1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static spinlock_t reg_indoor_lock; 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user); 135 136 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 137 { 138 return rcu_dereference_rtnl(cfg80211_regdomain); 139 } 140 141 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 142 { 143 return rcu_dereference_rtnl(wiphy->regd); 144 } 145 146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 147 { 148 switch (dfs_region) { 149 case NL80211_DFS_UNSET: 150 return "unset"; 151 case NL80211_DFS_FCC: 152 return "FCC"; 153 case NL80211_DFS_ETSI: 154 return "ETSI"; 155 case NL80211_DFS_JP: 156 return "JP"; 157 } 158 return "Unknown"; 159 } 160 161 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 162 { 163 const struct ieee80211_regdomain *regd = NULL; 164 const struct ieee80211_regdomain *wiphy_regd = NULL; 165 166 regd = get_cfg80211_regdom(); 167 if (!wiphy) 168 goto out; 169 170 wiphy_regd = get_wiphy_regdom(wiphy); 171 if (!wiphy_regd) 172 goto out; 173 174 if (wiphy_regd->dfs_region == regd->dfs_region) 175 goto out; 176 177 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 178 dev_name(&wiphy->dev), 179 reg_dfs_region_str(wiphy_regd->dfs_region), 180 reg_dfs_region_str(regd->dfs_region)); 181 182 out: 183 return regd->dfs_region; 184 } 185 186 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 187 { 188 if (!r) 189 return; 190 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 191 } 192 193 static struct regulatory_request *get_last_request(void) 194 { 195 return rcu_dereference_rtnl(last_request); 196 } 197 198 /* Used to queue up regulatory hints */ 199 static LIST_HEAD(reg_requests_list); 200 static spinlock_t reg_requests_lock; 201 202 /* Used to queue up beacon hints for review */ 203 static LIST_HEAD(reg_pending_beacons); 204 static spinlock_t reg_pending_beacons_lock; 205 206 /* Used to keep track of processed beacon hints */ 207 static LIST_HEAD(reg_beacon_list); 208 209 struct reg_beacon { 210 struct list_head list; 211 struct ieee80211_channel chan; 212 }; 213 214 static void reg_check_chans_work(struct work_struct *work); 215 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 216 217 static void reg_todo(struct work_struct *work); 218 static DECLARE_WORK(reg_work, reg_todo); 219 220 /* We keep a static world regulatory domain in case of the absence of CRDA */ 221 static const struct ieee80211_regdomain world_regdom = { 222 .n_reg_rules = 8, 223 .alpha2 = "00", 224 .reg_rules = { 225 /* IEEE 802.11b/g, channels 1..11 */ 226 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 227 /* IEEE 802.11b/g, channels 12..13. */ 228 REG_RULE(2467-10, 2472+10, 20, 6, 20, 229 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 230 /* IEEE 802.11 channel 14 - Only JP enables 231 * this and for 802.11b only */ 232 REG_RULE(2484-10, 2484+10, 20, 6, 20, 233 NL80211_RRF_NO_IR | 234 NL80211_RRF_NO_OFDM), 235 /* IEEE 802.11a, channel 36..48 */ 236 REG_RULE(5180-10, 5240+10, 80, 6, 20, 237 NL80211_RRF_NO_IR | 238 NL80211_RRF_AUTO_BW), 239 240 /* IEEE 802.11a, channel 52..64 - DFS required */ 241 REG_RULE(5260-10, 5320+10, 80, 6, 20, 242 NL80211_RRF_NO_IR | 243 NL80211_RRF_AUTO_BW | 244 NL80211_RRF_DFS), 245 246 /* IEEE 802.11a, channel 100..144 - DFS required */ 247 REG_RULE(5500-10, 5720+10, 160, 6, 20, 248 NL80211_RRF_NO_IR | 249 NL80211_RRF_DFS), 250 251 /* IEEE 802.11a, channel 149..165 */ 252 REG_RULE(5745-10, 5825+10, 80, 6, 20, 253 NL80211_RRF_NO_IR), 254 255 /* IEEE 802.11ad (60GHz), channels 1..3 */ 256 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 257 } 258 }; 259 260 /* protected by RTNL */ 261 static const struct ieee80211_regdomain *cfg80211_world_regdom = 262 &world_regdom; 263 264 static char *ieee80211_regdom = "00"; 265 static char user_alpha2[2]; 266 267 module_param(ieee80211_regdom, charp, 0444); 268 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 269 270 static void reg_free_request(struct regulatory_request *request) 271 { 272 if (request == &core_request_world) 273 return; 274 275 if (request != get_last_request()) 276 kfree(request); 277 } 278 279 static void reg_free_last_request(void) 280 { 281 struct regulatory_request *lr = get_last_request(); 282 283 if (lr != &core_request_world && lr) 284 kfree_rcu(lr, rcu_head); 285 } 286 287 static void reg_update_last_request(struct regulatory_request *request) 288 { 289 struct regulatory_request *lr; 290 291 lr = get_last_request(); 292 if (lr == request) 293 return; 294 295 reg_free_last_request(); 296 rcu_assign_pointer(last_request, request); 297 } 298 299 static void reset_regdomains(bool full_reset, 300 const struct ieee80211_regdomain *new_regdom) 301 { 302 const struct ieee80211_regdomain *r; 303 304 ASSERT_RTNL(); 305 306 r = get_cfg80211_regdom(); 307 308 /* avoid freeing static information or freeing something twice */ 309 if (r == cfg80211_world_regdom) 310 r = NULL; 311 if (cfg80211_world_regdom == &world_regdom) 312 cfg80211_world_regdom = NULL; 313 if (r == &world_regdom) 314 r = NULL; 315 316 rcu_free_regdom(r); 317 rcu_free_regdom(cfg80211_world_regdom); 318 319 cfg80211_world_regdom = &world_regdom; 320 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 321 322 if (!full_reset) 323 return; 324 325 reg_update_last_request(&core_request_world); 326 } 327 328 /* 329 * Dynamic world regulatory domain requested by the wireless 330 * core upon initialization 331 */ 332 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 333 { 334 struct regulatory_request *lr; 335 336 lr = get_last_request(); 337 338 WARN_ON(!lr); 339 340 reset_regdomains(false, rd); 341 342 cfg80211_world_regdom = rd; 343 } 344 345 bool is_world_regdom(const char *alpha2) 346 { 347 if (!alpha2) 348 return false; 349 return alpha2[0] == '0' && alpha2[1] == '0'; 350 } 351 352 static bool is_alpha2_set(const char *alpha2) 353 { 354 if (!alpha2) 355 return false; 356 return alpha2[0] && alpha2[1]; 357 } 358 359 static bool is_unknown_alpha2(const char *alpha2) 360 { 361 if (!alpha2) 362 return false; 363 /* 364 * Special case where regulatory domain was built by driver 365 * but a specific alpha2 cannot be determined 366 */ 367 return alpha2[0] == '9' && alpha2[1] == '9'; 368 } 369 370 static bool is_intersected_alpha2(const char *alpha2) 371 { 372 if (!alpha2) 373 return false; 374 /* 375 * Special case where regulatory domain is the 376 * result of an intersection between two regulatory domain 377 * structures 378 */ 379 return alpha2[0] == '9' && alpha2[1] == '8'; 380 } 381 382 static bool is_an_alpha2(const char *alpha2) 383 { 384 if (!alpha2) 385 return false; 386 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 387 } 388 389 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 390 { 391 if (!alpha2_x || !alpha2_y) 392 return false; 393 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 394 } 395 396 static bool regdom_changes(const char *alpha2) 397 { 398 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 399 400 if (!r) 401 return true; 402 return !alpha2_equal(r->alpha2, alpha2); 403 } 404 405 /* 406 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 407 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 408 * has ever been issued. 409 */ 410 static bool is_user_regdom_saved(void) 411 { 412 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 413 return false; 414 415 /* This would indicate a mistake on the design */ 416 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 417 "Unexpected user alpha2: %c%c\n", 418 user_alpha2[0], user_alpha2[1])) 419 return false; 420 421 return true; 422 } 423 424 static const struct ieee80211_regdomain * 425 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 426 { 427 struct ieee80211_regdomain *regd; 428 int size_of_regd, size_of_wmms; 429 unsigned int i; 430 struct ieee80211_wmm_rule *d_wmm, *s_wmm; 431 432 size_of_regd = 433 sizeof(struct ieee80211_regdomain) + 434 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); 435 size_of_wmms = src_regd->n_wmm_rules * 436 sizeof(struct ieee80211_wmm_rule); 437 438 regd = kzalloc(size_of_regd + size_of_wmms, GFP_KERNEL); 439 if (!regd) 440 return ERR_PTR(-ENOMEM); 441 442 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 443 444 d_wmm = (struct ieee80211_wmm_rule *)((u8 *)regd + size_of_regd); 445 s_wmm = (struct ieee80211_wmm_rule *)((u8 *)src_regd + size_of_regd); 446 memcpy(d_wmm, s_wmm, size_of_wmms); 447 448 for (i = 0; i < src_regd->n_reg_rules; i++) { 449 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 450 sizeof(struct ieee80211_reg_rule)); 451 if (!src_regd->reg_rules[i].wmm_rule) 452 continue; 453 454 regd->reg_rules[i].wmm_rule = d_wmm + 455 (src_regd->reg_rules[i].wmm_rule - s_wmm) / 456 sizeof(struct ieee80211_wmm_rule); 457 } 458 return regd; 459 } 460 461 struct reg_regdb_apply_request { 462 struct list_head list; 463 const struct ieee80211_regdomain *regdom; 464 }; 465 466 static LIST_HEAD(reg_regdb_apply_list); 467 static DEFINE_MUTEX(reg_regdb_apply_mutex); 468 469 static void reg_regdb_apply(struct work_struct *work) 470 { 471 struct reg_regdb_apply_request *request; 472 473 rtnl_lock(); 474 475 mutex_lock(®_regdb_apply_mutex); 476 while (!list_empty(®_regdb_apply_list)) { 477 request = list_first_entry(®_regdb_apply_list, 478 struct reg_regdb_apply_request, 479 list); 480 list_del(&request->list); 481 482 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 483 kfree(request); 484 } 485 mutex_unlock(®_regdb_apply_mutex); 486 487 rtnl_unlock(); 488 } 489 490 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 491 492 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 493 { 494 struct reg_regdb_apply_request *request; 495 496 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 497 if (!request) { 498 kfree(regdom); 499 return -ENOMEM; 500 } 501 502 request->regdom = regdom; 503 504 mutex_lock(®_regdb_apply_mutex); 505 list_add_tail(&request->list, ®_regdb_apply_list); 506 mutex_unlock(®_regdb_apply_mutex); 507 508 schedule_work(®_regdb_work); 509 return 0; 510 } 511 512 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 513 /* Max number of consecutive attempts to communicate with CRDA */ 514 #define REG_MAX_CRDA_TIMEOUTS 10 515 516 static u32 reg_crda_timeouts; 517 518 static void crda_timeout_work(struct work_struct *work); 519 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 520 521 static void crda_timeout_work(struct work_struct *work) 522 { 523 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 524 rtnl_lock(); 525 reg_crda_timeouts++; 526 restore_regulatory_settings(true); 527 rtnl_unlock(); 528 } 529 530 static void cancel_crda_timeout(void) 531 { 532 cancel_delayed_work(&crda_timeout); 533 } 534 535 static void cancel_crda_timeout_sync(void) 536 { 537 cancel_delayed_work_sync(&crda_timeout); 538 } 539 540 static void reset_crda_timeouts(void) 541 { 542 reg_crda_timeouts = 0; 543 } 544 545 /* 546 * This lets us keep regulatory code which is updated on a regulatory 547 * basis in userspace. 548 */ 549 static int call_crda(const char *alpha2) 550 { 551 char country[12]; 552 char *env[] = { country, NULL }; 553 int ret; 554 555 snprintf(country, sizeof(country), "COUNTRY=%c%c", 556 alpha2[0], alpha2[1]); 557 558 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 559 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 560 return -EINVAL; 561 } 562 563 if (!is_world_regdom((char *) alpha2)) 564 pr_debug("Calling CRDA for country: %c%c\n", 565 alpha2[0], alpha2[1]); 566 else 567 pr_debug("Calling CRDA to update world regulatory domain\n"); 568 569 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 570 if (ret) 571 return ret; 572 573 queue_delayed_work(system_power_efficient_wq, 574 &crda_timeout, msecs_to_jiffies(3142)); 575 return 0; 576 } 577 #else 578 static inline void cancel_crda_timeout(void) {} 579 static inline void cancel_crda_timeout_sync(void) {} 580 static inline void reset_crda_timeouts(void) {} 581 static inline int call_crda(const char *alpha2) 582 { 583 return -ENODATA; 584 } 585 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 586 587 /* code to directly load a firmware database through request_firmware */ 588 static const struct fwdb_header *regdb; 589 590 struct fwdb_country { 591 u8 alpha2[2]; 592 __be16 coll_ptr; 593 /* this struct cannot be extended */ 594 } __packed __aligned(4); 595 596 struct fwdb_collection { 597 u8 len; 598 u8 n_rules; 599 u8 dfs_region; 600 /* no optional data yet */ 601 /* aligned to 2, then followed by __be16 array of rule pointers */ 602 } __packed __aligned(4); 603 604 enum fwdb_flags { 605 FWDB_FLAG_NO_OFDM = BIT(0), 606 FWDB_FLAG_NO_OUTDOOR = BIT(1), 607 FWDB_FLAG_DFS = BIT(2), 608 FWDB_FLAG_NO_IR = BIT(3), 609 FWDB_FLAG_AUTO_BW = BIT(4), 610 }; 611 612 struct fwdb_wmm_ac { 613 u8 ecw; 614 u8 aifsn; 615 __be16 cot; 616 } __packed; 617 618 struct fwdb_wmm_rule { 619 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 620 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 621 } __packed; 622 623 struct fwdb_rule { 624 u8 len; 625 u8 flags; 626 __be16 max_eirp; 627 __be32 start, end, max_bw; 628 /* start of optional data */ 629 __be16 cac_timeout; 630 __be16 wmm_ptr; 631 } __packed __aligned(4); 632 633 #define FWDB_MAGIC 0x52474442 634 #define FWDB_VERSION 20 635 636 struct fwdb_header { 637 __be32 magic; 638 __be32 version; 639 struct fwdb_country country[]; 640 } __packed __aligned(4); 641 642 static int ecw2cw(int ecw) 643 { 644 return (1 << ecw) - 1; 645 } 646 647 static bool valid_wmm(struct fwdb_wmm_rule *rule) 648 { 649 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 650 int i; 651 652 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 653 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 654 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 655 u8 aifsn = ac[i].aifsn; 656 657 if (cw_min >= cw_max) 658 return false; 659 660 if (aifsn < 1) 661 return false; 662 } 663 664 return true; 665 } 666 667 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 668 { 669 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 670 671 if ((u8 *)rule + sizeof(rule->len) > data + size) 672 return false; 673 674 /* mandatory fields */ 675 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 676 return false; 677 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 678 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 679 struct fwdb_wmm_rule *wmm; 680 681 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 682 return false; 683 684 wmm = (void *)(data + wmm_ptr); 685 686 if (!valid_wmm(wmm)) 687 return false; 688 } 689 return true; 690 } 691 692 static bool valid_country(const u8 *data, unsigned int size, 693 const struct fwdb_country *country) 694 { 695 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 696 struct fwdb_collection *coll = (void *)(data + ptr); 697 __be16 *rules_ptr; 698 unsigned int i; 699 700 /* make sure we can read len/n_rules */ 701 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 702 return false; 703 704 /* make sure base struct and all rules fit */ 705 if ((u8 *)coll + ALIGN(coll->len, 2) + 706 (coll->n_rules * 2) > data + size) 707 return false; 708 709 /* mandatory fields must exist */ 710 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 711 return false; 712 713 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 714 715 for (i = 0; i < coll->n_rules; i++) { 716 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 717 718 if (!valid_rule(data, size, rule_ptr)) 719 return false; 720 } 721 722 return true; 723 } 724 725 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 726 static struct key *builtin_regdb_keys; 727 728 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen) 729 { 730 const u8 *end = p + buflen; 731 size_t plen; 732 key_ref_t key; 733 734 while (p < end) { 735 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more 736 * than 256 bytes in size. 737 */ 738 if (end - p < 4) 739 goto dodgy_cert; 740 if (p[0] != 0x30 && 741 p[1] != 0x82) 742 goto dodgy_cert; 743 plen = (p[2] << 8) | p[3]; 744 plen += 4; 745 if (plen > end - p) 746 goto dodgy_cert; 747 748 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1), 749 "asymmetric", NULL, p, plen, 750 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 751 KEY_USR_VIEW | KEY_USR_READ), 752 KEY_ALLOC_NOT_IN_QUOTA | 753 KEY_ALLOC_BUILT_IN | 754 KEY_ALLOC_BYPASS_RESTRICTION); 755 if (IS_ERR(key)) { 756 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n", 757 PTR_ERR(key)); 758 } else { 759 pr_notice("Loaded X.509 cert '%s'\n", 760 key_ref_to_ptr(key)->description); 761 key_ref_put(key); 762 } 763 p += plen; 764 } 765 766 return; 767 768 dodgy_cert: 769 pr_err("Problem parsing in-kernel X.509 certificate list\n"); 770 } 771 772 static int __init load_builtin_regdb_keys(void) 773 { 774 builtin_regdb_keys = 775 keyring_alloc(".builtin_regdb_keys", 776 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 777 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 778 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 779 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 780 if (IS_ERR(builtin_regdb_keys)) 781 return PTR_ERR(builtin_regdb_keys); 782 783 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 784 785 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 786 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len); 787 #endif 788 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 789 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 790 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len); 791 #endif 792 793 return 0; 794 } 795 796 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 797 { 798 const struct firmware *sig; 799 bool result; 800 801 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 802 return false; 803 804 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 805 builtin_regdb_keys, 806 VERIFYING_UNSPECIFIED_SIGNATURE, 807 NULL, NULL) == 0; 808 809 release_firmware(sig); 810 811 return result; 812 } 813 814 static void free_regdb_keyring(void) 815 { 816 key_put(builtin_regdb_keys); 817 } 818 #else 819 static int load_builtin_regdb_keys(void) 820 { 821 return 0; 822 } 823 824 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 825 { 826 return true; 827 } 828 829 static void free_regdb_keyring(void) 830 { 831 } 832 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 833 834 static bool valid_regdb(const u8 *data, unsigned int size) 835 { 836 const struct fwdb_header *hdr = (void *)data; 837 const struct fwdb_country *country; 838 839 if (size < sizeof(*hdr)) 840 return false; 841 842 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 843 return false; 844 845 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 846 return false; 847 848 if (!regdb_has_valid_signature(data, size)) 849 return false; 850 851 country = &hdr->country[0]; 852 while ((u8 *)(country + 1) <= data + size) { 853 if (!country->coll_ptr) 854 break; 855 if (!valid_country(data, size, country)) 856 return false; 857 country++; 858 } 859 860 return true; 861 } 862 863 static void set_wmm_rule(struct ieee80211_wmm_rule *rule, 864 struct fwdb_wmm_rule *wmm) 865 { 866 unsigned int i; 867 868 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 869 rule->client[i].cw_min = 870 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 871 rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 872 rule->client[i].aifsn = wmm->client[i].aifsn; 873 rule->client[i].cot = 1000 * be16_to_cpu(wmm->client[i].cot); 874 rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 875 rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 876 rule->ap[i].aifsn = wmm->ap[i].aifsn; 877 rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 878 } 879 } 880 881 static int __regdb_query_wmm(const struct fwdb_header *db, 882 const struct fwdb_country *country, int freq, 883 u32 *dbptr, struct ieee80211_wmm_rule *rule) 884 { 885 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 886 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 887 int i; 888 889 for (i = 0; i < coll->n_rules; i++) { 890 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 891 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 892 struct fwdb_rule *rrule = (void *)((u8 *)db + rule_ptr); 893 struct fwdb_wmm_rule *wmm; 894 unsigned int wmm_ptr; 895 896 if (rrule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 897 continue; 898 899 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rrule->start)) && 900 freq <= KHZ_TO_MHZ(be32_to_cpu(rrule->end))) { 901 wmm_ptr = be16_to_cpu(rrule->wmm_ptr) << 2; 902 wmm = (void *)((u8 *)db + wmm_ptr); 903 set_wmm_rule(rule, wmm); 904 if (dbptr) 905 *dbptr = wmm_ptr; 906 return 0; 907 } 908 } 909 910 return -ENODATA; 911 } 912 913 int reg_query_regdb_wmm(char *alpha2, int freq, u32 *dbptr, 914 struct ieee80211_wmm_rule *rule) 915 { 916 const struct fwdb_header *hdr = regdb; 917 const struct fwdb_country *country; 918 919 if (IS_ERR(regdb)) 920 return PTR_ERR(regdb); 921 922 country = &hdr->country[0]; 923 while (country->coll_ptr) { 924 if (alpha2_equal(alpha2, country->alpha2)) 925 return __regdb_query_wmm(regdb, country, freq, dbptr, 926 rule); 927 928 country++; 929 } 930 931 return -ENODATA; 932 } 933 EXPORT_SYMBOL(reg_query_regdb_wmm); 934 935 struct wmm_ptrs { 936 struct ieee80211_wmm_rule *rule; 937 u32 ptr; 938 }; 939 940 static struct ieee80211_wmm_rule *find_wmm_ptr(struct wmm_ptrs *wmm_ptrs, 941 u32 wmm_ptr, int n_wmms) 942 { 943 int i; 944 945 for (i = 0; i < n_wmms; i++) { 946 if (wmm_ptrs[i].ptr == wmm_ptr) 947 return wmm_ptrs[i].rule; 948 } 949 return NULL; 950 } 951 952 static int regdb_query_country(const struct fwdb_header *db, 953 const struct fwdb_country *country) 954 { 955 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 956 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 957 struct ieee80211_regdomain *regdom; 958 struct ieee80211_regdomain *tmp_rd; 959 unsigned int size_of_regd, i, n_wmms = 0; 960 struct wmm_ptrs *wmm_ptrs; 961 962 size_of_regd = sizeof(struct ieee80211_regdomain) + 963 coll->n_rules * sizeof(struct ieee80211_reg_rule); 964 965 regdom = kzalloc(size_of_regd, GFP_KERNEL); 966 if (!regdom) 967 return -ENOMEM; 968 969 wmm_ptrs = kcalloc(coll->n_rules, sizeof(*wmm_ptrs), GFP_KERNEL); 970 if (!wmm_ptrs) { 971 kfree(regdom); 972 return -ENOMEM; 973 } 974 975 regdom->n_reg_rules = coll->n_rules; 976 regdom->alpha2[0] = country->alpha2[0]; 977 regdom->alpha2[1] = country->alpha2[1]; 978 regdom->dfs_region = coll->dfs_region; 979 980 for (i = 0; i < regdom->n_reg_rules; i++) { 981 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 982 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 983 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 984 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 985 986 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 987 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 988 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 989 990 rrule->power_rule.max_antenna_gain = 0; 991 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 992 993 rrule->flags = 0; 994 if (rule->flags & FWDB_FLAG_NO_OFDM) 995 rrule->flags |= NL80211_RRF_NO_OFDM; 996 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 997 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 998 if (rule->flags & FWDB_FLAG_DFS) 999 rrule->flags |= NL80211_RRF_DFS; 1000 if (rule->flags & FWDB_FLAG_NO_IR) 1001 rrule->flags |= NL80211_RRF_NO_IR; 1002 if (rule->flags & FWDB_FLAG_AUTO_BW) 1003 rrule->flags |= NL80211_RRF_AUTO_BW; 1004 1005 rrule->dfs_cac_ms = 0; 1006 1007 /* handle optional data */ 1008 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 1009 rrule->dfs_cac_ms = 1010 1000 * be16_to_cpu(rule->cac_timeout); 1011 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 1012 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 1013 struct ieee80211_wmm_rule *wmm_pos = 1014 find_wmm_ptr(wmm_ptrs, wmm_ptr, n_wmms); 1015 struct fwdb_wmm_rule *wmm; 1016 struct ieee80211_wmm_rule *wmm_rule; 1017 1018 if (wmm_pos) { 1019 rrule->wmm_rule = wmm_pos; 1020 continue; 1021 } 1022 wmm = (void *)((u8 *)db + wmm_ptr); 1023 tmp_rd = krealloc(regdom, size_of_regd + (n_wmms + 1) * 1024 sizeof(struct ieee80211_wmm_rule), 1025 GFP_KERNEL); 1026 1027 if (!tmp_rd) { 1028 kfree(regdom); 1029 return -ENOMEM; 1030 } 1031 regdom = tmp_rd; 1032 1033 wmm_rule = (struct ieee80211_wmm_rule *) 1034 ((u8 *)regdom + size_of_regd + n_wmms * 1035 sizeof(struct ieee80211_wmm_rule)); 1036 1037 set_wmm_rule(wmm_rule, wmm); 1038 wmm_ptrs[n_wmms].ptr = wmm_ptr; 1039 wmm_ptrs[n_wmms++].rule = wmm_rule; 1040 } 1041 } 1042 kfree(wmm_ptrs); 1043 1044 return reg_schedule_apply(regdom); 1045 } 1046 1047 static int query_regdb(const char *alpha2) 1048 { 1049 const struct fwdb_header *hdr = regdb; 1050 const struct fwdb_country *country; 1051 1052 ASSERT_RTNL(); 1053 1054 if (IS_ERR(regdb)) 1055 return PTR_ERR(regdb); 1056 1057 country = &hdr->country[0]; 1058 while (country->coll_ptr) { 1059 if (alpha2_equal(alpha2, country->alpha2)) 1060 return regdb_query_country(regdb, country); 1061 country++; 1062 } 1063 1064 return -ENODATA; 1065 } 1066 1067 static void regdb_fw_cb(const struct firmware *fw, void *context) 1068 { 1069 int set_error = 0; 1070 bool restore = true; 1071 void *db; 1072 1073 if (!fw) { 1074 pr_info("failed to load regulatory.db\n"); 1075 set_error = -ENODATA; 1076 } else if (!valid_regdb(fw->data, fw->size)) { 1077 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1078 set_error = -EINVAL; 1079 } 1080 1081 rtnl_lock(); 1082 if (WARN_ON(regdb && !IS_ERR(regdb))) { 1083 /* just restore and free new db */ 1084 } else if (set_error) { 1085 regdb = ERR_PTR(set_error); 1086 } else if (fw) { 1087 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1088 if (db) { 1089 regdb = db; 1090 restore = context && query_regdb(context); 1091 } else { 1092 restore = true; 1093 } 1094 } 1095 1096 if (restore) 1097 restore_regulatory_settings(true); 1098 1099 rtnl_unlock(); 1100 1101 kfree(context); 1102 1103 release_firmware(fw); 1104 } 1105 1106 static int query_regdb_file(const char *alpha2) 1107 { 1108 ASSERT_RTNL(); 1109 1110 if (regdb) 1111 return query_regdb(alpha2); 1112 1113 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1114 if (!alpha2) 1115 return -ENOMEM; 1116 1117 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1118 ®_pdev->dev, GFP_KERNEL, 1119 (void *)alpha2, regdb_fw_cb); 1120 } 1121 1122 int reg_reload_regdb(void) 1123 { 1124 const struct firmware *fw; 1125 void *db; 1126 int err; 1127 1128 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1129 if (err) 1130 return err; 1131 1132 if (!valid_regdb(fw->data, fw->size)) { 1133 err = -ENODATA; 1134 goto out; 1135 } 1136 1137 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1138 if (!db) { 1139 err = -ENOMEM; 1140 goto out; 1141 } 1142 1143 rtnl_lock(); 1144 if (!IS_ERR_OR_NULL(regdb)) 1145 kfree(regdb); 1146 regdb = db; 1147 rtnl_unlock(); 1148 1149 out: 1150 release_firmware(fw); 1151 return err; 1152 } 1153 1154 static bool reg_query_database(struct regulatory_request *request) 1155 { 1156 if (query_regdb_file(request->alpha2) == 0) 1157 return true; 1158 1159 if (call_crda(request->alpha2) == 0) 1160 return true; 1161 1162 return false; 1163 } 1164 1165 bool reg_is_valid_request(const char *alpha2) 1166 { 1167 struct regulatory_request *lr = get_last_request(); 1168 1169 if (!lr || lr->processed) 1170 return false; 1171 1172 return alpha2_equal(lr->alpha2, alpha2); 1173 } 1174 1175 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1176 { 1177 struct regulatory_request *lr = get_last_request(); 1178 1179 /* 1180 * Follow the driver's regulatory domain, if present, unless a country 1181 * IE has been processed or a user wants to help complaince further 1182 */ 1183 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1184 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1185 wiphy->regd) 1186 return get_wiphy_regdom(wiphy); 1187 1188 return get_cfg80211_regdom(); 1189 } 1190 1191 static unsigned int 1192 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1193 const struct ieee80211_reg_rule *rule) 1194 { 1195 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1196 const struct ieee80211_freq_range *freq_range_tmp; 1197 const struct ieee80211_reg_rule *tmp; 1198 u32 start_freq, end_freq, idx, no; 1199 1200 for (idx = 0; idx < rd->n_reg_rules; idx++) 1201 if (rule == &rd->reg_rules[idx]) 1202 break; 1203 1204 if (idx == rd->n_reg_rules) 1205 return 0; 1206 1207 /* get start_freq */ 1208 no = idx; 1209 1210 while (no) { 1211 tmp = &rd->reg_rules[--no]; 1212 freq_range_tmp = &tmp->freq_range; 1213 1214 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1215 break; 1216 1217 freq_range = freq_range_tmp; 1218 } 1219 1220 start_freq = freq_range->start_freq_khz; 1221 1222 /* get end_freq */ 1223 freq_range = &rule->freq_range; 1224 no = idx; 1225 1226 while (no < rd->n_reg_rules - 1) { 1227 tmp = &rd->reg_rules[++no]; 1228 freq_range_tmp = &tmp->freq_range; 1229 1230 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1231 break; 1232 1233 freq_range = freq_range_tmp; 1234 } 1235 1236 end_freq = freq_range->end_freq_khz; 1237 1238 return end_freq - start_freq; 1239 } 1240 1241 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1242 const struct ieee80211_reg_rule *rule) 1243 { 1244 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1245 1246 if (rule->flags & NL80211_RRF_NO_160MHZ) 1247 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1248 if (rule->flags & NL80211_RRF_NO_80MHZ) 1249 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1250 1251 /* 1252 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1253 * are not allowed. 1254 */ 1255 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1256 rule->flags & NL80211_RRF_NO_HT40PLUS) 1257 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1258 1259 return bw; 1260 } 1261 1262 /* Sanity check on a regulatory rule */ 1263 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1264 { 1265 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1266 u32 freq_diff; 1267 1268 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1269 return false; 1270 1271 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1272 return false; 1273 1274 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1275 1276 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1277 freq_range->max_bandwidth_khz > freq_diff) 1278 return false; 1279 1280 return true; 1281 } 1282 1283 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1284 { 1285 const struct ieee80211_reg_rule *reg_rule = NULL; 1286 unsigned int i; 1287 1288 if (!rd->n_reg_rules) 1289 return false; 1290 1291 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1292 return false; 1293 1294 for (i = 0; i < rd->n_reg_rules; i++) { 1295 reg_rule = &rd->reg_rules[i]; 1296 if (!is_valid_reg_rule(reg_rule)) 1297 return false; 1298 } 1299 1300 return true; 1301 } 1302 1303 /** 1304 * freq_in_rule_band - tells us if a frequency is in a frequency band 1305 * @freq_range: frequency rule we want to query 1306 * @freq_khz: frequency we are inquiring about 1307 * 1308 * This lets us know if a specific frequency rule is or is not relevant to 1309 * a specific frequency's band. Bands are device specific and artificial 1310 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1311 * however it is safe for now to assume that a frequency rule should not be 1312 * part of a frequency's band if the start freq or end freq are off by more 1313 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the 1314 * 60 GHz band. 1315 * This resolution can be lowered and should be considered as we add 1316 * regulatory rule support for other "bands". 1317 **/ 1318 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1319 u32 freq_khz) 1320 { 1321 #define ONE_GHZ_IN_KHZ 1000000 1322 /* 1323 * From 802.11ad: directional multi-gigabit (DMG): 1324 * Pertaining to operation in a frequency band containing a channel 1325 * with the Channel starting frequency above 45 GHz. 1326 */ 1327 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1328 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1329 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1330 return true; 1331 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1332 return true; 1333 return false; 1334 #undef ONE_GHZ_IN_KHZ 1335 } 1336 1337 /* 1338 * Later on we can perhaps use the more restrictive DFS 1339 * region but we don't have information for that yet so 1340 * for now simply disallow conflicts. 1341 */ 1342 static enum nl80211_dfs_regions 1343 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1344 const enum nl80211_dfs_regions dfs_region2) 1345 { 1346 if (dfs_region1 != dfs_region2) 1347 return NL80211_DFS_UNSET; 1348 return dfs_region1; 1349 } 1350 1351 /* 1352 * Helper for regdom_intersect(), this does the real 1353 * mathematical intersection fun 1354 */ 1355 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1356 const struct ieee80211_regdomain *rd2, 1357 const struct ieee80211_reg_rule *rule1, 1358 const struct ieee80211_reg_rule *rule2, 1359 struct ieee80211_reg_rule *intersected_rule) 1360 { 1361 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1362 struct ieee80211_freq_range *freq_range; 1363 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1364 struct ieee80211_power_rule *power_rule; 1365 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1366 1367 freq_range1 = &rule1->freq_range; 1368 freq_range2 = &rule2->freq_range; 1369 freq_range = &intersected_rule->freq_range; 1370 1371 power_rule1 = &rule1->power_rule; 1372 power_rule2 = &rule2->power_rule; 1373 power_rule = &intersected_rule->power_rule; 1374 1375 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1376 freq_range2->start_freq_khz); 1377 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1378 freq_range2->end_freq_khz); 1379 1380 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1381 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1382 1383 if (rule1->flags & NL80211_RRF_AUTO_BW) 1384 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1385 if (rule2->flags & NL80211_RRF_AUTO_BW) 1386 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1387 1388 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1389 1390 intersected_rule->flags = rule1->flags | rule2->flags; 1391 1392 /* 1393 * In case NL80211_RRF_AUTO_BW requested for both rules 1394 * set AUTO_BW in intersected rule also. Next we will 1395 * calculate BW correctly in handle_channel function. 1396 * In other case remove AUTO_BW flag while we calculate 1397 * maximum bandwidth correctly and auto calculation is 1398 * not required. 1399 */ 1400 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1401 (rule2->flags & NL80211_RRF_AUTO_BW)) 1402 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1403 else 1404 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1405 1406 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1407 if (freq_range->max_bandwidth_khz > freq_diff) 1408 freq_range->max_bandwidth_khz = freq_diff; 1409 1410 power_rule->max_eirp = min(power_rule1->max_eirp, 1411 power_rule2->max_eirp); 1412 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1413 power_rule2->max_antenna_gain); 1414 1415 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1416 rule2->dfs_cac_ms); 1417 1418 if (!is_valid_reg_rule(intersected_rule)) 1419 return -EINVAL; 1420 1421 return 0; 1422 } 1423 1424 /* check whether old rule contains new rule */ 1425 static bool rule_contains(struct ieee80211_reg_rule *r1, 1426 struct ieee80211_reg_rule *r2) 1427 { 1428 /* for simplicity, currently consider only same flags */ 1429 if (r1->flags != r2->flags) 1430 return false; 1431 1432 /* verify r1 is more restrictive */ 1433 if ((r1->power_rule.max_antenna_gain > 1434 r2->power_rule.max_antenna_gain) || 1435 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1436 return false; 1437 1438 /* make sure r2's range is contained within r1 */ 1439 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1440 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1441 return false; 1442 1443 /* and finally verify that r1.max_bw >= r2.max_bw */ 1444 if (r1->freq_range.max_bandwidth_khz < 1445 r2->freq_range.max_bandwidth_khz) 1446 return false; 1447 1448 return true; 1449 } 1450 1451 /* add or extend current rules. do nothing if rule is already contained */ 1452 static void add_rule(struct ieee80211_reg_rule *rule, 1453 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1454 { 1455 struct ieee80211_reg_rule *tmp_rule; 1456 int i; 1457 1458 for (i = 0; i < *n_rules; i++) { 1459 tmp_rule = ®_rules[i]; 1460 /* rule is already contained - do nothing */ 1461 if (rule_contains(tmp_rule, rule)) 1462 return; 1463 1464 /* extend rule if possible */ 1465 if (rule_contains(rule, tmp_rule)) { 1466 memcpy(tmp_rule, rule, sizeof(*rule)); 1467 return; 1468 } 1469 } 1470 1471 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1472 (*n_rules)++; 1473 } 1474 1475 /** 1476 * regdom_intersect - do the intersection between two regulatory domains 1477 * @rd1: first regulatory domain 1478 * @rd2: second regulatory domain 1479 * 1480 * Use this function to get the intersection between two regulatory domains. 1481 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1482 * as no one single alpha2 can represent this regulatory domain. 1483 * 1484 * Returns a pointer to the regulatory domain structure which will hold the 1485 * resulting intersection of rules between rd1 and rd2. We will 1486 * kzalloc() this structure for you. 1487 */ 1488 static struct ieee80211_regdomain * 1489 regdom_intersect(const struct ieee80211_regdomain *rd1, 1490 const struct ieee80211_regdomain *rd2) 1491 { 1492 int r, size_of_regd; 1493 unsigned int x, y; 1494 unsigned int num_rules = 0; 1495 const struct ieee80211_reg_rule *rule1, *rule2; 1496 struct ieee80211_reg_rule intersected_rule; 1497 struct ieee80211_regdomain *rd; 1498 1499 if (!rd1 || !rd2) 1500 return NULL; 1501 1502 /* 1503 * First we get a count of the rules we'll need, then we actually 1504 * build them. This is to so we can malloc() and free() a 1505 * regdomain once. The reason we use reg_rules_intersect() here 1506 * is it will return -EINVAL if the rule computed makes no sense. 1507 * All rules that do check out OK are valid. 1508 */ 1509 1510 for (x = 0; x < rd1->n_reg_rules; x++) { 1511 rule1 = &rd1->reg_rules[x]; 1512 for (y = 0; y < rd2->n_reg_rules; y++) { 1513 rule2 = &rd2->reg_rules[y]; 1514 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1515 &intersected_rule)) 1516 num_rules++; 1517 } 1518 } 1519 1520 if (!num_rules) 1521 return NULL; 1522 1523 size_of_regd = sizeof(struct ieee80211_regdomain) + 1524 num_rules * sizeof(struct ieee80211_reg_rule); 1525 1526 rd = kzalloc(size_of_regd, GFP_KERNEL); 1527 if (!rd) 1528 return NULL; 1529 1530 for (x = 0; x < rd1->n_reg_rules; x++) { 1531 rule1 = &rd1->reg_rules[x]; 1532 for (y = 0; y < rd2->n_reg_rules; y++) { 1533 rule2 = &rd2->reg_rules[y]; 1534 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1535 &intersected_rule); 1536 /* 1537 * No need to memset here the intersected rule here as 1538 * we're not using the stack anymore 1539 */ 1540 if (r) 1541 continue; 1542 1543 add_rule(&intersected_rule, rd->reg_rules, 1544 &rd->n_reg_rules); 1545 } 1546 } 1547 1548 rd->alpha2[0] = '9'; 1549 rd->alpha2[1] = '8'; 1550 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1551 rd2->dfs_region); 1552 1553 return rd; 1554 } 1555 1556 /* 1557 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1558 * want to just have the channel structure use these 1559 */ 1560 static u32 map_regdom_flags(u32 rd_flags) 1561 { 1562 u32 channel_flags = 0; 1563 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1564 channel_flags |= IEEE80211_CHAN_NO_IR; 1565 if (rd_flags & NL80211_RRF_DFS) 1566 channel_flags |= IEEE80211_CHAN_RADAR; 1567 if (rd_flags & NL80211_RRF_NO_OFDM) 1568 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1569 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1570 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1571 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1572 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1573 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1574 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1575 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1576 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1577 if (rd_flags & NL80211_RRF_NO_80MHZ) 1578 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1579 if (rd_flags & NL80211_RRF_NO_160MHZ) 1580 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1581 return channel_flags; 1582 } 1583 1584 static const struct ieee80211_reg_rule * 1585 freq_reg_info_regd(u32 center_freq, 1586 const struct ieee80211_regdomain *regd, u32 bw) 1587 { 1588 int i; 1589 bool band_rule_found = false; 1590 bool bw_fits = false; 1591 1592 if (!regd) 1593 return ERR_PTR(-EINVAL); 1594 1595 for (i = 0; i < regd->n_reg_rules; i++) { 1596 const struct ieee80211_reg_rule *rr; 1597 const struct ieee80211_freq_range *fr = NULL; 1598 1599 rr = ®d->reg_rules[i]; 1600 fr = &rr->freq_range; 1601 1602 /* 1603 * We only need to know if one frequency rule was 1604 * was in center_freq's band, that's enough, so lets 1605 * not overwrite it once found 1606 */ 1607 if (!band_rule_found) 1608 band_rule_found = freq_in_rule_band(fr, center_freq); 1609 1610 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1611 1612 if (band_rule_found && bw_fits) 1613 return rr; 1614 } 1615 1616 if (!band_rule_found) 1617 return ERR_PTR(-ERANGE); 1618 1619 return ERR_PTR(-EINVAL); 1620 } 1621 1622 static const struct ieee80211_reg_rule * 1623 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1624 { 1625 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1626 const struct ieee80211_reg_rule *reg_rule = NULL; 1627 u32 bw; 1628 1629 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 1630 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1631 if (!IS_ERR(reg_rule)) 1632 return reg_rule; 1633 } 1634 1635 return reg_rule; 1636 } 1637 1638 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1639 u32 center_freq) 1640 { 1641 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20)); 1642 } 1643 EXPORT_SYMBOL(freq_reg_info); 1644 1645 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1646 { 1647 switch (initiator) { 1648 case NL80211_REGDOM_SET_BY_CORE: 1649 return "core"; 1650 case NL80211_REGDOM_SET_BY_USER: 1651 return "user"; 1652 case NL80211_REGDOM_SET_BY_DRIVER: 1653 return "driver"; 1654 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1655 return "country IE"; 1656 default: 1657 WARN_ON(1); 1658 return "bug"; 1659 } 1660 } 1661 EXPORT_SYMBOL(reg_initiator_name); 1662 1663 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1664 const struct ieee80211_reg_rule *reg_rule, 1665 const struct ieee80211_channel *chan) 1666 { 1667 const struct ieee80211_freq_range *freq_range = NULL; 1668 u32 max_bandwidth_khz, bw_flags = 0; 1669 1670 freq_range = ®_rule->freq_range; 1671 1672 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1673 /* Check if auto calculation requested */ 1674 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1675 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1676 1677 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1678 if (!cfg80211_does_bw_fit_range(freq_range, 1679 MHZ_TO_KHZ(chan->center_freq), 1680 MHZ_TO_KHZ(10))) 1681 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1682 if (!cfg80211_does_bw_fit_range(freq_range, 1683 MHZ_TO_KHZ(chan->center_freq), 1684 MHZ_TO_KHZ(20))) 1685 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1686 1687 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1688 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1689 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1690 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1691 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1692 bw_flags |= IEEE80211_CHAN_NO_HT40; 1693 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1694 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1695 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1696 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1697 return bw_flags; 1698 } 1699 1700 /* 1701 * Note that right now we assume the desired channel bandwidth 1702 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1703 * per channel, the primary and the extension channel). 1704 */ 1705 static void handle_channel(struct wiphy *wiphy, 1706 enum nl80211_reg_initiator initiator, 1707 struct ieee80211_channel *chan) 1708 { 1709 u32 flags, bw_flags = 0; 1710 const struct ieee80211_reg_rule *reg_rule = NULL; 1711 const struct ieee80211_power_rule *power_rule = NULL; 1712 struct wiphy *request_wiphy = NULL; 1713 struct regulatory_request *lr = get_last_request(); 1714 const struct ieee80211_regdomain *regd; 1715 1716 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1717 1718 flags = chan->orig_flags; 1719 1720 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 1721 if (IS_ERR(reg_rule)) { 1722 /* 1723 * We will disable all channels that do not match our 1724 * received regulatory rule unless the hint is coming 1725 * from a Country IE and the Country IE had no information 1726 * about a band. The IEEE 802.11 spec allows for an AP 1727 * to send only a subset of the regulatory rules allowed, 1728 * so an AP in the US that only supports 2.4 GHz may only send 1729 * a country IE with information for the 2.4 GHz band 1730 * while 5 GHz is still supported. 1731 */ 1732 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1733 PTR_ERR(reg_rule) == -ERANGE) 1734 return; 1735 1736 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1737 request_wiphy && request_wiphy == wiphy && 1738 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1739 pr_debug("Disabling freq %d MHz for good\n", 1740 chan->center_freq); 1741 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1742 chan->flags = chan->orig_flags; 1743 } else { 1744 pr_debug("Disabling freq %d MHz\n", 1745 chan->center_freq); 1746 chan->flags |= IEEE80211_CHAN_DISABLED; 1747 } 1748 return; 1749 } 1750 1751 regd = reg_get_regdomain(wiphy); 1752 1753 power_rule = ®_rule->power_rule; 1754 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1755 1756 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1757 request_wiphy && request_wiphy == wiphy && 1758 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1759 /* 1760 * This guarantees the driver's requested regulatory domain 1761 * will always be used as a base for further regulatory 1762 * settings 1763 */ 1764 chan->flags = chan->orig_flags = 1765 map_regdom_flags(reg_rule->flags) | bw_flags; 1766 chan->max_antenna_gain = chan->orig_mag = 1767 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1768 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1769 (int) MBM_TO_DBM(power_rule->max_eirp); 1770 1771 if (chan->flags & IEEE80211_CHAN_RADAR) { 1772 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1773 if (reg_rule->dfs_cac_ms) 1774 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1775 } 1776 1777 return; 1778 } 1779 1780 chan->dfs_state = NL80211_DFS_USABLE; 1781 chan->dfs_state_entered = jiffies; 1782 1783 chan->beacon_found = false; 1784 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1785 chan->max_antenna_gain = 1786 min_t(int, chan->orig_mag, 1787 MBI_TO_DBI(power_rule->max_antenna_gain)); 1788 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1789 1790 if (chan->flags & IEEE80211_CHAN_RADAR) { 1791 if (reg_rule->dfs_cac_ms) 1792 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1793 else 1794 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1795 } 1796 1797 if (chan->orig_mpwr) { 1798 /* 1799 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1800 * will always follow the passed country IE power settings. 1801 */ 1802 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1803 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1804 chan->max_power = chan->max_reg_power; 1805 else 1806 chan->max_power = min(chan->orig_mpwr, 1807 chan->max_reg_power); 1808 } else 1809 chan->max_power = chan->max_reg_power; 1810 } 1811 1812 static void handle_band(struct wiphy *wiphy, 1813 enum nl80211_reg_initiator initiator, 1814 struct ieee80211_supported_band *sband) 1815 { 1816 unsigned int i; 1817 1818 if (!sband) 1819 return; 1820 1821 for (i = 0; i < sband->n_channels; i++) 1822 handle_channel(wiphy, initiator, &sband->channels[i]); 1823 } 1824 1825 static bool reg_request_cell_base(struct regulatory_request *request) 1826 { 1827 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1828 return false; 1829 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 1830 } 1831 1832 bool reg_last_request_cell_base(void) 1833 { 1834 return reg_request_cell_base(get_last_request()); 1835 } 1836 1837 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 1838 /* Core specific check */ 1839 static enum reg_request_treatment 1840 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1841 { 1842 struct regulatory_request *lr = get_last_request(); 1843 1844 if (!reg_num_devs_support_basehint) 1845 return REG_REQ_IGNORE; 1846 1847 if (reg_request_cell_base(lr) && 1848 !regdom_changes(pending_request->alpha2)) 1849 return REG_REQ_ALREADY_SET; 1850 1851 return REG_REQ_OK; 1852 } 1853 1854 /* Device specific check */ 1855 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1856 { 1857 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 1858 } 1859 #else 1860 static enum reg_request_treatment 1861 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1862 { 1863 return REG_REQ_IGNORE; 1864 } 1865 1866 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1867 { 1868 return true; 1869 } 1870 #endif 1871 1872 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 1873 { 1874 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 1875 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 1876 return true; 1877 return false; 1878 } 1879 1880 static bool ignore_reg_update(struct wiphy *wiphy, 1881 enum nl80211_reg_initiator initiator) 1882 { 1883 struct regulatory_request *lr = get_last_request(); 1884 1885 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 1886 return true; 1887 1888 if (!lr) { 1889 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 1890 reg_initiator_name(initiator)); 1891 return true; 1892 } 1893 1894 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1895 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 1896 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 1897 reg_initiator_name(initiator)); 1898 return true; 1899 } 1900 1901 /* 1902 * wiphy->regd will be set once the device has its own 1903 * desired regulatory domain set 1904 */ 1905 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1906 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1907 !is_world_regdom(lr->alpha2)) { 1908 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 1909 reg_initiator_name(initiator)); 1910 return true; 1911 } 1912 1913 if (reg_request_cell_base(lr)) 1914 return reg_dev_ignore_cell_hint(wiphy); 1915 1916 return false; 1917 } 1918 1919 static bool reg_is_world_roaming(struct wiphy *wiphy) 1920 { 1921 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1922 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1923 struct regulatory_request *lr = get_last_request(); 1924 1925 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1926 return true; 1927 1928 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1929 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1930 return true; 1931 1932 return false; 1933 } 1934 1935 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1936 struct reg_beacon *reg_beacon) 1937 { 1938 struct ieee80211_supported_band *sband; 1939 struct ieee80211_channel *chan; 1940 bool channel_changed = false; 1941 struct ieee80211_channel chan_before; 1942 1943 sband = wiphy->bands[reg_beacon->chan.band]; 1944 chan = &sband->channels[chan_idx]; 1945 1946 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1947 return; 1948 1949 if (chan->beacon_found) 1950 return; 1951 1952 chan->beacon_found = true; 1953 1954 if (!reg_is_world_roaming(wiphy)) 1955 return; 1956 1957 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 1958 return; 1959 1960 chan_before = *chan; 1961 1962 if (chan->flags & IEEE80211_CHAN_NO_IR) { 1963 chan->flags &= ~IEEE80211_CHAN_NO_IR; 1964 channel_changed = true; 1965 } 1966 1967 if (channel_changed) 1968 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1969 } 1970 1971 /* 1972 * Called when a scan on a wiphy finds a beacon on 1973 * new channel 1974 */ 1975 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1976 struct reg_beacon *reg_beacon) 1977 { 1978 unsigned int i; 1979 struct ieee80211_supported_band *sband; 1980 1981 if (!wiphy->bands[reg_beacon->chan.band]) 1982 return; 1983 1984 sband = wiphy->bands[reg_beacon->chan.band]; 1985 1986 for (i = 0; i < sband->n_channels; i++) 1987 handle_reg_beacon(wiphy, i, reg_beacon); 1988 } 1989 1990 /* 1991 * Called upon reg changes or a new wiphy is added 1992 */ 1993 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1994 { 1995 unsigned int i; 1996 struct ieee80211_supported_band *sband; 1997 struct reg_beacon *reg_beacon; 1998 1999 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 2000 if (!wiphy->bands[reg_beacon->chan.band]) 2001 continue; 2002 sband = wiphy->bands[reg_beacon->chan.band]; 2003 for (i = 0; i < sband->n_channels; i++) 2004 handle_reg_beacon(wiphy, i, reg_beacon); 2005 } 2006 } 2007 2008 /* Reap the advantages of previously found beacons */ 2009 static void reg_process_beacons(struct wiphy *wiphy) 2010 { 2011 /* 2012 * Means we are just firing up cfg80211, so no beacons would 2013 * have been processed yet. 2014 */ 2015 if (!last_request) 2016 return; 2017 wiphy_update_beacon_reg(wiphy); 2018 } 2019 2020 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2021 { 2022 if (!chan) 2023 return false; 2024 if (chan->flags & IEEE80211_CHAN_DISABLED) 2025 return false; 2026 /* This would happen when regulatory rules disallow HT40 completely */ 2027 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2028 return false; 2029 return true; 2030 } 2031 2032 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2033 struct ieee80211_channel *channel) 2034 { 2035 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2036 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2037 const struct ieee80211_regdomain *regd; 2038 unsigned int i; 2039 u32 flags; 2040 2041 if (!is_ht40_allowed(channel)) { 2042 channel->flags |= IEEE80211_CHAN_NO_HT40; 2043 return; 2044 } 2045 2046 /* 2047 * We need to ensure the extension channels exist to 2048 * be able to use HT40- or HT40+, this finds them (or not) 2049 */ 2050 for (i = 0; i < sband->n_channels; i++) { 2051 struct ieee80211_channel *c = &sband->channels[i]; 2052 2053 if (c->center_freq == (channel->center_freq - 20)) 2054 channel_before = c; 2055 if (c->center_freq == (channel->center_freq + 20)) 2056 channel_after = c; 2057 } 2058 2059 flags = 0; 2060 regd = get_wiphy_regdom(wiphy); 2061 if (regd) { 2062 const struct ieee80211_reg_rule *reg_rule = 2063 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2064 regd, MHZ_TO_KHZ(20)); 2065 2066 if (!IS_ERR(reg_rule)) 2067 flags = reg_rule->flags; 2068 } 2069 2070 /* 2071 * Please note that this assumes target bandwidth is 20 MHz, 2072 * if that ever changes we also need to change the below logic 2073 * to include that as well. 2074 */ 2075 if (!is_ht40_allowed(channel_before) || 2076 flags & NL80211_RRF_NO_HT40MINUS) 2077 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2078 else 2079 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2080 2081 if (!is_ht40_allowed(channel_after) || 2082 flags & NL80211_RRF_NO_HT40PLUS) 2083 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2084 else 2085 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2086 } 2087 2088 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2089 struct ieee80211_supported_band *sband) 2090 { 2091 unsigned int i; 2092 2093 if (!sband) 2094 return; 2095 2096 for (i = 0; i < sband->n_channels; i++) 2097 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2098 } 2099 2100 static void reg_process_ht_flags(struct wiphy *wiphy) 2101 { 2102 enum nl80211_band band; 2103 2104 if (!wiphy) 2105 return; 2106 2107 for (band = 0; band < NUM_NL80211_BANDS; band++) 2108 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2109 } 2110 2111 static void reg_call_notifier(struct wiphy *wiphy, 2112 struct regulatory_request *request) 2113 { 2114 if (wiphy->reg_notifier) 2115 wiphy->reg_notifier(wiphy, request); 2116 } 2117 2118 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2119 { 2120 struct cfg80211_chan_def chandef; 2121 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2122 enum nl80211_iftype iftype; 2123 2124 wdev_lock(wdev); 2125 iftype = wdev->iftype; 2126 2127 /* make sure the interface is active */ 2128 if (!wdev->netdev || !netif_running(wdev->netdev)) 2129 goto wdev_inactive_unlock; 2130 2131 switch (iftype) { 2132 case NL80211_IFTYPE_AP: 2133 case NL80211_IFTYPE_P2P_GO: 2134 if (!wdev->beacon_interval) 2135 goto wdev_inactive_unlock; 2136 chandef = wdev->chandef; 2137 break; 2138 case NL80211_IFTYPE_ADHOC: 2139 if (!wdev->ssid_len) 2140 goto wdev_inactive_unlock; 2141 chandef = wdev->chandef; 2142 break; 2143 case NL80211_IFTYPE_STATION: 2144 case NL80211_IFTYPE_P2P_CLIENT: 2145 if (!wdev->current_bss || 2146 !wdev->current_bss->pub.channel) 2147 goto wdev_inactive_unlock; 2148 2149 if (!rdev->ops->get_channel || 2150 rdev_get_channel(rdev, wdev, &chandef)) 2151 cfg80211_chandef_create(&chandef, 2152 wdev->current_bss->pub.channel, 2153 NL80211_CHAN_NO_HT); 2154 break; 2155 case NL80211_IFTYPE_MONITOR: 2156 case NL80211_IFTYPE_AP_VLAN: 2157 case NL80211_IFTYPE_P2P_DEVICE: 2158 /* no enforcement required */ 2159 break; 2160 default: 2161 /* others not implemented for now */ 2162 WARN_ON(1); 2163 break; 2164 } 2165 2166 wdev_unlock(wdev); 2167 2168 switch (iftype) { 2169 case NL80211_IFTYPE_AP: 2170 case NL80211_IFTYPE_P2P_GO: 2171 case NL80211_IFTYPE_ADHOC: 2172 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 2173 case NL80211_IFTYPE_STATION: 2174 case NL80211_IFTYPE_P2P_CLIENT: 2175 return cfg80211_chandef_usable(wiphy, &chandef, 2176 IEEE80211_CHAN_DISABLED); 2177 default: 2178 break; 2179 } 2180 2181 return true; 2182 2183 wdev_inactive_unlock: 2184 wdev_unlock(wdev); 2185 return true; 2186 } 2187 2188 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2189 { 2190 struct wireless_dev *wdev; 2191 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2192 2193 ASSERT_RTNL(); 2194 2195 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2196 if (!reg_wdev_chan_valid(wiphy, wdev)) 2197 cfg80211_leave(rdev, wdev); 2198 } 2199 2200 static void reg_check_chans_work(struct work_struct *work) 2201 { 2202 struct cfg80211_registered_device *rdev; 2203 2204 pr_debug("Verifying active interfaces after reg change\n"); 2205 rtnl_lock(); 2206 2207 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2208 if (!(rdev->wiphy.regulatory_flags & 2209 REGULATORY_IGNORE_STALE_KICKOFF)) 2210 reg_leave_invalid_chans(&rdev->wiphy); 2211 2212 rtnl_unlock(); 2213 } 2214 2215 static void reg_check_channels(void) 2216 { 2217 /* 2218 * Give usermode a chance to do something nicer (move to another 2219 * channel, orderly disconnection), before forcing a disconnection. 2220 */ 2221 mod_delayed_work(system_power_efficient_wq, 2222 ®_check_chans, 2223 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2224 } 2225 2226 static void wiphy_update_regulatory(struct wiphy *wiphy, 2227 enum nl80211_reg_initiator initiator) 2228 { 2229 enum nl80211_band band; 2230 struct regulatory_request *lr = get_last_request(); 2231 2232 if (ignore_reg_update(wiphy, initiator)) { 2233 /* 2234 * Regulatory updates set by CORE are ignored for custom 2235 * regulatory cards. Let us notify the changes to the driver, 2236 * as some drivers used this to restore its orig_* reg domain. 2237 */ 2238 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2239 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2240 reg_call_notifier(wiphy, lr); 2241 return; 2242 } 2243 2244 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2245 2246 for (band = 0; band < NUM_NL80211_BANDS; band++) 2247 handle_band(wiphy, initiator, wiphy->bands[band]); 2248 2249 reg_process_beacons(wiphy); 2250 reg_process_ht_flags(wiphy); 2251 reg_call_notifier(wiphy, lr); 2252 } 2253 2254 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2255 { 2256 struct cfg80211_registered_device *rdev; 2257 struct wiphy *wiphy; 2258 2259 ASSERT_RTNL(); 2260 2261 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2262 wiphy = &rdev->wiphy; 2263 wiphy_update_regulatory(wiphy, initiator); 2264 } 2265 2266 reg_check_channels(); 2267 } 2268 2269 static void handle_channel_custom(struct wiphy *wiphy, 2270 struct ieee80211_channel *chan, 2271 const struct ieee80211_regdomain *regd) 2272 { 2273 u32 bw_flags = 0; 2274 const struct ieee80211_reg_rule *reg_rule = NULL; 2275 const struct ieee80211_power_rule *power_rule = NULL; 2276 u32 bw; 2277 2278 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) { 2279 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq), 2280 regd, bw); 2281 if (!IS_ERR(reg_rule)) 2282 break; 2283 } 2284 2285 if (IS_ERR(reg_rule)) { 2286 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n", 2287 chan->center_freq); 2288 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2289 chan->flags |= IEEE80211_CHAN_DISABLED; 2290 } else { 2291 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2292 chan->flags = chan->orig_flags; 2293 } 2294 return; 2295 } 2296 2297 power_rule = ®_rule->power_rule; 2298 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2299 2300 chan->dfs_state_entered = jiffies; 2301 chan->dfs_state = NL80211_DFS_USABLE; 2302 2303 chan->beacon_found = false; 2304 2305 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2306 chan->flags = chan->orig_flags | bw_flags | 2307 map_regdom_flags(reg_rule->flags); 2308 else 2309 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2310 2311 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2312 chan->max_reg_power = chan->max_power = 2313 (int) MBM_TO_DBM(power_rule->max_eirp); 2314 2315 if (chan->flags & IEEE80211_CHAN_RADAR) { 2316 if (reg_rule->dfs_cac_ms) 2317 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2318 else 2319 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2320 } 2321 2322 chan->max_power = chan->max_reg_power; 2323 } 2324 2325 static void handle_band_custom(struct wiphy *wiphy, 2326 struct ieee80211_supported_band *sband, 2327 const struct ieee80211_regdomain *regd) 2328 { 2329 unsigned int i; 2330 2331 if (!sband) 2332 return; 2333 2334 for (i = 0; i < sband->n_channels; i++) 2335 handle_channel_custom(wiphy, &sband->channels[i], regd); 2336 } 2337 2338 /* Used by drivers prior to wiphy registration */ 2339 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2340 const struct ieee80211_regdomain *regd) 2341 { 2342 enum nl80211_band band; 2343 unsigned int bands_set = 0; 2344 2345 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2346 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2347 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2348 2349 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2350 if (!wiphy->bands[band]) 2351 continue; 2352 handle_band_custom(wiphy, wiphy->bands[band], regd); 2353 bands_set++; 2354 } 2355 2356 /* 2357 * no point in calling this if it won't have any effect 2358 * on your device's supported bands. 2359 */ 2360 WARN_ON(!bands_set); 2361 } 2362 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2363 2364 static void reg_set_request_processed(void) 2365 { 2366 bool need_more_processing = false; 2367 struct regulatory_request *lr = get_last_request(); 2368 2369 lr->processed = true; 2370 2371 spin_lock(®_requests_lock); 2372 if (!list_empty(®_requests_list)) 2373 need_more_processing = true; 2374 spin_unlock(®_requests_lock); 2375 2376 cancel_crda_timeout(); 2377 2378 if (need_more_processing) 2379 schedule_work(®_work); 2380 } 2381 2382 /** 2383 * reg_process_hint_core - process core regulatory requests 2384 * @pending_request: a pending core regulatory request 2385 * 2386 * The wireless subsystem can use this function to process 2387 * a regulatory request issued by the regulatory core. 2388 */ 2389 static enum reg_request_treatment 2390 reg_process_hint_core(struct regulatory_request *core_request) 2391 { 2392 if (reg_query_database(core_request)) { 2393 core_request->intersect = false; 2394 core_request->processed = false; 2395 reg_update_last_request(core_request); 2396 return REG_REQ_OK; 2397 } 2398 2399 return REG_REQ_IGNORE; 2400 } 2401 2402 static enum reg_request_treatment 2403 __reg_process_hint_user(struct regulatory_request *user_request) 2404 { 2405 struct regulatory_request *lr = get_last_request(); 2406 2407 if (reg_request_cell_base(user_request)) 2408 return reg_ignore_cell_hint(user_request); 2409 2410 if (reg_request_cell_base(lr)) 2411 return REG_REQ_IGNORE; 2412 2413 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2414 return REG_REQ_INTERSECT; 2415 /* 2416 * If the user knows better the user should set the regdom 2417 * to their country before the IE is picked up 2418 */ 2419 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2420 lr->intersect) 2421 return REG_REQ_IGNORE; 2422 /* 2423 * Process user requests only after previous user/driver/core 2424 * requests have been processed 2425 */ 2426 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2427 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2428 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2429 regdom_changes(lr->alpha2)) 2430 return REG_REQ_IGNORE; 2431 2432 if (!regdom_changes(user_request->alpha2)) 2433 return REG_REQ_ALREADY_SET; 2434 2435 return REG_REQ_OK; 2436 } 2437 2438 /** 2439 * reg_process_hint_user - process user regulatory requests 2440 * @user_request: a pending user regulatory request 2441 * 2442 * The wireless subsystem can use this function to process 2443 * a regulatory request initiated by userspace. 2444 */ 2445 static enum reg_request_treatment 2446 reg_process_hint_user(struct regulatory_request *user_request) 2447 { 2448 enum reg_request_treatment treatment; 2449 2450 treatment = __reg_process_hint_user(user_request); 2451 if (treatment == REG_REQ_IGNORE || 2452 treatment == REG_REQ_ALREADY_SET) 2453 return REG_REQ_IGNORE; 2454 2455 user_request->intersect = treatment == REG_REQ_INTERSECT; 2456 user_request->processed = false; 2457 2458 if (reg_query_database(user_request)) { 2459 reg_update_last_request(user_request); 2460 user_alpha2[0] = user_request->alpha2[0]; 2461 user_alpha2[1] = user_request->alpha2[1]; 2462 return REG_REQ_OK; 2463 } 2464 2465 return REG_REQ_IGNORE; 2466 } 2467 2468 static enum reg_request_treatment 2469 __reg_process_hint_driver(struct regulatory_request *driver_request) 2470 { 2471 struct regulatory_request *lr = get_last_request(); 2472 2473 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2474 if (regdom_changes(driver_request->alpha2)) 2475 return REG_REQ_OK; 2476 return REG_REQ_ALREADY_SET; 2477 } 2478 2479 /* 2480 * This would happen if you unplug and plug your card 2481 * back in or if you add a new device for which the previously 2482 * loaded card also agrees on the regulatory domain. 2483 */ 2484 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2485 !regdom_changes(driver_request->alpha2)) 2486 return REG_REQ_ALREADY_SET; 2487 2488 return REG_REQ_INTERSECT; 2489 } 2490 2491 /** 2492 * reg_process_hint_driver - process driver regulatory requests 2493 * @driver_request: a pending driver regulatory request 2494 * 2495 * The wireless subsystem can use this function to process 2496 * a regulatory request issued by an 802.11 driver. 2497 * 2498 * Returns one of the different reg request treatment values. 2499 */ 2500 static enum reg_request_treatment 2501 reg_process_hint_driver(struct wiphy *wiphy, 2502 struct regulatory_request *driver_request) 2503 { 2504 const struct ieee80211_regdomain *regd, *tmp; 2505 enum reg_request_treatment treatment; 2506 2507 treatment = __reg_process_hint_driver(driver_request); 2508 2509 switch (treatment) { 2510 case REG_REQ_OK: 2511 break; 2512 case REG_REQ_IGNORE: 2513 return REG_REQ_IGNORE; 2514 case REG_REQ_INTERSECT: 2515 case REG_REQ_ALREADY_SET: 2516 regd = reg_copy_regd(get_cfg80211_regdom()); 2517 if (IS_ERR(regd)) 2518 return REG_REQ_IGNORE; 2519 2520 tmp = get_wiphy_regdom(wiphy); 2521 rcu_assign_pointer(wiphy->regd, regd); 2522 rcu_free_regdom(tmp); 2523 } 2524 2525 2526 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2527 driver_request->processed = false; 2528 2529 /* 2530 * Since CRDA will not be called in this case as we already 2531 * have applied the requested regulatory domain before we just 2532 * inform userspace we have processed the request 2533 */ 2534 if (treatment == REG_REQ_ALREADY_SET) { 2535 nl80211_send_reg_change_event(driver_request); 2536 reg_update_last_request(driver_request); 2537 reg_set_request_processed(); 2538 return REG_REQ_ALREADY_SET; 2539 } 2540 2541 if (reg_query_database(driver_request)) { 2542 reg_update_last_request(driver_request); 2543 return REG_REQ_OK; 2544 } 2545 2546 return REG_REQ_IGNORE; 2547 } 2548 2549 static enum reg_request_treatment 2550 __reg_process_hint_country_ie(struct wiphy *wiphy, 2551 struct regulatory_request *country_ie_request) 2552 { 2553 struct wiphy *last_wiphy = NULL; 2554 struct regulatory_request *lr = get_last_request(); 2555 2556 if (reg_request_cell_base(lr)) { 2557 /* Trust a Cell base station over the AP's country IE */ 2558 if (regdom_changes(country_ie_request->alpha2)) 2559 return REG_REQ_IGNORE; 2560 return REG_REQ_ALREADY_SET; 2561 } else { 2562 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2563 return REG_REQ_IGNORE; 2564 } 2565 2566 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2567 return -EINVAL; 2568 2569 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2570 return REG_REQ_OK; 2571 2572 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2573 2574 if (last_wiphy != wiphy) { 2575 /* 2576 * Two cards with two APs claiming different 2577 * Country IE alpha2s. We could 2578 * intersect them, but that seems unlikely 2579 * to be correct. Reject second one for now. 2580 */ 2581 if (regdom_changes(country_ie_request->alpha2)) 2582 return REG_REQ_IGNORE; 2583 return REG_REQ_ALREADY_SET; 2584 } 2585 2586 if (regdom_changes(country_ie_request->alpha2)) 2587 return REG_REQ_OK; 2588 return REG_REQ_ALREADY_SET; 2589 } 2590 2591 /** 2592 * reg_process_hint_country_ie - process regulatory requests from country IEs 2593 * @country_ie_request: a regulatory request from a country IE 2594 * 2595 * The wireless subsystem can use this function to process 2596 * a regulatory request issued by a country Information Element. 2597 * 2598 * Returns one of the different reg request treatment values. 2599 */ 2600 static enum reg_request_treatment 2601 reg_process_hint_country_ie(struct wiphy *wiphy, 2602 struct regulatory_request *country_ie_request) 2603 { 2604 enum reg_request_treatment treatment; 2605 2606 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2607 2608 switch (treatment) { 2609 case REG_REQ_OK: 2610 break; 2611 case REG_REQ_IGNORE: 2612 return REG_REQ_IGNORE; 2613 case REG_REQ_ALREADY_SET: 2614 reg_free_request(country_ie_request); 2615 return REG_REQ_ALREADY_SET; 2616 case REG_REQ_INTERSECT: 2617 /* 2618 * This doesn't happen yet, not sure we 2619 * ever want to support it for this case. 2620 */ 2621 WARN_ONCE(1, "Unexpected intersection for country IEs"); 2622 return REG_REQ_IGNORE; 2623 } 2624 2625 country_ie_request->intersect = false; 2626 country_ie_request->processed = false; 2627 2628 if (reg_query_database(country_ie_request)) { 2629 reg_update_last_request(country_ie_request); 2630 return REG_REQ_OK; 2631 } 2632 2633 return REG_REQ_IGNORE; 2634 } 2635 2636 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2637 { 2638 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2639 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2640 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2641 bool dfs_domain_same; 2642 2643 rcu_read_lock(); 2644 2645 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2646 wiphy1_regd = rcu_dereference(wiphy1->regd); 2647 if (!wiphy1_regd) 2648 wiphy1_regd = cfg80211_regd; 2649 2650 wiphy2_regd = rcu_dereference(wiphy2->regd); 2651 if (!wiphy2_regd) 2652 wiphy2_regd = cfg80211_regd; 2653 2654 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2655 2656 rcu_read_unlock(); 2657 2658 return dfs_domain_same; 2659 } 2660 2661 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2662 struct ieee80211_channel *src_chan) 2663 { 2664 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2665 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2666 return; 2667 2668 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2669 src_chan->flags & IEEE80211_CHAN_DISABLED) 2670 return; 2671 2672 if (src_chan->center_freq == dst_chan->center_freq && 2673 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2674 dst_chan->dfs_state = src_chan->dfs_state; 2675 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2676 } 2677 } 2678 2679 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2680 struct wiphy *src_wiphy) 2681 { 2682 struct ieee80211_supported_band *src_sband, *dst_sband; 2683 struct ieee80211_channel *src_chan, *dst_chan; 2684 int i, j, band; 2685 2686 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2687 return; 2688 2689 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2690 dst_sband = dst_wiphy->bands[band]; 2691 src_sband = src_wiphy->bands[band]; 2692 if (!dst_sband || !src_sband) 2693 continue; 2694 2695 for (i = 0; i < dst_sband->n_channels; i++) { 2696 dst_chan = &dst_sband->channels[i]; 2697 for (j = 0; j < src_sband->n_channels; j++) { 2698 src_chan = &src_sband->channels[j]; 2699 reg_copy_dfs_chan_state(dst_chan, src_chan); 2700 } 2701 } 2702 } 2703 } 2704 2705 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2706 { 2707 struct cfg80211_registered_device *rdev; 2708 2709 ASSERT_RTNL(); 2710 2711 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2712 if (wiphy == &rdev->wiphy) 2713 continue; 2714 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2715 } 2716 } 2717 2718 /* This processes *all* regulatory hints */ 2719 static void reg_process_hint(struct regulatory_request *reg_request) 2720 { 2721 struct wiphy *wiphy = NULL; 2722 enum reg_request_treatment treatment; 2723 2724 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2725 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2726 2727 switch (reg_request->initiator) { 2728 case NL80211_REGDOM_SET_BY_CORE: 2729 treatment = reg_process_hint_core(reg_request); 2730 break; 2731 case NL80211_REGDOM_SET_BY_USER: 2732 treatment = reg_process_hint_user(reg_request); 2733 break; 2734 case NL80211_REGDOM_SET_BY_DRIVER: 2735 if (!wiphy) 2736 goto out_free; 2737 treatment = reg_process_hint_driver(wiphy, reg_request); 2738 break; 2739 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2740 if (!wiphy) 2741 goto out_free; 2742 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2743 break; 2744 default: 2745 WARN(1, "invalid initiator %d\n", reg_request->initiator); 2746 goto out_free; 2747 } 2748 2749 if (treatment == REG_REQ_IGNORE) 2750 goto out_free; 2751 2752 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 2753 "unexpected treatment value %d\n", treatment); 2754 2755 /* This is required so that the orig_* parameters are saved. 2756 * NOTE: treatment must be set for any case that reaches here! 2757 */ 2758 if (treatment == REG_REQ_ALREADY_SET && wiphy && 2759 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2760 wiphy_update_regulatory(wiphy, reg_request->initiator); 2761 wiphy_all_share_dfs_chan_state(wiphy); 2762 reg_check_channels(); 2763 } 2764 2765 return; 2766 2767 out_free: 2768 reg_free_request(reg_request); 2769 } 2770 2771 static bool reg_only_self_managed_wiphys(void) 2772 { 2773 struct cfg80211_registered_device *rdev; 2774 struct wiphy *wiphy; 2775 bool self_managed_found = false; 2776 2777 ASSERT_RTNL(); 2778 2779 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2780 wiphy = &rdev->wiphy; 2781 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2782 self_managed_found = true; 2783 else 2784 return false; 2785 } 2786 2787 /* make sure at least one self-managed wiphy exists */ 2788 return self_managed_found; 2789 } 2790 2791 /* 2792 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 2793 * Regulatory hints come on a first come first serve basis and we 2794 * must process each one atomically. 2795 */ 2796 static void reg_process_pending_hints(void) 2797 { 2798 struct regulatory_request *reg_request, *lr; 2799 2800 lr = get_last_request(); 2801 2802 /* When last_request->processed becomes true this will be rescheduled */ 2803 if (lr && !lr->processed) { 2804 reg_process_hint(lr); 2805 return; 2806 } 2807 2808 spin_lock(®_requests_lock); 2809 2810 if (list_empty(®_requests_list)) { 2811 spin_unlock(®_requests_lock); 2812 return; 2813 } 2814 2815 reg_request = list_first_entry(®_requests_list, 2816 struct regulatory_request, 2817 list); 2818 list_del_init(®_request->list); 2819 2820 spin_unlock(®_requests_lock); 2821 2822 if (reg_only_self_managed_wiphys()) { 2823 reg_free_request(reg_request); 2824 return; 2825 } 2826 2827 reg_process_hint(reg_request); 2828 2829 lr = get_last_request(); 2830 2831 spin_lock(®_requests_lock); 2832 if (!list_empty(®_requests_list) && lr && lr->processed) 2833 schedule_work(®_work); 2834 spin_unlock(®_requests_lock); 2835 } 2836 2837 /* Processes beacon hints -- this has nothing to do with country IEs */ 2838 static void reg_process_pending_beacon_hints(void) 2839 { 2840 struct cfg80211_registered_device *rdev; 2841 struct reg_beacon *pending_beacon, *tmp; 2842 2843 /* This goes through the _pending_ beacon list */ 2844 spin_lock_bh(®_pending_beacons_lock); 2845 2846 list_for_each_entry_safe(pending_beacon, tmp, 2847 ®_pending_beacons, list) { 2848 list_del_init(&pending_beacon->list); 2849 2850 /* Applies the beacon hint to current wiphys */ 2851 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2852 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 2853 2854 /* Remembers the beacon hint for new wiphys or reg changes */ 2855 list_add_tail(&pending_beacon->list, ®_beacon_list); 2856 } 2857 2858 spin_unlock_bh(®_pending_beacons_lock); 2859 } 2860 2861 static void reg_process_self_managed_hints(void) 2862 { 2863 struct cfg80211_registered_device *rdev; 2864 struct wiphy *wiphy; 2865 const struct ieee80211_regdomain *tmp; 2866 const struct ieee80211_regdomain *regd; 2867 enum nl80211_band band; 2868 struct regulatory_request request = {}; 2869 2870 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2871 wiphy = &rdev->wiphy; 2872 2873 spin_lock(®_requests_lock); 2874 regd = rdev->requested_regd; 2875 rdev->requested_regd = NULL; 2876 spin_unlock(®_requests_lock); 2877 2878 if (regd == NULL) 2879 continue; 2880 2881 tmp = get_wiphy_regdom(wiphy); 2882 rcu_assign_pointer(wiphy->regd, regd); 2883 rcu_free_regdom(tmp); 2884 2885 for (band = 0; band < NUM_NL80211_BANDS; band++) 2886 handle_band_custom(wiphy, wiphy->bands[band], regd); 2887 2888 reg_process_ht_flags(wiphy); 2889 2890 request.wiphy_idx = get_wiphy_idx(wiphy); 2891 request.alpha2[0] = regd->alpha2[0]; 2892 request.alpha2[1] = regd->alpha2[1]; 2893 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 2894 2895 nl80211_send_wiphy_reg_change_event(&request); 2896 } 2897 2898 reg_check_channels(); 2899 } 2900 2901 static void reg_todo(struct work_struct *work) 2902 { 2903 rtnl_lock(); 2904 reg_process_pending_hints(); 2905 reg_process_pending_beacon_hints(); 2906 reg_process_self_managed_hints(); 2907 rtnl_unlock(); 2908 } 2909 2910 static void queue_regulatory_request(struct regulatory_request *request) 2911 { 2912 request->alpha2[0] = toupper(request->alpha2[0]); 2913 request->alpha2[1] = toupper(request->alpha2[1]); 2914 2915 spin_lock(®_requests_lock); 2916 list_add_tail(&request->list, ®_requests_list); 2917 spin_unlock(®_requests_lock); 2918 2919 schedule_work(®_work); 2920 } 2921 2922 /* 2923 * Core regulatory hint -- happens during cfg80211_init() 2924 * and when we restore regulatory settings. 2925 */ 2926 static int regulatory_hint_core(const char *alpha2) 2927 { 2928 struct regulatory_request *request; 2929 2930 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2931 if (!request) 2932 return -ENOMEM; 2933 2934 request->alpha2[0] = alpha2[0]; 2935 request->alpha2[1] = alpha2[1]; 2936 request->initiator = NL80211_REGDOM_SET_BY_CORE; 2937 2938 queue_regulatory_request(request); 2939 2940 return 0; 2941 } 2942 2943 /* User hints */ 2944 int regulatory_hint_user(const char *alpha2, 2945 enum nl80211_user_reg_hint_type user_reg_hint_type) 2946 { 2947 struct regulatory_request *request; 2948 2949 if (WARN_ON(!alpha2)) 2950 return -EINVAL; 2951 2952 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2953 if (!request) 2954 return -ENOMEM; 2955 2956 request->wiphy_idx = WIPHY_IDX_INVALID; 2957 request->alpha2[0] = alpha2[0]; 2958 request->alpha2[1] = alpha2[1]; 2959 request->initiator = NL80211_REGDOM_SET_BY_USER; 2960 request->user_reg_hint_type = user_reg_hint_type; 2961 2962 /* Allow calling CRDA again */ 2963 reset_crda_timeouts(); 2964 2965 queue_regulatory_request(request); 2966 2967 return 0; 2968 } 2969 2970 int regulatory_hint_indoor(bool is_indoor, u32 portid) 2971 { 2972 spin_lock(®_indoor_lock); 2973 2974 /* It is possible that more than one user space process is trying to 2975 * configure the indoor setting. To handle such cases, clear the indoor 2976 * setting in case that some process does not think that the device 2977 * is operating in an indoor environment. In addition, if a user space 2978 * process indicates that it is controlling the indoor setting, save its 2979 * portid, i.e., make it the owner. 2980 */ 2981 reg_is_indoor = is_indoor; 2982 if (reg_is_indoor) { 2983 if (!reg_is_indoor_portid) 2984 reg_is_indoor_portid = portid; 2985 } else { 2986 reg_is_indoor_portid = 0; 2987 } 2988 2989 spin_unlock(®_indoor_lock); 2990 2991 if (!is_indoor) 2992 reg_check_channels(); 2993 2994 return 0; 2995 } 2996 2997 void regulatory_netlink_notify(u32 portid) 2998 { 2999 spin_lock(®_indoor_lock); 3000 3001 if (reg_is_indoor_portid != portid) { 3002 spin_unlock(®_indoor_lock); 3003 return; 3004 } 3005 3006 reg_is_indoor = false; 3007 reg_is_indoor_portid = 0; 3008 3009 spin_unlock(®_indoor_lock); 3010 3011 reg_check_channels(); 3012 } 3013 3014 /* Driver hints */ 3015 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3016 { 3017 struct regulatory_request *request; 3018 3019 if (WARN_ON(!alpha2 || !wiphy)) 3020 return -EINVAL; 3021 3022 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3023 3024 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3025 if (!request) 3026 return -ENOMEM; 3027 3028 request->wiphy_idx = get_wiphy_idx(wiphy); 3029 3030 request->alpha2[0] = alpha2[0]; 3031 request->alpha2[1] = alpha2[1]; 3032 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3033 3034 /* Allow calling CRDA again */ 3035 reset_crda_timeouts(); 3036 3037 queue_regulatory_request(request); 3038 3039 return 0; 3040 } 3041 EXPORT_SYMBOL(regulatory_hint); 3042 3043 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3044 const u8 *country_ie, u8 country_ie_len) 3045 { 3046 char alpha2[2]; 3047 enum environment_cap env = ENVIRON_ANY; 3048 struct regulatory_request *request = NULL, *lr; 3049 3050 /* IE len must be evenly divisible by 2 */ 3051 if (country_ie_len & 0x01) 3052 return; 3053 3054 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3055 return; 3056 3057 request = kzalloc(sizeof(*request), GFP_KERNEL); 3058 if (!request) 3059 return; 3060 3061 alpha2[0] = country_ie[0]; 3062 alpha2[1] = country_ie[1]; 3063 3064 if (country_ie[2] == 'I') 3065 env = ENVIRON_INDOOR; 3066 else if (country_ie[2] == 'O') 3067 env = ENVIRON_OUTDOOR; 3068 3069 rcu_read_lock(); 3070 lr = get_last_request(); 3071 3072 if (unlikely(!lr)) 3073 goto out; 3074 3075 /* 3076 * We will run this only upon a successful connection on cfg80211. 3077 * We leave conflict resolution to the workqueue, where can hold 3078 * the RTNL. 3079 */ 3080 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3081 lr->wiphy_idx != WIPHY_IDX_INVALID) 3082 goto out; 3083 3084 request->wiphy_idx = get_wiphy_idx(wiphy); 3085 request->alpha2[0] = alpha2[0]; 3086 request->alpha2[1] = alpha2[1]; 3087 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3088 request->country_ie_env = env; 3089 3090 /* Allow calling CRDA again */ 3091 reset_crda_timeouts(); 3092 3093 queue_regulatory_request(request); 3094 request = NULL; 3095 out: 3096 kfree(request); 3097 rcu_read_unlock(); 3098 } 3099 3100 static void restore_alpha2(char *alpha2, bool reset_user) 3101 { 3102 /* indicates there is no alpha2 to consider for restoration */ 3103 alpha2[0] = '9'; 3104 alpha2[1] = '7'; 3105 3106 /* The user setting has precedence over the module parameter */ 3107 if (is_user_regdom_saved()) { 3108 /* Unless we're asked to ignore it and reset it */ 3109 if (reset_user) { 3110 pr_debug("Restoring regulatory settings including user preference\n"); 3111 user_alpha2[0] = '9'; 3112 user_alpha2[1] = '7'; 3113 3114 /* 3115 * If we're ignoring user settings, we still need to 3116 * check the module parameter to ensure we put things 3117 * back as they were for a full restore. 3118 */ 3119 if (!is_world_regdom(ieee80211_regdom)) { 3120 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3121 ieee80211_regdom[0], ieee80211_regdom[1]); 3122 alpha2[0] = ieee80211_regdom[0]; 3123 alpha2[1] = ieee80211_regdom[1]; 3124 } 3125 } else { 3126 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3127 user_alpha2[0], user_alpha2[1]); 3128 alpha2[0] = user_alpha2[0]; 3129 alpha2[1] = user_alpha2[1]; 3130 } 3131 } else if (!is_world_regdom(ieee80211_regdom)) { 3132 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3133 ieee80211_regdom[0], ieee80211_regdom[1]); 3134 alpha2[0] = ieee80211_regdom[0]; 3135 alpha2[1] = ieee80211_regdom[1]; 3136 } else 3137 pr_debug("Restoring regulatory settings\n"); 3138 } 3139 3140 static void restore_custom_reg_settings(struct wiphy *wiphy) 3141 { 3142 struct ieee80211_supported_band *sband; 3143 enum nl80211_band band; 3144 struct ieee80211_channel *chan; 3145 int i; 3146 3147 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3148 sband = wiphy->bands[band]; 3149 if (!sband) 3150 continue; 3151 for (i = 0; i < sband->n_channels; i++) { 3152 chan = &sband->channels[i]; 3153 chan->flags = chan->orig_flags; 3154 chan->max_antenna_gain = chan->orig_mag; 3155 chan->max_power = chan->orig_mpwr; 3156 chan->beacon_found = false; 3157 } 3158 } 3159 } 3160 3161 /* 3162 * Restoring regulatory settings involves ingoring any 3163 * possibly stale country IE information and user regulatory 3164 * settings if so desired, this includes any beacon hints 3165 * learned as we could have traveled outside to another country 3166 * after disconnection. To restore regulatory settings we do 3167 * exactly what we did at bootup: 3168 * 3169 * - send a core regulatory hint 3170 * - send a user regulatory hint if applicable 3171 * 3172 * Device drivers that send a regulatory hint for a specific country 3173 * keep their own regulatory domain on wiphy->regd so that does does 3174 * not need to be remembered. 3175 */ 3176 static void restore_regulatory_settings(bool reset_user) 3177 { 3178 char alpha2[2]; 3179 char world_alpha2[2]; 3180 struct reg_beacon *reg_beacon, *btmp; 3181 LIST_HEAD(tmp_reg_req_list); 3182 struct cfg80211_registered_device *rdev; 3183 3184 ASSERT_RTNL(); 3185 3186 /* 3187 * Clear the indoor setting in case that it is not controlled by user 3188 * space, as otherwise there is no guarantee that the device is still 3189 * operating in an indoor environment. 3190 */ 3191 spin_lock(®_indoor_lock); 3192 if (reg_is_indoor && !reg_is_indoor_portid) { 3193 reg_is_indoor = false; 3194 reg_check_channels(); 3195 } 3196 spin_unlock(®_indoor_lock); 3197 3198 reset_regdomains(true, &world_regdom); 3199 restore_alpha2(alpha2, reset_user); 3200 3201 /* 3202 * If there's any pending requests we simply 3203 * stash them to a temporary pending queue and 3204 * add then after we've restored regulatory 3205 * settings. 3206 */ 3207 spin_lock(®_requests_lock); 3208 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3209 spin_unlock(®_requests_lock); 3210 3211 /* Clear beacon hints */ 3212 spin_lock_bh(®_pending_beacons_lock); 3213 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3214 list_del(®_beacon->list); 3215 kfree(reg_beacon); 3216 } 3217 spin_unlock_bh(®_pending_beacons_lock); 3218 3219 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3220 list_del(®_beacon->list); 3221 kfree(reg_beacon); 3222 } 3223 3224 /* First restore to the basic regulatory settings */ 3225 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3226 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3227 3228 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3229 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3230 continue; 3231 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3232 restore_custom_reg_settings(&rdev->wiphy); 3233 } 3234 3235 regulatory_hint_core(world_alpha2); 3236 3237 /* 3238 * This restores the ieee80211_regdom module parameter 3239 * preference or the last user requested regulatory 3240 * settings, user regulatory settings takes precedence. 3241 */ 3242 if (is_an_alpha2(alpha2)) 3243 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3244 3245 spin_lock(®_requests_lock); 3246 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3247 spin_unlock(®_requests_lock); 3248 3249 pr_debug("Kicking the queue\n"); 3250 3251 schedule_work(®_work); 3252 } 3253 3254 void regulatory_hint_disconnect(void) 3255 { 3256 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3257 restore_regulatory_settings(false); 3258 } 3259 3260 static bool freq_is_chan_12_13_14(u16 freq) 3261 { 3262 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3263 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3264 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3265 return true; 3266 return false; 3267 } 3268 3269 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3270 { 3271 struct reg_beacon *pending_beacon; 3272 3273 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3274 if (beacon_chan->center_freq == 3275 pending_beacon->chan.center_freq) 3276 return true; 3277 return false; 3278 } 3279 3280 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3281 struct ieee80211_channel *beacon_chan, 3282 gfp_t gfp) 3283 { 3284 struct reg_beacon *reg_beacon; 3285 bool processing; 3286 3287 if (beacon_chan->beacon_found || 3288 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3289 (beacon_chan->band == NL80211_BAND_2GHZ && 3290 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3291 return 0; 3292 3293 spin_lock_bh(®_pending_beacons_lock); 3294 processing = pending_reg_beacon(beacon_chan); 3295 spin_unlock_bh(®_pending_beacons_lock); 3296 3297 if (processing) 3298 return 0; 3299 3300 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3301 if (!reg_beacon) 3302 return -ENOMEM; 3303 3304 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 3305 beacon_chan->center_freq, 3306 ieee80211_frequency_to_channel(beacon_chan->center_freq), 3307 wiphy_name(wiphy)); 3308 3309 memcpy(®_beacon->chan, beacon_chan, 3310 sizeof(struct ieee80211_channel)); 3311 3312 /* 3313 * Since we can be called from BH or and non-BH context 3314 * we must use spin_lock_bh() 3315 */ 3316 spin_lock_bh(®_pending_beacons_lock); 3317 list_add_tail(®_beacon->list, ®_pending_beacons); 3318 spin_unlock_bh(®_pending_beacons_lock); 3319 3320 schedule_work(®_work); 3321 3322 return 0; 3323 } 3324 3325 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3326 { 3327 unsigned int i; 3328 const struct ieee80211_reg_rule *reg_rule = NULL; 3329 const struct ieee80211_freq_range *freq_range = NULL; 3330 const struct ieee80211_power_rule *power_rule = NULL; 3331 char bw[32], cac_time[32]; 3332 3333 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3334 3335 for (i = 0; i < rd->n_reg_rules; i++) { 3336 reg_rule = &rd->reg_rules[i]; 3337 freq_range = ®_rule->freq_range; 3338 power_rule = ®_rule->power_rule; 3339 3340 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3341 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 3342 freq_range->max_bandwidth_khz, 3343 reg_get_max_bandwidth(rd, reg_rule)); 3344 else 3345 snprintf(bw, sizeof(bw), "%d KHz", 3346 freq_range->max_bandwidth_khz); 3347 3348 if (reg_rule->flags & NL80211_RRF_DFS) 3349 scnprintf(cac_time, sizeof(cac_time), "%u s", 3350 reg_rule->dfs_cac_ms/1000); 3351 else 3352 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3353 3354 3355 /* 3356 * There may not be documentation for max antenna gain 3357 * in certain regions 3358 */ 3359 if (power_rule->max_antenna_gain) 3360 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3361 freq_range->start_freq_khz, 3362 freq_range->end_freq_khz, 3363 bw, 3364 power_rule->max_antenna_gain, 3365 power_rule->max_eirp, 3366 cac_time); 3367 else 3368 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3369 freq_range->start_freq_khz, 3370 freq_range->end_freq_khz, 3371 bw, 3372 power_rule->max_eirp, 3373 cac_time); 3374 } 3375 } 3376 3377 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3378 { 3379 switch (dfs_region) { 3380 case NL80211_DFS_UNSET: 3381 case NL80211_DFS_FCC: 3382 case NL80211_DFS_ETSI: 3383 case NL80211_DFS_JP: 3384 return true; 3385 default: 3386 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region); 3387 return false; 3388 } 3389 } 3390 3391 static void print_regdomain(const struct ieee80211_regdomain *rd) 3392 { 3393 struct regulatory_request *lr = get_last_request(); 3394 3395 if (is_intersected_alpha2(rd->alpha2)) { 3396 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3397 struct cfg80211_registered_device *rdev; 3398 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3399 if (rdev) { 3400 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3401 rdev->country_ie_alpha2[0], 3402 rdev->country_ie_alpha2[1]); 3403 } else 3404 pr_debug("Current regulatory domain intersected:\n"); 3405 } else 3406 pr_debug("Current regulatory domain intersected:\n"); 3407 } else if (is_world_regdom(rd->alpha2)) { 3408 pr_debug("World regulatory domain updated:\n"); 3409 } else { 3410 if (is_unknown_alpha2(rd->alpha2)) 3411 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3412 else { 3413 if (reg_request_cell_base(lr)) 3414 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3415 rd->alpha2[0], rd->alpha2[1]); 3416 else 3417 pr_debug("Regulatory domain changed to country: %c%c\n", 3418 rd->alpha2[0], rd->alpha2[1]); 3419 } 3420 } 3421 3422 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3423 print_rd_rules(rd); 3424 } 3425 3426 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3427 { 3428 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3429 print_rd_rules(rd); 3430 } 3431 3432 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3433 { 3434 if (!is_world_regdom(rd->alpha2)) 3435 return -EINVAL; 3436 update_world_regdomain(rd); 3437 return 0; 3438 } 3439 3440 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3441 struct regulatory_request *user_request) 3442 { 3443 const struct ieee80211_regdomain *intersected_rd = NULL; 3444 3445 if (!regdom_changes(rd->alpha2)) 3446 return -EALREADY; 3447 3448 if (!is_valid_rd(rd)) { 3449 pr_err("Invalid regulatory domain detected: %c%c\n", 3450 rd->alpha2[0], rd->alpha2[1]); 3451 print_regdomain_info(rd); 3452 return -EINVAL; 3453 } 3454 3455 if (!user_request->intersect) { 3456 reset_regdomains(false, rd); 3457 return 0; 3458 } 3459 3460 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3461 if (!intersected_rd) 3462 return -EINVAL; 3463 3464 kfree(rd); 3465 rd = NULL; 3466 reset_regdomains(false, intersected_rd); 3467 3468 return 0; 3469 } 3470 3471 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3472 struct regulatory_request *driver_request) 3473 { 3474 const struct ieee80211_regdomain *regd; 3475 const struct ieee80211_regdomain *intersected_rd = NULL; 3476 const struct ieee80211_regdomain *tmp; 3477 struct wiphy *request_wiphy; 3478 3479 if (is_world_regdom(rd->alpha2)) 3480 return -EINVAL; 3481 3482 if (!regdom_changes(rd->alpha2)) 3483 return -EALREADY; 3484 3485 if (!is_valid_rd(rd)) { 3486 pr_err("Invalid regulatory domain detected: %c%c\n", 3487 rd->alpha2[0], rd->alpha2[1]); 3488 print_regdomain_info(rd); 3489 return -EINVAL; 3490 } 3491 3492 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3493 if (!request_wiphy) 3494 return -ENODEV; 3495 3496 if (!driver_request->intersect) { 3497 if (request_wiphy->regd) 3498 return -EALREADY; 3499 3500 regd = reg_copy_regd(rd); 3501 if (IS_ERR(regd)) 3502 return PTR_ERR(regd); 3503 3504 rcu_assign_pointer(request_wiphy->regd, regd); 3505 reset_regdomains(false, rd); 3506 return 0; 3507 } 3508 3509 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3510 if (!intersected_rd) 3511 return -EINVAL; 3512 3513 /* 3514 * We can trash what CRDA provided now. 3515 * However if a driver requested this specific regulatory 3516 * domain we keep it for its private use 3517 */ 3518 tmp = get_wiphy_regdom(request_wiphy); 3519 rcu_assign_pointer(request_wiphy->regd, rd); 3520 rcu_free_regdom(tmp); 3521 3522 rd = NULL; 3523 3524 reset_regdomains(false, intersected_rd); 3525 3526 return 0; 3527 } 3528 3529 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3530 struct regulatory_request *country_ie_request) 3531 { 3532 struct wiphy *request_wiphy; 3533 3534 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3535 !is_unknown_alpha2(rd->alpha2)) 3536 return -EINVAL; 3537 3538 /* 3539 * Lets only bother proceeding on the same alpha2 if the current 3540 * rd is non static (it means CRDA was present and was used last) 3541 * and the pending request came in from a country IE 3542 */ 3543 3544 if (!is_valid_rd(rd)) { 3545 pr_err("Invalid regulatory domain detected: %c%c\n", 3546 rd->alpha2[0], rd->alpha2[1]); 3547 print_regdomain_info(rd); 3548 return -EINVAL; 3549 } 3550 3551 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3552 if (!request_wiphy) 3553 return -ENODEV; 3554 3555 if (country_ie_request->intersect) 3556 return -EINVAL; 3557 3558 reset_regdomains(false, rd); 3559 return 0; 3560 } 3561 3562 /* 3563 * Use this call to set the current regulatory domain. Conflicts with 3564 * multiple drivers can be ironed out later. Caller must've already 3565 * kmalloc'd the rd structure. 3566 */ 3567 int set_regdom(const struct ieee80211_regdomain *rd, 3568 enum ieee80211_regd_source regd_src) 3569 { 3570 struct regulatory_request *lr; 3571 bool user_reset = false; 3572 int r; 3573 3574 if (!reg_is_valid_request(rd->alpha2)) { 3575 kfree(rd); 3576 return -EINVAL; 3577 } 3578 3579 if (regd_src == REGD_SOURCE_CRDA) 3580 reset_crda_timeouts(); 3581 3582 lr = get_last_request(); 3583 3584 /* Note that this doesn't update the wiphys, this is done below */ 3585 switch (lr->initiator) { 3586 case NL80211_REGDOM_SET_BY_CORE: 3587 r = reg_set_rd_core(rd); 3588 break; 3589 case NL80211_REGDOM_SET_BY_USER: 3590 r = reg_set_rd_user(rd, lr); 3591 user_reset = true; 3592 break; 3593 case NL80211_REGDOM_SET_BY_DRIVER: 3594 r = reg_set_rd_driver(rd, lr); 3595 break; 3596 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3597 r = reg_set_rd_country_ie(rd, lr); 3598 break; 3599 default: 3600 WARN(1, "invalid initiator %d\n", lr->initiator); 3601 kfree(rd); 3602 return -EINVAL; 3603 } 3604 3605 if (r) { 3606 switch (r) { 3607 case -EALREADY: 3608 reg_set_request_processed(); 3609 break; 3610 default: 3611 /* Back to world regulatory in case of errors */ 3612 restore_regulatory_settings(user_reset); 3613 } 3614 3615 kfree(rd); 3616 return r; 3617 } 3618 3619 /* This would make this whole thing pointless */ 3620 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3621 return -EINVAL; 3622 3623 /* update all wiphys now with the new established regulatory domain */ 3624 update_all_wiphy_regulatory(lr->initiator); 3625 3626 print_regdomain(get_cfg80211_regdom()); 3627 3628 nl80211_send_reg_change_event(lr); 3629 3630 reg_set_request_processed(); 3631 3632 return 0; 3633 } 3634 3635 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 3636 struct ieee80211_regdomain *rd) 3637 { 3638 const struct ieee80211_regdomain *regd; 3639 const struct ieee80211_regdomain *prev_regd; 3640 struct cfg80211_registered_device *rdev; 3641 3642 if (WARN_ON(!wiphy || !rd)) 3643 return -EINVAL; 3644 3645 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 3646 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 3647 return -EPERM; 3648 3649 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { 3650 print_regdomain_info(rd); 3651 return -EINVAL; 3652 } 3653 3654 regd = reg_copy_regd(rd); 3655 if (IS_ERR(regd)) 3656 return PTR_ERR(regd); 3657 3658 rdev = wiphy_to_rdev(wiphy); 3659 3660 spin_lock(®_requests_lock); 3661 prev_regd = rdev->requested_regd; 3662 rdev->requested_regd = regd; 3663 spin_unlock(®_requests_lock); 3664 3665 kfree(prev_regd); 3666 return 0; 3667 } 3668 3669 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 3670 struct ieee80211_regdomain *rd) 3671 { 3672 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 3673 3674 if (ret) 3675 return ret; 3676 3677 schedule_work(®_work); 3678 return 0; 3679 } 3680 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 3681 3682 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, 3683 struct ieee80211_regdomain *rd) 3684 { 3685 int ret; 3686 3687 ASSERT_RTNL(); 3688 3689 ret = __regulatory_set_wiphy_regd(wiphy, rd); 3690 if (ret) 3691 return ret; 3692 3693 /* process the request immediately */ 3694 reg_process_self_managed_hints(); 3695 return 0; 3696 } 3697 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); 3698 3699 void wiphy_regulatory_register(struct wiphy *wiphy) 3700 { 3701 struct regulatory_request *lr; 3702 3703 /* self-managed devices ignore external hints */ 3704 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3705 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 3706 REGULATORY_COUNTRY_IE_IGNORE; 3707 3708 if (!reg_dev_ignore_cell_hint(wiphy)) 3709 reg_num_devs_support_basehint++; 3710 3711 lr = get_last_request(); 3712 wiphy_update_regulatory(wiphy, lr->initiator); 3713 wiphy_all_share_dfs_chan_state(wiphy); 3714 } 3715 3716 void wiphy_regulatory_deregister(struct wiphy *wiphy) 3717 { 3718 struct wiphy *request_wiphy = NULL; 3719 struct regulatory_request *lr; 3720 3721 lr = get_last_request(); 3722 3723 if (!reg_dev_ignore_cell_hint(wiphy)) 3724 reg_num_devs_support_basehint--; 3725 3726 rcu_free_regdom(get_wiphy_regdom(wiphy)); 3727 RCU_INIT_POINTER(wiphy->regd, NULL); 3728 3729 if (lr) 3730 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 3731 3732 if (!request_wiphy || request_wiphy != wiphy) 3733 return; 3734 3735 lr->wiphy_idx = WIPHY_IDX_INVALID; 3736 lr->country_ie_env = ENVIRON_ANY; 3737 } 3738 3739 /* 3740 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for 3741 * UNII band definitions 3742 */ 3743 int cfg80211_get_unii(int freq) 3744 { 3745 /* UNII-1 */ 3746 if (freq >= 5150 && freq <= 5250) 3747 return 0; 3748 3749 /* UNII-2A */ 3750 if (freq > 5250 && freq <= 5350) 3751 return 1; 3752 3753 /* UNII-2B */ 3754 if (freq > 5350 && freq <= 5470) 3755 return 2; 3756 3757 /* UNII-2C */ 3758 if (freq > 5470 && freq <= 5725) 3759 return 3; 3760 3761 /* UNII-3 */ 3762 if (freq > 5725 && freq <= 5825) 3763 return 4; 3764 3765 return -EINVAL; 3766 } 3767 3768 bool regulatory_indoor_allowed(void) 3769 { 3770 return reg_is_indoor; 3771 } 3772 3773 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 3774 { 3775 const struct ieee80211_regdomain *regd = NULL; 3776 const struct ieee80211_regdomain *wiphy_regd = NULL; 3777 bool pre_cac_allowed = false; 3778 3779 rcu_read_lock(); 3780 3781 regd = rcu_dereference(cfg80211_regdomain); 3782 wiphy_regd = rcu_dereference(wiphy->regd); 3783 if (!wiphy_regd) { 3784 if (regd->dfs_region == NL80211_DFS_ETSI) 3785 pre_cac_allowed = true; 3786 3787 rcu_read_unlock(); 3788 3789 return pre_cac_allowed; 3790 } 3791 3792 if (regd->dfs_region == wiphy_regd->dfs_region && 3793 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 3794 pre_cac_allowed = true; 3795 3796 rcu_read_unlock(); 3797 3798 return pre_cac_allowed; 3799 } 3800 3801 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 3802 struct cfg80211_chan_def *chandef, 3803 enum nl80211_dfs_state dfs_state, 3804 enum nl80211_radar_event event) 3805 { 3806 struct cfg80211_registered_device *rdev; 3807 3808 ASSERT_RTNL(); 3809 3810 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 3811 return; 3812 3813 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3814 if (wiphy == &rdev->wiphy) 3815 continue; 3816 3817 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 3818 continue; 3819 3820 if (!ieee80211_get_channel(&rdev->wiphy, 3821 chandef->chan->center_freq)) 3822 continue; 3823 3824 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 3825 3826 if (event == NL80211_RADAR_DETECTED || 3827 event == NL80211_RADAR_CAC_FINISHED) 3828 cfg80211_sched_dfs_chan_update(rdev); 3829 3830 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 3831 } 3832 } 3833 3834 static int __init regulatory_init_db(void) 3835 { 3836 int err; 3837 3838 err = load_builtin_regdb_keys(); 3839 if (err) 3840 return err; 3841 3842 /* We always try to get an update for the static regdomain */ 3843 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 3844 if (err) { 3845 if (err == -ENOMEM) { 3846 platform_device_unregister(reg_pdev); 3847 return err; 3848 } 3849 /* 3850 * N.B. kobject_uevent_env() can fail mainly for when we're out 3851 * memory which is handled and propagated appropriately above 3852 * but it can also fail during a netlink_broadcast() or during 3853 * early boot for call_usermodehelper(). For now treat these 3854 * errors as non-fatal. 3855 */ 3856 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 3857 } 3858 3859 /* 3860 * Finally, if the user set the module parameter treat it 3861 * as a user hint. 3862 */ 3863 if (!is_world_regdom(ieee80211_regdom)) 3864 regulatory_hint_user(ieee80211_regdom, 3865 NL80211_USER_REG_HINT_USER); 3866 3867 return 0; 3868 } 3869 #ifndef MODULE 3870 late_initcall(regulatory_init_db); 3871 #endif 3872 3873 int __init regulatory_init(void) 3874 { 3875 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 3876 if (IS_ERR(reg_pdev)) 3877 return PTR_ERR(reg_pdev); 3878 3879 spin_lock_init(®_requests_lock); 3880 spin_lock_init(®_pending_beacons_lock); 3881 spin_lock_init(®_indoor_lock); 3882 3883 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 3884 3885 user_alpha2[0] = '9'; 3886 user_alpha2[1] = '7'; 3887 3888 #ifdef MODULE 3889 return regulatory_init_db(); 3890 #else 3891 return 0; 3892 #endif 3893 } 3894 3895 void regulatory_exit(void) 3896 { 3897 struct regulatory_request *reg_request, *tmp; 3898 struct reg_beacon *reg_beacon, *btmp; 3899 3900 cancel_work_sync(®_work); 3901 cancel_crda_timeout_sync(); 3902 cancel_delayed_work_sync(®_check_chans); 3903 3904 /* Lock to suppress warnings */ 3905 rtnl_lock(); 3906 reset_regdomains(true, NULL); 3907 rtnl_unlock(); 3908 3909 dev_set_uevent_suppress(®_pdev->dev, true); 3910 3911 platform_device_unregister(reg_pdev); 3912 3913 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3914 list_del(®_beacon->list); 3915 kfree(reg_beacon); 3916 } 3917 3918 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3919 list_del(®_beacon->list); 3920 kfree(reg_beacon); 3921 } 3922 3923 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 3924 list_del(®_request->list); 3925 kfree(reg_request); 3926 } 3927 3928 if (!IS_ERR_OR_NULL(regdb)) 3929 kfree(regdb); 3930 3931 free_regdb_keyring(); 3932 } 3933