xref: /openbmc/linux/net/wireless/reg.c (revision 4cff79e9)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user);
135 
136 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
137 {
138 	return rcu_dereference_rtnl(cfg80211_regdomain);
139 }
140 
141 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
142 {
143 	return rcu_dereference_rtnl(wiphy->regd);
144 }
145 
146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
147 {
148 	switch (dfs_region) {
149 	case NL80211_DFS_UNSET:
150 		return "unset";
151 	case NL80211_DFS_FCC:
152 		return "FCC";
153 	case NL80211_DFS_ETSI:
154 		return "ETSI";
155 	case NL80211_DFS_JP:
156 		return "JP";
157 	}
158 	return "Unknown";
159 }
160 
161 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
162 {
163 	const struct ieee80211_regdomain *regd = NULL;
164 	const struct ieee80211_regdomain *wiphy_regd = NULL;
165 
166 	regd = get_cfg80211_regdom();
167 	if (!wiphy)
168 		goto out;
169 
170 	wiphy_regd = get_wiphy_regdom(wiphy);
171 	if (!wiphy_regd)
172 		goto out;
173 
174 	if (wiphy_regd->dfs_region == regd->dfs_region)
175 		goto out;
176 
177 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
178 		 dev_name(&wiphy->dev),
179 		 reg_dfs_region_str(wiphy_regd->dfs_region),
180 		 reg_dfs_region_str(regd->dfs_region));
181 
182 out:
183 	return regd->dfs_region;
184 }
185 
186 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
187 {
188 	if (!r)
189 		return;
190 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
191 }
192 
193 static struct regulatory_request *get_last_request(void)
194 {
195 	return rcu_dereference_rtnl(last_request);
196 }
197 
198 /* Used to queue up regulatory hints */
199 static LIST_HEAD(reg_requests_list);
200 static spinlock_t reg_requests_lock;
201 
202 /* Used to queue up beacon hints for review */
203 static LIST_HEAD(reg_pending_beacons);
204 static spinlock_t reg_pending_beacons_lock;
205 
206 /* Used to keep track of processed beacon hints */
207 static LIST_HEAD(reg_beacon_list);
208 
209 struct reg_beacon {
210 	struct list_head list;
211 	struct ieee80211_channel chan;
212 };
213 
214 static void reg_check_chans_work(struct work_struct *work);
215 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
216 
217 static void reg_todo(struct work_struct *work);
218 static DECLARE_WORK(reg_work, reg_todo);
219 
220 /* We keep a static world regulatory domain in case of the absence of CRDA */
221 static const struct ieee80211_regdomain world_regdom = {
222 	.n_reg_rules = 8,
223 	.alpha2 =  "00",
224 	.reg_rules = {
225 		/* IEEE 802.11b/g, channels 1..11 */
226 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
227 		/* IEEE 802.11b/g, channels 12..13. */
228 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
229 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
230 		/* IEEE 802.11 channel 14 - Only JP enables
231 		 * this and for 802.11b only */
232 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
233 			NL80211_RRF_NO_IR |
234 			NL80211_RRF_NO_OFDM),
235 		/* IEEE 802.11a, channel 36..48 */
236 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
237                         NL80211_RRF_NO_IR |
238                         NL80211_RRF_AUTO_BW),
239 
240 		/* IEEE 802.11a, channel 52..64 - DFS required */
241 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
242 			NL80211_RRF_NO_IR |
243 			NL80211_RRF_AUTO_BW |
244 			NL80211_RRF_DFS),
245 
246 		/* IEEE 802.11a, channel 100..144 - DFS required */
247 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
248 			NL80211_RRF_NO_IR |
249 			NL80211_RRF_DFS),
250 
251 		/* IEEE 802.11a, channel 149..165 */
252 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
253 			NL80211_RRF_NO_IR),
254 
255 		/* IEEE 802.11ad (60GHz), channels 1..3 */
256 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
257 	}
258 };
259 
260 /* protected by RTNL */
261 static const struct ieee80211_regdomain *cfg80211_world_regdom =
262 	&world_regdom;
263 
264 static char *ieee80211_regdom = "00";
265 static char user_alpha2[2];
266 
267 module_param(ieee80211_regdom, charp, 0444);
268 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
269 
270 static void reg_free_request(struct regulatory_request *request)
271 {
272 	if (request == &core_request_world)
273 		return;
274 
275 	if (request != get_last_request())
276 		kfree(request);
277 }
278 
279 static void reg_free_last_request(void)
280 {
281 	struct regulatory_request *lr = get_last_request();
282 
283 	if (lr != &core_request_world && lr)
284 		kfree_rcu(lr, rcu_head);
285 }
286 
287 static void reg_update_last_request(struct regulatory_request *request)
288 {
289 	struct regulatory_request *lr;
290 
291 	lr = get_last_request();
292 	if (lr == request)
293 		return;
294 
295 	reg_free_last_request();
296 	rcu_assign_pointer(last_request, request);
297 }
298 
299 static void reset_regdomains(bool full_reset,
300 			     const struct ieee80211_regdomain *new_regdom)
301 {
302 	const struct ieee80211_regdomain *r;
303 
304 	ASSERT_RTNL();
305 
306 	r = get_cfg80211_regdom();
307 
308 	/* avoid freeing static information or freeing something twice */
309 	if (r == cfg80211_world_regdom)
310 		r = NULL;
311 	if (cfg80211_world_regdom == &world_regdom)
312 		cfg80211_world_regdom = NULL;
313 	if (r == &world_regdom)
314 		r = NULL;
315 
316 	rcu_free_regdom(r);
317 	rcu_free_regdom(cfg80211_world_regdom);
318 
319 	cfg80211_world_regdom = &world_regdom;
320 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
321 
322 	if (!full_reset)
323 		return;
324 
325 	reg_update_last_request(&core_request_world);
326 }
327 
328 /*
329  * Dynamic world regulatory domain requested by the wireless
330  * core upon initialization
331  */
332 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
333 {
334 	struct regulatory_request *lr;
335 
336 	lr = get_last_request();
337 
338 	WARN_ON(!lr);
339 
340 	reset_regdomains(false, rd);
341 
342 	cfg80211_world_regdom = rd;
343 }
344 
345 bool is_world_regdom(const char *alpha2)
346 {
347 	if (!alpha2)
348 		return false;
349 	return alpha2[0] == '0' && alpha2[1] == '0';
350 }
351 
352 static bool is_alpha2_set(const char *alpha2)
353 {
354 	if (!alpha2)
355 		return false;
356 	return alpha2[0] && alpha2[1];
357 }
358 
359 static bool is_unknown_alpha2(const char *alpha2)
360 {
361 	if (!alpha2)
362 		return false;
363 	/*
364 	 * Special case where regulatory domain was built by driver
365 	 * but a specific alpha2 cannot be determined
366 	 */
367 	return alpha2[0] == '9' && alpha2[1] == '9';
368 }
369 
370 static bool is_intersected_alpha2(const char *alpha2)
371 {
372 	if (!alpha2)
373 		return false;
374 	/*
375 	 * Special case where regulatory domain is the
376 	 * result of an intersection between two regulatory domain
377 	 * structures
378 	 */
379 	return alpha2[0] == '9' && alpha2[1] == '8';
380 }
381 
382 static bool is_an_alpha2(const char *alpha2)
383 {
384 	if (!alpha2)
385 		return false;
386 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
387 }
388 
389 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
390 {
391 	if (!alpha2_x || !alpha2_y)
392 		return false;
393 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
394 }
395 
396 static bool regdom_changes(const char *alpha2)
397 {
398 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
399 
400 	if (!r)
401 		return true;
402 	return !alpha2_equal(r->alpha2, alpha2);
403 }
404 
405 /*
406  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
407  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
408  * has ever been issued.
409  */
410 static bool is_user_regdom_saved(void)
411 {
412 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
413 		return false;
414 
415 	/* This would indicate a mistake on the design */
416 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
417 		 "Unexpected user alpha2: %c%c\n",
418 		 user_alpha2[0], user_alpha2[1]))
419 		return false;
420 
421 	return true;
422 }
423 
424 static const struct ieee80211_regdomain *
425 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
426 {
427 	struct ieee80211_regdomain *regd;
428 	int size_of_regd, size_of_wmms;
429 	unsigned int i;
430 	struct ieee80211_wmm_rule *d_wmm, *s_wmm;
431 
432 	size_of_regd =
433 		sizeof(struct ieee80211_regdomain) +
434 		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
435 	size_of_wmms = src_regd->n_wmm_rules *
436 		sizeof(struct ieee80211_wmm_rule);
437 
438 	regd = kzalloc(size_of_regd + size_of_wmms, GFP_KERNEL);
439 	if (!regd)
440 		return ERR_PTR(-ENOMEM);
441 
442 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
443 
444 	d_wmm = (struct ieee80211_wmm_rule *)((u8 *)regd + size_of_regd);
445 	s_wmm = (struct ieee80211_wmm_rule *)((u8 *)src_regd + size_of_regd);
446 	memcpy(d_wmm, s_wmm, size_of_wmms);
447 
448 	for (i = 0; i < src_regd->n_reg_rules; i++) {
449 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
450 		       sizeof(struct ieee80211_reg_rule));
451 		if (!src_regd->reg_rules[i].wmm_rule)
452 			continue;
453 
454 		regd->reg_rules[i].wmm_rule = d_wmm +
455 			(src_regd->reg_rules[i].wmm_rule - s_wmm) /
456 			sizeof(struct ieee80211_wmm_rule);
457 	}
458 	return regd;
459 }
460 
461 struct reg_regdb_apply_request {
462 	struct list_head list;
463 	const struct ieee80211_regdomain *regdom;
464 };
465 
466 static LIST_HEAD(reg_regdb_apply_list);
467 static DEFINE_MUTEX(reg_regdb_apply_mutex);
468 
469 static void reg_regdb_apply(struct work_struct *work)
470 {
471 	struct reg_regdb_apply_request *request;
472 
473 	rtnl_lock();
474 
475 	mutex_lock(&reg_regdb_apply_mutex);
476 	while (!list_empty(&reg_regdb_apply_list)) {
477 		request = list_first_entry(&reg_regdb_apply_list,
478 					   struct reg_regdb_apply_request,
479 					   list);
480 		list_del(&request->list);
481 
482 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
483 		kfree(request);
484 	}
485 	mutex_unlock(&reg_regdb_apply_mutex);
486 
487 	rtnl_unlock();
488 }
489 
490 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
491 
492 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
493 {
494 	struct reg_regdb_apply_request *request;
495 
496 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
497 	if (!request) {
498 		kfree(regdom);
499 		return -ENOMEM;
500 	}
501 
502 	request->regdom = regdom;
503 
504 	mutex_lock(&reg_regdb_apply_mutex);
505 	list_add_tail(&request->list, &reg_regdb_apply_list);
506 	mutex_unlock(&reg_regdb_apply_mutex);
507 
508 	schedule_work(&reg_regdb_work);
509 	return 0;
510 }
511 
512 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
513 /* Max number of consecutive attempts to communicate with CRDA  */
514 #define REG_MAX_CRDA_TIMEOUTS 10
515 
516 static u32 reg_crda_timeouts;
517 
518 static void crda_timeout_work(struct work_struct *work);
519 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
520 
521 static void crda_timeout_work(struct work_struct *work)
522 {
523 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
524 	rtnl_lock();
525 	reg_crda_timeouts++;
526 	restore_regulatory_settings(true);
527 	rtnl_unlock();
528 }
529 
530 static void cancel_crda_timeout(void)
531 {
532 	cancel_delayed_work(&crda_timeout);
533 }
534 
535 static void cancel_crda_timeout_sync(void)
536 {
537 	cancel_delayed_work_sync(&crda_timeout);
538 }
539 
540 static void reset_crda_timeouts(void)
541 {
542 	reg_crda_timeouts = 0;
543 }
544 
545 /*
546  * This lets us keep regulatory code which is updated on a regulatory
547  * basis in userspace.
548  */
549 static int call_crda(const char *alpha2)
550 {
551 	char country[12];
552 	char *env[] = { country, NULL };
553 	int ret;
554 
555 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
556 		 alpha2[0], alpha2[1]);
557 
558 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
559 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
560 		return -EINVAL;
561 	}
562 
563 	if (!is_world_regdom((char *) alpha2))
564 		pr_debug("Calling CRDA for country: %c%c\n",
565 			 alpha2[0], alpha2[1]);
566 	else
567 		pr_debug("Calling CRDA to update world regulatory domain\n");
568 
569 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
570 	if (ret)
571 		return ret;
572 
573 	queue_delayed_work(system_power_efficient_wq,
574 			   &crda_timeout, msecs_to_jiffies(3142));
575 	return 0;
576 }
577 #else
578 static inline void cancel_crda_timeout(void) {}
579 static inline void cancel_crda_timeout_sync(void) {}
580 static inline void reset_crda_timeouts(void) {}
581 static inline int call_crda(const char *alpha2)
582 {
583 	return -ENODATA;
584 }
585 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
586 
587 /* code to directly load a firmware database through request_firmware */
588 static const struct fwdb_header *regdb;
589 
590 struct fwdb_country {
591 	u8 alpha2[2];
592 	__be16 coll_ptr;
593 	/* this struct cannot be extended */
594 } __packed __aligned(4);
595 
596 struct fwdb_collection {
597 	u8 len;
598 	u8 n_rules;
599 	u8 dfs_region;
600 	/* no optional data yet */
601 	/* aligned to 2, then followed by __be16 array of rule pointers */
602 } __packed __aligned(4);
603 
604 enum fwdb_flags {
605 	FWDB_FLAG_NO_OFDM	= BIT(0),
606 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
607 	FWDB_FLAG_DFS		= BIT(2),
608 	FWDB_FLAG_NO_IR		= BIT(3),
609 	FWDB_FLAG_AUTO_BW	= BIT(4),
610 };
611 
612 struct fwdb_wmm_ac {
613 	u8 ecw;
614 	u8 aifsn;
615 	__be16 cot;
616 } __packed;
617 
618 struct fwdb_wmm_rule {
619 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
620 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
621 } __packed;
622 
623 struct fwdb_rule {
624 	u8 len;
625 	u8 flags;
626 	__be16 max_eirp;
627 	__be32 start, end, max_bw;
628 	/* start of optional data */
629 	__be16 cac_timeout;
630 	__be16 wmm_ptr;
631 } __packed __aligned(4);
632 
633 #define FWDB_MAGIC 0x52474442
634 #define FWDB_VERSION 20
635 
636 struct fwdb_header {
637 	__be32 magic;
638 	__be32 version;
639 	struct fwdb_country country[];
640 } __packed __aligned(4);
641 
642 static int ecw2cw(int ecw)
643 {
644 	return (1 << ecw) - 1;
645 }
646 
647 static bool valid_wmm(struct fwdb_wmm_rule *rule)
648 {
649 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
650 	int i;
651 
652 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
653 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
654 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
655 		u8 aifsn = ac[i].aifsn;
656 
657 		if (cw_min >= cw_max)
658 			return false;
659 
660 		if (aifsn < 1)
661 			return false;
662 	}
663 
664 	return true;
665 }
666 
667 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
668 {
669 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
670 
671 	if ((u8 *)rule + sizeof(rule->len) > data + size)
672 		return false;
673 
674 	/* mandatory fields */
675 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
676 		return false;
677 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
678 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
679 		struct fwdb_wmm_rule *wmm;
680 
681 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
682 			return false;
683 
684 		wmm = (void *)(data + wmm_ptr);
685 
686 		if (!valid_wmm(wmm))
687 			return false;
688 	}
689 	return true;
690 }
691 
692 static bool valid_country(const u8 *data, unsigned int size,
693 			  const struct fwdb_country *country)
694 {
695 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
696 	struct fwdb_collection *coll = (void *)(data + ptr);
697 	__be16 *rules_ptr;
698 	unsigned int i;
699 
700 	/* make sure we can read len/n_rules */
701 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
702 		return false;
703 
704 	/* make sure base struct and all rules fit */
705 	if ((u8 *)coll + ALIGN(coll->len, 2) +
706 	    (coll->n_rules * 2) > data + size)
707 		return false;
708 
709 	/* mandatory fields must exist */
710 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
711 		return false;
712 
713 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
714 
715 	for (i = 0; i < coll->n_rules; i++) {
716 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
717 
718 		if (!valid_rule(data, size, rule_ptr))
719 			return false;
720 	}
721 
722 	return true;
723 }
724 
725 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
726 static struct key *builtin_regdb_keys;
727 
728 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
729 {
730 	const u8 *end = p + buflen;
731 	size_t plen;
732 	key_ref_t key;
733 
734 	while (p < end) {
735 		/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
736 		 * than 256 bytes in size.
737 		 */
738 		if (end - p < 4)
739 			goto dodgy_cert;
740 		if (p[0] != 0x30 &&
741 		    p[1] != 0x82)
742 			goto dodgy_cert;
743 		plen = (p[2] << 8) | p[3];
744 		plen += 4;
745 		if (plen > end - p)
746 			goto dodgy_cert;
747 
748 		key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
749 					   "asymmetric", NULL, p, plen,
750 					   ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
751 					    KEY_USR_VIEW | KEY_USR_READ),
752 					   KEY_ALLOC_NOT_IN_QUOTA |
753 					   KEY_ALLOC_BUILT_IN |
754 					   KEY_ALLOC_BYPASS_RESTRICTION);
755 		if (IS_ERR(key)) {
756 			pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
757 			       PTR_ERR(key));
758 		} else {
759 			pr_notice("Loaded X.509 cert '%s'\n",
760 				  key_ref_to_ptr(key)->description);
761 			key_ref_put(key);
762 		}
763 		p += plen;
764 	}
765 
766 	return;
767 
768 dodgy_cert:
769 	pr_err("Problem parsing in-kernel X.509 certificate list\n");
770 }
771 
772 static int __init load_builtin_regdb_keys(void)
773 {
774 	builtin_regdb_keys =
775 		keyring_alloc(".builtin_regdb_keys",
776 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
777 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
778 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
779 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
780 	if (IS_ERR(builtin_regdb_keys))
781 		return PTR_ERR(builtin_regdb_keys);
782 
783 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
784 
785 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
786 	load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
787 #endif
788 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
789 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
790 		load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
791 #endif
792 
793 	return 0;
794 }
795 
796 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
797 {
798 	const struct firmware *sig;
799 	bool result;
800 
801 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
802 		return false;
803 
804 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
805 					builtin_regdb_keys,
806 					VERIFYING_UNSPECIFIED_SIGNATURE,
807 					NULL, NULL) == 0;
808 
809 	release_firmware(sig);
810 
811 	return result;
812 }
813 
814 static void free_regdb_keyring(void)
815 {
816 	key_put(builtin_regdb_keys);
817 }
818 #else
819 static int load_builtin_regdb_keys(void)
820 {
821 	return 0;
822 }
823 
824 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
825 {
826 	return true;
827 }
828 
829 static void free_regdb_keyring(void)
830 {
831 }
832 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
833 
834 static bool valid_regdb(const u8 *data, unsigned int size)
835 {
836 	const struct fwdb_header *hdr = (void *)data;
837 	const struct fwdb_country *country;
838 
839 	if (size < sizeof(*hdr))
840 		return false;
841 
842 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
843 		return false;
844 
845 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
846 		return false;
847 
848 	if (!regdb_has_valid_signature(data, size))
849 		return false;
850 
851 	country = &hdr->country[0];
852 	while ((u8 *)(country + 1) <= data + size) {
853 		if (!country->coll_ptr)
854 			break;
855 		if (!valid_country(data, size, country))
856 			return false;
857 		country++;
858 	}
859 
860 	return true;
861 }
862 
863 static void set_wmm_rule(struct ieee80211_wmm_rule *rule,
864 			 struct fwdb_wmm_rule *wmm)
865 {
866 	unsigned int i;
867 
868 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
869 		rule->client[i].cw_min =
870 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
871 		rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
872 		rule->client[i].aifsn =  wmm->client[i].aifsn;
873 		rule->client[i].cot = 1000 * be16_to_cpu(wmm->client[i].cot);
874 		rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
875 		rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
876 		rule->ap[i].aifsn = wmm->ap[i].aifsn;
877 		rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
878 	}
879 }
880 
881 static int __regdb_query_wmm(const struct fwdb_header *db,
882 			     const struct fwdb_country *country, int freq,
883 			     u32 *dbptr, struct ieee80211_wmm_rule *rule)
884 {
885 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
886 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
887 	int i;
888 
889 	for (i = 0; i < coll->n_rules; i++) {
890 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
891 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
892 		struct fwdb_rule *rrule = (void *)((u8 *)db + rule_ptr);
893 		struct fwdb_wmm_rule *wmm;
894 		unsigned int wmm_ptr;
895 
896 		if (rrule->len < offsetofend(struct fwdb_rule, wmm_ptr))
897 			continue;
898 
899 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rrule->start)) &&
900 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rrule->end))) {
901 			wmm_ptr = be16_to_cpu(rrule->wmm_ptr) << 2;
902 			wmm = (void *)((u8 *)db + wmm_ptr);
903 			set_wmm_rule(rule, wmm);
904 			if (dbptr)
905 				*dbptr = wmm_ptr;
906 			return 0;
907 		}
908 	}
909 
910 	return -ENODATA;
911 }
912 
913 int reg_query_regdb_wmm(char *alpha2, int freq, u32 *dbptr,
914 			struct ieee80211_wmm_rule *rule)
915 {
916 	const struct fwdb_header *hdr = regdb;
917 	const struct fwdb_country *country;
918 
919 	if (IS_ERR(regdb))
920 		return PTR_ERR(regdb);
921 
922 	country = &hdr->country[0];
923 	while (country->coll_ptr) {
924 		if (alpha2_equal(alpha2, country->alpha2))
925 			return __regdb_query_wmm(regdb, country, freq, dbptr,
926 						 rule);
927 
928 		country++;
929 	}
930 
931 	return -ENODATA;
932 }
933 EXPORT_SYMBOL(reg_query_regdb_wmm);
934 
935 struct wmm_ptrs {
936 	struct ieee80211_wmm_rule *rule;
937 	u32 ptr;
938 };
939 
940 static struct ieee80211_wmm_rule *find_wmm_ptr(struct wmm_ptrs *wmm_ptrs,
941 					       u32 wmm_ptr, int n_wmms)
942 {
943 	int i;
944 
945 	for (i = 0; i < n_wmms; i++) {
946 		if (wmm_ptrs[i].ptr == wmm_ptr)
947 			return wmm_ptrs[i].rule;
948 	}
949 	return NULL;
950 }
951 
952 static int regdb_query_country(const struct fwdb_header *db,
953 			       const struct fwdb_country *country)
954 {
955 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
956 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
957 	struct ieee80211_regdomain *regdom;
958 	struct ieee80211_regdomain *tmp_rd;
959 	unsigned int size_of_regd, i, n_wmms = 0;
960 	struct wmm_ptrs *wmm_ptrs;
961 
962 	size_of_regd = sizeof(struct ieee80211_regdomain) +
963 		coll->n_rules * sizeof(struct ieee80211_reg_rule);
964 
965 	regdom = kzalloc(size_of_regd, GFP_KERNEL);
966 	if (!regdom)
967 		return -ENOMEM;
968 
969 	wmm_ptrs = kcalloc(coll->n_rules, sizeof(*wmm_ptrs), GFP_KERNEL);
970 	if (!wmm_ptrs) {
971 		kfree(regdom);
972 		return -ENOMEM;
973 	}
974 
975 	regdom->n_reg_rules = coll->n_rules;
976 	regdom->alpha2[0] = country->alpha2[0];
977 	regdom->alpha2[1] = country->alpha2[1];
978 	regdom->dfs_region = coll->dfs_region;
979 
980 	for (i = 0; i < regdom->n_reg_rules; i++) {
981 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
982 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
983 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
984 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
985 
986 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
987 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
988 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
989 
990 		rrule->power_rule.max_antenna_gain = 0;
991 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
992 
993 		rrule->flags = 0;
994 		if (rule->flags & FWDB_FLAG_NO_OFDM)
995 			rrule->flags |= NL80211_RRF_NO_OFDM;
996 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
997 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
998 		if (rule->flags & FWDB_FLAG_DFS)
999 			rrule->flags |= NL80211_RRF_DFS;
1000 		if (rule->flags & FWDB_FLAG_NO_IR)
1001 			rrule->flags |= NL80211_RRF_NO_IR;
1002 		if (rule->flags & FWDB_FLAG_AUTO_BW)
1003 			rrule->flags |= NL80211_RRF_AUTO_BW;
1004 
1005 		rrule->dfs_cac_ms = 0;
1006 
1007 		/* handle optional data */
1008 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1009 			rrule->dfs_cac_ms =
1010 				1000 * be16_to_cpu(rule->cac_timeout);
1011 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
1012 			u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
1013 			struct ieee80211_wmm_rule *wmm_pos =
1014 				find_wmm_ptr(wmm_ptrs, wmm_ptr, n_wmms);
1015 			struct fwdb_wmm_rule *wmm;
1016 			struct ieee80211_wmm_rule *wmm_rule;
1017 
1018 			if (wmm_pos) {
1019 				rrule->wmm_rule = wmm_pos;
1020 				continue;
1021 			}
1022 			wmm = (void *)((u8 *)db + wmm_ptr);
1023 			tmp_rd = krealloc(regdom, size_of_regd + (n_wmms + 1) *
1024 					  sizeof(struct ieee80211_wmm_rule),
1025 					  GFP_KERNEL);
1026 
1027 			if (!tmp_rd) {
1028 				kfree(regdom);
1029 				return -ENOMEM;
1030 			}
1031 			regdom = tmp_rd;
1032 
1033 			wmm_rule = (struct ieee80211_wmm_rule *)
1034 				((u8 *)regdom + size_of_regd + n_wmms *
1035 				sizeof(struct ieee80211_wmm_rule));
1036 
1037 			set_wmm_rule(wmm_rule, wmm);
1038 			wmm_ptrs[n_wmms].ptr = wmm_ptr;
1039 			wmm_ptrs[n_wmms++].rule = wmm_rule;
1040 		}
1041 	}
1042 	kfree(wmm_ptrs);
1043 
1044 	return reg_schedule_apply(regdom);
1045 }
1046 
1047 static int query_regdb(const char *alpha2)
1048 {
1049 	const struct fwdb_header *hdr = regdb;
1050 	const struct fwdb_country *country;
1051 
1052 	ASSERT_RTNL();
1053 
1054 	if (IS_ERR(regdb))
1055 		return PTR_ERR(regdb);
1056 
1057 	country = &hdr->country[0];
1058 	while (country->coll_ptr) {
1059 		if (alpha2_equal(alpha2, country->alpha2))
1060 			return regdb_query_country(regdb, country);
1061 		country++;
1062 	}
1063 
1064 	return -ENODATA;
1065 }
1066 
1067 static void regdb_fw_cb(const struct firmware *fw, void *context)
1068 {
1069 	int set_error = 0;
1070 	bool restore = true;
1071 	void *db;
1072 
1073 	if (!fw) {
1074 		pr_info("failed to load regulatory.db\n");
1075 		set_error = -ENODATA;
1076 	} else if (!valid_regdb(fw->data, fw->size)) {
1077 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1078 		set_error = -EINVAL;
1079 	}
1080 
1081 	rtnl_lock();
1082 	if (WARN_ON(regdb && !IS_ERR(regdb))) {
1083 		/* just restore and free new db */
1084 	} else if (set_error) {
1085 		regdb = ERR_PTR(set_error);
1086 	} else if (fw) {
1087 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1088 		if (db) {
1089 			regdb = db;
1090 			restore = context && query_regdb(context);
1091 		} else {
1092 			restore = true;
1093 		}
1094 	}
1095 
1096 	if (restore)
1097 		restore_regulatory_settings(true);
1098 
1099 	rtnl_unlock();
1100 
1101 	kfree(context);
1102 
1103 	release_firmware(fw);
1104 }
1105 
1106 static int query_regdb_file(const char *alpha2)
1107 {
1108 	ASSERT_RTNL();
1109 
1110 	if (regdb)
1111 		return query_regdb(alpha2);
1112 
1113 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1114 	if (!alpha2)
1115 		return -ENOMEM;
1116 
1117 	return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1118 				       &reg_pdev->dev, GFP_KERNEL,
1119 				       (void *)alpha2, regdb_fw_cb);
1120 }
1121 
1122 int reg_reload_regdb(void)
1123 {
1124 	const struct firmware *fw;
1125 	void *db;
1126 	int err;
1127 
1128 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1129 	if (err)
1130 		return err;
1131 
1132 	if (!valid_regdb(fw->data, fw->size)) {
1133 		err = -ENODATA;
1134 		goto out;
1135 	}
1136 
1137 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1138 	if (!db) {
1139 		err = -ENOMEM;
1140 		goto out;
1141 	}
1142 
1143 	rtnl_lock();
1144 	if (!IS_ERR_OR_NULL(regdb))
1145 		kfree(regdb);
1146 	regdb = db;
1147 	rtnl_unlock();
1148 
1149  out:
1150 	release_firmware(fw);
1151 	return err;
1152 }
1153 
1154 static bool reg_query_database(struct regulatory_request *request)
1155 {
1156 	if (query_regdb_file(request->alpha2) == 0)
1157 		return true;
1158 
1159 	if (call_crda(request->alpha2) == 0)
1160 		return true;
1161 
1162 	return false;
1163 }
1164 
1165 bool reg_is_valid_request(const char *alpha2)
1166 {
1167 	struct regulatory_request *lr = get_last_request();
1168 
1169 	if (!lr || lr->processed)
1170 		return false;
1171 
1172 	return alpha2_equal(lr->alpha2, alpha2);
1173 }
1174 
1175 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1176 {
1177 	struct regulatory_request *lr = get_last_request();
1178 
1179 	/*
1180 	 * Follow the driver's regulatory domain, if present, unless a country
1181 	 * IE has been processed or a user wants to help complaince further
1182 	 */
1183 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1184 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1185 	    wiphy->regd)
1186 		return get_wiphy_regdom(wiphy);
1187 
1188 	return get_cfg80211_regdom();
1189 }
1190 
1191 static unsigned int
1192 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1193 				 const struct ieee80211_reg_rule *rule)
1194 {
1195 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1196 	const struct ieee80211_freq_range *freq_range_tmp;
1197 	const struct ieee80211_reg_rule *tmp;
1198 	u32 start_freq, end_freq, idx, no;
1199 
1200 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1201 		if (rule == &rd->reg_rules[idx])
1202 			break;
1203 
1204 	if (idx == rd->n_reg_rules)
1205 		return 0;
1206 
1207 	/* get start_freq */
1208 	no = idx;
1209 
1210 	while (no) {
1211 		tmp = &rd->reg_rules[--no];
1212 		freq_range_tmp = &tmp->freq_range;
1213 
1214 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1215 			break;
1216 
1217 		freq_range = freq_range_tmp;
1218 	}
1219 
1220 	start_freq = freq_range->start_freq_khz;
1221 
1222 	/* get end_freq */
1223 	freq_range = &rule->freq_range;
1224 	no = idx;
1225 
1226 	while (no < rd->n_reg_rules - 1) {
1227 		tmp = &rd->reg_rules[++no];
1228 		freq_range_tmp = &tmp->freq_range;
1229 
1230 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1231 			break;
1232 
1233 		freq_range = freq_range_tmp;
1234 	}
1235 
1236 	end_freq = freq_range->end_freq_khz;
1237 
1238 	return end_freq - start_freq;
1239 }
1240 
1241 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1242 				   const struct ieee80211_reg_rule *rule)
1243 {
1244 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1245 
1246 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1247 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1248 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1249 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1250 
1251 	/*
1252 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1253 	 * are not allowed.
1254 	 */
1255 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1256 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1257 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1258 
1259 	return bw;
1260 }
1261 
1262 /* Sanity check on a regulatory rule */
1263 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1264 {
1265 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1266 	u32 freq_diff;
1267 
1268 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1269 		return false;
1270 
1271 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1272 		return false;
1273 
1274 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1275 
1276 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1277 	    freq_range->max_bandwidth_khz > freq_diff)
1278 		return false;
1279 
1280 	return true;
1281 }
1282 
1283 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1284 {
1285 	const struct ieee80211_reg_rule *reg_rule = NULL;
1286 	unsigned int i;
1287 
1288 	if (!rd->n_reg_rules)
1289 		return false;
1290 
1291 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1292 		return false;
1293 
1294 	for (i = 0; i < rd->n_reg_rules; i++) {
1295 		reg_rule = &rd->reg_rules[i];
1296 		if (!is_valid_reg_rule(reg_rule))
1297 			return false;
1298 	}
1299 
1300 	return true;
1301 }
1302 
1303 /**
1304  * freq_in_rule_band - tells us if a frequency is in a frequency band
1305  * @freq_range: frequency rule we want to query
1306  * @freq_khz: frequency we are inquiring about
1307  *
1308  * This lets us know if a specific frequency rule is or is not relevant to
1309  * a specific frequency's band. Bands are device specific and artificial
1310  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1311  * however it is safe for now to assume that a frequency rule should not be
1312  * part of a frequency's band if the start freq or end freq are off by more
1313  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
1314  * 60 GHz band.
1315  * This resolution can be lowered and should be considered as we add
1316  * regulatory rule support for other "bands".
1317  **/
1318 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1319 			      u32 freq_khz)
1320 {
1321 #define ONE_GHZ_IN_KHZ	1000000
1322 	/*
1323 	 * From 802.11ad: directional multi-gigabit (DMG):
1324 	 * Pertaining to operation in a frequency band containing a channel
1325 	 * with the Channel starting frequency above 45 GHz.
1326 	 */
1327 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1328 			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1329 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1330 		return true;
1331 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1332 		return true;
1333 	return false;
1334 #undef ONE_GHZ_IN_KHZ
1335 }
1336 
1337 /*
1338  * Later on we can perhaps use the more restrictive DFS
1339  * region but we don't have information for that yet so
1340  * for now simply disallow conflicts.
1341  */
1342 static enum nl80211_dfs_regions
1343 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1344 			 const enum nl80211_dfs_regions dfs_region2)
1345 {
1346 	if (dfs_region1 != dfs_region2)
1347 		return NL80211_DFS_UNSET;
1348 	return dfs_region1;
1349 }
1350 
1351 /*
1352  * Helper for regdom_intersect(), this does the real
1353  * mathematical intersection fun
1354  */
1355 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1356 			       const struct ieee80211_regdomain *rd2,
1357 			       const struct ieee80211_reg_rule *rule1,
1358 			       const struct ieee80211_reg_rule *rule2,
1359 			       struct ieee80211_reg_rule *intersected_rule)
1360 {
1361 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1362 	struct ieee80211_freq_range *freq_range;
1363 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1364 	struct ieee80211_power_rule *power_rule;
1365 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1366 
1367 	freq_range1 = &rule1->freq_range;
1368 	freq_range2 = &rule2->freq_range;
1369 	freq_range = &intersected_rule->freq_range;
1370 
1371 	power_rule1 = &rule1->power_rule;
1372 	power_rule2 = &rule2->power_rule;
1373 	power_rule = &intersected_rule->power_rule;
1374 
1375 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1376 					 freq_range2->start_freq_khz);
1377 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1378 				       freq_range2->end_freq_khz);
1379 
1380 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1381 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1382 
1383 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1384 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1385 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1386 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1387 
1388 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1389 
1390 	intersected_rule->flags = rule1->flags | rule2->flags;
1391 
1392 	/*
1393 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1394 	 * set AUTO_BW in intersected rule also. Next we will
1395 	 * calculate BW correctly in handle_channel function.
1396 	 * In other case remove AUTO_BW flag while we calculate
1397 	 * maximum bandwidth correctly and auto calculation is
1398 	 * not required.
1399 	 */
1400 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1401 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1402 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1403 	else
1404 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1405 
1406 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1407 	if (freq_range->max_bandwidth_khz > freq_diff)
1408 		freq_range->max_bandwidth_khz = freq_diff;
1409 
1410 	power_rule->max_eirp = min(power_rule1->max_eirp,
1411 		power_rule2->max_eirp);
1412 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1413 		power_rule2->max_antenna_gain);
1414 
1415 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1416 					   rule2->dfs_cac_ms);
1417 
1418 	if (!is_valid_reg_rule(intersected_rule))
1419 		return -EINVAL;
1420 
1421 	return 0;
1422 }
1423 
1424 /* check whether old rule contains new rule */
1425 static bool rule_contains(struct ieee80211_reg_rule *r1,
1426 			  struct ieee80211_reg_rule *r2)
1427 {
1428 	/* for simplicity, currently consider only same flags */
1429 	if (r1->flags != r2->flags)
1430 		return false;
1431 
1432 	/* verify r1 is more restrictive */
1433 	if ((r1->power_rule.max_antenna_gain >
1434 	     r2->power_rule.max_antenna_gain) ||
1435 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1436 		return false;
1437 
1438 	/* make sure r2's range is contained within r1 */
1439 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1440 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1441 		return false;
1442 
1443 	/* and finally verify that r1.max_bw >= r2.max_bw */
1444 	if (r1->freq_range.max_bandwidth_khz <
1445 	    r2->freq_range.max_bandwidth_khz)
1446 		return false;
1447 
1448 	return true;
1449 }
1450 
1451 /* add or extend current rules. do nothing if rule is already contained */
1452 static void add_rule(struct ieee80211_reg_rule *rule,
1453 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1454 {
1455 	struct ieee80211_reg_rule *tmp_rule;
1456 	int i;
1457 
1458 	for (i = 0; i < *n_rules; i++) {
1459 		tmp_rule = &reg_rules[i];
1460 		/* rule is already contained - do nothing */
1461 		if (rule_contains(tmp_rule, rule))
1462 			return;
1463 
1464 		/* extend rule if possible */
1465 		if (rule_contains(rule, tmp_rule)) {
1466 			memcpy(tmp_rule, rule, sizeof(*rule));
1467 			return;
1468 		}
1469 	}
1470 
1471 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1472 	(*n_rules)++;
1473 }
1474 
1475 /**
1476  * regdom_intersect - do the intersection between two regulatory domains
1477  * @rd1: first regulatory domain
1478  * @rd2: second regulatory domain
1479  *
1480  * Use this function to get the intersection between two regulatory domains.
1481  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1482  * as no one single alpha2 can represent this regulatory domain.
1483  *
1484  * Returns a pointer to the regulatory domain structure which will hold the
1485  * resulting intersection of rules between rd1 and rd2. We will
1486  * kzalloc() this structure for you.
1487  */
1488 static struct ieee80211_regdomain *
1489 regdom_intersect(const struct ieee80211_regdomain *rd1,
1490 		 const struct ieee80211_regdomain *rd2)
1491 {
1492 	int r, size_of_regd;
1493 	unsigned int x, y;
1494 	unsigned int num_rules = 0;
1495 	const struct ieee80211_reg_rule *rule1, *rule2;
1496 	struct ieee80211_reg_rule intersected_rule;
1497 	struct ieee80211_regdomain *rd;
1498 
1499 	if (!rd1 || !rd2)
1500 		return NULL;
1501 
1502 	/*
1503 	 * First we get a count of the rules we'll need, then we actually
1504 	 * build them. This is to so we can malloc() and free() a
1505 	 * regdomain once. The reason we use reg_rules_intersect() here
1506 	 * is it will return -EINVAL if the rule computed makes no sense.
1507 	 * All rules that do check out OK are valid.
1508 	 */
1509 
1510 	for (x = 0; x < rd1->n_reg_rules; x++) {
1511 		rule1 = &rd1->reg_rules[x];
1512 		for (y = 0; y < rd2->n_reg_rules; y++) {
1513 			rule2 = &rd2->reg_rules[y];
1514 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1515 						 &intersected_rule))
1516 				num_rules++;
1517 		}
1518 	}
1519 
1520 	if (!num_rules)
1521 		return NULL;
1522 
1523 	size_of_regd = sizeof(struct ieee80211_regdomain) +
1524 		       num_rules * sizeof(struct ieee80211_reg_rule);
1525 
1526 	rd = kzalloc(size_of_regd, GFP_KERNEL);
1527 	if (!rd)
1528 		return NULL;
1529 
1530 	for (x = 0; x < rd1->n_reg_rules; x++) {
1531 		rule1 = &rd1->reg_rules[x];
1532 		for (y = 0; y < rd2->n_reg_rules; y++) {
1533 			rule2 = &rd2->reg_rules[y];
1534 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1535 						&intersected_rule);
1536 			/*
1537 			 * No need to memset here the intersected rule here as
1538 			 * we're not using the stack anymore
1539 			 */
1540 			if (r)
1541 				continue;
1542 
1543 			add_rule(&intersected_rule, rd->reg_rules,
1544 				 &rd->n_reg_rules);
1545 		}
1546 	}
1547 
1548 	rd->alpha2[0] = '9';
1549 	rd->alpha2[1] = '8';
1550 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1551 						  rd2->dfs_region);
1552 
1553 	return rd;
1554 }
1555 
1556 /*
1557  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1558  * want to just have the channel structure use these
1559  */
1560 static u32 map_regdom_flags(u32 rd_flags)
1561 {
1562 	u32 channel_flags = 0;
1563 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1564 		channel_flags |= IEEE80211_CHAN_NO_IR;
1565 	if (rd_flags & NL80211_RRF_DFS)
1566 		channel_flags |= IEEE80211_CHAN_RADAR;
1567 	if (rd_flags & NL80211_RRF_NO_OFDM)
1568 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1569 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1570 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1571 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1572 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1573 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1574 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1575 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1576 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1577 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1578 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1579 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1580 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1581 	return channel_flags;
1582 }
1583 
1584 static const struct ieee80211_reg_rule *
1585 freq_reg_info_regd(u32 center_freq,
1586 		   const struct ieee80211_regdomain *regd, u32 bw)
1587 {
1588 	int i;
1589 	bool band_rule_found = false;
1590 	bool bw_fits = false;
1591 
1592 	if (!regd)
1593 		return ERR_PTR(-EINVAL);
1594 
1595 	for (i = 0; i < regd->n_reg_rules; i++) {
1596 		const struct ieee80211_reg_rule *rr;
1597 		const struct ieee80211_freq_range *fr = NULL;
1598 
1599 		rr = &regd->reg_rules[i];
1600 		fr = &rr->freq_range;
1601 
1602 		/*
1603 		 * We only need to know if one frequency rule was
1604 		 * was in center_freq's band, that's enough, so lets
1605 		 * not overwrite it once found
1606 		 */
1607 		if (!band_rule_found)
1608 			band_rule_found = freq_in_rule_band(fr, center_freq);
1609 
1610 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1611 
1612 		if (band_rule_found && bw_fits)
1613 			return rr;
1614 	}
1615 
1616 	if (!band_rule_found)
1617 		return ERR_PTR(-ERANGE);
1618 
1619 	return ERR_PTR(-EINVAL);
1620 }
1621 
1622 static const struct ieee80211_reg_rule *
1623 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1624 {
1625 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1626 	const struct ieee80211_reg_rule *reg_rule = NULL;
1627 	u32 bw;
1628 
1629 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1630 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1631 		if (!IS_ERR(reg_rule))
1632 			return reg_rule;
1633 	}
1634 
1635 	return reg_rule;
1636 }
1637 
1638 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1639 					       u32 center_freq)
1640 {
1641 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1642 }
1643 EXPORT_SYMBOL(freq_reg_info);
1644 
1645 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1646 {
1647 	switch (initiator) {
1648 	case NL80211_REGDOM_SET_BY_CORE:
1649 		return "core";
1650 	case NL80211_REGDOM_SET_BY_USER:
1651 		return "user";
1652 	case NL80211_REGDOM_SET_BY_DRIVER:
1653 		return "driver";
1654 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1655 		return "country IE";
1656 	default:
1657 		WARN_ON(1);
1658 		return "bug";
1659 	}
1660 }
1661 EXPORT_SYMBOL(reg_initiator_name);
1662 
1663 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1664 					  const struct ieee80211_reg_rule *reg_rule,
1665 					  const struct ieee80211_channel *chan)
1666 {
1667 	const struct ieee80211_freq_range *freq_range = NULL;
1668 	u32 max_bandwidth_khz, bw_flags = 0;
1669 
1670 	freq_range = &reg_rule->freq_range;
1671 
1672 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1673 	/* Check if auto calculation requested */
1674 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1675 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1676 
1677 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1678 	if (!cfg80211_does_bw_fit_range(freq_range,
1679 					MHZ_TO_KHZ(chan->center_freq),
1680 					MHZ_TO_KHZ(10)))
1681 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1682 	if (!cfg80211_does_bw_fit_range(freq_range,
1683 					MHZ_TO_KHZ(chan->center_freq),
1684 					MHZ_TO_KHZ(20)))
1685 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1686 
1687 	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1688 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1689 	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1690 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1691 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1692 		bw_flags |= IEEE80211_CHAN_NO_HT40;
1693 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1694 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1695 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1696 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1697 	return bw_flags;
1698 }
1699 
1700 /*
1701  * Note that right now we assume the desired channel bandwidth
1702  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1703  * per channel, the primary and the extension channel).
1704  */
1705 static void handle_channel(struct wiphy *wiphy,
1706 			   enum nl80211_reg_initiator initiator,
1707 			   struct ieee80211_channel *chan)
1708 {
1709 	u32 flags, bw_flags = 0;
1710 	const struct ieee80211_reg_rule *reg_rule = NULL;
1711 	const struct ieee80211_power_rule *power_rule = NULL;
1712 	struct wiphy *request_wiphy = NULL;
1713 	struct regulatory_request *lr = get_last_request();
1714 	const struct ieee80211_regdomain *regd;
1715 
1716 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1717 
1718 	flags = chan->orig_flags;
1719 
1720 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1721 	if (IS_ERR(reg_rule)) {
1722 		/*
1723 		 * We will disable all channels that do not match our
1724 		 * received regulatory rule unless the hint is coming
1725 		 * from a Country IE and the Country IE had no information
1726 		 * about a band. The IEEE 802.11 spec allows for an AP
1727 		 * to send only a subset of the regulatory rules allowed,
1728 		 * so an AP in the US that only supports 2.4 GHz may only send
1729 		 * a country IE with information for the 2.4 GHz band
1730 		 * while 5 GHz is still supported.
1731 		 */
1732 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1733 		    PTR_ERR(reg_rule) == -ERANGE)
1734 			return;
1735 
1736 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1737 		    request_wiphy && request_wiphy == wiphy &&
1738 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1739 			pr_debug("Disabling freq %d MHz for good\n",
1740 				 chan->center_freq);
1741 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1742 			chan->flags = chan->orig_flags;
1743 		} else {
1744 			pr_debug("Disabling freq %d MHz\n",
1745 				 chan->center_freq);
1746 			chan->flags |= IEEE80211_CHAN_DISABLED;
1747 		}
1748 		return;
1749 	}
1750 
1751 	regd = reg_get_regdomain(wiphy);
1752 
1753 	power_rule = &reg_rule->power_rule;
1754 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1755 
1756 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1757 	    request_wiphy && request_wiphy == wiphy &&
1758 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1759 		/*
1760 		 * This guarantees the driver's requested regulatory domain
1761 		 * will always be used as a base for further regulatory
1762 		 * settings
1763 		 */
1764 		chan->flags = chan->orig_flags =
1765 			map_regdom_flags(reg_rule->flags) | bw_flags;
1766 		chan->max_antenna_gain = chan->orig_mag =
1767 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1768 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1769 			(int) MBM_TO_DBM(power_rule->max_eirp);
1770 
1771 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1772 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1773 			if (reg_rule->dfs_cac_ms)
1774 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1775 		}
1776 
1777 		return;
1778 	}
1779 
1780 	chan->dfs_state = NL80211_DFS_USABLE;
1781 	chan->dfs_state_entered = jiffies;
1782 
1783 	chan->beacon_found = false;
1784 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1785 	chan->max_antenna_gain =
1786 		min_t(int, chan->orig_mag,
1787 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1788 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1789 
1790 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1791 		if (reg_rule->dfs_cac_ms)
1792 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1793 		else
1794 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1795 	}
1796 
1797 	if (chan->orig_mpwr) {
1798 		/*
1799 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1800 		 * will always follow the passed country IE power settings.
1801 		 */
1802 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1803 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1804 			chan->max_power = chan->max_reg_power;
1805 		else
1806 			chan->max_power = min(chan->orig_mpwr,
1807 					      chan->max_reg_power);
1808 	} else
1809 		chan->max_power = chan->max_reg_power;
1810 }
1811 
1812 static void handle_band(struct wiphy *wiphy,
1813 			enum nl80211_reg_initiator initiator,
1814 			struct ieee80211_supported_band *sband)
1815 {
1816 	unsigned int i;
1817 
1818 	if (!sband)
1819 		return;
1820 
1821 	for (i = 0; i < sband->n_channels; i++)
1822 		handle_channel(wiphy, initiator, &sband->channels[i]);
1823 }
1824 
1825 static bool reg_request_cell_base(struct regulatory_request *request)
1826 {
1827 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1828 		return false;
1829 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1830 }
1831 
1832 bool reg_last_request_cell_base(void)
1833 {
1834 	return reg_request_cell_base(get_last_request());
1835 }
1836 
1837 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1838 /* Core specific check */
1839 static enum reg_request_treatment
1840 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1841 {
1842 	struct regulatory_request *lr = get_last_request();
1843 
1844 	if (!reg_num_devs_support_basehint)
1845 		return REG_REQ_IGNORE;
1846 
1847 	if (reg_request_cell_base(lr) &&
1848 	    !regdom_changes(pending_request->alpha2))
1849 		return REG_REQ_ALREADY_SET;
1850 
1851 	return REG_REQ_OK;
1852 }
1853 
1854 /* Device specific check */
1855 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1856 {
1857 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1858 }
1859 #else
1860 static enum reg_request_treatment
1861 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1862 {
1863 	return REG_REQ_IGNORE;
1864 }
1865 
1866 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1867 {
1868 	return true;
1869 }
1870 #endif
1871 
1872 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1873 {
1874 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1875 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1876 		return true;
1877 	return false;
1878 }
1879 
1880 static bool ignore_reg_update(struct wiphy *wiphy,
1881 			      enum nl80211_reg_initiator initiator)
1882 {
1883 	struct regulatory_request *lr = get_last_request();
1884 
1885 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1886 		return true;
1887 
1888 	if (!lr) {
1889 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1890 			 reg_initiator_name(initiator));
1891 		return true;
1892 	}
1893 
1894 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1895 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1896 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1897 			 reg_initiator_name(initiator));
1898 		return true;
1899 	}
1900 
1901 	/*
1902 	 * wiphy->regd will be set once the device has its own
1903 	 * desired regulatory domain set
1904 	 */
1905 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1906 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1907 	    !is_world_regdom(lr->alpha2)) {
1908 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1909 			 reg_initiator_name(initiator));
1910 		return true;
1911 	}
1912 
1913 	if (reg_request_cell_base(lr))
1914 		return reg_dev_ignore_cell_hint(wiphy);
1915 
1916 	return false;
1917 }
1918 
1919 static bool reg_is_world_roaming(struct wiphy *wiphy)
1920 {
1921 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1922 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1923 	struct regulatory_request *lr = get_last_request();
1924 
1925 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1926 		return true;
1927 
1928 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1929 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1930 		return true;
1931 
1932 	return false;
1933 }
1934 
1935 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1936 			      struct reg_beacon *reg_beacon)
1937 {
1938 	struct ieee80211_supported_band *sband;
1939 	struct ieee80211_channel *chan;
1940 	bool channel_changed = false;
1941 	struct ieee80211_channel chan_before;
1942 
1943 	sband = wiphy->bands[reg_beacon->chan.band];
1944 	chan = &sband->channels[chan_idx];
1945 
1946 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1947 		return;
1948 
1949 	if (chan->beacon_found)
1950 		return;
1951 
1952 	chan->beacon_found = true;
1953 
1954 	if (!reg_is_world_roaming(wiphy))
1955 		return;
1956 
1957 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1958 		return;
1959 
1960 	chan_before = *chan;
1961 
1962 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1963 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1964 		channel_changed = true;
1965 	}
1966 
1967 	if (channel_changed)
1968 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1969 }
1970 
1971 /*
1972  * Called when a scan on a wiphy finds a beacon on
1973  * new channel
1974  */
1975 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1976 				    struct reg_beacon *reg_beacon)
1977 {
1978 	unsigned int i;
1979 	struct ieee80211_supported_band *sband;
1980 
1981 	if (!wiphy->bands[reg_beacon->chan.band])
1982 		return;
1983 
1984 	sband = wiphy->bands[reg_beacon->chan.band];
1985 
1986 	for (i = 0; i < sband->n_channels; i++)
1987 		handle_reg_beacon(wiphy, i, reg_beacon);
1988 }
1989 
1990 /*
1991  * Called upon reg changes or a new wiphy is added
1992  */
1993 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1994 {
1995 	unsigned int i;
1996 	struct ieee80211_supported_band *sband;
1997 	struct reg_beacon *reg_beacon;
1998 
1999 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2000 		if (!wiphy->bands[reg_beacon->chan.band])
2001 			continue;
2002 		sband = wiphy->bands[reg_beacon->chan.band];
2003 		for (i = 0; i < sband->n_channels; i++)
2004 			handle_reg_beacon(wiphy, i, reg_beacon);
2005 	}
2006 }
2007 
2008 /* Reap the advantages of previously found beacons */
2009 static void reg_process_beacons(struct wiphy *wiphy)
2010 {
2011 	/*
2012 	 * Means we are just firing up cfg80211, so no beacons would
2013 	 * have been processed yet.
2014 	 */
2015 	if (!last_request)
2016 		return;
2017 	wiphy_update_beacon_reg(wiphy);
2018 }
2019 
2020 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2021 {
2022 	if (!chan)
2023 		return false;
2024 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2025 		return false;
2026 	/* This would happen when regulatory rules disallow HT40 completely */
2027 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2028 		return false;
2029 	return true;
2030 }
2031 
2032 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2033 					 struct ieee80211_channel *channel)
2034 {
2035 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2036 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2037 	const struct ieee80211_regdomain *regd;
2038 	unsigned int i;
2039 	u32 flags;
2040 
2041 	if (!is_ht40_allowed(channel)) {
2042 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2043 		return;
2044 	}
2045 
2046 	/*
2047 	 * We need to ensure the extension channels exist to
2048 	 * be able to use HT40- or HT40+, this finds them (or not)
2049 	 */
2050 	for (i = 0; i < sband->n_channels; i++) {
2051 		struct ieee80211_channel *c = &sband->channels[i];
2052 
2053 		if (c->center_freq == (channel->center_freq - 20))
2054 			channel_before = c;
2055 		if (c->center_freq == (channel->center_freq + 20))
2056 			channel_after = c;
2057 	}
2058 
2059 	flags = 0;
2060 	regd = get_wiphy_regdom(wiphy);
2061 	if (regd) {
2062 		const struct ieee80211_reg_rule *reg_rule =
2063 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2064 					   regd, MHZ_TO_KHZ(20));
2065 
2066 		if (!IS_ERR(reg_rule))
2067 			flags = reg_rule->flags;
2068 	}
2069 
2070 	/*
2071 	 * Please note that this assumes target bandwidth is 20 MHz,
2072 	 * if that ever changes we also need to change the below logic
2073 	 * to include that as well.
2074 	 */
2075 	if (!is_ht40_allowed(channel_before) ||
2076 	    flags & NL80211_RRF_NO_HT40MINUS)
2077 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2078 	else
2079 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2080 
2081 	if (!is_ht40_allowed(channel_after) ||
2082 	    flags & NL80211_RRF_NO_HT40PLUS)
2083 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2084 	else
2085 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2086 }
2087 
2088 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2089 				      struct ieee80211_supported_band *sband)
2090 {
2091 	unsigned int i;
2092 
2093 	if (!sband)
2094 		return;
2095 
2096 	for (i = 0; i < sband->n_channels; i++)
2097 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2098 }
2099 
2100 static void reg_process_ht_flags(struct wiphy *wiphy)
2101 {
2102 	enum nl80211_band band;
2103 
2104 	if (!wiphy)
2105 		return;
2106 
2107 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2108 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2109 }
2110 
2111 static void reg_call_notifier(struct wiphy *wiphy,
2112 			      struct regulatory_request *request)
2113 {
2114 	if (wiphy->reg_notifier)
2115 		wiphy->reg_notifier(wiphy, request);
2116 }
2117 
2118 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2119 {
2120 	struct cfg80211_chan_def chandef;
2121 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2122 	enum nl80211_iftype iftype;
2123 
2124 	wdev_lock(wdev);
2125 	iftype = wdev->iftype;
2126 
2127 	/* make sure the interface is active */
2128 	if (!wdev->netdev || !netif_running(wdev->netdev))
2129 		goto wdev_inactive_unlock;
2130 
2131 	switch (iftype) {
2132 	case NL80211_IFTYPE_AP:
2133 	case NL80211_IFTYPE_P2P_GO:
2134 		if (!wdev->beacon_interval)
2135 			goto wdev_inactive_unlock;
2136 		chandef = wdev->chandef;
2137 		break;
2138 	case NL80211_IFTYPE_ADHOC:
2139 		if (!wdev->ssid_len)
2140 			goto wdev_inactive_unlock;
2141 		chandef = wdev->chandef;
2142 		break;
2143 	case NL80211_IFTYPE_STATION:
2144 	case NL80211_IFTYPE_P2P_CLIENT:
2145 		if (!wdev->current_bss ||
2146 		    !wdev->current_bss->pub.channel)
2147 			goto wdev_inactive_unlock;
2148 
2149 		if (!rdev->ops->get_channel ||
2150 		    rdev_get_channel(rdev, wdev, &chandef))
2151 			cfg80211_chandef_create(&chandef,
2152 						wdev->current_bss->pub.channel,
2153 						NL80211_CHAN_NO_HT);
2154 		break;
2155 	case NL80211_IFTYPE_MONITOR:
2156 	case NL80211_IFTYPE_AP_VLAN:
2157 	case NL80211_IFTYPE_P2P_DEVICE:
2158 		/* no enforcement required */
2159 		break;
2160 	default:
2161 		/* others not implemented for now */
2162 		WARN_ON(1);
2163 		break;
2164 	}
2165 
2166 	wdev_unlock(wdev);
2167 
2168 	switch (iftype) {
2169 	case NL80211_IFTYPE_AP:
2170 	case NL80211_IFTYPE_P2P_GO:
2171 	case NL80211_IFTYPE_ADHOC:
2172 		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2173 	case NL80211_IFTYPE_STATION:
2174 	case NL80211_IFTYPE_P2P_CLIENT:
2175 		return cfg80211_chandef_usable(wiphy, &chandef,
2176 					       IEEE80211_CHAN_DISABLED);
2177 	default:
2178 		break;
2179 	}
2180 
2181 	return true;
2182 
2183 wdev_inactive_unlock:
2184 	wdev_unlock(wdev);
2185 	return true;
2186 }
2187 
2188 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2189 {
2190 	struct wireless_dev *wdev;
2191 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2192 
2193 	ASSERT_RTNL();
2194 
2195 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2196 		if (!reg_wdev_chan_valid(wiphy, wdev))
2197 			cfg80211_leave(rdev, wdev);
2198 }
2199 
2200 static void reg_check_chans_work(struct work_struct *work)
2201 {
2202 	struct cfg80211_registered_device *rdev;
2203 
2204 	pr_debug("Verifying active interfaces after reg change\n");
2205 	rtnl_lock();
2206 
2207 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2208 		if (!(rdev->wiphy.regulatory_flags &
2209 		      REGULATORY_IGNORE_STALE_KICKOFF))
2210 			reg_leave_invalid_chans(&rdev->wiphy);
2211 
2212 	rtnl_unlock();
2213 }
2214 
2215 static void reg_check_channels(void)
2216 {
2217 	/*
2218 	 * Give usermode a chance to do something nicer (move to another
2219 	 * channel, orderly disconnection), before forcing a disconnection.
2220 	 */
2221 	mod_delayed_work(system_power_efficient_wq,
2222 			 &reg_check_chans,
2223 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2224 }
2225 
2226 static void wiphy_update_regulatory(struct wiphy *wiphy,
2227 				    enum nl80211_reg_initiator initiator)
2228 {
2229 	enum nl80211_band band;
2230 	struct regulatory_request *lr = get_last_request();
2231 
2232 	if (ignore_reg_update(wiphy, initiator)) {
2233 		/*
2234 		 * Regulatory updates set by CORE are ignored for custom
2235 		 * regulatory cards. Let us notify the changes to the driver,
2236 		 * as some drivers used this to restore its orig_* reg domain.
2237 		 */
2238 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2239 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2240 			reg_call_notifier(wiphy, lr);
2241 		return;
2242 	}
2243 
2244 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2245 
2246 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2247 		handle_band(wiphy, initiator, wiphy->bands[band]);
2248 
2249 	reg_process_beacons(wiphy);
2250 	reg_process_ht_flags(wiphy);
2251 	reg_call_notifier(wiphy, lr);
2252 }
2253 
2254 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2255 {
2256 	struct cfg80211_registered_device *rdev;
2257 	struct wiphy *wiphy;
2258 
2259 	ASSERT_RTNL();
2260 
2261 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2262 		wiphy = &rdev->wiphy;
2263 		wiphy_update_regulatory(wiphy, initiator);
2264 	}
2265 
2266 	reg_check_channels();
2267 }
2268 
2269 static void handle_channel_custom(struct wiphy *wiphy,
2270 				  struct ieee80211_channel *chan,
2271 				  const struct ieee80211_regdomain *regd)
2272 {
2273 	u32 bw_flags = 0;
2274 	const struct ieee80211_reg_rule *reg_rule = NULL;
2275 	const struct ieee80211_power_rule *power_rule = NULL;
2276 	u32 bw;
2277 
2278 	for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2279 		reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2280 					      regd, bw);
2281 		if (!IS_ERR(reg_rule))
2282 			break;
2283 	}
2284 
2285 	if (IS_ERR(reg_rule)) {
2286 		pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2287 			 chan->center_freq);
2288 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2289 			chan->flags |= IEEE80211_CHAN_DISABLED;
2290 		} else {
2291 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2292 			chan->flags = chan->orig_flags;
2293 		}
2294 		return;
2295 	}
2296 
2297 	power_rule = &reg_rule->power_rule;
2298 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2299 
2300 	chan->dfs_state_entered = jiffies;
2301 	chan->dfs_state = NL80211_DFS_USABLE;
2302 
2303 	chan->beacon_found = false;
2304 
2305 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2306 		chan->flags = chan->orig_flags | bw_flags |
2307 			      map_regdom_flags(reg_rule->flags);
2308 	else
2309 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2310 
2311 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2312 	chan->max_reg_power = chan->max_power =
2313 		(int) MBM_TO_DBM(power_rule->max_eirp);
2314 
2315 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2316 		if (reg_rule->dfs_cac_ms)
2317 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2318 		else
2319 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2320 	}
2321 
2322 	chan->max_power = chan->max_reg_power;
2323 }
2324 
2325 static void handle_band_custom(struct wiphy *wiphy,
2326 			       struct ieee80211_supported_band *sband,
2327 			       const struct ieee80211_regdomain *regd)
2328 {
2329 	unsigned int i;
2330 
2331 	if (!sband)
2332 		return;
2333 
2334 	for (i = 0; i < sband->n_channels; i++)
2335 		handle_channel_custom(wiphy, &sband->channels[i], regd);
2336 }
2337 
2338 /* Used by drivers prior to wiphy registration */
2339 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2340 				   const struct ieee80211_regdomain *regd)
2341 {
2342 	enum nl80211_band band;
2343 	unsigned int bands_set = 0;
2344 
2345 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2346 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2347 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2348 
2349 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2350 		if (!wiphy->bands[band])
2351 			continue;
2352 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2353 		bands_set++;
2354 	}
2355 
2356 	/*
2357 	 * no point in calling this if it won't have any effect
2358 	 * on your device's supported bands.
2359 	 */
2360 	WARN_ON(!bands_set);
2361 }
2362 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2363 
2364 static void reg_set_request_processed(void)
2365 {
2366 	bool need_more_processing = false;
2367 	struct regulatory_request *lr = get_last_request();
2368 
2369 	lr->processed = true;
2370 
2371 	spin_lock(&reg_requests_lock);
2372 	if (!list_empty(&reg_requests_list))
2373 		need_more_processing = true;
2374 	spin_unlock(&reg_requests_lock);
2375 
2376 	cancel_crda_timeout();
2377 
2378 	if (need_more_processing)
2379 		schedule_work(&reg_work);
2380 }
2381 
2382 /**
2383  * reg_process_hint_core - process core regulatory requests
2384  * @pending_request: a pending core regulatory request
2385  *
2386  * The wireless subsystem can use this function to process
2387  * a regulatory request issued by the regulatory core.
2388  */
2389 static enum reg_request_treatment
2390 reg_process_hint_core(struct regulatory_request *core_request)
2391 {
2392 	if (reg_query_database(core_request)) {
2393 		core_request->intersect = false;
2394 		core_request->processed = false;
2395 		reg_update_last_request(core_request);
2396 		return REG_REQ_OK;
2397 	}
2398 
2399 	return REG_REQ_IGNORE;
2400 }
2401 
2402 static enum reg_request_treatment
2403 __reg_process_hint_user(struct regulatory_request *user_request)
2404 {
2405 	struct regulatory_request *lr = get_last_request();
2406 
2407 	if (reg_request_cell_base(user_request))
2408 		return reg_ignore_cell_hint(user_request);
2409 
2410 	if (reg_request_cell_base(lr))
2411 		return REG_REQ_IGNORE;
2412 
2413 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2414 		return REG_REQ_INTERSECT;
2415 	/*
2416 	 * If the user knows better the user should set the regdom
2417 	 * to their country before the IE is picked up
2418 	 */
2419 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2420 	    lr->intersect)
2421 		return REG_REQ_IGNORE;
2422 	/*
2423 	 * Process user requests only after previous user/driver/core
2424 	 * requests have been processed
2425 	 */
2426 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2427 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2428 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2429 	    regdom_changes(lr->alpha2))
2430 		return REG_REQ_IGNORE;
2431 
2432 	if (!regdom_changes(user_request->alpha2))
2433 		return REG_REQ_ALREADY_SET;
2434 
2435 	return REG_REQ_OK;
2436 }
2437 
2438 /**
2439  * reg_process_hint_user - process user regulatory requests
2440  * @user_request: a pending user regulatory request
2441  *
2442  * The wireless subsystem can use this function to process
2443  * a regulatory request initiated by userspace.
2444  */
2445 static enum reg_request_treatment
2446 reg_process_hint_user(struct regulatory_request *user_request)
2447 {
2448 	enum reg_request_treatment treatment;
2449 
2450 	treatment = __reg_process_hint_user(user_request);
2451 	if (treatment == REG_REQ_IGNORE ||
2452 	    treatment == REG_REQ_ALREADY_SET)
2453 		return REG_REQ_IGNORE;
2454 
2455 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2456 	user_request->processed = false;
2457 
2458 	if (reg_query_database(user_request)) {
2459 		reg_update_last_request(user_request);
2460 		user_alpha2[0] = user_request->alpha2[0];
2461 		user_alpha2[1] = user_request->alpha2[1];
2462 		return REG_REQ_OK;
2463 	}
2464 
2465 	return REG_REQ_IGNORE;
2466 }
2467 
2468 static enum reg_request_treatment
2469 __reg_process_hint_driver(struct regulatory_request *driver_request)
2470 {
2471 	struct regulatory_request *lr = get_last_request();
2472 
2473 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2474 		if (regdom_changes(driver_request->alpha2))
2475 			return REG_REQ_OK;
2476 		return REG_REQ_ALREADY_SET;
2477 	}
2478 
2479 	/*
2480 	 * This would happen if you unplug and plug your card
2481 	 * back in or if you add a new device for which the previously
2482 	 * loaded card also agrees on the regulatory domain.
2483 	 */
2484 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2485 	    !regdom_changes(driver_request->alpha2))
2486 		return REG_REQ_ALREADY_SET;
2487 
2488 	return REG_REQ_INTERSECT;
2489 }
2490 
2491 /**
2492  * reg_process_hint_driver - process driver regulatory requests
2493  * @driver_request: a pending driver regulatory request
2494  *
2495  * The wireless subsystem can use this function to process
2496  * a regulatory request issued by an 802.11 driver.
2497  *
2498  * Returns one of the different reg request treatment values.
2499  */
2500 static enum reg_request_treatment
2501 reg_process_hint_driver(struct wiphy *wiphy,
2502 			struct regulatory_request *driver_request)
2503 {
2504 	const struct ieee80211_regdomain *regd, *tmp;
2505 	enum reg_request_treatment treatment;
2506 
2507 	treatment = __reg_process_hint_driver(driver_request);
2508 
2509 	switch (treatment) {
2510 	case REG_REQ_OK:
2511 		break;
2512 	case REG_REQ_IGNORE:
2513 		return REG_REQ_IGNORE;
2514 	case REG_REQ_INTERSECT:
2515 	case REG_REQ_ALREADY_SET:
2516 		regd = reg_copy_regd(get_cfg80211_regdom());
2517 		if (IS_ERR(regd))
2518 			return REG_REQ_IGNORE;
2519 
2520 		tmp = get_wiphy_regdom(wiphy);
2521 		rcu_assign_pointer(wiphy->regd, regd);
2522 		rcu_free_regdom(tmp);
2523 	}
2524 
2525 
2526 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2527 	driver_request->processed = false;
2528 
2529 	/*
2530 	 * Since CRDA will not be called in this case as we already
2531 	 * have applied the requested regulatory domain before we just
2532 	 * inform userspace we have processed the request
2533 	 */
2534 	if (treatment == REG_REQ_ALREADY_SET) {
2535 		nl80211_send_reg_change_event(driver_request);
2536 		reg_update_last_request(driver_request);
2537 		reg_set_request_processed();
2538 		return REG_REQ_ALREADY_SET;
2539 	}
2540 
2541 	if (reg_query_database(driver_request)) {
2542 		reg_update_last_request(driver_request);
2543 		return REG_REQ_OK;
2544 	}
2545 
2546 	return REG_REQ_IGNORE;
2547 }
2548 
2549 static enum reg_request_treatment
2550 __reg_process_hint_country_ie(struct wiphy *wiphy,
2551 			      struct regulatory_request *country_ie_request)
2552 {
2553 	struct wiphy *last_wiphy = NULL;
2554 	struct regulatory_request *lr = get_last_request();
2555 
2556 	if (reg_request_cell_base(lr)) {
2557 		/* Trust a Cell base station over the AP's country IE */
2558 		if (regdom_changes(country_ie_request->alpha2))
2559 			return REG_REQ_IGNORE;
2560 		return REG_REQ_ALREADY_SET;
2561 	} else {
2562 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2563 			return REG_REQ_IGNORE;
2564 	}
2565 
2566 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2567 		return -EINVAL;
2568 
2569 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2570 		return REG_REQ_OK;
2571 
2572 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2573 
2574 	if (last_wiphy != wiphy) {
2575 		/*
2576 		 * Two cards with two APs claiming different
2577 		 * Country IE alpha2s. We could
2578 		 * intersect them, but that seems unlikely
2579 		 * to be correct. Reject second one for now.
2580 		 */
2581 		if (regdom_changes(country_ie_request->alpha2))
2582 			return REG_REQ_IGNORE;
2583 		return REG_REQ_ALREADY_SET;
2584 	}
2585 
2586 	if (regdom_changes(country_ie_request->alpha2))
2587 		return REG_REQ_OK;
2588 	return REG_REQ_ALREADY_SET;
2589 }
2590 
2591 /**
2592  * reg_process_hint_country_ie - process regulatory requests from country IEs
2593  * @country_ie_request: a regulatory request from a country IE
2594  *
2595  * The wireless subsystem can use this function to process
2596  * a regulatory request issued by a country Information Element.
2597  *
2598  * Returns one of the different reg request treatment values.
2599  */
2600 static enum reg_request_treatment
2601 reg_process_hint_country_ie(struct wiphy *wiphy,
2602 			    struct regulatory_request *country_ie_request)
2603 {
2604 	enum reg_request_treatment treatment;
2605 
2606 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2607 
2608 	switch (treatment) {
2609 	case REG_REQ_OK:
2610 		break;
2611 	case REG_REQ_IGNORE:
2612 		return REG_REQ_IGNORE;
2613 	case REG_REQ_ALREADY_SET:
2614 		reg_free_request(country_ie_request);
2615 		return REG_REQ_ALREADY_SET;
2616 	case REG_REQ_INTERSECT:
2617 		/*
2618 		 * This doesn't happen yet, not sure we
2619 		 * ever want to support it for this case.
2620 		 */
2621 		WARN_ONCE(1, "Unexpected intersection for country IEs");
2622 		return REG_REQ_IGNORE;
2623 	}
2624 
2625 	country_ie_request->intersect = false;
2626 	country_ie_request->processed = false;
2627 
2628 	if (reg_query_database(country_ie_request)) {
2629 		reg_update_last_request(country_ie_request);
2630 		return REG_REQ_OK;
2631 	}
2632 
2633 	return REG_REQ_IGNORE;
2634 }
2635 
2636 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2637 {
2638 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2639 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2640 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2641 	bool dfs_domain_same;
2642 
2643 	rcu_read_lock();
2644 
2645 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2646 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2647 	if (!wiphy1_regd)
2648 		wiphy1_regd = cfg80211_regd;
2649 
2650 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2651 	if (!wiphy2_regd)
2652 		wiphy2_regd = cfg80211_regd;
2653 
2654 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2655 
2656 	rcu_read_unlock();
2657 
2658 	return dfs_domain_same;
2659 }
2660 
2661 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2662 				    struct ieee80211_channel *src_chan)
2663 {
2664 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2665 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2666 		return;
2667 
2668 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2669 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2670 		return;
2671 
2672 	if (src_chan->center_freq == dst_chan->center_freq &&
2673 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2674 		dst_chan->dfs_state = src_chan->dfs_state;
2675 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2676 	}
2677 }
2678 
2679 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2680 				       struct wiphy *src_wiphy)
2681 {
2682 	struct ieee80211_supported_band *src_sband, *dst_sband;
2683 	struct ieee80211_channel *src_chan, *dst_chan;
2684 	int i, j, band;
2685 
2686 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2687 		return;
2688 
2689 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2690 		dst_sband = dst_wiphy->bands[band];
2691 		src_sband = src_wiphy->bands[band];
2692 		if (!dst_sband || !src_sband)
2693 			continue;
2694 
2695 		for (i = 0; i < dst_sband->n_channels; i++) {
2696 			dst_chan = &dst_sband->channels[i];
2697 			for (j = 0; j < src_sband->n_channels; j++) {
2698 				src_chan = &src_sband->channels[j];
2699 				reg_copy_dfs_chan_state(dst_chan, src_chan);
2700 			}
2701 		}
2702 	}
2703 }
2704 
2705 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2706 {
2707 	struct cfg80211_registered_device *rdev;
2708 
2709 	ASSERT_RTNL();
2710 
2711 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2712 		if (wiphy == &rdev->wiphy)
2713 			continue;
2714 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2715 	}
2716 }
2717 
2718 /* This processes *all* regulatory hints */
2719 static void reg_process_hint(struct regulatory_request *reg_request)
2720 {
2721 	struct wiphy *wiphy = NULL;
2722 	enum reg_request_treatment treatment;
2723 
2724 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2725 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2726 
2727 	switch (reg_request->initiator) {
2728 	case NL80211_REGDOM_SET_BY_CORE:
2729 		treatment = reg_process_hint_core(reg_request);
2730 		break;
2731 	case NL80211_REGDOM_SET_BY_USER:
2732 		treatment = reg_process_hint_user(reg_request);
2733 		break;
2734 	case NL80211_REGDOM_SET_BY_DRIVER:
2735 		if (!wiphy)
2736 			goto out_free;
2737 		treatment = reg_process_hint_driver(wiphy, reg_request);
2738 		break;
2739 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2740 		if (!wiphy)
2741 			goto out_free;
2742 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2743 		break;
2744 	default:
2745 		WARN(1, "invalid initiator %d\n", reg_request->initiator);
2746 		goto out_free;
2747 	}
2748 
2749 	if (treatment == REG_REQ_IGNORE)
2750 		goto out_free;
2751 
2752 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2753 	     "unexpected treatment value %d\n", treatment);
2754 
2755 	/* This is required so that the orig_* parameters are saved.
2756 	 * NOTE: treatment must be set for any case that reaches here!
2757 	 */
2758 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2759 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2760 		wiphy_update_regulatory(wiphy, reg_request->initiator);
2761 		wiphy_all_share_dfs_chan_state(wiphy);
2762 		reg_check_channels();
2763 	}
2764 
2765 	return;
2766 
2767 out_free:
2768 	reg_free_request(reg_request);
2769 }
2770 
2771 static bool reg_only_self_managed_wiphys(void)
2772 {
2773 	struct cfg80211_registered_device *rdev;
2774 	struct wiphy *wiphy;
2775 	bool self_managed_found = false;
2776 
2777 	ASSERT_RTNL();
2778 
2779 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2780 		wiphy = &rdev->wiphy;
2781 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2782 			self_managed_found = true;
2783 		else
2784 			return false;
2785 	}
2786 
2787 	/* make sure at least one self-managed wiphy exists */
2788 	return self_managed_found;
2789 }
2790 
2791 /*
2792  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2793  * Regulatory hints come on a first come first serve basis and we
2794  * must process each one atomically.
2795  */
2796 static void reg_process_pending_hints(void)
2797 {
2798 	struct regulatory_request *reg_request, *lr;
2799 
2800 	lr = get_last_request();
2801 
2802 	/* When last_request->processed becomes true this will be rescheduled */
2803 	if (lr && !lr->processed) {
2804 		reg_process_hint(lr);
2805 		return;
2806 	}
2807 
2808 	spin_lock(&reg_requests_lock);
2809 
2810 	if (list_empty(&reg_requests_list)) {
2811 		spin_unlock(&reg_requests_lock);
2812 		return;
2813 	}
2814 
2815 	reg_request = list_first_entry(&reg_requests_list,
2816 				       struct regulatory_request,
2817 				       list);
2818 	list_del_init(&reg_request->list);
2819 
2820 	spin_unlock(&reg_requests_lock);
2821 
2822 	if (reg_only_self_managed_wiphys()) {
2823 		reg_free_request(reg_request);
2824 		return;
2825 	}
2826 
2827 	reg_process_hint(reg_request);
2828 
2829 	lr = get_last_request();
2830 
2831 	spin_lock(&reg_requests_lock);
2832 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
2833 		schedule_work(&reg_work);
2834 	spin_unlock(&reg_requests_lock);
2835 }
2836 
2837 /* Processes beacon hints -- this has nothing to do with country IEs */
2838 static void reg_process_pending_beacon_hints(void)
2839 {
2840 	struct cfg80211_registered_device *rdev;
2841 	struct reg_beacon *pending_beacon, *tmp;
2842 
2843 	/* This goes through the _pending_ beacon list */
2844 	spin_lock_bh(&reg_pending_beacons_lock);
2845 
2846 	list_for_each_entry_safe(pending_beacon, tmp,
2847 				 &reg_pending_beacons, list) {
2848 		list_del_init(&pending_beacon->list);
2849 
2850 		/* Applies the beacon hint to current wiphys */
2851 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2852 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2853 
2854 		/* Remembers the beacon hint for new wiphys or reg changes */
2855 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2856 	}
2857 
2858 	spin_unlock_bh(&reg_pending_beacons_lock);
2859 }
2860 
2861 static void reg_process_self_managed_hints(void)
2862 {
2863 	struct cfg80211_registered_device *rdev;
2864 	struct wiphy *wiphy;
2865 	const struct ieee80211_regdomain *tmp;
2866 	const struct ieee80211_regdomain *regd;
2867 	enum nl80211_band band;
2868 	struct regulatory_request request = {};
2869 
2870 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2871 		wiphy = &rdev->wiphy;
2872 
2873 		spin_lock(&reg_requests_lock);
2874 		regd = rdev->requested_regd;
2875 		rdev->requested_regd = NULL;
2876 		spin_unlock(&reg_requests_lock);
2877 
2878 		if (regd == NULL)
2879 			continue;
2880 
2881 		tmp = get_wiphy_regdom(wiphy);
2882 		rcu_assign_pointer(wiphy->regd, regd);
2883 		rcu_free_regdom(tmp);
2884 
2885 		for (band = 0; band < NUM_NL80211_BANDS; band++)
2886 			handle_band_custom(wiphy, wiphy->bands[band], regd);
2887 
2888 		reg_process_ht_flags(wiphy);
2889 
2890 		request.wiphy_idx = get_wiphy_idx(wiphy);
2891 		request.alpha2[0] = regd->alpha2[0];
2892 		request.alpha2[1] = regd->alpha2[1];
2893 		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2894 
2895 		nl80211_send_wiphy_reg_change_event(&request);
2896 	}
2897 
2898 	reg_check_channels();
2899 }
2900 
2901 static void reg_todo(struct work_struct *work)
2902 {
2903 	rtnl_lock();
2904 	reg_process_pending_hints();
2905 	reg_process_pending_beacon_hints();
2906 	reg_process_self_managed_hints();
2907 	rtnl_unlock();
2908 }
2909 
2910 static void queue_regulatory_request(struct regulatory_request *request)
2911 {
2912 	request->alpha2[0] = toupper(request->alpha2[0]);
2913 	request->alpha2[1] = toupper(request->alpha2[1]);
2914 
2915 	spin_lock(&reg_requests_lock);
2916 	list_add_tail(&request->list, &reg_requests_list);
2917 	spin_unlock(&reg_requests_lock);
2918 
2919 	schedule_work(&reg_work);
2920 }
2921 
2922 /*
2923  * Core regulatory hint -- happens during cfg80211_init()
2924  * and when we restore regulatory settings.
2925  */
2926 static int regulatory_hint_core(const char *alpha2)
2927 {
2928 	struct regulatory_request *request;
2929 
2930 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2931 	if (!request)
2932 		return -ENOMEM;
2933 
2934 	request->alpha2[0] = alpha2[0];
2935 	request->alpha2[1] = alpha2[1];
2936 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2937 
2938 	queue_regulatory_request(request);
2939 
2940 	return 0;
2941 }
2942 
2943 /* User hints */
2944 int regulatory_hint_user(const char *alpha2,
2945 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2946 {
2947 	struct regulatory_request *request;
2948 
2949 	if (WARN_ON(!alpha2))
2950 		return -EINVAL;
2951 
2952 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2953 	if (!request)
2954 		return -ENOMEM;
2955 
2956 	request->wiphy_idx = WIPHY_IDX_INVALID;
2957 	request->alpha2[0] = alpha2[0];
2958 	request->alpha2[1] = alpha2[1];
2959 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2960 	request->user_reg_hint_type = user_reg_hint_type;
2961 
2962 	/* Allow calling CRDA again */
2963 	reset_crda_timeouts();
2964 
2965 	queue_regulatory_request(request);
2966 
2967 	return 0;
2968 }
2969 
2970 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2971 {
2972 	spin_lock(&reg_indoor_lock);
2973 
2974 	/* It is possible that more than one user space process is trying to
2975 	 * configure the indoor setting. To handle such cases, clear the indoor
2976 	 * setting in case that some process does not think that the device
2977 	 * is operating in an indoor environment. In addition, if a user space
2978 	 * process indicates that it is controlling the indoor setting, save its
2979 	 * portid, i.e., make it the owner.
2980 	 */
2981 	reg_is_indoor = is_indoor;
2982 	if (reg_is_indoor) {
2983 		if (!reg_is_indoor_portid)
2984 			reg_is_indoor_portid = portid;
2985 	} else {
2986 		reg_is_indoor_portid = 0;
2987 	}
2988 
2989 	spin_unlock(&reg_indoor_lock);
2990 
2991 	if (!is_indoor)
2992 		reg_check_channels();
2993 
2994 	return 0;
2995 }
2996 
2997 void regulatory_netlink_notify(u32 portid)
2998 {
2999 	spin_lock(&reg_indoor_lock);
3000 
3001 	if (reg_is_indoor_portid != portid) {
3002 		spin_unlock(&reg_indoor_lock);
3003 		return;
3004 	}
3005 
3006 	reg_is_indoor = false;
3007 	reg_is_indoor_portid = 0;
3008 
3009 	spin_unlock(&reg_indoor_lock);
3010 
3011 	reg_check_channels();
3012 }
3013 
3014 /* Driver hints */
3015 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3016 {
3017 	struct regulatory_request *request;
3018 
3019 	if (WARN_ON(!alpha2 || !wiphy))
3020 		return -EINVAL;
3021 
3022 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3023 
3024 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3025 	if (!request)
3026 		return -ENOMEM;
3027 
3028 	request->wiphy_idx = get_wiphy_idx(wiphy);
3029 
3030 	request->alpha2[0] = alpha2[0];
3031 	request->alpha2[1] = alpha2[1];
3032 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3033 
3034 	/* Allow calling CRDA again */
3035 	reset_crda_timeouts();
3036 
3037 	queue_regulatory_request(request);
3038 
3039 	return 0;
3040 }
3041 EXPORT_SYMBOL(regulatory_hint);
3042 
3043 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3044 				const u8 *country_ie, u8 country_ie_len)
3045 {
3046 	char alpha2[2];
3047 	enum environment_cap env = ENVIRON_ANY;
3048 	struct regulatory_request *request = NULL, *lr;
3049 
3050 	/* IE len must be evenly divisible by 2 */
3051 	if (country_ie_len & 0x01)
3052 		return;
3053 
3054 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3055 		return;
3056 
3057 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3058 	if (!request)
3059 		return;
3060 
3061 	alpha2[0] = country_ie[0];
3062 	alpha2[1] = country_ie[1];
3063 
3064 	if (country_ie[2] == 'I')
3065 		env = ENVIRON_INDOOR;
3066 	else if (country_ie[2] == 'O')
3067 		env = ENVIRON_OUTDOOR;
3068 
3069 	rcu_read_lock();
3070 	lr = get_last_request();
3071 
3072 	if (unlikely(!lr))
3073 		goto out;
3074 
3075 	/*
3076 	 * We will run this only upon a successful connection on cfg80211.
3077 	 * We leave conflict resolution to the workqueue, where can hold
3078 	 * the RTNL.
3079 	 */
3080 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3081 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3082 		goto out;
3083 
3084 	request->wiphy_idx = get_wiphy_idx(wiphy);
3085 	request->alpha2[0] = alpha2[0];
3086 	request->alpha2[1] = alpha2[1];
3087 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3088 	request->country_ie_env = env;
3089 
3090 	/* Allow calling CRDA again */
3091 	reset_crda_timeouts();
3092 
3093 	queue_regulatory_request(request);
3094 	request = NULL;
3095 out:
3096 	kfree(request);
3097 	rcu_read_unlock();
3098 }
3099 
3100 static void restore_alpha2(char *alpha2, bool reset_user)
3101 {
3102 	/* indicates there is no alpha2 to consider for restoration */
3103 	alpha2[0] = '9';
3104 	alpha2[1] = '7';
3105 
3106 	/* The user setting has precedence over the module parameter */
3107 	if (is_user_regdom_saved()) {
3108 		/* Unless we're asked to ignore it and reset it */
3109 		if (reset_user) {
3110 			pr_debug("Restoring regulatory settings including user preference\n");
3111 			user_alpha2[0] = '9';
3112 			user_alpha2[1] = '7';
3113 
3114 			/*
3115 			 * If we're ignoring user settings, we still need to
3116 			 * check the module parameter to ensure we put things
3117 			 * back as they were for a full restore.
3118 			 */
3119 			if (!is_world_regdom(ieee80211_regdom)) {
3120 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3121 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3122 				alpha2[0] = ieee80211_regdom[0];
3123 				alpha2[1] = ieee80211_regdom[1];
3124 			}
3125 		} else {
3126 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3127 				 user_alpha2[0], user_alpha2[1]);
3128 			alpha2[0] = user_alpha2[0];
3129 			alpha2[1] = user_alpha2[1];
3130 		}
3131 	} else if (!is_world_regdom(ieee80211_regdom)) {
3132 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3133 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3134 		alpha2[0] = ieee80211_regdom[0];
3135 		alpha2[1] = ieee80211_regdom[1];
3136 	} else
3137 		pr_debug("Restoring regulatory settings\n");
3138 }
3139 
3140 static void restore_custom_reg_settings(struct wiphy *wiphy)
3141 {
3142 	struct ieee80211_supported_band *sband;
3143 	enum nl80211_band band;
3144 	struct ieee80211_channel *chan;
3145 	int i;
3146 
3147 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3148 		sband = wiphy->bands[band];
3149 		if (!sband)
3150 			continue;
3151 		for (i = 0; i < sband->n_channels; i++) {
3152 			chan = &sband->channels[i];
3153 			chan->flags = chan->orig_flags;
3154 			chan->max_antenna_gain = chan->orig_mag;
3155 			chan->max_power = chan->orig_mpwr;
3156 			chan->beacon_found = false;
3157 		}
3158 	}
3159 }
3160 
3161 /*
3162  * Restoring regulatory settings involves ingoring any
3163  * possibly stale country IE information and user regulatory
3164  * settings if so desired, this includes any beacon hints
3165  * learned as we could have traveled outside to another country
3166  * after disconnection. To restore regulatory settings we do
3167  * exactly what we did at bootup:
3168  *
3169  *   - send a core regulatory hint
3170  *   - send a user regulatory hint if applicable
3171  *
3172  * Device drivers that send a regulatory hint for a specific country
3173  * keep their own regulatory domain on wiphy->regd so that does does
3174  * not need to be remembered.
3175  */
3176 static void restore_regulatory_settings(bool reset_user)
3177 {
3178 	char alpha2[2];
3179 	char world_alpha2[2];
3180 	struct reg_beacon *reg_beacon, *btmp;
3181 	LIST_HEAD(tmp_reg_req_list);
3182 	struct cfg80211_registered_device *rdev;
3183 
3184 	ASSERT_RTNL();
3185 
3186 	/*
3187 	 * Clear the indoor setting in case that it is not controlled by user
3188 	 * space, as otherwise there is no guarantee that the device is still
3189 	 * operating in an indoor environment.
3190 	 */
3191 	spin_lock(&reg_indoor_lock);
3192 	if (reg_is_indoor && !reg_is_indoor_portid) {
3193 		reg_is_indoor = false;
3194 		reg_check_channels();
3195 	}
3196 	spin_unlock(&reg_indoor_lock);
3197 
3198 	reset_regdomains(true, &world_regdom);
3199 	restore_alpha2(alpha2, reset_user);
3200 
3201 	/*
3202 	 * If there's any pending requests we simply
3203 	 * stash them to a temporary pending queue and
3204 	 * add then after we've restored regulatory
3205 	 * settings.
3206 	 */
3207 	spin_lock(&reg_requests_lock);
3208 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3209 	spin_unlock(&reg_requests_lock);
3210 
3211 	/* Clear beacon hints */
3212 	spin_lock_bh(&reg_pending_beacons_lock);
3213 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3214 		list_del(&reg_beacon->list);
3215 		kfree(reg_beacon);
3216 	}
3217 	spin_unlock_bh(&reg_pending_beacons_lock);
3218 
3219 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3220 		list_del(&reg_beacon->list);
3221 		kfree(reg_beacon);
3222 	}
3223 
3224 	/* First restore to the basic regulatory settings */
3225 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3226 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3227 
3228 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3229 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3230 			continue;
3231 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3232 			restore_custom_reg_settings(&rdev->wiphy);
3233 	}
3234 
3235 	regulatory_hint_core(world_alpha2);
3236 
3237 	/*
3238 	 * This restores the ieee80211_regdom module parameter
3239 	 * preference or the last user requested regulatory
3240 	 * settings, user regulatory settings takes precedence.
3241 	 */
3242 	if (is_an_alpha2(alpha2))
3243 		regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3244 
3245 	spin_lock(&reg_requests_lock);
3246 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3247 	spin_unlock(&reg_requests_lock);
3248 
3249 	pr_debug("Kicking the queue\n");
3250 
3251 	schedule_work(&reg_work);
3252 }
3253 
3254 void regulatory_hint_disconnect(void)
3255 {
3256 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3257 	restore_regulatory_settings(false);
3258 }
3259 
3260 static bool freq_is_chan_12_13_14(u16 freq)
3261 {
3262 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3263 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3264 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3265 		return true;
3266 	return false;
3267 }
3268 
3269 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3270 {
3271 	struct reg_beacon *pending_beacon;
3272 
3273 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3274 		if (beacon_chan->center_freq ==
3275 		    pending_beacon->chan.center_freq)
3276 			return true;
3277 	return false;
3278 }
3279 
3280 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3281 				 struct ieee80211_channel *beacon_chan,
3282 				 gfp_t gfp)
3283 {
3284 	struct reg_beacon *reg_beacon;
3285 	bool processing;
3286 
3287 	if (beacon_chan->beacon_found ||
3288 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3289 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3290 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3291 		return 0;
3292 
3293 	spin_lock_bh(&reg_pending_beacons_lock);
3294 	processing = pending_reg_beacon(beacon_chan);
3295 	spin_unlock_bh(&reg_pending_beacons_lock);
3296 
3297 	if (processing)
3298 		return 0;
3299 
3300 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3301 	if (!reg_beacon)
3302 		return -ENOMEM;
3303 
3304 	pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3305 		 beacon_chan->center_freq,
3306 		 ieee80211_frequency_to_channel(beacon_chan->center_freq),
3307 		 wiphy_name(wiphy));
3308 
3309 	memcpy(&reg_beacon->chan, beacon_chan,
3310 	       sizeof(struct ieee80211_channel));
3311 
3312 	/*
3313 	 * Since we can be called from BH or and non-BH context
3314 	 * we must use spin_lock_bh()
3315 	 */
3316 	spin_lock_bh(&reg_pending_beacons_lock);
3317 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3318 	spin_unlock_bh(&reg_pending_beacons_lock);
3319 
3320 	schedule_work(&reg_work);
3321 
3322 	return 0;
3323 }
3324 
3325 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3326 {
3327 	unsigned int i;
3328 	const struct ieee80211_reg_rule *reg_rule = NULL;
3329 	const struct ieee80211_freq_range *freq_range = NULL;
3330 	const struct ieee80211_power_rule *power_rule = NULL;
3331 	char bw[32], cac_time[32];
3332 
3333 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3334 
3335 	for (i = 0; i < rd->n_reg_rules; i++) {
3336 		reg_rule = &rd->reg_rules[i];
3337 		freq_range = &reg_rule->freq_range;
3338 		power_rule = &reg_rule->power_rule;
3339 
3340 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3341 			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3342 				 freq_range->max_bandwidth_khz,
3343 				 reg_get_max_bandwidth(rd, reg_rule));
3344 		else
3345 			snprintf(bw, sizeof(bw), "%d KHz",
3346 				 freq_range->max_bandwidth_khz);
3347 
3348 		if (reg_rule->flags & NL80211_RRF_DFS)
3349 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3350 				  reg_rule->dfs_cac_ms/1000);
3351 		else
3352 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3353 
3354 
3355 		/*
3356 		 * There may not be documentation for max antenna gain
3357 		 * in certain regions
3358 		 */
3359 		if (power_rule->max_antenna_gain)
3360 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3361 				freq_range->start_freq_khz,
3362 				freq_range->end_freq_khz,
3363 				bw,
3364 				power_rule->max_antenna_gain,
3365 				power_rule->max_eirp,
3366 				cac_time);
3367 		else
3368 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3369 				freq_range->start_freq_khz,
3370 				freq_range->end_freq_khz,
3371 				bw,
3372 				power_rule->max_eirp,
3373 				cac_time);
3374 	}
3375 }
3376 
3377 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3378 {
3379 	switch (dfs_region) {
3380 	case NL80211_DFS_UNSET:
3381 	case NL80211_DFS_FCC:
3382 	case NL80211_DFS_ETSI:
3383 	case NL80211_DFS_JP:
3384 		return true;
3385 	default:
3386 		pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region);
3387 		return false;
3388 	}
3389 }
3390 
3391 static void print_regdomain(const struct ieee80211_regdomain *rd)
3392 {
3393 	struct regulatory_request *lr = get_last_request();
3394 
3395 	if (is_intersected_alpha2(rd->alpha2)) {
3396 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3397 			struct cfg80211_registered_device *rdev;
3398 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3399 			if (rdev) {
3400 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3401 					rdev->country_ie_alpha2[0],
3402 					rdev->country_ie_alpha2[1]);
3403 			} else
3404 				pr_debug("Current regulatory domain intersected:\n");
3405 		} else
3406 			pr_debug("Current regulatory domain intersected:\n");
3407 	} else if (is_world_regdom(rd->alpha2)) {
3408 		pr_debug("World regulatory domain updated:\n");
3409 	} else {
3410 		if (is_unknown_alpha2(rd->alpha2))
3411 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3412 		else {
3413 			if (reg_request_cell_base(lr))
3414 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3415 					rd->alpha2[0], rd->alpha2[1]);
3416 			else
3417 				pr_debug("Regulatory domain changed to country: %c%c\n",
3418 					rd->alpha2[0], rd->alpha2[1]);
3419 		}
3420 	}
3421 
3422 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3423 	print_rd_rules(rd);
3424 }
3425 
3426 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3427 {
3428 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3429 	print_rd_rules(rd);
3430 }
3431 
3432 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3433 {
3434 	if (!is_world_regdom(rd->alpha2))
3435 		return -EINVAL;
3436 	update_world_regdomain(rd);
3437 	return 0;
3438 }
3439 
3440 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3441 			   struct regulatory_request *user_request)
3442 {
3443 	const struct ieee80211_regdomain *intersected_rd = NULL;
3444 
3445 	if (!regdom_changes(rd->alpha2))
3446 		return -EALREADY;
3447 
3448 	if (!is_valid_rd(rd)) {
3449 		pr_err("Invalid regulatory domain detected: %c%c\n",
3450 		       rd->alpha2[0], rd->alpha2[1]);
3451 		print_regdomain_info(rd);
3452 		return -EINVAL;
3453 	}
3454 
3455 	if (!user_request->intersect) {
3456 		reset_regdomains(false, rd);
3457 		return 0;
3458 	}
3459 
3460 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3461 	if (!intersected_rd)
3462 		return -EINVAL;
3463 
3464 	kfree(rd);
3465 	rd = NULL;
3466 	reset_regdomains(false, intersected_rd);
3467 
3468 	return 0;
3469 }
3470 
3471 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3472 			     struct regulatory_request *driver_request)
3473 {
3474 	const struct ieee80211_regdomain *regd;
3475 	const struct ieee80211_regdomain *intersected_rd = NULL;
3476 	const struct ieee80211_regdomain *tmp;
3477 	struct wiphy *request_wiphy;
3478 
3479 	if (is_world_regdom(rd->alpha2))
3480 		return -EINVAL;
3481 
3482 	if (!regdom_changes(rd->alpha2))
3483 		return -EALREADY;
3484 
3485 	if (!is_valid_rd(rd)) {
3486 		pr_err("Invalid regulatory domain detected: %c%c\n",
3487 		       rd->alpha2[0], rd->alpha2[1]);
3488 		print_regdomain_info(rd);
3489 		return -EINVAL;
3490 	}
3491 
3492 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3493 	if (!request_wiphy)
3494 		return -ENODEV;
3495 
3496 	if (!driver_request->intersect) {
3497 		if (request_wiphy->regd)
3498 			return -EALREADY;
3499 
3500 		regd = reg_copy_regd(rd);
3501 		if (IS_ERR(regd))
3502 			return PTR_ERR(regd);
3503 
3504 		rcu_assign_pointer(request_wiphy->regd, regd);
3505 		reset_regdomains(false, rd);
3506 		return 0;
3507 	}
3508 
3509 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3510 	if (!intersected_rd)
3511 		return -EINVAL;
3512 
3513 	/*
3514 	 * We can trash what CRDA provided now.
3515 	 * However if a driver requested this specific regulatory
3516 	 * domain we keep it for its private use
3517 	 */
3518 	tmp = get_wiphy_regdom(request_wiphy);
3519 	rcu_assign_pointer(request_wiphy->regd, rd);
3520 	rcu_free_regdom(tmp);
3521 
3522 	rd = NULL;
3523 
3524 	reset_regdomains(false, intersected_rd);
3525 
3526 	return 0;
3527 }
3528 
3529 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3530 				 struct regulatory_request *country_ie_request)
3531 {
3532 	struct wiphy *request_wiphy;
3533 
3534 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3535 	    !is_unknown_alpha2(rd->alpha2))
3536 		return -EINVAL;
3537 
3538 	/*
3539 	 * Lets only bother proceeding on the same alpha2 if the current
3540 	 * rd is non static (it means CRDA was present and was used last)
3541 	 * and the pending request came in from a country IE
3542 	 */
3543 
3544 	if (!is_valid_rd(rd)) {
3545 		pr_err("Invalid regulatory domain detected: %c%c\n",
3546 		       rd->alpha2[0], rd->alpha2[1]);
3547 		print_regdomain_info(rd);
3548 		return -EINVAL;
3549 	}
3550 
3551 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3552 	if (!request_wiphy)
3553 		return -ENODEV;
3554 
3555 	if (country_ie_request->intersect)
3556 		return -EINVAL;
3557 
3558 	reset_regdomains(false, rd);
3559 	return 0;
3560 }
3561 
3562 /*
3563  * Use this call to set the current regulatory domain. Conflicts with
3564  * multiple drivers can be ironed out later. Caller must've already
3565  * kmalloc'd the rd structure.
3566  */
3567 int set_regdom(const struct ieee80211_regdomain *rd,
3568 	       enum ieee80211_regd_source regd_src)
3569 {
3570 	struct regulatory_request *lr;
3571 	bool user_reset = false;
3572 	int r;
3573 
3574 	if (!reg_is_valid_request(rd->alpha2)) {
3575 		kfree(rd);
3576 		return -EINVAL;
3577 	}
3578 
3579 	if (regd_src == REGD_SOURCE_CRDA)
3580 		reset_crda_timeouts();
3581 
3582 	lr = get_last_request();
3583 
3584 	/* Note that this doesn't update the wiphys, this is done below */
3585 	switch (lr->initiator) {
3586 	case NL80211_REGDOM_SET_BY_CORE:
3587 		r = reg_set_rd_core(rd);
3588 		break;
3589 	case NL80211_REGDOM_SET_BY_USER:
3590 		r = reg_set_rd_user(rd, lr);
3591 		user_reset = true;
3592 		break;
3593 	case NL80211_REGDOM_SET_BY_DRIVER:
3594 		r = reg_set_rd_driver(rd, lr);
3595 		break;
3596 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3597 		r = reg_set_rd_country_ie(rd, lr);
3598 		break;
3599 	default:
3600 		WARN(1, "invalid initiator %d\n", lr->initiator);
3601 		kfree(rd);
3602 		return -EINVAL;
3603 	}
3604 
3605 	if (r) {
3606 		switch (r) {
3607 		case -EALREADY:
3608 			reg_set_request_processed();
3609 			break;
3610 		default:
3611 			/* Back to world regulatory in case of errors */
3612 			restore_regulatory_settings(user_reset);
3613 		}
3614 
3615 		kfree(rd);
3616 		return r;
3617 	}
3618 
3619 	/* This would make this whole thing pointless */
3620 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3621 		return -EINVAL;
3622 
3623 	/* update all wiphys now with the new established regulatory domain */
3624 	update_all_wiphy_regulatory(lr->initiator);
3625 
3626 	print_regdomain(get_cfg80211_regdom());
3627 
3628 	nl80211_send_reg_change_event(lr);
3629 
3630 	reg_set_request_processed();
3631 
3632 	return 0;
3633 }
3634 
3635 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3636 				       struct ieee80211_regdomain *rd)
3637 {
3638 	const struct ieee80211_regdomain *regd;
3639 	const struct ieee80211_regdomain *prev_regd;
3640 	struct cfg80211_registered_device *rdev;
3641 
3642 	if (WARN_ON(!wiphy || !rd))
3643 		return -EINVAL;
3644 
3645 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3646 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3647 		return -EPERM;
3648 
3649 	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3650 		print_regdomain_info(rd);
3651 		return -EINVAL;
3652 	}
3653 
3654 	regd = reg_copy_regd(rd);
3655 	if (IS_ERR(regd))
3656 		return PTR_ERR(regd);
3657 
3658 	rdev = wiphy_to_rdev(wiphy);
3659 
3660 	spin_lock(&reg_requests_lock);
3661 	prev_regd = rdev->requested_regd;
3662 	rdev->requested_regd = regd;
3663 	spin_unlock(&reg_requests_lock);
3664 
3665 	kfree(prev_regd);
3666 	return 0;
3667 }
3668 
3669 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3670 			      struct ieee80211_regdomain *rd)
3671 {
3672 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3673 
3674 	if (ret)
3675 		return ret;
3676 
3677 	schedule_work(&reg_work);
3678 	return 0;
3679 }
3680 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3681 
3682 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3683 					struct ieee80211_regdomain *rd)
3684 {
3685 	int ret;
3686 
3687 	ASSERT_RTNL();
3688 
3689 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3690 	if (ret)
3691 		return ret;
3692 
3693 	/* process the request immediately */
3694 	reg_process_self_managed_hints();
3695 	return 0;
3696 }
3697 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3698 
3699 void wiphy_regulatory_register(struct wiphy *wiphy)
3700 {
3701 	struct regulatory_request *lr;
3702 
3703 	/* self-managed devices ignore external hints */
3704 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3705 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3706 					   REGULATORY_COUNTRY_IE_IGNORE;
3707 
3708 	if (!reg_dev_ignore_cell_hint(wiphy))
3709 		reg_num_devs_support_basehint++;
3710 
3711 	lr = get_last_request();
3712 	wiphy_update_regulatory(wiphy, lr->initiator);
3713 	wiphy_all_share_dfs_chan_state(wiphy);
3714 }
3715 
3716 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3717 {
3718 	struct wiphy *request_wiphy = NULL;
3719 	struct regulatory_request *lr;
3720 
3721 	lr = get_last_request();
3722 
3723 	if (!reg_dev_ignore_cell_hint(wiphy))
3724 		reg_num_devs_support_basehint--;
3725 
3726 	rcu_free_regdom(get_wiphy_regdom(wiphy));
3727 	RCU_INIT_POINTER(wiphy->regd, NULL);
3728 
3729 	if (lr)
3730 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3731 
3732 	if (!request_wiphy || request_wiphy != wiphy)
3733 		return;
3734 
3735 	lr->wiphy_idx = WIPHY_IDX_INVALID;
3736 	lr->country_ie_env = ENVIRON_ANY;
3737 }
3738 
3739 /*
3740  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3741  * UNII band definitions
3742  */
3743 int cfg80211_get_unii(int freq)
3744 {
3745 	/* UNII-1 */
3746 	if (freq >= 5150 && freq <= 5250)
3747 		return 0;
3748 
3749 	/* UNII-2A */
3750 	if (freq > 5250 && freq <= 5350)
3751 		return 1;
3752 
3753 	/* UNII-2B */
3754 	if (freq > 5350 && freq <= 5470)
3755 		return 2;
3756 
3757 	/* UNII-2C */
3758 	if (freq > 5470 && freq <= 5725)
3759 		return 3;
3760 
3761 	/* UNII-3 */
3762 	if (freq > 5725 && freq <= 5825)
3763 		return 4;
3764 
3765 	return -EINVAL;
3766 }
3767 
3768 bool regulatory_indoor_allowed(void)
3769 {
3770 	return reg_is_indoor;
3771 }
3772 
3773 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3774 {
3775 	const struct ieee80211_regdomain *regd = NULL;
3776 	const struct ieee80211_regdomain *wiphy_regd = NULL;
3777 	bool pre_cac_allowed = false;
3778 
3779 	rcu_read_lock();
3780 
3781 	regd = rcu_dereference(cfg80211_regdomain);
3782 	wiphy_regd = rcu_dereference(wiphy->regd);
3783 	if (!wiphy_regd) {
3784 		if (regd->dfs_region == NL80211_DFS_ETSI)
3785 			pre_cac_allowed = true;
3786 
3787 		rcu_read_unlock();
3788 
3789 		return pre_cac_allowed;
3790 	}
3791 
3792 	if (regd->dfs_region == wiphy_regd->dfs_region &&
3793 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3794 		pre_cac_allowed = true;
3795 
3796 	rcu_read_unlock();
3797 
3798 	return pre_cac_allowed;
3799 }
3800 
3801 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3802 				    struct cfg80211_chan_def *chandef,
3803 				    enum nl80211_dfs_state dfs_state,
3804 				    enum nl80211_radar_event event)
3805 {
3806 	struct cfg80211_registered_device *rdev;
3807 
3808 	ASSERT_RTNL();
3809 
3810 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3811 		return;
3812 
3813 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3814 		if (wiphy == &rdev->wiphy)
3815 			continue;
3816 
3817 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3818 			continue;
3819 
3820 		if (!ieee80211_get_channel(&rdev->wiphy,
3821 					   chandef->chan->center_freq))
3822 			continue;
3823 
3824 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3825 
3826 		if (event == NL80211_RADAR_DETECTED ||
3827 		    event == NL80211_RADAR_CAC_FINISHED)
3828 			cfg80211_sched_dfs_chan_update(rdev);
3829 
3830 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3831 	}
3832 }
3833 
3834 static int __init regulatory_init_db(void)
3835 {
3836 	int err;
3837 
3838 	err = load_builtin_regdb_keys();
3839 	if (err)
3840 		return err;
3841 
3842 	/* We always try to get an update for the static regdomain */
3843 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3844 	if (err) {
3845 		if (err == -ENOMEM) {
3846 			platform_device_unregister(reg_pdev);
3847 			return err;
3848 		}
3849 		/*
3850 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
3851 		 * memory which is handled and propagated appropriately above
3852 		 * but it can also fail during a netlink_broadcast() or during
3853 		 * early boot for call_usermodehelper(). For now treat these
3854 		 * errors as non-fatal.
3855 		 */
3856 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3857 	}
3858 
3859 	/*
3860 	 * Finally, if the user set the module parameter treat it
3861 	 * as a user hint.
3862 	 */
3863 	if (!is_world_regdom(ieee80211_regdom))
3864 		regulatory_hint_user(ieee80211_regdom,
3865 				     NL80211_USER_REG_HINT_USER);
3866 
3867 	return 0;
3868 }
3869 #ifndef MODULE
3870 late_initcall(regulatory_init_db);
3871 #endif
3872 
3873 int __init regulatory_init(void)
3874 {
3875 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3876 	if (IS_ERR(reg_pdev))
3877 		return PTR_ERR(reg_pdev);
3878 
3879 	spin_lock_init(&reg_requests_lock);
3880 	spin_lock_init(&reg_pending_beacons_lock);
3881 	spin_lock_init(&reg_indoor_lock);
3882 
3883 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3884 
3885 	user_alpha2[0] = '9';
3886 	user_alpha2[1] = '7';
3887 
3888 #ifdef MODULE
3889 	return regulatory_init_db();
3890 #else
3891 	return 0;
3892 #endif
3893 }
3894 
3895 void regulatory_exit(void)
3896 {
3897 	struct regulatory_request *reg_request, *tmp;
3898 	struct reg_beacon *reg_beacon, *btmp;
3899 
3900 	cancel_work_sync(&reg_work);
3901 	cancel_crda_timeout_sync();
3902 	cancel_delayed_work_sync(&reg_check_chans);
3903 
3904 	/* Lock to suppress warnings */
3905 	rtnl_lock();
3906 	reset_regdomains(true, NULL);
3907 	rtnl_unlock();
3908 
3909 	dev_set_uevent_suppress(&reg_pdev->dev, true);
3910 
3911 	platform_device_unregister(reg_pdev);
3912 
3913 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3914 		list_del(&reg_beacon->list);
3915 		kfree(reg_beacon);
3916 	}
3917 
3918 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3919 		list_del(&reg_beacon->list);
3920 		kfree(reg_beacon);
3921 	}
3922 
3923 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3924 		list_del(&reg_request->list);
3925 		kfree(reg_request);
3926 	}
3927 
3928 	if (!IS_ERR_OR_NULL(regdb))
3929 		kfree(regdb);
3930 
3931 	free_regdb_keyring();
3932 }
3933