1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2021 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static spinlock_t reg_indoor_lock; 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user, bool cached); 135 static void print_regdomain(const struct ieee80211_regdomain *rd); 136 137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 138 { 139 return rcu_dereference_rtnl(cfg80211_regdomain); 140 } 141 142 /* 143 * Returns the regulatory domain associated with the wiphy. 144 * 145 * Requires either RTNL or RCU protection 146 */ 147 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 148 { 149 return rcu_dereference_rtnl(wiphy->regd); 150 } 151 152 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 153 { 154 switch (dfs_region) { 155 case NL80211_DFS_UNSET: 156 return "unset"; 157 case NL80211_DFS_FCC: 158 return "FCC"; 159 case NL80211_DFS_ETSI: 160 return "ETSI"; 161 case NL80211_DFS_JP: 162 return "JP"; 163 } 164 return "Unknown"; 165 } 166 167 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 168 { 169 const struct ieee80211_regdomain *regd = NULL; 170 const struct ieee80211_regdomain *wiphy_regd = NULL; 171 172 regd = get_cfg80211_regdom(); 173 if (!wiphy) 174 goto out; 175 176 wiphy_regd = get_wiphy_regdom(wiphy); 177 if (!wiphy_regd) 178 goto out; 179 180 if (wiphy_regd->dfs_region == regd->dfs_region) 181 goto out; 182 183 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 184 dev_name(&wiphy->dev), 185 reg_dfs_region_str(wiphy_regd->dfs_region), 186 reg_dfs_region_str(regd->dfs_region)); 187 188 out: 189 return regd->dfs_region; 190 } 191 192 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 193 { 194 if (!r) 195 return; 196 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 197 } 198 199 static struct regulatory_request *get_last_request(void) 200 { 201 return rcu_dereference_rtnl(last_request); 202 } 203 204 /* Used to queue up regulatory hints */ 205 static LIST_HEAD(reg_requests_list); 206 static spinlock_t reg_requests_lock; 207 208 /* Used to queue up beacon hints for review */ 209 static LIST_HEAD(reg_pending_beacons); 210 static spinlock_t reg_pending_beacons_lock; 211 212 /* Used to keep track of processed beacon hints */ 213 static LIST_HEAD(reg_beacon_list); 214 215 struct reg_beacon { 216 struct list_head list; 217 struct ieee80211_channel chan; 218 }; 219 220 static void reg_check_chans_work(struct work_struct *work); 221 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 222 223 static void reg_todo(struct work_struct *work); 224 static DECLARE_WORK(reg_work, reg_todo); 225 226 /* We keep a static world regulatory domain in case of the absence of CRDA */ 227 static const struct ieee80211_regdomain world_regdom = { 228 .n_reg_rules = 8, 229 .alpha2 = "00", 230 .reg_rules = { 231 /* IEEE 802.11b/g, channels 1..11 */ 232 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 233 /* IEEE 802.11b/g, channels 12..13. */ 234 REG_RULE(2467-10, 2472+10, 20, 6, 20, 235 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 236 /* IEEE 802.11 channel 14 - Only JP enables 237 * this and for 802.11b only */ 238 REG_RULE(2484-10, 2484+10, 20, 6, 20, 239 NL80211_RRF_NO_IR | 240 NL80211_RRF_NO_OFDM), 241 /* IEEE 802.11a, channel 36..48 */ 242 REG_RULE(5180-10, 5240+10, 80, 6, 20, 243 NL80211_RRF_NO_IR | 244 NL80211_RRF_AUTO_BW), 245 246 /* IEEE 802.11a, channel 52..64 - DFS required */ 247 REG_RULE(5260-10, 5320+10, 80, 6, 20, 248 NL80211_RRF_NO_IR | 249 NL80211_RRF_AUTO_BW | 250 NL80211_RRF_DFS), 251 252 /* IEEE 802.11a, channel 100..144 - DFS required */ 253 REG_RULE(5500-10, 5720+10, 160, 6, 20, 254 NL80211_RRF_NO_IR | 255 NL80211_RRF_DFS), 256 257 /* IEEE 802.11a, channel 149..165 */ 258 REG_RULE(5745-10, 5825+10, 80, 6, 20, 259 NL80211_RRF_NO_IR), 260 261 /* IEEE 802.11ad (60GHz), channels 1..3 */ 262 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 263 } 264 }; 265 266 /* protected by RTNL */ 267 static const struct ieee80211_regdomain *cfg80211_world_regdom = 268 &world_regdom; 269 270 static char *ieee80211_regdom = "00"; 271 static char user_alpha2[2]; 272 static const struct ieee80211_regdomain *cfg80211_user_regdom; 273 274 module_param(ieee80211_regdom, charp, 0444); 275 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 276 277 static void reg_free_request(struct regulatory_request *request) 278 { 279 if (request == &core_request_world) 280 return; 281 282 if (request != get_last_request()) 283 kfree(request); 284 } 285 286 static void reg_free_last_request(void) 287 { 288 struct regulatory_request *lr = get_last_request(); 289 290 if (lr != &core_request_world && lr) 291 kfree_rcu(lr, rcu_head); 292 } 293 294 static void reg_update_last_request(struct regulatory_request *request) 295 { 296 struct regulatory_request *lr; 297 298 lr = get_last_request(); 299 if (lr == request) 300 return; 301 302 reg_free_last_request(); 303 rcu_assign_pointer(last_request, request); 304 } 305 306 static void reset_regdomains(bool full_reset, 307 const struct ieee80211_regdomain *new_regdom) 308 { 309 const struct ieee80211_regdomain *r; 310 311 ASSERT_RTNL(); 312 313 r = get_cfg80211_regdom(); 314 315 /* avoid freeing static information or freeing something twice */ 316 if (r == cfg80211_world_regdom) 317 r = NULL; 318 if (cfg80211_world_regdom == &world_regdom) 319 cfg80211_world_regdom = NULL; 320 if (r == &world_regdom) 321 r = NULL; 322 323 rcu_free_regdom(r); 324 rcu_free_regdom(cfg80211_world_regdom); 325 326 cfg80211_world_regdom = &world_regdom; 327 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 328 329 if (!full_reset) 330 return; 331 332 reg_update_last_request(&core_request_world); 333 } 334 335 /* 336 * Dynamic world regulatory domain requested by the wireless 337 * core upon initialization 338 */ 339 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 340 { 341 struct regulatory_request *lr; 342 343 lr = get_last_request(); 344 345 WARN_ON(!lr); 346 347 reset_regdomains(false, rd); 348 349 cfg80211_world_regdom = rd; 350 } 351 352 bool is_world_regdom(const char *alpha2) 353 { 354 if (!alpha2) 355 return false; 356 return alpha2[0] == '0' && alpha2[1] == '0'; 357 } 358 359 static bool is_alpha2_set(const char *alpha2) 360 { 361 if (!alpha2) 362 return false; 363 return alpha2[0] && alpha2[1]; 364 } 365 366 static bool is_unknown_alpha2(const char *alpha2) 367 { 368 if (!alpha2) 369 return false; 370 /* 371 * Special case where regulatory domain was built by driver 372 * but a specific alpha2 cannot be determined 373 */ 374 return alpha2[0] == '9' && alpha2[1] == '9'; 375 } 376 377 static bool is_intersected_alpha2(const char *alpha2) 378 { 379 if (!alpha2) 380 return false; 381 /* 382 * Special case where regulatory domain is the 383 * result of an intersection between two regulatory domain 384 * structures 385 */ 386 return alpha2[0] == '9' && alpha2[1] == '8'; 387 } 388 389 static bool is_an_alpha2(const char *alpha2) 390 { 391 if (!alpha2) 392 return false; 393 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 394 } 395 396 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 397 { 398 if (!alpha2_x || !alpha2_y) 399 return false; 400 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 401 } 402 403 static bool regdom_changes(const char *alpha2) 404 { 405 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 406 407 if (!r) 408 return true; 409 return !alpha2_equal(r->alpha2, alpha2); 410 } 411 412 /* 413 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 414 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 415 * has ever been issued. 416 */ 417 static bool is_user_regdom_saved(void) 418 { 419 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 420 return false; 421 422 /* This would indicate a mistake on the design */ 423 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 424 "Unexpected user alpha2: %c%c\n", 425 user_alpha2[0], user_alpha2[1])) 426 return false; 427 428 return true; 429 } 430 431 static const struct ieee80211_regdomain * 432 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 433 { 434 struct ieee80211_regdomain *regd; 435 unsigned int i; 436 437 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 438 GFP_KERNEL); 439 if (!regd) 440 return ERR_PTR(-ENOMEM); 441 442 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 443 444 for (i = 0; i < src_regd->n_reg_rules; i++) 445 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 446 sizeof(struct ieee80211_reg_rule)); 447 448 return regd; 449 } 450 451 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 452 { 453 ASSERT_RTNL(); 454 455 if (!IS_ERR(cfg80211_user_regdom)) 456 kfree(cfg80211_user_regdom); 457 cfg80211_user_regdom = reg_copy_regd(rd); 458 } 459 460 struct reg_regdb_apply_request { 461 struct list_head list; 462 const struct ieee80211_regdomain *regdom; 463 }; 464 465 static LIST_HEAD(reg_regdb_apply_list); 466 static DEFINE_MUTEX(reg_regdb_apply_mutex); 467 468 static void reg_regdb_apply(struct work_struct *work) 469 { 470 struct reg_regdb_apply_request *request; 471 472 rtnl_lock(); 473 474 mutex_lock(®_regdb_apply_mutex); 475 while (!list_empty(®_regdb_apply_list)) { 476 request = list_first_entry(®_regdb_apply_list, 477 struct reg_regdb_apply_request, 478 list); 479 list_del(&request->list); 480 481 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 482 kfree(request); 483 } 484 mutex_unlock(®_regdb_apply_mutex); 485 486 rtnl_unlock(); 487 } 488 489 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 490 491 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 492 { 493 struct reg_regdb_apply_request *request; 494 495 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 496 if (!request) { 497 kfree(regdom); 498 return -ENOMEM; 499 } 500 501 request->regdom = regdom; 502 503 mutex_lock(®_regdb_apply_mutex); 504 list_add_tail(&request->list, ®_regdb_apply_list); 505 mutex_unlock(®_regdb_apply_mutex); 506 507 schedule_work(®_regdb_work); 508 return 0; 509 } 510 511 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 512 /* Max number of consecutive attempts to communicate with CRDA */ 513 #define REG_MAX_CRDA_TIMEOUTS 10 514 515 static u32 reg_crda_timeouts; 516 517 static void crda_timeout_work(struct work_struct *work); 518 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 519 520 static void crda_timeout_work(struct work_struct *work) 521 { 522 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 523 rtnl_lock(); 524 reg_crda_timeouts++; 525 restore_regulatory_settings(true, false); 526 rtnl_unlock(); 527 } 528 529 static void cancel_crda_timeout(void) 530 { 531 cancel_delayed_work(&crda_timeout); 532 } 533 534 static void cancel_crda_timeout_sync(void) 535 { 536 cancel_delayed_work_sync(&crda_timeout); 537 } 538 539 static void reset_crda_timeouts(void) 540 { 541 reg_crda_timeouts = 0; 542 } 543 544 /* 545 * This lets us keep regulatory code which is updated on a regulatory 546 * basis in userspace. 547 */ 548 static int call_crda(const char *alpha2) 549 { 550 char country[12]; 551 char *env[] = { country, NULL }; 552 int ret; 553 554 snprintf(country, sizeof(country), "COUNTRY=%c%c", 555 alpha2[0], alpha2[1]); 556 557 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 558 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 559 return -EINVAL; 560 } 561 562 if (!is_world_regdom((char *) alpha2)) 563 pr_debug("Calling CRDA for country: %c%c\n", 564 alpha2[0], alpha2[1]); 565 else 566 pr_debug("Calling CRDA to update world regulatory domain\n"); 567 568 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 569 if (ret) 570 return ret; 571 572 queue_delayed_work(system_power_efficient_wq, 573 &crda_timeout, msecs_to_jiffies(3142)); 574 return 0; 575 } 576 #else 577 static inline void cancel_crda_timeout(void) {} 578 static inline void cancel_crda_timeout_sync(void) {} 579 static inline void reset_crda_timeouts(void) {} 580 static inline int call_crda(const char *alpha2) 581 { 582 return -ENODATA; 583 } 584 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 585 586 /* code to directly load a firmware database through request_firmware */ 587 static const struct fwdb_header *regdb; 588 589 struct fwdb_country { 590 u8 alpha2[2]; 591 __be16 coll_ptr; 592 /* this struct cannot be extended */ 593 } __packed __aligned(4); 594 595 struct fwdb_collection { 596 u8 len; 597 u8 n_rules; 598 u8 dfs_region; 599 /* no optional data yet */ 600 /* aligned to 2, then followed by __be16 array of rule pointers */ 601 } __packed __aligned(4); 602 603 enum fwdb_flags { 604 FWDB_FLAG_NO_OFDM = BIT(0), 605 FWDB_FLAG_NO_OUTDOOR = BIT(1), 606 FWDB_FLAG_DFS = BIT(2), 607 FWDB_FLAG_NO_IR = BIT(3), 608 FWDB_FLAG_AUTO_BW = BIT(4), 609 }; 610 611 struct fwdb_wmm_ac { 612 u8 ecw; 613 u8 aifsn; 614 __be16 cot; 615 } __packed; 616 617 struct fwdb_wmm_rule { 618 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 619 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 620 } __packed; 621 622 struct fwdb_rule { 623 u8 len; 624 u8 flags; 625 __be16 max_eirp; 626 __be32 start, end, max_bw; 627 /* start of optional data */ 628 __be16 cac_timeout; 629 __be16 wmm_ptr; 630 } __packed __aligned(4); 631 632 #define FWDB_MAGIC 0x52474442 633 #define FWDB_VERSION 20 634 635 struct fwdb_header { 636 __be32 magic; 637 __be32 version; 638 struct fwdb_country country[]; 639 } __packed __aligned(4); 640 641 static int ecw2cw(int ecw) 642 { 643 return (1 << ecw) - 1; 644 } 645 646 static bool valid_wmm(struct fwdb_wmm_rule *rule) 647 { 648 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 649 int i; 650 651 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 652 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 653 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 654 u8 aifsn = ac[i].aifsn; 655 656 if (cw_min >= cw_max) 657 return false; 658 659 if (aifsn < 1) 660 return false; 661 } 662 663 return true; 664 } 665 666 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 667 { 668 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 669 670 if ((u8 *)rule + sizeof(rule->len) > data + size) 671 return false; 672 673 /* mandatory fields */ 674 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 675 return false; 676 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 677 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 678 struct fwdb_wmm_rule *wmm; 679 680 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 681 return false; 682 683 wmm = (void *)(data + wmm_ptr); 684 685 if (!valid_wmm(wmm)) 686 return false; 687 } 688 return true; 689 } 690 691 static bool valid_country(const u8 *data, unsigned int size, 692 const struct fwdb_country *country) 693 { 694 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 695 struct fwdb_collection *coll = (void *)(data + ptr); 696 __be16 *rules_ptr; 697 unsigned int i; 698 699 /* make sure we can read len/n_rules */ 700 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 701 return false; 702 703 /* make sure base struct and all rules fit */ 704 if ((u8 *)coll + ALIGN(coll->len, 2) + 705 (coll->n_rules * 2) > data + size) 706 return false; 707 708 /* mandatory fields must exist */ 709 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 710 return false; 711 712 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 713 714 for (i = 0; i < coll->n_rules; i++) { 715 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 716 717 if (!valid_rule(data, size, rule_ptr)) 718 return false; 719 } 720 721 return true; 722 } 723 724 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 725 static struct key *builtin_regdb_keys; 726 727 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen) 728 { 729 const u8 *end = p + buflen; 730 size_t plen; 731 key_ref_t key; 732 733 while (p < end) { 734 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more 735 * than 256 bytes in size. 736 */ 737 if (end - p < 4) 738 goto dodgy_cert; 739 if (p[0] != 0x30 && 740 p[1] != 0x82) 741 goto dodgy_cert; 742 plen = (p[2] << 8) | p[3]; 743 plen += 4; 744 if (plen > end - p) 745 goto dodgy_cert; 746 747 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1), 748 "asymmetric", NULL, p, plen, 749 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 750 KEY_USR_VIEW | KEY_USR_READ), 751 KEY_ALLOC_NOT_IN_QUOTA | 752 KEY_ALLOC_BUILT_IN | 753 KEY_ALLOC_BYPASS_RESTRICTION); 754 if (IS_ERR(key)) { 755 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n", 756 PTR_ERR(key)); 757 } else { 758 pr_notice("Loaded X.509 cert '%s'\n", 759 key_ref_to_ptr(key)->description); 760 key_ref_put(key); 761 } 762 p += plen; 763 } 764 765 return; 766 767 dodgy_cert: 768 pr_err("Problem parsing in-kernel X.509 certificate list\n"); 769 } 770 771 static int __init load_builtin_regdb_keys(void) 772 { 773 builtin_regdb_keys = 774 keyring_alloc(".builtin_regdb_keys", 775 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 776 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 777 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 778 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 779 if (IS_ERR(builtin_regdb_keys)) 780 return PTR_ERR(builtin_regdb_keys); 781 782 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 783 784 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 785 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len); 786 #endif 787 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 788 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 789 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len); 790 #endif 791 792 return 0; 793 } 794 795 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 796 { 797 const struct firmware *sig; 798 bool result; 799 800 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 801 return false; 802 803 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 804 builtin_regdb_keys, 805 VERIFYING_UNSPECIFIED_SIGNATURE, 806 NULL, NULL) == 0; 807 808 release_firmware(sig); 809 810 return result; 811 } 812 813 static void free_regdb_keyring(void) 814 { 815 key_put(builtin_regdb_keys); 816 } 817 #else 818 static int load_builtin_regdb_keys(void) 819 { 820 return 0; 821 } 822 823 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 824 { 825 return true; 826 } 827 828 static void free_regdb_keyring(void) 829 { 830 } 831 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 832 833 static bool valid_regdb(const u8 *data, unsigned int size) 834 { 835 const struct fwdb_header *hdr = (void *)data; 836 const struct fwdb_country *country; 837 838 if (size < sizeof(*hdr)) 839 return false; 840 841 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 842 return false; 843 844 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 845 return false; 846 847 if (!regdb_has_valid_signature(data, size)) 848 return false; 849 850 country = &hdr->country[0]; 851 while ((u8 *)(country + 1) <= data + size) { 852 if (!country->coll_ptr) 853 break; 854 if (!valid_country(data, size, country)) 855 return false; 856 country++; 857 } 858 859 return true; 860 } 861 862 static void set_wmm_rule(const struct fwdb_header *db, 863 const struct fwdb_country *country, 864 const struct fwdb_rule *rule, 865 struct ieee80211_reg_rule *rrule) 866 { 867 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 868 struct fwdb_wmm_rule *wmm; 869 unsigned int i, wmm_ptr; 870 871 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 872 wmm = (void *)((u8 *)db + wmm_ptr); 873 874 if (!valid_wmm(wmm)) { 875 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 876 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 877 country->alpha2[0], country->alpha2[1]); 878 return; 879 } 880 881 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 882 wmm_rule->client[i].cw_min = 883 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 884 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 885 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 886 wmm_rule->client[i].cot = 887 1000 * be16_to_cpu(wmm->client[i].cot); 888 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 889 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 890 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 891 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 892 } 893 894 rrule->has_wmm = true; 895 } 896 897 static int __regdb_query_wmm(const struct fwdb_header *db, 898 const struct fwdb_country *country, int freq, 899 struct ieee80211_reg_rule *rrule) 900 { 901 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 902 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 903 int i; 904 905 for (i = 0; i < coll->n_rules; i++) { 906 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 907 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 908 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 909 910 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 911 continue; 912 913 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 914 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 915 set_wmm_rule(db, country, rule, rrule); 916 return 0; 917 } 918 } 919 920 return -ENODATA; 921 } 922 923 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 924 { 925 const struct fwdb_header *hdr = regdb; 926 const struct fwdb_country *country; 927 928 if (!regdb) 929 return -ENODATA; 930 931 if (IS_ERR(regdb)) 932 return PTR_ERR(regdb); 933 934 country = &hdr->country[0]; 935 while (country->coll_ptr) { 936 if (alpha2_equal(alpha2, country->alpha2)) 937 return __regdb_query_wmm(regdb, country, freq, rule); 938 939 country++; 940 } 941 942 return -ENODATA; 943 } 944 EXPORT_SYMBOL(reg_query_regdb_wmm); 945 946 static int regdb_query_country(const struct fwdb_header *db, 947 const struct fwdb_country *country) 948 { 949 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 950 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 951 struct ieee80211_regdomain *regdom; 952 unsigned int i; 953 954 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 955 GFP_KERNEL); 956 if (!regdom) 957 return -ENOMEM; 958 959 regdom->n_reg_rules = coll->n_rules; 960 regdom->alpha2[0] = country->alpha2[0]; 961 regdom->alpha2[1] = country->alpha2[1]; 962 regdom->dfs_region = coll->dfs_region; 963 964 for (i = 0; i < regdom->n_reg_rules; i++) { 965 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 966 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 967 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 968 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 969 970 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 971 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 972 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 973 974 rrule->power_rule.max_antenna_gain = 0; 975 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 976 977 rrule->flags = 0; 978 if (rule->flags & FWDB_FLAG_NO_OFDM) 979 rrule->flags |= NL80211_RRF_NO_OFDM; 980 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 981 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 982 if (rule->flags & FWDB_FLAG_DFS) 983 rrule->flags |= NL80211_RRF_DFS; 984 if (rule->flags & FWDB_FLAG_NO_IR) 985 rrule->flags |= NL80211_RRF_NO_IR; 986 if (rule->flags & FWDB_FLAG_AUTO_BW) 987 rrule->flags |= NL80211_RRF_AUTO_BW; 988 989 rrule->dfs_cac_ms = 0; 990 991 /* handle optional data */ 992 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 993 rrule->dfs_cac_ms = 994 1000 * be16_to_cpu(rule->cac_timeout); 995 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 996 set_wmm_rule(db, country, rule, rrule); 997 } 998 999 return reg_schedule_apply(regdom); 1000 } 1001 1002 static int query_regdb(const char *alpha2) 1003 { 1004 const struct fwdb_header *hdr = regdb; 1005 const struct fwdb_country *country; 1006 1007 ASSERT_RTNL(); 1008 1009 if (IS_ERR(regdb)) 1010 return PTR_ERR(regdb); 1011 1012 country = &hdr->country[0]; 1013 while (country->coll_ptr) { 1014 if (alpha2_equal(alpha2, country->alpha2)) 1015 return regdb_query_country(regdb, country); 1016 country++; 1017 } 1018 1019 return -ENODATA; 1020 } 1021 1022 static void regdb_fw_cb(const struct firmware *fw, void *context) 1023 { 1024 int set_error = 0; 1025 bool restore = true; 1026 void *db; 1027 1028 if (!fw) { 1029 pr_info("failed to load regulatory.db\n"); 1030 set_error = -ENODATA; 1031 } else if (!valid_regdb(fw->data, fw->size)) { 1032 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1033 set_error = -EINVAL; 1034 } 1035 1036 rtnl_lock(); 1037 if (regdb && !IS_ERR(regdb)) { 1038 /* negative case - a bug 1039 * positive case - can happen due to race in case of multiple cb's in 1040 * queue, due to usage of asynchronous callback 1041 * 1042 * Either case, just restore and free new db. 1043 */ 1044 } else if (set_error) { 1045 regdb = ERR_PTR(set_error); 1046 } else if (fw) { 1047 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1048 if (db) { 1049 regdb = db; 1050 restore = context && query_regdb(context); 1051 } else { 1052 restore = true; 1053 } 1054 } 1055 1056 if (restore) 1057 restore_regulatory_settings(true, false); 1058 1059 rtnl_unlock(); 1060 1061 kfree(context); 1062 1063 release_firmware(fw); 1064 } 1065 1066 static int query_regdb_file(const char *alpha2) 1067 { 1068 ASSERT_RTNL(); 1069 1070 if (regdb) 1071 return query_regdb(alpha2); 1072 1073 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1074 if (!alpha2) 1075 return -ENOMEM; 1076 1077 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1078 ®_pdev->dev, GFP_KERNEL, 1079 (void *)alpha2, regdb_fw_cb); 1080 } 1081 1082 int reg_reload_regdb(void) 1083 { 1084 const struct firmware *fw; 1085 void *db; 1086 int err; 1087 1088 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1089 if (err) 1090 return err; 1091 1092 if (!valid_regdb(fw->data, fw->size)) { 1093 err = -ENODATA; 1094 goto out; 1095 } 1096 1097 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1098 if (!db) { 1099 err = -ENOMEM; 1100 goto out; 1101 } 1102 1103 rtnl_lock(); 1104 if (!IS_ERR_OR_NULL(regdb)) 1105 kfree(regdb); 1106 regdb = db; 1107 rtnl_unlock(); 1108 1109 out: 1110 release_firmware(fw); 1111 return err; 1112 } 1113 1114 static bool reg_query_database(struct regulatory_request *request) 1115 { 1116 if (query_regdb_file(request->alpha2) == 0) 1117 return true; 1118 1119 if (call_crda(request->alpha2) == 0) 1120 return true; 1121 1122 return false; 1123 } 1124 1125 bool reg_is_valid_request(const char *alpha2) 1126 { 1127 struct regulatory_request *lr = get_last_request(); 1128 1129 if (!lr || lr->processed) 1130 return false; 1131 1132 return alpha2_equal(lr->alpha2, alpha2); 1133 } 1134 1135 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1136 { 1137 struct regulatory_request *lr = get_last_request(); 1138 1139 /* 1140 * Follow the driver's regulatory domain, if present, unless a country 1141 * IE has been processed or a user wants to help complaince further 1142 */ 1143 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1144 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1145 wiphy->regd) 1146 return get_wiphy_regdom(wiphy); 1147 1148 return get_cfg80211_regdom(); 1149 } 1150 1151 static unsigned int 1152 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1153 const struct ieee80211_reg_rule *rule) 1154 { 1155 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1156 const struct ieee80211_freq_range *freq_range_tmp; 1157 const struct ieee80211_reg_rule *tmp; 1158 u32 start_freq, end_freq, idx, no; 1159 1160 for (idx = 0; idx < rd->n_reg_rules; idx++) 1161 if (rule == &rd->reg_rules[idx]) 1162 break; 1163 1164 if (idx == rd->n_reg_rules) 1165 return 0; 1166 1167 /* get start_freq */ 1168 no = idx; 1169 1170 while (no) { 1171 tmp = &rd->reg_rules[--no]; 1172 freq_range_tmp = &tmp->freq_range; 1173 1174 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1175 break; 1176 1177 freq_range = freq_range_tmp; 1178 } 1179 1180 start_freq = freq_range->start_freq_khz; 1181 1182 /* get end_freq */ 1183 freq_range = &rule->freq_range; 1184 no = idx; 1185 1186 while (no < rd->n_reg_rules - 1) { 1187 tmp = &rd->reg_rules[++no]; 1188 freq_range_tmp = &tmp->freq_range; 1189 1190 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1191 break; 1192 1193 freq_range = freq_range_tmp; 1194 } 1195 1196 end_freq = freq_range->end_freq_khz; 1197 1198 return end_freq - start_freq; 1199 } 1200 1201 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1202 const struct ieee80211_reg_rule *rule) 1203 { 1204 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1205 1206 if (rule->flags & NL80211_RRF_NO_160MHZ) 1207 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1208 if (rule->flags & NL80211_RRF_NO_80MHZ) 1209 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1210 1211 /* 1212 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1213 * are not allowed. 1214 */ 1215 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1216 rule->flags & NL80211_RRF_NO_HT40PLUS) 1217 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1218 1219 return bw; 1220 } 1221 1222 /* Sanity check on a regulatory rule */ 1223 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1224 { 1225 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1226 u32 freq_diff; 1227 1228 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1229 return false; 1230 1231 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1232 return false; 1233 1234 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1235 1236 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1237 freq_range->max_bandwidth_khz > freq_diff) 1238 return false; 1239 1240 return true; 1241 } 1242 1243 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1244 { 1245 const struct ieee80211_reg_rule *reg_rule = NULL; 1246 unsigned int i; 1247 1248 if (!rd->n_reg_rules) 1249 return false; 1250 1251 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1252 return false; 1253 1254 for (i = 0; i < rd->n_reg_rules; i++) { 1255 reg_rule = &rd->reg_rules[i]; 1256 if (!is_valid_reg_rule(reg_rule)) 1257 return false; 1258 } 1259 1260 return true; 1261 } 1262 1263 /** 1264 * freq_in_rule_band - tells us if a frequency is in a frequency band 1265 * @freq_range: frequency rule we want to query 1266 * @freq_khz: frequency we are inquiring about 1267 * 1268 * This lets us know if a specific frequency rule is or is not relevant to 1269 * a specific frequency's band. Bands are device specific and artificial 1270 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1271 * however it is safe for now to assume that a frequency rule should not be 1272 * part of a frequency's band if the start freq or end freq are off by more 1273 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1274 * 60 GHz band. 1275 * This resolution can be lowered and should be considered as we add 1276 * regulatory rule support for other "bands". 1277 **/ 1278 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1279 u32 freq_khz) 1280 { 1281 #define ONE_GHZ_IN_KHZ 1000000 1282 /* 1283 * From 802.11ad: directional multi-gigabit (DMG): 1284 * Pertaining to operation in a frequency band containing a channel 1285 * with the Channel starting frequency above 45 GHz. 1286 */ 1287 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1288 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1289 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1290 return true; 1291 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1292 return true; 1293 return false; 1294 #undef ONE_GHZ_IN_KHZ 1295 } 1296 1297 /* 1298 * Later on we can perhaps use the more restrictive DFS 1299 * region but we don't have information for that yet so 1300 * for now simply disallow conflicts. 1301 */ 1302 static enum nl80211_dfs_regions 1303 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1304 const enum nl80211_dfs_regions dfs_region2) 1305 { 1306 if (dfs_region1 != dfs_region2) 1307 return NL80211_DFS_UNSET; 1308 return dfs_region1; 1309 } 1310 1311 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1312 const struct ieee80211_wmm_ac *wmm_ac2, 1313 struct ieee80211_wmm_ac *intersect) 1314 { 1315 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1316 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1317 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1318 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1319 } 1320 1321 /* 1322 * Helper for regdom_intersect(), this does the real 1323 * mathematical intersection fun 1324 */ 1325 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1326 const struct ieee80211_regdomain *rd2, 1327 const struct ieee80211_reg_rule *rule1, 1328 const struct ieee80211_reg_rule *rule2, 1329 struct ieee80211_reg_rule *intersected_rule) 1330 { 1331 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1332 struct ieee80211_freq_range *freq_range; 1333 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1334 struct ieee80211_power_rule *power_rule; 1335 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1336 struct ieee80211_wmm_rule *wmm_rule; 1337 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1338 1339 freq_range1 = &rule1->freq_range; 1340 freq_range2 = &rule2->freq_range; 1341 freq_range = &intersected_rule->freq_range; 1342 1343 power_rule1 = &rule1->power_rule; 1344 power_rule2 = &rule2->power_rule; 1345 power_rule = &intersected_rule->power_rule; 1346 1347 wmm_rule1 = &rule1->wmm_rule; 1348 wmm_rule2 = &rule2->wmm_rule; 1349 wmm_rule = &intersected_rule->wmm_rule; 1350 1351 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1352 freq_range2->start_freq_khz); 1353 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1354 freq_range2->end_freq_khz); 1355 1356 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1357 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1358 1359 if (rule1->flags & NL80211_RRF_AUTO_BW) 1360 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1361 if (rule2->flags & NL80211_RRF_AUTO_BW) 1362 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1363 1364 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1365 1366 intersected_rule->flags = rule1->flags | rule2->flags; 1367 1368 /* 1369 * In case NL80211_RRF_AUTO_BW requested for both rules 1370 * set AUTO_BW in intersected rule also. Next we will 1371 * calculate BW correctly in handle_channel function. 1372 * In other case remove AUTO_BW flag while we calculate 1373 * maximum bandwidth correctly and auto calculation is 1374 * not required. 1375 */ 1376 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1377 (rule2->flags & NL80211_RRF_AUTO_BW)) 1378 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1379 else 1380 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1381 1382 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1383 if (freq_range->max_bandwidth_khz > freq_diff) 1384 freq_range->max_bandwidth_khz = freq_diff; 1385 1386 power_rule->max_eirp = min(power_rule1->max_eirp, 1387 power_rule2->max_eirp); 1388 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1389 power_rule2->max_antenna_gain); 1390 1391 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1392 rule2->dfs_cac_ms); 1393 1394 if (rule1->has_wmm && rule2->has_wmm) { 1395 u8 ac; 1396 1397 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1398 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1399 &wmm_rule2->client[ac], 1400 &wmm_rule->client[ac]); 1401 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1402 &wmm_rule2->ap[ac], 1403 &wmm_rule->ap[ac]); 1404 } 1405 1406 intersected_rule->has_wmm = true; 1407 } else if (rule1->has_wmm) { 1408 *wmm_rule = *wmm_rule1; 1409 intersected_rule->has_wmm = true; 1410 } else if (rule2->has_wmm) { 1411 *wmm_rule = *wmm_rule2; 1412 intersected_rule->has_wmm = true; 1413 } else { 1414 intersected_rule->has_wmm = false; 1415 } 1416 1417 if (!is_valid_reg_rule(intersected_rule)) 1418 return -EINVAL; 1419 1420 return 0; 1421 } 1422 1423 /* check whether old rule contains new rule */ 1424 static bool rule_contains(struct ieee80211_reg_rule *r1, 1425 struct ieee80211_reg_rule *r2) 1426 { 1427 /* for simplicity, currently consider only same flags */ 1428 if (r1->flags != r2->flags) 1429 return false; 1430 1431 /* verify r1 is more restrictive */ 1432 if ((r1->power_rule.max_antenna_gain > 1433 r2->power_rule.max_antenna_gain) || 1434 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1435 return false; 1436 1437 /* make sure r2's range is contained within r1 */ 1438 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1439 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1440 return false; 1441 1442 /* and finally verify that r1.max_bw >= r2.max_bw */ 1443 if (r1->freq_range.max_bandwidth_khz < 1444 r2->freq_range.max_bandwidth_khz) 1445 return false; 1446 1447 return true; 1448 } 1449 1450 /* add or extend current rules. do nothing if rule is already contained */ 1451 static void add_rule(struct ieee80211_reg_rule *rule, 1452 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1453 { 1454 struct ieee80211_reg_rule *tmp_rule; 1455 int i; 1456 1457 for (i = 0; i < *n_rules; i++) { 1458 tmp_rule = ®_rules[i]; 1459 /* rule is already contained - do nothing */ 1460 if (rule_contains(tmp_rule, rule)) 1461 return; 1462 1463 /* extend rule if possible */ 1464 if (rule_contains(rule, tmp_rule)) { 1465 memcpy(tmp_rule, rule, sizeof(*rule)); 1466 return; 1467 } 1468 } 1469 1470 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1471 (*n_rules)++; 1472 } 1473 1474 /** 1475 * regdom_intersect - do the intersection between two regulatory domains 1476 * @rd1: first regulatory domain 1477 * @rd2: second regulatory domain 1478 * 1479 * Use this function to get the intersection between two regulatory domains. 1480 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1481 * as no one single alpha2 can represent this regulatory domain. 1482 * 1483 * Returns a pointer to the regulatory domain structure which will hold the 1484 * resulting intersection of rules between rd1 and rd2. We will 1485 * kzalloc() this structure for you. 1486 */ 1487 static struct ieee80211_regdomain * 1488 regdom_intersect(const struct ieee80211_regdomain *rd1, 1489 const struct ieee80211_regdomain *rd2) 1490 { 1491 int r; 1492 unsigned int x, y; 1493 unsigned int num_rules = 0; 1494 const struct ieee80211_reg_rule *rule1, *rule2; 1495 struct ieee80211_reg_rule intersected_rule; 1496 struct ieee80211_regdomain *rd; 1497 1498 if (!rd1 || !rd2) 1499 return NULL; 1500 1501 /* 1502 * First we get a count of the rules we'll need, then we actually 1503 * build them. This is to so we can malloc() and free() a 1504 * regdomain once. The reason we use reg_rules_intersect() here 1505 * is it will return -EINVAL if the rule computed makes no sense. 1506 * All rules that do check out OK are valid. 1507 */ 1508 1509 for (x = 0; x < rd1->n_reg_rules; x++) { 1510 rule1 = &rd1->reg_rules[x]; 1511 for (y = 0; y < rd2->n_reg_rules; y++) { 1512 rule2 = &rd2->reg_rules[y]; 1513 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1514 &intersected_rule)) 1515 num_rules++; 1516 } 1517 } 1518 1519 if (!num_rules) 1520 return NULL; 1521 1522 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1523 if (!rd) 1524 return NULL; 1525 1526 for (x = 0; x < rd1->n_reg_rules; x++) { 1527 rule1 = &rd1->reg_rules[x]; 1528 for (y = 0; y < rd2->n_reg_rules; y++) { 1529 rule2 = &rd2->reg_rules[y]; 1530 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1531 &intersected_rule); 1532 /* 1533 * No need to memset here the intersected rule here as 1534 * we're not using the stack anymore 1535 */ 1536 if (r) 1537 continue; 1538 1539 add_rule(&intersected_rule, rd->reg_rules, 1540 &rd->n_reg_rules); 1541 } 1542 } 1543 1544 rd->alpha2[0] = '9'; 1545 rd->alpha2[1] = '8'; 1546 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1547 rd2->dfs_region); 1548 1549 return rd; 1550 } 1551 1552 /* 1553 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1554 * want to just have the channel structure use these 1555 */ 1556 static u32 map_regdom_flags(u32 rd_flags) 1557 { 1558 u32 channel_flags = 0; 1559 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1560 channel_flags |= IEEE80211_CHAN_NO_IR; 1561 if (rd_flags & NL80211_RRF_DFS) 1562 channel_flags |= IEEE80211_CHAN_RADAR; 1563 if (rd_flags & NL80211_RRF_NO_OFDM) 1564 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1565 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1566 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1567 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1568 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1569 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1570 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1571 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1572 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1573 if (rd_flags & NL80211_RRF_NO_80MHZ) 1574 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1575 if (rd_flags & NL80211_RRF_NO_160MHZ) 1576 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1577 if (rd_flags & NL80211_RRF_NO_HE) 1578 channel_flags |= IEEE80211_CHAN_NO_HE; 1579 return channel_flags; 1580 } 1581 1582 static const struct ieee80211_reg_rule * 1583 freq_reg_info_regd(u32 center_freq, 1584 const struct ieee80211_regdomain *regd, u32 bw) 1585 { 1586 int i; 1587 bool band_rule_found = false; 1588 bool bw_fits = false; 1589 1590 if (!regd) 1591 return ERR_PTR(-EINVAL); 1592 1593 for (i = 0; i < regd->n_reg_rules; i++) { 1594 const struct ieee80211_reg_rule *rr; 1595 const struct ieee80211_freq_range *fr = NULL; 1596 1597 rr = ®d->reg_rules[i]; 1598 fr = &rr->freq_range; 1599 1600 /* 1601 * We only need to know if one frequency rule was 1602 * in center_freq's band, that's enough, so let's 1603 * not overwrite it once found 1604 */ 1605 if (!band_rule_found) 1606 band_rule_found = freq_in_rule_band(fr, center_freq); 1607 1608 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1609 1610 if (band_rule_found && bw_fits) 1611 return rr; 1612 } 1613 1614 if (!band_rule_found) 1615 return ERR_PTR(-ERANGE); 1616 1617 return ERR_PTR(-EINVAL); 1618 } 1619 1620 static const struct ieee80211_reg_rule * 1621 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1622 { 1623 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1624 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20}; 1625 const struct ieee80211_reg_rule *reg_rule; 1626 int i = ARRAY_SIZE(bws) - 1; 1627 u32 bw; 1628 1629 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) { 1630 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1631 if (!IS_ERR(reg_rule)) 1632 return reg_rule; 1633 } 1634 1635 return reg_rule; 1636 } 1637 1638 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1639 u32 center_freq) 1640 { 1641 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20; 1642 1643 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw)); 1644 } 1645 EXPORT_SYMBOL(freq_reg_info); 1646 1647 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1648 { 1649 switch (initiator) { 1650 case NL80211_REGDOM_SET_BY_CORE: 1651 return "core"; 1652 case NL80211_REGDOM_SET_BY_USER: 1653 return "user"; 1654 case NL80211_REGDOM_SET_BY_DRIVER: 1655 return "driver"; 1656 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1657 return "country element"; 1658 default: 1659 WARN_ON(1); 1660 return "bug"; 1661 } 1662 } 1663 EXPORT_SYMBOL(reg_initiator_name); 1664 1665 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1666 const struct ieee80211_reg_rule *reg_rule, 1667 const struct ieee80211_channel *chan) 1668 { 1669 const struct ieee80211_freq_range *freq_range = NULL; 1670 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0; 1671 bool is_s1g = chan->band == NL80211_BAND_S1GHZ; 1672 1673 freq_range = ®_rule->freq_range; 1674 1675 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1676 center_freq_khz = ieee80211_channel_to_khz(chan); 1677 /* Check if auto calculation requested */ 1678 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1679 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1680 1681 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1682 if (!cfg80211_does_bw_fit_range(freq_range, 1683 center_freq_khz, 1684 MHZ_TO_KHZ(10))) 1685 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1686 if (!cfg80211_does_bw_fit_range(freq_range, 1687 center_freq_khz, 1688 MHZ_TO_KHZ(20))) 1689 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1690 1691 if (is_s1g) { 1692 /* S1G is strict about non overlapping channels. We can 1693 * calculate which bandwidth is allowed per channel by finding 1694 * the largest bandwidth which cleanly divides the freq_range. 1695 */ 1696 int edge_offset; 1697 int ch_bw = max_bandwidth_khz; 1698 1699 while (ch_bw) { 1700 edge_offset = (center_freq_khz - ch_bw / 2) - 1701 freq_range->start_freq_khz; 1702 if (edge_offset % ch_bw == 0) { 1703 switch (KHZ_TO_MHZ(ch_bw)) { 1704 case 1: 1705 bw_flags |= IEEE80211_CHAN_1MHZ; 1706 break; 1707 case 2: 1708 bw_flags |= IEEE80211_CHAN_2MHZ; 1709 break; 1710 case 4: 1711 bw_flags |= IEEE80211_CHAN_4MHZ; 1712 break; 1713 case 8: 1714 bw_flags |= IEEE80211_CHAN_8MHZ; 1715 break; 1716 case 16: 1717 bw_flags |= IEEE80211_CHAN_16MHZ; 1718 break; 1719 default: 1720 /* If we got here, no bandwidths fit on 1721 * this frequency, ie. band edge. 1722 */ 1723 bw_flags |= IEEE80211_CHAN_DISABLED; 1724 break; 1725 } 1726 break; 1727 } 1728 ch_bw /= 2; 1729 } 1730 } else { 1731 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1732 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1733 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1734 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1735 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1736 bw_flags |= IEEE80211_CHAN_NO_HT40; 1737 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1738 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1739 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1740 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1741 } 1742 return bw_flags; 1743 } 1744 1745 static void handle_channel_single_rule(struct wiphy *wiphy, 1746 enum nl80211_reg_initiator initiator, 1747 struct ieee80211_channel *chan, 1748 u32 flags, 1749 struct regulatory_request *lr, 1750 struct wiphy *request_wiphy, 1751 const struct ieee80211_reg_rule *reg_rule) 1752 { 1753 u32 bw_flags = 0; 1754 const struct ieee80211_power_rule *power_rule = NULL; 1755 const struct ieee80211_regdomain *regd; 1756 1757 regd = reg_get_regdomain(wiphy); 1758 1759 power_rule = ®_rule->power_rule; 1760 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1761 1762 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1763 request_wiphy && request_wiphy == wiphy && 1764 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1765 /* 1766 * This guarantees the driver's requested regulatory domain 1767 * will always be used as a base for further regulatory 1768 * settings 1769 */ 1770 chan->flags = chan->orig_flags = 1771 map_regdom_flags(reg_rule->flags) | bw_flags; 1772 chan->max_antenna_gain = chan->orig_mag = 1773 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1774 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1775 (int) MBM_TO_DBM(power_rule->max_eirp); 1776 1777 if (chan->flags & IEEE80211_CHAN_RADAR) { 1778 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1779 if (reg_rule->dfs_cac_ms) 1780 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1781 } 1782 1783 return; 1784 } 1785 1786 chan->dfs_state = NL80211_DFS_USABLE; 1787 chan->dfs_state_entered = jiffies; 1788 1789 chan->beacon_found = false; 1790 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1791 chan->max_antenna_gain = 1792 min_t(int, chan->orig_mag, 1793 MBI_TO_DBI(power_rule->max_antenna_gain)); 1794 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1795 1796 if (chan->flags & IEEE80211_CHAN_RADAR) { 1797 if (reg_rule->dfs_cac_ms) 1798 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1799 else 1800 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1801 } 1802 1803 if (chan->orig_mpwr) { 1804 /* 1805 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1806 * will always follow the passed country IE power settings. 1807 */ 1808 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1809 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1810 chan->max_power = chan->max_reg_power; 1811 else 1812 chan->max_power = min(chan->orig_mpwr, 1813 chan->max_reg_power); 1814 } else 1815 chan->max_power = chan->max_reg_power; 1816 } 1817 1818 static void handle_channel_adjacent_rules(struct wiphy *wiphy, 1819 enum nl80211_reg_initiator initiator, 1820 struct ieee80211_channel *chan, 1821 u32 flags, 1822 struct regulatory_request *lr, 1823 struct wiphy *request_wiphy, 1824 const struct ieee80211_reg_rule *rrule1, 1825 const struct ieee80211_reg_rule *rrule2, 1826 struct ieee80211_freq_range *comb_range) 1827 { 1828 u32 bw_flags1 = 0; 1829 u32 bw_flags2 = 0; 1830 const struct ieee80211_power_rule *power_rule1 = NULL; 1831 const struct ieee80211_power_rule *power_rule2 = NULL; 1832 const struct ieee80211_regdomain *regd; 1833 1834 regd = reg_get_regdomain(wiphy); 1835 1836 power_rule1 = &rrule1->power_rule; 1837 power_rule2 = &rrule2->power_rule; 1838 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan); 1839 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan); 1840 1841 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1842 request_wiphy && request_wiphy == wiphy && 1843 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1844 /* This guarantees the driver's requested regulatory domain 1845 * will always be used as a base for further regulatory 1846 * settings 1847 */ 1848 chan->flags = 1849 map_regdom_flags(rrule1->flags) | 1850 map_regdom_flags(rrule2->flags) | 1851 bw_flags1 | 1852 bw_flags2; 1853 chan->orig_flags = chan->flags; 1854 chan->max_antenna_gain = 1855 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain), 1856 MBI_TO_DBI(power_rule2->max_antenna_gain)); 1857 chan->orig_mag = chan->max_antenna_gain; 1858 chan->max_reg_power = 1859 min_t(int, MBM_TO_DBM(power_rule1->max_eirp), 1860 MBM_TO_DBM(power_rule2->max_eirp)); 1861 chan->max_power = chan->max_reg_power; 1862 chan->orig_mpwr = chan->max_reg_power; 1863 1864 if (chan->flags & IEEE80211_CHAN_RADAR) { 1865 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1866 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1867 chan->dfs_cac_ms = max_t(unsigned int, 1868 rrule1->dfs_cac_ms, 1869 rrule2->dfs_cac_ms); 1870 } 1871 1872 return; 1873 } 1874 1875 chan->dfs_state = NL80211_DFS_USABLE; 1876 chan->dfs_state_entered = jiffies; 1877 1878 chan->beacon_found = false; 1879 chan->flags = flags | bw_flags1 | bw_flags2 | 1880 map_regdom_flags(rrule1->flags) | 1881 map_regdom_flags(rrule2->flags); 1882 1883 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz 1884 * (otherwise no adj. rule case), recheck therefore 1885 */ 1886 if (cfg80211_does_bw_fit_range(comb_range, 1887 ieee80211_channel_to_khz(chan), 1888 MHZ_TO_KHZ(10))) 1889 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ; 1890 if (cfg80211_does_bw_fit_range(comb_range, 1891 ieee80211_channel_to_khz(chan), 1892 MHZ_TO_KHZ(20))) 1893 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ; 1894 1895 chan->max_antenna_gain = 1896 min_t(int, chan->orig_mag, 1897 min_t(int, 1898 MBI_TO_DBI(power_rule1->max_antenna_gain), 1899 MBI_TO_DBI(power_rule2->max_antenna_gain))); 1900 chan->max_reg_power = min_t(int, 1901 MBM_TO_DBM(power_rule1->max_eirp), 1902 MBM_TO_DBM(power_rule2->max_eirp)); 1903 1904 if (chan->flags & IEEE80211_CHAN_RADAR) { 1905 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1906 chan->dfs_cac_ms = max_t(unsigned int, 1907 rrule1->dfs_cac_ms, 1908 rrule2->dfs_cac_ms); 1909 else 1910 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1911 } 1912 1913 if (chan->orig_mpwr) { 1914 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1915 * will always follow the passed country IE power settings. 1916 */ 1917 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1918 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1919 chan->max_power = chan->max_reg_power; 1920 else 1921 chan->max_power = min(chan->orig_mpwr, 1922 chan->max_reg_power); 1923 } else { 1924 chan->max_power = chan->max_reg_power; 1925 } 1926 } 1927 1928 /* Note that right now we assume the desired channel bandwidth 1929 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1930 * per channel, the primary and the extension channel). 1931 */ 1932 static void handle_channel(struct wiphy *wiphy, 1933 enum nl80211_reg_initiator initiator, 1934 struct ieee80211_channel *chan) 1935 { 1936 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan); 1937 struct regulatory_request *lr = get_last_request(); 1938 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1939 const struct ieee80211_reg_rule *rrule = NULL; 1940 const struct ieee80211_reg_rule *rrule1 = NULL; 1941 const struct ieee80211_reg_rule *rrule2 = NULL; 1942 1943 u32 flags = chan->orig_flags; 1944 1945 rrule = freq_reg_info(wiphy, orig_chan_freq); 1946 if (IS_ERR(rrule)) { 1947 /* check for adjacent match, therefore get rules for 1948 * chan - 20 MHz and chan + 20 MHz and test 1949 * if reg rules are adjacent 1950 */ 1951 rrule1 = freq_reg_info(wiphy, 1952 orig_chan_freq - MHZ_TO_KHZ(20)); 1953 rrule2 = freq_reg_info(wiphy, 1954 orig_chan_freq + MHZ_TO_KHZ(20)); 1955 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) { 1956 struct ieee80211_freq_range comb_range; 1957 1958 if (rrule1->freq_range.end_freq_khz != 1959 rrule2->freq_range.start_freq_khz) 1960 goto disable_chan; 1961 1962 comb_range.start_freq_khz = 1963 rrule1->freq_range.start_freq_khz; 1964 comb_range.end_freq_khz = 1965 rrule2->freq_range.end_freq_khz; 1966 comb_range.max_bandwidth_khz = 1967 min_t(u32, 1968 rrule1->freq_range.max_bandwidth_khz, 1969 rrule2->freq_range.max_bandwidth_khz); 1970 1971 if (!cfg80211_does_bw_fit_range(&comb_range, 1972 orig_chan_freq, 1973 MHZ_TO_KHZ(20))) 1974 goto disable_chan; 1975 1976 handle_channel_adjacent_rules(wiphy, initiator, chan, 1977 flags, lr, request_wiphy, 1978 rrule1, rrule2, 1979 &comb_range); 1980 return; 1981 } 1982 1983 disable_chan: 1984 /* We will disable all channels that do not match our 1985 * received regulatory rule unless the hint is coming 1986 * from a Country IE and the Country IE had no information 1987 * about a band. The IEEE 802.11 spec allows for an AP 1988 * to send only a subset of the regulatory rules allowed, 1989 * so an AP in the US that only supports 2.4 GHz may only send 1990 * a country IE with information for the 2.4 GHz band 1991 * while 5 GHz is still supported. 1992 */ 1993 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1994 PTR_ERR(rrule) == -ERANGE) 1995 return; 1996 1997 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1998 request_wiphy && request_wiphy == wiphy && 1999 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2000 pr_debug("Disabling freq %d.%03d MHz for good\n", 2001 chan->center_freq, chan->freq_offset); 2002 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2003 chan->flags = chan->orig_flags; 2004 } else { 2005 pr_debug("Disabling freq %d.%03d MHz\n", 2006 chan->center_freq, chan->freq_offset); 2007 chan->flags |= IEEE80211_CHAN_DISABLED; 2008 } 2009 return; 2010 } 2011 2012 handle_channel_single_rule(wiphy, initiator, chan, flags, lr, 2013 request_wiphy, rrule); 2014 } 2015 2016 static void handle_band(struct wiphy *wiphy, 2017 enum nl80211_reg_initiator initiator, 2018 struct ieee80211_supported_band *sband) 2019 { 2020 unsigned int i; 2021 2022 if (!sband) 2023 return; 2024 2025 for (i = 0; i < sband->n_channels; i++) 2026 handle_channel(wiphy, initiator, &sband->channels[i]); 2027 } 2028 2029 static bool reg_request_cell_base(struct regulatory_request *request) 2030 { 2031 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 2032 return false; 2033 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 2034 } 2035 2036 bool reg_last_request_cell_base(void) 2037 { 2038 return reg_request_cell_base(get_last_request()); 2039 } 2040 2041 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 2042 /* Core specific check */ 2043 static enum reg_request_treatment 2044 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2045 { 2046 struct regulatory_request *lr = get_last_request(); 2047 2048 if (!reg_num_devs_support_basehint) 2049 return REG_REQ_IGNORE; 2050 2051 if (reg_request_cell_base(lr) && 2052 !regdom_changes(pending_request->alpha2)) 2053 return REG_REQ_ALREADY_SET; 2054 2055 return REG_REQ_OK; 2056 } 2057 2058 /* Device specific check */ 2059 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2060 { 2061 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 2062 } 2063 #else 2064 static enum reg_request_treatment 2065 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2066 { 2067 return REG_REQ_IGNORE; 2068 } 2069 2070 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2071 { 2072 return true; 2073 } 2074 #endif 2075 2076 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 2077 { 2078 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 2079 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 2080 return true; 2081 return false; 2082 } 2083 2084 static bool ignore_reg_update(struct wiphy *wiphy, 2085 enum nl80211_reg_initiator initiator) 2086 { 2087 struct regulatory_request *lr = get_last_request(); 2088 2089 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2090 return true; 2091 2092 if (!lr) { 2093 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 2094 reg_initiator_name(initiator)); 2095 return true; 2096 } 2097 2098 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2099 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 2100 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 2101 reg_initiator_name(initiator)); 2102 return true; 2103 } 2104 2105 /* 2106 * wiphy->regd will be set once the device has its own 2107 * desired regulatory domain set 2108 */ 2109 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 2110 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2111 !is_world_regdom(lr->alpha2)) { 2112 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 2113 reg_initiator_name(initiator)); 2114 return true; 2115 } 2116 2117 if (reg_request_cell_base(lr)) 2118 return reg_dev_ignore_cell_hint(wiphy); 2119 2120 return false; 2121 } 2122 2123 static bool reg_is_world_roaming(struct wiphy *wiphy) 2124 { 2125 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 2126 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 2127 struct regulatory_request *lr = get_last_request(); 2128 2129 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 2130 return true; 2131 2132 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2133 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2134 return true; 2135 2136 return false; 2137 } 2138 2139 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 2140 struct reg_beacon *reg_beacon) 2141 { 2142 struct ieee80211_supported_band *sband; 2143 struct ieee80211_channel *chan; 2144 bool channel_changed = false; 2145 struct ieee80211_channel chan_before; 2146 2147 sband = wiphy->bands[reg_beacon->chan.band]; 2148 chan = &sband->channels[chan_idx]; 2149 2150 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan))) 2151 return; 2152 2153 if (chan->beacon_found) 2154 return; 2155 2156 chan->beacon_found = true; 2157 2158 if (!reg_is_world_roaming(wiphy)) 2159 return; 2160 2161 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 2162 return; 2163 2164 chan_before = *chan; 2165 2166 if (chan->flags & IEEE80211_CHAN_NO_IR) { 2167 chan->flags &= ~IEEE80211_CHAN_NO_IR; 2168 channel_changed = true; 2169 } 2170 2171 if (channel_changed) 2172 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 2173 } 2174 2175 /* 2176 * Called when a scan on a wiphy finds a beacon on 2177 * new channel 2178 */ 2179 static void wiphy_update_new_beacon(struct wiphy *wiphy, 2180 struct reg_beacon *reg_beacon) 2181 { 2182 unsigned int i; 2183 struct ieee80211_supported_band *sband; 2184 2185 if (!wiphy->bands[reg_beacon->chan.band]) 2186 return; 2187 2188 sband = wiphy->bands[reg_beacon->chan.band]; 2189 2190 for (i = 0; i < sband->n_channels; i++) 2191 handle_reg_beacon(wiphy, i, reg_beacon); 2192 } 2193 2194 /* 2195 * Called upon reg changes or a new wiphy is added 2196 */ 2197 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 2198 { 2199 unsigned int i; 2200 struct ieee80211_supported_band *sband; 2201 struct reg_beacon *reg_beacon; 2202 2203 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 2204 if (!wiphy->bands[reg_beacon->chan.band]) 2205 continue; 2206 sband = wiphy->bands[reg_beacon->chan.band]; 2207 for (i = 0; i < sband->n_channels; i++) 2208 handle_reg_beacon(wiphy, i, reg_beacon); 2209 } 2210 } 2211 2212 /* Reap the advantages of previously found beacons */ 2213 static void reg_process_beacons(struct wiphy *wiphy) 2214 { 2215 /* 2216 * Means we are just firing up cfg80211, so no beacons would 2217 * have been processed yet. 2218 */ 2219 if (!last_request) 2220 return; 2221 wiphy_update_beacon_reg(wiphy); 2222 } 2223 2224 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2225 { 2226 if (!chan) 2227 return false; 2228 if (chan->flags & IEEE80211_CHAN_DISABLED) 2229 return false; 2230 /* This would happen when regulatory rules disallow HT40 completely */ 2231 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2232 return false; 2233 return true; 2234 } 2235 2236 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2237 struct ieee80211_channel *channel) 2238 { 2239 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2240 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2241 const struct ieee80211_regdomain *regd; 2242 unsigned int i; 2243 u32 flags; 2244 2245 if (!is_ht40_allowed(channel)) { 2246 channel->flags |= IEEE80211_CHAN_NO_HT40; 2247 return; 2248 } 2249 2250 /* 2251 * We need to ensure the extension channels exist to 2252 * be able to use HT40- or HT40+, this finds them (or not) 2253 */ 2254 for (i = 0; i < sband->n_channels; i++) { 2255 struct ieee80211_channel *c = &sband->channels[i]; 2256 2257 if (c->center_freq == (channel->center_freq - 20)) 2258 channel_before = c; 2259 if (c->center_freq == (channel->center_freq + 20)) 2260 channel_after = c; 2261 } 2262 2263 flags = 0; 2264 regd = get_wiphy_regdom(wiphy); 2265 if (regd) { 2266 const struct ieee80211_reg_rule *reg_rule = 2267 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2268 regd, MHZ_TO_KHZ(20)); 2269 2270 if (!IS_ERR(reg_rule)) 2271 flags = reg_rule->flags; 2272 } 2273 2274 /* 2275 * Please note that this assumes target bandwidth is 20 MHz, 2276 * if that ever changes we also need to change the below logic 2277 * to include that as well. 2278 */ 2279 if (!is_ht40_allowed(channel_before) || 2280 flags & NL80211_RRF_NO_HT40MINUS) 2281 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2282 else 2283 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2284 2285 if (!is_ht40_allowed(channel_after) || 2286 flags & NL80211_RRF_NO_HT40PLUS) 2287 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2288 else 2289 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2290 } 2291 2292 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2293 struct ieee80211_supported_band *sband) 2294 { 2295 unsigned int i; 2296 2297 if (!sband) 2298 return; 2299 2300 for (i = 0; i < sband->n_channels; i++) 2301 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2302 } 2303 2304 static void reg_process_ht_flags(struct wiphy *wiphy) 2305 { 2306 enum nl80211_band band; 2307 2308 if (!wiphy) 2309 return; 2310 2311 for (band = 0; band < NUM_NL80211_BANDS; band++) 2312 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2313 } 2314 2315 static void reg_call_notifier(struct wiphy *wiphy, 2316 struct regulatory_request *request) 2317 { 2318 if (wiphy->reg_notifier) 2319 wiphy->reg_notifier(wiphy, request); 2320 } 2321 2322 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2323 { 2324 struct cfg80211_chan_def chandef = {}; 2325 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2326 enum nl80211_iftype iftype; 2327 2328 wdev_lock(wdev); 2329 iftype = wdev->iftype; 2330 2331 /* make sure the interface is active */ 2332 if (!wdev->netdev || !netif_running(wdev->netdev)) 2333 goto wdev_inactive_unlock; 2334 2335 switch (iftype) { 2336 case NL80211_IFTYPE_AP: 2337 case NL80211_IFTYPE_P2P_GO: 2338 if (!wdev->beacon_interval) 2339 goto wdev_inactive_unlock; 2340 chandef = wdev->chandef; 2341 break; 2342 case NL80211_IFTYPE_ADHOC: 2343 if (!wdev->ssid_len) 2344 goto wdev_inactive_unlock; 2345 chandef = wdev->chandef; 2346 break; 2347 case NL80211_IFTYPE_STATION: 2348 case NL80211_IFTYPE_P2P_CLIENT: 2349 if (!wdev->current_bss || 2350 !wdev->current_bss->pub.channel) 2351 goto wdev_inactive_unlock; 2352 2353 if (!rdev->ops->get_channel || 2354 rdev_get_channel(rdev, wdev, &chandef)) 2355 cfg80211_chandef_create(&chandef, 2356 wdev->current_bss->pub.channel, 2357 NL80211_CHAN_NO_HT); 2358 break; 2359 case NL80211_IFTYPE_MONITOR: 2360 case NL80211_IFTYPE_AP_VLAN: 2361 case NL80211_IFTYPE_P2P_DEVICE: 2362 /* no enforcement required */ 2363 break; 2364 default: 2365 /* others not implemented for now */ 2366 WARN_ON(1); 2367 break; 2368 } 2369 2370 wdev_unlock(wdev); 2371 2372 switch (iftype) { 2373 case NL80211_IFTYPE_AP: 2374 case NL80211_IFTYPE_P2P_GO: 2375 case NL80211_IFTYPE_ADHOC: 2376 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 2377 case NL80211_IFTYPE_STATION: 2378 case NL80211_IFTYPE_P2P_CLIENT: 2379 return cfg80211_chandef_usable(wiphy, &chandef, 2380 IEEE80211_CHAN_DISABLED); 2381 default: 2382 break; 2383 } 2384 2385 return true; 2386 2387 wdev_inactive_unlock: 2388 wdev_unlock(wdev); 2389 return true; 2390 } 2391 2392 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2393 { 2394 struct wireless_dev *wdev; 2395 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2396 2397 ASSERT_RTNL(); 2398 2399 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2400 if (!reg_wdev_chan_valid(wiphy, wdev)) 2401 cfg80211_leave(rdev, wdev); 2402 } 2403 2404 static void reg_check_chans_work(struct work_struct *work) 2405 { 2406 struct cfg80211_registered_device *rdev; 2407 2408 pr_debug("Verifying active interfaces after reg change\n"); 2409 rtnl_lock(); 2410 2411 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2412 if (!(rdev->wiphy.regulatory_flags & 2413 REGULATORY_IGNORE_STALE_KICKOFF)) 2414 reg_leave_invalid_chans(&rdev->wiphy); 2415 2416 rtnl_unlock(); 2417 } 2418 2419 static void reg_check_channels(void) 2420 { 2421 /* 2422 * Give usermode a chance to do something nicer (move to another 2423 * channel, orderly disconnection), before forcing a disconnection. 2424 */ 2425 mod_delayed_work(system_power_efficient_wq, 2426 ®_check_chans, 2427 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2428 } 2429 2430 static void wiphy_update_regulatory(struct wiphy *wiphy, 2431 enum nl80211_reg_initiator initiator) 2432 { 2433 enum nl80211_band band; 2434 struct regulatory_request *lr = get_last_request(); 2435 2436 if (ignore_reg_update(wiphy, initiator)) { 2437 /* 2438 * Regulatory updates set by CORE are ignored for custom 2439 * regulatory cards. Let us notify the changes to the driver, 2440 * as some drivers used this to restore its orig_* reg domain. 2441 */ 2442 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2443 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2444 !(wiphy->regulatory_flags & 2445 REGULATORY_WIPHY_SELF_MANAGED)) 2446 reg_call_notifier(wiphy, lr); 2447 return; 2448 } 2449 2450 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2451 2452 for (band = 0; band < NUM_NL80211_BANDS; band++) 2453 handle_band(wiphy, initiator, wiphy->bands[band]); 2454 2455 reg_process_beacons(wiphy); 2456 reg_process_ht_flags(wiphy); 2457 reg_call_notifier(wiphy, lr); 2458 } 2459 2460 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2461 { 2462 struct cfg80211_registered_device *rdev; 2463 struct wiphy *wiphy; 2464 2465 ASSERT_RTNL(); 2466 2467 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2468 wiphy = &rdev->wiphy; 2469 wiphy_update_regulatory(wiphy, initiator); 2470 } 2471 2472 reg_check_channels(); 2473 } 2474 2475 static void handle_channel_custom(struct wiphy *wiphy, 2476 struct ieee80211_channel *chan, 2477 const struct ieee80211_regdomain *regd, 2478 u32 min_bw) 2479 { 2480 u32 bw_flags = 0; 2481 const struct ieee80211_reg_rule *reg_rule = NULL; 2482 const struct ieee80211_power_rule *power_rule = NULL; 2483 u32 bw, center_freq_khz; 2484 2485 center_freq_khz = ieee80211_channel_to_khz(chan); 2486 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 2487 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw); 2488 if (!IS_ERR(reg_rule)) 2489 break; 2490 } 2491 2492 if (IS_ERR_OR_NULL(reg_rule)) { 2493 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n", 2494 chan->center_freq, chan->freq_offset); 2495 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2496 chan->flags |= IEEE80211_CHAN_DISABLED; 2497 } else { 2498 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2499 chan->flags = chan->orig_flags; 2500 } 2501 return; 2502 } 2503 2504 power_rule = ®_rule->power_rule; 2505 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2506 2507 chan->dfs_state_entered = jiffies; 2508 chan->dfs_state = NL80211_DFS_USABLE; 2509 2510 chan->beacon_found = false; 2511 2512 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2513 chan->flags = chan->orig_flags | bw_flags | 2514 map_regdom_flags(reg_rule->flags); 2515 else 2516 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2517 2518 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2519 chan->max_reg_power = chan->max_power = 2520 (int) MBM_TO_DBM(power_rule->max_eirp); 2521 2522 if (chan->flags & IEEE80211_CHAN_RADAR) { 2523 if (reg_rule->dfs_cac_ms) 2524 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2525 else 2526 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2527 } 2528 2529 chan->max_power = chan->max_reg_power; 2530 } 2531 2532 static void handle_band_custom(struct wiphy *wiphy, 2533 struct ieee80211_supported_band *sband, 2534 const struct ieee80211_regdomain *regd) 2535 { 2536 unsigned int i; 2537 2538 if (!sband) 2539 return; 2540 2541 /* 2542 * We currently assume that you always want at least 20 MHz, 2543 * otherwise channel 12 might get enabled if this rule is 2544 * compatible to US, which permits 2402 - 2472 MHz. 2545 */ 2546 for (i = 0; i < sband->n_channels; i++) 2547 handle_channel_custom(wiphy, &sband->channels[i], regd, 2548 MHZ_TO_KHZ(20)); 2549 } 2550 2551 /* Used by drivers prior to wiphy registration */ 2552 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2553 const struct ieee80211_regdomain *regd) 2554 { 2555 const struct ieee80211_regdomain *new_regd, *tmp; 2556 enum nl80211_band band; 2557 unsigned int bands_set = 0; 2558 2559 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2560 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2561 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2562 2563 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2564 if (!wiphy->bands[band]) 2565 continue; 2566 handle_band_custom(wiphy, wiphy->bands[band], regd); 2567 bands_set++; 2568 } 2569 2570 /* 2571 * no point in calling this if it won't have any effect 2572 * on your device's supported bands. 2573 */ 2574 WARN_ON(!bands_set); 2575 new_regd = reg_copy_regd(regd); 2576 if (IS_ERR(new_regd)) 2577 return; 2578 2579 rtnl_lock(); 2580 2581 tmp = get_wiphy_regdom(wiphy); 2582 rcu_assign_pointer(wiphy->regd, new_regd); 2583 rcu_free_regdom(tmp); 2584 2585 rtnl_unlock(); 2586 } 2587 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2588 2589 static void reg_set_request_processed(void) 2590 { 2591 bool need_more_processing = false; 2592 struct regulatory_request *lr = get_last_request(); 2593 2594 lr->processed = true; 2595 2596 spin_lock(®_requests_lock); 2597 if (!list_empty(®_requests_list)) 2598 need_more_processing = true; 2599 spin_unlock(®_requests_lock); 2600 2601 cancel_crda_timeout(); 2602 2603 if (need_more_processing) 2604 schedule_work(®_work); 2605 } 2606 2607 /** 2608 * reg_process_hint_core - process core regulatory requests 2609 * @core_request: a pending core regulatory request 2610 * 2611 * The wireless subsystem can use this function to process 2612 * a regulatory request issued by the regulatory core. 2613 */ 2614 static enum reg_request_treatment 2615 reg_process_hint_core(struct regulatory_request *core_request) 2616 { 2617 if (reg_query_database(core_request)) { 2618 core_request->intersect = false; 2619 core_request->processed = false; 2620 reg_update_last_request(core_request); 2621 return REG_REQ_OK; 2622 } 2623 2624 return REG_REQ_IGNORE; 2625 } 2626 2627 static enum reg_request_treatment 2628 __reg_process_hint_user(struct regulatory_request *user_request) 2629 { 2630 struct regulatory_request *lr = get_last_request(); 2631 2632 if (reg_request_cell_base(user_request)) 2633 return reg_ignore_cell_hint(user_request); 2634 2635 if (reg_request_cell_base(lr)) 2636 return REG_REQ_IGNORE; 2637 2638 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2639 return REG_REQ_INTERSECT; 2640 /* 2641 * If the user knows better the user should set the regdom 2642 * to their country before the IE is picked up 2643 */ 2644 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2645 lr->intersect) 2646 return REG_REQ_IGNORE; 2647 /* 2648 * Process user requests only after previous user/driver/core 2649 * requests have been processed 2650 */ 2651 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2652 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2653 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2654 regdom_changes(lr->alpha2)) 2655 return REG_REQ_IGNORE; 2656 2657 if (!regdom_changes(user_request->alpha2)) 2658 return REG_REQ_ALREADY_SET; 2659 2660 return REG_REQ_OK; 2661 } 2662 2663 /** 2664 * reg_process_hint_user - process user regulatory requests 2665 * @user_request: a pending user regulatory request 2666 * 2667 * The wireless subsystem can use this function to process 2668 * a regulatory request initiated by userspace. 2669 */ 2670 static enum reg_request_treatment 2671 reg_process_hint_user(struct regulatory_request *user_request) 2672 { 2673 enum reg_request_treatment treatment; 2674 2675 treatment = __reg_process_hint_user(user_request); 2676 if (treatment == REG_REQ_IGNORE || 2677 treatment == REG_REQ_ALREADY_SET) 2678 return REG_REQ_IGNORE; 2679 2680 user_request->intersect = treatment == REG_REQ_INTERSECT; 2681 user_request->processed = false; 2682 2683 if (reg_query_database(user_request)) { 2684 reg_update_last_request(user_request); 2685 user_alpha2[0] = user_request->alpha2[0]; 2686 user_alpha2[1] = user_request->alpha2[1]; 2687 return REG_REQ_OK; 2688 } 2689 2690 return REG_REQ_IGNORE; 2691 } 2692 2693 static enum reg_request_treatment 2694 __reg_process_hint_driver(struct regulatory_request *driver_request) 2695 { 2696 struct regulatory_request *lr = get_last_request(); 2697 2698 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2699 if (regdom_changes(driver_request->alpha2)) 2700 return REG_REQ_OK; 2701 return REG_REQ_ALREADY_SET; 2702 } 2703 2704 /* 2705 * This would happen if you unplug and plug your card 2706 * back in or if you add a new device for which the previously 2707 * loaded card also agrees on the regulatory domain. 2708 */ 2709 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2710 !regdom_changes(driver_request->alpha2)) 2711 return REG_REQ_ALREADY_SET; 2712 2713 return REG_REQ_INTERSECT; 2714 } 2715 2716 /** 2717 * reg_process_hint_driver - process driver regulatory requests 2718 * @wiphy: the wireless device for the regulatory request 2719 * @driver_request: a pending driver regulatory request 2720 * 2721 * The wireless subsystem can use this function to process 2722 * a regulatory request issued by an 802.11 driver. 2723 * 2724 * Returns one of the different reg request treatment values. 2725 */ 2726 static enum reg_request_treatment 2727 reg_process_hint_driver(struct wiphy *wiphy, 2728 struct regulatory_request *driver_request) 2729 { 2730 const struct ieee80211_regdomain *regd, *tmp; 2731 enum reg_request_treatment treatment; 2732 2733 treatment = __reg_process_hint_driver(driver_request); 2734 2735 switch (treatment) { 2736 case REG_REQ_OK: 2737 break; 2738 case REG_REQ_IGNORE: 2739 return REG_REQ_IGNORE; 2740 case REG_REQ_INTERSECT: 2741 case REG_REQ_ALREADY_SET: 2742 regd = reg_copy_regd(get_cfg80211_regdom()); 2743 if (IS_ERR(regd)) 2744 return REG_REQ_IGNORE; 2745 2746 tmp = get_wiphy_regdom(wiphy); 2747 rcu_assign_pointer(wiphy->regd, regd); 2748 rcu_free_regdom(tmp); 2749 } 2750 2751 2752 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2753 driver_request->processed = false; 2754 2755 /* 2756 * Since CRDA will not be called in this case as we already 2757 * have applied the requested regulatory domain before we just 2758 * inform userspace we have processed the request 2759 */ 2760 if (treatment == REG_REQ_ALREADY_SET) { 2761 nl80211_send_reg_change_event(driver_request); 2762 reg_update_last_request(driver_request); 2763 reg_set_request_processed(); 2764 return REG_REQ_ALREADY_SET; 2765 } 2766 2767 if (reg_query_database(driver_request)) { 2768 reg_update_last_request(driver_request); 2769 return REG_REQ_OK; 2770 } 2771 2772 return REG_REQ_IGNORE; 2773 } 2774 2775 static enum reg_request_treatment 2776 __reg_process_hint_country_ie(struct wiphy *wiphy, 2777 struct regulatory_request *country_ie_request) 2778 { 2779 struct wiphy *last_wiphy = NULL; 2780 struct regulatory_request *lr = get_last_request(); 2781 2782 if (reg_request_cell_base(lr)) { 2783 /* Trust a Cell base station over the AP's country IE */ 2784 if (regdom_changes(country_ie_request->alpha2)) 2785 return REG_REQ_IGNORE; 2786 return REG_REQ_ALREADY_SET; 2787 } else { 2788 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2789 return REG_REQ_IGNORE; 2790 } 2791 2792 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2793 return -EINVAL; 2794 2795 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2796 return REG_REQ_OK; 2797 2798 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2799 2800 if (last_wiphy != wiphy) { 2801 /* 2802 * Two cards with two APs claiming different 2803 * Country IE alpha2s. We could 2804 * intersect them, but that seems unlikely 2805 * to be correct. Reject second one for now. 2806 */ 2807 if (regdom_changes(country_ie_request->alpha2)) 2808 return REG_REQ_IGNORE; 2809 return REG_REQ_ALREADY_SET; 2810 } 2811 2812 if (regdom_changes(country_ie_request->alpha2)) 2813 return REG_REQ_OK; 2814 return REG_REQ_ALREADY_SET; 2815 } 2816 2817 /** 2818 * reg_process_hint_country_ie - process regulatory requests from country IEs 2819 * @wiphy: the wireless device for the regulatory request 2820 * @country_ie_request: a regulatory request from a country IE 2821 * 2822 * The wireless subsystem can use this function to process 2823 * a regulatory request issued by a country Information Element. 2824 * 2825 * Returns one of the different reg request treatment values. 2826 */ 2827 static enum reg_request_treatment 2828 reg_process_hint_country_ie(struct wiphy *wiphy, 2829 struct regulatory_request *country_ie_request) 2830 { 2831 enum reg_request_treatment treatment; 2832 2833 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2834 2835 switch (treatment) { 2836 case REG_REQ_OK: 2837 break; 2838 case REG_REQ_IGNORE: 2839 return REG_REQ_IGNORE; 2840 case REG_REQ_ALREADY_SET: 2841 reg_free_request(country_ie_request); 2842 return REG_REQ_ALREADY_SET; 2843 case REG_REQ_INTERSECT: 2844 /* 2845 * This doesn't happen yet, not sure we 2846 * ever want to support it for this case. 2847 */ 2848 WARN_ONCE(1, "Unexpected intersection for country elements"); 2849 return REG_REQ_IGNORE; 2850 } 2851 2852 country_ie_request->intersect = false; 2853 country_ie_request->processed = false; 2854 2855 if (reg_query_database(country_ie_request)) { 2856 reg_update_last_request(country_ie_request); 2857 return REG_REQ_OK; 2858 } 2859 2860 return REG_REQ_IGNORE; 2861 } 2862 2863 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2864 { 2865 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2866 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2867 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2868 bool dfs_domain_same; 2869 2870 rcu_read_lock(); 2871 2872 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2873 wiphy1_regd = rcu_dereference(wiphy1->regd); 2874 if (!wiphy1_regd) 2875 wiphy1_regd = cfg80211_regd; 2876 2877 wiphy2_regd = rcu_dereference(wiphy2->regd); 2878 if (!wiphy2_regd) 2879 wiphy2_regd = cfg80211_regd; 2880 2881 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2882 2883 rcu_read_unlock(); 2884 2885 return dfs_domain_same; 2886 } 2887 2888 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2889 struct ieee80211_channel *src_chan) 2890 { 2891 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2892 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2893 return; 2894 2895 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2896 src_chan->flags & IEEE80211_CHAN_DISABLED) 2897 return; 2898 2899 if (src_chan->center_freq == dst_chan->center_freq && 2900 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2901 dst_chan->dfs_state = src_chan->dfs_state; 2902 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2903 } 2904 } 2905 2906 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2907 struct wiphy *src_wiphy) 2908 { 2909 struct ieee80211_supported_band *src_sband, *dst_sband; 2910 struct ieee80211_channel *src_chan, *dst_chan; 2911 int i, j, band; 2912 2913 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2914 return; 2915 2916 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2917 dst_sband = dst_wiphy->bands[band]; 2918 src_sband = src_wiphy->bands[band]; 2919 if (!dst_sband || !src_sband) 2920 continue; 2921 2922 for (i = 0; i < dst_sband->n_channels; i++) { 2923 dst_chan = &dst_sband->channels[i]; 2924 for (j = 0; j < src_sband->n_channels; j++) { 2925 src_chan = &src_sband->channels[j]; 2926 reg_copy_dfs_chan_state(dst_chan, src_chan); 2927 } 2928 } 2929 } 2930 } 2931 2932 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2933 { 2934 struct cfg80211_registered_device *rdev; 2935 2936 ASSERT_RTNL(); 2937 2938 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2939 if (wiphy == &rdev->wiphy) 2940 continue; 2941 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2942 } 2943 } 2944 2945 /* This processes *all* regulatory hints */ 2946 static void reg_process_hint(struct regulatory_request *reg_request) 2947 { 2948 struct wiphy *wiphy = NULL; 2949 enum reg_request_treatment treatment; 2950 enum nl80211_reg_initiator initiator = reg_request->initiator; 2951 2952 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2953 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2954 2955 switch (initiator) { 2956 case NL80211_REGDOM_SET_BY_CORE: 2957 treatment = reg_process_hint_core(reg_request); 2958 break; 2959 case NL80211_REGDOM_SET_BY_USER: 2960 treatment = reg_process_hint_user(reg_request); 2961 break; 2962 case NL80211_REGDOM_SET_BY_DRIVER: 2963 if (!wiphy) 2964 goto out_free; 2965 treatment = reg_process_hint_driver(wiphy, reg_request); 2966 break; 2967 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2968 if (!wiphy) 2969 goto out_free; 2970 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2971 break; 2972 default: 2973 WARN(1, "invalid initiator %d\n", initiator); 2974 goto out_free; 2975 } 2976 2977 if (treatment == REG_REQ_IGNORE) 2978 goto out_free; 2979 2980 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 2981 "unexpected treatment value %d\n", treatment); 2982 2983 /* This is required so that the orig_* parameters are saved. 2984 * NOTE: treatment must be set for any case that reaches here! 2985 */ 2986 if (treatment == REG_REQ_ALREADY_SET && wiphy && 2987 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2988 wiphy_update_regulatory(wiphy, initiator); 2989 wiphy_all_share_dfs_chan_state(wiphy); 2990 reg_check_channels(); 2991 } 2992 2993 return; 2994 2995 out_free: 2996 reg_free_request(reg_request); 2997 } 2998 2999 static void notify_self_managed_wiphys(struct regulatory_request *request) 3000 { 3001 struct cfg80211_registered_device *rdev; 3002 struct wiphy *wiphy; 3003 3004 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3005 wiphy = &rdev->wiphy; 3006 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 3007 request->initiator == NL80211_REGDOM_SET_BY_USER) 3008 reg_call_notifier(wiphy, request); 3009 } 3010 } 3011 3012 /* 3013 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 3014 * Regulatory hints come on a first come first serve basis and we 3015 * must process each one atomically. 3016 */ 3017 static void reg_process_pending_hints(void) 3018 { 3019 struct regulatory_request *reg_request, *lr; 3020 3021 lr = get_last_request(); 3022 3023 /* When last_request->processed becomes true this will be rescheduled */ 3024 if (lr && !lr->processed) { 3025 pr_debug("Pending regulatory request, waiting for it to be processed...\n"); 3026 return; 3027 } 3028 3029 spin_lock(®_requests_lock); 3030 3031 if (list_empty(®_requests_list)) { 3032 spin_unlock(®_requests_lock); 3033 return; 3034 } 3035 3036 reg_request = list_first_entry(®_requests_list, 3037 struct regulatory_request, 3038 list); 3039 list_del_init(®_request->list); 3040 3041 spin_unlock(®_requests_lock); 3042 3043 notify_self_managed_wiphys(reg_request); 3044 3045 reg_process_hint(reg_request); 3046 3047 lr = get_last_request(); 3048 3049 spin_lock(®_requests_lock); 3050 if (!list_empty(®_requests_list) && lr && lr->processed) 3051 schedule_work(®_work); 3052 spin_unlock(®_requests_lock); 3053 } 3054 3055 /* Processes beacon hints -- this has nothing to do with country IEs */ 3056 static void reg_process_pending_beacon_hints(void) 3057 { 3058 struct cfg80211_registered_device *rdev; 3059 struct reg_beacon *pending_beacon, *tmp; 3060 3061 /* This goes through the _pending_ beacon list */ 3062 spin_lock_bh(®_pending_beacons_lock); 3063 3064 list_for_each_entry_safe(pending_beacon, tmp, 3065 ®_pending_beacons, list) { 3066 list_del_init(&pending_beacon->list); 3067 3068 /* Applies the beacon hint to current wiphys */ 3069 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 3070 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 3071 3072 /* Remembers the beacon hint for new wiphys or reg changes */ 3073 list_add_tail(&pending_beacon->list, ®_beacon_list); 3074 } 3075 3076 spin_unlock_bh(®_pending_beacons_lock); 3077 } 3078 3079 static void reg_process_self_managed_hints(void) 3080 { 3081 struct cfg80211_registered_device *rdev; 3082 struct wiphy *wiphy; 3083 const struct ieee80211_regdomain *tmp; 3084 const struct ieee80211_regdomain *regd; 3085 enum nl80211_band band; 3086 struct regulatory_request request = {}; 3087 3088 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3089 wiphy = &rdev->wiphy; 3090 3091 spin_lock(®_requests_lock); 3092 regd = rdev->requested_regd; 3093 rdev->requested_regd = NULL; 3094 spin_unlock(®_requests_lock); 3095 3096 if (regd == NULL) 3097 continue; 3098 3099 tmp = get_wiphy_regdom(wiphy); 3100 rcu_assign_pointer(wiphy->regd, regd); 3101 rcu_free_regdom(tmp); 3102 3103 for (band = 0; band < NUM_NL80211_BANDS; band++) 3104 handle_band_custom(wiphy, wiphy->bands[band], regd); 3105 3106 reg_process_ht_flags(wiphy); 3107 3108 request.wiphy_idx = get_wiphy_idx(wiphy); 3109 request.alpha2[0] = regd->alpha2[0]; 3110 request.alpha2[1] = regd->alpha2[1]; 3111 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 3112 3113 nl80211_send_wiphy_reg_change_event(&request); 3114 } 3115 3116 reg_check_channels(); 3117 } 3118 3119 static void reg_todo(struct work_struct *work) 3120 { 3121 rtnl_lock(); 3122 reg_process_pending_hints(); 3123 reg_process_pending_beacon_hints(); 3124 reg_process_self_managed_hints(); 3125 rtnl_unlock(); 3126 } 3127 3128 static void queue_regulatory_request(struct regulatory_request *request) 3129 { 3130 request->alpha2[0] = toupper(request->alpha2[0]); 3131 request->alpha2[1] = toupper(request->alpha2[1]); 3132 3133 spin_lock(®_requests_lock); 3134 list_add_tail(&request->list, ®_requests_list); 3135 spin_unlock(®_requests_lock); 3136 3137 schedule_work(®_work); 3138 } 3139 3140 /* 3141 * Core regulatory hint -- happens during cfg80211_init() 3142 * and when we restore regulatory settings. 3143 */ 3144 static int regulatory_hint_core(const char *alpha2) 3145 { 3146 struct regulatory_request *request; 3147 3148 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3149 if (!request) 3150 return -ENOMEM; 3151 3152 request->alpha2[0] = alpha2[0]; 3153 request->alpha2[1] = alpha2[1]; 3154 request->initiator = NL80211_REGDOM_SET_BY_CORE; 3155 request->wiphy_idx = WIPHY_IDX_INVALID; 3156 3157 queue_regulatory_request(request); 3158 3159 return 0; 3160 } 3161 3162 /* User hints */ 3163 int regulatory_hint_user(const char *alpha2, 3164 enum nl80211_user_reg_hint_type user_reg_hint_type) 3165 { 3166 struct regulatory_request *request; 3167 3168 if (WARN_ON(!alpha2)) 3169 return -EINVAL; 3170 3171 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2)) 3172 return -EINVAL; 3173 3174 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3175 if (!request) 3176 return -ENOMEM; 3177 3178 request->wiphy_idx = WIPHY_IDX_INVALID; 3179 request->alpha2[0] = alpha2[0]; 3180 request->alpha2[1] = alpha2[1]; 3181 request->initiator = NL80211_REGDOM_SET_BY_USER; 3182 request->user_reg_hint_type = user_reg_hint_type; 3183 3184 /* Allow calling CRDA again */ 3185 reset_crda_timeouts(); 3186 3187 queue_regulatory_request(request); 3188 3189 return 0; 3190 } 3191 3192 int regulatory_hint_indoor(bool is_indoor, u32 portid) 3193 { 3194 spin_lock(®_indoor_lock); 3195 3196 /* It is possible that more than one user space process is trying to 3197 * configure the indoor setting. To handle such cases, clear the indoor 3198 * setting in case that some process does not think that the device 3199 * is operating in an indoor environment. In addition, if a user space 3200 * process indicates that it is controlling the indoor setting, save its 3201 * portid, i.e., make it the owner. 3202 */ 3203 reg_is_indoor = is_indoor; 3204 if (reg_is_indoor) { 3205 if (!reg_is_indoor_portid) 3206 reg_is_indoor_portid = portid; 3207 } else { 3208 reg_is_indoor_portid = 0; 3209 } 3210 3211 spin_unlock(®_indoor_lock); 3212 3213 if (!is_indoor) 3214 reg_check_channels(); 3215 3216 return 0; 3217 } 3218 3219 void regulatory_netlink_notify(u32 portid) 3220 { 3221 spin_lock(®_indoor_lock); 3222 3223 if (reg_is_indoor_portid != portid) { 3224 spin_unlock(®_indoor_lock); 3225 return; 3226 } 3227 3228 reg_is_indoor = false; 3229 reg_is_indoor_portid = 0; 3230 3231 spin_unlock(®_indoor_lock); 3232 3233 reg_check_channels(); 3234 } 3235 3236 /* Driver hints */ 3237 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3238 { 3239 struct regulatory_request *request; 3240 3241 if (WARN_ON(!alpha2 || !wiphy)) 3242 return -EINVAL; 3243 3244 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3245 3246 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3247 if (!request) 3248 return -ENOMEM; 3249 3250 request->wiphy_idx = get_wiphy_idx(wiphy); 3251 3252 request->alpha2[0] = alpha2[0]; 3253 request->alpha2[1] = alpha2[1]; 3254 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3255 3256 /* Allow calling CRDA again */ 3257 reset_crda_timeouts(); 3258 3259 queue_regulatory_request(request); 3260 3261 return 0; 3262 } 3263 EXPORT_SYMBOL(regulatory_hint); 3264 3265 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3266 const u8 *country_ie, u8 country_ie_len) 3267 { 3268 char alpha2[2]; 3269 enum environment_cap env = ENVIRON_ANY; 3270 struct regulatory_request *request = NULL, *lr; 3271 3272 /* IE len must be evenly divisible by 2 */ 3273 if (country_ie_len & 0x01) 3274 return; 3275 3276 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3277 return; 3278 3279 request = kzalloc(sizeof(*request), GFP_KERNEL); 3280 if (!request) 3281 return; 3282 3283 alpha2[0] = country_ie[0]; 3284 alpha2[1] = country_ie[1]; 3285 3286 if (country_ie[2] == 'I') 3287 env = ENVIRON_INDOOR; 3288 else if (country_ie[2] == 'O') 3289 env = ENVIRON_OUTDOOR; 3290 3291 rcu_read_lock(); 3292 lr = get_last_request(); 3293 3294 if (unlikely(!lr)) 3295 goto out; 3296 3297 /* 3298 * We will run this only upon a successful connection on cfg80211. 3299 * We leave conflict resolution to the workqueue, where can hold 3300 * the RTNL. 3301 */ 3302 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3303 lr->wiphy_idx != WIPHY_IDX_INVALID) 3304 goto out; 3305 3306 request->wiphy_idx = get_wiphy_idx(wiphy); 3307 request->alpha2[0] = alpha2[0]; 3308 request->alpha2[1] = alpha2[1]; 3309 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3310 request->country_ie_env = env; 3311 3312 /* Allow calling CRDA again */ 3313 reset_crda_timeouts(); 3314 3315 queue_regulatory_request(request); 3316 request = NULL; 3317 out: 3318 kfree(request); 3319 rcu_read_unlock(); 3320 } 3321 3322 static void restore_alpha2(char *alpha2, bool reset_user) 3323 { 3324 /* indicates there is no alpha2 to consider for restoration */ 3325 alpha2[0] = '9'; 3326 alpha2[1] = '7'; 3327 3328 /* The user setting has precedence over the module parameter */ 3329 if (is_user_regdom_saved()) { 3330 /* Unless we're asked to ignore it and reset it */ 3331 if (reset_user) { 3332 pr_debug("Restoring regulatory settings including user preference\n"); 3333 user_alpha2[0] = '9'; 3334 user_alpha2[1] = '7'; 3335 3336 /* 3337 * If we're ignoring user settings, we still need to 3338 * check the module parameter to ensure we put things 3339 * back as they were for a full restore. 3340 */ 3341 if (!is_world_regdom(ieee80211_regdom)) { 3342 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3343 ieee80211_regdom[0], ieee80211_regdom[1]); 3344 alpha2[0] = ieee80211_regdom[0]; 3345 alpha2[1] = ieee80211_regdom[1]; 3346 } 3347 } else { 3348 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3349 user_alpha2[0], user_alpha2[1]); 3350 alpha2[0] = user_alpha2[0]; 3351 alpha2[1] = user_alpha2[1]; 3352 } 3353 } else if (!is_world_regdom(ieee80211_regdom)) { 3354 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3355 ieee80211_regdom[0], ieee80211_regdom[1]); 3356 alpha2[0] = ieee80211_regdom[0]; 3357 alpha2[1] = ieee80211_regdom[1]; 3358 } else 3359 pr_debug("Restoring regulatory settings\n"); 3360 } 3361 3362 static void restore_custom_reg_settings(struct wiphy *wiphy) 3363 { 3364 struct ieee80211_supported_band *sband; 3365 enum nl80211_band band; 3366 struct ieee80211_channel *chan; 3367 int i; 3368 3369 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3370 sband = wiphy->bands[band]; 3371 if (!sband) 3372 continue; 3373 for (i = 0; i < sband->n_channels; i++) { 3374 chan = &sband->channels[i]; 3375 chan->flags = chan->orig_flags; 3376 chan->max_antenna_gain = chan->orig_mag; 3377 chan->max_power = chan->orig_mpwr; 3378 chan->beacon_found = false; 3379 } 3380 } 3381 } 3382 3383 /* 3384 * Restoring regulatory settings involves ingoring any 3385 * possibly stale country IE information and user regulatory 3386 * settings if so desired, this includes any beacon hints 3387 * learned as we could have traveled outside to another country 3388 * after disconnection. To restore regulatory settings we do 3389 * exactly what we did at bootup: 3390 * 3391 * - send a core regulatory hint 3392 * - send a user regulatory hint if applicable 3393 * 3394 * Device drivers that send a regulatory hint for a specific country 3395 * keep their own regulatory domain on wiphy->regd so that does 3396 * not need to be remembered. 3397 */ 3398 static void restore_regulatory_settings(bool reset_user, bool cached) 3399 { 3400 char alpha2[2]; 3401 char world_alpha2[2]; 3402 struct reg_beacon *reg_beacon, *btmp; 3403 LIST_HEAD(tmp_reg_req_list); 3404 struct cfg80211_registered_device *rdev; 3405 3406 ASSERT_RTNL(); 3407 3408 /* 3409 * Clear the indoor setting in case that it is not controlled by user 3410 * space, as otherwise there is no guarantee that the device is still 3411 * operating in an indoor environment. 3412 */ 3413 spin_lock(®_indoor_lock); 3414 if (reg_is_indoor && !reg_is_indoor_portid) { 3415 reg_is_indoor = false; 3416 reg_check_channels(); 3417 } 3418 spin_unlock(®_indoor_lock); 3419 3420 reset_regdomains(true, &world_regdom); 3421 restore_alpha2(alpha2, reset_user); 3422 3423 /* 3424 * If there's any pending requests we simply 3425 * stash them to a temporary pending queue and 3426 * add then after we've restored regulatory 3427 * settings. 3428 */ 3429 spin_lock(®_requests_lock); 3430 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3431 spin_unlock(®_requests_lock); 3432 3433 /* Clear beacon hints */ 3434 spin_lock_bh(®_pending_beacons_lock); 3435 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3436 list_del(®_beacon->list); 3437 kfree(reg_beacon); 3438 } 3439 spin_unlock_bh(®_pending_beacons_lock); 3440 3441 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3442 list_del(®_beacon->list); 3443 kfree(reg_beacon); 3444 } 3445 3446 /* First restore to the basic regulatory settings */ 3447 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3448 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3449 3450 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3451 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3452 continue; 3453 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3454 restore_custom_reg_settings(&rdev->wiphy); 3455 } 3456 3457 if (cached && (!is_an_alpha2(alpha2) || 3458 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3459 reset_regdomains(false, cfg80211_world_regdom); 3460 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3461 print_regdomain(get_cfg80211_regdom()); 3462 nl80211_send_reg_change_event(&core_request_world); 3463 reg_set_request_processed(); 3464 3465 if (is_an_alpha2(alpha2) && 3466 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3467 struct regulatory_request *ureq; 3468 3469 spin_lock(®_requests_lock); 3470 ureq = list_last_entry(®_requests_list, 3471 struct regulatory_request, 3472 list); 3473 list_del(&ureq->list); 3474 spin_unlock(®_requests_lock); 3475 3476 notify_self_managed_wiphys(ureq); 3477 reg_update_last_request(ureq); 3478 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3479 REGD_SOURCE_CACHED); 3480 } 3481 } else { 3482 regulatory_hint_core(world_alpha2); 3483 3484 /* 3485 * This restores the ieee80211_regdom module parameter 3486 * preference or the last user requested regulatory 3487 * settings, user regulatory settings takes precedence. 3488 */ 3489 if (is_an_alpha2(alpha2)) 3490 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3491 } 3492 3493 spin_lock(®_requests_lock); 3494 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3495 spin_unlock(®_requests_lock); 3496 3497 pr_debug("Kicking the queue\n"); 3498 3499 schedule_work(®_work); 3500 } 3501 3502 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3503 { 3504 struct cfg80211_registered_device *rdev; 3505 struct wireless_dev *wdev; 3506 3507 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3508 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3509 wdev_lock(wdev); 3510 if (!(wdev->wiphy->regulatory_flags & flag)) { 3511 wdev_unlock(wdev); 3512 return false; 3513 } 3514 wdev_unlock(wdev); 3515 } 3516 } 3517 3518 return true; 3519 } 3520 3521 void regulatory_hint_disconnect(void) 3522 { 3523 /* Restore of regulatory settings is not required when wiphy(s) 3524 * ignore IE from connected access point but clearance of beacon hints 3525 * is required when wiphy(s) supports beacon hints. 3526 */ 3527 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3528 struct reg_beacon *reg_beacon, *btmp; 3529 3530 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3531 return; 3532 3533 spin_lock_bh(®_pending_beacons_lock); 3534 list_for_each_entry_safe(reg_beacon, btmp, 3535 ®_pending_beacons, list) { 3536 list_del(®_beacon->list); 3537 kfree(reg_beacon); 3538 } 3539 spin_unlock_bh(®_pending_beacons_lock); 3540 3541 list_for_each_entry_safe(reg_beacon, btmp, 3542 ®_beacon_list, list) { 3543 list_del(®_beacon->list); 3544 kfree(reg_beacon); 3545 } 3546 3547 return; 3548 } 3549 3550 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3551 restore_regulatory_settings(false, true); 3552 } 3553 3554 static bool freq_is_chan_12_13_14(u32 freq) 3555 { 3556 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3557 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3558 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3559 return true; 3560 return false; 3561 } 3562 3563 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3564 { 3565 struct reg_beacon *pending_beacon; 3566 3567 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3568 if (ieee80211_channel_equal(beacon_chan, 3569 &pending_beacon->chan)) 3570 return true; 3571 return false; 3572 } 3573 3574 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3575 struct ieee80211_channel *beacon_chan, 3576 gfp_t gfp) 3577 { 3578 struct reg_beacon *reg_beacon; 3579 bool processing; 3580 3581 if (beacon_chan->beacon_found || 3582 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3583 (beacon_chan->band == NL80211_BAND_2GHZ && 3584 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3585 return 0; 3586 3587 spin_lock_bh(®_pending_beacons_lock); 3588 processing = pending_reg_beacon(beacon_chan); 3589 spin_unlock_bh(®_pending_beacons_lock); 3590 3591 if (processing) 3592 return 0; 3593 3594 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3595 if (!reg_beacon) 3596 return -ENOMEM; 3597 3598 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n", 3599 beacon_chan->center_freq, beacon_chan->freq_offset, 3600 ieee80211_freq_khz_to_channel( 3601 ieee80211_channel_to_khz(beacon_chan)), 3602 wiphy_name(wiphy)); 3603 3604 memcpy(®_beacon->chan, beacon_chan, 3605 sizeof(struct ieee80211_channel)); 3606 3607 /* 3608 * Since we can be called from BH or and non-BH context 3609 * we must use spin_lock_bh() 3610 */ 3611 spin_lock_bh(®_pending_beacons_lock); 3612 list_add_tail(®_beacon->list, ®_pending_beacons); 3613 spin_unlock_bh(®_pending_beacons_lock); 3614 3615 schedule_work(®_work); 3616 3617 return 0; 3618 } 3619 3620 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3621 { 3622 unsigned int i; 3623 const struct ieee80211_reg_rule *reg_rule = NULL; 3624 const struct ieee80211_freq_range *freq_range = NULL; 3625 const struct ieee80211_power_rule *power_rule = NULL; 3626 char bw[32], cac_time[32]; 3627 3628 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3629 3630 for (i = 0; i < rd->n_reg_rules; i++) { 3631 reg_rule = &rd->reg_rules[i]; 3632 freq_range = ®_rule->freq_range; 3633 power_rule = ®_rule->power_rule; 3634 3635 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3636 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO", 3637 freq_range->max_bandwidth_khz, 3638 reg_get_max_bandwidth(rd, reg_rule)); 3639 else 3640 snprintf(bw, sizeof(bw), "%d KHz", 3641 freq_range->max_bandwidth_khz); 3642 3643 if (reg_rule->flags & NL80211_RRF_DFS) 3644 scnprintf(cac_time, sizeof(cac_time), "%u s", 3645 reg_rule->dfs_cac_ms/1000); 3646 else 3647 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3648 3649 3650 /* 3651 * There may not be documentation for max antenna gain 3652 * in certain regions 3653 */ 3654 if (power_rule->max_antenna_gain) 3655 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3656 freq_range->start_freq_khz, 3657 freq_range->end_freq_khz, 3658 bw, 3659 power_rule->max_antenna_gain, 3660 power_rule->max_eirp, 3661 cac_time); 3662 else 3663 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3664 freq_range->start_freq_khz, 3665 freq_range->end_freq_khz, 3666 bw, 3667 power_rule->max_eirp, 3668 cac_time); 3669 } 3670 } 3671 3672 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3673 { 3674 switch (dfs_region) { 3675 case NL80211_DFS_UNSET: 3676 case NL80211_DFS_FCC: 3677 case NL80211_DFS_ETSI: 3678 case NL80211_DFS_JP: 3679 return true; 3680 default: 3681 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3682 return false; 3683 } 3684 } 3685 3686 static void print_regdomain(const struct ieee80211_regdomain *rd) 3687 { 3688 struct regulatory_request *lr = get_last_request(); 3689 3690 if (is_intersected_alpha2(rd->alpha2)) { 3691 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3692 struct cfg80211_registered_device *rdev; 3693 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3694 if (rdev) { 3695 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3696 rdev->country_ie_alpha2[0], 3697 rdev->country_ie_alpha2[1]); 3698 } else 3699 pr_debug("Current regulatory domain intersected:\n"); 3700 } else 3701 pr_debug("Current regulatory domain intersected:\n"); 3702 } else if (is_world_regdom(rd->alpha2)) { 3703 pr_debug("World regulatory domain updated:\n"); 3704 } else { 3705 if (is_unknown_alpha2(rd->alpha2)) 3706 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3707 else { 3708 if (reg_request_cell_base(lr)) 3709 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3710 rd->alpha2[0], rd->alpha2[1]); 3711 else 3712 pr_debug("Regulatory domain changed to country: %c%c\n", 3713 rd->alpha2[0], rd->alpha2[1]); 3714 } 3715 } 3716 3717 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3718 print_rd_rules(rd); 3719 } 3720 3721 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3722 { 3723 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3724 print_rd_rules(rd); 3725 } 3726 3727 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3728 { 3729 if (!is_world_regdom(rd->alpha2)) 3730 return -EINVAL; 3731 update_world_regdomain(rd); 3732 return 0; 3733 } 3734 3735 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3736 struct regulatory_request *user_request) 3737 { 3738 const struct ieee80211_regdomain *intersected_rd = NULL; 3739 3740 if (!regdom_changes(rd->alpha2)) 3741 return -EALREADY; 3742 3743 if (!is_valid_rd(rd)) { 3744 pr_err("Invalid regulatory domain detected: %c%c\n", 3745 rd->alpha2[0], rd->alpha2[1]); 3746 print_regdomain_info(rd); 3747 return -EINVAL; 3748 } 3749 3750 if (!user_request->intersect) { 3751 reset_regdomains(false, rd); 3752 return 0; 3753 } 3754 3755 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3756 if (!intersected_rd) 3757 return -EINVAL; 3758 3759 kfree(rd); 3760 rd = NULL; 3761 reset_regdomains(false, intersected_rd); 3762 3763 return 0; 3764 } 3765 3766 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3767 struct regulatory_request *driver_request) 3768 { 3769 const struct ieee80211_regdomain *regd; 3770 const struct ieee80211_regdomain *intersected_rd = NULL; 3771 const struct ieee80211_regdomain *tmp; 3772 struct wiphy *request_wiphy; 3773 3774 if (is_world_regdom(rd->alpha2)) 3775 return -EINVAL; 3776 3777 if (!regdom_changes(rd->alpha2)) 3778 return -EALREADY; 3779 3780 if (!is_valid_rd(rd)) { 3781 pr_err("Invalid regulatory domain detected: %c%c\n", 3782 rd->alpha2[0], rd->alpha2[1]); 3783 print_regdomain_info(rd); 3784 return -EINVAL; 3785 } 3786 3787 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3788 if (!request_wiphy) 3789 return -ENODEV; 3790 3791 if (!driver_request->intersect) { 3792 if (request_wiphy->regd) 3793 return -EALREADY; 3794 3795 regd = reg_copy_regd(rd); 3796 if (IS_ERR(regd)) 3797 return PTR_ERR(regd); 3798 3799 rcu_assign_pointer(request_wiphy->regd, regd); 3800 reset_regdomains(false, rd); 3801 return 0; 3802 } 3803 3804 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3805 if (!intersected_rd) 3806 return -EINVAL; 3807 3808 /* 3809 * We can trash what CRDA provided now. 3810 * However if a driver requested this specific regulatory 3811 * domain we keep it for its private use 3812 */ 3813 tmp = get_wiphy_regdom(request_wiphy); 3814 rcu_assign_pointer(request_wiphy->regd, rd); 3815 rcu_free_regdom(tmp); 3816 3817 rd = NULL; 3818 3819 reset_regdomains(false, intersected_rd); 3820 3821 return 0; 3822 } 3823 3824 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3825 struct regulatory_request *country_ie_request) 3826 { 3827 struct wiphy *request_wiphy; 3828 3829 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3830 !is_unknown_alpha2(rd->alpha2)) 3831 return -EINVAL; 3832 3833 /* 3834 * Lets only bother proceeding on the same alpha2 if the current 3835 * rd is non static (it means CRDA was present and was used last) 3836 * and the pending request came in from a country IE 3837 */ 3838 3839 if (!is_valid_rd(rd)) { 3840 pr_err("Invalid regulatory domain detected: %c%c\n", 3841 rd->alpha2[0], rd->alpha2[1]); 3842 print_regdomain_info(rd); 3843 return -EINVAL; 3844 } 3845 3846 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3847 if (!request_wiphy) 3848 return -ENODEV; 3849 3850 if (country_ie_request->intersect) 3851 return -EINVAL; 3852 3853 reset_regdomains(false, rd); 3854 return 0; 3855 } 3856 3857 /* 3858 * Use this call to set the current regulatory domain. Conflicts with 3859 * multiple drivers can be ironed out later. Caller must've already 3860 * kmalloc'd the rd structure. 3861 */ 3862 int set_regdom(const struct ieee80211_regdomain *rd, 3863 enum ieee80211_regd_source regd_src) 3864 { 3865 struct regulatory_request *lr; 3866 bool user_reset = false; 3867 int r; 3868 3869 if (IS_ERR_OR_NULL(rd)) 3870 return -ENODATA; 3871 3872 if (!reg_is_valid_request(rd->alpha2)) { 3873 kfree(rd); 3874 return -EINVAL; 3875 } 3876 3877 if (regd_src == REGD_SOURCE_CRDA) 3878 reset_crda_timeouts(); 3879 3880 lr = get_last_request(); 3881 3882 /* Note that this doesn't update the wiphys, this is done below */ 3883 switch (lr->initiator) { 3884 case NL80211_REGDOM_SET_BY_CORE: 3885 r = reg_set_rd_core(rd); 3886 break; 3887 case NL80211_REGDOM_SET_BY_USER: 3888 cfg80211_save_user_regdom(rd); 3889 r = reg_set_rd_user(rd, lr); 3890 user_reset = true; 3891 break; 3892 case NL80211_REGDOM_SET_BY_DRIVER: 3893 r = reg_set_rd_driver(rd, lr); 3894 break; 3895 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3896 r = reg_set_rd_country_ie(rd, lr); 3897 break; 3898 default: 3899 WARN(1, "invalid initiator %d\n", lr->initiator); 3900 kfree(rd); 3901 return -EINVAL; 3902 } 3903 3904 if (r) { 3905 switch (r) { 3906 case -EALREADY: 3907 reg_set_request_processed(); 3908 break; 3909 default: 3910 /* Back to world regulatory in case of errors */ 3911 restore_regulatory_settings(user_reset, false); 3912 } 3913 3914 kfree(rd); 3915 return r; 3916 } 3917 3918 /* This would make this whole thing pointless */ 3919 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3920 return -EINVAL; 3921 3922 /* update all wiphys now with the new established regulatory domain */ 3923 update_all_wiphy_regulatory(lr->initiator); 3924 3925 print_regdomain(get_cfg80211_regdom()); 3926 3927 nl80211_send_reg_change_event(lr); 3928 3929 reg_set_request_processed(); 3930 3931 return 0; 3932 } 3933 3934 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 3935 struct ieee80211_regdomain *rd) 3936 { 3937 const struct ieee80211_regdomain *regd; 3938 const struct ieee80211_regdomain *prev_regd; 3939 struct cfg80211_registered_device *rdev; 3940 3941 if (WARN_ON(!wiphy || !rd)) 3942 return -EINVAL; 3943 3944 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 3945 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 3946 return -EPERM; 3947 3948 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { 3949 print_regdomain_info(rd); 3950 return -EINVAL; 3951 } 3952 3953 regd = reg_copy_regd(rd); 3954 if (IS_ERR(regd)) 3955 return PTR_ERR(regd); 3956 3957 rdev = wiphy_to_rdev(wiphy); 3958 3959 spin_lock(®_requests_lock); 3960 prev_regd = rdev->requested_regd; 3961 rdev->requested_regd = regd; 3962 spin_unlock(®_requests_lock); 3963 3964 kfree(prev_regd); 3965 return 0; 3966 } 3967 3968 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 3969 struct ieee80211_regdomain *rd) 3970 { 3971 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 3972 3973 if (ret) 3974 return ret; 3975 3976 schedule_work(®_work); 3977 return 0; 3978 } 3979 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 3980 3981 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, 3982 struct ieee80211_regdomain *rd) 3983 { 3984 int ret; 3985 3986 ASSERT_RTNL(); 3987 3988 ret = __regulatory_set_wiphy_regd(wiphy, rd); 3989 if (ret) 3990 return ret; 3991 3992 /* process the request immediately */ 3993 reg_process_self_managed_hints(); 3994 return 0; 3995 } 3996 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); 3997 3998 void wiphy_regulatory_register(struct wiphy *wiphy) 3999 { 4000 struct regulatory_request *lr = get_last_request(); 4001 4002 /* self-managed devices ignore beacon hints and country IE */ 4003 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 4004 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 4005 REGULATORY_COUNTRY_IE_IGNORE; 4006 4007 /* 4008 * The last request may have been received before this 4009 * registration call. Call the driver notifier if 4010 * initiator is USER. 4011 */ 4012 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 4013 reg_call_notifier(wiphy, lr); 4014 } 4015 4016 if (!reg_dev_ignore_cell_hint(wiphy)) 4017 reg_num_devs_support_basehint++; 4018 4019 wiphy_update_regulatory(wiphy, lr->initiator); 4020 wiphy_all_share_dfs_chan_state(wiphy); 4021 } 4022 4023 void wiphy_regulatory_deregister(struct wiphy *wiphy) 4024 { 4025 struct wiphy *request_wiphy = NULL; 4026 struct regulatory_request *lr; 4027 4028 lr = get_last_request(); 4029 4030 if (!reg_dev_ignore_cell_hint(wiphy)) 4031 reg_num_devs_support_basehint--; 4032 4033 rcu_free_regdom(get_wiphy_regdom(wiphy)); 4034 RCU_INIT_POINTER(wiphy->regd, NULL); 4035 4036 if (lr) 4037 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 4038 4039 if (!request_wiphy || request_wiphy != wiphy) 4040 return; 4041 4042 lr->wiphy_idx = WIPHY_IDX_INVALID; 4043 lr->country_ie_env = ENVIRON_ANY; 4044 } 4045 4046 /* 4047 * See FCC notices for UNII band definitions 4048 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii 4049 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0 4050 */ 4051 int cfg80211_get_unii(int freq) 4052 { 4053 /* UNII-1 */ 4054 if (freq >= 5150 && freq <= 5250) 4055 return 0; 4056 4057 /* UNII-2A */ 4058 if (freq > 5250 && freq <= 5350) 4059 return 1; 4060 4061 /* UNII-2B */ 4062 if (freq > 5350 && freq <= 5470) 4063 return 2; 4064 4065 /* UNII-2C */ 4066 if (freq > 5470 && freq <= 5725) 4067 return 3; 4068 4069 /* UNII-3 */ 4070 if (freq > 5725 && freq <= 5825) 4071 return 4; 4072 4073 /* UNII-5 */ 4074 if (freq > 5925 && freq <= 6425) 4075 return 5; 4076 4077 /* UNII-6 */ 4078 if (freq > 6425 && freq <= 6525) 4079 return 6; 4080 4081 /* UNII-7 */ 4082 if (freq > 6525 && freq <= 6875) 4083 return 7; 4084 4085 /* UNII-8 */ 4086 if (freq > 6875 && freq <= 7125) 4087 return 8; 4088 4089 return -EINVAL; 4090 } 4091 4092 bool regulatory_indoor_allowed(void) 4093 { 4094 return reg_is_indoor; 4095 } 4096 4097 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 4098 { 4099 const struct ieee80211_regdomain *regd = NULL; 4100 const struct ieee80211_regdomain *wiphy_regd = NULL; 4101 bool pre_cac_allowed = false; 4102 4103 rcu_read_lock(); 4104 4105 regd = rcu_dereference(cfg80211_regdomain); 4106 wiphy_regd = rcu_dereference(wiphy->regd); 4107 if (!wiphy_regd) { 4108 if (regd->dfs_region == NL80211_DFS_ETSI) 4109 pre_cac_allowed = true; 4110 4111 rcu_read_unlock(); 4112 4113 return pre_cac_allowed; 4114 } 4115 4116 if (regd->dfs_region == wiphy_regd->dfs_region && 4117 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 4118 pre_cac_allowed = true; 4119 4120 rcu_read_unlock(); 4121 4122 return pre_cac_allowed; 4123 } 4124 EXPORT_SYMBOL(regulatory_pre_cac_allowed); 4125 4126 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev) 4127 { 4128 struct wireless_dev *wdev; 4129 /* If we finished CAC or received radar, we should end any 4130 * CAC running on the same channels. 4131 * the check !cfg80211_chandef_dfs_usable contain 2 options: 4132 * either all channels are available - those the CAC_FINISHED 4133 * event has effected another wdev state, or there is a channel 4134 * in unavailable state in wdev chandef - those the RADAR_DETECTED 4135 * event has effected another wdev state. 4136 * In both cases we should end the CAC on the wdev. 4137 */ 4138 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 4139 if (wdev->cac_started && 4140 !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef)) 4141 rdev_end_cac(rdev, wdev->netdev); 4142 } 4143 } 4144 4145 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 4146 struct cfg80211_chan_def *chandef, 4147 enum nl80211_dfs_state dfs_state, 4148 enum nl80211_radar_event event) 4149 { 4150 struct cfg80211_registered_device *rdev; 4151 4152 ASSERT_RTNL(); 4153 4154 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 4155 return; 4156 4157 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 4158 if (wiphy == &rdev->wiphy) 4159 continue; 4160 4161 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 4162 continue; 4163 4164 if (!ieee80211_get_channel(&rdev->wiphy, 4165 chandef->chan->center_freq)) 4166 continue; 4167 4168 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 4169 4170 if (event == NL80211_RADAR_DETECTED || 4171 event == NL80211_RADAR_CAC_FINISHED) { 4172 cfg80211_sched_dfs_chan_update(rdev); 4173 cfg80211_check_and_end_cac(rdev); 4174 } 4175 4176 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 4177 } 4178 } 4179 4180 static int __init regulatory_init_db(void) 4181 { 4182 int err; 4183 4184 /* 4185 * It's possible that - due to other bugs/issues - cfg80211 4186 * never called regulatory_init() below, or that it failed; 4187 * in that case, don't try to do any further work here as 4188 * it's doomed to lead to crashes. 4189 */ 4190 if (IS_ERR_OR_NULL(reg_pdev)) 4191 return -EINVAL; 4192 4193 err = load_builtin_regdb_keys(); 4194 if (err) 4195 return err; 4196 4197 /* We always try to get an update for the static regdomain */ 4198 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 4199 if (err) { 4200 if (err == -ENOMEM) { 4201 platform_device_unregister(reg_pdev); 4202 return err; 4203 } 4204 /* 4205 * N.B. kobject_uevent_env() can fail mainly for when we're out 4206 * memory which is handled and propagated appropriately above 4207 * but it can also fail during a netlink_broadcast() or during 4208 * early boot for call_usermodehelper(). For now treat these 4209 * errors as non-fatal. 4210 */ 4211 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 4212 } 4213 4214 /* 4215 * Finally, if the user set the module parameter treat it 4216 * as a user hint. 4217 */ 4218 if (!is_world_regdom(ieee80211_regdom)) 4219 regulatory_hint_user(ieee80211_regdom, 4220 NL80211_USER_REG_HINT_USER); 4221 4222 return 0; 4223 } 4224 #ifndef MODULE 4225 late_initcall(regulatory_init_db); 4226 #endif 4227 4228 int __init regulatory_init(void) 4229 { 4230 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 4231 if (IS_ERR(reg_pdev)) 4232 return PTR_ERR(reg_pdev); 4233 4234 spin_lock_init(®_requests_lock); 4235 spin_lock_init(®_pending_beacons_lock); 4236 spin_lock_init(®_indoor_lock); 4237 4238 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 4239 4240 user_alpha2[0] = '9'; 4241 user_alpha2[1] = '7'; 4242 4243 #ifdef MODULE 4244 return regulatory_init_db(); 4245 #else 4246 return 0; 4247 #endif 4248 } 4249 4250 void regulatory_exit(void) 4251 { 4252 struct regulatory_request *reg_request, *tmp; 4253 struct reg_beacon *reg_beacon, *btmp; 4254 4255 cancel_work_sync(®_work); 4256 cancel_crda_timeout_sync(); 4257 cancel_delayed_work_sync(®_check_chans); 4258 4259 /* Lock to suppress warnings */ 4260 rtnl_lock(); 4261 reset_regdomains(true, NULL); 4262 rtnl_unlock(); 4263 4264 dev_set_uevent_suppress(®_pdev->dev, true); 4265 4266 platform_device_unregister(reg_pdev); 4267 4268 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 4269 list_del(®_beacon->list); 4270 kfree(reg_beacon); 4271 } 4272 4273 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 4274 list_del(®_beacon->list); 4275 kfree(reg_beacon); 4276 } 4277 4278 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4279 list_del(®_request->list); 4280 kfree(reg_request); 4281 } 4282 4283 if (!IS_ERR_OR_NULL(regdb)) 4284 kfree(regdb); 4285 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4286 kfree(cfg80211_user_regdom); 4287 4288 free_regdb_keyring(); 4289 } 4290