1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 /** 13 * DOC: Wireless regulatory infrastructure 14 * 15 * The usual implementation is for a driver to read a device EEPROM to 16 * determine which regulatory domain it should be operating under, then 17 * looking up the allowable channels in a driver-local table and finally 18 * registering those channels in the wiphy structure. 19 * 20 * Another set of compliance enforcement is for drivers to use their 21 * own compliance limits which can be stored on the EEPROM. The host 22 * driver or firmware may ensure these are used. 23 * 24 * In addition to all this we provide an extra layer of regulatory 25 * conformance. For drivers which do not have any regulatory 26 * information CRDA provides the complete regulatory solution. 27 * For others it provides a community effort on further restrictions 28 * to enhance compliance. 29 * 30 * Note: When number of rules --> infinity we will not be able to 31 * index on alpha2 any more, instead we'll probably have to 32 * rely on some SHA1 checksum of the regdomain for example. 33 * 34 */ 35 36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 37 38 #include <linux/kernel.h> 39 #include <linux/slab.h> 40 #include <linux/list.h> 41 #include <linux/random.h> 42 #include <linux/ctype.h> 43 #include <linux/nl80211.h> 44 #include <linux/platform_device.h> 45 #include <net/cfg80211.h> 46 #include "core.h" 47 #include "reg.h" 48 #include "regdb.h" 49 #include "nl80211.h" 50 51 #ifdef CONFIG_CFG80211_REG_DEBUG 52 #define REG_DBG_PRINT(format, args...) \ 53 do { \ 54 printk(KERN_DEBUG pr_fmt(format), ##args); \ 55 } while (0) 56 #else 57 #define REG_DBG_PRINT(args...) 58 #endif 59 60 /* Receipt of information from last regulatory request */ 61 static struct regulatory_request *last_request; 62 63 /* To trigger userspace events */ 64 static struct platform_device *reg_pdev; 65 66 /* 67 * Central wireless core regulatory domains, we only need two, 68 * the current one and a world regulatory domain in case we have no 69 * information to give us an alpha2 70 */ 71 const struct ieee80211_regdomain *cfg80211_regdomain; 72 73 /* 74 * Protects static reg.c components: 75 * - cfg80211_world_regdom 76 * - cfg80211_regdom 77 * - last_request 78 */ 79 static DEFINE_MUTEX(reg_mutex); 80 81 static inline void assert_reg_lock(void) 82 { 83 lockdep_assert_held(®_mutex); 84 } 85 86 /* Used to queue up regulatory hints */ 87 static LIST_HEAD(reg_requests_list); 88 static spinlock_t reg_requests_lock; 89 90 /* Used to queue up beacon hints for review */ 91 static LIST_HEAD(reg_pending_beacons); 92 static spinlock_t reg_pending_beacons_lock; 93 94 /* Used to keep track of processed beacon hints */ 95 static LIST_HEAD(reg_beacon_list); 96 97 struct reg_beacon { 98 struct list_head list; 99 struct ieee80211_channel chan; 100 }; 101 102 static void reg_todo(struct work_struct *work); 103 static DECLARE_WORK(reg_work, reg_todo); 104 105 /* We keep a static world regulatory domain in case of the absence of CRDA */ 106 static const struct ieee80211_regdomain world_regdom = { 107 .n_reg_rules = 5, 108 .alpha2 = "00", 109 .reg_rules = { 110 /* IEEE 802.11b/g, channels 1..11 */ 111 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 112 /* IEEE 802.11b/g, channels 12..13. No HT40 113 * channel fits here. */ 114 REG_RULE(2467-10, 2472+10, 20, 6, 20, 115 NL80211_RRF_PASSIVE_SCAN | 116 NL80211_RRF_NO_IBSS), 117 /* IEEE 802.11 channel 14 - Only JP enables 118 * this and for 802.11b only */ 119 REG_RULE(2484-10, 2484+10, 20, 6, 20, 120 NL80211_RRF_PASSIVE_SCAN | 121 NL80211_RRF_NO_IBSS | 122 NL80211_RRF_NO_OFDM), 123 /* IEEE 802.11a, channel 36..48 */ 124 REG_RULE(5180-10, 5240+10, 40, 6, 20, 125 NL80211_RRF_PASSIVE_SCAN | 126 NL80211_RRF_NO_IBSS), 127 128 /* NB: 5260 MHz - 5700 MHz requies DFS */ 129 130 /* IEEE 802.11a, channel 149..165 */ 131 REG_RULE(5745-10, 5825+10, 40, 6, 20, 132 NL80211_RRF_PASSIVE_SCAN | 133 NL80211_RRF_NO_IBSS), 134 } 135 }; 136 137 static const struct ieee80211_regdomain *cfg80211_world_regdom = 138 &world_regdom; 139 140 static char *ieee80211_regdom = "00"; 141 static char user_alpha2[2]; 142 143 module_param(ieee80211_regdom, charp, 0444); 144 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 145 146 static void reset_regdomains(void) 147 { 148 /* avoid freeing static information or freeing something twice */ 149 if (cfg80211_regdomain == cfg80211_world_regdom) 150 cfg80211_regdomain = NULL; 151 if (cfg80211_world_regdom == &world_regdom) 152 cfg80211_world_regdom = NULL; 153 if (cfg80211_regdomain == &world_regdom) 154 cfg80211_regdomain = NULL; 155 156 kfree(cfg80211_regdomain); 157 kfree(cfg80211_world_regdom); 158 159 cfg80211_world_regdom = &world_regdom; 160 cfg80211_regdomain = NULL; 161 } 162 163 /* 164 * Dynamic world regulatory domain requested by the wireless 165 * core upon initialization 166 */ 167 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 168 { 169 BUG_ON(!last_request); 170 171 reset_regdomains(); 172 173 cfg80211_world_regdom = rd; 174 cfg80211_regdomain = rd; 175 } 176 177 bool is_world_regdom(const char *alpha2) 178 { 179 if (!alpha2) 180 return false; 181 if (alpha2[0] == '0' && alpha2[1] == '0') 182 return true; 183 return false; 184 } 185 186 static bool is_alpha2_set(const char *alpha2) 187 { 188 if (!alpha2) 189 return false; 190 if (alpha2[0] != 0 && alpha2[1] != 0) 191 return true; 192 return false; 193 } 194 195 static bool is_unknown_alpha2(const char *alpha2) 196 { 197 if (!alpha2) 198 return false; 199 /* 200 * Special case where regulatory domain was built by driver 201 * but a specific alpha2 cannot be determined 202 */ 203 if (alpha2[0] == '9' && alpha2[1] == '9') 204 return true; 205 return false; 206 } 207 208 static bool is_intersected_alpha2(const char *alpha2) 209 { 210 if (!alpha2) 211 return false; 212 /* 213 * Special case where regulatory domain is the 214 * result of an intersection between two regulatory domain 215 * structures 216 */ 217 if (alpha2[0] == '9' && alpha2[1] == '8') 218 return true; 219 return false; 220 } 221 222 static bool is_an_alpha2(const char *alpha2) 223 { 224 if (!alpha2) 225 return false; 226 if (isalpha(alpha2[0]) && isalpha(alpha2[1])) 227 return true; 228 return false; 229 } 230 231 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 232 { 233 if (!alpha2_x || !alpha2_y) 234 return false; 235 if (alpha2_x[0] == alpha2_y[0] && 236 alpha2_x[1] == alpha2_y[1]) 237 return true; 238 return false; 239 } 240 241 static bool regdom_changes(const char *alpha2) 242 { 243 assert_cfg80211_lock(); 244 245 if (!cfg80211_regdomain) 246 return true; 247 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2)) 248 return false; 249 return true; 250 } 251 252 /* 253 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 254 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 255 * has ever been issued. 256 */ 257 static bool is_user_regdom_saved(void) 258 { 259 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 260 return false; 261 262 /* This would indicate a mistake on the design */ 263 if (WARN((!is_world_regdom(user_alpha2) && 264 !is_an_alpha2(user_alpha2)), 265 "Unexpected user alpha2: %c%c\n", 266 user_alpha2[0], 267 user_alpha2[1])) 268 return false; 269 270 return true; 271 } 272 273 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd, 274 const struct ieee80211_regdomain *src_regd) 275 { 276 struct ieee80211_regdomain *regd; 277 int size_of_regd = 0; 278 unsigned int i; 279 280 size_of_regd = sizeof(struct ieee80211_regdomain) + 281 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule)); 282 283 regd = kzalloc(size_of_regd, GFP_KERNEL); 284 if (!regd) 285 return -ENOMEM; 286 287 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 288 289 for (i = 0; i < src_regd->n_reg_rules; i++) 290 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 291 sizeof(struct ieee80211_reg_rule)); 292 293 *dst_regd = regd; 294 return 0; 295 } 296 297 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 298 struct reg_regdb_search_request { 299 char alpha2[2]; 300 struct list_head list; 301 }; 302 303 static LIST_HEAD(reg_regdb_search_list); 304 static DEFINE_MUTEX(reg_regdb_search_mutex); 305 306 static void reg_regdb_search(struct work_struct *work) 307 { 308 struct reg_regdb_search_request *request; 309 const struct ieee80211_regdomain *curdom, *regdom; 310 int i, r; 311 312 mutex_lock(®_regdb_search_mutex); 313 while (!list_empty(®_regdb_search_list)) { 314 request = list_first_entry(®_regdb_search_list, 315 struct reg_regdb_search_request, 316 list); 317 list_del(&request->list); 318 319 for (i=0; i<reg_regdb_size; i++) { 320 curdom = reg_regdb[i]; 321 322 if (!memcmp(request->alpha2, curdom->alpha2, 2)) { 323 r = reg_copy_regd(®dom, curdom); 324 if (r) 325 break; 326 mutex_lock(&cfg80211_mutex); 327 set_regdom(regdom); 328 mutex_unlock(&cfg80211_mutex); 329 break; 330 } 331 } 332 333 kfree(request); 334 } 335 mutex_unlock(®_regdb_search_mutex); 336 } 337 338 static DECLARE_WORK(reg_regdb_work, reg_regdb_search); 339 340 static void reg_regdb_query(const char *alpha2) 341 { 342 struct reg_regdb_search_request *request; 343 344 if (!alpha2) 345 return; 346 347 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL); 348 if (!request) 349 return; 350 351 memcpy(request->alpha2, alpha2, 2); 352 353 mutex_lock(®_regdb_search_mutex); 354 list_add_tail(&request->list, ®_regdb_search_list); 355 mutex_unlock(®_regdb_search_mutex); 356 357 schedule_work(®_regdb_work); 358 } 359 #else 360 static inline void reg_regdb_query(const char *alpha2) {} 361 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 362 363 /* 364 * This lets us keep regulatory code which is updated on a regulatory 365 * basis in userspace. 366 */ 367 static int call_crda(const char *alpha2) 368 { 369 char country_env[9 + 2] = "COUNTRY="; 370 char *envp[] = { 371 country_env, 372 NULL 373 }; 374 375 if (!is_world_regdom((char *) alpha2)) 376 pr_info("Calling CRDA for country: %c%c\n", 377 alpha2[0], alpha2[1]); 378 else 379 pr_info("Calling CRDA to update world regulatory domain\n"); 380 381 /* query internal regulatory database (if it exists) */ 382 reg_regdb_query(alpha2); 383 384 country_env[8] = alpha2[0]; 385 country_env[9] = alpha2[1]; 386 387 return kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, envp); 388 } 389 390 /* Used by nl80211 before kmalloc'ing our regulatory domain */ 391 bool reg_is_valid_request(const char *alpha2) 392 { 393 assert_cfg80211_lock(); 394 395 if (!last_request) 396 return false; 397 398 return alpha2_equal(last_request->alpha2, alpha2); 399 } 400 401 /* Sanity check on a regulatory rule */ 402 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 403 { 404 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 405 u32 freq_diff; 406 407 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 408 return false; 409 410 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 411 return false; 412 413 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 414 415 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 416 freq_range->max_bandwidth_khz > freq_diff) 417 return false; 418 419 return true; 420 } 421 422 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 423 { 424 const struct ieee80211_reg_rule *reg_rule = NULL; 425 unsigned int i; 426 427 if (!rd->n_reg_rules) 428 return false; 429 430 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 431 return false; 432 433 for (i = 0; i < rd->n_reg_rules; i++) { 434 reg_rule = &rd->reg_rules[i]; 435 if (!is_valid_reg_rule(reg_rule)) 436 return false; 437 } 438 439 return true; 440 } 441 442 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 443 u32 center_freq_khz, 444 u32 bw_khz) 445 { 446 u32 start_freq_khz, end_freq_khz; 447 448 start_freq_khz = center_freq_khz - (bw_khz/2); 449 end_freq_khz = center_freq_khz + (bw_khz/2); 450 451 if (start_freq_khz >= freq_range->start_freq_khz && 452 end_freq_khz <= freq_range->end_freq_khz) 453 return true; 454 455 return false; 456 } 457 458 /** 459 * freq_in_rule_band - tells us if a frequency is in a frequency band 460 * @freq_range: frequency rule we want to query 461 * @freq_khz: frequency we are inquiring about 462 * 463 * This lets us know if a specific frequency rule is or is not relevant to 464 * a specific frequency's band. Bands are device specific and artificial 465 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is 466 * safe for now to assume that a frequency rule should not be part of a 467 * frequency's band if the start freq or end freq are off by more than 2 GHz. 468 * This resolution can be lowered and should be considered as we add 469 * regulatory rule support for other "bands". 470 **/ 471 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 472 u32 freq_khz) 473 { 474 #define ONE_GHZ_IN_KHZ 1000000 475 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) 476 return true; 477 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) 478 return true; 479 return false; 480 #undef ONE_GHZ_IN_KHZ 481 } 482 483 /* 484 * Helper for regdom_intersect(), this does the real 485 * mathematical intersection fun 486 */ 487 static int reg_rules_intersect( 488 const struct ieee80211_reg_rule *rule1, 489 const struct ieee80211_reg_rule *rule2, 490 struct ieee80211_reg_rule *intersected_rule) 491 { 492 const struct ieee80211_freq_range *freq_range1, *freq_range2; 493 struct ieee80211_freq_range *freq_range; 494 const struct ieee80211_power_rule *power_rule1, *power_rule2; 495 struct ieee80211_power_rule *power_rule; 496 u32 freq_diff; 497 498 freq_range1 = &rule1->freq_range; 499 freq_range2 = &rule2->freq_range; 500 freq_range = &intersected_rule->freq_range; 501 502 power_rule1 = &rule1->power_rule; 503 power_rule2 = &rule2->power_rule; 504 power_rule = &intersected_rule->power_rule; 505 506 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 507 freq_range2->start_freq_khz); 508 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 509 freq_range2->end_freq_khz); 510 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz, 511 freq_range2->max_bandwidth_khz); 512 513 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 514 if (freq_range->max_bandwidth_khz > freq_diff) 515 freq_range->max_bandwidth_khz = freq_diff; 516 517 power_rule->max_eirp = min(power_rule1->max_eirp, 518 power_rule2->max_eirp); 519 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 520 power_rule2->max_antenna_gain); 521 522 intersected_rule->flags = (rule1->flags | rule2->flags); 523 524 if (!is_valid_reg_rule(intersected_rule)) 525 return -EINVAL; 526 527 return 0; 528 } 529 530 /** 531 * regdom_intersect - do the intersection between two regulatory domains 532 * @rd1: first regulatory domain 533 * @rd2: second regulatory domain 534 * 535 * Use this function to get the intersection between two regulatory domains. 536 * Once completed we will mark the alpha2 for the rd as intersected, "98", 537 * as no one single alpha2 can represent this regulatory domain. 538 * 539 * Returns a pointer to the regulatory domain structure which will hold the 540 * resulting intersection of rules between rd1 and rd2. We will 541 * kzalloc() this structure for you. 542 */ 543 static struct ieee80211_regdomain *regdom_intersect( 544 const struct ieee80211_regdomain *rd1, 545 const struct ieee80211_regdomain *rd2) 546 { 547 int r, size_of_regd; 548 unsigned int x, y; 549 unsigned int num_rules = 0, rule_idx = 0; 550 const struct ieee80211_reg_rule *rule1, *rule2; 551 struct ieee80211_reg_rule *intersected_rule; 552 struct ieee80211_regdomain *rd; 553 /* This is just a dummy holder to help us count */ 554 struct ieee80211_reg_rule irule; 555 556 /* Uses the stack temporarily for counter arithmetic */ 557 intersected_rule = &irule; 558 559 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule)); 560 561 if (!rd1 || !rd2) 562 return NULL; 563 564 /* 565 * First we get a count of the rules we'll need, then we actually 566 * build them. This is to so we can malloc() and free() a 567 * regdomain once. The reason we use reg_rules_intersect() here 568 * is it will return -EINVAL if the rule computed makes no sense. 569 * All rules that do check out OK are valid. 570 */ 571 572 for (x = 0; x < rd1->n_reg_rules; x++) { 573 rule1 = &rd1->reg_rules[x]; 574 for (y = 0; y < rd2->n_reg_rules; y++) { 575 rule2 = &rd2->reg_rules[y]; 576 if (!reg_rules_intersect(rule1, rule2, 577 intersected_rule)) 578 num_rules++; 579 memset(intersected_rule, 0, 580 sizeof(struct ieee80211_reg_rule)); 581 } 582 } 583 584 if (!num_rules) 585 return NULL; 586 587 size_of_regd = sizeof(struct ieee80211_regdomain) + 588 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule)); 589 590 rd = kzalloc(size_of_regd, GFP_KERNEL); 591 if (!rd) 592 return NULL; 593 594 for (x = 0; x < rd1->n_reg_rules; x++) { 595 rule1 = &rd1->reg_rules[x]; 596 for (y = 0; y < rd2->n_reg_rules; y++) { 597 rule2 = &rd2->reg_rules[y]; 598 /* 599 * This time around instead of using the stack lets 600 * write to the target rule directly saving ourselves 601 * a memcpy() 602 */ 603 intersected_rule = &rd->reg_rules[rule_idx]; 604 r = reg_rules_intersect(rule1, rule2, 605 intersected_rule); 606 /* 607 * No need to memset here the intersected rule here as 608 * we're not using the stack anymore 609 */ 610 if (r) 611 continue; 612 rule_idx++; 613 } 614 } 615 616 if (rule_idx != num_rules) { 617 kfree(rd); 618 return NULL; 619 } 620 621 rd->n_reg_rules = num_rules; 622 rd->alpha2[0] = '9'; 623 rd->alpha2[1] = '8'; 624 625 return rd; 626 } 627 628 /* 629 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 630 * want to just have the channel structure use these 631 */ 632 static u32 map_regdom_flags(u32 rd_flags) 633 { 634 u32 channel_flags = 0; 635 if (rd_flags & NL80211_RRF_PASSIVE_SCAN) 636 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN; 637 if (rd_flags & NL80211_RRF_NO_IBSS) 638 channel_flags |= IEEE80211_CHAN_NO_IBSS; 639 if (rd_flags & NL80211_RRF_DFS) 640 channel_flags |= IEEE80211_CHAN_RADAR; 641 return channel_flags; 642 } 643 644 static int freq_reg_info_regd(struct wiphy *wiphy, 645 u32 center_freq, 646 u32 desired_bw_khz, 647 const struct ieee80211_reg_rule **reg_rule, 648 const struct ieee80211_regdomain *custom_regd) 649 { 650 int i; 651 bool band_rule_found = false; 652 const struct ieee80211_regdomain *regd; 653 bool bw_fits = false; 654 655 if (!desired_bw_khz) 656 desired_bw_khz = MHZ_TO_KHZ(20); 657 658 regd = custom_regd ? custom_regd : cfg80211_regdomain; 659 660 /* 661 * Follow the driver's regulatory domain, if present, unless a country 662 * IE has been processed or a user wants to help complaince further 663 */ 664 if (!custom_regd && 665 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 666 last_request->initiator != NL80211_REGDOM_SET_BY_USER && 667 wiphy->regd) 668 regd = wiphy->regd; 669 670 if (!regd) 671 return -EINVAL; 672 673 for (i = 0; i < regd->n_reg_rules; i++) { 674 const struct ieee80211_reg_rule *rr; 675 const struct ieee80211_freq_range *fr = NULL; 676 const struct ieee80211_power_rule *pr = NULL; 677 678 rr = ®d->reg_rules[i]; 679 fr = &rr->freq_range; 680 pr = &rr->power_rule; 681 682 /* 683 * We only need to know if one frequency rule was 684 * was in center_freq's band, that's enough, so lets 685 * not overwrite it once found 686 */ 687 if (!band_rule_found) 688 band_rule_found = freq_in_rule_band(fr, center_freq); 689 690 bw_fits = reg_does_bw_fit(fr, 691 center_freq, 692 desired_bw_khz); 693 694 if (band_rule_found && bw_fits) { 695 *reg_rule = rr; 696 return 0; 697 } 698 } 699 700 if (!band_rule_found) 701 return -ERANGE; 702 703 return -EINVAL; 704 } 705 706 int freq_reg_info(struct wiphy *wiphy, 707 u32 center_freq, 708 u32 desired_bw_khz, 709 const struct ieee80211_reg_rule **reg_rule) 710 { 711 assert_cfg80211_lock(); 712 return freq_reg_info_regd(wiphy, 713 center_freq, 714 desired_bw_khz, 715 reg_rule, 716 NULL); 717 } 718 EXPORT_SYMBOL(freq_reg_info); 719 720 #ifdef CONFIG_CFG80211_REG_DEBUG 721 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 722 { 723 switch (initiator) { 724 case NL80211_REGDOM_SET_BY_CORE: 725 return "Set by core"; 726 case NL80211_REGDOM_SET_BY_USER: 727 return "Set by user"; 728 case NL80211_REGDOM_SET_BY_DRIVER: 729 return "Set by driver"; 730 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 731 return "Set by country IE"; 732 default: 733 WARN_ON(1); 734 return "Set by bug"; 735 } 736 } 737 738 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 739 u32 desired_bw_khz, 740 const struct ieee80211_reg_rule *reg_rule) 741 { 742 const struct ieee80211_power_rule *power_rule; 743 const struct ieee80211_freq_range *freq_range; 744 char max_antenna_gain[32]; 745 746 power_rule = ®_rule->power_rule; 747 freq_range = ®_rule->freq_range; 748 749 if (!power_rule->max_antenna_gain) 750 snprintf(max_antenna_gain, 32, "N/A"); 751 else 752 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain); 753 754 REG_DBG_PRINT("Updating information on frequency %d MHz " 755 "for a %d MHz width channel with regulatory rule:\n", 756 chan->center_freq, 757 KHZ_TO_MHZ(desired_bw_khz)); 758 759 REG_DBG_PRINT("%d KHz - %d KHz @ KHz), (%s mBi, %d mBm)\n", 760 freq_range->start_freq_khz, 761 freq_range->end_freq_khz, 762 max_antenna_gain, 763 power_rule->max_eirp); 764 } 765 #else 766 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, 767 u32 desired_bw_khz, 768 const struct ieee80211_reg_rule *reg_rule) 769 { 770 return; 771 } 772 #endif 773 774 /* 775 * Note that right now we assume the desired channel bandwidth 776 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 777 * per channel, the primary and the extension channel). To support 778 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a 779 * new ieee80211_channel.target_bw and re run the regulatory check 780 * on the wiphy with the target_bw specified. Then we can simply use 781 * that below for the desired_bw_khz below. 782 */ 783 static void handle_channel(struct wiphy *wiphy, 784 enum nl80211_reg_initiator initiator, 785 enum ieee80211_band band, 786 unsigned int chan_idx) 787 { 788 int r; 789 u32 flags, bw_flags = 0; 790 u32 desired_bw_khz = MHZ_TO_KHZ(20); 791 const struct ieee80211_reg_rule *reg_rule = NULL; 792 const struct ieee80211_power_rule *power_rule = NULL; 793 const struct ieee80211_freq_range *freq_range = NULL; 794 struct ieee80211_supported_band *sband; 795 struct ieee80211_channel *chan; 796 struct wiphy *request_wiphy = NULL; 797 798 assert_cfg80211_lock(); 799 800 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 801 802 sband = wiphy->bands[band]; 803 BUG_ON(chan_idx >= sband->n_channels); 804 chan = &sband->channels[chan_idx]; 805 806 flags = chan->orig_flags; 807 808 r = freq_reg_info(wiphy, 809 MHZ_TO_KHZ(chan->center_freq), 810 desired_bw_khz, 811 ®_rule); 812 813 if (r) { 814 /* 815 * We will disable all channels that do not match our 816 * recieved regulatory rule unless the hint is coming 817 * from a Country IE and the Country IE had no information 818 * about a band. The IEEE 802.11 spec allows for an AP 819 * to send only a subset of the regulatory rules allowed, 820 * so an AP in the US that only supports 2.4 GHz may only send 821 * a country IE with information for the 2.4 GHz band 822 * while 5 GHz is still supported. 823 */ 824 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 825 r == -ERANGE) 826 return; 827 828 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq); 829 chan->flags = IEEE80211_CHAN_DISABLED; 830 return; 831 } 832 833 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule); 834 835 power_rule = ®_rule->power_rule; 836 freq_range = ®_rule->freq_range; 837 838 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 839 bw_flags = IEEE80211_CHAN_NO_HT40; 840 841 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 842 request_wiphy && request_wiphy == wiphy && 843 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { 844 /* 845 * This gaurantees the driver's requested regulatory domain 846 * will always be used as a base for further regulatory 847 * settings 848 */ 849 chan->flags = chan->orig_flags = 850 map_regdom_flags(reg_rule->flags) | bw_flags; 851 chan->max_antenna_gain = chan->orig_mag = 852 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 853 chan->max_power = chan->orig_mpwr = 854 (int) MBM_TO_DBM(power_rule->max_eirp); 855 return; 856 } 857 858 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 859 chan->max_antenna_gain = min(chan->orig_mag, 860 (int) MBI_TO_DBI(power_rule->max_antenna_gain)); 861 if (chan->orig_mpwr) 862 chan->max_power = min(chan->orig_mpwr, 863 (int) MBM_TO_DBM(power_rule->max_eirp)); 864 else 865 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); 866 } 867 868 static void handle_band(struct wiphy *wiphy, 869 enum ieee80211_band band, 870 enum nl80211_reg_initiator initiator) 871 { 872 unsigned int i; 873 struct ieee80211_supported_band *sband; 874 875 BUG_ON(!wiphy->bands[band]); 876 sband = wiphy->bands[band]; 877 878 for (i = 0; i < sband->n_channels; i++) 879 handle_channel(wiphy, initiator, band, i); 880 } 881 882 static bool ignore_reg_update(struct wiphy *wiphy, 883 enum nl80211_reg_initiator initiator) 884 { 885 if (!last_request) { 886 REG_DBG_PRINT("Ignoring regulatory request %s since " 887 "last_request is not set\n", 888 reg_initiator_name(initiator)); 889 return true; 890 } 891 892 if (initiator == NL80211_REGDOM_SET_BY_CORE && 893 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) { 894 REG_DBG_PRINT("Ignoring regulatory request %s " 895 "since the driver uses its own custom " 896 "regulatory domain ", 897 reg_initiator_name(initiator)); 898 return true; 899 } 900 901 /* 902 * wiphy->regd will be set once the device has its own 903 * desired regulatory domain set 904 */ 905 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd && 906 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 907 !is_world_regdom(last_request->alpha2)) { 908 REG_DBG_PRINT("Ignoring regulatory request %s " 909 "since the driver requires its own regulaotry " 910 "domain to be set first", 911 reg_initiator_name(initiator)); 912 return true; 913 } 914 915 return false; 916 } 917 918 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 919 { 920 struct cfg80211_registered_device *rdev; 921 922 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 923 wiphy_update_regulatory(&rdev->wiphy, initiator); 924 } 925 926 static void handle_reg_beacon(struct wiphy *wiphy, 927 unsigned int chan_idx, 928 struct reg_beacon *reg_beacon) 929 { 930 struct ieee80211_supported_band *sband; 931 struct ieee80211_channel *chan; 932 bool channel_changed = false; 933 struct ieee80211_channel chan_before; 934 935 assert_cfg80211_lock(); 936 937 sband = wiphy->bands[reg_beacon->chan.band]; 938 chan = &sband->channels[chan_idx]; 939 940 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 941 return; 942 943 if (chan->beacon_found) 944 return; 945 946 chan->beacon_found = true; 947 948 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS) 949 return; 950 951 chan_before.center_freq = chan->center_freq; 952 chan_before.flags = chan->flags; 953 954 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) { 955 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN; 956 channel_changed = true; 957 } 958 959 if (chan->flags & IEEE80211_CHAN_NO_IBSS) { 960 chan->flags &= ~IEEE80211_CHAN_NO_IBSS; 961 channel_changed = true; 962 } 963 964 if (channel_changed) 965 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 966 } 967 968 /* 969 * Called when a scan on a wiphy finds a beacon on 970 * new channel 971 */ 972 static void wiphy_update_new_beacon(struct wiphy *wiphy, 973 struct reg_beacon *reg_beacon) 974 { 975 unsigned int i; 976 struct ieee80211_supported_band *sband; 977 978 assert_cfg80211_lock(); 979 980 if (!wiphy->bands[reg_beacon->chan.band]) 981 return; 982 983 sband = wiphy->bands[reg_beacon->chan.band]; 984 985 for (i = 0; i < sband->n_channels; i++) 986 handle_reg_beacon(wiphy, i, reg_beacon); 987 } 988 989 /* 990 * Called upon reg changes or a new wiphy is added 991 */ 992 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 993 { 994 unsigned int i; 995 struct ieee80211_supported_band *sband; 996 struct reg_beacon *reg_beacon; 997 998 assert_cfg80211_lock(); 999 1000 if (list_empty(®_beacon_list)) 1001 return; 1002 1003 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1004 if (!wiphy->bands[reg_beacon->chan.band]) 1005 continue; 1006 sband = wiphy->bands[reg_beacon->chan.band]; 1007 for (i = 0; i < sband->n_channels; i++) 1008 handle_reg_beacon(wiphy, i, reg_beacon); 1009 } 1010 } 1011 1012 static bool reg_is_world_roaming(struct wiphy *wiphy) 1013 { 1014 if (is_world_regdom(cfg80211_regdomain->alpha2) || 1015 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2))) 1016 return true; 1017 if (last_request && 1018 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1019 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) 1020 return true; 1021 return false; 1022 } 1023 1024 /* Reap the advantages of previously found beacons */ 1025 static void reg_process_beacons(struct wiphy *wiphy) 1026 { 1027 /* 1028 * Means we are just firing up cfg80211, so no beacons would 1029 * have been processed yet. 1030 */ 1031 if (!last_request) 1032 return; 1033 if (!reg_is_world_roaming(wiphy)) 1034 return; 1035 wiphy_update_beacon_reg(wiphy); 1036 } 1037 1038 static bool is_ht40_not_allowed(struct ieee80211_channel *chan) 1039 { 1040 if (!chan) 1041 return true; 1042 if (chan->flags & IEEE80211_CHAN_DISABLED) 1043 return true; 1044 /* This would happen when regulatory rules disallow HT40 completely */ 1045 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40))) 1046 return true; 1047 return false; 1048 } 1049 1050 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1051 enum ieee80211_band band, 1052 unsigned int chan_idx) 1053 { 1054 struct ieee80211_supported_band *sband; 1055 struct ieee80211_channel *channel; 1056 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1057 unsigned int i; 1058 1059 assert_cfg80211_lock(); 1060 1061 sband = wiphy->bands[band]; 1062 BUG_ON(chan_idx >= sband->n_channels); 1063 channel = &sband->channels[chan_idx]; 1064 1065 if (is_ht40_not_allowed(channel)) { 1066 channel->flags |= IEEE80211_CHAN_NO_HT40; 1067 return; 1068 } 1069 1070 /* 1071 * We need to ensure the extension channels exist to 1072 * be able to use HT40- or HT40+, this finds them (or not) 1073 */ 1074 for (i = 0; i < sband->n_channels; i++) { 1075 struct ieee80211_channel *c = &sband->channels[i]; 1076 if (c->center_freq == (channel->center_freq - 20)) 1077 channel_before = c; 1078 if (c->center_freq == (channel->center_freq + 20)) 1079 channel_after = c; 1080 } 1081 1082 /* 1083 * Please note that this assumes target bandwidth is 20 MHz, 1084 * if that ever changes we also need to change the below logic 1085 * to include that as well. 1086 */ 1087 if (is_ht40_not_allowed(channel_before)) 1088 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1089 else 1090 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1091 1092 if (is_ht40_not_allowed(channel_after)) 1093 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1094 else 1095 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1096 } 1097 1098 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1099 enum ieee80211_band band) 1100 { 1101 unsigned int i; 1102 struct ieee80211_supported_band *sband; 1103 1104 BUG_ON(!wiphy->bands[band]); 1105 sband = wiphy->bands[band]; 1106 1107 for (i = 0; i < sband->n_channels; i++) 1108 reg_process_ht_flags_channel(wiphy, band, i); 1109 } 1110 1111 static void reg_process_ht_flags(struct wiphy *wiphy) 1112 { 1113 enum ieee80211_band band; 1114 1115 if (!wiphy) 1116 return; 1117 1118 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1119 if (wiphy->bands[band]) 1120 reg_process_ht_flags_band(wiphy, band); 1121 } 1122 1123 } 1124 1125 void wiphy_update_regulatory(struct wiphy *wiphy, 1126 enum nl80211_reg_initiator initiator) 1127 { 1128 enum ieee80211_band band; 1129 1130 if (ignore_reg_update(wiphy, initiator)) 1131 goto out; 1132 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1133 if (wiphy->bands[band]) 1134 handle_band(wiphy, band, initiator); 1135 } 1136 out: 1137 reg_process_beacons(wiphy); 1138 reg_process_ht_flags(wiphy); 1139 if (wiphy->reg_notifier) 1140 wiphy->reg_notifier(wiphy, last_request); 1141 } 1142 1143 static void handle_channel_custom(struct wiphy *wiphy, 1144 enum ieee80211_band band, 1145 unsigned int chan_idx, 1146 const struct ieee80211_regdomain *regd) 1147 { 1148 int r; 1149 u32 desired_bw_khz = MHZ_TO_KHZ(20); 1150 u32 bw_flags = 0; 1151 const struct ieee80211_reg_rule *reg_rule = NULL; 1152 const struct ieee80211_power_rule *power_rule = NULL; 1153 const struct ieee80211_freq_range *freq_range = NULL; 1154 struct ieee80211_supported_band *sband; 1155 struct ieee80211_channel *chan; 1156 1157 assert_reg_lock(); 1158 1159 sband = wiphy->bands[band]; 1160 BUG_ON(chan_idx >= sband->n_channels); 1161 chan = &sband->channels[chan_idx]; 1162 1163 r = freq_reg_info_regd(wiphy, 1164 MHZ_TO_KHZ(chan->center_freq), 1165 desired_bw_khz, 1166 ®_rule, 1167 regd); 1168 1169 if (r) { 1170 REG_DBG_PRINT("Disabling freq %d MHz as custom " 1171 "regd has no rule that fits a %d MHz " 1172 "wide channel\n", 1173 chan->center_freq, 1174 KHZ_TO_MHZ(desired_bw_khz)); 1175 chan->flags = IEEE80211_CHAN_DISABLED; 1176 return; 1177 } 1178 1179 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule); 1180 1181 power_rule = ®_rule->power_rule; 1182 freq_range = ®_rule->freq_range; 1183 1184 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) 1185 bw_flags = IEEE80211_CHAN_NO_HT40; 1186 1187 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1188 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1189 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1190 } 1191 1192 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band, 1193 const struct ieee80211_regdomain *regd) 1194 { 1195 unsigned int i; 1196 struct ieee80211_supported_band *sband; 1197 1198 BUG_ON(!wiphy->bands[band]); 1199 sband = wiphy->bands[band]; 1200 1201 for (i = 0; i < sband->n_channels; i++) 1202 handle_channel_custom(wiphy, band, i, regd); 1203 } 1204 1205 /* Used by drivers prior to wiphy registration */ 1206 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1207 const struct ieee80211_regdomain *regd) 1208 { 1209 enum ieee80211_band band; 1210 unsigned int bands_set = 0; 1211 1212 mutex_lock(®_mutex); 1213 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1214 if (!wiphy->bands[band]) 1215 continue; 1216 handle_band_custom(wiphy, band, regd); 1217 bands_set++; 1218 } 1219 mutex_unlock(®_mutex); 1220 1221 /* 1222 * no point in calling this if it won't have any effect 1223 * on your device's supportd bands. 1224 */ 1225 WARN_ON(!bands_set); 1226 } 1227 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1228 1229 /* 1230 * Return value which can be used by ignore_request() to indicate 1231 * it has been determined we should intersect two regulatory domains 1232 */ 1233 #define REG_INTERSECT 1 1234 1235 /* This has the logic which determines when a new request 1236 * should be ignored. */ 1237 static int ignore_request(struct wiphy *wiphy, 1238 struct regulatory_request *pending_request) 1239 { 1240 struct wiphy *last_wiphy = NULL; 1241 1242 assert_cfg80211_lock(); 1243 1244 /* All initial requests are respected */ 1245 if (!last_request) 1246 return 0; 1247 1248 switch (pending_request->initiator) { 1249 case NL80211_REGDOM_SET_BY_CORE: 1250 return 0; 1251 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1252 1253 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 1254 1255 if (unlikely(!is_an_alpha2(pending_request->alpha2))) 1256 return -EINVAL; 1257 if (last_request->initiator == 1258 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1259 if (last_wiphy != wiphy) { 1260 /* 1261 * Two cards with two APs claiming different 1262 * Country IE alpha2s. We could 1263 * intersect them, but that seems unlikely 1264 * to be correct. Reject second one for now. 1265 */ 1266 if (regdom_changes(pending_request->alpha2)) 1267 return -EOPNOTSUPP; 1268 return -EALREADY; 1269 } 1270 /* 1271 * Two consecutive Country IE hints on the same wiphy. 1272 * This should be picked up early by the driver/stack 1273 */ 1274 if (WARN_ON(regdom_changes(pending_request->alpha2))) 1275 return 0; 1276 return -EALREADY; 1277 } 1278 return 0; 1279 case NL80211_REGDOM_SET_BY_DRIVER: 1280 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) { 1281 if (regdom_changes(pending_request->alpha2)) 1282 return 0; 1283 return -EALREADY; 1284 } 1285 1286 /* 1287 * This would happen if you unplug and plug your card 1288 * back in or if you add a new device for which the previously 1289 * loaded card also agrees on the regulatory domain. 1290 */ 1291 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1292 !regdom_changes(pending_request->alpha2)) 1293 return -EALREADY; 1294 1295 return REG_INTERSECT; 1296 case NL80211_REGDOM_SET_BY_USER: 1297 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1298 return REG_INTERSECT; 1299 /* 1300 * If the user knows better the user should set the regdom 1301 * to their country before the IE is picked up 1302 */ 1303 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER && 1304 last_request->intersect) 1305 return -EOPNOTSUPP; 1306 /* 1307 * Process user requests only after previous user/driver/core 1308 * requests have been processed 1309 */ 1310 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE || 1311 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1312 last_request->initiator == NL80211_REGDOM_SET_BY_USER) { 1313 if (regdom_changes(last_request->alpha2)) 1314 return -EAGAIN; 1315 } 1316 1317 if (!regdom_changes(pending_request->alpha2)) 1318 return -EALREADY; 1319 1320 return 0; 1321 } 1322 1323 return -EINVAL; 1324 } 1325 1326 static void reg_set_request_processed(void) 1327 { 1328 bool need_more_processing = false; 1329 1330 last_request->processed = true; 1331 1332 spin_lock(®_requests_lock); 1333 if (!list_empty(®_requests_list)) 1334 need_more_processing = true; 1335 spin_unlock(®_requests_lock); 1336 1337 if (need_more_processing) 1338 schedule_work(®_work); 1339 } 1340 1341 /** 1342 * __regulatory_hint - hint to the wireless core a regulatory domain 1343 * @wiphy: if the hint comes from country information from an AP, this 1344 * is required to be set to the wiphy that received the information 1345 * @pending_request: the regulatory request currently being processed 1346 * 1347 * The Wireless subsystem can use this function to hint to the wireless core 1348 * what it believes should be the current regulatory domain. 1349 * 1350 * Returns zero if all went fine, %-EALREADY if a regulatory domain had 1351 * already been set or other standard error codes. 1352 * 1353 * Caller must hold &cfg80211_mutex and ®_mutex 1354 */ 1355 static int __regulatory_hint(struct wiphy *wiphy, 1356 struct regulatory_request *pending_request) 1357 { 1358 bool intersect = false; 1359 int r = 0; 1360 1361 assert_cfg80211_lock(); 1362 1363 r = ignore_request(wiphy, pending_request); 1364 1365 if (r == REG_INTERSECT) { 1366 if (pending_request->initiator == 1367 NL80211_REGDOM_SET_BY_DRIVER) { 1368 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); 1369 if (r) { 1370 kfree(pending_request); 1371 return r; 1372 } 1373 } 1374 intersect = true; 1375 } else if (r) { 1376 /* 1377 * If the regulatory domain being requested by the 1378 * driver has already been set just copy it to the 1379 * wiphy 1380 */ 1381 if (r == -EALREADY && 1382 pending_request->initiator == 1383 NL80211_REGDOM_SET_BY_DRIVER) { 1384 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); 1385 if (r) { 1386 kfree(pending_request); 1387 return r; 1388 } 1389 r = -EALREADY; 1390 goto new_request; 1391 } 1392 kfree(pending_request); 1393 return r; 1394 } 1395 1396 new_request: 1397 kfree(last_request); 1398 1399 last_request = pending_request; 1400 last_request->intersect = intersect; 1401 1402 pending_request = NULL; 1403 1404 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) { 1405 user_alpha2[0] = last_request->alpha2[0]; 1406 user_alpha2[1] = last_request->alpha2[1]; 1407 } 1408 1409 /* When r == REG_INTERSECT we do need to call CRDA */ 1410 if (r < 0) { 1411 /* 1412 * Since CRDA will not be called in this case as we already 1413 * have applied the requested regulatory domain before we just 1414 * inform userspace we have processed the request 1415 */ 1416 if (r == -EALREADY) { 1417 nl80211_send_reg_change_event(last_request); 1418 reg_set_request_processed(); 1419 } 1420 return r; 1421 } 1422 1423 return call_crda(last_request->alpha2); 1424 } 1425 1426 /* This processes *all* regulatory hints */ 1427 static void reg_process_hint(struct regulatory_request *reg_request) 1428 { 1429 int r = 0; 1430 struct wiphy *wiphy = NULL; 1431 enum nl80211_reg_initiator initiator = reg_request->initiator; 1432 1433 BUG_ON(!reg_request->alpha2); 1434 1435 if (wiphy_idx_valid(reg_request->wiphy_idx)) 1436 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 1437 1438 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1439 !wiphy) { 1440 kfree(reg_request); 1441 return; 1442 } 1443 1444 r = __regulatory_hint(wiphy, reg_request); 1445 /* This is required so that the orig_* parameters are saved */ 1446 if (r == -EALREADY && wiphy && 1447 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) 1448 wiphy_update_regulatory(wiphy, initiator); 1449 } 1450 1451 /* 1452 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 1453 * Regulatory hints come on a first come first serve basis and we 1454 * must process each one atomically. 1455 */ 1456 static void reg_process_pending_hints(void) 1457 { 1458 struct regulatory_request *reg_request; 1459 1460 mutex_lock(&cfg80211_mutex); 1461 mutex_lock(®_mutex); 1462 1463 /* When last_request->processed becomes true this will be rescheduled */ 1464 if (last_request && !last_request->processed) { 1465 REG_DBG_PRINT("Pending regulatory request, waiting " 1466 "for it to be processed..."); 1467 goto out; 1468 } 1469 1470 spin_lock(®_requests_lock); 1471 1472 if (list_empty(®_requests_list)) { 1473 spin_unlock(®_requests_lock); 1474 goto out; 1475 } 1476 1477 reg_request = list_first_entry(®_requests_list, 1478 struct regulatory_request, 1479 list); 1480 list_del_init(®_request->list); 1481 1482 spin_unlock(®_requests_lock); 1483 1484 reg_process_hint(reg_request); 1485 1486 out: 1487 mutex_unlock(®_mutex); 1488 mutex_unlock(&cfg80211_mutex); 1489 } 1490 1491 /* Processes beacon hints -- this has nothing to do with country IEs */ 1492 static void reg_process_pending_beacon_hints(void) 1493 { 1494 struct cfg80211_registered_device *rdev; 1495 struct reg_beacon *pending_beacon, *tmp; 1496 1497 /* 1498 * No need to hold the reg_mutex here as we just touch wiphys 1499 * and do not read or access regulatory variables. 1500 */ 1501 mutex_lock(&cfg80211_mutex); 1502 1503 /* This goes through the _pending_ beacon list */ 1504 spin_lock_bh(®_pending_beacons_lock); 1505 1506 if (list_empty(®_pending_beacons)) { 1507 spin_unlock_bh(®_pending_beacons_lock); 1508 goto out; 1509 } 1510 1511 list_for_each_entry_safe(pending_beacon, tmp, 1512 ®_pending_beacons, list) { 1513 1514 list_del_init(&pending_beacon->list); 1515 1516 /* Applies the beacon hint to current wiphys */ 1517 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1518 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 1519 1520 /* Remembers the beacon hint for new wiphys or reg changes */ 1521 list_add_tail(&pending_beacon->list, ®_beacon_list); 1522 } 1523 1524 spin_unlock_bh(®_pending_beacons_lock); 1525 out: 1526 mutex_unlock(&cfg80211_mutex); 1527 } 1528 1529 static void reg_todo(struct work_struct *work) 1530 { 1531 reg_process_pending_hints(); 1532 reg_process_pending_beacon_hints(); 1533 } 1534 1535 static void queue_regulatory_request(struct regulatory_request *request) 1536 { 1537 if (isalpha(request->alpha2[0])) 1538 request->alpha2[0] = toupper(request->alpha2[0]); 1539 if (isalpha(request->alpha2[1])) 1540 request->alpha2[1] = toupper(request->alpha2[1]); 1541 1542 spin_lock(®_requests_lock); 1543 list_add_tail(&request->list, ®_requests_list); 1544 spin_unlock(®_requests_lock); 1545 1546 schedule_work(®_work); 1547 } 1548 1549 /* 1550 * Core regulatory hint -- happens during cfg80211_init() 1551 * and when we restore regulatory settings. 1552 */ 1553 static int regulatory_hint_core(const char *alpha2) 1554 { 1555 struct regulatory_request *request; 1556 1557 kfree(last_request); 1558 last_request = NULL; 1559 1560 request = kzalloc(sizeof(struct regulatory_request), 1561 GFP_KERNEL); 1562 if (!request) 1563 return -ENOMEM; 1564 1565 request->alpha2[0] = alpha2[0]; 1566 request->alpha2[1] = alpha2[1]; 1567 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1568 1569 queue_regulatory_request(request); 1570 1571 return 0; 1572 } 1573 1574 /* User hints */ 1575 int regulatory_hint_user(const char *alpha2) 1576 { 1577 struct regulatory_request *request; 1578 1579 BUG_ON(!alpha2); 1580 1581 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1582 if (!request) 1583 return -ENOMEM; 1584 1585 request->wiphy_idx = WIPHY_IDX_STALE; 1586 request->alpha2[0] = alpha2[0]; 1587 request->alpha2[1] = alpha2[1]; 1588 request->initiator = NL80211_REGDOM_SET_BY_USER; 1589 1590 queue_regulatory_request(request); 1591 1592 return 0; 1593 } 1594 1595 /* Driver hints */ 1596 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 1597 { 1598 struct regulatory_request *request; 1599 1600 BUG_ON(!alpha2); 1601 BUG_ON(!wiphy); 1602 1603 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1604 if (!request) 1605 return -ENOMEM; 1606 1607 request->wiphy_idx = get_wiphy_idx(wiphy); 1608 1609 /* Must have registered wiphy first */ 1610 BUG_ON(!wiphy_idx_valid(request->wiphy_idx)); 1611 1612 request->alpha2[0] = alpha2[0]; 1613 request->alpha2[1] = alpha2[1]; 1614 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 1615 1616 queue_regulatory_request(request); 1617 1618 return 0; 1619 } 1620 EXPORT_SYMBOL(regulatory_hint); 1621 1622 /* 1623 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and 1624 * therefore cannot iterate over the rdev list here. 1625 */ 1626 void regulatory_hint_11d(struct wiphy *wiphy, 1627 enum ieee80211_band band, 1628 u8 *country_ie, 1629 u8 country_ie_len) 1630 { 1631 char alpha2[2]; 1632 enum environment_cap env = ENVIRON_ANY; 1633 struct regulatory_request *request; 1634 1635 mutex_lock(®_mutex); 1636 1637 if (unlikely(!last_request)) 1638 goto out; 1639 1640 /* IE len must be evenly divisible by 2 */ 1641 if (country_ie_len & 0x01) 1642 goto out; 1643 1644 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 1645 goto out; 1646 1647 alpha2[0] = country_ie[0]; 1648 alpha2[1] = country_ie[1]; 1649 1650 if (country_ie[2] == 'I') 1651 env = ENVIRON_INDOOR; 1652 else if (country_ie[2] == 'O') 1653 env = ENVIRON_OUTDOOR; 1654 1655 /* 1656 * We will run this only upon a successful connection on cfg80211. 1657 * We leave conflict resolution to the workqueue, where can hold 1658 * cfg80211_mutex. 1659 */ 1660 if (likely(last_request->initiator == 1661 NL80211_REGDOM_SET_BY_COUNTRY_IE && 1662 wiphy_idx_valid(last_request->wiphy_idx))) 1663 goto out; 1664 1665 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1666 if (!request) 1667 goto out; 1668 1669 request->wiphy_idx = get_wiphy_idx(wiphy); 1670 request->alpha2[0] = alpha2[0]; 1671 request->alpha2[1] = alpha2[1]; 1672 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 1673 request->country_ie_env = env; 1674 1675 mutex_unlock(®_mutex); 1676 1677 queue_regulatory_request(request); 1678 1679 return; 1680 1681 out: 1682 mutex_unlock(®_mutex); 1683 } 1684 1685 static void restore_alpha2(char *alpha2, bool reset_user) 1686 { 1687 /* indicates there is no alpha2 to consider for restoration */ 1688 alpha2[0] = '9'; 1689 alpha2[1] = '7'; 1690 1691 /* The user setting has precedence over the module parameter */ 1692 if (is_user_regdom_saved()) { 1693 /* Unless we're asked to ignore it and reset it */ 1694 if (reset_user) { 1695 REG_DBG_PRINT("Restoring regulatory settings " 1696 "including user preference\n"); 1697 user_alpha2[0] = '9'; 1698 user_alpha2[1] = '7'; 1699 1700 /* 1701 * If we're ignoring user settings, we still need to 1702 * check the module parameter to ensure we put things 1703 * back as they were for a full restore. 1704 */ 1705 if (!is_world_regdom(ieee80211_regdom)) { 1706 REG_DBG_PRINT("Keeping preference on " 1707 "module parameter ieee80211_regdom: %c%c\n", 1708 ieee80211_regdom[0], 1709 ieee80211_regdom[1]); 1710 alpha2[0] = ieee80211_regdom[0]; 1711 alpha2[1] = ieee80211_regdom[1]; 1712 } 1713 } else { 1714 REG_DBG_PRINT("Restoring regulatory settings " 1715 "while preserving user preference for: %c%c\n", 1716 user_alpha2[0], 1717 user_alpha2[1]); 1718 alpha2[0] = user_alpha2[0]; 1719 alpha2[1] = user_alpha2[1]; 1720 } 1721 } else if (!is_world_regdom(ieee80211_regdom)) { 1722 REG_DBG_PRINT("Keeping preference on " 1723 "module parameter ieee80211_regdom: %c%c\n", 1724 ieee80211_regdom[0], 1725 ieee80211_regdom[1]); 1726 alpha2[0] = ieee80211_regdom[0]; 1727 alpha2[1] = ieee80211_regdom[1]; 1728 } else 1729 REG_DBG_PRINT("Restoring regulatory settings\n"); 1730 } 1731 1732 /* 1733 * Restoring regulatory settings involves ingoring any 1734 * possibly stale country IE information and user regulatory 1735 * settings if so desired, this includes any beacon hints 1736 * learned as we could have traveled outside to another country 1737 * after disconnection. To restore regulatory settings we do 1738 * exactly what we did at bootup: 1739 * 1740 * - send a core regulatory hint 1741 * - send a user regulatory hint if applicable 1742 * 1743 * Device drivers that send a regulatory hint for a specific country 1744 * keep their own regulatory domain on wiphy->regd so that does does 1745 * not need to be remembered. 1746 */ 1747 static void restore_regulatory_settings(bool reset_user) 1748 { 1749 char alpha2[2]; 1750 struct reg_beacon *reg_beacon, *btmp; 1751 1752 mutex_lock(&cfg80211_mutex); 1753 mutex_lock(®_mutex); 1754 1755 reset_regdomains(); 1756 restore_alpha2(alpha2, reset_user); 1757 1758 /* Clear beacon hints */ 1759 spin_lock_bh(®_pending_beacons_lock); 1760 if (!list_empty(®_pending_beacons)) { 1761 list_for_each_entry_safe(reg_beacon, btmp, 1762 ®_pending_beacons, list) { 1763 list_del(®_beacon->list); 1764 kfree(reg_beacon); 1765 } 1766 } 1767 spin_unlock_bh(®_pending_beacons_lock); 1768 1769 if (!list_empty(®_beacon_list)) { 1770 list_for_each_entry_safe(reg_beacon, btmp, 1771 ®_beacon_list, list) { 1772 list_del(®_beacon->list); 1773 kfree(reg_beacon); 1774 } 1775 } 1776 1777 /* First restore to the basic regulatory settings */ 1778 cfg80211_regdomain = cfg80211_world_regdom; 1779 1780 mutex_unlock(®_mutex); 1781 mutex_unlock(&cfg80211_mutex); 1782 1783 regulatory_hint_core(cfg80211_regdomain->alpha2); 1784 1785 /* 1786 * This restores the ieee80211_regdom module parameter 1787 * preference or the last user requested regulatory 1788 * settings, user regulatory settings takes precedence. 1789 */ 1790 if (is_an_alpha2(alpha2)) 1791 regulatory_hint_user(user_alpha2); 1792 } 1793 1794 1795 void regulatory_hint_disconnect(void) 1796 { 1797 REG_DBG_PRINT("All devices are disconnected, going to " 1798 "restore regulatory settings\n"); 1799 restore_regulatory_settings(false); 1800 } 1801 1802 static bool freq_is_chan_12_13_14(u16 freq) 1803 { 1804 if (freq == ieee80211_channel_to_frequency(12) || 1805 freq == ieee80211_channel_to_frequency(13) || 1806 freq == ieee80211_channel_to_frequency(14)) 1807 return true; 1808 return false; 1809 } 1810 1811 int regulatory_hint_found_beacon(struct wiphy *wiphy, 1812 struct ieee80211_channel *beacon_chan, 1813 gfp_t gfp) 1814 { 1815 struct reg_beacon *reg_beacon; 1816 1817 if (likely((beacon_chan->beacon_found || 1818 (beacon_chan->flags & IEEE80211_CHAN_RADAR) || 1819 (beacon_chan->band == IEEE80211_BAND_2GHZ && 1820 !freq_is_chan_12_13_14(beacon_chan->center_freq))))) 1821 return 0; 1822 1823 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 1824 if (!reg_beacon) 1825 return -ENOMEM; 1826 1827 REG_DBG_PRINT("Found new beacon on " 1828 "frequency: %d MHz (Ch %d) on %s\n", 1829 beacon_chan->center_freq, 1830 ieee80211_frequency_to_channel(beacon_chan->center_freq), 1831 wiphy_name(wiphy)); 1832 1833 memcpy(®_beacon->chan, beacon_chan, 1834 sizeof(struct ieee80211_channel)); 1835 1836 1837 /* 1838 * Since we can be called from BH or and non-BH context 1839 * we must use spin_lock_bh() 1840 */ 1841 spin_lock_bh(®_pending_beacons_lock); 1842 list_add_tail(®_beacon->list, ®_pending_beacons); 1843 spin_unlock_bh(®_pending_beacons_lock); 1844 1845 schedule_work(®_work); 1846 1847 return 0; 1848 } 1849 1850 static void print_rd_rules(const struct ieee80211_regdomain *rd) 1851 { 1852 unsigned int i; 1853 const struct ieee80211_reg_rule *reg_rule = NULL; 1854 const struct ieee80211_freq_range *freq_range = NULL; 1855 const struct ieee80211_power_rule *power_rule = NULL; 1856 1857 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n"); 1858 1859 for (i = 0; i < rd->n_reg_rules; i++) { 1860 reg_rule = &rd->reg_rules[i]; 1861 freq_range = ®_rule->freq_range; 1862 power_rule = ®_rule->power_rule; 1863 1864 /* 1865 * There may not be documentation for max antenna gain 1866 * in certain regions 1867 */ 1868 if (power_rule->max_antenna_gain) 1869 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n", 1870 freq_range->start_freq_khz, 1871 freq_range->end_freq_khz, 1872 freq_range->max_bandwidth_khz, 1873 power_rule->max_antenna_gain, 1874 power_rule->max_eirp); 1875 else 1876 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n", 1877 freq_range->start_freq_khz, 1878 freq_range->end_freq_khz, 1879 freq_range->max_bandwidth_khz, 1880 power_rule->max_eirp); 1881 } 1882 } 1883 1884 static void print_regdomain(const struct ieee80211_regdomain *rd) 1885 { 1886 1887 if (is_intersected_alpha2(rd->alpha2)) { 1888 1889 if (last_request->initiator == 1890 NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1891 struct cfg80211_registered_device *rdev; 1892 rdev = cfg80211_rdev_by_wiphy_idx( 1893 last_request->wiphy_idx); 1894 if (rdev) { 1895 pr_info("Current regulatory domain updated by AP to: %c%c\n", 1896 rdev->country_ie_alpha2[0], 1897 rdev->country_ie_alpha2[1]); 1898 } else 1899 pr_info("Current regulatory domain intersected:\n"); 1900 } else 1901 pr_info("Current regulatory domain intersected:\n"); 1902 } else if (is_world_regdom(rd->alpha2)) 1903 pr_info("World regulatory domain updated:\n"); 1904 else { 1905 if (is_unknown_alpha2(rd->alpha2)) 1906 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); 1907 else 1908 pr_info("Regulatory domain changed to country: %c%c\n", 1909 rd->alpha2[0], rd->alpha2[1]); 1910 } 1911 print_rd_rules(rd); 1912 } 1913 1914 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 1915 { 1916 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 1917 print_rd_rules(rd); 1918 } 1919 1920 /* Takes ownership of rd only if it doesn't fail */ 1921 static int __set_regdom(const struct ieee80211_regdomain *rd) 1922 { 1923 const struct ieee80211_regdomain *intersected_rd = NULL; 1924 struct cfg80211_registered_device *rdev = NULL; 1925 struct wiphy *request_wiphy; 1926 /* Some basic sanity checks first */ 1927 1928 if (is_world_regdom(rd->alpha2)) { 1929 if (WARN_ON(!reg_is_valid_request(rd->alpha2))) 1930 return -EINVAL; 1931 update_world_regdomain(rd); 1932 return 0; 1933 } 1934 1935 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 1936 !is_unknown_alpha2(rd->alpha2)) 1937 return -EINVAL; 1938 1939 if (!last_request) 1940 return -EINVAL; 1941 1942 /* 1943 * Lets only bother proceeding on the same alpha2 if the current 1944 * rd is non static (it means CRDA was present and was used last) 1945 * and the pending request came in from a country IE 1946 */ 1947 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 1948 /* 1949 * If someone else asked us to change the rd lets only bother 1950 * checking if the alpha2 changes if CRDA was already called 1951 */ 1952 if (!regdom_changes(rd->alpha2)) 1953 return -EINVAL; 1954 } 1955 1956 /* 1957 * Now lets set the regulatory domain, update all driver channels 1958 * and finally inform them of what we have done, in case they want 1959 * to review or adjust their own settings based on their own 1960 * internal EEPROM data 1961 */ 1962 1963 if (WARN_ON(!reg_is_valid_request(rd->alpha2))) 1964 return -EINVAL; 1965 1966 if (!is_valid_rd(rd)) { 1967 pr_err("Invalid regulatory domain detected:\n"); 1968 print_regdomain_info(rd); 1969 return -EINVAL; 1970 } 1971 1972 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 1973 1974 if (!last_request->intersect) { 1975 int r; 1976 1977 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) { 1978 reset_regdomains(); 1979 cfg80211_regdomain = rd; 1980 return 0; 1981 } 1982 1983 /* 1984 * For a driver hint, lets copy the regulatory domain the 1985 * driver wanted to the wiphy to deal with conflicts 1986 */ 1987 1988 /* 1989 * Userspace could have sent two replies with only 1990 * one kernel request. 1991 */ 1992 if (request_wiphy->regd) 1993 return -EALREADY; 1994 1995 r = reg_copy_regd(&request_wiphy->regd, rd); 1996 if (r) 1997 return r; 1998 1999 reset_regdomains(); 2000 cfg80211_regdomain = rd; 2001 return 0; 2002 } 2003 2004 /* Intersection requires a bit more work */ 2005 2006 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2007 2008 intersected_rd = regdom_intersect(rd, cfg80211_regdomain); 2009 if (!intersected_rd) 2010 return -EINVAL; 2011 2012 /* 2013 * We can trash what CRDA provided now. 2014 * However if a driver requested this specific regulatory 2015 * domain we keep it for its private use 2016 */ 2017 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) 2018 request_wiphy->regd = rd; 2019 else 2020 kfree(rd); 2021 2022 rd = NULL; 2023 2024 reset_regdomains(); 2025 cfg80211_regdomain = intersected_rd; 2026 2027 return 0; 2028 } 2029 2030 if (!intersected_rd) 2031 return -EINVAL; 2032 2033 rdev = wiphy_to_dev(request_wiphy); 2034 2035 rdev->country_ie_alpha2[0] = rd->alpha2[0]; 2036 rdev->country_ie_alpha2[1] = rd->alpha2[1]; 2037 rdev->env = last_request->country_ie_env; 2038 2039 BUG_ON(intersected_rd == rd); 2040 2041 kfree(rd); 2042 rd = NULL; 2043 2044 reset_regdomains(); 2045 cfg80211_regdomain = intersected_rd; 2046 2047 return 0; 2048 } 2049 2050 2051 /* 2052 * Use this call to set the current regulatory domain. Conflicts with 2053 * multiple drivers can be ironed out later. Caller must've already 2054 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex 2055 */ 2056 int set_regdom(const struct ieee80211_regdomain *rd) 2057 { 2058 int r; 2059 2060 assert_cfg80211_lock(); 2061 2062 mutex_lock(®_mutex); 2063 2064 /* Note that this doesn't update the wiphys, this is done below */ 2065 r = __set_regdom(rd); 2066 if (r) { 2067 kfree(rd); 2068 mutex_unlock(®_mutex); 2069 return r; 2070 } 2071 2072 /* This would make this whole thing pointless */ 2073 if (!last_request->intersect) 2074 BUG_ON(rd != cfg80211_regdomain); 2075 2076 /* update all wiphys now with the new established regulatory domain */ 2077 update_all_wiphy_regulatory(last_request->initiator); 2078 2079 print_regdomain(cfg80211_regdomain); 2080 2081 nl80211_send_reg_change_event(last_request); 2082 2083 reg_set_request_processed(); 2084 2085 mutex_unlock(®_mutex); 2086 2087 return r; 2088 } 2089 2090 /* Caller must hold cfg80211_mutex */ 2091 void reg_device_remove(struct wiphy *wiphy) 2092 { 2093 struct wiphy *request_wiphy = NULL; 2094 2095 assert_cfg80211_lock(); 2096 2097 mutex_lock(®_mutex); 2098 2099 kfree(wiphy->regd); 2100 2101 if (last_request) 2102 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); 2103 2104 if (!request_wiphy || request_wiphy != wiphy) 2105 goto out; 2106 2107 last_request->wiphy_idx = WIPHY_IDX_STALE; 2108 last_request->country_ie_env = ENVIRON_ANY; 2109 out: 2110 mutex_unlock(®_mutex); 2111 } 2112 2113 int __init regulatory_init(void) 2114 { 2115 int err = 0; 2116 2117 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 2118 if (IS_ERR(reg_pdev)) 2119 return PTR_ERR(reg_pdev); 2120 2121 spin_lock_init(®_requests_lock); 2122 spin_lock_init(®_pending_beacons_lock); 2123 2124 cfg80211_regdomain = cfg80211_world_regdom; 2125 2126 user_alpha2[0] = '9'; 2127 user_alpha2[1] = '7'; 2128 2129 /* We always try to get an update for the static regdomain */ 2130 err = regulatory_hint_core(cfg80211_regdomain->alpha2); 2131 if (err) { 2132 if (err == -ENOMEM) 2133 return err; 2134 /* 2135 * N.B. kobject_uevent_env() can fail mainly for when we're out 2136 * memory which is handled and propagated appropriately above 2137 * but it can also fail during a netlink_broadcast() or during 2138 * early boot for call_usermodehelper(). For now treat these 2139 * errors as non-fatal. 2140 */ 2141 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 2142 #ifdef CONFIG_CFG80211_REG_DEBUG 2143 /* We want to find out exactly why when debugging */ 2144 WARN_ON(err); 2145 #endif 2146 } 2147 2148 /* 2149 * Finally, if the user set the module parameter treat it 2150 * as a user hint. 2151 */ 2152 if (!is_world_regdom(ieee80211_regdom)) 2153 regulatory_hint_user(ieee80211_regdom); 2154 2155 return 0; 2156 } 2157 2158 void /* __init_or_exit */ regulatory_exit(void) 2159 { 2160 struct regulatory_request *reg_request, *tmp; 2161 struct reg_beacon *reg_beacon, *btmp; 2162 2163 cancel_work_sync(®_work); 2164 2165 mutex_lock(&cfg80211_mutex); 2166 mutex_lock(®_mutex); 2167 2168 reset_regdomains(); 2169 2170 kfree(last_request); 2171 2172 platform_device_unregister(reg_pdev); 2173 2174 spin_lock_bh(®_pending_beacons_lock); 2175 if (!list_empty(®_pending_beacons)) { 2176 list_for_each_entry_safe(reg_beacon, btmp, 2177 ®_pending_beacons, list) { 2178 list_del(®_beacon->list); 2179 kfree(reg_beacon); 2180 } 2181 } 2182 spin_unlock_bh(®_pending_beacons_lock); 2183 2184 if (!list_empty(®_beacon_list)) { 2185 list_for_each_entry_safe(reg_beacon, btmp, 2186 ®_beacon_list, list) { 2187 list_del(®_beacon->list); 2188 kfree(reg_beacon); 2189 } 2190 } 2191 2192 spin_lock(®_requests_lock); 2193 if (!list_empty(®_requests_list)) { 2194 list_for_each_entry_safe(reg_request, tmp, 2195 ®_requests_list, list) { 2196 list_del(®_request->list); 2197 kfree(reg_request); 2198 } 2199 } 2200 spin_unlock(®_requests_lock); 2201 2202 mutex_unlock(®_mutex); 2203 mutex_unlock(&cfg80211_mutex); 2204 } 2205