xref: /openbmc/linux/net/wireless/reg.c (revision 4800cd83)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/ctype.h>
43 #include <linux/nl80211.h>
44 #include <linux/platform_device.h>
45 #include <net/cfg80211.h>
46 #include "core.h"
47 #include "reg.h"
48 #include "regdb.h"
49 #include "nl80211.h"
50 
51 #ifdef CONFIG_CFG80211_REG_DEBUG
52 #define REG_DBG_PRINT(format, args...) \
53 	do { \
54 		printk(KERN_DEBUG pr_fmt(format), ##args);	\
55 	} while (0)
56 #else
57 #define REG_DBG_PRINT(args...)
58 #endif
59 
60 /* Receipt of information from last regulatory request */
61 static struct regulatory_request *last_request;
62 
63 /* To trigger userspace events */
64 static struct platform_device *reg_pdev;
65 
66 /*
67  * Central wireless core regulatory domains, we only need two,
68  * the current one and a world regulatory domain in case we have no
69  * information to give us an alpha2
70  */
71 const struct ieee80211_regdomain *cfg80211_regdomain;
72 
73 /*
74  * Protects static reg.c components:
75  *     - cfg80211_world_regdom
76  *     - cfg80211_regdom
77  *     - last_request
78  */
79 static DEFINE_MUTEX(reg_mutex);
80 
81 static inline void assert_reg_lock(void)
82 {
83 	lockdep_assert_held(&reg_mutex);
84 }
85 
86 /* Used to queue up regulatory hints */
87 static LIST_HEAD(reg_requests_list);
88 static spinlock_t reg_requests_lock;
89 
90 /* Used to queue up beacon hints for review */
91 static LIST_HEAD(reg_pending_beacons);
92 static spinlock_t reg_pending_beacons_lock;
93 
94 /* Used to keep track of processed beacon hints */
95 static LIST_HEAD(reg_beacon_list);
96 
97 struct reg_beacon {
98 	struct list_head list;
99 	struct ieee80211_channel chan;
100 };
101 
102 static void reg_todo(struct work_struct *work);
103 static DECLARE_WORK(reg_work, reg_todo);
104 
105 /* We keep a static world regulatory domain in case of the absence of CRDA */
106 static const struct ieee80211_regdomain world_regdom = {
107 	.n_reg_rules = 5,
108 	.alpha2 =  "00",
109 	.reg_rules = {
110 		/* IEEE 802.11b/g, channels 1..11 */
111 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
112 		/* IEEE 802.11b/g, channels 12..13. No HT40
113 		 * channel fits here. */
114 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
115 			NL80211_RRF_PASSIVE_SCAN |
116 			NL80211_RRF_NO_IBSS),
117 		/* IEEE 802.11 channel 14 - Only JP enables
118 		 * this and for 802.11b only */
119 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
120 			NL80211_RRF_PASSIVE_SCAN |
121 			NL80211_RRF_NO_IBSS |
122 			NL80211_RRF_NO_OFDM),
123 		/* IEEE 802.11a, channel 36..48 */
124 		REG_RULE(5180-10, 5240+10, 40, 6, 20,
125                         NL80211_RRF_PASSIVE_SCAN |
126                         NL80211_RRF_NO_IBSS),
127 
128 		/* NB: 5260 MHz - 5700 MHz requies DFS */
129 
130 		/* IEEE 802.11a, channel 149..165 */
131 		REG_RULE(5745-10, 5825+10, 40, 6, 20,
132 			NL80211_RRF_PASSIVE_SCAN |
133 			NL80211_RRF_NO_IBSS),
134 	}
135 };
136 
137 static const struct ieee80211_regdomain *cfg80211_world_regdom =
138 	&world_regdom;
139 
140 static char *ieee80211_regdom = "00";
141 static char user_alpha2[2];
142 
143 module_param(ieee80211_regdom, charp, 0444);
144 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
145 
146 static void reset_regdomains(void)
147 {
148 	/* avoid freeing static information or freeing something twice */
149 	if (cfg80211_regdomain == cfg80211_world_regdom)
150 		cfg80211_regdomain = NULL;
151 	if (cfg80211_world_regdom == &world_regdom)
152 		cfg80211_world_regdom = NULL;
153 	if (cfg80211_regdomain == &world_regdom)
154 		cfg80211_regdomain = NULL;
155 
156 	kfree(cfg80211_regdomain);
157 	kfree(cfg80211_world_regdom);
158 
159 	cfg80211_world_regdom = &world_regdom;
160 	cfg80211_regdomain = NULL;
161 }
162 
163 /*
164  * Dynamic world regulatory domain requested by the wireless
165  * core upon initialization
166  */
167 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
168 {
169 	BUG_ON(!last_request);
170 
171 	reset_regdomains();
172 
173 	cfg80211_world_regdom = rd;
174 	cfg80211_regdomain = rd;
175 }
176 
177 bool is_world_regdom(const char *alpha2)
178 {
179 	if (!alpha2)
180 		return false;
181 	if (alpha2[0] == '0' && alpha2[1] == '0')
182 		return true;
183 	return false;
184 }
185 
186 static bool is_alpha2_set(const char *alpha2)
187 {
188 	if (!alpha2)
189 		return false;
190 	if (alpha2[0] != 0 && alpha2[1] != 0)
191 		return true;
192 	return false;
193 }
194 
195 static bool is_unknown_alpha2(const char *alpha2)
196 {
197 	if (!alpha2)
198 		return false;
199 	/*
200 	 * Special case where regulatory domain was built by driver
201 	 * but a specific alpha2 cannot be determined
202 	 */
203 	if (alpha2[0] == '9' && alpha2[1] == '9')
204 		return true;
205 	return false;
206 }
207 
208 static bool is_intersected_alpha2(const char *alpha2)
209 {
210 	if (!alpha2)
211 		return false;
212 	/*
213 	 * Special case where regulatory domain is the
214 	 * result of an intersection between two regulatory domain
215 	 * structures
216 	 */
217 	if (alpha2[0] == '9' && alpha2[1] == '8')
218 		return true;
219 	return false;
220 }
221 
222 static bool is_an_alpha2(const char *alpha2)
223 {
224 	if (!alpha2)
225 		return false;
226 	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
227 		return true;
228 	return false;
229 }
230 
231 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
232 {
233 	if (!alpha2_x || !alpha2_y)
234 		return false;
235 	if (alpha2_x[0] == alpha2_y[0] &&
236 		alpha2_x[1] == alpha2_y[1])
237 		return true;
238 	return false;
239 }
240 
241 static bool regdom_changes(const char *alpha2)
242 {
243 	assert_cfg80211_lock();
244 
245 	if (!cfg80211_regdomain)
246 		return true;
247 	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
248 		return false;
249 	return true;
250 }
251 
252 /*
253  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
254  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
255  * has ever been issued.
256  */
257 static bool is_user_regdom_saved(void)
258 {
259 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
260 		return false;
261 
262 	/* This would indicate a mistake on the design */
263 	if (WARN((!is_world_regdom(user_alpha2) &&
264 		  !is_an_alpha2(user_alpha2)),
265 		 "Unexpected user alpha2: %c%c\n",
266 		 user_alpha2[0],
267 	         user_alpha2[1]))
268 		return false;
269 
270 	return true;
271 }
272 
273 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
274 			 const struct ieee80211_regdomain *src_regd)
275 {
276 	struct ieee80211_regdomain *regd;
277 	int size_of_regd = 0;
278 	unsigned int i;
279 
280 	size_of_regd = sizeof(struct ieee80211_regdomain) +
281 	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
282 
283 	regd = kzalloc(size_of_regd, GFP_KERNEL);
284 	if (!regd)
285 		return -ENOMEM;
286 
287 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
288 
289 	for (i = 0; i < src_regd->n_reg_rules; i++)
290 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
291 			sizeof(struct ieee80211_reg_rule));
292 
293 	*dst_regd = regd;
294 	return 0;
295 }
296 
297 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
298 struct reg_regdb_search_request {
299 	char alpha2[2];
300 	struct list_head list;
301 };
302 
303 static LIST_HEAD(reg_regdb_search_list);
304 static DEFINE_MUTEX(reg_regdb_search_mutex);
305 
306 static void reg_regdb_search(struct work_struct *work)
307 {
308 	struct reg_regdb_search_request *request;
309 	const struct ieee80211_regdomain *curdom, *regdom;
310 	int i, r;
311 
312 	mutex_lock(&reg_regdb_search_mutex);
313 	while (!list_empty(&reg_regdb_search_list)) {
314 		request = list_first_entry(&reg_regdb_search_list,
315 					   struct reg_regdb_search_request,
316 					   list);
317 		list_del(&request->list);
318 
319 		for (i=0; i<reg_regdb_size; i++) {
320 			curdom = reg_regdb[i];
321 
322 			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
323 				r = reg_copy_regd(&regdom, curdom);
324 				if (r)
325 					break;
326 				mutex_lock(&cfg80211_mutex);
327 				set_regdom(regdom);
328 				mutex_unlock(&cfg80211_mutex);
329 				break;
330 			}
331 		}
332 
333 		kfree(request);
334 	}
335 	mutex_unlock(&reg_regdb_search_mutex);
336 }
337 
338 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
339 
340 static void reg_regdb_query(const char *alpha2)
341 {
342 	struct reg_regdb_search_request *request;
343 
344 	if (!alpha2)
345 		return;
346 
347 	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
348 	if (!request)
349 		return;
350 
351 	memcpy(request->alpha2, alpha2, 2);
352 
353 	mutex_lock(&reg_regdb_search_mutex);
354 	list_add_tail(&request->list, &reg_regdb_search_list);
355 	mutex_unlock(&reg_regdb_search_mutex);
356 
357 	schedule_work(&reg_regdb_work);
358 }
359 #else
360 static inline void reg_regdb_query(const char *alpha2) {}
361 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
362 
363 /*
364  * This lets us keep regulatory code which is updated on a regulatory
365  * basis in userspace.
366  */
367 static int call_crda(const char *alpha2)
368 {
369 	char country_env[9 + 2] = "COUNTRY=";
370 	char *envp[] = {
371 		country_env,
372 		NULL
373 	};
374 
375 	if (!is_world_regdom((char *) alpha2))
376 		pr_info("Calling CRDA for country: %c%c\n",
377 			alpha2[0], alpha2[1]);
378 	else
379 		pr_info("Calling CRDA to update world regulatory domain\n");
380 
381 	/* query internal regulatory database (if it exists) */
382 	reg_regdb_query(alpha2);
383 
384 	country_env[8] = alpha2[0];
385 	country_env[9] = alpha2[1];
386 
387 	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
388 }
389 
390 /* Used by nl80211 before kmalloc'ing our regulatory domain */
391 bool reg_is_valid_request(const char *alpha2)
392 {
393 	assert_cfg80211_lock();
394 
395 	if (!last_request)
396 		return false;
397 
398 	return alpha2_equal(last_request->alpha2, alpha2);
399 }
400 
401 /* Sanity check on a regulatory rule */
402 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
403 {
404 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
405 	u32 freq_diff;
406 
407 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
408 		return false;
409 
410 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
411 		return false;
412 
413 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
414 
415 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
416 			freq_range->max_bandwidth_khz > freq_diff)
417 		return false;
418 
419 	return true;
420 }
421 
422 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
423 {
424 	const struct ieee80211_reg_rule *reg_rule = NULL;
425 	unsigned int i;
426 
427 	if (!rd->n_reg_rules)
428 		return false;
429 
430 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
431 		return false;
432 
433 	for (i = 0; i < rd->n_reg_rules; i++) {
434 		reg_rule = &rd->reg_rules[i];
435 		if (!is_valid_reg_rule(reg_rule))
436 			return false;
437 	}
438 
439 	return true;
440 }
441 
442 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
443 			    u32 center_freq_khz,
444 			    u32 bw_khz)
445 {
446 	u32 start_freq_khz, end_freq_khz;
447 
448 	start_freq_khz = center_freq_khz - (bw_khz/2);
449 	end_freq_khz = center_freq_khz + (bw_khz/2);
450 
451 	if (start_freq_khz >= freq_range->start_freq_khz &&
452 	    end_freq_khz <= freq_range->end_freq_khz)
453 		return true;
454 
455 	return false;
456 }
457 
458 /**
459  * freq_in_rule_band - tells us if a frequency is in a frequency band
460  * @freq_range: frequency rule we want to query
461  * @freq_khz: frequency we are inquiring about
462  *
463  * This lets us know if a specific frequency rule is or is not relevant to
464  * a specific frequency's band. Bands are device specific and artificial
465  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
466  * safe for now to assume that a frequency rule should not be part of a
467  * frequency's band if the start freq or end freq are off by more than 2 GHz.
468  * This resolution can be lowered and should be considered as we add
469  * regulatory rule support for other "bands".
470  **/
471 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
472 	u32 freq_khz)
473 {
474 #define ONE_GHZ_IN_KHZ	1000000
475 	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
476 		return true;
477 	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
478 		return true;
479 	return false;
480 #undef ONE_GHZ_IN_KHZ
481 }
482 
483 /*
484  * Helper for regdom_intersect(), this does the real
485  * mathematical intersection fun
486  */
487 static int reg_rules_intersect(
488 	const struct ieee80211_reg_rule *rule1,
489 	const struct ieee80211_reg_rule *rule2,
490 	struct ieee80211_reg_rule *intersected_rule)
491 {
492 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
493 	struct ieee80211_freq_range *freq_range;
494 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
495 	struct ieee80211_power_rule *power_rule;
496 	u32 freq_diff;
497 
498 	freq_range1 = &rule1->freq_range;
499 	freq_range2 = &rule2->freq_range;
500 	freq_range = &intersected_rule->freq_range;
501 
502 	power_rule1 = &rule1->power_rule;
503 	power_rule2 = &rule2->power_rule;
504 	power_rule = &intersected_rule->power_rule;
505 
506 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
507 		freq_range2->start_freq_khz);
508 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
509 		freq_range2->end_freq_khz);
510 	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
511 		freq_range2->max_bandwidth_khz);
512 
513 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
514 	if (freq_range->max_bandwidth_khz > freq_diff)
515 		freq_range->max_bandwidth_khz = freq_diff;
516 
517 	power_rule->max_eirp = min(power_rule1->max_eirp,
518 		power_rule2->max_eirp);
519 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
520 		power_rule2->max_antenna_gain);
521 
522 	intersected_rule->flags = (rule1->flags | rule2->flags);
523 
524 	if (!is_valid_reg_rule(intersected_rule))
525 		return -EINVAL;
526 
527 	return 0;
528 }
529 
530 /**
531  * regdom_intersect - do the intersection between two regulatory domains
532  * @rd1: first regulatory domain
533  * @rd2: second regulatory domain
534  *
535  * Use this function to get the intersection between two regulatory domains.
536  * Once completed we will mark the alpha2 for the rd as intersected, "98",
537  * as no one single alpha2 can represent this regulatory domain.
538  *
539  * Returns a pointer to the regulatory domain structure which will hold the
540  * resulting intersection of rules between rd1 and rd2. We will
541  * kzalloc() this structure for you.
542  */
543 static struct ieee80211_regdomain *regdom_intersect(
544 	const struct ieee80211_regdomain *rd1,
545 	const struct ieee80211_regdomain *rd2)
546 {
547 	int r, size_of_regd;
548 	unsigned int x, y;
549 	unsigned int num_rules = 0, rule_idx = 0;
550 	const struct ieee80211_reg_rule *rule1, *rule2;
551 	struct ieee80211_reg_rule *intersected_rule;
552 	struct ieee80211_regdomain *rd;
553 	/* This is just a dummy holder to help us count */
554 	struct ieee80211_reg_rule irule;
555 
556 	/* Uses the stack temporarily for counter arithmetic */
557 	intersected_rule = &irule;
558 
559 	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
560 
561 	if (!rd1 || !rd2)
562 		return NULL;
563 
564 	/*
565 	 * First we get a count of the rules we'll need, then we actually
566 	 * build them. This is to so we can malloc() and free() a
567 	 * regdomain once. The reason we use reg_rules_intersect() here
568 	 * is it will return -EINVAL if the rule computed makes no sense.
569 	 * All rules that do check out OK are valid.
570 	 */
571 
572 	for (x = 0; x < rd1->n_reg_rules; x++) {
573 		rule1 = &rd1->reg_rules[x];
574 		for (y = 0; y < rd2->n_reg_rules; y++) {
575 			rule2 = &rd2->reg_rules[y];
576 			if (!reg_rules_intersect(rule1, rule2,
577 					intersected_rule))
578 				num_rules++;
579 			memset(intersected_rule, 0,
580 					sizeof(struct ieee80211_reg_rule));
581 		}
582 	}
583 
584 	if (!num_rules)
585 		return NULL;
586 
587 	size_of_regd = sizeof(struct ieee80211_regdomain) +
588 		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
589 
590 	rd = kzalloc(size_of_regd, GFP_KERNEL);
591 	if (!rd)
592 		return NULL;
593 
594 	for (x = 0; x < rd1->n_reg_rules; x++) {
595 		rule1 = &rd1->reg_rules[x];
596 		for (y = 0; y < rd2->n_reg_rules; y++) {
597 			rule2 = &rd2->reg_rules[y];
598 			/*
599 			 * This time around instead of using the stack lets
600 			 * write to the target rule directly saving ourselves
601 			 * a memcpy()
602 			 */
603 			intersected_rule = &rd->reg_rules[rule_idx];
604 			r = reg_rules_intersect(rule1, rule2,
605 				intersected_rule);
606 			/*
607 			 * No need to memset here the intersected rule here as
608 			 * we're not using the stack anymore
609 			 */
610 			if (r)
611 				continue;
612 			rule_idx++;
613 		}
614 	}
615 
616 	if (rule_idx != num_rules) {
617 		kfree(rd);
618 		return NULL;
619 	}
620 
621 	rd->n_reg_rules = num_rules;
622 	rd->alpha2[0] = '9';
623 	rd->alpha2[1] = '8';
624 
625 	return rd;
626 }
627 
628 /*
629  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
630  * want to just have the channel structure use these
631  */
632 static u32 map_regdom_flags(u32 rd_flags)
633 {
634 	u32 channel_flags = 0;
635 	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
636 		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
637 	if (rd_flags & NL80211_RRF_NO_IBSS)
638 		channel_flags |= IEEE80211_CHAN_NO_IBSS;
639 	if (rd_flags & NL80211_RRF_DFS)
640 		channel_flags |= IEEE80211_CHAN_RADAR;
641 	return channel_flags;
642 }
643 
644 static int freq_reg_info_regd(struct wiphy *wiphy,
645 			      u32 center_freq,
646 			      u32 desired_bw_khz,
647 			      const struct ieee80211_reg_rule **reg_rule,
648 			      const struct ieee80211_regdomain *custom_regd)
649 {
650 	int i;
651 	bool band_rule_found = false;
652 	const struct ieee80211_regdomain *regd;
653 	bool bw_fits = false;
654 
655 	if (!desired_bw_khz)
656 		desired_bw_khz = MHZ_TO_KHZ(20);
657 
658 	regd = custom_regd ? custom_regd : cfg80211_regdomain;
659 
660 	/*
661 	 * Follow the driver's regulatory domain, if present, unless a country
662 	 * IE has been processed or a user wants to help complaince further
663 	 */
664 	if (!custom_regd &&
665 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
666 	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
667 	    wiphy->regd)
668 		regd = wiphy->regd;
669 
670 	if (!regd)
671 		return -EINVAL;
672 
673 	for (i = 0; i < regd->n_reg_rules; i++) {
674 		const struct ieee80211_reg_rule *rr;
675 		const struct ieee80211_freq_range *fr = NULL;
676 		const struct ieee80211_power_rule *pr = NULL;
677 
678 		rr = &regd->reg_rules[i];
679 		fr = &rr->freq_range;
680 		pr = &rr->power_rule;
681 
682 		/*
683 		 * We only need to know if one frequency rule was
684 		 * was in center_freq's band, that's enough, so lets
685 		 * not overwrite it once found
686 		 */
687 		if (!band_rule_found)
688 			band_rule_found = freq_in_rule_band(fr, center_freq);
689 
690 		bw_fits = reg_does_bw_fit(fr,
691 					  center_freq,
692 					  desired_bw_khz);
693 
694 		if (band_rule_found && bw_fits) {
695 			*reg_rule = rr;
696 			return 0;
697 		}
698 	}
699 
700 	if (!band_rule_found)
701 		return -ERANGE;
702 
703 	return -EINVAL;
704 }
705 
706 int freq_reg_info(struct wiphy *wiphy,
707 		  u32 center_freq,
708 		  u32 desired_bw_khz,
709 		  const struct ieee80211_reg_rule **reg_rule)
710 {
711 	assert_cfg80211_lock();
712 	return freq_reg_info_regd(wiphy,
713 				  center_freq,
714 				  desired_bw_khz,
715 				  reg_rule,
716 				  NULL);
717 }
718 EXPORT_SYMBOL(freq_reg_info);
719 
720 #ifdef CONFIG_CFG80211_REG_DEBUG
721 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
722 {
723 	switch (initiator) {
724 	case NL80211_REGDOM_SET_BY_CORE:
725 		return "Set by core";
726 	case NL80211_REGDOM_SET_BY_USER:
727 		return "Set by user";
728 	case NL80211_REGDOM_SET_BY_DRIVER:
729 		return "Set by driver";
730 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
731 		return "Set by country IE";
732 	default:
733 		WARN_ON(1);
734 		return "Set by bug";
735 	}
736 }
737 
738 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
739 				    u32 desired_bw_khz,
740 				    const struct ieee80211_reg_rule *reg_rule)
741 {
742 	const struct ieee80211_power_rule *power_rule;
743 	const struct ieee80211_freq_range *freq_range;
744 	char max_antenna_gain[32];
745 
746 	power_rule = &reg_rule->power_rule;
747 	freq_range = &reg_rule->freq_range;
748 
749 	if (!power_rule->max_antenna_gain)
750 		snprintf(max_antenna_gain, 32, "N/A");
751 	else
752 		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
753 
754 	REG_DBG_PRINT("Updating information on frequency %d MHz "
755 		      "for a %d MHz width channel with regulatory rule:\n",
756 		      chan->center_freq,
757 		      KHZ_TO_MHZ(desired_bw_khz));
758 
759 	REG_DBG_PRINT("%d KHz - %d KHz @  KHz), (%s mBi, %d mBm)\n",
760 		      freq_range->start_freq_khz,
761 		      freq_range->end_freq_khz,
762 		      max_antenna_gain,
763 		      power_rule->max_eirp);
764 }
765 #else
766 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
767 				    u32 desired_bw_khz,
768 				    const struct ieee80211_reg_rule *reg_rule)
769 {
770 	return;
771 }
772 #endif
773 
774 /*
775  * Note that right now we assume the desired channel bandwidth
776  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
777  * per channel, the primary and the extension channel). To support
778  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
779  * new ieee80211_channel.target_bw and re run the regulatory check
780  * on the wiphy with the target_bw specified. Then we can simply use
781  * that below for the desired_bw_khz below.
782  */
783 static void handle_channel(struct wiphy *wiphy,
784 			   enum nl80211_reg_initiator initiator,
785 			   enum ieee80211_band band,
786 			   unsigned int chan_idx)
787 {
788 	int r;
789 	u32 flags, bw_flags = 0;
790 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
791 	const struct ieee80211_reg_rule *reg_rule = NULL;
792 	const struct ieee80211_power_rule *power_rule = NULL;
793 	const struct ieee80211_freq_range *freq_range = NULL;
794 	struct ieee80211_supported_band *sband;
795 	struct ieee80211_channel *chan;
796 	struct wiphy *request_wiphy = NULL;
797 
798 	assert_cfg80211_lock();
799 
800 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
801 
802 	sband = wiphy->bands[band];
803 	BUG_ON(chan_idx >= sband->n_channels);
804 	chan = &sband->channels[chan_idx];
805 
806 	flags = chan->orig_flags;
807 
808 	r = freq_reg_info(wiphy,
809 			  MHZ_TO_KHZ(chan->center_freq),
810 			  desired_bw_khz,
811 			  &reg_rule);
812 
813 	if (r) {
814 		/*
815 		 * We will disable all channels that do not match our
816 		 * recieved regulatory rule unless the hint is coming
817 		 * from a Country IE and the Country IE had no information
818 		 * about a band. The IEEE 802.11 spec allows for an AP
819 		 * to send only a subset of the regulatory rules allowed,
820 		 * so an AP in the US that only supports 2.4 GHz may only send
821 		 * a country IE with information for the 2.4 GHz band
822 		 * while 5 GHz is still supported.
823 		 */
824 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
825 		    r == -ERANGE)
826 			return;
827 
828 		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
829 		chan->flags = IEEE80211_CHAN_DISABLED;
830 		return;
831 	}
832 
833 	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
834 
835 	power_rule = &reg_rule->power_rule;
836 	freq_range = &reg_rule->freq_range;
837 
838 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
839 		bw_flags = IEEE80211_CHAN_NO_HT40;
840 
841 	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
842 	    request_wiphy && request_wiphy == wiphy &&
843 	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
844 		/*
845 		 * This gaurantees the driver's requested regulatory domain
846 		 * will always be used as a base for further regulatory
847 		 * settings
848 		 */
849 		chan->flags = chan->orig_flags =
850 			map_regdom_flags(reg_rule->flags) | bw_flags;
851 		chan->max_antenna_gain = chan->orig_mag =
852 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
853 		chan->max_power = chan->orig_mpwr =
854 			(int) MBM_TO_DBM(power_rule->max_eirp);
855 		return;
856 	}
857 
858 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
859 	chan->max_antenna_gain = min(chan->orig_mag,
860 		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
861 	if (chan->orig_mpwr)
862 		chan->max_power = min(chan->orig_mpwr,
863 			(int) MBM_TO_DBM(power_rule->max_eirp));
864 	else
865 		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
866 }
867 
868 static void handle_band(struct wiphy *wiphy,
869 			enum ieee80211_band band,
870 			enum nl80211_reg_initiator initiator)
871 {
872 	unsigned int i;
873 	struct ieee80211_supported_band *sband;
874 
875 	BUG_ON(!wiphy->bands[band]);
876 	sband = wiphy->bands[band];
877 
878 	for (i = 0; i < sband->n_channels; i++)
879 		handle_channel(wiphy, initiator, band, i);
880 }
881 
882 static bool ignore_reg_update(struct wiphy *wiphy,
883 			      enum nl80211_reg_initiator initiator)
884 {
885 	if (!last_request) {
886 		REG_DBG_PRINT("Ignoring regulatory request %s since "
887 			      "last_request is not set\n",
888 			      reg_initiator_name(initiator));
889 		return true;
890 	}
891 
892 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
893 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
894 		REG_DBG_PRINT("Ignoring regulatory request %s "
895 			      "since the driver uses its own custom "
896 			      "regulatory domain ",
897 			      reg_initiator_name(initiator));
898 		return true;
899 	}
900 
901 	/*
902 	 * wiphy->regd will be set once the device has its own
903 	 * desired regulatory domain set
904 	 */
905 	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
906 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
907 	    !is_world_regdom(last_request->alpha2)) {
908 		REG_DBG_PRINT("Ignoring regulatory request %s "
909 			      "since the driver requires its own regulaotry "
910 			      "domain to be set first",
911 			      reg_initiator_name(initiator));
912 		return true;
913 	}
914 
915 	return false;
916 }
917 
918 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
919 {
920 	struct cfg80211_registered_device *rdev;
921 
922 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
923 		wiphy_update_regulatory(&rdev->wiphy, initiator);
924 }
925 
926 static void handle_reg_beacon(struct wiphy *wiphy,
927 			      unsigned int chan_idx,
928 			      struct reg_beacon *reg_beacon)
929 {
930 	struct ieee80211_supported_band *sband;
931 	struct ieee80211_channel *chan;
932 	bool channel_changed = false;
933 	struct ieee80211_channel chan_before;
934 
935 	assert_cfg80211_lock();
936 
937 	sband = wiphy->bands[reg_beacon->chan.band];
938 	chan = &sband->channels[chan_idx];
939 
940 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
941 		return;
942 
943 	if (chan->beacon_found)
944 		return;
945 
946 	chan->beacon_found = true;
947 
948 	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
949 		return;
950 
951 	chan_before.center_freq = chan->center_freq;
952 	chan_before.flags = chan->flags;
953 
954 	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
955 		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
956 		channel_changed = true;
957 	}
958 
959 	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
960 		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
961 		channel_changed = true;
962 	}
963 
964 	if (channel_changed)
965 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
966 }
967 
968 /*
969  * Called when a scan on a wiphy finds a beacon on
970  * new channel
971  */
972 static void wiphy_update_new_beacon(struct wiphy *wiphy,
973 				    struct reg_beacon *reg_beacon)
974 {
975 	unsigned int i;
976 	struct ieee80211_supported_band *sband;
977 
978 	assert_cfg80211_lock();
979 
980 	if (!wiphy->bands[reg_beacon->chan.band])
981 		return;
982 
983 	sband = wiphy->bands[reg_beacon->chan.band];
984 
985 	for (i = 0; i < sband->n_channels; i++)
986 		handle_reg_beacon(wiphy, i, reg_beacon);
987 }
988 
989 /*
990  * Called upon reg changes or a new wiphy is added
991  */
992 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
993 {
994 	unsigned int i;
995 	struct ieee80211_supported_band *sband;
996 	struct reg_beacon *reg_beacon;
997 
998 	assert_cfg80211_lock();
999 
1000 	if (list_empty(&reg_beacon_list))
1001 		return;
1002 
1003 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1004 		if (!wiphy->bands[reg_beacon->chan.band])
1005 			continue;
1006 		sband = wiphy->bands[reg_beacon->chan.band];
1007 		for (i = 0; i < sband->n_channels; i++)
1008 			handle_reg_beacon(wiphy, i, reg_beacon);
1009 	}
1010 }
1011 
1012 static bool reg_is_world_roaming(struct wiphy *wiphy)
1013 {
1014 	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1015 	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1016 		return true;
1017 	if (last_request &&
1018 	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1019 	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1020 		return true;
1021 	return false;
1022 }
1023 
1024 /* Reap the advantages of previously found beacons */
1025 static void reg_process_beacons(struct wiphy *wiphy)
1026 {
1027 	/*
1028 	 * Means we are just firing up cfg80211, so no beacons would
1029 	 * have been processed yet.
1030 	 */
1031 	if (!last_request)
1032 		return;
1033 	if (!reg_is_world_roaming(wiphy))
1034 		return;
1035 	wiphy_update_beacon_reg(wiphy);
1036 }
1037 
1038 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1039 {
1040 	if (!chan)
1041 		return true;
1042 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1043 		return true;
1044 	/* This would happen when regulatory rules disallow HT40 completely */
1045 	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1046 		return true;
1047 	return false;
1048 }
1049 
1050 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1051 					 enum ieee80211_band band,
1052 					 unsigned int chan_idx)
1053 {
1054 	struct ieee80211_supported_band *sband;
1055 	struct ieee80211_channel *channel;
1056 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1057 	unsigned int i;
1058 
1059 	assert_cfg80211_lock();
1060 
1061 	sband = wiphy->bands[band];
1062 	BUG_ON(chan_idx >= sband->n_channels);
1063 	channel = &sband->channels[chan_idx];
1064 
1065 	if (is_ht40_not_allowed(channel)) {
1066 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1067 		return;
1068 	}
1069 
1070 	/*
1071 	 * We need to ensure the extension channels exist to
1072 	 * be able to use HT40- or HT40+, this finds them (or not)
1073 	 */
1074 	for (i = 0; i < sband->n_channels; i++) {
1075 		struct ieee80211_channel *c = &sband->channels[i];
1076 		if (c->center_freq == (channel->center_freq - 20))
1077 			channel_before = c;
1078 		if (c->center_freq == (channel->center_freq + 20))
1079 			channel_after = c;
1080 	}
1081 
1082 	/*
1083 	 * Please note that this assumes target bandwidth is 20 MHz,
1084 	 * if that ever changes we also need to change the below logic
1085 	 * to include that as well.
1086 	 */
1087 	if (is_ht40_not_allowed(channel_before))
1088 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1089 	else
1090 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1091 
1092 	if (is_ht40_not_allowed(channel_after))
1093 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1094 	else
1095 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1096 }
1097 
1098 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1099 				      enum ieee80211_band band)
1100 {
1101 	unsigned int i;
1102 	struct ieee80211_supported_band *sband;
1103 
1104 	BUG_ON(!wiphy->bands[band]);
1105 	sband = wiphy->bands[band];
1106 
1107 	for (i = 0; i < sband->n_channels; i++)
1108 		reg_process_ht_flags_channel(wiphy, band, i);
1109 }
1110 
1111 static void reg_process_ht_flags(struct wiphy *wiphy)
1112 {
1113 	enum ieee80211_band band;
1114 
1115 	if (!wiphy)
1116 		return;
1117 
1118 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1119 		if (wiphy->bands[band])
1120 			reg_process_ht_flags_band(wiphy, band);
1121 	}
1122 
1123 }
1124 
1125 void wiphy_update_regulatory(struct wiphy *wiphy,
1126 			     enum nl80211_reg_initiator initiator)
1127 {
1128 	enum ieee80211_band band;
1129 
1130 	if (ignore_reg_update(wiphy, initiator))
1131 		goto out;
1132 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1133 		if (wiphy->bands[band])
1134 			handle_band(wiphy, band, initiator);
1135 	}
1136 out:
1137 	reg_process_beacons(wiphy);
1138 	reg_process_ht_flags(wiphy);
1139 	if (wiphy->reg_notifier)
1140 		wiphy->reg_notifier(wiphy, last_request);
1141 }
1142 
1143 static void handle_channel_custom(struct wiphy *wiphy,
1144 				  enum ieee80211_band band,
1145 				  unsigned int chan_idx,
1146 				  const struct ieee80211_regdomain *regd)
1147 {
1148 	int r;
1149 	u32 desired_bw_khz = MHZ_TO_KHZ(20);
1150 	u32 bw_flags = 0;
1151 	const struct ieee80211_reg_rule *reg_rule = NULL;
1152 	const struct ieee80211_power_rule *power_rule = NULL;
1153 	const struct ieee80211_freq_range *freq_range = NULL;
1154 	struct ieee80211_supported_band *sband;
1155 	struct ieee80211_channel *chan;
1156 
1157 	assert_reg_lock();
1158 
1159 	sband = wiphy->bands[band];
1160 	BUG_ON(chan_idx >= sband->n_channels);
1161 	chan = &sband->channels[chan_idx];
1162 
1163 	r = freq_reg_info_regd(wiphy,
1164 			       MHZ_TO_KHZ(chan->center_freq),
1165 			       desired_bw_khz,
1166 			       &reg_rule,
1167 			       regd);
1168 
1169 	if (r) {
1170 		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1171 			      "regd has no rule that fits a %d MHz "
1172 			      "wide channel\n",
1173 			      chan->center_freq,
1174 			      KHZ_TO_MHZ(desired_bw_khz));
1175 		chan->flags = IEEE80211_CHAN_DISABLED;
1176 		return;
1177 	}
1178 
1179 	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1180 
1181 	power_rule = &reg_rule->power_rule;
1182 	freq_range = &reg_rule->freq_range;
1183 
1184 	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1185 		bw_flags = IEEE80211_CHAN_NO_HT40;
1186 
1187 	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1188 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1189 	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1190 }
1191 
1192 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1193 			       const struct ieee80211_regdomain *regd)
1194 {
1195 	unsigned int i;
1196 	struct ieee80211_supported_band *sband;
1197 
1198 	BUG_ON(!wiphy->bands[band]);
1199 	sband = wiphy->bands[band];
1200 
1201 	for (i = 0; i < sband->n_channels; i++)
1202 		handle_channel_custom(wiphy, band, i, regd);
1203 }
1204 
1205 /* Used by drivers prior to wiphy registration */
1206 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1207 				   const struct ieee80211_regdomain *regd)
1208 {
1209 	enum ieee80211_band band;
1210 	unsigned int bands_set = 0;
1211 
1212 	mutex_lock(&reg_mutex);
1213 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1214 		if (!wiphy->bands[band])
1215 			continue;
1216 		handle_band_custom(wiphy, band, regd);
1217 		bands_set++;
1218 	}
1219 	mutex_unlock(&reg_mutex);
1220 
1221 	/*
1222 	 * no point in calling this if it won't have any effect
1223 	 * on your device's supportd bands.
1224 	 */
1225 	WARN_ON(!bands_set);
1226 }
1227 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1228 
1229 /*
1230  * Return value which can be used by ignore_request() to indicate
1231  * it has been determined we should intersect two regulatory domains
1232  */
1233 #define REG_INTERSECT	1
1234 
1235 /* This has the logic which determines when a new request
1236  * should be ignored. */
1237 static int ignore_request(struct wiphy *wiphy,
1238 			  struct regulatory_request *pending_request)
1239 {
1240 	struct wiphy *last_wiphy = NULL;
1241 
1242 	assert_cfg80211_lock();
1243 
1244 	/* All initial requests are respected */
1245 	if (!last_request)
1246 		return 0;
1247 
1248 	switch (pending_request->initiator) {
1249 	case NL80211_REGDOM_SET_BY_CORE:
1250 		return 0;
1251 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1252 
1253 		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1254 
1255 		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1256 			return -EINVAL;
1257 		if (last_request->initiator ==
1258 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1259 			if (last_wiphy != wiphy) {
1260 				/*
1261 				 * Two cards with two APs claiming different
1262 				 * Country IE alpha2s. We could
1263 				 * intersect them, but that seems unlikely
1264 				 * to be correct. Reject second one for now.
1265 				 */
1266 				if (regdom_changes(pending_request->alpha2))
1267 					return -EOPNOTSUPP;
1268 				return -EALREADY;
1269 			}
1270 			/*
1271 			 * Two consecutive Country IE hints on the same wiphy.
1272 			 * This should be picked up early by the driver/stack
1273 			 */
1274 			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1275 				return 0;
1276 			return -EALREADY;
1277 		}
1278 		return 0;
1279 	case NL80211_REGDOM_SET_BY_DRIVER:
1280 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1281 			if (regdom_changes(pending_request->alpha2))
1282 				return 0;
1283 			return -EALREADY;
1284 		}
1285 
1286 		/*
1287 		 * This would happen if you unplug and plug your card
1288 		 * back in or if you add a new device for which the previously
1289 		 * loaded card also agrees on the regulatory domain.
1290 		 */
1291 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1292 		    !regdom_changes(pending_request->alpha2))
1293 			return -EALREADY;
1294 
1295 		return REG_INTERSECT;
1296 	case NL80211_REGDOM_SET_BY_USER:
1297 		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1298 			return REG_INTERSECT;
1299 		/*
1300 		 * If the user knows better the user should set the regdom
1301 		 * to their country before the IE is picked up
1302 		 */
1303 		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1304 			  last_request->intersect)
1305 			return -EOPNOTSUPP;
1306 		/*
1307 		 * Process user requests only after previous user/driver/core
1308 		 * requests have been processed
1309 		 */
1310 		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1311 		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1312 		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1313 			if (regdom_changes(last_request->alpha2))
1314 				return -EAGAIN;
1315 		}
1316 
1317 		if (!regdom_changes(pending_request->alpha2))
1318 			return -EALREADY;
1319 
1320 		return 0;
1321 	}
1322 
1323 	return -EINVAL;
1324 }
1325 
1326 static void reg_set_request_processed(void)
1327 {
1328 	bool need_more_processing = false;
1329 
1330 	last_request->processed = true;
1331 
1332 	spin_lock(&reg_requests_lock);
1333 	if (!list_empty(&reg_requests_list))
1334 		need_more_processing = true;
1335 	spin_unlock(&reg_requests_lock);
1336 
1337 	if (need_more_processing)
1338 		schedule_work(&reg_work);
1339 }
1340 
1341 /**
1342  * __regulatory_hint - hint to the wireless core a regulatory domain
1343  * @wiphy: if the hint comes from country information from an AP, this
1344  *	is required to be set to the wiphy that received the information
1345  * @pending_request: the regulatory request currently being processed
1346  *
1347  * The Wireless subsystem can use this function to hint to the wireless core
1348  * what it believes should be the current regulatory domain.
1349  *
1350  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1351  * already been set or other standard error codes.
1352  *
1353  * Caller must hold &cfg80211_mutex and &reg_mutex
1354  */
1355 static int __regulatory_hint(struct wiphy *wiphy,
1356 			     struct regulatory_request *pending_request)
1357 {
1358 	bool intersect = false;
1359 	int r = 0;
1360 
1361 	assert_cfg80211_lock();
1362 
1363 	r = ignore_request(wiphy, pending_request);
1364 
1365 	if (r == REG_INTERSECT) {
1366 		if (pending_request->initiator ==
1367 		    NL80211_REGDOM_SET_BY_DRIVER) {
1368 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1369 			if (r) {
1370 				kfree(pending_request);
1371 				return r;
1372 			}
1373 		}
1374 		intersect = true;
1375 	} else if (r) {
1376 		/*
1377 		 * If the regulatory domain being requested by the
1378 		 * driver has already been set just copy it to the
1379 		 * wiphy
1380 		 */
1381 		if (r == -EALREADY &&
1382 		    pending_request->initiator ==
1383 		    NL80211_REGDOM_SET_BY_DRIVER) {
1384 			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1385 			if (r) {
1386 				kfree(pending_request);
1387 				return r;
1388 			}
1389 			r = -EALREADY;
1390 			goto new_request;
1391 		}
1392 		kfree(pending_request);
1393 		return r;
1394 	}
1395 
1396 new_request:
1397 	kfree(last_request);
1398 
1399 	last_request = pending_request;
1400 	last_request->intersect = intersect;
1401 
1402 	pending_request = NULL;
1403 
1404 	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1405 		user_alpha2[0] = last_request->alpha2[0];
1406 		user_alpha2[1] = last_request->alpha2[1];
1407 	}
1408 
1409 	/* When r == REG_INTERSECT we do need to call CRDA */
1410 	if (r < 0) {
1411 		/*
1412 		 * Since CRDA will not be called in this case as we already
1413 		 * have applied the requested regulatory domain before we just
1414 		 * inform userspace we have processed the request
1415 		 */
1416 		if (r == -EALREADY) {
1417 			nl80211_send_reg_change_event(last_request);
1418 			reg_set_request_processed();
1419 		}
1420 		return r;
1421 	}
1422 
1423 	return call_crda(last_request->alpha2);
1424 }
1425 
1426 /* This processes *all* regulatory hints */
1427 static void reg_process_hint(struct regulatory_request *reg_request)
1428 {
1429 	int r = 0;
1430 	struct wiphy *wiphy = NULL;
1431 	enum nl80211_reg_initiator initiator = reg_request->initiator;
1432 
1433 	BUG_ON(!reg_request->alpha2);
1434 
1435 	if (wiphy_idx_valid(reg_request->wiphy_idx))
1436 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1437 
1438 	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1439 	    !wiphy) {
1440 		kfree(reg_request);
1441 		return;
1442 	}
1443 
1444 	r = __regulatory_hint(wiphy, reg_request);
1445 	/* This is required so that the orig_* parameters are saved */
1446 	if (r == -EALREADY && wiphy &&
1447 	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1448 		wiphy_update_regulatory(wiphy, initiator);
1449 }
1450 
1451 /*
1452  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1453  * Regulatory hints come on a first come first serve basis and we
1454  * must process each one atomically.
1455  */
1456 static void reg_process_pending_hints(void)
1457 {
1458 	struct regulatory_request *reg_request;
1459 
1460 	mutex_lock(&cfg80211_mutex);
1461 	mutex_lock(&reg_mutex);
1462 
1463 	/* When last_request->processed becomes true this will be rescheduled */
1464 	if (last_request && !last_request->processed) {
1465 		REG_DBG_PRINT("Pending regulatory request, waiting "
1466 			      "for it to be processed...");
1467 		goto out;
1468 	}
1469 
1470 	spin_lock(&reg_requests_lock);
1471 
1472 	if (list_empty(&reg_requests_list)) {
1473 		spin_unlock(&reg_requests_lock);
1474 		goto out;
1475 	}
1476 
1477 	reg_request = list_first_entry(&reg_requests_list,
1478 				       struct regulatory_request,
1479 				       list);
1480 	list_del_init(&reg_request->list);
1481 
1482 	spin_unlock(&reg_requests_lock);
1483 
1484 	reg_process_hint(reg_request);
1485 
1486 out:
1487 	mutex_unlock(&reg_mutex);
1488 	mutex_unlock(&cfg80211_mutex);
1489 }
1490 
1491 /* Processes beacon hints -- this has nothing to do with country IEs */
1492 static void reg_process_pending_beacon_hints(void)
1493 {
1494 	struct cfg80211_registered_device *rdev;
1495 	struct reg_beacon *pending_beacon, *tmp;
1496 
1497 	/*
1498 	 * No need to hold the reg_mutex here as we just touch wiphys
1499 	 * and do not read or access regulatory variables.
1500 	 */
1501 	mutex_lock(&cfg80211_mutex);
1502 
1503 	/* This goes through the _pending_ beacon list */
1504 	spin_lock_bh(&reg_pending_beacons_lock);
1505 
1506 	if (list_empty(&reg_pending_beacons)) {
1507 		spin_unlock_bh(&reg_pending_beacons_lock);
1508 		goto out;
1509 	}
1510 
1511 	list_for_each_entry_safe(pending_beacon, tmp,
1512 				 &reg_pending_beacons, list) {
1513 
1514 		list_del_init(&pending_beacon->list);
1515 
1516 		/* Applies the beacon hint to current wiphys */
1517 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1518 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1519 
1520 		/* Remembers the beacon hint for new wiphys or reg changes */
1521 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
1522 	}
1523 
1524 	spin_unlock_bh(&reg_pending_beacons_lock);
1525 out:
1526 	mutex_unlock(&cfg80211_mutex);
1527 }
1528 
1529 static void reg_todo(struct work_struct *work)
1530 {
1531 	reg_process_pending_hints();
1532 	reg_process_pending_beacon_hints();
1533 }
1534 
1535 static void queue_regulatory_request(struct regulatory_request *request)
1536 {
1537 	if (isalpha(request->alpha2[0]))
1538 		request->alpha2[0] = toupper(request->alpha2[0]);
1539 	if (isalpha(request->alpha2[1]))
1540 		request->alpha2[1] = toupper(request->alpha2[1]);
1541 
1542 	spin_lock(&reg_requests_lock);
1543 	list_add_tail(&request->list, &reg_requests_list);
1544 	spin_unlock(&reg_requests_lock);
1545 
1546 	schedule_work(&reg_work);
1547 }
1548 
1549 /*
1550  * Core regulatory hint -- happens during cfg80211_init()
1551  * and when we restore regulatory settings.
1552  */
1553 static int regulatory_hint_core(const char *alpha2)
1554 {
1555 	struct regulatory_request *request;
1556 
1557 	kfree(last_request);
1558 	last_request = NULL;
1559 
1560 	request = kzalloc(sizeof(struct regulatory_request),
1561 			  GFP_KERNEL);
1562 	if (!request)
1563 		return -ENOMEM;
1564 
1565 	request->alpha2[0] = alpha2[0];
1566 	request->alpha2[1] = alpha2[1];
1567 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1568 
1569 	queue_regulatory_request(request);
1570 
1571 	return 0;
1572 }
1573 
1574 /* User hints */
1575 int regulatory_hint_user(const char *alpha2)
1576 {
1577 	struct regulatory_request *request;
1578 
1579 	BUG_ON(!alpha2);
1580 
1581 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1582 	if (!request)
1583 		return -ENOMEM;
1584 
1585 	request->wiphy_idx = WIPHY_IDX_STALE;
1586 	request->alpha2[0] = alpha2[0];
1587 	request->alpha2[1] = alpha2[1];
1588 	request->initiator = NL80211_REGDOM_SET_BY_USER;
1589 
1590 	queue_regulatory_request(request);
1591 
1592 	return 0;
1593 }
1594 
1595 /* Driver hints */
1596 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1597 {
1598 	struct regulatory_request *request;
1599 
1600 	BUG_ON(!alpha2);
1601 	BUG_ON(!wiphy);
1602 
1603 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1604 	if (!request)
1605 		return -ENOMEM;
1606 
1607 	request->wiphy_idx = get_wiphy_idx(wiphy);
1608 
1609 	/* Must have registered wiphy first */
1610 	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1611 
1612 	request->alpha2[0] = alpha2[0];
1613 	request->alpha2[1] = alpha2[1];
1614 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1615 
1616 	queue_regulatory_request(request);
1617 
1618 	return 0;
1619 }
1620 EXPORT_SYMBOL(regulatory_hint);
1621 
1622 /*
1623  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1624  * therefore cannot iterate over the rdev list here.
1625  */
1626 void regulatory_hint_11d(struct wiphy *wiphy,
1627 			 enum ieee80211_band band,
1628 			 u8 *country_ie,
1629 			 u8 country_ie_len)
1630 {
1631 	char alpha2[2];
1632 	enum environment_cap env = ENVIRON_ANY;
1633 	struct regulatory_request *request;
1634 
1635 	mutex_lock(&reg_mutex);
1636 
1637 	if (unlikely(!last_request))
1638 		goto out;
1639 
1640 	/* IE len must be evenly divisible by 2 */
1641 	if (country_ie_len & 0x01)
1642 		goto out;
1643 
1644 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1645 		goto out;
1646 
1647 	alpha2[0] = country_ie[0];
1648 	alpha2[1] = country_ie[1];
1649 
1650 	if (country_ie[2] == 'I')
1651 		env = ENVIRON_INDOOR;
1652 	else if (country_ie[2] == 'O')
1653 		env = ENVIRON_OUTDOOR;
1654 
1655 	/*
1656 	 * We will run this only upon a successful connection on cfg80211.
1657 	 * We leave conflict resolution to the workqueue, where can hold
1658 	 * cfg80211_mutex.
1659 	 */
1660 	if (likely(last_request->initiator ==
1661 	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1662 	    wiphy_idx_valid(last_request->wiphy_idx)))
1663 		goto out;
1664 
1665 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1666 	if (!request)
1667 		goto out;
1668 
1669 	request->wiphy_idx = get_wiphy_idx(wiphy);
1670 	request->alpha2[0] = alpha2[0];
1671 	request->alpha2[1] = alpha2[1];
1672 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1673 	request->country_ie_env = env;
1674 
1675 	mutex_unlock(&reg_mutex);
1676 
1677 	queue_regulatory_request(request);
1678 
1679 	return;
1680 
1681 out:
1682 	mutex_unlock(&reg_mutex);
1683 }
1684 
1685 static void restore_alpha2(char *alpha2, bool reset_user)
1686 {
1687 	/* indicates there is no alpha2 to consider for restoration */
1688 	alpha2[0] = '9';
1689 	alpha2[1] = '7';
1690 
1691 	/* The user setting has precedence over the module parameter */
1692 	if (is_user_regdom_saved()) {
1693 		/* Unless we're asked to ignore it and reset it */
1694 		if (reset_user) {
1695 			REG_DBG_PRINT("Restoring regulatory settings "
1696 			       "including user preference\n");
1697 			user_alpha2[0] = '9';
1698 			user_alpha2[1] = '7';
1699 
1700 			/*
1701 			 * If we're ignoring user settings, we still need to
1702 			 * check the module parameter to ensure we put things
1703 			 * back as they were for a full restore.
1704 			 */
1705 			if (!is_world_regdom(ieee80211_regdom)) {
1706 				REG_DBG_PRINT("Keeping preference on "
1707 				       "module parameter ieee80211_regdom: %c%c\n",
1708 				       ieee80211_regdom[0],
1709 				       ieee80211_regdom[1]);
1710 				alpha2[0] = ieee80211_regdom[0];
1711 				alpha2[1] = ieee80211_regdom[1];
1712 			}
1713 		} else {
1714 			REG_DBG_PRINT("Restoring regulatory settings "
1715 			       "while preserving user preference for: %c%c\n",
1716 			       user_alpha2[0],
1717 			       user_alpha2[1]);
1718 			alpha2[0] = user_alpha2[0];
1719 			alpha2[1] = user_alpha2[1];
1720 		}
1721 	} else if (!is_world_regdom(ieee80211_regdom)) {
1722 		REG_DBG_PRINT("Keeping preference on "
1723 		       "module parameter ieee80211_regdom: %c%c\n",
1724 		       ieee80211_regdom[0],
1725 		       ieee80211_regdom[1]);
1726 		alpha2[0] = ieee80211_regdom[0];
1727 		alpha2[1] = ieee80211_regdom[1];
1728 	} else
1729 		REG_DBG_PRINT("Restoring regulatory settings\n");
1730 }
1731 
1732 /*
1733  * Restoring regulatory settings involves ingoring any
1734  * possibly stale country IE information and user regulatory
1735  * settings if so desired, this includes any beacon hints
1736  * learned as we could have traveled outside to another country
1737  * after disconnection. To restore regulatory settings we do
1738  * exactly what we did at bootup:
1739  *
1740  *   - send a core regulatory hint
1741  *   - send a user regulatory hint if applicable
1742  *
1743  * Device drivers that send a regulatory hint for a specific country
1744  * keep their own regulatory domain on wiphy->regd so that does does
1745  * not need to be remembered.
1746  */
1747 static void restore_regulatory_settings(bool reset_user)
1748 {
1749 	char alpha2[2];
1750 	struct reg_beacon *reg_beacon, *btmp;
1751 
1752 	mutex_lock(&cfg80211_mutex);
1753 	mutex_lock(&reg_mutex);
1754 
1755 	reset_regdomains();
1756 	restore_alpha2(alpha2, reset_user);
1757 
1758 	/* Clear beacon hints */
1759 	spin_lock_bh(&reg_pending_beacons_lock);
1760 	if (!list_empty(&reg_pending_beacons)) {
1761 		list_for_each_entry_safe(reg_beacon, btmp,
1762 					 &reg_pending_beacons, list) {
1763 			list_del(&reg_beacon->list);
1764 			kfree(reg_beacon);
1765 		}
1766 	}
1767 	spin_unlock_bh(&reg_pending_beacons_lock);
1768 
1769 	if (!list_empty(&reg_beacon_list)) {
1770 		list_for_each_entry_safe(reg_beacon, btmp,
1771 					 &reg_beacon_list, list) {
1772 			list_del(&reg_beacon->list);
1773 			kfree(reg_beacon);
1774 		}
1775 	}
1776 
1777 	/* First restore to the basic regulatory settings */
1778 	cfg80211_regdomain = cfg80211_world_regdom;
1779 
1780 	mutex_unlock(&reg_mutex);
1781 	mutex_unlock(&cfg80211_mutex);
1782 
1783 	regulatory_hint_core(cfg80211_regdomain->alpha2);
1784 
1785 	/*
1786 	 * This restores the ieee80211_regdom module parameter
1787 	 * preference or the last user requested regulatory
1788 	 * settings, user regulatory settings takes precedence.
1789 	 */
1790 	if (is_an_alpha2(alpha2))
1791 		regulatory_hint_user(user_alpha2);
1792 }
1793 
1794 
1795 void regulatory_hint_disconnect(void)
1796 {
1797 	REG_DBG_PRINT("All devices are disconnected, going to "
1798 		      "restore regulatory settings\n");
1799 	restore_regulatory_settings(false);
1800 }
1801 
1802 static bool freq_is_chan_12_13_14(u16 freq)
1803 {
1804 	if (freq == ieee80211_channel_to_frequency(12) ||
1805 	    freq == ieee80211_channel_to_frequency(13) ||
1806 	    freq == ieee80211_channel_to_frequency(14))
1807 		return true;
1808 	return false;
1809 }
1810 
1811 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1812 				 struct ieee80211_channel *beacon_chan,
1813 				 gfp_t gfp)
1814 {
1815 	struct reg_beacon *reg_beacon;
1816 
1817 	if (likely((beacon_chan->beacon_found ||
1818 	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1819 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1820 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1821 		return 0;
1822 
1823 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1824 	if (!reg_beacon)
1825 		return -ENOMEM;
1826 
1827 	REG_DBG_PRINT("Found new beacon on "
1828 		      "frequency: %d MHz (Ch %d) on %s\n",
1829 		      beacon_chan->center_freq,
1830 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
1831 		      wiphy_name(wiphy));
1832 
1833 	memcpy(&reg_beacon->chan, beacon_chan,
1834 		sizeof(struct ieee80211_channel));
1835 
1836 
1837 	/*
1838 	 * Since we can be called from BH or and non-BH context
1839 	 * we must use spin_lock_bh()
1840 	 */
1841 	spin_lock_bh(&reg_pending_beacons_lock);
1842 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1843 	spin_unlock_bh(&reg_pending_beacons_lock);
1844 
1845 	schedule_work(&reg_work);
1846 
1847 	return 0;
1848 }
1849 
1850 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1851 {
1852 	unsigned int i;
1853 	const struct ieee80211_reg_rule *reg_rule = NULL;
1854 	const struct ieee80211_freq_range *freq_range = NULL;
1855 	const struct ieee80211_power_rule *power_rule = NULL;
1856 
1857 	pr_info("    (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1858 
1859 	for (i = 0; i < rd->n_reg_rules; i++) {
1860 		reg_rule = &rd->reg_rules[i];
1861 		freq_range = &reg_rule->freq_range;
1862 		power_rule = &reg_rule->power_rule;
1863 
1864 		/*
1865 		 * There may not be documentation for max antenna gain
1866 		 * in certain regions
1867 		 */
1868 		if (power_rule->max_antenna_gain)
1869 			pr_info("    (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1870 				freq_range->start_freq_khz,
1871 				freq_range->end_freq_khz,
1872 				freq_range->max_bandwidth_khz,
1873 				power_rule->max_antenna_gain,
1874 				power_rule->max_eirp);
1875 		else
1876 			pr_info("    (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1877 				freq_range->start_freq_khz,
1878 				freq_range->end_freq_khz,
1879 				freq_range->max_bandwidth_khz,
1880 				power_rule->max_eirp);
1881 	}
1882 }
1883 
1884 static void print_regdomain(const struct ieee80211_regdomain *rd)
1885 {
1886 
1887 	if (is_intersected_alpha2(rd->alpha2)) {
1888 
1889 		if (last_request->initiator ==
1890 		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1891 			struct cfg80211_registered_device *rdev;
1892 			rdev = cfg80211_rdev_by_wiphy_idx(
1893 				last_request->wiphy_idx);
1894 			if (rdev) {
1895 				pr_info("Current regulatory domain updated by AP to: %c%c\n",
1896 					rdev->country_ie_alpha2[0],
1897 					rdev->country_ie_alpha2[1]);
1898 			} else
1899 				pr_info("Current regulatory domain intersected:\n");
1900 		} else
1901 			pr_info("Current regulatory domain intersected:\n");
1902 	} else if (is_world_regdom(rd->alpha2))
1903 		pr_info("World regulatory domain updated:\n");
1904 	else {
1905 		if (is_unknown_alpha2(rd->alpha2))
1906 			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1907 		else
1908 			pr_info("Regulatory domain changed to country: %c%c\n",
1909 				rd->alpha2[0], rd->alpha2[1]);
1910 	}
1911 	print_rd_rules(rd);
1912 }
1913 
1914 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1915 {
1916 	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1917 	print_rd_rules(rd);
1918 }
1919 
1920 /* Takes ownership of rd only if it doesn't fail */
1921 static int __set_regdom(const struct ieee80211_regdomain *rd)
1922 {
1923 	const struct ieee80211_regdomain *intersected_rd = NULL;
1924 	struct cfg80211_registered_device *rdev = NULL;
1925 	struct wiphy *request_wiphy;
1926 	/* Some basic sanity checks first */
1927 
1928 	if (is_world_regdom(rd->alpha2)) {
1929 		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1930 			return -EINVAL;
1931 		update_world_regdomain(rd);
1932 		return 0;
1933 	}
1934 
1935 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1936 			!is_unknown_alpha2(rd->alpha2))
1937 		return -EINVAL;
1938 
1939 	if (!last_request)
1940 		return -EINVAL;
1941 
1942 	/*
1943 	 * Lets only bother proceeding on the same alpha2 if the current
1944 	 * rd is non static (it means CRDA was present and was used last)
1945 	 * and the pending request came in from a country IE
1946 	 */
1947 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1948 		/*
1949 		 * If someone else asked us to change the rd lets only bother
1950 		 * checking if the alpha2 changes if CRDA was already called
1951 		 */
1952 		if (!regdom_changes(rd->alpha2))
1953 			return -EINVAL;
1954 	}
1955 
1956 	/*
1957 	 * Now lets set the regulatory domain, update all driver channels
1958 	 * and finally inform them of what we have done, in case they want
1959 	 * to review or adjust their own settings based on their own
1960 	 * internal EEPROM data
1961 	 */
1962 
1963 	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1964 		return -EINVAL;
1965 
1966 	if (!is_valid_rd(rd)) {
1967 		pr_err("Invalid regulatory domain detected:\n");
1968 		print_regdomain_info(rd);
1969 		return -EINVAL;
1970 	}
1971 
1972 	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1973 
1974 	if (!last_request->intersect) {
1975 		int r;
1976 
1977 		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1978 			reset_regdomains();
1979 			cfg80211_regdomain = rd;
1980 			return 0;
1981 		}
1982 
1983 		/*
1984 		 * For a driver hint, lets copy the regulatory domain the
1985 		 * driver wanted to the wiphy to deal with conflicts
1986 		 */
1987 
1988 		/*
1989 		 * Userspace could have sent two replies with only
1990 		 * one kernel request.
1991 		 */
1992 		if (request_wiphy->regd)
1993 			return -EALREADY;
1994 
1995 		r = reg_copy_regd(&request_wiphy->regd, rd);
1996 		if (r)
1997 			return r;
1998 
1999 		reset_regdomains();
2000 		cfg80211_regdomain = rd;
2001 		return 0;
2002 	}
2003 
2004 	/* Intersection requires a bit more work */
2005 
2006 	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2007 
2008 		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2009 		if (!intersected_rd)
2010 			return -EINVAL;
2011 
2012 		/*
2013 		 * We can trash what CRDA provided now.
2014 		 * However if a driver requested this specific regulatory
2015 		 * domain we keep it for its private use
2016 		 */
2017 		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2018 			request_wiphy->regd = rd;
2019 		else
2020 			kfree(rd);
2021 
2022 		rd = NULL;
2023 
2024 		reset_regdomains();
2025 		cfg80211_regdomain = intersected_rd;
2026 
2027 		return 0;
2028 	}
2029 
2030 	if (!intersected_rd)
2031 		return -EINVAL;
2032 
2033 	rdev = wiphy_to_dev(request_wiphy);
2034 
2035 	rdev->country_ie_alpha2[0] = rd->alpha2[0];
2036 	rdev->country_ie_alpha2[1] = rd->alpha2[1];
2037 	rdev->env = last_request->country_ie_env;
2038 
2039 	BUG_ON(intersected_rd == rd);
2040 
2041 	kfree(rd);
2042 	rd = NULL;
2043 
2044 	reset_regdomains();
2045 	cfg80211_regdomain = intersected_rd;
2046 
2047 	return 0;
2048 }
2049 
2050 
2051 /*
2052  * Use this call to set the current regulatory domain. Conflicts with
2053  * multiple drivers can be ironed out later. Caller must've already
2054  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2055  */
2056 int set_regdom(const struct ieee80211_regdomain *rd)
2057 {
2058 	int r;
2059 
2060 	assert_cfg80211_lock();
2061 
2062 	mutex_lock(&reg_mutex);
2063 
2064 	/* Note that this doesn't update the wiphys, this is done below */
2065 	r = __set_regdom(rd);
2066 	if (r) {
2067 		kfree(rd);
2068 		mutex_unlock(&reg_mutex);
2069 		return r;
2070 	}
2071 
2072 	/* This would make this whole thing pointless */
2073 	if (!last_request->intersect)
2074 		BUG_ON(rd != cfg80211_regdomain);
2075 
2076 	/* update all wiphys now with the new established regulatory domain */
2077 	update_all_wiphy_regulatory(last_request->initiator);
2078 
2079 	print_regdomain(cfg80211_regdomain);
2080 
2081 	nl80211_send_reg_change_event(last_request);
2082 
2083 	reg_set_request_processed();
2084 
2085 	mutex_unlock(&reg_mutex);
2086 
2087 	return r;
2088 }
2089 
2090 /* Caller must hold cfg80211_mutex */
2091 void reg_device_remove(struct wiphy *wiphy)
2092 {
2093 	struct wiphy *request_wiphy = NULL;
2094 
2095 	assert_cfg80211_lock();
2096 
2097 	mutex_lock(&reg_mutex);
2098 
2099 	kfree(wiphy->regd);
2100 
2101 	if (last_request)
2102 		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2103 
2104 	if (!request_wiphy || request_wiphy != wiphy)
2105 		goto out;
2106 
2107 	last_request->wiphy_idx = WIPHY_IDX_STALE;
2108 	last_request->country_ie_env = ENVIRON_ANY;
2109 out:
2110 	mutex_unlock(&reg_mutex);
2111 }
2112 
2113 int __init regulatory_init(void)
2114 {
2115 	int err = 0;
2116 
2117 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2118 	if (IS_ERR(reg_pdev))
2119 		return PTR_ERR(reg_pdev);
2120 
2121 	spin_lock_init(&reg_requests_lock);
2122 	spin_lock_init(&reg_pending_beacons_lock);
2123 
2124 	cfg80211_regdomain = cfg80211_world_regdom;
2125 
2126 	user_alpha2[0] = '9';
2127 	user_alpha2[1] = '7';
2128 
2129 	/* We always try to get an update for the static regdomain */
2130 	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2131 	if (err) {
2132 		if (err == -ENOMEM)
2133 			return err;
2134 		/*
2135 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
2136 		 * memory which is handled and propagated appropriately above
2137 		 * but it can also fail during a netlink_broadcast() or during
2138 		 * early boot for call_usermodehelper(). For now treat these
2139 		 * errors as non-fatal.
2140 		 */
2141 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2142 #ifdef CONFIG_CFG80211_REG_DEBUG
2143 		/* We want to find out exactly why when debugging */
2144 		WARN_ON(err);
2145 #endif
2146 	}
2147 
2148 	/*
2149 	 * Finally, if the user set the module parameter treat it
2150 	 * as a user hint.
2151 	 */
2152 	if (!is_world_regdom(ieee80211_regdom))
2153 		regulatory_hint_user(ieee80211_regdom);
2154 
2155 	return 0;
2156 }
2157 
2158 void /* __init_or_exit */ regulatory_exit(void)
2159 {
2160 	struct regulatory_request *reg_request, *tmp;
2161 	struct reg_beacon *reg_beacon, *btmp;
2162 
2163 	cancel_work_sync(&reg_work);
2164 
2165 	mutex_lock(&cfg80211_mutex);
2166 	mutex_lock(&reg_mutex);
2167 
2168 	reset_regdomains();
2169 
2170 	kfree(last_request);
2171 
2172 	platform_device_unregister(reg_pdev);
2173 
2174 	spin_lock_bh(&reg_pending_beacons_lock);
2175 	if (!list_empty(&reg_pending_beacons)) {
2176 		list_for_each_entry_safe(reg_beacon, btmp,
2177 					 &reg_pending_beacons, list) {
2178 			list_del(&reg_beacon->list);
2179 			kfree(reg_beacon);
2180 		}
2181 	}
2182 	spin_unlock_bh(&reg_pending_beacons_lock);
2183 
2184 	if (!list_empty(&reg_beacon_list)) {
2185 		list_for_each_entry_safe(reg_beacon, btmp,
2186 					 &reg_beacon_list, list) {
2187 			list_del(&reg_beacon->list);
2188 			kfree(reg_beacon);
2189 		}
2190 	}
2191 
2192 	spin_lock(&reg_requests_lock);
2193 	if (!list_empty(&reg_requests_list)) {
2194 		list_for_each_entry_safe(reg_request, tmp,
2195 					 &reg_requests_list, list) {
2196 			list_del(&reg_request->list);
2197 			kfree(reg_request);
2198 		}
2199 	}
2200 	spin_unlock(&reg_requests_lock);
2201 
2202 	mutex_unlock(&reg_mutex);
2203 	mutex_unlock(&cfg80211_mutex);
2204 }
2205