is required to be set to the wiphy that received the information
1341  * @pending_request: the regulatory request currently being processed
1342  *
1343  * The Wireless subsystem can use this function to hint to the wireless core
1344  * what it believes should be the current regulatory domain.
1345  *
1346  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1347  * already been set or other standard error codes.
1348  *
1349  * Caller must hold &cfg80211_mutex and &reg_mutex
1350  */
1351 static int __regulatory_hint(struct wiphy *wiphy,
1352 			     struct regulatory_request *pending_request)
1353 {
1354 	bool intersect = false;
1355 	int r = 0;
1356 
1357 	assert_cfg80211_lock();
1358 
1359 	r = ignore_request(wiphy, pending_request);
1360 
1361 	if (r == REG_INTERSECT) {
1362 		if (pending_request->initiator ==
1363 		    NL80211_REGDOM_SET_BY_DRIVER) {
1364 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1365 			if (r) {
1366 				kfree(pending_request);
1367 				return r;
1368 			}
1369 		}
1370 		intersect = true;
1371 	} else if (r) {
1372 		/*
1373 		 * If the regulatory domain being requested by the
1374 		 * driver has already been set just copy it to the
1375 		 * wiphy
1376 		 */
1377 		if (r == -EALREADY &&
1378 		    pending_request->initiator ==
1379 		    NL80211_REGDOM_SET_BY_DRIVER) {
1380 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1381 			if (r) {
1382 				kfree(pending_request);
1383 				return r;
1384 			}
1385 			r = -EALREADY;
1386 			goto new_request;
1387 		}
1388 		kfree(pending_request);
1389 		return r;
1390 	}
1391 
1392 new_request:
1393 	kfree(last_request);
1394 
1395 	last_request = pending_request;
1396 	last_request->intersect = intersect;
1397 
1398 	pending_request = NULL;
1399 
1400 	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1401 		user_alpha2[0] = last_request->alpha2[0];
1402 		user_alpha2[1] = last_request->alpha2[1];
1403 	}
1404 
1405 	/* When r == REG_INTERSECT we do need to call CRDA */
1406 	if (r < 0) {
1407 		/*
1408 		 * Since CRDA will not be called in this case as we already
1409 		 * have applied the requested regulatory domain before we just
1410 		 * inform userspace we have processed the request
1411 		 */
1412 		if (r == -EALREADY) {
1413 			nl80211_send_reg_change_event(last_request);
1414 			reg_set_request_processed();
1415 		}
1416 		return r;
1417 	}
1418 
1419 	return call_crda(last_request->alpha2);
1420 }
1421 
1422 /* This processes *all* regulatory hints */
1423 static void reg_process_hint(struct regulatory_request *reg_request)
1424 {
1425 	int r = 0;
1426 	struct wiphy *wiphy = NULL;
1427 	enum nl80211_reg_initiator initiator = reg_request->initiator;
1428 
1429 	BUG_ON(!reg_request->alpha2);
1430 
1431 	if (wiphy_idx_valid(reg_request->wiphy_idx))
1432 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1433 
1434 	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1435 	    !wiphy) {
1436 		kfree(reg_request);
1437 		return;
1438 	}
1439 
1440 	r = __regulatory_hint(wiphy, reg_request);
1441 	/* This is required so that the orig_* parameters are saved */
1442 	if (r == -EALREADY && wiphy &&
1443 	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1444 		wiphy_update_regulatory(wiphy, initiator);
1445 }
1446 
1447 /*
1448  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1449  * Regulatory hints come on a first come first serve basis and we
1450  * must process each one atomically.
1451  */
1452 static void reg_process_pending_hints(void)
1453 {
1454 	struct regulatory_request *reg_request;
1455 
1456 	mutex_lock(&cfg80211_mutex);
1457 	mutex_lock(&reg_mutex);
1458 
1459 	/* When last_request->processed becomes true this will be rescheduled */
1460 	if (last_request && !last_request->processed) {
1461 		REG_DBG_PRINT("Pending regulatory request, waiting "
1462 			      "for it to be processed...");
1463 		goto out;
1464 	}
1465 
1466 	spin_lock(&reg_requests_lock);
1467 
1468 	if (list_empty(&reg_requests_list)) {
1469 		spin_unlock(&reg_requests_lock);
1470 		goto out;
1471 	}
1472 
1473 	reg_request = list_first_entry(&reg_requests_list,
1474 				       struct regulatory_request,
1475 				       list);
1476 	list_del_init(&reg_request->list);
1477 
1478 	spin_unlock(&reg_requests_lock);
1479 
1480 	reg_process_hint(reg_request);
1481 
1482 out:
1483 	mutex_unlock(&reg_mutex);
1484 	mutex_unlock(&cfg80211_mutex);
1485 }
1486 
1487 /* Processes beacon hints -- this has nothing to do with country IEs */
1488 static void reg_process_pending_beacon_hints(void)
1489 {
1490 	struct cfg80211_registered_device *rdev;
1491 	struct reg_beacon *pending_beacon, *tmp;
1492 
1493 	/*
1494 	 * No need to hold the reg_mutex here as we just touch wiphys
1495 	 * and do not read or access regulatory variables.
1496 	 */
1497 	mutex_lock(&cfg80211_mutex);
1498 
1499 	/* This goes through the _pending_ beacon list */
1500 	spin_lock_bh(&reg_pending_beacons_lock);
1501 
1502 	if (list_empty(&reg_pending_beacons)) {
1503 		spin_unlock_bh(&reg_pending_beacons_lock);
1504 		goto out;
1505 	}
1506 
1507 	list_for_each_entry_safe(pending_beacon, tmp,
1508 				 &reg_pending_beacons, list) {
1509 
1510 		list_del_init(&pending_beacon->list);
1511 
1512 		/* Applies the beacon hint to current wiphys */
1513 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1514 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1515 
1516 		/* Remembers the beacon hint for new wiphys or reg changes */
1517 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
1518 	}
1519 
1520 	spin_unlock_bh(&reg_pending_beacons_lock);
1521 out:
1522 	mutex_unlock(&cfg80211_mutex);
1523 }
1524 
1525 static void reg_todo(struct work_struct *work)
1526 {
1527 	reg_process_pending_hints();
1528 	reg_process_pending_beacon_hints();
1529 }
1530 
1531 static void queue_regulatory_request(struct regulatory_request *request)
1532 {
1533 	if (isalpha(request->alpha2[0]))
1534 		request->alpha2[0] = toupper(request->alpha2[0]);
1535 	if (isalpha(request->alpha2[1]))
1536 		request->alpha2[1] = toupper(request->alpha2[1]);
1537 
1538 	spin_lock(&reg_requests_lock);
1539 	list_add_tail(&request->list, &reg_requests_list);
1540 	spin_unlock(&reg_requests_lock);
1541 
1542 	schedule_work(&reg_work);
1543 }
1544 
1545 /*
1546  * Core regulatory hint -- happens during cfg80211_init()
1547  * and when we restore regulatory settings.
1548  */
1549 static int regulatory_hint_core(const char *alpha2)
1550 {
1551 	struct regulatory_request *request;
1552 
1553 	kfree(last_request);
1554 	last_request = NULL;
1555 
1556 	request = kzalloc(sizeof(struct regulatory_request),
1557 			  GFP_KERNEL);
1558 	if (!request)
1559 		return -ENOMEM;
1560 
1561 	request->alpha2[0] = alpha2[0];
1562 	request->alpha2[1] = alpha2[1];
1563 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1564 
1565 	queue_regulatory_request(request);
1566 
1567 	return 0;
1568 }
1569 
1570 /* User hints */
1571 int regulatory_hint_user(const char *alpha2)
1572 {
1573 	struct regulatory_request *request;
1574 
1575 	BUG_ON(!alpha2);
1576 
1577 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1578 	if (!request)
1579 		return -ENOMEM;
1580 
1581 	request->wiphy_idx = WIPHY_IDX_STALE;
1582 	request->alpha2[0] = alpha2[0];
1583 	request->alpha2[1] = alpha2[1];
1584 	request->initiator = NL80211_REGDOM_SET_BY_USER;
1585 
1586 	queue_regulatory_request(request);
1587 
1588 	return 0;
1589 }
1590 
1591 /* Driver hints */
1592 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1593 {
1594 	struct regulatory_request *request;
1595 
1596 	BUG_ON(!alpha2);
1597 	BUG_ON(!wiphy);
1598 
1599 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1600 	if (!request)
1601 		return -ENOMEM;
1602 
1603 	request->wiphy_idx = get_wiphy_idx(wiphy);
1604 
1605 	/* Must have registered wiphy first */
1606 	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1607 
1608 	request->alpha2[0] = alpha2[0];
1609 	request->alpha2[1] = alpha2[1];
1610 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1611 
1612 	queue_regulatory_request(request);
1613 
1614 	return 0;
1615 }
1616 EXPORT_SYMBOL(regulatory_hint);
1617 
1618 /*
1619  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1620  * therefore cannot iterate over the rdev list here.
1621  */
1622 void regulatory_hint_11d(struct wiphy *wiphy,
1623 			 enum ieee80211_band band,
1624 			 u8 *country_ie,
1625 			 u8 country_ie_len)
1626 {
1627 	char alpha2[2];
1628 	enum environment_cap env = ENVIRON_ANY;
1629 	struct regulatory_request *request;
1630 
1631 	mutex_lock(&reg_mutex);
1632 
1633 	if (unlikely(!last_request))
1634 		goto out;
1635 
1636 	/* IE len must be evenly divisible by 2 */
1637 	if (country_ie_len & 0x01)
1638 		goto out;
1639 
1640 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1641 		goto out;
1642 
1643 	alpha2[0] = country_ie[0];
1644 	alpha2[1] = country_ie[1];
1645 
1646 	if (country_ie[2] == 'I')
1647 		env = ENVIRON_INDOOR;
1648 	else if (country_ie[2] == 'O')
1649 		env = ENVIRON_OUTDOOR;
1650 
1651 	/*
1652 	 * We will run this only upon a successful connection on cfg80211.
1653 	 * We leave conflict resolution to the workqueue, where can hold
1654 	 * cfg80211_mutex.
1655 	 */
1656 	if (likely(last_request->initiator ==
1657 	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1658 	    wiphy_idx_valid(last_request->wiphy_idx)))
1659 		goto out;
1660 
1661 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1662 	if (!request)
1663 		goto out;
1664 
1665 	request->wiphy_idx = get_wiphy_idx(wiphy);
1666 	request->alpha2[0] = alpha2[0];
1667 	request->alpha2[1] = alpha2[1];
1668 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1669 	request->country_ie_env = env;
1670 
1671 	mutex_unlock(&reg_mutex);
1672 
1673 	queue_regulatory_request(request);
1674 
1675 	return;
1676 
1677 out:
1678 	mutex_unlock(&reg_mutex);
1679 }
1680 
1681 static void restore_alpha2(char *alpha2, bool reset_user)
1682 {
1683 	/* indicates there is no alpha2 to consider for restoration */
1684 	alpha2[0] = '9';
1685 	alpha2[1] = '7';
1686 
1687 	/* The user setting has precedence over the module parameter */
1688 	if (is_user_regdom_saved()) {
1689 		/* Unless we're asked to ignore it and reset it */
1690 		if (reset_user) {
1691 			REG_DBG_PRINT("Restoring regulatory settings "
1692 			       "including user preference\n");
1693 			user_alpha2[0] = '9';
1694 			user_alpha2[1] = '7';
1695 
1696 			/*
1697 			 * If we're ignoring user settings, we still need to
1698 			 * check the module parameter to ensure we put things
1699 			 * back as they were for a full restore.
1700 			 */
1701 			if (!is_world_regdom(ieee80211_regdom)) {
1702 				REG_DBG_PRINT("Keeping preference on "
1703 				       "module parameter ieee80211_regdom: %c%c\n",
1704 				       ieee80211_regdom[0],
1705 				       ieee80211_regdom[1]);
1706 				alpha2[0] = ieee80211_regdom[0];
1707 				alpha2[1] = ieee80211_regdom[1];
1708 			}
1709 		} else {
1710 			REG_DBG_PRINT("Restoring regulatory settings "
1711 			       "while preserving user preference for: %c%c\n",
1712 			       user_alpha2[0],
1713 			       user_alpha2[1]);
1714 			alpha2[0] = user_alpha2[0];
1715 			alpha2[1] = user_alpha2[1];
1716 		}
1717 	} else if (!is_world_regdom(ieee80211_regdom)) {
1718 		REG_DBG_PRINT("Keeping preference on "
1719 		       "module parameter ieee80211_regdom: %c%c\n",
1720 		       ieee80211_regdom[0],
1721 		       ieee80211_regdom[1]);
1722 		alpha2[0] = ieee80211_regdom[0];
1723 		alpha2[1] = ieee80211_regdom[1];
1724 	} else
1725 		REG_DBG_PRINT("Restoring regulatory settings\n");
1726 }
1727 
1728 /*
1729  * Restoring regulatory settings involves ingoring any
1730  * possibly stale country IE information and user regulatory
1731  * settings if so desired, this includes any beacon hints
1732  * learned as we could have traveled outside to another country
1733  * after disconnection. To restore regulatory settings we do
1734  * exactly what we did at bootup:
1735  *
1736  *   - send a core regulatory hint
1737  *   - send a user regulatory hint if applicable
1738  *
1739  * Device drivers that send a regulatory hint for a specific country
1740  * keep their own regulatory domain on wiphy->regd so that does does
1741  * not need to be remembered.
1742  */
1743 static void restore_regulatory_settings(bool reset_user)
1744 {
1745 	char alpha2[2];
1746 	struct reg_beacon *reg_beacon, *btmp;
1747 
1748 	mutex_lock(&cfg80211_mutex);
1749 	mutex_lock(&reg_mutex);
1750 
1751 	reset_regdomains();
1752 	restore_alpha2(alpha2, reset_user);
1753 
1754 	/* Clear beacon hints */
1755 	spin_lock_bh(&reg_pending_beacons_lock);
1756 	if (!list_empty(&reg_pending_beacons)) {
1757 		list_for_each_entry_safe(reg_beacon, btmp,
1758 					 &reg_pending_beacons, list) {
1759 			list_del(&reg_beacon->list);
1760 			kfree(reg_beacon);
1761 		}
1762 	}
1763 	spin_unlock_bh(&reg_pending_beacons_lock);
1764 
1765 	if (!list_empty(&reg_beacon_list)) {
1766 		list_for_each_entry_safe(reg_beacon, btmp,
1767 					 &reg_beacon_list, list) {
1768 			list_del(&reg_beacon->list);
1769 			kfree(reg_beacon);
1770 		}
1771 	}
1772 
1773 	/* First restore to the basic regulatory settings */
1774 	cfg80211_regdomain = cfg80211_world_regdom;
1775 
1776 	mutex_unlock(&reg_mutex);
1777 	mutex_unlock(&cfg80211_mutex);
1778 
1779 	regulatory_hint_core(cfg80211_regdomain->alpha2);
1780 
1781 	/*
1782 	 * This restores the ieee80211_regdom module parameter
1783 	 * preference or the last user requested regulatory
1784 	 * settings, user regulatory settings takes precedence.
1785 	 */
1786 	if (is_an_alpha2(alpha2))
1787 		regulatory_hint_user(user_alpha2);
1788 }
1789 
1790 
1791 void regulatory_hint_disconnect(void)
1792 {
1793 	REG_DBG_PRINT("All devices are disconnected, going to "
1794 		      "restore regulatory settings\n");
1795 	restore_regulatory_settings(false);
1796 }
1797 
1798 static bool freq_is_chan_12_13_14(u16 freq)
1799 {
1800 	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1801 	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1802 	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1803 		return true;
1804 	return false;
1805 }
1806 
1807 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1808 				 struct ieee80211_channel *beacon_chan,
1809 				 gfp_t gfp)
1810 {
1811 	struct reg_beacon *reg_beacon;
1812 
1813 	if (likely((beacon_chan->beacon_found ||
1814 	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1815 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1816 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1817 		return 0;
1818 
1819 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1820 	if (!reg_beacon)
1821 		return -ENOMEM;
1822 
1823 	REG_DBG_PRINT("Found new beacon on "
1824 		      "frequency: %d MHz (Ch %d) on %s\n",
1825 		      beacon_chan->center_freq,
1826 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
1827 		      wiphy_name(wiphy));
1828 
1829 	memcpy(&reg_beacon->chan, beacon_chan,
1830 		sizeof(struct ieee80211_channel));
1831 
1832 
1833 	/*
1834 	 * Since we can be called from BH or and non-BH context
1835 	 * we must use spin_lock_bh()
1836 	 */
1837 	spin_lock_bh(&reg_pending_beacons_lock);
1838 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1839 	spin_unlock_bh(&reg_pending_beacons_lock);
1840 
1841 	schedule_work(&reg_work);
1842 
1843 	return 0;
1844 }
1845 
1846 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1847 {
1848 	unsigned int i;
1849 	const struct ieee80211_reg_rule *reg_rule = NULL;
1850 	const struct ieee80211_freq_range *freq_range = NULL;
1851 	const struct ieee80211_power_rule *power_rule = NULL;
1852 
1853 	pr_info("    (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1854 
1855 	for (i = 0; i < rd->n_reg_rules; i++) {
1856 		reg_rule = &rd->reg_rules[i];
1857 		freq_range = &reg_rule->freq_range;
1858 		power_rule = &reg_rule->power_rule;
1859 
1860 		/*
1861 		 * There may not be documentation for max antenna gain
1862 		 * in certain regions
1863 		 */
1864 		if (power_rule->max_antenna_gain)
1865 			pr_info("    (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1866 				freq_range->start_freq_khz,
1867 				freq_range->end_freq_khz,
1868 				freq_range->max_bandwidth_khz,
1869 				power_rule->max_antenna_gain,
1870 				power_rule->max_eirp);
1871 		else
1872 			pr_info("    (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1873 				freq_range->start_freq_khz,
1874 				freq_range->end_freq_khz,
1875 				freq_range->max_bandwidth_khz,
1876 				power_rule->max_eirp);
1877 	}
1878 }
1879 
1880 static void print_regdomain(const struct ieee80211_regdomain *rd)
1881 {
1882 
1883 	if (is_intersected_alpha2(rd->alpha2)) {
1884 
1885 		if (last_request->initiator ==
1886 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1887 			struct cfg80211_registered_device *rdev;
1888 			rdev = cfg80211_rdev_by_wiphy_idx(
1889 				last_request->wiphy_idx);
1890 			if (rdev) {
1891 				pr_info("Current regulatory domain updated by AP to: %c%c\n",
1892 					rdev->country_ie_alpha2[0],
1893 					rdev->country_ie_alpha2[1]);
1894 			} else
1895 				pr_info("Current regulatory domain intersected:\n");
1896 		} else
1897 			pr_info("Current regulatory domain intersected:\n");
1898 	} else if (is_world_regdom(rd->alpha2))
1899 		pr_info("World regulatory domain updated:\n");
1900 	else {
1901 		if (is_unknown_alpha2(rd->alpha2))
1902 			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1903 		else
1904 			pr_info("Regulatory domain changed to country: %c%c\n",
1905 				rd->alpha2[0], rd->alpha2[1]);
1906 	}
1907 	print_rd_rules(rd);
1908 }
1909 
1910 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1911 {
1912 	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1913 	print_rd_rules(rd);
1914 }
1915 
1916 /* Takes ownership of rd only if it doesn't fail */
1917 static int __set_regdom(const struct ieee80211_regdomain *rd)
1918 {
1919 	const struct ieee80211_regdomain *intersected_rd = NULL;
1920 	struct cfg80211_registered_device *rdev = NULL;
1921 	struct wiphy *request_wiphy;
1922 	/* Some basic sanity checks first */
1923 
1924 	if (is_world_regdom(rd->alpha2)) {
1925 		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1926 			return -EINVAL;
1927 		update_world_regdomain(rd);
1928 		return 0;
1929 	}
1930 
1931 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1932 			!is_unknown_alpha2(rd->alpha2))
1933 		return -EINVAL;
1934 
1935 	if (!last_request)
1936 		return -EINVAL;
1937 
1938 	/*
1939 	 * Lets only bother proceeding on the same alpha2 if the current
1940 	 * rd is non static (it means CRDA was present and was used last)
1941 	 * and the pending request came in from a country IE
1942 	 */
1943 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1944 		/*
1945 		 * If someone else asked us to change the rd lets only bother
1946 		 * checking if the alpha2 changes if CRDA was already called
1947 		 */
1948 		if (!regdom_changes(rd->alpha2))
1949 			return -EINVAL;
1950 	}
1951 
1952 	/*
1953 	 * Now lets set the regulatory domain, update all driver channels
1954 	 * and finally inform them of what we have done, in case they want
1955 	 * to review or adjust their own settings based on their own
1956 	 * internal EEPROM data
1957 	 */
1958 
1959 	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1960 		return -EINVAL;
1961 
1962 	if (!is_valid_rd(rd)) {
1963 		pr_err("Invalid regulatory domain detected:\n");
1964 		print_regdomain_info(rd);
1965 		return -EINVAL;
1966 	}
1967 
1968 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1969 
1970 	if (!last_request->intersect) {
1971 		int r;
1972 
1973 		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1974 			reset_regdomains();
1975 			cfg80211_regdomain = rd;
1976 			return 0;
1977 		}
1978 
1979 		/*
1980 		 * For a driver hint, lets copy the regulatory domain the
1981 		 * driver wanted to the wiphy to deal with conflicts
1982 		 */
1983 
1984 		/*
1985 		 * Userspace could have sent two replies with only
1986 		 * one kernel request.
1987 		 */
1988 		if (request_wiphy->regd)
1989 			return -EALREADY;
1990 
1991 		r = reg_copy_regd(&request_wiphy->regd, rd);
1992 		if (r)
1993 			return r;
1994 
1995 		reset_regdomains();
1996 		cfg80211_regdomain = rd;
1997 		return 0;
1998 	}
1999 
2000 	/* Intersection requires a bit more work */
2001 
2002 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2003 
2004 		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2005 		if (!intersected_rd)
2006 			return -EINVAL;
2007 
2008 		/*
2009 		 * We can trash what CRDA provided now.
2010 		 * However if a driver requested this specific regulatory
2011 		 * domain we keep it for its private use
2012 		 */
2013 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2014 			request_wiphy->regd = rd;
2015 		else
2016 			kfree(rd);
2017 
2018 		rd = NULL;
2019 
2020 		reset_regdomains();
2021 		cfg80211_regdomain = intersected_rd;
2022 
2023 		return 0;
2024 	}
2025 
2026 	if (!intersected_rd)
2027 		return -EINVAL;
2028 
2029 	rdev = wiphy_to_dev(request_wiphy);
2030 
2031 	rdev->country_ie_alpha2[0] = rd->alpha2[0];
2032 	rdev->country_ie_alpha2[1] = rd->alpha2[1];
2033 	rdev->env = last_request->country_ie_env;
2034 
2035 	BUG_ON(intersected_rd == rd);
2036 
2037 	kfree(rd);
2038 	rd = NULL;
2039 
2040 	reset_regdomains();
2041 	cfg80211_regdomain = intersected_rd;
2042 
2043 	return 0;
2044 }
2045 
2046 
2047 /*
2048  * Use this call to set the current regulatory domain. Conflicts with
2049  * multiple drivers can be ironed out later. Caller must've already
2050  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2051  */
2052 int set_regdom(const struct ieee80211_regdomain *rd)
2053 {
2054 	int r;
2055 
2056 	assert_cfg80211_lock();
2057 
2058 	mutex_lock(&reg_mutex);
2059 
2060 	/* Note that this doesn't update the wiphys, this is done below */
2061 	r = __set_regdom(rd);
2062 	if (r) {
2063 		kfree(rd);
2064 		mutex_unlock(&reg_mutex);
2065 		return r;
2066 	}
2067 
2068 	/* This would make this whole thing pointless */
2069 	if (!last_request->intersect)
2070 		BUG_ON(rd != cfg80211_regdomain);
2071 
2072 	/* update all wiphys now with the new established regulatory domain */
2073 	update_all_wiphy_regulatory(last_request->initiator);
2074 
2075 	print_regdomain(cfg80211_regdomain);
2076 
2077 	nl80211_send_reg_change_event(last_request);
2078 
2079 	reg_set_request_processed();
2080 
2081 	mutex_unlock(&reg_mutex);
2082 
2083 	return r;
2084 }
2085 
2086 #ifdef CONFIG_HOTPLUG
2087 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2088 {
2089 	if (last_request && !last_request->processed) {
2090 		if (add_uevent_var(env, "COUNTRY=%c%c",
2091 				   last_request->alpha2[0],
2092 				   last_request->alpha2[1]))
2093 			return -ENOMEM;
2094 	}
2095 
2096 	return 0;
2097 }
2098 #else
2099 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2100 {
2101 	return -ENODEV;
2102 }
2103 #endif /* CONFIG_HOTPLUG */
2104 
2105 /* Caller must hold cfg80211_mutex */
2106 void reg_device_remove(struct wiphy *wiphy)
2107 {
2108 	struct wiphy *request_wiphy = NULL;
2109 
2110 	assert_cfg80211_lock();
2111 
2112 	mutex_lock(&reg_mutex);
2113 
2114 	kfree(wiphy->regd);
2115 
2116 	if (last_request)
2117 		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2118 
2119 	if (!request_wiphy || request_wiphy != wiphy)
2120 		goto out;
2121 
2122 	last_request->wiphy_idx = WIPHY_IDX_STALE;
2123 	last_request->country_ie_env = ENVIRON_ANY;
2124 out:
2125 	mutex_unlock(&reg_mutex);
2126 }
2127 
2128 int __init regulatory_init(void)
2129 {
2130 	int err = 0;
2131 
2132 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2133 	if (IS_ERR(reg_pdev))
2134 		return PTR_ERR(reg_pdev);
2135 
2136 	reg_pdev->dev.type = &reg_device_type;
2137 
2138 	spin_lock_init(&reg_requests_lock);
2139 	spin_lock_init(&reg_pending_beacons_lock);
2140 
2141 	cfg80211_regdomain = cfg80211_world_regdom;
2142 
2143 	user_alpha2[0] = '9';
2144 	user_alpha2[1] = '7';
2145 
2146 	/* We always try to get an update for the static regdomain */
2147 	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2148 	if (err) {
2149 		if (err == -ENOMEM)
2150 			return err;
2151 		/*
2152 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
2153 		 * memory which is handled and propagated appropriately above
2154 		 * but it can also fail during a netlink_broadcast() or during
2155 		 * early boot for call_usermodehelper(). For now treat these
2156 		 * errors as non-fatal.
2157 		 */
2158 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2159 #ifdef CONFIG_CFG80211_REG_DEBUG
2160 		/* We want to find out exactly why when debugging */
2161 		WARN_ON(err);
2162 #endif
2163 	}
2164 
2165 	/*
2166 	 * Finally, if the user set the module parameter treat it
2167 	 * as a user hint.
2168 	 */
2169 	if (!is_world_regdom(ieee80211_regdom))
2170 		regulatory_hint_user(ieee80211_regdom);
2171 
2172 	return 0;
2173 }
2174 
2175 void /* __init_or_exit */ regulatory_exit(void)
2176 {
2177 	struct regulatory_request *reg_request, *tmp;
2178 	struct reg_beacon *reg_beacon, *btmp;
2179 
2180 	cancel_work_sync(&reg_work);
2181 
2182 	mutex_lock(&cfg80211_mutex);
2183 	mutex_lock(&reg_mutex);
2184 
2185 	reset_regdomains();
2186 
2187 	kfree(last_request);
2188 
2189 	platform_device_unregister(reg_pdev);
2190 
2191 	spin_lock_bh(&reg_pending_beacons_lock);
2192 	if (!list_empty(&reg_pending_beacons)) {
2193 		list_for_each_entry_safe(reg_beacon, btmp,
2194 					 &reg_pending_beacons, list) {
2195 			list_del(&reg_beacon->list);
2196 			kfree(reg_beacon);
2197 		}
2198 	}
2199 	spin_unlock_bh(&reg_pending_beacons_lock);
2200 
2201 	if (!list_empty(&reg_beacon_list)) {
2202 		list_for_each_entry_safe(reg_beacon, btmp,
2203 					 &reg_beacon_list, list) {
2204 			list_del(&reg_beacon->list);
2205 			kfree(reg_beacon);
2206 		}
2207 	}
2208 
2209 	spin_lock(&reg_requests_lock);
2210 	if (!list_empty(&reg_requests_list)) {
2211 		list_for_each_entry_safe(reg_request, tmp,
2212 					 &reg_requests_list, list) {
2213 			list_del(&reg_request->list);
2214 			kfree(reg_request);
2215 		}
2216 	}
2217 	spin_unlock(&reg_requests_lock);
2218 
2219 	mutex_unlock(&reg_mutex);
2220 	mutex_unlock(&cfg80211_mutex);
2221 }
2222