1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2022 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static DEFINE_SPINLOCK(reg_indoor_lock); 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user, bool cached); 135 static void print_regdomain(const struct ieee80211_regdomain *rd); 136 static void reg_process_hint(struct regulatory_request *reg_request); 137 138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 139 { 140 return rcu_dereference_rtnl(cfg80211_regdomain); 141 } 142 143 /* 144 * Returns the regulatory domain associated with the wiphy. 145 * 146 * Requires any of RTNL, wiphy mutex or RCU protection. 147 */ 148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 149 { 150 return rcu_dereference_check(wiphy->regd, 151 lockdep_is_held(&wiphy->mtx) || 152 lockdep_rtnl_is_held()); 153 } 154 EXPORT_SYMBOL(get_wiphy_regdom); 155 156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 157 { 158 switch (dfs_region) { 159 case NL80211_DFS_UNSET: 160 return "unset"; 161 case NL80211_DFS_FCC: 162 return "FCC"; 163 case NL80211_DFS_ETSI: 164 return "ETSI"; 165 case NL80211_DFS_JP: 166 return "JP"; 167 } 168 return "Unknown"; 169 } 170 171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 172 { 173 const struct ieee80211_regdomain *regd = NULL; 174 const struct ieee80211_regdomain *wiphy_regd = NULL; 175 enum nl80211_dfs_regions dfs_region; 176 177 rcu_read_lock(); 178 regd = get_cfg80211_regdom(); 179 dfs_region = regd->dfs_region; 180 181 if (!wiphy) 182 goto out; 183 184 wiphy_regd = get_wiphy_regdom(wiphy); 185 if (!wiphy_regd) 186 goto out; 187 188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 189 dfs_region = wiphy_regd->dfs_region; 190 goto out; 191 } 192 193 if (wiphy_regd->dfs_region == regd->dfs_region) 194 goto out; 195 196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 197 dev_name(&wiphy->dev), 198 reg_dfs_region_str(wiphy_regd->dfs_region), 199 reg_dfs_region_str(regd->dfs_region)); 200 201 out: 202 rcu_read_unlock(); 203 204 return dfs_region; 205 } 206 207 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 208 { 209 if (!r) 210 return; 211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 212 } 213 214 static struct regulatory_request *get_last_request(void) 215 { 216 return rcu_dereference_rtnl(last_request); 217 } 218 219 /* Used to queue up regulatory hints */ 220 static LIST_HEAD(reg_requests_list); 221 static DEFINE_SPINLOCK(reg_requests_lock); 222 223 /* Used to queue up beacon hints for review */ 224 static LIST_HEAD(reg_pending_beacons); 225 static DEFINE_SPINLOCK(reg_pending_beacons_lock); 226 227 /* Used to keep track of processed beacon hints */ 228 static LIST_HEAD(reg_beacon_list); 229 230 struct reg_beacon { 231 struct list_head list; 232 struct ieee80211_channel chan; 233 }; 234 235 static void reg_check_chans_work(struct work_struct *work); 236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 237 238 static void reg_todo(struct work_struct *work); 239 static DECLARE_WORK(reg_work, reg_todo); 240 241 /* We keep a static world regulatory domain in case of the absence of CRDA */ 242 static const struct ieee80211_regdomain world_regdom = { 243 .n_reg_rules = 8, 244 .alpha2 = "00", 245 .reg_rules = { 246 /* IEEE 802.11b/g, channels 1..11 */ 247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 248 /* IEEE 802.11b/g, channels 12..13. */ 249 REG_RULE(2467-10, 2472+10, 20, 6, 20, 250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 251 /* IEEE 802.11 channel 14 - Only JP enables 252 * this and for 802.11b only */ 253 REG_RULE(2484-10, 2484+10, 20, 6, 20, 254 NL80211_RRF_NO_IR | 255 NL80211_RRF_NO_OFDM), 256 /* IEEE 802.11a, channel 36..48 */ 257 REG_RULE(5180-10, 5240+10, 80, 6, 20, 258 NL80211_RRF_NO_IR | 259 NL80211_RRF_AUTO_BW), 260 261 /* IEEE 802.11a, channel 52..64 - DFS required */ 262 REG_RULE(5260-10, 5320+10, 80, 6, 20, 263 NL80211_RRF_NO_IR | 264 NL80211_RRF_AUTO_BW | 265 NL80211_RRF_DFS), 266 267 /* IEEE 802.11a, channel 100..144 - DFS required */ 268 REG_RULE(5500-10, 5720+10, 160, 6, 20, 269 NL80211_RRF_NO_IR | 270 NL80211_RRF_DFS), 271 272 /* IEEE 802.11a, channel 149..165 */ 273 REG_RULE(5745-10, 5825+10, 80, 6, 20, 274 NL80211_RRF_NO_IR), 275 276 /* IEEE 802.11ad (60GHz), channels 1..3 */ 277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 278 } 279 }; 280 281 /* protected by RTNL */ 282 static const struct ieee80211_regdomain *cfg80211_world_regdom = 283 &world_regdom; 284 285 static char *ieee80211_regdom = "00"; 286 static char user_alpha2[2]; 287 static const struct ieee80211_regdomain *cfg80211_user_regdom; 288 289 module_param(ieee80211_regdom, charp, 0444); 290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 291 292 static void reg_free_request(struct regulatory_request *request) 293 { 294 if (request == &core_request_world) 295 return; 296 297 if (request != get_last_request()) 298 kfree(request); 299 } 300 301 static void reg_free_last_request(void) 302 { 303 struct regulatory_request *lr = get_last_request(); 304 305 if (lr != &core_request_world && lr) 306 kfree_rcu(lr, rcu_head); 307 } 308 309 static void reg_update_last_request(struct regulatory_request *request) 310 { 311 struct regulatory_request *lr; 312 313 lr = get_last_request(); 314 if (lr == request) 315 return; 316 317 reg_free_last_request(); 318 rcu_assign_pointer(last_request, request); 319 } 320 321 static void reset_regdomains(bool full_reset, 322 const struct ieee80211_regdomain *new_regdom) 323 { 324 const struct ieee80211_regdomain *r; 325 326 ASSERT_RTNL(); 327 328 r = get_cfg80211_regdom(); 329 330 /* avoid freeing static information or freeing something twice */ 331 if (r == cfg80211_world_regdom) 332 r = NULL; 333 if (cfg80211_world_regdom == &world_regdom) 334 cfg80211_world_regdom = NULL; 335 if (r == &world_regdom) 336 r = NULL; 337 338 rcu_free_regdom(r); 339 rcu_free_regdom(cfg80211_world_regdom); 340 341 cfg80211_world_regdom = &world_regdom; 342 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 343 344 if (!full_reset) 345 return; 346 347 reg_update_last_request(&core_request_world); 348 } 349 350 /* 351 * Dynamic world regulatory domain requested by the wireless 352 * core upon initialization 353 */ 354 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 355 { 356 struct regulatory_request *lr; 357 358 lr = get_last_request(); 359 360 WARN_ON(!lr); 361 362 reset_regdomains(false, rd); 363 364 cfg80211_world_regdom = rd; 365 } 366 367 bool is_world_regdom(const char *alpha2) 368 { 369 if (!alpha2) 370 return false; 371 return alpha2[0] == '0' && alpha2[1] == '0'; 372 } 373 374 static bool is_alpha2_set(const char *alpha2) 375 { 376 if (!alpha2) 377 return false; 378 return alpha2[0] && alpha2[1]; 379 } 380 381 static bool is_unknown_alpha2(const char *alpha2) 382 { 383 if (!alpha2) 384 return false; 385 /* 386 * Special case where regulatory domain was built by driver 387 * but a specific alpha2 cannot be determined 388 */ 389 return alpha2[0] == '9' && alpha2[1] == '9'; 390 } 391 392 static bool is_intersected_alpha2(const char *alpha2) 393 { 394 if (!alpha2) 395 return false; 396 /* 397 * Special case where regulatory domain is the 398 * result of an intersection between two regulatory domain 399 * structures 400 */ 401 return alpha2[0] == '9' && alpha2[1] == '8'; 402 } 403 404 static bool is_an_alpha2(const char *alpha2) 405 { 406 if (!alpha2) 407 return false; 408 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 409 } 410 411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 412 { 413 if (!alpha2_x || !alpha2_y) 414 return false; 415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 416 } 417 418 static bool regdom_changes(const char *alpha2) 419 { 420 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 421 422 if (!r) 423 return true; 424 return !alpha2_equal(r->alpha2, alpha2); 425 } 426 427 /* 428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 430 * has ever been issued. 431 */ 432 static bool is_user_regdom_saved(void) 433 { 434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 435 return false; 436 437 /* This would indicate a mistake on the design */ 438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 439 "Unexpected user alpha2: %c%c\n", 440 user_alpha2[0], user_alpha2[1])) 441 return false; 442 443 return true; 444 } 445 446 static const struct ieee80211_regdomain * 447 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 448 { 449 struct ieee80211_regdomain *regd; 450 unsigned int i; 451 452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 453 GFP_KERNEL); 454 if (!regd) 455 return ERR_PTR(-ENOMEM); 456 457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 458 459 for (i = 0; i < src_regd->n_reg_rules; i++) 460 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 461 sizeof(struct ieee80211_reg_rule)); 462 463 return regd; 464 } 465 466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 467 { 468 ASSERT_RTNL(); 469 470 if (!IS_ERR(cfg80211_user_regdom)) 471 kfree(cfg80211_user_regdom); 472 cfg80211_user_regdom = reg_copy_regd(rd); 473 } 474 475 struct reg_regdb_apply_request { 476 struct list_head list; 477 const struct ieee80211_regdomain *regdom; 478 }; 479 480 static LIST_HEAD(reg_regdb_apply_list); 481 static DEFINE_MUTEX(reg_regdb_apply_mutex); 482 483 static void reg_regdb_apply(struct work_struct *work) 484 { 485 struct reg_regdb_apply_request *request; 486 487 rtnl_lock(); 488 489 mutex_lock(®_regdb_apply_mutex); 490 while (!list_empty(®_regdb_apply_list)) { 491 request = list_first_entry(®_regdb_apply_list, 492 struct reg_regdb_apply_request, 493 list); 494 list_del(&request->list); 495 496 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 497 kfree(request); 498 } 499 mutex_unlock(®_regdb_apply_mutex); 500 501 rtnl_unlock(); 502 } 503 504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 505 506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 507 { 508 struct reg_regdb_apply_request *request; 509 510 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 511 if (!request) { 512 kfree(regdom); 513 return -ENOMEM; 514 } 515 516 request->regdom = regdom; 517 518 mutex_lock(®_regdb_apply_mutex); 519 list_add_tail(&request->list, ®_regdb_apply_list); 520 mutex_unlock(®_regdb_apply_mutex); 521 522 schedule_work(®_regdb_work); 523 return 0; 524 } 525 526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 527 /* Max number of consecutive attempts to communicate with CRDA */ 528 #define REG_MAX_CRDA_TIMEOUTS 10 529 530 static u32 reg_crda_timeouts; 531 532 static void crda_timeout_work(struct work_struct *work); 533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 534 535 static void crda_timeout_work(struct work_struct *work) 536 { 537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 538 rtnl_lock(); 539 reg_crda_timeouts++; 540 restore_regulatory_settings(true, false); 541 rtnl_unlock(); 542 } 543 544 static void cancel_crda_timeout(void) 545 { 546 cancel_delayed_work(&crda_timeout); 547 } 548 549 static void cancel_crda_timeout_sync(void) 550 { 551 cancel_delayed_work_sync(&crda_timeout); 552 } 553 554 static void reset_crda_timeouts(void) 555 { 556 reg_crda_timeouts = 0; 557 } 558 559 /* 560 * This lets us keep regulatory code which is updated on a regulatory 561 * basis in userspace. 562 */ 563 static int call_crda(const char *alpha2) 564 { 565 char country[12]; 566 char *env[] = { country, NULL }; 567 int ret; 568 569 snprintf(country, sizeof(country), "COUNTRY=%c%c", 570 alpha2[0], alpha2[1]); 571 572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 574 return -EINVAL; 575 } 576 577 if (!is_world_regdom((char *) alpha2)) 578 pr_debug("Calling CRDA for country: %c%c\n", 579 alpha2[0], alpha2[1]); 580 else 581 pr_debug("Calling CRDA to update world regulatory domain\n"); 582 583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 584 if (ret) 585 return ret; 586 587 queue_delayed_work(system_power_efficient_wq, 588 &crda_timeout, msecs_to_jiffies(3142)); 589 return 0; 590 } 591 #else 592 static inline void cancel_crda_timeout(void) {} 593 static inline void cancel_crda_timeout_sync(void) {} 594 static inline void reset_crda_timeouts(void) {} 595 static inline int call_crda(const char *alpha2) 596 { 597 return -ENODATA; 598 } 599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 600 601 /* code to directly load a firmware database through request_firmware */ 602 static const struct fwdb_header *regdb; 603 604 struct fwdb_country { 605 u8 alpha2[2]; 606 __be16 coll_ptr; 607 /* this struct cannot be extended */ 608 } __packed __aligned(4); 609 610 struct fwdb_collection { 611 u8 len; 612 u8 n_rules; 613 u8 dfs_region; 614 /* no optional data yet */ 615 /* aligned to 2, then followed by __be16 array of rule pointers */ 616 } __packed __aligned(4); 617 618 enum fwdb_flags { 619 FWDB_FLAG_NO_OFDM = BIT(0), 620 FWDB_FLAG_NO_OUTDOOR = BIT(1), 621 FWDB_FLAG_DFS = BIT(2), 622 FWDB_FLAG_NO_IR = BIT(3), 623 FWDB_FLAG_AUTO_BW = BIT(4), 624 }; 625 626 struct fwdb_wmm_ac { 627 u8 ecw; 628 u8 aifsn; 629 __be16 cot; 630 } __packed; 631 632 struct fwdb_wmm_rule { 633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 635 } __packed; 636 637 struct fwdb_rule { 638 u8 len; 639 u8 flags; 640 __be16 max_eirp; 641 __be32 start, end, max_bw; 642 /* start of optional data */ 643 __be16 cac_timeout; 644 __be16 wmm_ptr; 645 } __packed __aligned(4); 646 647 #define FWDB_MAGIC 0x52474442 648 #define FWDB_VERSION 20 649 650 struct fwdb_header { 651 __be32 magic; 652 __be32 version; 653 struct fwdb_country country[]; 654 } __packed __aligned(4); 655 656 static int ecw2cw(int ecw) 657 { 658 return (1 << ecw) - 1; 659 } 660 661 static bool valid_wmm(struct fwdb_wmm_rule *rule) 662 { 663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 664 int i; 665 666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 667 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 668 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 669 u8 aifsn = ac[i].aifsn; 670 671 if (cw_min >= cw_max) 672 return false; 673 674 if (aifsn < 1) 675 return false; 676 } 677 678 return true; 679 } 680 681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 682 { 683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 684 685 if ((u8 *)rule + sizeof(rule->len) > data + size) 686 return false; 687 688 /* mandatory fields */ 689 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 690 return false; 691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 693 struct fwdb_wmm_rule *wmm; 694 695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 696 return false; 697 698 wmm = (void *)(data + wmm_ptr); 699 700 if (!valid_wmm(wmm)) 701 return false; 702 } 703 return true; 704 } 705 706 static bool valid_country(const u8 *data, unsigned int size, 707 const struct fwdb_country *country) 708 { 709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 710 struct fwdb_collection *coll = (void *)(data + ptr); 711 __be16 *rules_ptr; 712 unsigned int i; 713 714 /* make sure we can read len/n_rules */ 715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 716 return false; 717 718 /* make sure base struct and all rules fit */ 719 if ((u8 *)coll + ALIGN(coll->len, 2) + 720 (coll->n_rules * 2) > data + size) 721 return false; 722 723 /* mandatory fields must exist */ 724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 725 return false; 726 727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 728 729 for (i = 0; i < coll->n_rules; i++) { 730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 731 732 if (!valid_rule(data, size, rule_ptr)) 733 return false; 734 } 735 736 return true; 737 } 738 739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 740 static struct key *builtin_regdb_keys; 741 742 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen) 743 { 744 const u8 *end = p + buflen; 745 size_t plen; 746 key_ref_t key; 747 748 while (p < end) { 749 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more 750 * than 256 bytes in size. 751 */ 752 if (end - p < 4) 753 goto dodgy_cert; 754 if (p[0] != 0x30 && 755 p[1] != 0x82) 756 goto dodgy_cert; 757 plen = (p[2] << 8) | p[3]; 758 plen += 4; 759 if (plen > end - p) 760 goto dodgy_cert; 761 762 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1), 763 "asymmetric", NULL, p, plen, 764 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 765 KEY_USR_VIEW | KEY_USR_READ), 766 KEY_ALLOC_NOT_IN_QUOTA | 767 KEY_ALLOC_BUILT_IN | 768 KEY_ALLOC_BYPASS_RESTRICTION); 769 if (IS_ERR(key)) { 770 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n", 771 PTR_ERR(key)); 772 } else { 773 pr_notice("Loaded X.509 cert '%s'\n", 774 key_ref_to_ptr(key)->description); 775 key_ref_put(key); 776 } 777 p += plen; 778 } 779 780 return; 781 782 dodgy_cert: 783 pr_err("Problem parsing in-kernel X.509 certificate list\n"); 784 } 785 786 static int __init load_builtin_regdb_keys(void) 787 { 788 builtin_regdb_keys = 789 keyring_alloc(".builtin_regdb_keys", 790 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 791 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 792 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 793 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 794 if (IS_ERR(builtin_regdb_keys)) 795 return PTR_ERR(builtin_regdb_keys); 796 797 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 798 799 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 800 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len); 801 #endif 802 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 803 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 804 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len); 805 #endif 806 807 return 0; 808 } 809 810 MODULE_FIRMWARE("regulatory.db.p7s"); 811 812 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 813 { 814 const struct firmware *sig; 815 bool result; 816 817 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 818 return false; 819 820 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 821 builtin_regdb_keys, 822 VERIFYING_UNSPECIFIED_SIGNATURE, 823 NULL, NULL) == 0; 824 825 release_firmware(sig); 826 827 return result; 828 } 829 830 static void free_regdb_keyring(void) 831 { 832 key_put(builtin_regdb_keys); 833 } 834 #else 835 static int load_builtin_regdb_keys(void) 836 { 837 return 0; 838 } 839 840 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 841 { 842 return true; 843 } 844 845 static void free_regdb_keyring(void) 846 { 847 } 848 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 849 850 static bool valid_regdb(const u8 *data, unsigned int size) 851 { 852 const struct fwdb_header *hdr = (void *)data; 853 const struct fwdb_country *country; 854 855 if (size < sizeof(*hdr)) 856 return false; 857 858 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 859 return false; 860 861 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 862 return false; 863 864 if (!regdb_has_valid_signature(data, size)) 865 return false; 866 867 country = &hdr->country[0]; 868 while ((u8 *)(country + 1) <= data + size) { 869 if (!country->coll_ptr) 870 break; 871 if (!valid_country(data, size, country)) 872 return false; 873 country++; 874 } 875 876 return true; 877 } 878 879 static void set_wmm_rule(const struct fwdb_header *db, 880 const struct fwdb_country *country, 881 const struct fwdb_rule *rule, 882 struct ieee80211_reg_rule *rrule) 883 { 884 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 885 struct fwdb_wmm_rule *wmm; 886 unsigned int i, wmm_ptr; 887 888 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 889 wmm = (void *)((u8 *)db + wmm_ptr); 890 891 if (!valid_wmm(wmm)) { 892 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 893 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 894 country->alpha2[0], country->alpha2[1]); 895 return; 896 } 897 898 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 899 wmm_rule->client[i].cw_min = 900 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 901 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 902 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 903 wmm_rule->client[i].cot = 904 1000 * be16_to_cpu(wmm->client[i].cot); 905 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 906 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 907 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 908 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 909 } 910 911 rrule->has_wmm = true; 912 } 913 914 static int __regdb_query_wmm(const struct fwdb_header *db, 915 const struct fwdb_country *country, int freq, 916 struct ieee80211_reg_rule *rrule) 917 { 918 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 919 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 920 int i; 921 922 for (i = 0; i < coll->n_rules; i++) { 923 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 924 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 925 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 926 927 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 928 continue; 929 930 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 931 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 932 set_wmm_rule(db, country, rule, rrule); 933 return 0; 934 } 935 } 936 937 return -ENODATA; 938 } 939 940 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 941 { 942 const struct fwdb_header *hdr = regdb; 943 const struct fwdb_country *country; 944 945 if (!regdb) 946 return -ENODATA; 947 948 if (IS_ERR(regdb)) 949 return PTR_ERR(regdb); 950 951 country = &hdr->country[0]; 952 while (country->coll_ptr) { 953 if (alpha2_equal(alpha2, country->alpha2)) 954 return __regdb_query_wmm(regdb, country, freq, rule); 955 956 country++; 957 } 958 959 return -ENODATA; 960 } 961 EXPORT_SYMBOL(reg_query_regdb_wmm); 962 963 static int regdb_query_country(const struct fwdb_header *db, 964 const struct fwdb_country *country) 965 { 966 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 967 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 968 struct ieee80211_regdomain *regdom; 969 unsigned int i; 970 971 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 972 GFP_KERNEL); 973 if (!regdom) 974 return -ENOMEM; 975 976 regdom->n_reg_rules = coll->n_rules; 977 regdom->alpha2[0] = country->alpha2[0]; 978 regdom->alpha2[1] = country->alpha2[1]; 979 regdom->dfs_region = coll->dfs_region; 980 981 for (i = 0; i < regdom->n_reg_rules; i++) { 982 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 983 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 984 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 985 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 986 987 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 988 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 989 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 990 991 rrule->power_rule.max_antenna_gain = 0; 992 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 993 994 rrule->flags = 0; 995 if (rule->flags & FWDB_FLAG_NO_OFDM) 996 rrule->flags |= NL80211_RRF_NO_OFDM; 997 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 998 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 999 if (rule->flags & FWDB_FLAG_DFS) 1000 rrule->flags |= NL80211_RRF_DFS; 1001 if (rule->flags & FWDB_FLAG_NO_IR) 1002 rrule->flags |= NL80211_RRF_NO_IR; 1003 if (rule->flags & FWDB_FLAG_AUTO_BW) 1004 rrule->flags |= NL80211_RRF_AUTO_BW; 1005 1006 rrule->dfs_cac_ms = 0; 1007 1008 /* handle optional data */ 1009 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 1010 rrule->dfs_cac_ms = 1011 1000 * be16_to_cpu(rule->cac_timeout); 1012 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 1013 set_wmm_rule(db, country, rule, rrule); 1014 } 1015 1016 return reg_schedule_apply(regdom); 1017 } 1018 1019 static int query_regdb(const char *alpha2) 1020 { 1021 const struct fwdb_header *hdr = regdb; 1022 const struct fwdb_country *country; 1023 1024 ASSERT_RTNL(); 1025 1026 if (IS_ERR(regdb)) 1027 return PTR_ERR(regdb); 1028 1029 country = &hdr->country[0]; 1030 while (country->coll_ptr) { 1031 if (alpha2_equal(alpha2, country->alpha2)) 1032 return regdb_query_country(regdb, country); 1033 country++; 1034 } 1035 1036 return -ENODATA; 1037 } 1038 1039 static void regdb_fw_cb(const struct firmware *fw, void *context) 1040 { 1041 int set_error = 0; 1042 bool restore = true; 1043 void *db; 1044 1045 if (!fw) { 1046 pr_info("failed to load regulatory.db\n"); 1047 set_error = -ENODATA; 1048 } else if (!valid_regdb(fw->data, fw->size)) { 1049 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1050 set_error = -EINVAL; 1051 } 1052 1053 rtnl_lock(); 1054 if (regdb && !IS_ERR(regdb)) { 1055 /* negative case - a bug 1056 * positive case - can happen due to race in case of multiple cb's in 1057 * queue, due to usage of asynchronous callback 1058 * 1059 * Either case, just restore and free new db. 1060 */ 1061 } else if (set_error) { 1062 regdb = ERR_PTR(set_error); 1063 } else if (fw) { 1064 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1065 if (db) { 1066 regdb = db; 1067 restore = context && query_regdb(context); 1068 } else { 1069 restore = true; 1070 } 1071 } 1072 1073 if (restore) 1074 restore_regulatory_settings(true, false); 1075 1076 rtnl_unlock(); 1077 1078 kfree(context); 1079 1080 release_firmware(fw); 1081 } 1082 1083 MODULE_FIRMWARE("regulatory.db"); 1084 1085 static int query_regdb_file(const char *alpha2) 1086 { 1087 ASSERT_RTNL(); 1088 1089 if (regdb) 1090 return query_regdb(alpha2); 1091 1092 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1093 if (!alpha2) 1094 return -ENOMEM; 1095 1096 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1097 ®_pdev->dev, GFP_KERNEL, 1098 (void *)alpha2, regdb_fw_cb); 1099 } 1100 1101 int reg_reload_regdb(void) 1102 { 1103 const struct firmware *fw; 1104 void *db; 1105 int err; 1106 const struct ieee80211_regdomain *current_regdomain; 1107 struct regulatory_request *request; 1108 1109 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1110 if (err) 1111 return err; 1112 1113 if (!valid_regdb(fw->data, fw->size)) { 1114 err = -ENODATA; 1115 goto out; 1116 } 1117 1118 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1119 if (!db) { 1120 err = -ENOMEM; 1121 goto out; 1122 } 1123 1124 rtnl_lock(); 1125 if (!IS_ERR_OR_NULL(regdb)) 1126 kfree(regdb); 1127 regdb = db; 1128 1129 /* reset regulatory domain */ 1130 current_regdomain = get_cfg80211_regdom(); 1131 1132 request = kzalloc(sizeof(*request), GFP_KERNEL); 1133 if (!request) { 1134 err = -ENOMEM; 1135 goto out_unlock; 1136 } 1137 1138 request->wiphy_idx = WIPHY_IDX_INVALID; 1139 request->alpha2[0] = current_regdomain->alpha2[0]; 1140 request->alpha2[1] = current_regdomain->alpha2[1]; 1141 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1142 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER; 1143 1144 reg_process_hint(request); 1145 1146 out_unlock: 1147 rtnl_unlock(); 1148 out: 1149 release_firmware(fw); 1150 return err; 1151 } 1152 1153 static bool reg_query_database(struct regulatory_request *request) 1154 { 1155 if (query_regdb_file(request->alpha2) == 0) 1156 return true; 1157 1158 if (call_crda(request->alpha2) == 0) 1159 return true; 1160 1161 return false; 1162 } 1163 1164 bool reg_is_valid_request(const char *alpha2) 1165 { 1166 struct regulatory_request *lr = get_last_request(); 1167 1168 if (!lr || lr->processed) 1169 return false; 1170 1171 return alpha2_equal(lr->alpha2, alpha2); 1172 } 1173 1174 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1175 { 1176 struct regulatory_request *lr = get_last_request(); 1177 1178 /* 1179 * Follow the driver's regulatory domain, if present, unless a country 1180 * IE has been processed or a user wants to help complaince further 1181 */ 1182 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1183 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1184 wiphy->regd) 1185 return get_wiphy_regdom(wiphy); 1186 1187 return get_cfg80211_regdom(); 1188 } 1189 1190 static unsigned int 1191 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1192 const struct ieee80211_reg_rule *rule) 1193 { 1194 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1195 const struct ieee80211_freq_range *freq_range_tmp; 1196 const struct ieee80211_reg_rule *tmp; 1197 u32 start_freq, end_freq, idx, no; 1198 1199 for (idx = 0; idx < rd->n_reg_rules; idx++) 1200 if (rule == &rd->reg_rules[idx]) 1201 break; 1202 1203 if (idx == rd->n_reg_rules) 1204 return 0; 1205 1206 /* get start_freq */ 1207 no = idx; 1208 1209 while (no) { 1210 tmp = &rd->reg_rules[--no]; 1211 freq_range_tmp = &tmp->freq_range; 1212 1213 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1214 break; 1215 1216 freq_range = freq_range_tmp; 1217 } 1218 1219 start_freq = freq_range->start_freq_khz; 1220 1221 /* get end_freq */ 1222 freq_range = &rule->freq_range; 1223 no = idx; 1224 1225 while (no < rd->n_reg_rules - 1) { 1226 tmp = &rd->reg_rules[++no]; 1227 freq_range_tmp = &tmp->freq_range; 1228 1229 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1230 break; 1231 1232 freq_range = freq_range_tmp; 1233 } 1234 1235 end_freq = freq_range->end_freq_khz; 1236 1237 return end_freq - start_freq; 1238 } 1239 1240 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1241 const struct ieee80211_reg_rule *rule) 1242 { 1243 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1244 1245 if (rule->flags & NL80211_RRF_NO_320MHZ) 1246 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160)); 1247 if (rule->flags & NL80211_RRF_NO_160MHZ) 1248 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1249 if (rule->flags & NL80211_RRF_NO_80MHZ) 1250 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1251 1252 /* 1253 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1254 * are not allowed. 1255 */ 1256 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1257 rule->flags & NL80211_RRF_NO_HT40PLUS) 1258 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1259 1260 return bw; 1261 } 1262 1263 /* Sanity check on a regulatory rule */ 1264 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1265 { 1266 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1267 u32 freq_diff; 1268 1269 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1270 return false; 1271 1272 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1273 return false; 1274 1275 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1276 1277 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1278 freq_range->max_bandwidth_khz > freq_diff) 1279 return false; 1280 1281 return true; 1282 } 1283 1284 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1285 { 1286 const struct ieee80211_reg_rule *reg_rule = NULL; 1287 unsigned int i; 1288 1289 if (!rd->n_reg_rules) 1290 return false; 1291 1292 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1293 return false; 1294 1295 for (i = 0; i < rd->n_reg_rules; i++) { 1296 reg_rule = &rd->reg_rules[i]; 1297 if (!is_valid_reg_rule(reg_rule)) 1298 return false; 1299 } 1300 1301 return true; 1302 } 1303 1304 /** 1305 * freq_in_rule_band - tells us if a frequency is in a frequency band 1306 * @freq_range: frequency rule we want to query 1307 * @freq_khz: frequency we are inquiring about 1308 * 1309 * This lets us know if a specific frequency rule is or is not relevant to 1310 * a specific frequency's band. Bands are device specific and artificial 1311 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1312 * however it is safe for now to assume that a frequency rule should not be 1313 * part of a frequency's band if the start freq or end freq are off by more 1314 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1315 * 60 GHz band. 1316 * This resolution can be lowered and should be considered as we add 1317 * regulatory rule support for other "bands". 1318 **/ 1319 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1320 u32 freq_khz) 1321 { 1322 #define ONE_GHZ_IN_KHZ 1000000 1323 /* 1324 * From 802.11ad: directional multi-gigabit (DMG): 1325 * Pertaining to operation in a frequency band containing a channel 1326 * with the Channel starting frequency above 45 GHz. 1327 */ 1328 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1329 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1330 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1331 return true; 1332 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1333 return true; 1334 return false; 1335 #undef ONE_GHZ_IN_KHZ 1336 } 1337 1338 /* 1339 * Later on we can perhaps use the more restrictive DFS 1340 * region but we don't have information for that yet so 1341 * for now simply disallow conflicts. 1342 */ 1343 static enum nl80211_dfs_regions 1344 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1345 const enum nl80211_dfs_regions dfs_region2) 1346 { 1347 if (dfs_region1 != dfs_region2) 1348 return NL80211_DFS_UNSET; 1349 return dfs_region1; 1350 } 1351 1352 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1353 const struct ieee80211_wmm_ac *wmm_ac2, 1354 struct ieee80211_wmm_ac *intersect) 1355 { 1356 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1357 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1358 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1359 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1360 } 1361 1362 /* 1363 * Helper for regdom_intersect(), this does the real 1364 * mathematical intersection fun 1365 */ 1366 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1367 const struct ieee80211_regdomain *rd2, 1368 const struct ieee80211_reg_rule *rule1, 1369 const struct ieee80211_reg_rule *rule2, 1370 struct ieee80211_reg_rule *intersected_rule) 1371 { 1372 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1373 struct ieee80211_freq_range *freq_range; 1374 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1375 struct ieee80211_power_rule *power_rule; 1376 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1377 struct ieee80211_wmm_rule *wmm_rule; 1378 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1379 1380 freq_range1 = &rule1->freq_range; 1381 freq_range2 = &rule2->freq_range; 1382 freq_range = &intersected_rule->freq_range; 1383 1384 power_rule1 = &rule1->power_rule; 1385 power_rule2 = &rule2->power_rule; 1386 power_rule = &intersected_rule->power_rule; 1387 1388 wmm_rule1 = &rule1->wmm_rule; 1389 wmm_rule2 = &rule2->wmm_rule; 1390 wmm_rule = &intersected_rule->wmm_rule; 1391 1392 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1393 freq_range2->start_freq_khz); 1394 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1395 freq_range2->end_freq_khz); 1396 1397 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1398 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1399 1400 if (rule1->flags & NL80211_RRF_AUTO_BW) 1401 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1402 if (rule2->flags & NL80211_RRF_AUTO_BW) 1403 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1404 1405 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1406 1407 intersected_rule->flags = rule1->flags | rule2->flags; 1408 1409 /* 1410 * In case NL80211_RRF_AUTO_BW requested for both rules 1411 * set AUTO_BW in intersected rule also. Next we will 1412 * calculate BW correctly in handle_channel function. 1413 * In other case remove AUTO_BW flag while we calculate 1414 * maximum bandwidth correctly and auto calculation is 1415 * not required. 1416 */ 1417 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1418 (rule2->flags & NL80211_RRF_AUTO_BW)) 1419 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1420 else 1421 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1422 1423 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1424 if (freq_range->max_bandwidth_khz > freq_diff) 1425 freq_range->max_bandwidth_khz = freq_diff; 1426 1427 power_rule->max_eirp = min(power_rule1->max_eirp, 1428 power_rule2->max_eirp); 1429 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1430 power_rule2->max_antenna_gain); 1431 1432 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1433 rule2->dfs_cac_ms); 1434 1435 if (rule1->has_wmm && rule2->has_wmm) { 1436 u8 ac; 1437 1438 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1439 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1440 &wmm_rule2->client[ac], 1441 &wmm_rule->client[ac]); 1442 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1443 &wmm_rule2->ap[ac], 1444 &wmm_rule->ap[ac]); 1445 } 1446 1447 intersected_rule->has_wmm = true; 1448 } else if (rule1->has_wmm) { 1449 *wmm_rule = *wmm_rule1; 1450 intersected_rule->has_wmm = true; 1451 } else if (rule2->has_wmm) { 1452 *wmm_rule = *wmm_rule2; 1453 intersected_rule->has_wmm = true; 1454 } else { 1455 intersected_rule->has_wmm = false; 1456 } 1457 1458 if (!is_valid_reg_rule(intersected_rule)) 1459 return -EINVAL; 1460 1461 return 0; 1462 } 1463 1464 /* check whether old rule contains new rule */ 1465 static bool rule_contains(struct ieee80211_reg_rule *r1, 1466 struct ieee80211_reg_rule *r2) 1467 { 1468 /* for simplicity, currently consider only same flags */ 1469 if (r1->flags != r2->flags) 1470 return false; 1471 1472 /* verify r1 is more restrictive */ 1473 if ((r1->power_rule.max_antenna_gain > 1474 r2->power_rule.max_antenna_gain) || 1475 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1476 return false; 1477 1478 /* make sure r2's range is contained within r1 */ 1479 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1480 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1481 return false; 1482 1483 /* and finally verify that r1.max_bw >= r2.max_bw */ 1484 if (r1->freq_range.max_bandwidth_khz < 1485 r2->freq_range.max_bandwidth_khz) 1486 return false; 1487 1488 return true; 1489 } 1490 1491 /* add or extend current rules. do nothing if rule is already contained */ 1492 static void add_rule(struct ieee80211_reg_rule *rule, 1493 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1494 { 1495 struct ieee80211_reg_rule *tmp_rule; 1496 int i; 1497 1498 for (i = 0; i < *n_rules; i++) { 1499 tmp_rule = ®_rules[i]; 1500 /* rule is already contained - do nothing */ 1501 if (rule_contains(tmp_rule, rule)) 1502 return; 1503 1504 /* extend rule if possible */ 1505 if (rule_contains(rule, tmp_rule)) { 1506 memcpy(tmp_rule, rule, sizeof(*rule)); 1507 return; 1508 } 1509 } 1510 1511 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1512 (*n_rules)++; 1513 } 1514 1515 /** 1516 * regdom_intersect - do the intersection between two regulatory domains 1517 * @rd1: first regulatory domain 1518 * @rd2: second regulatory domain 1519 * 1520 * Use this function to get the intersection between two regulatory domains. 1521 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1522 * as no one single alpha2 can represent this regulatory domain. 1523 * 1524 * Returns a pointer to the regulatory domain structure which will hold the 1525 * resulting intersection of rules between rd1 and rd2. We will 1526 * kzalloc() this structure for you. 1527 */ 1528 static struct ieee80211_regdomain * 1529 regdom_intersect(const struct ieee80211_regdomain *rd1, 1530 const struct ieee80211_regdomain *rd2) 1531 { 1532 int r; 1533 unsigned int x, y; 1534 unsigned int num_rules = 0; 1535 const struct ieee80211_reg_rule *rule1, *rule2; 1536 struct ieee80211_reg_rule intersected_rule; 1537 struct ieee80211_regdomain *rd; 1538 1539 if (!rd1 || !rd2) 1540 return NULL; 1541 1542 /* 1543 * First we get a count of the rules we'll need, then we actually 1544 * build them. This is to so we can malloc() and free() a 1545 * regdomain once. The reason we use reg_rules_intersect() here 1546 * is it will return -EINVAL if the rule computed makes no sense. 1547 * All rules that do check out OK are valid. 1548 */ 1549 1550 for (x = 0; x < rd1->n_reg_rules; x++) { 1551 rule1 = &rd1->reg_rules[x]; 1552 for (y = 0; y < rd2->n_reg_rules; y++) { 1553 rule2 = &rd2->reg_rules[y]; 1554 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1555 &intersected_rule)) 1556 num_rules++; 1557 } 1558 } 1559 1560 if (!num_rules) 1561 return NULL; 1562 1563 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1564 if (!rd) 1565 return NULL; 1566 1567 for (x = 0; x < rd1->n_reg_rules; x++) { 1568 rule1 = &rd1->reg_rules[x]; 1569 for (y = 0; y < rd2->n_reg_rules; y++) { 1570 rule2 = &rd2->reg_rules[y]; 1571 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1572 &intersected_rule); 1573 /* 1574 * No need to memset here the intersected rule here as 1575 * we're not using the stack anymore 1576 */ 1577 if (r) 1578 continue; 1579 1580 add_rule(&intersected_rule, rd->reg_rules, 1581 &rd->n_reg_rules); 1582 } 1583 } 1584 1585 rd->alpha2[0] = '9'; 1586 rd->alpha2[1] = '8'; 1587 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1588 rd2->dfs_region); 1589 1590 return rd; 1591 } 1592 1593 /* 1594 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1595 * want to just have the channel structure use these 1596 */ 1597 static u32 map_regdom_flags(u32 rd_flags) 1598 { 1599 u32 channel_flags = 0; 1600 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1601 channel_flags |= IEEE80211_CHAN_NO_IR; 1602 if (rd_flags & NL80211_RRF_DFS) 1603 channel_flags |= IEEE80211_CHAN_RADAR; 1604 if (rd_flags & NL80211_RRF_NO_OFDM) 1605 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1606 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1607 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1608 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1609 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1610 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1611 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1612 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1613 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1614 if (rd_flags & NL80211_RRF_NO_80MHZ) 1615 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1616 if (rd_flags & NL80211_RRF_NO_160MHZ) 1617 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1618 if (rd_flags & NL80211_RRF_NO_HE) 1619 channel_flags |= IEEE80211_CHAN_NO_HE; 1620 if (rd_flags & NL80211_RRF_NO_320MHZ) 1621 channel_flags |= IEEE80211_CHAN_NO_320MHZ; 1622 return channel_flags; 1623 } 1624 1625 static const struct ieee80211_reg_rule * 1626 freq_reg_info_regd(u32 center_freq, 1627 const struct ieee80211_regdomain *regd, u32 bw) 1628 { 1629 int i; 1630 bool band_rule_found = false; 1631 bool bw_fits = false; 1632 1633 if (!regd) 1634 return ERR_PTR(-EINVAL); 1635 1636 for (i = 0; i < regd->n_reg_rules; i++) { 1637 const struct ieee80211_reg_rule *rr; 1638 const struct ieee80211_freq_range *fr = NULL; 1639 1640 rr = ®d->reg_rules[i]; 1641 fr = &rr->freq_range; 1642 1643 /* 1644 * We only need to know if one frequency rule was 1645 * in center_freq's band, that's enough, so let's 1646 * not overwrite it once found 1647 */ 1648 if (!band_rule_found) 1649 band_rule_found = freq_in_rule_band(fr, center_freq); 1650 1651 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1652 1653 if (band_rule_found && bw_fits) 1654 return rr; 1655 } 1656 1657 if (!band_rule_found) 1658 return ERR_PTR(-ERANGE); 1659 1660 return ERR_PTR(-EINVAL); 1661 } 1662 1663 static const struct ieee80211_reg_rule * 1664 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1665 { 1666 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1667 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20}; 1668 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE); 1669 int i = ARRAY_SIZE(bws) - 1; 1670 u32 bw; 1671 1672 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) { 1673 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1674 if (!IS_ERR(reg_rule)) 1675 return reg_rule; 1676 } 1677 1678 return reg_rule; 1679 } 1680 1681 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1682 u32 center_freq) 1683 { 1684 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20; 1685 1686 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw)); 1687 } 1688 EXPORT_SYMBOL(freq_reg_info); 1689 1690 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1691 { 1692 switch (initiator) { 1693 case NL80211_REGDOM_SET_BY_CORE: 1694 return "core"; 1695 case NL80211_REGDOM_SET_BY_USER: 1696 return "user"; 1697 case NL80211_REGDOM_SET_BY_DRIVER: 1698 return "driver"; 1699 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1700 return "country element"; 1701 default: 1702 WARN_ON(1); 1703 return "bug"; 1704 } 1705 } 1706 EXPORT_SYMBOL(reg_initiator_name); 1707 1708 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1709 const struct ieee80211_reg_rule *reg_rule, 1710 const struct ieee80211_channel *chan) 1711 { 1712 const struct ieee80211_freq_range *freq_range = NULL; 1713 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0; 1714 bool is_s1g = chan->band == NL80211_BAND_S1GHZ; 1715 1716 freq_range = ®_rule->freq_range; 1717 1718 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1719 center_freq_khz = ieee80211_channel_to_khz(chan); 1720 /* Check if auto calculation requested */ 1721 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1722 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1723 1724 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1725 if (!cfg80211_does_bw_fit_range(freq_range, 1726 center_freq_khz, 1727 MHZ_TO_KHZ(10))) 1728 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1729 if (!cfg80211_does_bw_fit_range(freq_range, 1730 center_freq_khz, 1731 MHZ_TO_KHZ(20))) 1732 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1733 1734 if (is_s1g) { 1735 /* S1G is strict about non overlapping channels. We can 1736 * calculate which bandwidth is allowed per channel by finding 1737 * the largest bandwidth which cleanly divides the freq_range. 1738 */ 1739 int edge_offset; 1740 int ch_bw = max_bandwidth_khz; 1741 1742 while (ch_bw) { 1743 edge_offset = (center_freq_khz - ch_bw / 2) - 1744 freq_range->start_freq_khz; 1745 if (edge_offset % ch_bw == 0) { 1746 switch (KHZ_TO_MHZ(ch_bw)) { 1747 case 1: 1748 bw_flags |= IEEE80211_CHAN_1MHZ; 1749 break; 1750 case 2: 1751 bw_flags |= IEEE80211_CHAN_2MHZ; 1752 break; 1753 case 4: 1754 bw_flags |= IEEE80211_CHAN_4MHZ; 1755 break; 1756 case 8: 1757 bw_flags |= IEEE80211_CHAN_8MHZ; 1758 break; 1759 case 16: 1760 bw_flags |= IEEE80211_CHAN_16MHZ; 1761 break; 1762 default: 1763 /* If we got here, no bandwidths fit on 1764 * this frequency, ie. band edge. 1765 */ 1766 bw_flags |= IEEE80211_CHAN_DISABLED; 1767 break; 1768 } 1769 break; 1770 } 1771 ch_bw /= 2; 1772 } 1773 } else { 1774 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1775 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1776 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1777 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1778 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1779 bw_flags |= IEEE80211_CHAN_NO_HT40; 1780 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1781 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1782 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1783 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1784 if (max_bandwidth_khz < MHZ_TO_KHZ(320)) 1785 bw_flags |= IEEE80211_CHAN_NO_320MHZ; 1786 } 1787 return bw_flags; 1788 } 1789 1790 static void handle_channel_single_rule(struct wiphy *wiphy, 1791 enum nl80211_reg_initiator initiator, 1792 struct ieee80211_channel *chan, 1793 u32 flags, 1794 struct regulatory_request *lr, 1795 struct wiphy *request_wiphy, 1796 const struct ieee80211_reg_rule *reg_rule) 1797 { 1798 u32 bw_flags = 0; 1799 const struct ieee80211_power_rule *power_rule = NULL; 1800 const struct ieee80211_regdomain *regd; 1801 1802 regd = reg_get_regdomain(wiphy); 1803 1804 power_rule = ®_rule->power_rule; 1805 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1806 1807 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1808 request_wiphy && request_wiphy == wiphy && 1809 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1810 /* 1811 * This guarantees the driver's requested regulatory domain 1812 * will always be used as a base for further regulatory 1813 * settings 1814 */ 1815 chan->flags = chan->orig_flags = 1816 map_regdom_flags(reg_rule->flags) | bw_flags; 1817 chan->max_antenna_gain = chan->orig_mag = 1818 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1819 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1820 (int) MBM_TO_DBM(power_rule->max_eirp); 1821 1822 if (chan->flags & IEEE80211_CHAN_RADAR) { 1823 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1824 if (reg_rule->dfs_cac_ms) 1825 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1826 } 1827 1828 return; 1829 } 1830 1831 chan->dfs_state = NL80211_DFS_USABLE; 1832 chan->dfs_state_entered = jiffies; 1833 1834 chan->beacon_found = false; 1835 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1836 chan->max_antenna_gain = 1837 min_t(int, chan->orig_mag, 1838 MBI_TO_DBI(power_rule->max_antenna_gain)); 1839 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1840 1841 if (chan->flags & IEEE80211_CHAN_RADAR) { 1842 if (reg_rule->dfs_cac_ms) 1843 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1844 else 1845 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1846 } 1847 1848 if (chan->orig_mpwr) { 1849 /* 1850 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1851 * will always follow the passed country IE power settings. 1852 */ 1853 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1854 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1855 chan->max_power = chan->max_reg_power; 1856 else 1857 chan->max_power = min(chan->orig_mpwr, 1858 chan->max_reg_power); 1859 } else 1860 chan->max_power = chan->max_reg_power; 1861 } 1862 1863 static void handle_channel_adjacent_rules(struct wiphy *wiphy, 1864 enum nl80211_reg_initiator initiator, 1865 struct ieee80211_channel *chan, 1866 u32 flags, 1867 struct regulatory_request *lr, 1868 struct wiphy *request_wiphy, 1869 const struct ieee80211_reg_rule *rrule1, 1870 const struct ieee80211_reg_rule *rrule2, 1871 struct ieee80211_freq_range *comb_range) 1872 { 1873 u32 bw_flags1 = 0; 1874 u32 bw_flags2 = 0; 1875 const struct ieee80211_power_rule *power_rule1 = NULL; 1876 const struct ieee80211_power_rule *power_rule2 = NULL; 1877 const struct ieee80211_regdomain *regd; 1878 1879 regd = reg_get_regdomain(wiphy); 1880 1881 power_rule1 = &rrule1->power_rule; 1882 power_rule2 = &rrule2->power_rule; 1883 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan); 1884 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan); 1885 1886 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1887 request_wiphy && request_wiphy == wiphy && 1888 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1889 /* This guarantees the driver's requested regulatory domain 1890 * will always be used as a base for further regulatory 1891 * settings 1892 */ 1893 chan->flags = 1894 map_regdom_flags(rrule1->flags) | 1895 map_regdom_flags(rrule2->flags) | 1896 bw_flags1 | 1897 bw_flags2; 1898 chan->orig_flags = chan->flags; 1899 chan->max_antenna_gain = 1900 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain), 1901 MBI_TO_DBI(power_rule2->max_antenna_gain)); 1902 chan->orig_mag = chan->max_antenna_gain; 1903 chan->max_reg_power = 1904 min_t(int, MBM_TO_DBM(power_rule1->max_eirp), 1905 MBM_TO_DBM(power_rule2->max_eirp)); 1906 chan->max_power = chan->max_reg_power; 1907 chan->orig_mpwr = chan->max_reg_power; 1908 1909 if (chan->flags & IEEE80211_CHAN_RADAR) { 1910 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1911 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1912 chan->dfs_cac_ms = max_t(unsigned int, 1913 rrule1->dfs_cac_ms, 1914 rrule2->dfs_cac_ms); 1915 } 1916 1917 return; 1918 } 1919 1920 chan->dfs_state = NL80211_DFS_USABLE; 1921 chan->dfs_state_entered = jiffies; 1922 1923 chan->beacon_found = false; 1924 chan->flags = flags | bw_flags1 | bw_flags2 | 1925 map_regdom_flags(rrule1->flags) | 1926 map_regdom_flags(rrule2->flags); 1927 1928 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz 1929 * (otherwise no adj. rule case), recheck therefore 1930 */ 1931 if (cfg80211_does_bw_fit_range(comb_range, 1932 ieee80211_channel_to_khz(chan), 1933 MHZ_TO_KHZ(10))) 1934 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ; 1935 if (cfg80211_does_bw_fit_range(comb_range, 1936 ieee80211_channel_to_khz(chan), 1937 MHZ_TO_KHZ(20))) 1938 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ; 1939 1940 chan->max_antenna_gain = 1941 min_t(int, chan->orig_mag, 1942 min_t(int, 1943 MBI_TO_DBI(power_rule1->max_antenna_gain), 1944 MBI_TO_DBI(power_rule2->max_antenna_gain))); 1945 chan->max_reg_power = min_t(int, 1946 MBM_TO_DBM(power_rule1->max_eirp), 1947 MBM_TO_DBM(power_rule2->max_eirp)); 1948 1949 if (chan->flags & IEEE80211_CHAN_RADAR) { 1950 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1951 chan->dfs_cac_ms = max_t(unsigned int, 1952 rrule1->dfs_cac_ms, 1953 rrule2->dfs_cac_ms); 1954 else 1955 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1956 } 1957 1958 if (chan->orig_mpwr) { 1959 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1960 * will always follow the passed country IE power settings. 1961 */ 1962 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1963 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1964 chan->max_power = chan->max_reg_power; 1965 else 1966 chan->max_power = min(chan->orig_mpwr, 1967 chan->max_reg_power); 1968 } else { 1969 chan->max_power = chan->max_reg_power; 1970 } 1971 } 1972 1973 /* Note that right now we assume the desired channel bandwidth 1974 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1975 * per channel, the primary and the extension channel). 1976 */ 1977 static void handle_channel(struct wiphy *wiphy, 1978 enum nl80211_reg_initiator initiator, 1979 struct ieee80211_channel *chan) 1980 { 1981 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan); 1982 struct regulatory_request *lr = get_last_request(); 1983 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1984 const struct ieee80211_reg_rule *rrule = NULL; 1985 const struct ieee80211_reg_rule *rrule1 = NULL; 1986 const struct ieee80211_reg_rule *rrule2 = NULL; 1987 1988 u32 flags = chan->orig_flags; 1989 1990 rrule = freq_reg_info(wiphy, orig_chan_freq); 1991 if (IS_ERR(rrule)) { 1992 /* check for adjacent match, therefore get rules for 1993 * chan - 20 MHz and chan + 20 MHz and test 1994 * if reg rules are adjacent 1995 */ 1996 rrule1 = freq_reg_info(wiphy, 1997 orig_chan_freq - MHZ_TO_KHZ(20)); 1998 rrule2 = freq_reg_info(wiphy, 1999 orig_chan_freq + MHZ_TO_KHZ(20)); 2000 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) { 2001 struct ieee80211_freq_range comb_range; 2002 2003 if (rrule1->freq_range.end_freq_khz != 2004 rrule2->freq_range.start_freq_khz) 2005 goto disable_chan; 2006 2007 comb_range.start_freq_khz = 2008 rrule1->freq_range.start_freq_khz; 2009 comb_range.end_freq_khz = 2010 rrule2->freq_range.end_freq_khz; 2011 comb_range.max_bandwidth_khz = 2012 min_t(u32, 2013 rrule1->freq_range.max_bandwidth_khz, 2014 rrule2->freq_range.max_bandwidth_khz); 2015 2016 if (!cfg80211_does_bw_fit_range(&comb_range, 2017 orig_chan_freq, 2018 MHZ_TO_KHZ(20))) 2019 goto disable_chan; 2020 2021 handle_channel_adjacent_rules(wiphy, initiator, chan, 2022 flags, lr, request_wiphy, 2023 rrule1, rrule2, 2024 &comb_range); 2025 return; 2026 } 2027 2028 disable_chan: 2029 /* We will disable all channels that do not match our 2030 * received regulatory rule unless the hint is coming 2031 * from a Country IE and the Country IE had no information 2032 * about a band. The IEEE 802.11 spec allows for an AP 2033 * to send only a subset of the regulatory rules allowed, 2034 * so an AP in the US that only supports 2.4 GHz may only send 2035 * a country IE with information for the 2.4 GHz band 2036 * while 5 GHz is still supported. 2037 */ 2038 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2039 PTR_ERR(rrule) == -ERANGE) 2040 return; 2041 2042 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2043 request_wiphy && request_wiphy == wiphy && 2044 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2045 pr_debug("Disabling freq %d.%03d MHz for good\n", 2046 chan->center_freq, chan->freq_offset); 2047 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2048 chan->flags = chan->orig_flags; 2049 } else { 2050 pr_debug("Disabling freq %d.%03d MHz\n", 2051 chan->center_freq, chan->freq_offset); 2052 chan->flags |= IEEE80211_CHAN_DISABLED; 2053 } 2054 return; 2055 } 2056 2057 handle_channel_single_rule(wiphy, initiator, chan, flags, lr, 2058 request_wiphy, rrule); 2059 } 2060 2061 static void handle_band(struct wiphy *wiphy, 2062 enum nl80211_reg_initiator initiator, 2063 struct ieee80211_supported_band *sband) 2064 { 2065 unsigned int i; 2066 2067 if (!sband) 2068 return; 2069 2070 for (i = 0; i < sband->n_channels; i++) 2071 handle_channel(wiphy, initiator, &sband->channels[i]); 2072 } 2073 2074 static bool reg_request_cell_base(struct regulatory_request *request) 2075 { 2076 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 2077 return false; 2078 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 2079 } 2080 2081 bool reg_last_request_cell_base(void) 2082 { 2083 return reg_request_cell_base(get_last_request()); 2084 } 2085 2086 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 2087 /* Core specific check */ 2088 static enum reg_request_treatment 2089 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2090 { 2091 struct regulatory_request *lr = get_last_request(); 2092 2093 if (!reg_num_devs_support_basehint) 2094 return REG_REQ_IGNORE; 2095 2096 if (reg_request_cell_base(lr) && 2097 !regdom_changes(pending_request->alpha2)) 2098 return REG_REQ_ALREADY_SET; 2099 2100 return REG_REQ_OK; 2101 } 2102 2103 /* Device specific check */ 2104 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2105 { 2106 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 2107 } 2108 #else 2109 static enum reg_request_treatment 2110 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2111 { 2112 return REG_REQ_IGNORE; 2113 } 2114 2115 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2116 { 2117 return true; 2118 } 2119 #endif 2120 2121 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 2122 { 2123 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 2124 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 2125 return true; 2126 return false; 2127 } 2128 2129 static bool ignore_reg_update(struct wiphy *wiphy, 2130 enum nl80211_reg_initiator initiator) 2131 { 2132 struct regulatory_request *lr = get_last_request(); 2133 2134 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2135 return true; 2136 2137 if (!lr) { 2138 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 2139 reg_initiator_name(initiator)); 2140 return true; 2141 } 2142 2143 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2144 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 2145 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 2146 reg_initiator_name(initiator)); 2147 return true; 2148 } 2149 2150 /* 2151 * wiphy->regd will be set once the device has its own 2152 * desired regulatory domain set 2153 */ 2154 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 2155 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2156 !is_world_regdom(lr->alpha2)) { 2157 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 2158 reg_initiator_name(initiator)); 2159 return true; 2160 } 2161 2162 if (reg_request_cell_base(lr)) 2163 return reg_dev_ignore_cell_hint(wiphy); 2164 2165 return false; 2166 } 2167 2168 static bool reg_is_world_roaming(struct wiphy *wiphy) 2169 { 2170 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 2171 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 2172 struct regulatory_request *lr = get_last_request(); 2173 2174 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 2175 return true; 2176 2177 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2178 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2179 return true; 2180 2181 return false; 2182 } 2183 2184 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 2185 struct reg_beacon *reg_beacon) 2186 { 2187 struct ieee80211_supported_band *sband; 2188 struct ieee80211_channel *chan; 2189 bool channel_changed = false; 2190 struct ieee80211_channel chan_before; 2191 2192 sband = wiphy->bands[reg_beacon->chan.band]; 2193 chan = &sband->channels[chan_idx]; 2194 2195 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan))) 2196 return; 2197 2198 if (chan->beacon_found) 2199 return; 2200 2201 chan->beacon_found = true; 2202 2203 if (!reg_is_world_roaming(wiphy)) 2204 return; 2205 2206 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 2207 return; 2208 2209 chan_before = *chan; 2210 2211 if (chan->flags & IEEE80211_CHAN_NO_IR) { 2212 chan->flags &= ~IEEE80211_CHAN_NO_IR; 2213 channel_changed = true; 2214 } 2215 2216 if (channel_changed) 2217 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 2218 } 2219 2220 /* 2221 * Called when a scan on a wiphy finds a beacon on 2222 * new channel 2223 */ 2224 static void wiphy_update_new_beacon(struct wiphy *wiphy, 2225 struct reg_beacon *reg_beacon) 2226 { 2227 unsigned int i; 2228 struct ieee80211_supported_band *sband; 2229 2230 if (!wiphy->bands[reg_beacon->chan.band]) 2231 return; 2232 2233 sband = wiphy->bands[reg_beacon->chan.band]; 2234 2235 for (i = 0; i < sband->n_channels; i++) 2236 handle_reg_beacon(wiphy, i, reg_beacon); 2237 } 2238 2239 /* 2240 * Called upon reg changes or a new wiphy is added 2241 */ 2242 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 2243 { 2244 unsigned int i; 2245 struct ieee80211_supported_band *sband; 2246 struct reg_beacon *reg_beacon; 2247 2248 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 2249 if (!wiphy->bands[reg_beacon->chan.band]) 2250 continue; 2251 sband = wiphy->bands[reg_beacon->chan.band]; 2252 for (i = 0; i < sband->n_channels; i++) 2253 handle_reg_beacon(wiphy, i, reg_beacon); 2254 } 2255 } 2256 2257 /* Reap the advantages of previously found beacons */ 2258 static void reg_process_beacons(struct wiphy *wiphy) 2259 { 2260 /* 2261 * Means we are just firing up cfg80211, so no beacons would 2262 * have been processed yet. 2263 */ 2264 if (!last_request) 2265 return; 2266 wiphy_update_beacon_reg(wiphy); 2267 } 2268 2269 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2270 { 2271 if (!chan) 2272 return false; 2273 if (chan->flags & IEEE80211_CHAN_DISABLED) 2274 return false; 2275 /* This would happen when regulatory rules disallow HT40 completely */ 2276 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2277 return false; 2278 return true; 2279 } 2280 2281 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2282 struct ieee80211_channel *channel) 2283 { 2284 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2285 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2286 const struct ieee80211_regdomain *regd; 2287 unsigned int i; 2288 u32 flags; 2289 2290 if (!is_ht40_allowed(channel)) { 2291 channel->flags |= IEEE80211_CHAN_NO_HT40; 2292 return; 2293 } 2294 2295 /* 2296 * We need to ensure the extension channels exist to 2297 * be able to use HT40- or HT40+, this finds them (or not) 2298 */ 2299 for (i = 0; i < sband->n_channels; i++) { 2300 struct ieee80211_channel *c = &sband->channels[i]; 2301 2302 if (c->center_freq == (channel->center_freq - 20)) 2303 channel_before = c; 2304 if (c->center_freq == (channel->center_freq + 20)) 2305 channel_after = c; 2306 } 2307 2308 flags = 0; 2309 regd = get_wiphy_regdom(wiphy); 2310 if (regd) { 2311 const struct ieee80211_reg_rule *reg_rule = 2312 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2313 regd, MHZ_TO_KHZ(20)); 2314 2315 if (!IS_ERR(reg_rule)) 2316 flags = reg_rule->flags; 2317 } 2318 2319 /* 2320 * Please note that this assumes target bandwidth is 20 MHz, 2321 * if that ever changes we also need to change the below logic 2322 * to include that as well. 2323 */ 2324 if (!is_ht40_allowed(channel_before) || 2325 flags & NL80211_RRF_NO_HT40MINUS) 2326 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2327 else 2328 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2329 2330 if (!is_ht40_allowed(channel_after) || 2331 flags & NL80211_RRF_NO_HT40PLUS) 2332 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2333 else 2334 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2335 } 2336 2337 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2338 struct ieee80211_supported_band *sband) 2339 { 2340 unsigned int i; 2341 2342 if (!sband) 2343 return; 2344 2345 for (i = 0; i < sband->n_channels; i++) 2346 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2347 } 2348 2349 static void reg_process_ht_flags(struct wiphy *wiphy) 2350 { 2351 enum nl80211_band band; 2352 2353 if (!wiphy) 2354 return; 2355 2356 for (band = 0; band < NUM_NL80211_BANDS; band++) 2357 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2358 } 2359 2360 static void reg_call_notifier(struct wiphy *wiphy, 2361 struct regulatory_request *request) 2362 { 2363 if (wiphy->reg_notifier) 2364 wiphy->reg_notifier(wiphy, request); 2365 } 2366 2367 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2368 { 2369 struct cfg80211_chan_def chandef = {}; 2370 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2371 enum nl80211_iftype iftype; 2372 bool ret; 2373 int link; 2374 2375 wdev_lock(wdev); 2376 iftype = wdev->iftype; 2377 2378 /* make sure the interface is active */ 2379 if (!wdev->netdev || !netif_running(wdev->netdev)) 2380 goto wdev_inactive_unlock; 2381 2382 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) { 2383 struct ieee80211_channel *chan; 2384 2385 if (!wdev->valid_links && link > 0) 2386 break; 2387 if (!(wdev->valid_links & BIT(link))) 2388 continue; 2389 switch (iftype) { 2390 case NL80211_IFTYPE_AP: 2391 case NL80211_IFTYPE_P2P_GO: 2392 case NL80211_IFTYPE_MESH_POINT: 2393 if (!wdev->u.mesh.beacon_interval) 2394 continue; 2395 chandef = wdev->u.mesh.chandef; 2396 break; 2397 case NL80211_IFTYPE_ADHOC: 2398 if (!wdev->u.ibss.ssid_len) 2399 continue; 2400 chandef = wdev->u.ibss.chandef; 2401 break; 2402 case NL80211_IFTYPE_STATION: 2403 case NL80211_IFTYPE_P2P_CLIENT: 2404 /* Maybe we could consider disabling that link only? */ 2405 if (!wdev->links[link].client.current_bss) 2406 continue; 2407 2408 chan = wdev->links[link].client.current_bss->pub.channel; 2409 if (!chan) 2410 continue; 2411 2412 if (!rdev->ops->get_channel || 2413 rdev_get_channel(rdev, wdev, link, &chandef)) 2414 cfg80211_chandef_create(&chandef, chan, 2415 NL80211_CHAN_NO_HT); 2416 break; 2417 case NL80211_IFTYPE_MONITOR: 2418 case NL80211_IFTYPE_AP_VLAN: 2419 case NL80211_IFTYPE_P2P_DEVICE: 2420 /* no enforcement required */ 2421 break; 2422 default: 2423 /* others not implemented for now */ 2424 WARN_ON(1); 2425 break; 2426 } 2427 2428 wdev_unlock(wdev); 2429 2430 switch (iftype) { 2431 case NL80211_IFTYPE_AP: 2432 case NL80211_IFTYPE_P2P_GO: 2433 case NL80211_IFTYPE_ADHOC: 2434 case NL80211_IFTYPE_MESH_POINT: 2435 wiphy_lock(wiphy); 2436 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, 2437 iftype); 2438 wiphy_unlock(wiphy); 2439 2440 if (!ret) 2441 return ret; 2442 break; 2443 case NL80211_IFTYPE_STATION: 2444 case NL80211_IFTYPE_P2P_CLIENT: 2445 ret = cfg80211_chandef_usable(wiphy, &chandef, 2446 IEEE80211_CHAN_DISABLED); 2447 if (!ret) 2448 return ret; 2449 break; 2450 default: 2451 break; 2452 } 2453 2454 wdev_lock(wdev); 2455 } 2456 2457 wdev_unlock(wdev); 2458 2459 return true; 2460 2461 wdev_inactive_unlock: 2462 wdev_unlock(wdev); 2463 return true; 2464 } 2465 2466 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2467 { 2468 struct wireless_dev *wdev; 2469 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2470 2471 ASSERT_RTNL(); 2472 2473 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2474 if (!reg_wdev_chan_valid(wiphy, wdev)) 2475 cfg80211_leave(rdev, wdev); 2476 } 2477 2478 static void reg_check_chans_work(struct work_struct *work) 2479 { 2480 struct cfg80211_registered_device *rdev; 2481 2482 pr_debug("Verifying active interfaces after reg change\n"); 2483 rtnl_lock(); 2484 2485 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2486 if (!(rdev->wiphy.regulatory_flags & 2487 REGULATORY_IGNORE_STALE_KICKOFF)) 2488 reg_leave_invalid_chans(&rdev->wiphy); 2489 2490 rtnl_unlock(); 2491 } 2492 2493 static void reg_check_channels(void) 2494 { 2495 /* 2496 * Give usermode a chance to do something nicer (move to another 2497 * channel, orderly disconnection), before forcing a disconnection. 2498 */ 2499 mod_delayed_work(system_power_efficient_wq, 2500 ®_check_chans, 2501 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2502 } 2503 2504 static void wiphy_update_regulatory(struct wiphy *wiphy, 2505 enum nl80211_reg_initiator initiator) 2506 { 2507 enum nl80211_band band; 2508 struct regulatory_request *lr = get_last_request(); 2509 2510 if (ignore_reg_update(wiphy, initiator)) { 2511 /* 2512 * Regulatory updates set by CORE are ignored for custom 2513 * regulatory cards. Let us notify the changes to the driver, 2514 * as some drivers used this to restore its orig_* reg domain. 2515 */ 2516 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2517 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2518 !(wiphy->regulatory_flags & 2519 REGULATORY_WIPHY_SELF_MANAGED)) 2520 reg_call_notifier(wiphy, lr); 2521 return; 2522 } 2523 2524 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2525 2526 for (band = 0; band < NUM_NL80211_BANDS; band++) 2527 handle_band(wiphy, initiator, wiphy->bands[band]); 2528 2529 reg_process_beacons(wiphy); 2530 reg_process_ht_flags(wiphy); 2531 reg_call_notifier(wiphy, lr); 2532 } 2533 2534 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2535 { 2536 struct cfg80211_registered_device *rdev; 2537 struct wiphy *wiphy; 2538 2539 ASSERT_RTNL(); 2540 2541 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2542 wiphy = &rdev->wiphy; 2543 wiphy_update_regulatory(wiphy, initiator); 2544 } 2545 2546 reg_check_channels(); 2547 } 2548 2549 static void handle_channel_custom(struct wiphy *wiphy, 2550 struct ieee80211_channel *chan, 2551 const struct ieee80211_regdomain *regd, 2552 u32 min_bw) 2553 { 2554 u32 bw_flags = 0; 2555 const struct ieee80211_reg_rule *reg_rule = NULL; 2556 const struct ieee80211_power_rule *power_rule = NULL; 2557 u32 bw, center_freq_khz; 2558 2559 center_freq_khz = ieee80211_channel_to_khz(chan); 2560 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 2561 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw); 2562 if (!IS_ERR(reg_rule)) 2563 break; 2564 } 2565 2566 if (IS_ERR_OR_NULL(reg_rule)) { 2567 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n", 2568 chan->center_freq, chan->freq_offset); 2569 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2570 chan->flags |= IEEE80211_CHAN_DISABLED; 2571 } else { 2572 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2573 chan->flags = chan->orig_flags; 2574 } 2575 return; 2576 } 2577 2578 power_rule = ®_rule->power_rule; 2579 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2580 2581 chan->dfs_state_entered = jiffies; 2582 chan->dfs_state = NL80211_DFS_USABLE; 2583 2584 chan->beacon_found = false; 2585 2586 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2587 chan->flags = chan->orig_flags | bw_flags | 2588 map_regdom_flags(reg_rule->flags); 2589 else 2590 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2591 2592 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2593 chan->max_reg_power = chan->max_power = 2594 (int) MBM_TO_DBM(power_rule->max_eirp); 2595 2596 if (chan->flags & IEEE80211_CHAN_RADAR) { 2597 if (reg_rule->dfs_cac_ms) 2598 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2599 else 2600 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2601 } 2602 2603 chan->max_power = chan->max_reg_power; 2604 } 2605 2606 static void handle_band_custom(struct wiphy *wiphy, 2607 struct ieee80211_supported_band *sband, 2608 const struct ieee80211_regdomain *regd) 2609 { 2610 unsigned int i; 2611 2612 if (!sband) 2613 return; 2614 2615 /* 2616 * We currently assume that you always want at least 20 MHz, 2617 * otherwise channel 12 might get enabled if this rule is 2618 * compatible to US, which permits 2402 - 2472 MHz. 2619 */ 2620 for (i = 0; i < sband->n_channels; i++) 2621 handle_channel_custom(wiphy, &sband->channels[i], regd, 2622 MHZ_TO_KHZ(20)); 2623 } 2624 2625 /* Used by drivers prior to wiphy registration */ 2626 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2627 const struct ieee80211_regdomain *regd) 2628 { 2629 const struct ieee80211_regdomain *new_regd, *tmp; 2630 enum nl80211_band band; 2631 unsigned int bands_set = 0; 2632 2633 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2634 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2635 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2636 2637 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2638 if (!wiphy->bands[band]) 2639 continue; 2640 handle_band_custom(wiphy, wiphy->bands[band], regd); 2641 bands_set++; 2642 } 2643 2644 /* 2645 * no point in calling this if it won't have any effect 2646 * on your device's supported bands. 2647 */ 2648 WARN_ON(!bands_set); 2649 new_regd = reg_copy_regd(regd); 2650 if (IS_ERR(new_regd)) 2651 return; 2652 2653 rtnl_lock(); 2654 wiphy_lock(wiphy); 2655 2656 tmp = get_wiphy_regdom(wiphy); 2657 rcu_assign_pointer(wiphy->regd, new_regd); 2658 rcu_free_regdom(tmp); 2659 2660 wiphy_unlock(wiphy); 2661 rtnl_unlock(); 2662 } 2663 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2664 2665 static void reg_set_request_processed(void) 2666 { 2667 bool need_more_processing = false; 2668 struct regulatory_request *lr = get_last_request(); 2669 2670 lr->processed = true; 2671 2672 spin_lock(®_requests_lock); 2673 if (!list_empty(®_requests_list)) 2674 need_more_processing = true; 2675 spin_unlock(®_requests_lock); 2676 2677 cancel_crda_timeout(); 2678 2679 if (need_more_processing) 2680 schedule_work(®_work); 2681 } 2682 2683 /** 2684 * reg_process_hint_core - process core regulatory requests 2685 * @core_request: a pending core regulatory request 2686 * 2687 * The wireless subsystem can use this function to process 2688 * a regulatory request issued by the regulatory core. 2689 */ 2690 static enum reg_request_treatment 2691 reg_process_hint_core(struct regulatory_request *core_request) 2692 { 2693 if (reg_query_database(core_request)) { 2694 core_request->intersect = false; 2695 core_request->processed = false; 2696 reg_update_last_request(core_request); 2697 return REG_REQ_OK; 2698 } 2699 2700 return REG_REQ_IGNORE; 2701 } 2702 2703 static enum reg_request_treatment 2704 __reg_process_hint_user(struct regulatory_request *user_request) 2705 { 2706 struct regulatory_request *lr = get_last_request(); 2707 2708 if (reg_request_cell_base(user_request)) 2709 return reg_ignore_cell_hint(user_request); 2710 2711 if (reg_request_cell_base(lr)) 2712 return REG_REQ_IGNORE; 2713 2714 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2715 return REG_REQ_INTERSECT; 2716 /* 2717 * If the user knows better the user should set the regdom 2718 * to their country before the IE is picked up 2719 */ 2720 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2721 lr->intersect) 2722 return REG_REQ_IGNORE; 2723 /* 2724 * Process user requests only after previous user/driver/core 2725 * requests have been processed 2726 */ 2727 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2728 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2729 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2730 regdom_changes(lr->alpha2)) 2731 return REG_REQ_IGNORE; 2732 2733 if (!regdom_changes(user_request->alpha2)) 2734 return REG_REQ_ALREADY_SET; 2735 2736 return REG_REQ_OK; 2737 } 2738 2739 /** 2740 * reg_process_hint_user - process user regulatory requests 2741 * @user_request: a pending user regulatory request 2742 * 2743 * The wireless subsystem can use this function to process 2744 * a regulatory request initiated by userspace. 2745 */ 2746 static enum reg_request_treatment 2747 reg_process_hint_user(struct regulatory_request *user_request) 2748 { 2749 enum reg_request_treatment treatment; 2750 2751 treatment = __reg_process_hint_user(user_request); 2752 if (treatment == REG_REQ_IGNORE || 2753 treatment == REG_REQ_ALREADY_SET) 2754 return REG_REQ_IGNORE; 2755 2756 user_request->intersect = treatment == REG_REQ_INTERSECT; 2757 user_request->processed = false; 2758 2759 if (reg_query_database(user_request)) { 2760 reg_update_last_request(user_request); 2761 user_alpha2[0] = user_request->alpha2[0]; 2762 user_alpha2[1] = user_request->alpha2[1]; 2763 return REG_REQ_OK; 2764 } 2765 2766 return REG_REQ_IGNORE; 2767 } 2768 2769 static enum reg_request_treatment 2770 __reg_process_hint_driver(struct regulatory_request *driver_request) 2771 { 2772 struct regulatory_request *lr = get_last_request(); 2773 2774 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2775 if (regdom_changes(driver_request->alpha2)) 2776 return REG_REQ_OK; 2777 return REG_REQ_ALREADY_SET; 2778 } 2779 2780 /* 2781 * This would happen if you unplug and plug your card 2782 * back in or if you add a new device for which the previously 2783 * loaded card also agrees on the regulatory domain. 2784 */ 2785 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2786 !regdom_changes(driver_request->alpha2)) 2787 return REG_REQ_ALREADY_SET; 2788 2789 return REG_REQ_INTERSECT; 2790 } 2791 2792 /** 2793 * reg_process_hint_driver - process driver regulatory requests 2794 * @wiphy: the wireless device for the regulatory request 2795 * @driver_request: a pending driver regulatory request 2796 * 2797 * The wireless subsystem can use this function to process 2798 * a regulatory request issued by an 802.11 driver. 2799 * 2800 * Returns one of the different reg request treatment values. 2801 */ 2802 static enum reg_request_treatment 2803 reg_process_hint_driver(struct wiphy *wiphy, 2804 struct regulatory_request *driver_request) 2805 { 2806 const struct ieee80211_regdomain *regd, *tmp; 2807 enum reg_request_treatment treatment; 2808 2809 treatment = __reg_process_hint_driver(driver_request); 2810 2811 switch (treatment) { 2812 case REG_REQ_OK: 2813 break; 2814 case REG_REQ_IGNORE: 2815 return REG_REQ_IGNORE; 2816 case REG_REQ_INTERSECT: 2817 case REG_REQ_ALREADY_SET: 2818 regd = reg_copy_regd(get_cfg80211_regdom()); 2819 if (IS_ERR(regd)) 2820 return REG_REQ_IGNORE; 2821 2822 tmp = get_wiphy_regdom(wiphy); 2823 ASSERT_RTNL(); 2824 wiphy_lock(wiphy); 2825 rcu_assign_pointer(wiphy->regd, regd); 2826 wiphy_unlock(wiphy); 2827 rcu_free_regdom(tmp); 2828 } 2829 2830 2831 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2832 driver_request->processed = false; 2833 2834 /* 2835 * Since CRDA will not be called in this case as we already 2836 * have applied the requested regulatory domain before we just 2837 * inform userspace we have processed the request 2838 */ 2839 if (treatment == REG_REQ_ALREADY_SET) { 2840 nl80211_send_reg_change_event(driver_request); 2841 reg_update_last_request(driver_request); 2842 reg_set_request_processed(); 2843 return REG_REQ_ALREADY_SET; 2844 } 2845 2846 if (reg_query_database(driver_request)) { 2847 reg_update_last_request(driver_request); 2848 return REG_REQ_OK; 2849 } 2850 2851 return REG_REQ_IGNORE; 2852 } 2853 2854 static enum reg_request_treatment 2855 __reg_process_hint_country_ie(struct wiphy *wiphy, 2856 struct regulatory_request *country_ie_request) 2857 { 2858 struct wiphy *last_wiphy = NULL; 2859 struct regulatory_request *lr = get_last_request(); 2860 2861 if (reg_request_cell_base(lr)) { 2862 /* Trust a Cell base station over the AP's country IE */ 2863 if (regdom_changes(country_ie_request->alpha2)) 2864 return REG_REQ_IGNORE; 2865 return REG_REQ_ALREADY_SET; 2866 } else { 2867 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2868 return REG_REQ_IGNORE; 2869 } 2870 2871 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2872 return -EINVAL; 2873 2874 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2875 return REG_REQ_OK; 2876 2877 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2878 2879 if (last_wiphy != wiphy) { 2880 /* 2881 * Two cards with two APs claiming different 2882 * Country IE alpha2s. We could 2883 * intersect them, but that seems unlikely 2884 * to be correct. Reject second one for now. 2885 */ 2886 if (regdom_changes(country_ie_request->alpha2)) 2887 return REG_REQ_IGNORE; 2888 return REG_REQ_ALREADY_SET; 2889 } 2890 2891 if (regdom_changes(country_ie_request->alpha2)) 2892 return REG_REQ_OK; 2893 return REG_REQ_ALREADY_SET; 2894 } 2895 2896 /** 2897 * reg_process_hint_country_ie - process regulatory requests from country IEs 2898 * @wiphy: the wireless device for the regulatory request 2899 * @country_ie_request: a regulatory request from a country IE 2900 * 2901 * The wireless subsystem can use this function to process 2902 * a regulatory request issued by a country Information Element. 2903 * 2904 * Returns one of the different reg request treatment values. 2905 */ 2906 static enum reg_request_treatment 2907 reg_process_hint_country_ie(struct wiphy *wiphy, 2908 struct regulatory_request *country_ie_request) 2909 { 2910 enum reg_request_treatment treatment; 2911 2912 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2913 2914 switch (treatment) { 2915 case REG_REQ_OK: 2916 break; 2917 case REG_REQ_IGNORE: 2918 return REG_REQ_IGNORE; 2919 case REG_REQ_ALREADY_SET: 2920 reg_free_request(country_ie_request); 2921 return REG_REQ_ALREADY_SET; 2922 case REG_REQ_INTERSECT: 2923 /* 2924 * This doesn't happen yet, not sure we 2925 * ever want to support it for this case. 2926 */ 2927 WARN_ONCE(1, "Unexpected intersection for country elements"); 2928 return REG_REQ_IGNORE; 2929 } 2930 2931 country_ie_request->intersect = false; 2932 country_ie_request->processed = false; 2933 2934 if (reg_query_database(country_ie_request)) { 2935 reg_update_last_request(country_ie_request); 2936 return REG_REQ_OK; 2937 } 2938 2939 return REG_REQ_IGNORE; 2940 } 2941 2942 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2943 { 2944 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2945 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2946 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2947 bool dfs_domain_same; 2948 2949 rcu_read_lock(); 2950 2951 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2952 wiphy1_regd = rcu_dereference(wiphy1->regd); 2953 if (!wiphy1_regd) 2954 wiphy1_regd = cfg80211_regd; 2955 2956 wiphy2_regd = rcu_dereference(wiphy2->regd); 2957 if (!wiphy2_regd) 2958 wiphy2_regd = cfg80211_regd; 2959 2960 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2961 2962 rcu_read_unlock(); 2963 2964 return dfs_domain_same; 2965 } 2966 2967 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2968 struct ieee80211_channel *src_chan) 2969 { 2970 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2971 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2972 return; 2973 2974 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2975 src_chan->flags & IEEE80211_CHAN_DISABLED) 2976 return; 2977 2978 if (src_chan->center_freq == dst_chan->center_freq && 2979 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2980 dst_chan->dfs_state = src_chan->dfs_state; 2981 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2982 } 2983 } 2984 2985 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2986 struct wiphy *src_wiphy) 2987 { 2988 struct ieee80211_supported_band *src_sband, *dst_sband; 2989 struct ieee80211_channel *src_chan, *dst_chan; 2990 int i, j, band; 2991 2992 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2993 return; 2994 2995 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2996 dst_sband = dst_wiphy->bands[band]; 2997 src_sband = src_wiphy->bands[band]; 2998 if (!dst_sband || !src_sband) 2999 continue; 3000 3001 for (i = 0; i < dst_sband->n_channels; i++) { 3002 dst_chan = &dst_sband->channels[i]; 3003 for (j = 0; j < src_sband->n_channels; j++) { 3004 src_chan = &src_sband->channels[j]; 3005 reg_copy_dfs_chan_state(dst_chan, src_chan); 3006 } 3007 } 3008 } 3009 } 3010 3011 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 3012 { 3013 struct cfg80211_registered_device *rdev; 3014 3015 ASSERT_RTNL(); 3016 3017 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3018 if (wiphy == &rdev->wiphy) 3019 continue; 3020 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 3021 } 3022 } 3023 3024 /* This processes *all* regulatory hints */ 3025 static void reg_process_hint(struct regulatory_request *reg_request) 3026 { 3027 struct wiphy *wiphy = NULL; 3028 enum reg_request_treatment treatment; 3029 enum nl80211_reg_initiator initiator = reg_request->initiator; 3030 3031 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 3032 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 3033 3034 switch (initiator) { 3035 case NL80211_REGDOM_SET_BY_CORE: 3036 treatment = reg_process_hint_core(reg_request); 3037 break; 3038 case NL80211_REGDOM_SET_BY_USER: 3039 treatment = reg_process_hint_user(reg_request); 3040 break; 3041 case NL80211_REGDOM_SET_BY_DRIVER: 3042 if (!wiphy) 3043 goto out_free; 3044 treatment = reg_process_hint_driver(wiphy, reg_request); 3045 break; 3046 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3047 if (!wiphy) 3048 goto out_free; 3049 treatment = reg_process_hint_country_ie(wiphy, reg_request); 3050 break; 3051 default: 3052 WARN(1, "invalid initiator %d\n", initiator); 3053 goto out_free; 3054 } 3055 3056 if (treatment == REG_REQ_IGNORE) 3057 goto out_free; 3058 3059 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 3060 "unexpected treatment value %d\n", treatment); 3061 3062 /* This is required so that the orig_* parameters are saved. 3063 * NOTE: treatment must be set for any case that reaches here! 3064 */ 3065 if (treatment == REG_REQ_ALREADY_SET && wiphy && 3066 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 3067 wiphy_update_regulatory(wiphy, initiator); 3068 wiphy_all_share_dfs_chan_state(wiphy); 3069 reg_check_channels(); 3070 } 3071 3072 return; 3073 3074 out_free: 3075 reg_free_request(reg_request); 3076 } 3077 3078 static void notify_self_managed_wiphys(struct regulatory_request *request) 3079 { 3080 struct cfg80211_registered_device *rdev; 3081 struct wiphy *wiphy; 3082 3083 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3084 wiphy = &rdev->wiphy; 3085 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 3086 request->initiator == NL80211_REGDOM_SET_BY_USER) 3087 reg_call_notifier(wiphy, request); 3088 } 3089 } 3090 3091 /* 3092 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 3093 * Regulatory hints come on a first come first serve basis and we 3094 * must process each one atomically. 3095 */ 3096 static void reg_process_pending_hints(void) 3097 { 3098 struct regulatory_request *reg_request, *lr; 3099 3100 lr = get_last_request(); 3101 3102 /* When last_request->processed becomes true this will be rescheduled */ 3103 if (lr && !lr->processed) { 3104 pr_debug("Pending regulatory request, waiting for it to be processed...\n"); 3105 return; 3106 } 3107 3108 spin_lock(®_requests_lock); 3109 3110 if (list_empty(®_requests_list)) { 3111 spin_unlock(®_requests_lock); 3112 return; 3113 } 3114 3115 reg_request = list_first_entry(®_requests_list, 3116 struct regulatory_request, 3117 list); 3118 list_del_init(®_request->list); 3119 3120 spin_unlock(®_requests_lock); 3121 3122 notify_self_managed_wiphys(reg_request); 3123 3124 reg_process_hint(reg_request); 3125 3126 lr = get_last_request(); 3127 3128 spin_lock(®_requests_lock); 3129 if (!list_empty(®_requests_list) && lr && lr->processed) 3130 schedule_work(®_work); 3131 spin_unlock(®_requests_lock); 3132 } 3133 3134 /* Processes beacon hints -- this has nothing to do with country IEs */ 3135 static void reg_process_pending_beacon_hints(void) 3136 { 3137 struct cfg80211_registered_device *rdev; 3138 struct reg_beacon *pending_beacon, *tmp; 3139 3140 /* This goes through the _pending_ beacon list */ 3141 spin_lock_bh(®_pending_beacons_lock); 3142 3143 list_for_each_entry_safe(pending_beacon, tmp, 3144 ®_pending_beacons, list) { 3145 list_del_init(&pending_beacon->list); 3146 3147 /* Applies the beacon hint to current wiphys */ 3148 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 3149 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 3150 3151 /* Remembers the beacon hint for new wiphys or reg changes */ 3152 list_add_tail(&pending_beacon->list, ®_beacon_list); 3153 } 3154 3155 spin_unlock_bh(®_pending_beacons_lock); 3156 } 3157 3158 static void reg_process_self_managed_hint(struct wiphy *wiphy) 3159 { 3160 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3161 const struct ieee80211_regdomain *tmp; 3162 const struct ieee80211_regdomain *regd; 3163 enum nl80211_band band; 3164 struct regulatory_request request = {}; 3165 3166 ASSERT_RTNL(); 3167 lockdep_assert_wiphy(wiphy); 3168 3169 spin_lock(®_requests_lock); 3170 regd = rdev->requested_regd; 3171 rdev->requested_regd = NULL; 3172 spin_unlock(®_requests_lock); 3173 3174 if (!regd) 3175 return; 3176 3177 tmp = get_wiphy_regdom(wiphy); 3178 rcu_assign_pointer(wiphy->regd, regd); 3179 rcu_free_regdom(tmp); 3180 3181 for (band = 0; band < NUM_NL80211_BANDS; band++) 3182 handle_band_custom(wiphy, wiphy->bands[band], regd); 3183 3184 reg_process_ht_flags(wiphy); 3185 3186 request.wiphy_idx = get_wiphy_idx(wiphy); 3187 request.alpha2[0] = regd->alpha2[0]; 3188 request.alpha2[1] = regd->alpha2[1]; 3189 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 3190 3191 nl80211_send_wiphy_reg_change_event(&request); 3192 } 3193 3194 static void reg_process_self_managed_hints(void) 3195 { 3196 struct cfg80211_registered_device *rdev; 3197 3198 ASSERT_RTNL(); 3199 3200 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3201 wiphy_lock(&rdev->wiphy); 3202 reg_process_self_managed_hint(&rdev->wiphy); 3203 wiphy_unlock(&rdev->wiphy); 3204 } 3205 3206 reg_check_channels(); 3207 } 3208 3209 static void reg_todo(struct work_struct *work) 3210 { 3211 rtnl_lock(); 3212 reg_process_pending_hints(); 3213 reg_process_pending_beacon_hints(); 3214 reg_process_self_managed_hints(); 3215 rtnl_unlock(); 3216 } 3217 3218 static void queue_regulatory_request(struct regulatory_request *request) 3219 { 3220 request->alpha2[0] = toupper(request->alpha2[0]); 3221 request->alpha2[1] = toupper(request->alpha2[1]); 3222 3223 spin_lock(®_requests_lock); 3224 list_add_tail(&request->list, ®_requests_list); 3225 spin_unlock(®_requests_lock); 3226 3227 schedule_work(®_work); 3228 } 3229 3230 /* 3231 * Core regulatory hint -- happens during cfg80211_init() 3232 * and when we restore regulatory settings. 3233 */ 3234 static int regulatory_hint_core(const char *alpha2) 3235 { 3236 struct regulatory_request *request; 3237 3238 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3239 if (!request) 3240 return -ENOMEM; 3241 3242 request->alpha2[0] = alpha2[0]; 3243 request->alpha2[1] = alpha2[1]; 3244 request->initiator = NL80211_REGDOM_SET_BY_CORE; 3245 request->wiphy_idx = WIPHY_IDX_INVALID; 3246 3247 queue_regulatory_request(request); 3248 3249 return 0; 3250 } 3251 3252 /* User hints */ 3253 int regulatory_hint_user(const char *alpha2, 3254 enum nl80211_user_reg_hint_type user_reg_hint_type) 3255 { 3256 struct regulatory_request *request; 3257 3258 if (WARN_ON(!alpha2)) 3259 return -EINVAL; 3260 3261 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2)) 3262 return -EINVAL; 3263 3264 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3265 if (!request) 3266 return -ENOMEM; 3267 3268 request->wiphy_idx = WIPHY_IDX_INVALID; 3269 request->alpha2[0] = alpha2[0]; 3270 request->alpha2[1] = alpha2[1]; 3271 request->initiator = NL80211_REGDOM_SET_BY_USER; 3272 request->user_reg_hint_type = user_reg_hint_type; 3273 3274 /* Allow calling CRDA again */ 3275 reset_crda_timeouts(); 3276 3277 queue_regulatory_request(request); 3278 3279 return 0; 3280 } 3281 3282 int regulatory_hint_indoor(bool is_indoor, u32 portid) 3283 { 3284 spin_lock(®_indoor_lock); 3285 3286 /* It is possible that more than one user space process is trying to 3287 * configure the indoor setting. To handle such cases, clear the indoor 3288 * setting in case that some process does not think that the device 3289 * is operating in an indoor environment. In addition, if a user space 3290 * process indicates that it is controlling the indoor setting, save its 3291 * portid, i.e., make it the owner. 3292 */ 3293 reg_is_indoor = is_indoor; 3294 if (reg_is_indoor) { 3295 if (!reg_is_indoor_portid) 3296 reg_is_indoor_portid = portid; 3297 } else { 3298 reg_is_indoor_portid = 0; 3299 } 3300 3301 spin_unlock(®_indoor_lock); 3302 3303 if (!is_indoor) 3304 reg_check_channels(); 3305 3306 return 0; 3307 } 3308 3309 void regulatory_netlink_notify(u32 portid) 3310 { 3311 spin_lock(®_indoor_lock); 3312 3313 if (reg_is_indoor_portid != portid) { 3314 spin_unlock(®_indoor_lock); 3315 return; 3316 } 3317 3318 reg_is_indoor = false; 3319 reg_is_indoor_portid = 0; 3320 3321 spin_unlock(®_indoor_lock); 3322 3323 reg_check_channels(); 3324 } 3325 3326 /* Driver hints */ 3327 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3328 { 3329 struct regulatory_request *request; 3330 3331 if (WARN_ON(!alpha2 || !wiphy)) 3332 return -EINVAL; 3333 3334 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3335 3336 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3337 if (!request) 3338 return -ENOMEM; 3339 3340 request->wiphy_idx = get_wiphy_idx(wiphy); 3341 3342 request->alpha2[0] = alpha2[0]; 3343 request->alpha2[1] = alpha2[1]; 3344 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3345 3346 /* Allow calling CRDA again */ 3347 reset_crda_timeouts(); 3348 3349 queue_regulatory_request(request); 3350 3351 return 0; 3352 } 3353 EXPORT_SYMBOL(regulatory_hint); 3354 3355 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3356 const u8 *country_ie, u8 country_ie_len) 3357 { 3358 char alpha2[2]; 3359 enum environment_cap env = ENVIRON_ANY; 3360 struct regulatory_request *request = NULL, *lr; 3361 3362 /* IE len must be evenly divisible by 2 */ 3363 if (country_ie_len & 0x01) 3364 return; 3365 3366 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3367 return; 3368 3369 request = kzalloc(sizeof(*request), GFP_KERNEL); 3370 if (!request) 3371 return; 3372 3373 alpha2[0] = country_ie[0]; 3374 alpha2[1] = country_ie[1]; 3375 3376 if (country_ie[2] == 'I') 3377 env = ENVIRON_INDOOR; 3378 else if (country_ie[2] == 'O') 3379 env = ENVIRON_OUTDOOR; 3380 3381 rcu_read_lock(); 3382 lr = get_last_request(); 3383 3384 if (unlikely(!lr)) 3385 goto out; 3386 3387 /* 3388 * We will run this only upon a successful connection on cfg80211. 3389 * We leave conflict resolution to the workqueue, where can hold 3390 * the RTNL. 3391 */ 3392 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3393 lr->wiphy_idx != WIPHY_IDX_INVALID) 3394 goto out; 3395 3396 request->wiphy_idx = get_wiphy_idx(wiphy); 3397 request->alpha2[0] = alpha2[0]; 3398 request->alpha2[1] = alpha2[1]; 3399 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3400 request->country_ie_env = env; 3401 3402 /* Allow calling CRDA again */ 3403 reset_crda_timeouts(); 3404 3405 queue_regulatory_request(request); 3406 request = NULL; 3407 out: 3408 kfree(request); 3409 rcu_read_unlock(); 3410 } 3411 3412 static void restore_alpha2(char *alpha2, bool reset_user) 3413 { 3414 /* indicates there is no alpha2 to consider for restoration */ 3415 alpha2[0] = '9'; 3416 alpha2[1] = '7'; 3417 3418 /* The user setting has precedence over the module parameter */ 3419 if (is_user_regdom_saved()) { 3420 /* Unless we're asked to ignore it and reset it */ 3421 if (reset_user) { 3422 pr_debug("Restoring regulatory settings including user preference\n"); 3423 user_alpha2[0] = '9'; 3424 user_alpha2[1] = '7'; 3425 3426 /* 3427 * If we're ignoring user settings, we still need to 3428 * check the module parameter to ensure we put things 3429 * back as they were for a full restore. 3430 */ 3431 if (!is_world_regdom(ieee80211_regdom)) { 3432 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3433 ieee80211_regdom[0], ieee80211_regdom[1]); 3434 alpha2[0] = ieee80211_regdom[0]; 3435 alpha2[1] = ieee80211_regdom[1]; 3436 } 3437 } else { 3438 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3439 user_alpha2[0], user_alpha2[1]); 3440 alpha2[0] = user_alpha2[0]; 3441 alpha2[1] = user_alpha2[1]; 3442 } 3443 } else if (!is_world_regdom(ieee80211_regdom)) { 3444 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3445 ieee80211_regdom[0], ieee80211_regdom[1]); 3446 alpha2[0] = ieee80211_regdom[0]; 3447 alpha2[1] = ieee80211_regdom[1]; 3448 } else 3449 pr_debug("Restoring regulatory settings\n"); 3450 } 3451 3452 static void restore_custom_reg_settings(struct wiphy *wiphy) 3453 { 3454 struct ieee80211_supported_band *sband; 3455 enum nl80211_band band; 3456 struct ieee80211_channel *chan; 3457 int i; 3458 3459 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3460 sband = wiphy->bands[band]; 3461 if (!sband) 3462 continue; 3463 for (i = 0; i < sband->n_channels; i++) { 3464 chan = &sband->channels[i]; 3465 chan->flags = chan->orig_flags; 3466 chan->max_antenna_gain = chan->orig_mag; 3467 chan->max_power = chan->orig_mpwr; 3468 chan->beacon_found = false; 3469 } 3470 } 3471 } 3472 3473 /* 3474 * Restoring regulatory settings involves ignoring any 3475 * possibly stale country IE information and user regulatory 3476 * settings if so desired, this includes any beacon hints 3477 * learned as we could have traveled outside to another country 3478 * after disconnection. To restore regulatory settings we do 3479 * exactly what we did at bootup: 3480 * 3481 * - send a core regulatory hint 3482 * - send a user regulatory hint if applicable 3483 * 3484 * Device drivers that send a regulatory hint for a specific country 3485 * keep their own regulatory domain on wiphy->regd so that does 3486 * not need to be remembered. 3487 */ 3488 static void restore_regulatory_settings(bool reset_user, bool cached) 3489 { 3490 char alpha2[2]; 3491 char world_alpha2[2]; 3492 struct reg_beacon *reg_beacon, *btmp; 3493 LIST_HEAD(tmp_reg_req_list); 3494 struct cfg80211_registered_device *rdev; 3495 3496 ASSERT_RTNL(); 3497 3498 /* 3499 * Clear the indoor setting in case that it is not controlled by user 3500 * space, as otherwise there is no guarantee that the device is still 3501 * operating in an indoor environment. 3502 */ 3503 spin_lock(®_indoor_lock); 3504 if (reg_is_indoor && !reg_is_indoor_portid) { 3505 reg_is_indoor = false; 3506 reg_check_channels(); 3507 } 3508 spin_unlock(®_indoor_lock); 3509 3510 reset_regdomains(true, &world_regdom); 3511 restore_alpha2(alpha2, reset_user); 3512 3513 /* 3514 * If there's any pending requests we simply 3515 * stash them to a temporary pending queue and 3516 * add then after we've restored regulatory 3517 * settings. 3518 */ 3519 spin_lock(®_requests_lock); 3520 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3521 spin_unlock(®_requests_lock); 3522 3523 /* Clear beacon hints */ 3524 spin_lock_bh(®_pending_beacons_lock); 3525 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3526 list_del(®_beacon->list); 3527 kfree(reg_beacon); 3528 } 3529 spin_unlock_bh(®_pending_beacons_lock); 3530 3531 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3532 list_del(®_beacon->list); 3533 kfree(reg_beacon); 3534 } 3535 3536 /* First restore to the basic regulatory settings */ 3537 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3538 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3539 3540 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3541 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3542 continue; 3543 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3544 restore_custom_reg_settings(&rdev->wiphy); 3545 } 3546 3547 if (cached && (!is_an_alpha2(alpha2) || 3548 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3549 reset_regdomains(false, cfg80211_world_regdom); 3550 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3551 print_regdomain(get_cfg80211_regdom()); 3552 nl80211_send_reg_change_event(&core_request_world); 3553 reg_set_request_processed(); 3554 3555 if (is_an_alpha2(alpha2) && 3556 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3557 struct regulatory_request *ureq; 3558 3559 spin_lock(®_requests_lock); 3560 ureq = list_last_entry(®_requests_list, 3561 struct regulatory_request, 3562 list); 3563 list_del(&ureq->list); 3564 spin_unlock(®_requests_lock); 3565 3566 notify_self_managed_wiphys(ureq); 3567 reg_update_last_request(ureq); 3568 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3569 REGD_SOURCE_CACHED); 3570 } 3571 } else { 3572 regulatory_hint_core(world_alpha2); 3573 3574 /* 3575 * This restores the ieee80211_regdom module parameter 3576 * preference or the last user requested regulatory 3577 * settings, user regulatory settings takes precedence. 3578 */ 3579 if (is_an_alpha2(alpha2)) 3580 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3581 } 3582 3583 spin_lock(®_requests_lock); 3584 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3585 spin_unlock(®_requests_lock); 3586 3587 pr_debug("Kicking the queue\n"); 3588 3589 schedule_work(®_work); 3590 } 3591 3592 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3593 { 3594 struct cfg80211_registered_device *rdev; 3595 struct wireless_dev *wdev; 3596 3597 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3598 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3599 wdev_lock(wdev); 3600 if (!(wdev->wiphy->regulatory_flags & flag)) { 3601 wdev_unlock(wdev); 3602 return false; 3603 } 3604 wdev_unlock(wdev); 3605 } 3606 } 3607 3608 return true; 3609 } 3610 3611 void regulatory_hint_disconnect(void) 3612 { 3613 /* Restore of regulatory settings is not required when wiphy(s) 3614 * ignore IE from connected access point but clearance of beacon hints 3615 * is required when wiphy(s) supports beacon hints. 3616 */ 3617 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3618 struct reg_beacon *reg_beacon, *btmp; 3619 3620 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3621 return; 3622 3623 spin_lock_bh(®_pending_beacons_lock); 3624 list_for_each_entry_safe(reg_beacon, btmp, 3625 ®_pending_beacons, list) { 3626 list_del(®_beacon->list); 3627 kfree(reg_beacon); 3628 } 3629 spin_unlock_bh(®_pending_beacons_lock); 3630 3631 list_for_each_entry_safe(reg_beacon, btmp, 3632 ®_beacon_list, list) { 3633 list_del(®_beacon->list); 3634 kfree(reg_beacon); 3635 } 3636 3637 return; 3638 } 3639 3640 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3641 restore_regulatory_settings(false, true); 3642 } 3643 3644 static bool freq_is_chan_12_13_14(u32 freq) 3645 { 3646 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3647 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3648 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3649 return true; 3650 return false; 3651 } 3652 3653 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3654 { 3655 struct reg_beacon *pending_beacon; 3656 3657 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3658 if (ieee80211_channel_equal(beacon_chan, 3659 &pending_beacon->chan)) 3660 return true; 3661 return false; 3662 } 3663 3664 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3665 struct ieee80211_channel *beacon_chan, 3666 gfp_t gfp) 3667 { 3668 struct reg_beacon *reg_beacon; 3669 bool processing; 3670 3671 if (beacon_chan->beacon_found || 3672 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3673 (beacon_chan->band == NL80211_BAND_2GHZ && 3674 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3675 return 0; 3676 3677 spin_lock_bh(®_pending_beacons_lock); 3678 processing = pending_reg_beacon(beacon_chan); 3679 spin_unlock_bh(®_pending_beacons_lock); 3680 3681 if (processing) 3682 return 0; 3683 3684 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3685 if (!reg_beacon) 3686 return -ENOMEM; 3687 3688 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n", 3689 beacon_chan->center_freq, beacon_chan->freq_offset, 3690 ieee80211_freq_khz_to_channel( 3691 ieee80211_channel_to_khz(beacon_chan)), 3692 wiphy_name(wiphy)); 3693 3694 memcpy(®_beacon->chan, beacon_chan, 3695 sizeof(struct ieee80211_channel)); 3696 3697 /* 3698 * Since we can be called from BH or and non-BH context 3699 * we must use spin_lock_bh() 3700 */ 3701 spin_lock_bh(®_pending_beacons_lock); 3702 list_add_tail(®_beacon->list, ®_pending_beacons); 3703 spin_unlock_bh(®_pending_beacons_lock); 3704 3705 schedule_work(®_work); 3706 3707 return 0; 3708 } 3709 3710 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3711 { 3712 unsigned int i; 3713 const struct ieee80211_reg_rule *reg_rule = NULL; 3714 const struct ieee80211_freq_range *freq_range = NULL; 3715 const struct ieee80211_power_rule *power_rule = NULL; 3716 char bw[32], cac_time[32]; 3717 3718 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3719 3720 for (i = 0; i < rd->n_reg_rules; i++) { 3721 reg_rule = &rd->reg_rules[i]; 3722 freq_range = ®_rule->freq_range; 3723 power_rule = ®_rule->power_rule; 3724 3725 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3726 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO", 3727 freq_range->max_bandwidth_khz, 3728 reg_get_max_bandwidth(rd, reg_rule)); 3729 else 3730 snprintf(bw, sizeof(bw), "%d KHz", 3731 freq_range->max_bandwidth_khz); 3732 3733 if (reg_rule->flags & NL80211_RRF_DFS) 3734 scnprintf(cac_time, sizeof(cac_time), "%u s", 3735 reg_rule->dfs_cac_ms/1000); 3736 else 3737 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3738 3739 3740 /* 3741 * There may not be documentation for max antenna gain 3742 * in certain regions 3743 */ 3744 if (power_rule->max_antenna_gain) 3745 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3746 freq_range->start_freq_khz, 3747 freq_range->end_freq_khz, 3748 bw, 3749 power_rule->max_antenna_gain, 3750 power_rule->max_eirp, 3751 cac_time); 3752 else 3753 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3754 freq_range->start_freq_khz, 3755 freq_range->end_freq_khz, 3756 bw, 3757 power_rule->max_eirp, 3758 cac_time); 3759 } 3760 } 3761 3762 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3763 { 3764 switch (dfs_region) { 3765 case NL80211_DFS_UNSET: 3766 case NL80211_DFS_FCC: 3767 case NL80211_DFS_ETSI: 3768 case NL80211_DFS_JP: 3769 return true; 3770 default: 3771 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3772 return false; 3773 } 3774 } 3775 3776 static void print_regdomain(const struct ieee80211_regdomain *rd) 3777 { 3778 struct regulatory_request *lr = get_last_request(); 3779 3780 if (is_intersected_alpha2(rd->alpha2)) { 3781 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3782 struct cfg80211_registered_device *rdev; 3783 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3784 if (rdev) { 3785 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3786 rdev->country_ie_alpha2[0], 3787 rdev->country_ie_alpha2[1]); 3788 } else 3789 pr_debug("Current regulatory domain intersected:\n"); 3790 } else 3791 pr_debug("Current regulatory domain intersected:\n"); 3792 } else if (is_world_regdom(rd->alpha2)) { 3793 pr_debug("World regulatory domain updated:\n"); 3794 } else { 3795 if (is_unknown_alpha2(rd->alpha2)) 3796 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3797 else { 3798 if (reg_request_cell_base(lr)) 3799 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3800 rd->alpha2[0], rd->alpha2[1]); 3801 else 3802 pr_debug("Regulatory domain changed to country: %c%c\n", 3803 rd->alpha2[0], rd->alpha2[1]); 3804 } 3805 } 3806 3807 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3808 print_rd_rules(rd); 3809 } 3810 3811 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3812 { 3813 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3814 print_rd_rules(rd); 3815 } 3816 3817 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3818 { 3819 if (!is_world_regdom(rd->alpha2)) 3820 return -EINVAL; 3821 update_world_regdomain(rd); 3822 return 0; 3823 } 3824 3825 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3826 struct regulatory_request *user_request) 3827 { 3828 const struct ieee80211_regdomain *intersected_rd = NULL; 3829 3830 if (!regdom_changes(rd->alpha2)) 3831 return -EALREADY; 3832 3833 if (!is_valid_rd(rd)) { 3834 pr_err("Invalid regulatory domain detected: %c%c\n", 3835 rd->alpha2[0], rd->alpha2[1]); 3836 print_regdomain_info(rd); 3837 return -EINVAL; 3838 } 3839 3840 if (!user_request->intersect) { 3841 reset_regdomains(false, rd); 3842 return 0; 3843 } 3844 3845 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3846 if (!intersected_rd) 3847 return -EINVAL; 3848 3849 kfree(rd); 3850 rd = NULL; 3851 reset_regdomains(false, intersected_rd); 3852 3853 return 0; 3854 } 3855 3856 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3857 struct regulatory_request *driver_request) 3858 { 3859 const struct ieee80211_regdomain *regd; 3860 const struct ieee80211_regdomain *intersected_rd = NULL; 3861 const struct ieee80211_regdomain *tmp; 3862 struct wiphy *request_wiphy; 3863 3864 if (is_world_regdom(rd->alpha2)) 3865 return -EINVAL; 3866 3867 if (!regdom_changes(rd->alpha2)) 3868 return -EALREADY; 3869 3870 if (!is_valid_rd(rd)) { 3871 pr_err("Invalid regulatory domain detected: %c%c\n", 3872 rd->alpha2[0], rd->alpha2[1]); 3873 print_regdomain_info(rd); 3874 return -EINVAL; 3875 } 3876 3877 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3878 if (!request_wiphy) 3879 return -ENODEV; 3880 3881 if (!driver_request->intersect) { 3882 ASSERT_RTNL(); 3883 wiphy_lock(request_wiphy); 3884 if (request_wiphy->regd) { 3885 wiphy_unlock(request_wiphy); 3886 return -EALREADY; 3887 } 3888 3889 regd = reg_copy_regd(rd); 3890 if (IS_ERR(regd)) { 3891 wiphy_unlock(request_wiphy); 3892 return PTR_ERR(regd); 3893 } 3894 3895 rcu_assign_pointer(request_wiphy->regd, regd); 3896 wiphy_unlock(request_wiphy); 3897 reset_regdomains(false, rd); 3898 return 0; 3899 } 3900 3901 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3902 if (!intersected_rd) 3903 return -EINVAL; 3904 3905 /* 3906 * We can trash what CRDA provided now. 3907 * However if a driver requested this specific regulatory 3908 * domain we keep it for its private use 3909 */ 3910 tmp = get_wiphy_regdom(request_wiphy); 3911 rcu_assign_pointer(request_wiphy->regd, rd); 3912 rcu_free_regdom(tmp); 3913 3914 rd = NULL; 3915 3916 reset_regdomains(false, intersected_rd); 3917 3918 return 0; 3919 } 3920 3921 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3922 struct regulatory_request *country_ie_request) 3923 { 3924 struct wiphy *request_wiphy; 3925 3926 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3927 !is_unknown_alpha2(rd->alpha2)) 3928 return -EINVAL; 3929 3930 /* 3931 * Lets only bother proceeding on the same alpha2 if the current 3932 * rd is non static (it means CRDA was present and was used last) 3933 * and the pending request came in from a country IE 3934 */ 3935 3936 if (!is_valid_rd(rd)) { 3937 pr_err("Invalid regulatory domain detected: %c%c\n", 3938 rd->alpha2[0], rd->alpha2[1]); 3939 print_regdomain_info(rd); 3940 return -EINVAL; 3941 } 3942 3943 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3944 if (!request_wiphy) 3945 return -ENODEV; 3946 3947 if (country_ie_request->intersect) 3948 return -EINVAL; 3949 3950 reset_regdomains(false, rd); 3951 return 0; 3952 } 3953 3954 /* 3955 * Use this call to set the current regulatory domain. Conflicts with 3956 * multiple drivers can be ironed out later. Caller must've already 3957 * kmalloc'd the rd structure. 3958 */ 3959 int set_regdom(const struct ieee80211_regdomain *rd, 3960 enum ieee80211_regd_source regd_src) 3961 { 3962 struct regulatory_request *lr; 3963 bool user_reset = false; 3964 int r; 3965 3966 if (IS_ERR_OR_NULL(rd)) 3967 return -ENODATA; 3968 3969 if (!reg_is_valid_request(rd->alpha2)) { 3970 kfree(rd); 3971 return -EINVAL; 3972 } 3973 3974 if (regd_src == REGD_SOURCE_CRDA) 3975 reset_crda_timeouts(); 3976 3977 lr = get_last_request(); 3978 3979 /* Note that this doesn't update the wiphys, this is done below */ 3980 switch (lr->initiator) { 3981 case NL80211_REGDOM_SET_BY_CORE: 3982 r = reg_set_rd_core(rd); 3983 break; 3984 case NL80211_REGDOM_SET_BY_USER: 3985 cfg80211_save_user_regdom(rd); 3986 r = reg_set_rd_user(rd, lr); 3987 user_reset = true; 3988 break; 3989 case NL80211_REGDOM_SET_BY_DRIVER: 3990 r = reg_set_rd_driver(rd, lr); 3991 break; 3992 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3993 r = reg_set_rd_country_ie(rd, lr); 3994 break; 3995 default: 3996 WARN(1, "invalid initiator %d\n", lr->initiator); 3997 kfree(rd); 3998 return -EINVAL; 3999 } 4000 4001 if (r) { 4002 switch (r) { 4003 case -EALREADY: 4004 reg_set_request_processed(); 4005 break; 4006 default: 4007 /* Back to world regulatory in case of errors */ 4008 restore_regulatory_settings(user_reset, false); 4009 } 4010 4011 kfree(rd); 4012 return r; 4013 } 4014 4015 /* This would make this whole thing pointless */ 4016 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 4017 return -EINVAL; 4018 4019 /* update all wiphys now with the new established regulatory domain */ 4020 update_all_wiphy_regulatory(lr->initiator); 4021 4022 print_regdomain(get_cfg80211_regdom()); 4023 4024 nl80211_send_reg_change_event(lr); 4025 4026 reg_set_request_processed(); 4027 4028 return 0; 4029 } 4030 4031 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 4032 struct ieee80211_regdomain *rd) 4033 { 4034 const struct ieee80211_regdomain *regd; 4035 const struct ieee80211_regdomain *prev_regd; 4036 struct cfg80211_registered_device *rdev; 4037 4038 if (WARN_ON(!wiphy || !rd)) 4039 return -EINVAL; 4040 4041 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 4042 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 4043 return -EPERM; 4044 4045 if (WARN(!is_valid_rd(rd), 4046 "Invalid regulatory domain detected: %c%c\n", 4047 rd->alpha2[0], rd->alpha2[1])) { 4048 print_regdomain_info(rd); 4049 return -EINVAL; 4050 } 4051 4052 regd = reg_copy_regd(rd); 4053 if (IS_ERR(regd)) 4054 return PTR_ERR(regd); 4055 4056 rdev = wiphy_to_rdev(wiphy); 4057 4058 spin_lock(®_requests_lock); 4059 prev_regd = rdev->requested_regd; 4060 rdev->requested_regd = regd; 4061 spin_unlock(®_requests_lock); 4062 4063 kfree(prev_regd); 4064 return 0; 4065 } 4066 4067 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 4068 struct ieee80211_regdomain *rd) 4069 { 4070 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 4071 4072 if (ret) 4073 return ret; 4074 4075 schedule_work(®_work); 4076 return 0; 4077 } 4078 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 4079 4080 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy, 4081 struct ieee80211_regdomain *rd) 4082 { 4083 int ret; 4084 4085 ASSERT_RTNL(); 4086 4087 ret = __regulatory_set_wiphy_regd(wiphy, rd); 4088 if (ret) 4089 return ret; 4090 4091 /* process the request immediately */ 4092 reg_process_self_managed_hint(wiphy); 4093 reg_check_channels(); 4094 return 0; 4095 } 4096 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync); 4097 4098 void wiphy_regulatory_register(struct wiphy *wiphy) 4099 { 4100 struct regulatory_request *lr = get_last_request(); 4101 4102 /* self-managed devices ignore beacon hints and country IE */ 4103 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 4104 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 4105 REGULATORY_COUNTRY_IE_IGNORE; 4106 4107 /* 4108 * The last request may have been received before this 4109 * registration call. Call the driver notifier if 4110 * initiator is USER. 4111 */ 4112 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 4113 reg_call_notifier(wiphy, lr); 4114 } 4115 4116 if (!reg_dev_ignore_cell_hint(wiphy)) 4117 reg_num_devs_support_basehint++; 4118 4119 wiphy_update_regulatory(wiphy, lr->initiator); 4120 wiphy_all_share_dfs_chan_state(wiphy); 4121 reg_process_self_managed_hints(); 4122 } 4123 4124 void wiphy_regulatory_deregister(struct wiphy *wiphy) 4125 { 4126 struct wiphy *request_wiphy = NULL; 4127 struct regulatory_request *lr; 4128 4129 lr = get_last_request(); 4130 4131 if (!reg_dev_ignore_cell_hint(wiphy)) 4132 reg_num_devs_support_basehint--; 4133 4134 rcu_free_regdom(get_wiphy_regdom(wiphy)); 4135 RCU_INIT_POINTER(wiphy->regd, NULL); 4136 4137 if (lr) 4138 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 4139 4140 if (!request_wiphy || request_wiphy != wiphy) 4141 return; 4142 4143 lr->wiphy_idx = WIPHY_IDX_INVALID; 4144 lr->country_ie_env = ENVIRON_ANY; 4145 } 4146 4147 /* 4148 * See FCC notices for UNII band definitions 4149 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii 4150 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0 4151 */ 4152 int cfg80211_get_unii(int freq) 4153 { 4154 /* UNII-1 */ 4155 if (freq >= 5150 && freq <= 5250) 4156 return 0; 4157 4158 /* UNII-2A */ 4159 if (freq > 5250 && freq <= 5350) 4160 return 1; 4161 4162 /* UNII-2B */ 4163 if (freq > 5350 && freq <= 5470) 4164 return 2; 4165 4166 /* UNII-2C */ 4167 if (freq > 5470 && freq <= 5725) 4168 return 3; 4169 4170 /* UNII-3 */ 4171 if (freq > 5725 && freq <= 5825) 4172 return 4; 4173 4174 /* UNII-5 */ 4175 if (freq > 5925 && freq <= 6425) 4176 return 5; 4177 4178 /* UNII-6 */ 4179 if (freq > 6425 && freq <= 6525) 4180 return 6; 4181 4182 /* UNII-7 */ 4183 if (freq > 6525 && freq <= 6875) 4184 return 7; 4185 4186 /* UNII-8 */ 4187 if (freq > 6875 && freq <= 7125) 4188 return 8; 4189 4190 return -EINVAL; 4191 } 4192 4193 bool regulatory_indoor_allowed(void) 4194 { 4195 return reg_is_indoor; 4196 } 4197 4198 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 4199 { 4200 const struct ieee80211_regdomain *regd = NULL; 4201 const struct ieee80211_regdomain *wiphy_regd = NULL; 4202 bool pre_cac_allowed = false; 4203 4204 rcu_read_lock(); 4205 4206 regd = rcu_dereference(cfg80211_regdomain); 4207 wiphy_regd = rcu_dereference(wiphy->regd); 4208 if (!wiphy_regd) { 4209 if (regd->dfs_region == NL80211_DFS_ETSI) 4210 pre_cac_allowed = true; 4211 4212 rcu_read_unlock(); 4213 4214 return pre_cac_allowed; 4215 } 4216 4217 if (regd->dfs_region == wiphy_regd->dfs_region && 4218 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 4219 pre_cac_allowed = true; 4220 4221 rcu_read_unlock(); 4222 4223 return pre_cac_allowed; 4224 } 4225 EXPORT_SYMBOL(regulatory_pre_cac_allowed); 4226 4227 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev) 4228 { 4229 struct wireless_dev *wdev; 4230 /* If we finished CAC or received radar, we should end any 4231 * CAC running on the same channels. 4232 * the check !cfg80211_chandef_dfs_usable contain 2 options: 4233 * either all channels are available - those the CAC_FINISHED 4234 * event has effected another wdev state, or there is a channel 4235 * in unavailable state in wdev chandef - those the RADAR_DETECTED 4236 * event has effected another wdev state. 4237 * In both cases we should end the CAC on the wdev. 4238 */ 4239 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 4240 struct cfg80211_chan_def *chandef; 4241 4242 if (!wdev->cac_started) 4243 continue; 4244 4245 /* FIXME: radar detection is tied to link 0 for now */ 4246 chandef = wdev_chandef(wdev, 0); 4247 if (!chandef) 4248 continue; 4249 4250 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef)) 4251 rdev_end_cac(rdev, wdev->netdev); 4252 } 4253 } 4254 4255 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 4256 struct cfg80211_chan_def *chandef, 4257 enum nl80211_dfs_state dfs_state, 4258 enum nl80211_radar_event event) 4259 { 4260 struct cfg80211_registered_device *rdev; 4261 4262 ASSERT_RTNL(); 4263 4264 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 4265 return; 4266 4267 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 4268 if (wiphy == &rdev->wiphy) 4269 continue; 4270 4271 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 4272 continue; 4273 4274 if (!ieee80211_get_channel(&rdev->wiphy, 4275 chandef->chan->center_freq)) 4276 continue; 4277 4278 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 4279 4280 if (event == NL80211_RADAR_DETECTED || 4281 event == NL80211_RADAR_CAC_FINISHED) { 4282 cfg80211_sched_dfs_chan_update(rdev); 4283 cfg80211_check_and_end_cac(rdev); 4284 } 4285 4286 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 4287 } 4288 } 4289 4290 static int __init regulatory_init_db(void) 4291 { 4292 int err; 4293 4294 /* 4295 * It's possible that - due to other bugs/issues - cfg80211 4296 * never called regulatory_init() below, or that it failed; 4297 * in that case, don't try to do any further work here as 4298 * it's doomed to lead to crashes. 4299 */ 4300 if (IS_ERR_OR_NULL(reg_pdev)) 4301 return -EINVAL; 4302 4303 err = load_builtin_regdb_keys(); 4304 if (err) 4305 return err; 4306 4307 /* We always try to get an update for the static regdomain */ 4308 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 4309 if (err) { 4310 if (err == -ENOMEM) { 4311 platform_device_unregister(reg_pdev); 4312 return err; 4313 } 4314 /* 4315 * N.B. kobject_uevent_env() can fail mainly for when we're out 4316 * memory which is handled and propagated appropriately above 4317 * but it can also fail during a netlink_broadcast() or during 4318 * early boot for call_usermodehelper(). For now treat these 4319 * errors as non-fatal. 4320 */ 4321 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 4322 } 4323 4324 /* 4325 * Finally, if the user set the module parameter treat it 4326 * as a user hint. 4327 */ 4328 if (!is_world_regdom(ieee80211_regdom)) 4329 regulatory_hint_user(ieee80211_regdom, 4330 NL80211_USER_REG_HINT_USER); 4331 4332 return 0; 4333 } 4334 #ifndef MODULE 4335 late_initcall(regulatory_init_db); 4336 #endif 4337 4338 int __init regulatory_init(void) 4339 { 4340 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 4341 if (IS_ERR(reg_pdev)) 4342 return PTR_ERR(reg_pdev); 4343 4344 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 4345 4346 user_alpha2[0] = '9'; 4347 user_alpha2[1] = '7'; 4348 4349 #ifdef MODULE 4350 return regulatory_init_db(); 4351 #else 4352 return 0; 4353 #endif 4354 } 4355 4356 void regulatory_exit(void) 4357 { 4358 struct regulatory_request *reg_request, *tmp; 4359 struct reg_beacon *reg_beacon, *btmp; 4360 4361 cancel_work_sync(®_work); 4362 cancel_crda_timeout_sync(); 4363 cancel_delayed_work_sync(®_check_chans); 4364 4365 /* Lock to suppress warnings */ 4366 rtnl_lock(); 4367 reset_regdomains(true, NULL); 4368 rtnl_unlock(); 4369 4370 dev_set_uevent_suppress(®_pdev->dev, true); 4371 4372 platform_device_unregister(reg_pdev); 4373 4374 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 4375 list_del(®_beacon->list); 4376 kfree(reg_beacon); 4377 } 4378 4379 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 4380 list_del(®_beacon->list); 4381 kfree(reg_beacon); 4382 } 4383 4384 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4385 list_del(®_request->list); 4386 kfree(reg_request); 4387 } 4388 4389 if (!IS_ERR_OR_NULL(regdb)) 4390 kfree(regdb); 4391 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4392 kfree(cfg80211_user_regdom); 4393 4394 free_regdb_keyring(); 4395 } 4396