1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 21 /** 22 * DOC: Wireless regulatory infrastructure 23 * 24 * The usual implementation is for a driver to read a device EEPROM to 25 * determine which regulatory domain it should be operating under, then 26 * looking up the allowable channels in a driver-local table and finally 27 * registering those channels in the wiphy structure. 28 * 29 * Another set of compliance enforcement is for drivers to use their 30 * own compliance limits which can be stored on the EEPROM. The host 31 * driver or firmware may ensure these are used. 32 * 33 * In addition to all this we provide an extra layer of regulatory 34 * conformance. For drivers which do not have any regulatory 35 * information CRDA provides the complete regulatory solution. 36 * For others it provides a community effort on further restrictions 37 * to enhance compliance. 38 * 39 * Note: When number of rules --> infinity we will not be able to 40 * index on alpha2 any more, instead we'll probably have to 41 * rely on some SHA1 checksum of the regdomain for example. 42 * 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/kernel.h> 48 #include <linux/export.h> 49 #include <linux/slab.h> 50 #include <linux/list.h> 51 #include <linux/ctype.h> 52 #include <linux/nl80211.h> 53 #include <linux/platform_device.h> 54 #include <linux/moduleparam.h> 55 #include <net/cfg80211.h> 56 #include "core.h" 57 #include "reg.h" 58 #include "regdb.h" 59 #include "nl80211.h" 60 61 #ifdef CONFIG_CFG80211_REG_DEBUG 62 #define REG_DBG_PRINT(format, args...) \ 63 printk(KERN_DEBUG pr_fmt(format), ##args) 64 #else 65 #define REG_DBG_PRINT(args...) 66 #endif 67 68 enum reg_request_treatment { 69 REG_REQ_OK, 70 REG_REQ_IGNORE, 71 REG_REQ_INTERSECT, 72 REG_REQ_ALREADY_SET, 73 }; 74 75 static struct regulatory_request core_request_world = { 76 .initiator = NL80211_REGDOM_SET_BY_CORE, 77 .alpha2[0] = '0', 78 .alpha2[1] = '0', 79 .intersect = false, 80 .processed = true, 81 .country_ie_env = ENVIRON_ANY, 82 }; 83 84 /* 85 * Receipt of information from last regulatory request, 86 * protected by RTNL (and can be accessed with RCU protection) 87 */ 88 static struct regulatory_request __rcu *last_request = 89 (void __rcu *)&core_request_world; 90 91 /* To trigger userspace events */ 92 static struct platform_device *reg_pdev; 93 94 static struct device_type reg_device_type = { 95 .uevent = reg_device_uevent, 96 }; 97 98 /* 99 * Central wireless core regulatory domains, we only need two, 100 * the current one and a world regulatory domain in case we have no 101 * information to give us an alpha2. 102 * (protected by RTNL, can be read under RCU) 103 */ 104 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 105 106 /* 107 * Number of devices that registered to the core 108 * that support cellular base station regulatory hints 109 * (protected by RTNL) 110 */ 111 static int reg_num_devs_support_basehint; 112 113 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 114 { 115 return rtnl_dereference(cfg80211_regdomain); 116 } 117 118 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 119 { 120 return rtnl_dereference(wiphy->regd); 121 } 122 123 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 124 { 125 switch (dfs_region) { 126 case NL80211_DFS_UNSET: 127 return "unset"; 128 case NL80211_DFS_FCC: 129 return "FCC"; 130 case NL80211_DFS_ETSI: 131 return "ETSI"; 132 case NL80211_DFS_JP: 133 return "JP"; 134 } 135 return "Unknown"; 136 } 137 138 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 139 { 140 const struct ieee80211_regdomain *regd = NULL; 141 const struct ieee80211_regdomain *wiphy_regd = NULL; 142 143 regd = get_cfg80211_regdom(); 144 if (!wiphy) 145 goto out; 146 147 wiphy_regd = get_wiphy_regdom(wiphy); 148 if (!wiphy_regd) 149 goto out; 150 151 if (wiphy_regd->dfs_region == regd->dfs_region) 152 goto out; 153 154 REG_DBG_PRINT("%s: device specific dfs_region " 155 "(%s) disagrees with cfg80211's " 156 "central dfs_region (%s)\n", 157 dev_name(&wiphy->dev), 158 reg_dfs_region_str(wiphy_regd->dfs_region), 159 reg_dfs_region_str(regd->dfs_region)); 160 161 out: 162 return regd->dfs_region; 163 } 164 165 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 166 { 167 if (!r) 168 return; 169 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 170 } 171 172 static struct regulatory_request *get_last_request(void) 173 { 174 return rcu_dereference_rtnl(last_request); 175 } 176 177 /* Used to queue up regulatory hints */ 178 static LIST_HEAD(reg_requests_list); 179 static spinlock_t reg_requests_lock; 180 181 /* Used to queue up beacon hints for review */ 182 static LIST_HEAD(reg_pending_beacons); 183 static spinlock_t reg_pending_beacons_lock; 184 185 /* Used to keep track of processed beacon hints */ 186 static LIST_HEAD(reg_beacon_list); 187 188 struct reg_beacon { 189 struct list_head list; 190 struct ieee80211_channel chan; 191 }; 192 193 static void reg_todo(struct work_struct *work); 194 static DECLARE_WORK(reg_work, reg_todo); 195 196 static void reg_timeout_work(struct work_struct *work); 197 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work); 198 199 /* We keep a static world regulatory domain in case of the absence of CRDA */ 200 static const struct ieee80211_regdomain world_regdom = { 201 .n_reg_rules = 6, 202 .alpha2 = "00", 203 .reg_rules = { 204 /* IEEE 802.11b/g, channels 1..11 */ 205 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 206 /* IEEE 802.11b/g, channels 12..13. */ 207 REG_RULE(2467-10, 2472+10, 40, 6, 20, 208 NL80211_RRF_NO_IR), 209 /* IEEE 802.11 channel 14 - Only JP enables 210 * this and for 802.11b only */ 211 REG_RULE(2484-10, 2484+10, 20, 6, 20, 212 NL80211_RRF_NO_IR | 213 NL80211_RRF_NO_OFDM), 214 /* IEEE 802.11a, channel 36..48 */ 215 REG_RULE(5180-10, 5240+10, 160, 6, 20, 216 NL80211_RRF_NO_IR), 217 218 /* IEEE 802.11a, channel 52..64 - DFS required */ 219 REG_RULE(5260-10, 5320+10, 160, 6, 20, 220 NL80211_RRF_NO_IR | 221 NL80211_RRF_DFS), 222 223 /* IEEE 802.11a, channel 100..144 - DFS required */ 224 REG_RULE(5500-10, 5720+10, 160, 6, 20, 225 NL80211_RRF_NO_IR | 226 NL80211_RRF_DFS), 227 228 /* IEEE 802.11a, channel 149..165 */ 229 REG_RULE(5745-10, 5825+10, 80, 6, 20, 230 NL80211_RRF_NO_IR), 231 232 /* IEEE 802.11ad (60gHz), channels 1..3 */ 233 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 234 } 235 }; 236 237 /* protected by RTNL */ 238 static const struct ieee80211_regdomain *cfg80211_world_regdom = 239 &world_regdom; 240 241 static char *ieee80211_regdom = "00"; 242 static char user_alpha2[2]; 243 244 module_param(ieee80211_regdom, charp, 0444); 245 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 246 247 static void reg_kfree_last_request(void) 248 { 249 struct regulatory_request *lr; 250 251 lr = get_last_request(); 252 253 if (lr != &core_request_world && lr) 254 kfree_rcu(lr, rcu_head); 255 } 256 257 static void reg_update_last_request(struct regulatory_request *request) 258 { 259 reg_kfree_last_request(); 260 rcu_assign_pointer(last_request, request); 261 } 262 263 static void reset_regdomains(bool full_reset, 264 const struct ieee80211_regdomain *new_regdom) 265 { 266 const struct ieee80211_regdomain *r; 267 268 ASSERT_RTNL(); 269 270 r = get_cfg80211_regdom(); 271 272 /* avoid freeing static information or freeing something twice */ 273 if (r == cfg80211_world_regdom) 274 r = NULL; 275 if (cfg80211_world_regdom == &world_regdom) 276 cfg80211_world_regdom = NULL; 277 if (r == &world_regdom) 278 r = NULL; 279 280 rcu_free_regdom(r); 281 rcu_free_regdom(cfg80211_world_regdom); 282 283 cfg80211_world_regdom = &world_regdom; 284 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 285 286 if (!full_reset) 287 return; 288 289 reg_update_last_request(&core_request_world); 290 } 291 292 /* 293 * Dynamic world regulatory domain requested by the wireless 294 * core upon initialization 295 */ 296 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 297 { 298 struct regulatory_request *lr; 299 300 lr = get_last_request(); 301 302 WARN_ON(!lr); 303 304 reset_regdomains(false, rd); 305 306 cfg80211_world_regdom = rd; 307 } 308 309 bool is_world_regdom(const char *alpha2) 310 { 311 if (!alpha2) 312 return false; 313 return alpha2[0] == '0' && alpha2[1] == '0'; 314 } 315 316 static bool is_alpha2_set(const char *alpha2) 317 { 318 if (!alpha2) 319 return false; 320 return alpha2[0] && alpha2[1]; 321 } 322 323 static bool is_unknown_alpha2(const char *alpha2) 324 { 325 if (!alpha2) 326 return false; 327 /* 328 * Special case where regulatory domain was built by driver 329 * but a specific alpha2 cannot be determined 330 */ 331 return alpha2[0] == '9' && alpha2[1] == '9'; 332 } 333 334 static bool is_intersected_alpha2(const char *alpha2) 335 { 336 if (!alpha2) 337 return false; 338 /* 339 * Special case where regulatory domain is the 340 * result of an intersection between two regulatory domain 341 * structures 342 */ 343 return alpha2[0] == '9' && alpha2[1] == '8'; 344 } 345 346 static bool is_an_alpha2(const char *alpha2) 347 { 348 if (!alpha2) 349 return false; 350 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 351 } 352 353 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 354 { 355 if (!alpha2_x || !alpha2_y) 356 return false; 357 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 358 } 359 360 static bool regdom_changes(const char *alpha2) 361 { 362 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 363 364 if (!r) 365 return true; 366 return !alpha2_equal(r->alpha2, alpha2); 367 } 368 369 /* 370 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 371 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 372 * has ever been issued. 373 */ 374 static bool is_user_regdom_saved(void) 375 { 376 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 377 return false; 378 379 /* This would indicate a mistake on the design */ 380 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 381 "Unexpected user alpha2: %c%c\n", 382 user_alpha2[0], user_alpha2[1])) 383 return false; 384 385 return true; 386 } 387 388 static const struct ieee80211_regdomain * 389 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 390 { 391 struct ieee80211_regdomain *regd; 392 int size_of_regd; 393 unsigned int i; 394 395 size_of_regd = 396 sizeof(struct ieee80211_regdomain) + 397 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); 398 399 regd = kzalloc(size_of_regd, GFP_KERNEL); 400 if (!regd) 401 return ERR_PTR(-ENOMEM); 402 403 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 404 405 for (i = 0; i < src_regd->n_reg_rules; i++) 406 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 407 sizeof(struct ieee80211_reg_rule)); 408 409 return regd; 410 } 411 412 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 413 struct reg_regdb_search_request { 414 char alpha2[2]; 415 struct list_head list; 416 }; 417 418 static LIST_HEAD(reg_regdb_search_list); 419 static DEFINE_MUTEX(reg_regdb_search_mutex); 420 421 static void reg_regdb_search(struct work_struct *work) 422 { 423 struct reg_regdb_search_request *request; 424 const struct ieee80211_regdomain *curdom, *regdom = NULL; 425 int i; 426 427 rtnl_lock(); 428 429 mutex_lock(®_regdb_search_mutex); 430 while (!list_empty(®_regdb_search_list)) { 431 request = list_first_entry(®_regdb_search_list, 432 struct reg_regdb_search_request, 433 list); 434 list_del(&request->list); 435 436 for (i = 0; i < reg_regdb_size; i++) { 437 curdom = reg_regdb[i]; 438 439 if (alpha2_equal(request->alpha2, curdom->alpha2)) { 440 regdom = reg_copy_regd(curdom); 441 break; 442 } 443 } 444 445 kfree(request); 446 } 447 mutex_unlock(®_regdb_search_mutex); 448 449 if (!IS_ERR_OR_NULL(regdom)) 450 set_regdom(regdom); 451 452 rtnl_unlock(); 453 } 454 455 static DECLARE_WORK(reg_regdb_work, reg_regdb_search); 456 457 static void reg_regdb_query(const char *alpha2) 458 { 459 struct reg_regdb_search_request *request; 460 461 if (!alpha2) 462 return; 463 464 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL); 465 if (!request) 466 return; 467 468 memcpy(request->alpha2, alpha2, 2); 469 470 mutex_lock(®_regdb_search_mutex); 471 list_add_tail(&request->list, ®_regdb_search_list); 472 mutex_unlock(®_regdb_search_mutex); 473 474 schedule_work(®_regdb_work); 475 } 476 477 /* Feel free to add any other sanity checks here */ 478 static void reg_regdb_size_check(void) 479 { 480 /* We should ideally BUILD_BUG_ON() but then random builds would fail */ 481 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it..."); 482 } 483 #else 484 static inline void reg_regdb_size_check(void) {} 485 static inline void reg_regdb_query(const char *alpha2) {} 486 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 487 488 /* 489 * This lets us keep regulatory code which is updated on a regulatory 490 * basis in userspace. Country information is filled in by 491 * reg_device_uevent 492 */ 493 static int call_crda(const char *alpha2) 494 { 495 if (!is_world_regdom((char *) alpha2)) 496 pr_info("Calling CRDA for country: %c%c\n", 497 alpha2[0], alpha2[1]); 498 else 499 pr_info("Calling CRDA to update world regulatory domain\n"); 500 501 /* query internal regulatory database (if it exists) */ 502 reg_regdb_query(alpha2); 503 504 return kobject_uevent(®_pdev->dev.kobj, KOBJ_CHANGE); 505 } 506 507 static enum reg_request_treatment 508 reg_call_crda(struct regulatory_request *request) 509 { 510 if (call_crda(request->alpha2)) 511 return REG_REQ_IGNORE; 512 return REG_REQ_OK; 513 } 514 515 bool reg_is_valid_request(const char *alpha2) 516 { 517 struct regulatory_request *lr = get_last_request(); 518 519 if (!lr || lr->processed) 520 return false; 521 522 return alpha2_equal(lr->alpha2, alpha2); 523 } 524 525 /* Sanity check on a regulatory rule */ 526 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 527 { 528 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 529 u32 freq_diff; 530 531 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 532 return false; 533 534 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 535 return false; 536 537 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 538 539 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 540 freq_range->max_bandwidth_khz > freq_diff) 541 return false; 542 543 return true; 544 } 545 546 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 547 { 548 const struct ieee80211_reg_rule *reg_rule = NULL; 549 unsigned int i; 550 551 if (!rd->n_reg_rules) 552 return false; 553 554 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 555 return false; 556 557 for (i = 0; i < rd->n_reg_rules; i++) { 558 reg_rule = &rd->reg_rules[i]; 559 if (!is_valid_reg_rule(reg_rule)) 560 return false; 561 } 562 563 return true; 564 } 565 566 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 567 u32 center_freq_khz, u32 bw_khz) 568 { 569 u32 start_freq_khz, end_freq_khz; 570 571 start_freq_khz = center_freq_khz - (bw_khz/2); 572 end_freq_khz = center_freq_khz + (bw_khz/2); 573 574 if (start_freq_khz >= freq_range->start_freq_khz && 575 end_freq_khz <= freq_range->end_freq_khz) 576 return true; 577 578 return false; 579 } 580 581 /** 582 * freq_in_rule_band - tells us if a frequency is in a frequency band 583 * @freq_range: frequency rule we want to query 584 * @freq_khz: frequency we are inquiring about 585 * 586 * This lets us know if a specific frequency rule is or is not relevant to 587 * a specific frequency's band. Bands are device specific and artificial 588 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 589 * however it is safe for now to assume that a frequency rule should not be 590 * part of a frequency's band if the start freq or end freq are off by more 591 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the 592 * 60 GHz band. 593 * This resolution can be lowered and should be considered as we add 594 * regulatory rule support for other "bands". 595 **/ 596 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 597 u32 freq_khz) 598 { 599 #define ONE_GHZ_IN_KHZ 1000000 600 /* 601 * From 802.11ad: directional multi-gigabit (DMG): 602 * Pertaining to operation in a frequency band containing a channel 603 * with the Channel starting frequency above 45 GHz. 604 */ 605 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 606 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 607 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 608 return true; 609 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 610 return true; 611 return false; 612 #undef ONE_GHZ_IN_KHZ 613 } 614 615 /* 616 * Later on we can perhaps use the more restrictive DFS 617 * region but we don't have information for that yet so 618 * for now simply disallow conflicts. 619 */ 620 static enum nl80211_dfs_regions 621 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 622 const enum nl80211_dfs_regions dfs_region2) 623 { 624 if (dfs_region1 != dfs_region2) 625 return NL80211_DFS_UNSET; 626 return dfs_region1; 627 } 628 629 /* 630 * Helper for regdom_intersect(), this does the real 631 * mathematical intersection fun 632 */ 633 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1, 634 const struct ieee80211_reg_rule *rule2, 635 struct ieee80211_reg_rule *intersected_rule) 636 { 637 const struct ieee80211_freq_range *freq_range1, *freq_range2; 638 struct ieee80211_freq_range *freq_range; 639 const struct ieee80211_power_rule *power_rule1, *power_rule2; 640 struct ieee80211_power_rule *power_rule; 641 u32 freq_diff; 642 643 freq_range1 = &rule1->freq_range; 644 freq_range2 = &rule2->freq_range; 645 freq_range = &intersected_rule->freq_range; 646 647 power_rule1 = &rule1->power_rule; 648 power_rule2 = &rule2->power_rule; 649 power_rule = &intersected_rule->power_rule; 650 651 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 652 freq_range2->start_freq_khz); 653 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 654 freq_range2->end_freq_khz); 655 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz, 656 freq_range2->max_bandwidth_khz); 657 658 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 659 if (freq_range->max_bandwidth_khz > freq_diff) 660 freq_range->max_bandwidth_khz = freq_diff; 661 662 power_rule->max_eirp = min(power_rule1->max_eirp, 663 power_rule2->max_eirp); 664 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 665 power_rule2->max_antenna_gain); 666 667 intersected_rule->flags = rule1->flags | rule2->flags; 668 669 if (!is_valid_reg_rule(intersected_rule)) 670 return -EINVAL; 671 672 return 0; 673 } 674 675 /** 676 * regdom_intersect - do the intersection between two regulatory domains 677 * @rd1: first regulatory domain 678 * @rd2: second regulatory domain 679 * 680 * Use this function to get the intersection between two regulatory domains. 681 * Once completed we will mark the alpha2 for the rd as intersected, "98", 682 * as no one single alpha2 can represent this regulatory domain. 683 * 684 * Returns a pointer to the regulatory domain structure which will hold the 685 * resulting intersection of rules between rd1 and rd2. We will 686 * kzalloc() this structure for you. 687 */ 688 static struct ieee80211_regdomain * 689 regdom_intersect(const struct ieee80211_regdomain *rd1, 690 const struct ieee80211_regdomain *rd2) 691 { 692 int r, size_of_regd; 693 unsigned int x, y; 694 unsigned int num_rules = 0, rule_idx = 0; 695 const struct ieee80211_reg_rule *rule1, *rule2; 696 struct ieee80211_reg_rule *intersected_rule; 697 struct ieee80211_regdomain *rd; 698 /* This is just a dummy holder to help us count */ 699 struct ieee80211_reg_rule dummy_rule; 700 701 if (!rd1 || !rd2) 702 return NULL; 703 704 /* 705 * First we get a count of the rules we'll need, then we actually 706 * build them. This is to so we can malloc() and free() a 707 * regdomain once. The reason we use reg_rules_intersect() here 708 * is it will return -EINVAL if the rule computed makes no sense. 709 * All rules that do check out OK are valid. 710 */ 711 712 for (x = 0; x < rd1->n_reg_rules; x++) { 713 rule1 = &rd1->reg_rules[x]; 714 for (y = 0; y < rd2->n_reg_rules; y++) { 715 rule2 = &rd2->reg_rules[y]; 716 if (!reg_rules_intersect(rule1, rule2, &dummy_rule)) 717 num_rules++; 718 } 719 } 720 721 if (!num_rules) 722 return NULL; 723 724 size_of_regd = sizeof(struct ieee80211_regdomain) + 725 num_rules * sizeof(struct ieee80211_reg_rule); 726 727 rd = kzalloc(size_of_regd, GFP_KERNEL); 728 if (!rd) 729 return NULL; 730 731 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) { 732 rule1 = &rd1->reg_rules[x]; 733 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) { 734 rule2 = &rd2->reg_rules[y]; 735 /* 736 * This time around instead of using the stack lets 737 * write to the target rule directly saving ourselves 738 * a memcpy() 739 */ 740 intersected_rule = &rd->reg_rules[rule_idx]; 741 r = reg_rules_intersect(rule1, rule2, intersected_rule); 742 /* 743 * No need to memset here the intersected rule here as 744 * we're not using the stack anymore 745 */ 746 if (r) 747 continue; 748 rule_idx++; 749 } 750 } 751 752 if (rule_idx != num_rules) { 753 kfree(rd); 754 return NULL; 755 } 756 757 rd->n_reg_rules = num_rules; 758 rd->alpha2[0] = '9'; 759 rd->alpha2[1] = '8'; 760 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 761 rd2->dfs_region); 762 763 return rd; 764 } 765 766 /* 767 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 768 * want to just have the channel structure use these 769 */ 770 static u32 map_regdom_flags(u32 rd_flags) 771 { 772 u32 channel_flags = 0; 773 if (rd_flags & NL80211_RRF_NO_IR_ALL) 774 channel_flags |= IEEE80211_CHAN_NO_IR; 775 if (rd_flags & NL80211_RRF_DFS) 776 channel_flags |= IEEE80211_CHAN_RADAR; 777 if (rd_flags & NL80211_RRF_NO_OFDM) 778 channel_flags |= IEEE80211_CHAN_NO_OFDM; 779 return channel_flags; 780 } 781 782 static const struct ieee80211_reg_rule * 783 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq, 784 const struct ieee80211_regdomain *regd) 785 { 786 int i; 787 bool band_rule_found = false; 788 bool bw_fits = false; 789 790 if (!regd) 791 return ERR_PTR(-EINVAL); 792 793 for (i = 0; i < regd->n_reg_rules; i++) { 794 const struct ieee80211_reg_rule *rr; 795 const struct ieee80211_freq_range *fr = NULL; 796 797 rr = ®d->reg_rules[i]; 798 fr = &rr->freq_range; 799 800 /* 801 * We only need to know if one frequency rule was 802 * was in center_freq's band, that's enough, so lets 803 * not overwrite it once found 804 */ 805 if (!band_rule_found) 806 band_rule_found = freq_in_rule_band(fr, center_freq); 807 808 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20)); 809 810 if (band_rule_found && bw_fits) 811 return rr; 812 } 813 814 if (!band_rule_found) 815 return ERR_PTR(-ERANGE); 816 817 return ERR_PTR(-EINVAL); 818 } 819 820 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 821 u32 center_freq) 822 { 823 const struct ieee80211_regdomain *regd; 824 struct regulatory_request *lr = get_last_request(); 825 826 /* 827 * Follow the driver's regulatory domain, if present, unless a country 828 * IE has been processed or a user wants to help complaince further 829 */ 830 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 831 lr->initiator != NL80211_REGDOM_SET_BY_USER && 832 wiphy->regd) 833 regd = get_wiphy_regdom(wiphy); 834 else 835 regd = get_cfg80211_regdom(); 836 837 return freq_reg_info_regd(wiphy, center_freq, regd); 838 } 839 EXPORT_SYMBOL(freq_reg_info); 840 841 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 842 { 843 switch (initiator) { 844 case NL80211_REGDOM_SET_BY_CORE: 845 return "core"; 846 case NL80211_REGDOM_SET_BY_USER: 847 return "user"; 848 case NL80211_REGDOM_SET_BY_DRIVER: 849 return "driver"; 850 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 851 return "country IE"; 852 default: 853 WARN_ON(1); 854 return "bug"; 855 } 856 } 857 EXPORT_SYMBOL(reg_initiator_name); 858 859 #ifdef CONFIG_CFG80211_REG_DEBUG 860 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 861 const struct ieee80211_reg_rule *reg_rule) 862 { 863 const struct ieee80211_power_rule *power_rule; 864 const struct ieee80211_freq_range *freq_range; 865 char max_antenna_gain[32]; 866 867 power_rule = ®_rule->power_rule; 868 freq_range = ®_rule->freq_range; 869 870 if (!power_rule->max_antenna_gain) 871 snprintf(max_antenna_gain, 32, "N/A"); 872 else 873 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain); 874 875 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n", 876 chan->center_freq); 877 878 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n", 879 freq_range->start_freq_khz, freq_range->end_freq_khz, 880 freq_range->max_bandwidth_khz, max_antenna_gain, 881 power_rule->max_eirp); 882 } 883 #else 884 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 885 const struct ieee80211_reg_rule *reg_rule) 886 { 887 return; 888 } 889 #endif 890 891 /* 892 * Note that right now we assume the desired channel bandwidth 893 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 894 * per channel, the primary and the extension channel). 895 */ 896 static void handle_channel(struct wiphy *wiphy, 897 enum nl80211_reg_initiator initiator, 898 struct ieee80211_channel *chan) 899 { 900 u32 flags, bw_flags = 0; 901 const struct ieee80211_reg_rule *reg_rule = NULL; 902 const struct ieee80211_power_rule *power_rule = NULL; 903 const struct ieee80211_freq_range *freq_range = NULL; 904 struct wiphy *request_wiphy = NULL; 905 struct regulatory_request *lr = get_last_request(); 906 907 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 908 909 flags = chan->orig_flags; 910 911 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 912 if (IS_ERR(reg_rule)) { 913 /* 914 * We will disable all channels that do not match our 915 * received regulatory rule unless the hint is coming 916 * from a Country IE and the Country IE had no information 917 * about a band. The IEEE 802.11 spec allows for an AP 918 * to send only a subset of the regulatory rules allowed, 919 * so an AP in the US that only supports 2.4 GHz may only send 920 * a country IE with information for the 2.4 GHz band 921 * while 5 GHz is still supported. 922 */ 923 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 924 PTR_ERR(reg_rule) == -ERANGE) 925 return; 926 927 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 928 request_wiphy && request_wiphy == wiphy && 929 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 930 REG_DBG_PRINT("Disabling freq %d MHz for good\n", 931 chan->center_freq); 932 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 933 chan->flags = chan->orig_flags; 934 } else { 935 REG_DBG_PRINT("Disabling freq %d MHz\n", 936 chan->center_freq); 937 chan->flags |= IEEE80211_CHAN_DISABLED; 938 } 939 return; 940 } 941 942 chan_reg_rule_print_dbg(chan, reg_rule); 943 944 power_rule = ®_rule->power_rule; 945 freq_range = ®_rule->freq_range; 946 947 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 948 bw_flags = IEEE80211_CHAN_NO_HT40; 949 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80)) 950 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 951 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160)) 952 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 953 954 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 955 request_wiphy && request_wiphy == wiphy && 956 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 957 /* 958 * This guarantees the driver's requested regulatory domain 959 * will always be used as a base for further regulatory 960 * settings 961 */ 962 chan->flags = chan->orig_flags = 963 map_regdom_flags(reg_rule->flags) | bw_flags; 964 chan->max_antenna_gain = chan->orig_mag = 965 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 966 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 967 (int) MBM_TO_DBM(power_rule->max_eirp); 968 return; 969 } 970 971 chan->dfs_state = NL80211_DFS_USABLE; 972 chan->dfs_state_entered = jiffies; 973 974 chan->beacon_found = false; 975 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 976 chan->max_antenna_gain = 977 min_t(int, chan->orig_mag, 978 MBI_TO_DBI(power_rule->max_antenna_gain)); 979 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 980 if (chan->orig_mpwr) { 981 /* 982 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 983 * will always follow the passed country IE power settings. 984 */ 985 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 986 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 987 chan->max_power = chan->max_reg_power; 988 else 989 chan->max_power = min(chan->orig_mpwr, 990 chan->max_reg_power); 991 } else 992 chan->max_power = chan->max_reg_power; 993 } 994 995 static void handle_band(struct wiphy *wiphy, 996 enum nl80211_reg_initiator initiator, 997 struct ieee80211_supported_band *sband) 998 { 999 unsigned int i; 1000 1001 if (!sband) 1002 return; 1003 1004 for (i = 0; i < sband->n_channels; i++) 1005 handle_channel(wiphy, initiator, &sband->channels[i]); 1006 } 1007 1008 static bool reg_request_cell_base(struct regulatory_request *request) 1009 { 1010 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1011 return false; 1012 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 1013 } 1014 1015 bool reg_last_request_cell_base(void) 1016 { 1017 return reg_request_cell_base(get_last_request()); 1018 } 1019 1020 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS 1021 /* Core specific check */ 1022 static enum reg_request_treatment 1023 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1024 { 1025 struct regulatory_request *lr = get_last_request(); 1026 1027 if (!reg_num_devs_support_basehint) 1028 return REG_REQ_IGNORE; 1029 1030 if (reg_request_cell_base(lr) && 1031 !regdom_changes(pending_request->alpha2)) 1032 return REG_REQ_ALREADY_SET; 1033 1034 return REG_REQ_OK; 1035 } 1036 1037 /* Device specific check */ 1038 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1039 { 1040 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 1041 } 1042 #else 1043 static int reg_ignore_cell_hint(struct regulatory_request *pending_request) 1044 { 1045 return REG_REQ_IGNORE; 1046 } 1047 1048 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1049 { 1050 return true; 1051 } 1052 #endif 1053 1054 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 1055 { 1056 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 1057 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 1058 return true; 1059 return false; 1060 } 1061 1062 static bool ignore_reg_update(struct wiphy *wiphy, 1063 enum nl80211_reg_initiator initiator) 1064 { 1065 struct regulatory_request *lr = get_last_request(); 1066 1067 if (!lr) { 1068 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1069 "since last_request is not set\n", 1070 reg_initiator_name(initiator)); 1071 return true; 1072 } 1073 1074 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1075 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 1076 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1077 "since the driver uses its own custom " 1078 "regulatory domain\n", 1079 reg_initiator_name(initiator)); 1080 return true; 1081 } 1082 1083 /* 1084 * wiphy->regd will be set once the device has its own 1085 * desired regulatory domain set 1086 */ 1087 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1088 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1089 !is_world_regdom(lr->alpha2)) { 1090 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1091 "since the driver requires its own regulatory " 1092 "domain to be set first\n", 1093 reg_initiator_name(initiator)); 1094 return true; 1095 } 1096 1097 if (reg_request_cell_base(lr)) 1098 return reg_dev_ignore_cell_hint(wiphy); 1099 1100 return false; 1101 } 1102 1103 static bool reg_is_world_roaming(struct wiphy *wiphy) 1104 { 1105 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1106 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1107 struct regulatory_request *lr = get_last_request(); 1108 1109 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1110 return true; 1111 1112 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1113 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1114 return true; 1115 1116 return false; 1117 } 1118 1119 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1120 struct reg_beacon *reg_beacon) 1121 { 1122 struct ieee80211_supported_band *sband; 1123 struct ieee80211_channel *chan; 1124 bool channel_changed = false; 1125 struct ieee80211_channel chan_before; 1126 1127 sband = wiphy->bands[reg_beacon->chan.band]; 1128 chan = &sband->channels[chan_idx]; 1129 1130 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1131 return; 1132 1133 if (chan->beacon_found) 1134 return; 1135 1136 chan->beacon_found = true; 1137 1138 if (!reg_is_world_roaming(wiphy)) 1139 return; 1140 1141 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 1142 return; 1143 1144 chan_before.center_freq = chan->center_freq; 1145 chan_before.flags = chan->flags; 1146 1147 if (chan->flags & IEEE80211_CHAN_NO_IR) { 1148 chan->flags &= ~IEEE80211_CHAN_NO_IR; 1149 channel_changed = true; 1150 } 1151 1152 if (channel_changed) 1153 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1154 } 1155 1156 /* 1157 * Called when a scan on a wiphy finds a beacon on 1158 * new channel 1159 */ 1160 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1161 struct reg_beacon *reg_beacon) 1162 { 1163 unsigned int i; 1164 struct ieee80211_supported_band *sband; 1165 1166 if (!wiphy->bands[reg_beacon->chan.band]) 1167 return; 1168 1169 sband = wiphy->bands[reg_beacon->chan.band]; 1170 1171 for (i = 0; i < sband->n_channels; i++) 1172 handle_reg_beacon(wiphy, i, reg_beacon); 1173 } 1174 1175 /* 1176 * Called upon reg changes or a new wiphy is added 1177 */ 1178 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1179 { 1180 unsigned int i; 1181 struct ieee80211_supported_band *sband; 1182 struct reg_beacon *reg_beacon; 1183 1184 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1185 if (!wiphy->bands[reg_beacon->chan.band]) 1186 continue; 1187 sband = wiphy->bands[reg_beacon->chan.band]; 1188 for (i = 0; i < sband->n_channels; i++) 1189 handle_reg_beacon(wiphy, i, reg_beacon); 1190 } 1191 } 1192 1193 /* Reap the advantages of previously found beacons */ 1194 static void reg_process_beacons(struct wiphy *wiphy) 1195 { 1196 /* 1197 * Means we are just firing up cfg80211, so no beacons would 1198 * have been processed yet. 1199 */ 1200 if (!last_request) 1201 return; 1202 wiphy_update_beacon_reg(wiphy); 1203 } 1204 1205 static bool is_ht40_allowed(struct ieee80211_channel *chan) 1206 { 1207 if (!chan) 1208 return false; 1209 if (chan->flags & IEEE80211_CHAN_DISABLED) 1210 return false; 1211 /* This would happen when regulatory rules disallow HT40 completely */ 1212 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 1213 return false; 1214 return true; 1215 } 1216 1217 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1218 struct ieee80211_channel *channel) 1219 { 1220 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 1221 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1222 unsigned int i; 1223 1224 if (!is_ht40_allowed(channel)) { 1225 channel->flags |= IEEE80211_CHAN_NO_HT40; 1226 return; 1227 } 1228 1229 /* 1230 * We need to ensure the extension channels exist to 1231 * be able to use HT40- or HT40+, this finds them (or not) 1232 */ 1233 for (i = 0; i < sband->n_channels; i++) { 1234 struct ieee80211_channel *c = &sband->channels[i]; 1235 1236 if (c->center_freq == (channel->center_freq - 20)) 1237 channel_before = c; 1238 if (c->center_freq == (channel->center_freq + 20)) 1239 channel_after = c; 1240 } 1241 1242 /* 1243 * Please note that this assumes target bandwidth is 20 MHz, 1244 * if that ever changes we also need to change the below logic 1245 * to include that as well. 1246 */ 1247 if (!is_ht40_allowed(channel_before)) 1248 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1249 else 1250 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1251 1252 if (!is_ht40_allowed(channel_after)) 1253 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1254 else 1255 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1256 } 1257 1258 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1259 struct ieee80211_supported_band *sband) 1260 { 1261 unsigned int i; 1262 1263 if (!sband) 1264 return; 1265 1266 for (i = 0; i < sband->n_channels; i++) 1267 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 1268 } 1269 1270 static void reg_process_ht_flags(struct wiphy *wiphy) 1271 { 1272 enum ieee80211_band band; 1273 1274 if (!wiphy) 1275 return; 1276 1277 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1278 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 1279 } 1280 1281 static void reg_call_notifier(struct wiphy *wiphy, 1282 struct regulatory_request *request) 1283 { 1284 if (wiphy->reg_notifier) 1285 wiphy->reg_notifier(wiphy, request); 1286 } 1287 1288 static void wiphy_update_regulatory(struct wiphy *wiphy, 1289 enum nl80211_reg_initiator initiator) 1290 { 1291 enum ieee80211_band band; 1292 struct regulatory_request *lr = get_last_request(); 1293 1294 if (ignore_reg_update(wiphy, initiator)) { 1295 /* 1296 * Regulatory updates set by CORE are ignored for custom 1297 * regulatory cards. Let us notify the changes to the driver, 1298 * as some drivers used this to restore its orig_* reg domain. 1299 */ 1300 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1301 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1302 reg_call_notifier(wiphy, lr); 1303 return; 1304 } 1305 1306 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 1307 1308 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1309 handle_band(wiphy, initiator, wiphy->bands[band]); 1310 1311 reg_process_beacons(wiphy); 1312 reg_process_ht_flags(wiphy); 1313 reg_call_notifier(wiphy, lr); 1314 } 1315 1316 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 1317 { 1318 struct cfg80211_registered_device *rdev; 1319 struct wiphy *wiphy; 1320 1321 ASSERT_RTNL(); 1322 1323 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1324 wiphy = &rdev->wiphy; 1325 wiphy_update_regulatory(wiphy, initiator); 1326 } 1327 } 1328 1329 static void handle_channel_custom(struct wiphy *wiphy, 1330 struct ieee80211_channel *chan, 1331 const struct ieee80211_regdomain *regd) 1332 { 1333 u32 bw_flags = 0; 1334 const struct ieee80211_reg_rule *reg_rule = NULL; 1335 const struct ieee80211_power_rule *power_rule = NULL; 1336 const struct ieee80211_freq_range *freq_range = NULL; 1337 1338 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq), 1339 regd); 1340 1341 if (IS_ERR(reg_rule)) { 1342 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n", 1343 chan->center_freq); 1344 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1345 chan->flags = chan->orig_flags; 1346 return; 1347 } 1348 1349 chan_reg_rule_print_dbg(chan, reg_rule); 1350 1351 power_rule = ®_rule->power_rule; 1352 freq_range = ®_rule->freq_range; 1353 1354 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 1355 bw_flags = IEEE80211_CHAN_NO_HT40; 1356 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80)) 1357 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1358 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160)) 1359 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1360 1361 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1362 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1363 chan->max_reg_power = chan->max_power = 1364 (int) MBM_TO_DBM(power_rule->max_eirp); 1365 } 1366 1367 static void handle_band_custom(struct wiphy *wiphy, 1368 struct ieee80211_supported_band *sband, 1369 const struct ieee80211_regdomain *regd) 1370 { 1371 unsigned int i; 1372 1373 if (!sband) 1374 return; 1375 1376 for (i = 0; i < sband->n_channels; i++) 1377 handle_channel_custom(wiphy, &sband->channels[i], regd); 1378 } 1379 1380 /* Used by drivers prior to wiphy registration */ 1381 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1382 const struct ieee80211_regdomain *regd) 1383 { 1384 enum ieee80211_band band; 1385 unsigned int bands_set = 0; 1386 1387 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 1388 "wiphy should have REGULATORY_CUSTOM_REG\n"); 1389 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 1390 1391 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1392 if (!wiphy->bands[band]) 1393 continue; 1394 handle_band_custom(wiphy, wiphy->bands[band], regd); 1395 bands_set++; 1396 } 1397 1398 /* 1399 * no point in calling this if it won't have any effect 1400 * on your device's supported bands. 1401 */ 1402 WARN_ON(!bands_set); 1403 } 1404 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1405 1406 static void reg_set_request_processed(void) 1407 { 1408 bool need_more_processing = false; 1409 struct regulatory_request *lr = get_last_request(); 1410 1411 lr->processed = true; 1412 1413 spin_lock(®_requests_lock); 1414 if (!list_empty(®_requests_list)) 1415 need_more_processing = true; 1416 spin_unlock(®_requests_lock); 1417 1418 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 1419 cancel_delayed_work(®_timeout); 1420 1421 if (need_more_processing) 1422 schedule_work(®_work); 1423 } 1424 1425 /** 1426 * reg_process_hint_core - process core regulatory requests 1427 * @pending_request: a pending core regulatory request 1428 * 1429 * The wireless subsystem can use this function to process 1430 * a regulatory request issued by the regulatory core. 1431 * 1432 * Returns one of the different reg request treatment values. 1433 */ 1434 static enum reg_request_treatment 1435 reg_process_hint_core(struct regulatory_request *core_request) 1436 { 1437 1438 core_request->intersect = false; 1439 core_request->processed = false; 1440 1441 reg_update_last_request(core_request); 1442 1443 return reg_call_crda(core_request); 1444 } 1445 1446 static enum reg_request_treatment 1447 __reg_process_hint_user(struct regulatory_request *user_request) 1448 { 1449 struct regulatory_request *lr = get_last_request(); 1450 1451 if (reg_request_cell_base(user_request)) 1452 return reg_ignore_cell_hint(user_request); 1453 1454 if (reg_request_cell_base(lr)) 1455 return REG_REQ_IGNORE; 1456 1457 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1458 return REG_REQ_INTERSECT; 1459 /* 1460 * If the user knows better the user should set the regdom 1461 * to their country before the IE is picked up 1462 */ 1463 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 1464 lr->intersect) 1465 return REG_REQ_IGNORE; 1466 /* 1467 * Process user requests only after previous user/driver/core 1468 * requests have been processed 1469 */ 1470 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 1471 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1472 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 1473 regdom_changes(lr->alpha2)) 1474 return REG_REQ_IGNORE; 1475 1476 if (!regdom_changes(user_request->alpha2)) 1477 return REG_REQ_ALREADY_SET; 1478 1479 return REG_REQ_OK; 1480 } 1481 1482 /** 1483 * reg_process_hint_user - process user regulatory requests 1484 * @user_request: a pending user regulatory request 1485 * 1486 * The wireless subsystem can use this function to process 1487 * a regulatory request initiated by userspace. 1488 * 1489 * Returns one of the different reg request treatment values. 1490 */ 1491 static enum reg_request_treatment 1492 reg_process_hint_user(struct regulatory_request *user_request) 1493 { 1494 enum reg_request_treatment treatment; 1495 1496 treatment = __reg_process_hint_user(user_request); 1497 if (treatment == REG_REQ_IGNORE || 1498 treatment == REG_REQ_ALREADY_SET) { 1499 kfree(user_request); 1500 return treatment; 1501 } 1502 1503 user_request->intersect = treatment == REG_REQ_INTERSECT; 1504 user_request->processed = false; 1505 1506 reg_update_last_request(user_request); 1507 1508 user_alpha2[0] = user_request->alpha2[0]; 1509 user_alpha2[1] = user_request->alpha2[1]; 1510 1511 return reg_call_crda(user_request); 1512 } 1513 1514 static enum reg_request_treatment 1515 __reg_process_hint_driver(struct regulatory_request *driver_request) 1516 { 1517 struct regulatory_request *lr = get_last_request(); 1518 1519 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 1520 if (regdom_changes(driver_request->alpha2)) 1521 return REG_REQ_OK; 1522 return REG_REQ_ALREADY_SET; 1523 } 1524 1525 /* 1526 * This would happen if you unplug and plug your card 1527 * back in or if you add a new device for which the previously 1528 * loaded card also agrees on the regulatory domain. 1529 */ 1530 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1531 !regdom_changes(driver_request->alpha2)) 1532 return REG_REQ_ALREADY_SET; 1533 1534 return REG_REQ_INTERSECT; 1535 } 1536 1537 /** 1538 * reg_process_hint_driver - process driver regulatory requests 1539 * @driver_request: a pending driver regulatory request 1540 * 1541 * The wireless subsystem can use this function to process 1542 * a regulatory request issued by an 802.11 driver. 1543 * 1544 * Returns one of the different reg request treatment values. 1545 */ 1546 static enum reg_request_treatment 1547 reg_process_hint_driver(struct wiphy *wiphy, 1548 struct regulatory_request *driver_request) 1549 { 1550 const struct ieee80211_regdomain *regd; 1551 enum reg_request_treatment treatment; 1552 1553 treatment = __reg_process_hint_driver(driver_request); 1554 1555 switch (treatment) { 1556 case REG_REQ_OK: 1557 break; 1558 case REG_REQ_IGNORE: 1559 kfree(driver_request); 1560 return treatment; 1561 case REG_REQ_INTERSECT: 1562 /* fall through */ 1563 case REG_REQ_ALREADY_SET: 1564 regd = reg_copy_regd(get_cfg80211_regdom()); 1565 if (IS_ERR(regd)) { 1566 kfree(driver_request); 1567 return REG_REQ_IGNORE; 1568 } 1569 rcu_assign_pointer(wiphy->regd, regd); 1570 } 1571 1572 1573 driver_request->intersect = treatment == REG_REQ_INTERSECT; 1574 driver_request->processed = false; 1575 1576 reg_update_last_request(driver_request); 1577 1578 /* 1579 * Since CRDA will not be called in this case as we already 1580 * have applied the requested regulatory domain before we just 1581 * inform userspace we have processed the request 1582 */ 1583 if (treatment == REG_REQ_ALREADY_SET) { 1584 nl80211_send_reg_change_event(driver_request); 1585 reg_set_request_processed(); 1586 return treatment; 1587 } 1588 1589 return reg_call_crda(driver_request); 1590 } 1591 1592 static enum reg_request_treatment 1593 __reg_process_hint_country_ie(struct wiphy *wiphy, 1594 struct regulatory_request *country_ie_request) 1595 { 1596 struct wiphy *last_wiphy = NULL; 1597 struct regulatory_request *lr = get_last_request(); 1598 1599 if (reg_request_cell_base(lr)) { 1600 /* Trust a Cell base station over the AP's country IE */ 1601 if (regdom_changes(country_ie_request->alpha2)) 1602 return REG_REQ_IGNORE; 1603 return REG_REQ_ALREADY_SET; 1604 } else { 1605 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 1606 return REG_REQ_IGNORE; 1607 } 1608 1609 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 1610 return -EINVAL; 1611 1612 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 1613 return REG_REQ_OK; 1614 1615 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1616 1617 if (last_wiphy != wiphy) { 1618 /* 1619 * Two cards with two APs claiming different 1620 * Country IE alpha2s. We could 1621 * intersect them, but that seems unlikely 1622 * to be correct. Reject second one for now. 1623 */ 1624 if (regdom_changes(country_ie_request->alpha2)) 1625 return REG_REQ_IGNORE; 1626 return REG_REQ_ALREADY_SET; 1627 } 1628 /* 1629 * Two consecutive Country IE hints on the same wiphy. 1630 * This should be picked up early by the driver/stack 1631 */ 1632 if (WARN_ON(regdom_changes(country_ie_request->alpha2))) 1633 return REG_REQ_OK; 1634 return REG_REQ_ALREADY_SET; 1635 } 1636 1637 /** 1638 * reg_process_hint_country_ie - process regulatory requests from country IEs 1639 * @country_ie_request: a regulatory request from a country IE 1640 * 1641 * The wireless subsystem can use this function to process 1642 * a regulatory request issued by a country Information Element. 1643 * 1644 * Returns one of the different reg request treatment values. 1645 */ 1646 static enum reg_request_treatment 1647 reg_process_hint_country_ie(struct wiphy *wiphy, 1648 struct regulatory_request *country_ie_request) 1649 { 1650 enum reg_request_treatment treatment; 1651 1652 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 1653 1654 switch (treatment) { 1655 case REG_REQ_OK: 1656 break; 1657 case REG_REQ_IGNORE: 1658 /* fall through */ 1659 case REG_REQ_ALREADY_SET: 1660 kfree(country_ie_request); 1661 return treatment; 1662 case REG_REQ_INTERSECT: 1663 kfree(country_ie_request); 1664 /* 1665 * This doesn't happen yet, not sure we 1666 * ever want to support it for this case. 1667 */ 1668 WARN_ONCE(1, "Unexpected intersection for country IEs"); 1669 return REG_REQ_IGNORE; 1670 } 1671 1672 country_ie_request->intersect = false; 1673 country_ie_request->processed = false; 1674 1675 reg_update_last_request(country_ie_request); 1676 1677 return reg_call_crda(country_ie_request); 1678 } 1679 1680 /* This processes *all* regulatory hints */ 1681 static void reg_process_hint(struct regulatory_request *reg_request) 1682 { 1683 struct wiphy *wiphy = NULL; 1684 enum reg_request_treatment treatment; 1685 1686 if (WARN_ON(!reg_request->alpha2)) 1687 return; 1688 1689 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 1690 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 1691 1692 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) { 1693 kfree(reg_request); 1694 return; 1695 } 1696 1697 switch (reg_request->initiator) { 1698 case NL80211_REGDOM_SET_BY_CORE: 1699 reg_process_hint_core(reg_request); 1700 return; 1701 case NL80211_REGDOM_SET_BY_USER: 1702 treatment = reg_process_hint_user(reg_request); 1703 if (treatment == REG_REQ_OK || 1704 treatment == REG_REQ_ALREADY_SET) 1705 return; 1706 schedule_delayed_work(®_timeout, msecs_to_jiffies(3142)); 1707 return; 1708 case NL80211_REGDOM_SET_BY_DRIVER: 1709 treatment = reg_process_hint_driver(wiphy, reg_request); 1710 break; 1711 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1712 treatment = reg_process_hint_country_ie(wiphy, reg_request); 1713 break; 1714 default: 1715 WARN(1, "invalid initiator %d\n", reg_request->initiator); 1716 return; 1717 } 1718 1719 /* This is required so that the orig_* parameters are saved */ 1720 if (treatment == REG_REQ_ALREADY_SET && wiphy && 1721 wiphy->regulatory_flags & REGULATORY_STRICT_REG) 1722 wiphy_update_regulatory(wiphy, reg_request->initiator); 1723 } 1724 1725 /* 1726 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 1727 * Regulatory hints come on a first come first serve basis and we 1728 * must process each one atomically. 1729 */ 1730 static void reg_process_pending_hints(void) 1731 { 1732 struct regulatory_request *reg_request, *lr; 1733 1734 lr = get_last_request(); 1735 1736 /* When last_request->processed becomes true this will be rescheduled */ 1737 if (lr && !lr->processed) { 1738 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n"); 1739 return; 1740 } 1741 1742 spin_lock(®_requests_lock); 1743 1744 if (list_empty(®_requests_list)) { 1745 spin_unlock(®_requests_lock); 1746 return; 1747 } 1748 1749 reg_request = list_first_entry(®_requests_list, 1750 struct regulatory_request, 1751 list); 1752 list_del_init(®_request->list); 1753 1754 spin_unlock(®_requests_lock); 1755 1756 reg_process_hint(reg_request); 1757 } 1758 1759 /* Processes beacon hints -- this has nothing to do with country IEs */ 1760 static void reg_process_pending_beacon_hints(void) 1761 { 1762 struct cfg80211_registered_device *rdev; 1763 struct reg_beacon *pending_beacon, *tmp; 1764 1765 /* This goes through the _pending_ beacon list */ 1766 spin_lock_bh(®_pending_beacons_lock); 1767 1768 list_for_each_entry_safe(pending_beacon, tmp, 1769 ®_pending_beacons, list) { 1770 list_del_init(&pending_beacon->list); 1771 1772 /* Applies the beacon hint to current wiphys */ 1773 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1774 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 1775 1776 /* Remembers the beacon hint for new wiphys or reg changes */ 1777 list_add_tail(&pending_beacon->list, ®_beacon_list); 1778 } 1779 1780 spin_unlock_bh(®_pending_beacons_lock); 1781 } 1782 1783 static void reg_todo(struct work_struct *work) 1784 { 1785 rtnl_lock(); 1786 reg_process_pending_hints(); 1787 reg_process_pending_beacon_hints(); 1788 rtnl_unlock(); 1789 } 1790 1791 static void queue_regulatory_request(struct regulatory_request *request) 1792 { 1793 request->alpha2[0] = toupper(request->alpha2[0]); 1794 request->alpha2[1] = toupper(request->alpha2[1]); 1795 1796 spin_lock(®_requests_lock); 1797 list_add_tail(&request->list, ®_requests_list); 1798 spin_unlock(®_requests_lock); 1799 1800 schedule_work(®_work); 1801 } 1802 1803 /* 1804 * Core regulatory hint -- happens during cfg80211_init() 1805 * and when we restore regulatory settings. 1806 */ 1807 static int regulatory_hint_core(const char *alpha2) 1808 { 1809 struct regulatory_request *request; 1810 1811 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1812 if (!request) 1813 return -ENOMEM; 1814 1815 request->alpha2[0] = alpha2[0]; 1816 request->alpha2[1] = alpha2[1]; 1817 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1818 1819 queue_regulatory_request(request); 1820 1821 return 0; 1822 } 1823 1824 /* User hints */ 1825 int regulatory_hint_user(const char *alpha2, 1826 enum nl80211_user_reg_hint_type user_reg_hint_type) 1827 { 1828 struct regulatory_request *request; 1829 1830 if (WARN_ON(!alpha2)) 1831 return -EINVAL; 1832 1833 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1834 if (!request) 1835 return -ENOMEM; 1836 1837 request->wiphy_idx = WIPHY_IDX_INVALID; 1838 request->alpha2[0] = alpha2[0]; 1839 request->alpha2[1] = alpha2[1]; 1840 request->initiator = NL80211_REGDOM_SET_BY_USER; 1841 request->user_reg_hint_type = user_reg_hint_type; 1842 1843 queue_regulatory_request(request); 1844 1845 return 0; 1846 } 1847 1848 /* Driver hints */ 1849 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 1850 { 1851 struct regulatory_request *request; 1852 1853 if (WARN_ON(!alpha2 || !wiphy)) 1854 return -EINVAL; 1855 1856 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 1857 1858 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1859 if (!request) 1860 return -ENOMEM; 1861 1862 request->wiphy_idx = get_wiphy_idx(wiphy); 1863 1864 request->alpha2[0] = alpha2[0]; 1865 request->alpha2[1] = alpha2[1]; 1866 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 1867 1868 queue_regulatory_request(request); 1869 1870 return 0; 1871 } 1872 EXPORT_SYMBOL(regulatory_hint); 1873 1874 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band, 1875 const u8 *country_ie, u8 country_ie_len) 1876 { 1877 char alpha2[2]; 1878 enum environment_cap env = ENVIRON_ANY; 1879 struct regulatory_request *request = NULL, *lr; 1880 1881 /* IE len must be evenly divisible by 2 */ 1882 if (country_ie_len & 0x01) 1883 return; 1884 1885 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 1886 return; 1887 1888 request = kzalloc(sizeof(*request), GFP_KERNEL); 1889 if (!request) 1890 return; 1891 1892 alpha2[0] = country_ie[0]; 1893 alpha2[1] = country_ie[1]; 1894 1895 if (country_ie[2] == 'I') 1896 env = ENVIRON_INDOOR; 1897 else if (country_ie[2] == 'O') 1898 env = ENVIRON_OUTDOOR; 1899 1900 rcu_read_lock(); 1901 lr = get_last_request(); 1902 1903 if (unlikely(!lr)) 1904 goto out; 1905 1906 /* 1907 * We will run this only upon a successful connection on cfg80211. 1908 * We leave conflict resolution to the workqueue, where can hold 1909 * the RTNL. 1910 */ 1911 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1912 lr->wiphy_idx != WIPHY_IDX_INVALID) 1913 goto out; 1914 1915 request->wiphy_idx = get_wiphy_idx(wiphy); 1916 request->alpha2[0] = alpha2[0]; 1917 request->alpha2[1] = alpha2[1]; 1918 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 1919 request->country_ie_env = env; 1920 1921 queue_regulatory_request(request); 1922 request = NULL; 1923 out: 1924 kfree(request); 1925 rcu_read_unlock(); 1926 } 1927 1928 static void restore_alpha2(char *alpha2, bool reset_user) 1929 { 1930 /* indicates there is no alpha2 to consider for restoration */ 1931 alpha2[0] = '9'; 1932 alpha2[1] = '7'; 1933 1934 /* The user setting has precedence over the module parameter */ 1935 if (is_user_regdom_saved()) { 1936 /* Unless we're asked to ignore it and reset it */ 1937 if (reset_user) { 1938 REG_DBG_PRINT("Restoring regulatory settings including user preference\n"); 1939 user_alpha2[0] = '9'; 1940 user_alpha2[1] = '7'; 1941 1942 /* 1943 * If we're ignoring user settings, we still need to 1944 * check the module parameter to ensure we put things 1945 * back as they were for a full restore. 1946 */ 1947 if (!is_world_regdom(ieee80211_regdom)) { 1948 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 1949 ieee80211_regdom[0], ieee80211_regdom[1]); 1950 alpha2[0] = ieee80211_regdom[0]; 1951 alpha2[1] = ieee80211_regdom[1]; 1952 } 1953 } else { 1954 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n", 1955 user_alpha2[0], user_alpha2[1]); 1956 alpha2[0] = user_alpha2[0]; 1957 alpha2[1] = user_alpha2[1]; 1958 } 1959 } else if (!is_world_regdom(ieee80211_regdom)) { 1960 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 1961 ieee80211_regdom[0], ieee80211_regdom[1]); 1962 alpha2[0] = ieee80211_regdom[0]; 1963 alpha2[1] = ieee80211_regdom[1]; 1964 } else 1965 REG_DBG_PRINT("Restoring regulatory settings\n"); 1966 } 1967 1968 static void restore_custom_reg_settings(struct wiphy *wiphy) 1969 { 1970 struct ieee80211_supported_band *sband; 1971 enum ieee80211_band band; 1972 struct ieee80211_channel *chan; 1973 int i; 1974 1975 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1976 sband = wiphy->bands[band]; 1977 if (!sband) 1978 continue; 1979 for (i = 0; i < sband->n_channels; i++) { 1980 chan = &sband->channels[i]; 1981 chan->flags = chan->orig_flags; 1982 chan->max_antenna_gain = chan->orig_mag; 1983 chan->max_power = chan->orig_mpwr; 1984 chan->beacon_found = false; 1985 } 1986 } 1987 } 1988 1989 /* 1990 * Restoring regulatory settings involves ingoring any 1991 * possibly stale country IE information and user regulatory 1992 * settings if so desired, this includes any beacon hints 1993 * learned as we could have traveled outside to another country 1994 * after disconnection. To restore regulatory settings we do 1995 * exactly what we did at bootup: 1996 * 1997 * - send a core regulatory hint 1998 * - send a user regulatory hint if applicable 1999 * 2000 * Device drivers that send a regulatory hint for a specific country 2001 * keep their own regulatory domain on wiphy->regd so that does does 2002 * not need to be remembered. 2003 */ 2004 static void restore_regulatory_settings(bool reset_user) 2005 { 2006 char alpha2[2]; 2007 char world_alpha2[2]; 2008 struct reg_beacon *reg_beacon, *btmp; 2009 struct regulatory_request *reg_request, *tmp; 2010 LIST_HEAD(tmp_reg_req_list); 2011 struct cfg80211_registered_device *rdev; 2012 2013 ASSERT_RTNL(); 2014 2015 reset_regdomains(true, &world_regdom); 2016 restore_alpha2(alpha2, reset_user); 2017 2018 /* 2019 * If there's any pending requests we simply 2020 * stash them to a temporary pending queue and 2021 * add then after we've restored regulatory 2022 * settings. 2023 */ 2024 spin_lock(®_requests_lock); 2025 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 2026 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER) 2027 continue; 2028 list_move_tail(®_request->list, &tmp_reg_req_list); 2029 } 2030 spin_unlock(®_requests_lock); 2031 2032 /* Clear beacon hints */ 2033 spin_lock_bh(®_pending_beacons_lock); 2034 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 2035 list_del(®_beacon->list); 2036 kfree(reg_beacon); 2037 } 2038 spin_unlock_bh(®_pending_beacons_lock); 2039 2040 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 2041 list_del(®_beacon->list); 2042 kfree(reg_beacon); 2043 } 2044 2045 /* First restore to the basic regulatory settings */ 2046 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 2047 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 2048 2049 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2050 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 2051 restore_custom_reg_settings(&rdev->wiphy); 2052 } 2053 2054 regulatory_hint_core(world_alpha2); 2055 2056 /* 2057 * This restores the ieee80211_regdom module parameter 2058 * preference or the last user requested regulatory 2059 * settings, user regulatory settings takes precedence. 2060 */ 2061 if (is_an_alpha2(alpha2)) 2062 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER); 2063 2064 spin_lock(®_requests_lock); 2065 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 2066 spin_unlock(®_requests_lock); 2067 2068 REG_DBG_PRINT("Kicking the queue\n"); 2069 2070 schedule_work(®_work); 2071 } 2072 2073 void regulatory_hint_disconnect(void) 2074 { 2075 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n"); 2076 restore_regulatory_settings(false); 2077 } 2078 2079 static bool freq_is_chan_12_13_14(u16 freq) 2080 { 2081 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || 2082 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || 2083 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) 2084 return true; 2085 return false; 2086 } 2087 2088 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 2089 { 2090 struct reg_beacon *pending_beacon; 2091 2092 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 2093 if (beacon_chan->center_freq == 2094 pending_beacon->chan.center_freq) 2095 return true; 2096 return false; 2097 } 2098 2099 int regulatory_hint_found_beacon(struct wiphy *wiphy, 2100 struct ieee80211_channel *beacon_chan, 2101 gfp_t gfp) 2102 { 2103 struct reg_beacon *reg_beacon; 2104 bool processing; 2105 2106 if (beacon_chan->beacon_found || 2107 beacon_chan->flags & IEEE80211_CHAN_RADAR || 2108 (beacon_chan->band == IEEE80211_BAND_2GHZ && 2109 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 2110 return 0; 2111 2112 spin_lock_bh(®_pending_beacons_lock); 2113 processing = pending_reg_beacon(beacon_chan); 2114 spin_unlock_bh(®_pending_beacons_lock); 2115 2116 if (processing) 2117 return 0; 2118 2119 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 2120 if (!reg_beacon) 2121 return -ENOMEM; 2122 2123 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 2124 beacon_chan->center_freq, 2125 ieee80211_frequency_to_channel(beacon_chan->center_freq), 2126 wiphy_name(wiphy)); 2127 2128 memcpy(®_beacon->chan, beacon_chan, 2129 sizeof(struct ieee80211_channel)); 2130 2131 /* 2132 * Since we can be called from BH or and non-BH context 2133 * we must use spin_lock_bh() 2134 */ 2135 spin_lock_bh(®_pending_beacons_lock); 2136 list_add_tail(®_beacon->list, ®_pending_beacons); 2137 spin_unlock_bh(®_pending_beacons_lock); 2138 2139 schedule_work(®_work); 2140 2141 return 0; 2142 } 2143 2144 static void print_rd_rules(const struct ieee80211_regdomain *rd) 2145 { 2146 unsigned int i; 2147 const struct ieee80211_reg_rule *reg_rule = NULL; 2148 const struct ieee80211_freq_range *freq_range = NULL; 2149 const struct ieee80211_power_rule *power_rule = NULL; 2150 2151 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n"); 2152 2153 for (i = 0; i < rd->n_reg_rules; i++) { 2154 reg_rule = &rd->reg_rules[i]; 2155 freq_range = ®_rule->freq_range; 2156 power_rule = ®_rule->power_rule; 2157 2158 /* 2159 * There may not be documentation for max antenna gain 2160 * in certain regions 2161 */ 2162 if (power_rule->max_antenna_gain) 2163 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n", 2164 freq_range->start_freq_khz, 2165 freq_range->end_freq_khz, 2166 freq_range->max_bandwidth_khz, 2167 power_rule->max_antenna_gain, 2168 power_rule->max_eirp); 2169 else 2170 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n", 2171 freq_range->start_freq_khz, 2172 freq_range->end_freq_khz, 2173 freq_range->max_bandwidth_khz, 2174 power_rule->max_eirp); 2175 } 2176 } 2177 2178 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 2179 { 2180 switch (dfs_region) { 2181 case NL80211_DFS_UNSET: 2182 case NL80211_DFS_FCC: 2183 case NL80211_DFS_ETSI: 2184 case NL80211_DFS_JP: 2185 return true; 2186 default: 2187 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n", 2188 dfs_region); 2189 return false; 2190 } 2191 } 2192 2193 static void print_regdomain(const struct ieee80211_regdomain *rd) 2194 { 2195 struct regulatory_request *lr = get_last_request(); 2196 2197 if (is_intersected_alpha2(rd->alpha2)) { 2198 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2199 struct cfg80211_registered_device *rdev; 2200 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 2201 if (rdev) { 2202 pr_info("Current regulatory domain updated by AP to: %c%c\n", 2203 rdev->country_ie_alpha2[0], 2204 rdev->country_ie_alpha2[1]); 2205 } else 2206 pr_info("Current regulatory domain intersected:\n"); 2207 } else 2208 pr_info("Current regulatory domain intersected:\n"); 2209 } else if (is_world_regdom(rd->alpha2)) { 2210 pr_info("World regulatory domain updated:\n"); 2211 } else { 2212 if (is_unknown_alpha2(rd->alpha2)) 2213 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); 2214 else { 2215 if (reg_request_cell_base(lr)) 2216 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n", 2217 rd->alpha2[0], rd->alpha2[1]); 2218 else 2219 pr_info("Regulatory domain changed to country: %c%c\n", 2220 rd->alpha2[0], rd->alpha2[1]); 2221 } 2222 } 2223 2224 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 2225 print_rd_rules(rd); 2226 } 2227 2228 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 2229 { 2230 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 2231 print_rd_rules(rd); 2232 } 2233 2234 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 2235 { 2236 if (!is_world_regdom(rd->alpha2)) 2237 return -EINVAL; 2238 update_world_regdomain(rd); 2239 return 0; 2240 } 2241 2242 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 2243 struct regulatory_request *user_request) 2244 { 2245 const struct ieee80211_regdomain *intersected_rd = NULL; 2246 2247 if (is_world_regdom(rd->alpha2)) 2248 return -EINVAL; 2249 2250 if (!regdom_changes(rd->alpha2)) 2251 return -EALREADY; 2252 2253 if (!is_valid_rd(rd)) { 2254 pr_err("Invalid regulatory domain detected:\n"); 2255 print_regdomain_info(rd); 2256 return -EINVAL; 2257 } 2258 2259 if (!user_request->intersect) { 2260 reset_regdomains(false, rd); 2261 return 0; 2262 } 2263 2264 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2265 if (!intersected_rd) 2266 return -EINVAL; 2267 2268 kfree(rd); 2269 rd = NULL; 2270 reset_regdomains(false, intersected_rd); 2271 2272 return 0; 2273 } 2274 2275 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 2276 struct regulatory_request *driver_request) 2277 { 2278 const struct ieee80211_regdomain *regd; 2279 const struct ieee80211_regdomain *intersected_rd = NULL; 2280 const struct ieee80211_regdomain *tmp; 2281 struct wiphy *request_wiphy; 2282 2283 if (is_world_regdom(rd->alpha2)) 2284 return -EINVAL; 2285 2286 if (!regdom_changes(rd->alpha2)) 2287 return -EALREADY; 2288 2289 if (!is_valid_rd(rd)) { 2290 pr_err("Invalid regulatory domain detected:\n"); 2291 print_regdomain_info(rd); 2292 return -EINVAL; 2293 } 2294 2295 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 2296 if (!request_wiphy) { 2297 schedule_delayed_work(®_timeout, 0); 2298 return -ENODEV; 2299 } 2300 2301 if (!driver_request->intersect) { 2302 if (request_wiphy->regd) 2303 return -EALREADY; 2304 2305 regd = reg_copy_regd(rd); 2306 if (IS_ERR(regd)) 2307 return PTR_ERR(regd); 2308 2309 rcu_assign_pointer(request_wiphy->regd, regd); 2310 reset_regdomains(false, rd); 2311 return 0; 2312 } 2313 2314 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2315 if (!intersected_rd) 2316 return -EINVAL; 2317 2318 /* 2319 * We can trash what CRDA provided now. 2320 * However if a driver requested this specific regulatory 2321 * domain we keep it for its private use 2322 */ 2323 tmp = get_wiphy_regdom(request_wiphy); 2324 rcu_assign_pointer(request_wiphy->regd, rd); 2325 rcu_free_regdom(tmp); 2326 2327 rd = NULL; 2328 2329 reset_regdomains(false, intersected_rd); 2330 2331 return 0; 2332 } 2333 2334 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 2335 struct regulatory_request *country_ie_request) 2336 { 2337 struct wiphy *request_wiphy; 2338 2339 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 2340 !is_unknown_alpha2(rd->alpha2)) 2341 return -EINVAL; 2342 2343 /* 2344 * Lets only bother proceeding on the same alpha2 if the current 2345 * rd is non static (it means CRDA was present and was used last) 2346 * and the pending request came in from a country IE 2347 */ 2348 2349 if (!is_valid_rd(rd)) { 2350 pr_err("Invalid regulatory domain detected:\n"); 2351 print_regdomain_info(rd); 2352 return -EINVAL; 2353 } 2354 2355 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 2356 if (!request_wiphy) { 2357 schedule_delayed_work(®_timeout, 0); 2358 return -ENODEV; 2359 } 2360 2361 if (country_ie_request->intersect) 2362 return -EINVAL; 2363 2364 reset_regdomains(false, rd); 2365 return 0; 2366 } 2367 2368 /* 2369 * Use this call to set the current regulatory domain. Conflicts with 2370 * multiple drivers can be ironed out later. Caller must've already 2371 * kmalloc'd the rd structure. 2372 */ 2373 int set_regdom(const struct ieee80211_regdomain *rd) 2374 { 2375 struct regulatory_request *lr; 2376 int r; 2377 2378 if (!reg_is_valid_request(rd->alpha2)) { 2379 kfree(rd); 2380 return -EINVAL; 2381 } 2382 2383 lr = get_last_request(); 2384 2385 /* Note that this doesn't update the wiphys, this is done below */ 2386 switch (lr->initiator) { 2387 case NL80211_REGDOM_SET_BY_CORE: 2388 r = reg_set_rd_core(rd); 2389 break; 2390 case NL80211_REGDOM_SET_BY_USER: 2391 r = reg_set_rd_user(rd, lr); 2392 break; 2393 case NL80211_REGDOM_SET_BY_DRIVER: 2394 r = reg_set_rd_driver(rd, lr); 2395 break; 2396 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2397 r = reg_set_rd_country_ie(rd, lr); 2398 break; 2399 default: 2400 WARN(1, "invalid initiator %d\n", lr->initiator); 2401 return -EINVAL; 2402 } 2403 2404 if (r) { 2405 if (r == -EALREADY) 2406 reg_set_request_processed(); 2407 2408 kfree(rd); 2409 return r; 2410 } 2411 2412 /* This would make this whole thing pointless */ 2413 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 2414 return -EINVAL; 2415 2416 /* update all wiphys now with the new established regulatory domain */ 2417 update_all_wiphy_regulatory(lr->initiator); 2418 2419 print_regdomain(get_cfg80211_regdom()); 2420 2421 nl80211_send_reg_change_event(lr); 2422 2423 reg_set_request_processed(); 2424 2425 return 0; 2426 } 2427 2428 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) 2429 { 2430 struct regulatory_request *lr; 2431 u8 alpha2[2]; 2432 bool add = false; 2433 2434 rcu_read_lock(); 2435 lr = get_last_request(); 2436 if (lr && !lr->processed) { 2437 memcpy(alpha2, lr->alpha2, 2); 2438 add = true; 2439 } 2440 rcu_read_unlock(); 2441 2442 if (add) 2443 return add_uevent_var(env, "COUNTRY=%c%c", 2444 alpha2[0], alpha2[1]); 2445 return 0; 2446 } 2447 2448 void wiphy_regulatory_register(struct wiphy *wiphy) 2449 { 2450 struct regulatory_request *lr; 2451 2452 if (!reg_dev_ignore_cell_hint(wiphy)) 2453 reg_num_devs_support_basehint++; 2454 2455 lr = get_last_request(); 2456 wiphy_update_regulatory(wiphy, lr->initiator); 2457 } 2458 2459 void wiphy_regulatory_deregister(struct wiphy *wiphy) 2460 { 2461 struct wiphy *request_wiphy = NULL; 2462 struct regulatory_request *lr; 2463 2464 lr = get_last_request(); 2465 2466 if (!reg_dev_ignore_cell_hint(wiphy)) 2467 reg_num_devs_support_basehint--; 2468 2469 rcu_free_regdom(get_wiphy_regdom(wiphy)); 2470 rcu_assign_pointer(wiphy->regd, NULL); 2471 2472 if (lr) 2473 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2474 2475 if (!request_wiphy || request_wiphy != wiphy) 2476 return; 2477 2478 lr->wiphy_idx = WIPHY_IDX_INVALID; 2479 lr->country_ie_env = ENVIRON_ANY; 2480 } 2481 2482 static void reg_timeout_work(struct work_struct *work) 2483 { 2484 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 2485 rtnl_lock(); 2486 restore_regulatory_settings(true); 2487 rtnl_unlock(); 2488 } 2489 2490 int __init regulatory_init(void) 2491 { 2492 int err = 0; 2493 2494 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 2495 if (IS_ERR(reg_pdev)) 2496 return PTR_ERR(reg_pdev); 2497 2498 reg_pdev->dev.type = ®_device_type; 2499 2500 spin_lock_init(®_requests_lock); 2501 spin_lock_init(®_pending_beacons_lock); 2502 2503 reg_regdb_size_check(); 2504 2505 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 2506 2507 user_alpha2[0] = '9'; 2508 user_alpha2[1] = '7'; 2509 2510 /* We always try to get an update for the static regdomain */ 2511 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 2512 if (err) { 2513 if (err == -ENOMEM) 2514 return err; 2515 /* 2516 * N.B. kobject_uevent_env() can fail mainly for when we're out 2517 * memory which is handled and propagated appropriately above 2518 * but it can also fail during a netlink_broadcast() or during 2519 * early boot for call_usermodehelper(). For now treat these 2520 * errors as non-fatal. 2521 */ 2522 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 2523 } 2524 2525 /* 2526 * Finally, if the user set the module parameter treat it 2527 * as a user hint. 2528 */ 2529 if (!is_world_regdom(ieee80211_regdom)) 2530 regulatory_hint_user(ieee80211_regdom, 2531 NL80211_USER_REG_HINT_USER); 2532 2533 return 0; 2534 } 2535 2536 void regulatory_exit(void) 2537 { 2538 struct regulatory_request *reg_request, *tmp; 2539 struct reg_beacon *reg_beacon, *btmp; 2540 2541 cancel_work_sync(®_work); 2542 cancel_delayed_work_sync(®_timeout); 2543 2544 /* Lock to suppress warnings */ 2545 rtnl_lock(); 2546 reset_regdomains(true, NULL); 2547 rtnl_unlock(); 2548 2549 dev_set_uevent_suppress(®_pdev->dev, true); 2550 2551 platform_device_unregister(reg_pdev); 2552 2553 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 2554 list_del(®_beacon->list); 2555 kfree(reg_beacon); 2556 } 2557 2558 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 2559 list_del(®_beacon->list); 2560 kfree(reg_beacon); 2561 } 2562 2563 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 2564 list_del(®_request->list); 2565 kfree(reg_request); 2566 } 2567 } 2568