1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2022 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static DEFINE_SPINLOCK(reg_indoor_lock); 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user, bool cached); 135 static void print_regdomain(const struct ieee80211_regdomain *rd); 136 static void reg_process_hint(struct regulatory_request *reg_request); 137 138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 139 { 140 return rcu_dereference_rtnl(cfg80211_regdomain); 141 } 142 143 /* 144 * Returns the regulatory domain associated with the wiphy. 145 * 146 * Requires any of RTNL, wiphy mutex or RCU protection. 147 */ 148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 149 { 150 return rcu_dereference_check(wiphy->regd, 151 lockdep_is_held(&wiphy->mtx) || 152 lockdep_rtnl_is_held()); 153 } 154 EXPORT_SYMBOL(get_wiphy_regdom); 155 156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 157 { 158 switch (dfs_region) { 159 case NL80211_DFS_UNSET: 160 return "unset"; 161 case NL80211_DFS_FCC: 162 return "FCC"; 163 case NL80211_DFS_ETSI: 164 return "ETSI"; 165 case NL80211_DFS_JP: 166 return "JP"; 167 } 168 return "Unknown"; 169 } 170 171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 172 { 173 const struct ieee80211_regdomain *regd = NULL; 174 const struct ieee80211_regdomain *wiphy_regd = NULL; 175 enum nl80211_dfs_regions dfs_region; 176 177 rcu_read_lock(); 178 regd = get_cfg80211_regdom(); 179 dfs_region = regd->dfs_region; 180 181 if (!wiphy) 182 goto out; 183 184 wiphy_regd = get_wiphy_regdom(wiphy); 185 if (!wiphy_regd) 186 goto out; 187 188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 189 dfs_region = wiphy_regd->dfs_region; 190 goto out; 191 } 192 193 if (wiphy_regd->dfs_region == regd->dfs_region) 194 goto out; 195 196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 197 dev_name(&wiphy->dev), 198 reg_dfs_region_str(wiphy_regd->dfs_region), 199 reg_dfs_region_str(regd->dfs_region)); 200 201 out: 202 rcu_read_unlock(); 203 204 return dfs_region; 205 } 206 207 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 208 { 209 if (!r) 210 return; 211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 212 } 213 214 static struct regulatory_request *get_last_request(void) 215 { 216 return rcu_dereference_rtnl(last_request); 217 } 218 219 /* Used to queue up regulatory hints */ 220 static LIST_HEAD(reg_requests_list); 221 static DEFINE_SPINLOCK(reg_requests_lock); 222 223 /* Used to queue up beacon hints for review */ 224 static LIST_HEAD(reg_pending_beacons); 225 static DEFINE_SPINLOCK(reg_pending_beacons_lock); 226 227 /* Used to keep track of processed beacon hints */ 228 static LIST_HEAD(reg_beacon_list); 229 230 struct reg_beacon { 231 struct list_head list; 232 struct ieee80211_channel chan; 233 }; 234 235 static void reg_check_chans_work(struct work_struct *work); 236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 237 238 static void reg_todo(struct work_struct *work); 239 static DECLARE_WORK(reg_work, reg_todo); 240 241 /* We keep a static world regulatory domain in case of the absence of CRDA */ 242 static const struct ieee80211_regdomain world_regdom = { 243 .n_reg_rules = 8, 244 .alpha2 = "00", 245 .reg_rules = { 246 /* IEEE 802.11b/g, channels 1..11 */ 247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 248 /* IEEE 802.11b/g, channels 12..13. */ 249 REG_RULE(2467-10, 2472+10, 20, 6, 20, 250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 251 /* IEEE 802.11 channel 14 - Only JP enables 252 * this and for 802.11b only */ 253 REG_RULE(2484-10, 2484+10, 20, 6, 20, 254 NL80211_RRF_NO_IR | 255 NL80211_RRF_NO_OFDM), 256 /* IEEE 802.11a, channel 36..48 */ 257 REG_RULE(5180-10, 5240+10, 80, 6, 20, 258 NL80211_RRF_NO_IR | 259 NL80211_RRF_AUTO_BW), 260 261 /* IEEE 802.11a, channel 52..64 - DFS required */ 262 REG_RULE(5260-10, 5320+10, 80, 6, 20, 263 NL80211_RRF_NO_IR | 264 NL80211_RRF_AUTO_BW | 265 NL80211_RRF_DFS), 266 267 /* IEEE 802.11a, channel 100..144 - DFS required */ 268 REG_RULE(5500-10, 5720+10, 160, 6, 20, 269 NL80211_RRF_NO_IR | 270 NL80211_RRF_DFS), 271 272 /* IEEE 802.11a, channel 149..165 */ 273 REG_RULE(5745-10, 5825+10, 80, 6, 20, 274 NL80211_RRF_NO_IR), 275 276 /* IEEE 802.11ad (60GHz), channels 1..3 */ 277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 278 } 279 }; 280 281 /* protected by RTNL */ 282 static const struct ieee80211_regdomain *cfg80211_world_regdom = 283 &world_regdom; 284 285 static char *ieee80211_regdom = "00"; 286 static char user_alpha2[2]; 287 static const struct ieee80211_regdomain *cfg80211_user_regdom; 288 289 module_param(ieee80211_regdom, charp, 0444); 290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 291 292 static void reg_free_request(struct regulatory_request *request) 293 { 294 if (request == &core_request_world) 295 return; 296 297 if (request != get_last_request()) 298 kfree(request); 299 } 300 301 static void reg_free_last_request(void) 302 { 303 struct regulatory_request *lr = get_last_request(); 304 305 if (lr != &core_request_world && lr) 306 kfree_rcu(lr, rcu_head); 307 } 308 309 static void reg_update_last_request(struct regulatory_request *request) 310 { 311 struct regulatory_request *lr; 312 313 lr = get_last_request(); 314 if (lr == request) 315 return; 316 317 reg_free_last_request(); 318 rcu_assign_pointer(last_request, request); 319 } 320 321 static void reset_regdomains(bool full_reset, 322 const struct ieee80211_regdomain *new_regdom) 323 { 324 const struct ieee80211_regdomain *r; 325 326 ASSERT_RTNL(); 327 328 r = get_cfg80211_regdom(); 329 330 /* avoid freeing static information or freeing something twice */ 331 if (r == cfg80211_world_regdom) 332 r = NULL; 333 if (cfg80211_world_regdom == &world_regdom) 334 cfg80211_world_regdom = NULL; 335 if (r == &world_regdom) 336 r = NULL; 337 338 rcu_free_regdom(r); 339 rcu_free_regdom(cfg80211_world_regdom); 340 341 cfg80211_world_regdom = &world_regdom; 342 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 343 344 if (!full_reset) 345 return; 346 347 reg_update_last_request(&core_request_world); 348 } 349 350 /* 351 * Dynamic world regulatory domain requested by the wireless 352 * core upon initialization 353 */ 354 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 355 { 356 struct regulatory_request *lr; 357 358 lr = get_last_request(); 359 360 WARN_ON(!lr); 361 362 reset_regdomains(false, rd); 363 364 cfg80211_world_regdom = rd; 365 } 366 367 bool is_world_regdom(const char *alpha2) 368 { 369 if (!alpha2) 370 return false; 371 return alpha2[0] == '0' && alpha2[1] == '0'; 372 } 373 374 static bool is_alpha2_set(const char *alpha2) 375 { 376 if (!alpha2) 377 return false; 378 return alpha2[0] && alpha2[1]; 379 } 380 381 static bool is_unknown_alpha2(const char *alpha2) 382 { 383 if (!alpha2) 384 return false; 385 /* 386 * Special case where regulatory domain was built by driver 387 * but a specific alpha2 cannot be determined 388 */ 389 return alpha2[0] == '9' && alpha2[1] == '9'; 390 } 391 392 static bool is_intersected_alpha2(const char *alpha2) 393 { 394 if (!alpha2) 395 return false; 396 /* 397 * Special case where regulatory domain is the 398 * result of an intersection between two regulatory domain 399 * structures 400 */ 401 return alpha2[0] == '9' && alpha2[1] == '8'; 402 } 403 404 static bool is_an_alpha2(const char *alpha2) 405 { 406 if (!alpha2) 407 return false; 408 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 409 } 410 411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 412 { 413 if (!alpha2_x || !alpha2_y) 414 return false; 415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 416 } 417 418 static bool regdom_changes(const char *alpha2) 419 { 420 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 421 422 if (!r) 423 return true; 424 return !alpha2_equal(r->alpha2, alpha2); 425 } 426 427 /* 428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 430 * has ever been issued. 431 */ 432 static bool is_user_regdom_saved(void) 433 { 434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 435 return false; 436 437 /* This would indicate a mistake on the design */ 438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 439 "Unexpected user alpha2: %c%c\n", 440 user_alpha2[0], user_alpha2[1])) 441 return false; 442 443 return true; 444 } 445 446 static const struct ieee80211_regdomain * 447 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 448 { 449 struct ieee80211_regdomain *regd; 450 unsigned int i; 451 452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 453 GFP_KERNEL); 454 if (!regd) 455 return ERR_PTR(-ENOMEM); 456 457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 458 459 for (i = 0; i < src_regd->n_reg_rules; i++) 460 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 461 sizeof(struct ieee80211_reg_rule)); 462 463 return regd; 464 } 465 466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 467 { 468 ASSERT_RTNL(); 469 470 if (!IS_ERR(cfg80211_user_regdom)) 471 kfree(cfg80211_user_regdom); 472 cfg80211_user_regdom = reg_copy_regd(rd); 473 } 474 475 struct reg_regdb_apply_request { 476 struct list_head list; 477 const struct ieee80211_regdomain *regdom; 478 }; 479 480 static LIST_HEAD(reg_regdb_apply_list); 481 static DEFINE_MUTEX(reg_regdb_apply_mutex); 482 483 static void reg_regdb_apply(struct work_struct *work) 484 { 485 struct reg_regdb_apply_request *request; 486 487 rtnl_lock(); 488 489 mutex_lock(®_regdb_apply_mutex); 490 while (!list_empty(®_regdb_apply_list)) { 491 request = list_first_entry(®_regdb_apply_list, 492 struct reg_regdb_apply_request, 493 list); 494 list_del(&request->list); 495 496 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 497 kfree(request); 498 } 499 mutex_unlock(®_regdb_apply_mutex); 500 501 rtnl_unlock(); 502 } 503 504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 505 506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 507 { 508 struct reg_regdb_apply_request *request; 509 510 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 511 if (!request) { 512 kfree(regdom); 513 return -ENOMEM; 514 } 515 516 request->regdom = regdom; 517 518 mutex_lock(®_regdb_apply_mutex); 519 list_add_tail(&request->list, ®_regdb_apply_list); 520 mutex_unlock(®_regdb_apply_mutex); 521 522 schedule_work(®_regdb_work); 523 return 0; 524 } 525 526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 527 /* Max number of consecutive attempts to communicate with CRDA */ 528 #define REG_MAX_CRDA_TIMEOUTS 10 529 530 static u32 reg_crda_timeouts; 531 532 static void crda_timeout_work(struct work_struct *work); 533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 534 535 static void crda_timeout_work(struct work_struct *work) 536 { 537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 538 rtnl_lock(); 539 reg_crda_timeouts++; 540 restore_regulatory_settings(true, false); 541 rtnl_unlock(); 542 } 543 544 static void cancel_crda_timeout(void) 545 { 546 cancel_delayed_work(&crda_timeout); 547 } 548 549 static void cancel_crda_timeout_sync(void) 550 { 551 cancel_delayed_work_sync(&crda_timeout); 552 } 553 554 static void reset_crda_timeouts(void) 555 { 556 reg_crda_timeouts = 0; 557 } 558 559 /* 560 * This lets us keep regulatory code which is updated on a regulatory 561 * basis in userspace. 562 */ 563 static int call_crda(const char *alpha2) 564 { 565 char country[12]; 566 char *env[] = { country, NULL }; 567 int ret; 568 569 snprintf(country, sizeof(country), "COUNTRY=%c%c", 570 alpha2[0], alpha2[1]); 571 572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 574 return -EINVAL; 575 } 576 577 if (!is_world_regdom((char *) alpha2)) 578 pr_debug("Calling CRDA for country: %c%c\n", 579 alpha2[0], alpha2[1]); 580 else 581 pr_debug("Calling CRDA to update world regulatory domain\n"); 582 583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 584 if (ret) 585 return ret; 586 587 queue_delayed_work(system_power_efficient_wq, 588 &crda_timeout, msecs_to_jiffies(3142)); 589 return 0; 590 } 591 #else 592 static inline void cancel_crda_timeout(void) {} 593 static inline void cancel_crda_timeout_sync(void) {} 594 static inline void reset_crda_timeouts(void) {} 595 static inline int call_crda(const char *alpha2) 596 { 597 return -ENODATA; 598 } 599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 600 601 /* code to directly load a firmware database through request_firmware */ 602 static const struct fwdb_header *regdb; 603 604 struct fwdb_country { 605 u8 alpha2[2]; 606 __be16 coll_ptr; 607 /* this struct cannot be extended */ 608 } __packed __aligned(4); 609 610 struct fwdb_collection { 611 u8 len; 612 u8 n_rules; 613 u8 dfs_region; 614 /* no optional data yet */ 615 /* aligned to 2, then followed by __be16 array of rule pointers */ 616 } __packed __aligned(4); 617 618 enum fwdb_flags { 619 FWDB_FLAG_NO_OFDM = BIT(0), 620 FWDB_FLAG_NO_OUTDOOR = BIT(1), 621 FWDB_FLAG_DFS = BIT(2), 622 FWDB_FLAG_NO_IR = BIT(3), 623 FWDB_FLAG_AUTO_BW = BIT(4), 624 }; 625 626 struct fwdb_wmm_ac { 627 u8 ecw; 628 u8 aifsn; 629 __be16 cot; 630 } __packed; 631 632 struct fwdb_wmm_rule { 633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 635 } __packed; 636 637 struct fwdb_rule { 638 u8 len; 639 u8 flags; 640 __be16 max_eirp; 641 __be32 start, end, max_bw; 642 /* start of optional data */ 643 __be16 cac_timeout; 644 __be16 wmm_ptr; 645 } __packed __aligned(4); 646 647 #define FWDB_MAGIC 0x52474442 648 #define FWDB_VERSION 20 649 650 struct fwdb_header { 651 __be32 magic; 652 __be32 version; 653 struct fwdb_country country[]; 654 } __packed __aligned(4); 655 656 static int ecw2cw(int ecw) 657 { 658 return (1 << ecw) - 1; 659 } 660 661 static bool valid_wmm(struct fwdb_wmm_rule *rule) 662 { 663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 664 int i; 665 666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 667 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 668 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 669 u8 aifsn = ac[i].aifsn; 670 671 if (cw_min >= cw_max) 672 return false; 673 674 if (aifsn < 1) 675 return false; 676 } 677 678 return true; 679 } 680 681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 682 { 683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 684 685 if ((u8 *)rule + sizeof(rule->len) > data + size) 686 return false; 687 688 /* mandatory fields */ 689 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 690 return false; 691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 693 struct fwdb_wmm_rule *wmm; 694 695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 696 return false; 697 698 wmm = (void *)(data + wmm_ptr); 699 700 if (!valid_wmm(wmm)) 701 return false; 702 } 703 return true; 704 } 705 706 static bool valid_country(const u8 *data, unsigned int size, 707 const struct fwdb_country *country) 708 { 709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 710 struct fwdb_collection *coll = (void *)(data + ptr); 711 __be16 *rules_ptr; 712 unsigned int i; 713 714 /* make sure we can read len/n_rules */ 715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 716 return false; 717 718 /* make sure base struct and all rules fit */ 719 if ((u8 *)coll + ALIGN(coll->len, 2) + 720 (coll->n_rules * 2) > data + size) 721 return false; 722 723 /* mandatory fields must exist */ 724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 725 return false; 726 727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 728 729 for (i = 0; i < coll->n_rules; i++) { 730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 731 732 if (!valid_rule(data, size, rule_ptr)) 733 return false; 734 } 735 736 return true; 737 } 738 739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 740 #include <keys/asymmetric-type.h> 741 742 static struct key *builtin_regdb_keys; 743 744 static int __init load_builtin_regdb_keys(void) 745 { 746 builtin_regdb_keys = 747 keyring_alloc(".builtin_regdb_keys", 748 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 749 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 750 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 751 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 752 if (IS_ERR(builtin_regdb_keys)) 753 return PTR_ERR(builtin_regdb_keys); 754 755 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 756 757 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 758 x509_load_certificate_list(shipped_regdb_certs, 759 shipped_regdb_certs_len, 760 builtin_regdb_keys); 761 #endif 762 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 763 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 764 x509_load_certificate_list(extra_regdb_certs, 765 extra_regdb_certs_len, 766 builtin_regdb_keys); 767 #endif 768 769 return 0; 770 } 771 772 MODULE_FIRMWARE("regulatory.db.p7s"); 773 774 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 775 { 776 const struct firmware *sig; 777 bool result; 778 779 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 780 return false; 781 782 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 783 builtin_regdb_keys, 784 VERIFYING_UNSPECIFIED_SIGNATURE, 785 NULL, NULL) == 0; 786 787 release_firmware(sig); 788 789 return result; 790 } 791 792 static void free_regdb_keyring(void) 793 { 794 key_put(builtin_regdb_keys); 795 } 796 #else 797 static int load_builtin_regdb_keys(void) 798 { 799 return 0; 800 } 801 802 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 803 { 804 return true; 805 } 806 807 static void free_regdb_keyring(void) 808 { 809 } 810 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 811 812 static bool valid_regdb(const u8 *data, unsigned int size) 813 { 814 const struct fwdb_header *hdr = (void *)data; 815 const struct fwdb_country *country; 816 817 if (size < sizeof(*hdr)) 818 return false; 819 820 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 821 return false; 822 823 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 824 return false; 825 826 if (!regdb_has_valid_signature(data, size)) 827 return false; 828 829 country = &hdr->country[0]; 830 while ((u8 *)(country + 1) <= data + size) { 831 if (!country->coll_ptr) 832 break; 833 if (!valid_country(data, size, country)) 834 return false; 835 country++; 836 } 837 838 return true; 839 } 840 841 static void set_wmm_rule(const struct fwdb_header *db, 842 const struct fwdb_country *country, 843 const struct fwdb_rule *rule, 844 struct ieee80211_reg_rule *rrule) 845 { 846 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 847 struct fwdb_wmm_rule *wmm; 848 unsigned int i, wmm_ptr; 849 850 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 851 wmm = (void *)((u8 *)db + wmm_ptr); 852 853 if (!valid_wmm(wmm)) { 854 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 855 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 856 country->alpha2[0], country->alpha2[1]); 857 return; 858 } 859 860 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 861 wmm_rule->client[i].cw_min = 862 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 863 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 864 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 865 wmm_rule->client[i].cot = 866 1000 * be16_to_cpu(wmm->client[i].cot); 867 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 868 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 869 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 870 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 871 } 872 873 rrule->has_wmm = true; 874 } 875 876 static int __regdb_query_wmm(const struct fwdb_header *db, 877 const struct fwdb_country *country, int freq, 878 struct ieee80211_reg_rule *rrule) 879 { 880 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 881 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 882 int i; 883 884 for (i = 0; i < coll->n_rules; i++) { 885 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 886 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 887 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 888 889 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 890 continue; 891 892 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 893 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 894 set_wmm_rule(db, country, rule, rrule); 895 return 0; 896 } 897 } 898 899 return -ENODATA; 900 } 901 902 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 903 { 904 const struct fwdb_header *hdr = regdb; 905 const struct fwdb_country *country; 906 907 if (!regdb) 908 return -ENODATA; 909 910 if (IS_ERR(regdb)) 911 return PTR_ERR(regdb); 912 913 country = &hdr->country[0]; 914 while (country->coll_ptr) { 915 if (alpha2_equal(alpha2, country->alpha2)) 916 return __regdb_query_wmm(regdb, country, freq, rule); 917 918 country++; 919 } 920 921 return -ENODATA; 922 } 923 EXPORT_SYMBOL(reg_query_regdb_wmm); 924 925 static int regdb_query_country(const struct fwdb_header *db, 926 const struct fwdb_country *country) 927 { 928 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 929 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 930 struct ieee80211_regdomain *regdom; 931 unsigned int i; 932 933 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 934 GFP_KERNEL); 935 if (!regdom) 936 return -ENOMEM; 937 938 regdom->n_reg_rules = coll->n_rules; 939 regdom->alpha2[0] = country->alpha2[0]; 940 regdom->alpha2[1] = country->alpha2[1]; 941 regdom->dfs_region = coll->dfs_region; 942 943 for (i = 0; i < regdom->n_reg_rules; i++) { 944 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 945 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 946 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 947 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 948 949 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 950 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 951 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 952 953 rrule->power_rule.max_antenna_gain = 0; 954 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 955 956 rrule->flags = 0; 957 if (rule->flags & FWDB_FLAG_NO_OFDM) 958 rrule->flags |= NL80211_RRF_NO_OFDM; 959 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 960 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 961 if (rule->flags & FWDB_FLAG_DFS) 962 rrule->flags |= NL80211_RRF_DFS; 963 if (rule->flags & FWDB_FLAG_NO_IR) 964 rrule->flags |= NL80211_RRF_NO_IR; 965 if (rule->flags & FWDB_FLAG_AUTO_BW) 966 rrule->flags |= NL80211_RRF_AUTO_BW; 967 968 rrule->dfs_cac_ms = 0; 969 970 /* handle optional data */ 971 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 972 rrule->dfs_cac_ms = 973 1000 * be16_to_cpu(rule->cac_timeout); 974 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 975 set_wmm_rule(db, country, rule, rrule); 976 } 977 978 return reg_schedule_apply(regdom); 979 } 980 981 static int query_regdb(const char *alpha2) 982 { 983 const struct fwdb_header *hdr = regdb; 984 const struct fwdb_country *country; 985 986 ASSERT_RTNL(); 987 988 if (IS_ERR(regdb)) 989 return PTR_ERR(regdb); 990 991 country = &hdr->country[0]; 992 while (country->coll_ptr) { 993 if (alpha2_equal(alpha2, country->alpha2)) 994 return regdb_query_country(regdb, country); 995 country++; 996 } 997 998 return -ENODATA; 999 } 1000 1001 static void regdb_fw_cb(const struct firmware *fw, void *context) 1002 { 1003 int set_error = 0; 1004 bool restore = true; 1005 void *db; 1006 1007 if (!fw) { 1008 pr_info("failed to load regulatory.db\n"); 1009 set_error = -ENODATA; 1010 } else if (!valid_regdb(fw->data, fw->size)) { 1011 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1012 set_error = -EINVAL; 1013 } 1014 1015 rtnl_lock(); 1016 if (regdb && !IS_ERR(regdb)) { 1017 /* negative case - a bug 1018 * positive case - can happen due to race in case of multiple cb's in 1019 * queue, due to usage of asynchronous callback 1020 * 1021 * Either case, just restore and free new db. 1022 */ 1023 } else if (set_error) { 1024 regdb = ERR_PTR(set_error); 1025 } else if (fw) { 1026 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1027 if (db) { 1028 regdb = db; 1029 restore = context && query_regdb(context); 1030 } else { 1031 restore = true; 1032 } 1033 } 1034 1035 if (restore) 1036 restore_regulatory_settings(true, false); 1037 1038 rtnl_unlock(); 1039 1040 kfree(context); 1041 1042 release_firmware(fw); 1043 } 1044 1045 MODULE_FIRMWARE("regulatory.db"); 1046 1047 static int query_regdb_file(const char *alpha2) 1048 { 1049 int err; 1050 1051 ASSERT_RTNL(); 1052 1053 if (regdb) 1054 return query_regdb(alpha2); 1055 1056 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1057 if (!alpha2) 1058 return -ENOMEM; 1059 1060 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1061 ®_pdev->dev, GFP_KERNEL, 1062 (void *)alpha2, regdb_fw_cb); 1063 if (err) 1064 kfree(alpha2); 1065 1066 return err; 1067 } 1068 1069 int reg_reload_regdb(void) 1070 { 1071 const struct firmware *fw; 1072 void *db; 1073 int err; 1074 const struct ieee80211_regdomain *current_regdomain; 1075 struct regulatory_request *request; 1076 1077 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1078 if (err) 1079 return err; 1080 1081 if (!valid_regdb(fw->data, fw->size)) { 1082 err = -ENODATA; 1083 goto out; 1084 } 1085 1086 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1087 if (!db) { 1088 err = -ENOMEM; 1089 goto out; 1090 } 1091 1092 rtnl_lock(); 1093 if (!IS_ERR_OR_NULL(regdb)) 1094 kfree(regdb); 1095 regdb = db; 1096 1097 /* reset regulatory domain */ 1098 current_regdomain = get_cfg80211_regdom(); 1099 1100 request = kzalloc(sizeof(*request), GFP_KERNEL); 1101 if (!request) { 1102 err = -ENOMEM; 1103 goto out_unlock; 1104 } 1105 1106 request->wiphy_idx = WIPHY_IDX_INVALID; 1107 request->alpha2[0] = current_regdomain->alpha2[0]; 1108 request->alpha2[1] = current_regdomain->alpha2[1]; 1109 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1110 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER; 1111 1112 reg_process_hint(request); 1113 1114 out_unlock: 1115 rtnl_unlock(); 1116 out: 1117 release_firmware(fw); 1118 return err; 1119 } 1120 1121 static bool reg_query_database(struct regulatory_request *request) 1122 { 1123 if (query_regdb_file(request->alpha2) == 0) 1124 return true; 1125 1126 if (call_crda(request->alpha2) == 0) 1127 return true; 1128 1129 return false; 1130 } 1131 1132 bool reg_is_valid_request(const char *alpha2) 1133 { 1134 struct regulatory_request *lr = get_last_request(); 1135 1136 if (!lr || lr->processed) 1137 return false; 1138 1139 return alpha2_equal(lr->alpha2, alpha2); 1140 } 1141 1142 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1143 { 1144 struct regulatory_request *lr = get_last_request(); 1145 1146 /* 1147 * Follow the driver's regulatory domain, if present, unless a country 1148 * IE has been processed or a user wants to help complaince further 1149 */ 1150 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1151 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1152 wiphy->regd) 1153 return get_wiphy_regdom(wiphy); 1154 1155 return get_cfg80211_regdom(); 1156 } 1157 1158 static unsigned int 1159 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1160 const struct ieee80211_reg_rule *rule) 1161 { 1162 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1163 const struct ieee80211_freq_range *freq_range_tmp; 1164 const struct ieee80211_reg_rule *tmp; 1165 u32 start_freq, end_freq, idx, no; 1166 1167 for (idx = 0; idx < rd->n_reg_rules; idx++) 1168 if (rule == &rd->reg_rules[idx]) 1169 break; 1170 1171 if (idx == rd->n_reg_rules) 1172 return 0; 1173 1174 /* get start_freq */ 1175 no = idx; 1176 1177 while (no) { 1178 tmp = &rd->reg_rules[--no]; 1179 freq_range_tmp = &tmp->freq_range; 1180 1181 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1182 break; 1183 1184 freq_range = freq_range_tmp; 1185 } 1186 1187 start_freq = freq_range->start_freq_khz; 1188 1189 /* get end_freq */ 1190 freq_range = &rule->freq_range; 1191 no = idx; 1192 1193 while (no < rd->n_reg_rules - 1) { 1194 tmp = &rd->reg_rules[++no]; 1195 freq_range_tmp = &tmp->freq_range; 1196 1197 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1198 break; 1199 1200 freq_range = freq_range_tmp; 1201 } 1202 1203 end_freq = freq_range->end_freq_khz; 1204 1205 return end_freq - start_freq; 1206 } 1207 1208 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1209 const struct ieee80211_reg_rule *rule) 1210 { 1211 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1212 1213 if (rule->flags & NL80211_RRF_NO_320MHZ) 1214 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160)); 1215 if (rule->flags & NL80211_RRF_NO_160MHZ) 1216 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1217 if (rule->flags & NL80211_RRF_NO_80MHZ) 1218 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1219 1220 /* 1221 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1222 * are not allowed. 1223 */ 1224 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1225 rule->flags & NL80211_RRF_NO_HT40PLUS) 1226 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1227 1228 return bw; 1229 } 1230 1231 /* Sanity check on a regulatory rule */ 1232 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1233 { 1234 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1235 u32 freq_diff; 1236 1237 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1238 return false; 1239 1240 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1241 return false; 1242 1243 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1244 1245 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1246 freq_range->max_bandwidth_khz > freq_diff) 1247 return false; 1248 1249 return true; 1250 } 1251 1252 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1253 { 1254 const struct ieee80211_reg_rule *reg_rule = NULL; 1255 unsigned int i; 1256 1257 if (!rd->n_reg_rules) 1258 return false; 1259 1260 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1261 return false; 1262 1263 for (i = 0; i < rd->n_reg_rules; i++) { 1264 reg_rule = &rd->reg_rules[i]; 1265 if (!is_valid_reg_rule(reg_rule)) 1266 return false; 1267 } 1268 1269 return true; 1270 } 1271 1272 /** 1273 * freq_in_rule_band - tells us if a frequency is in a frequency band 1274 * @freq_range: frequency rule we want to query 1275 * @freq_khz: frequency we are inquiring about 1276 * 1277 * This lets us know if a specific frequency rule is or is not relevant to 1278 * a specific frequency's band. Bands are device specific and artificial 1279 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1280 * however it is safe for now to assume that a frequency rule should not be 1281 * part of a frequency's band if the start freq or end freq are off by more 1282 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1283 * 60 GHz band. 1284 * This resolution can be lowered and should be considered as we add 1285 * regulatory rule support for other "bands". 1286 **/ 1287 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1288 u32 freq_khz) 1289 { 1290 #define ONE_GHZ_IN_KHZ 1000000 1291 /* 1292 * From 802.11ad: directional multi-gigabit (DMG): 1293 * Pertaining to operation in a frequency band containing a channel 1294 * with the Channel starting frequency above 45 GHz. 1295 */ 1296 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1297 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1298 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1299 return true; 1300 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1301 return true; 1302 return false; 1303 #undef ONE_GHZ_IN_KHZ 1304 } 1305 1306 /* 1307 * Later on we can perhaps use the more restrictive DFS 1308 * region but we don't have information for that yet so 1309 * for now simply disallow conflicts. 1310 */ 1311 static enum nl80211_dfs_regions 1312 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1313 const enum nl80211_dfs_regions dfs_region2) 1314 { 1315 if (dfs_region1 != dfs_region2) 1316 return NL80211_DFS_UNSET; 1317 return dfs_region1; 1318 } 1319 1320 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1321 const struct ieee80211_wmm_ac *wmm_ac2, 1322 struct ieee80211_wmm_ac *intersect) 1323 { 1324 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1325 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1326 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1327 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1328 } 1329 1330 /* 1331 * Helper for regdom_intersect(), this does the real 1332 * mathematical intersection fun 1333 */ 1334 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1335 const struct ieee80211_regdomain *rd2, 1336 const struct ieee80211_reg_rule *rule1, 1337 const struct ieee80211_reg_rule *rule2, 1338 struct ieee80211_reg_rule *intersected_rule) 1339 { 1340 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1341 struct ieee80211_freq_range *freq_range; 1342 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1343 struct ieee80211_power_rule *power_rule; 1344 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1345 struct ieee80211_wmm_rule *wmm_rule; 1346 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1347 1348 freq_range1 = &rule1->freq_range; 1349 freq_range2 = &rule2->freq_range; 1350 freq_range = &intersected_rule->freq_range; 1351 1352 power_rule1 = &rule1->power_rule; 1353 power_rule2 = &rule2->power_rule; 1354 power_rule = &intersected_rule->power_rule; 1355 1356 wmm_rule1 = &rule1->wmm_rule; 1357 wmm_rule2 = &rule2->wmm_rule; 1358 wmm_rule = &intersected_rule->wmm_rule; 1359 1360 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1361 freq_range2->start_freq_khz); 1362 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1363 freq_range2->end_freq_khz); 1364 1365 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1366 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1367 1368 if (rule1->flags & NL80211_RRF_AUTO_BW) 1369 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1370 if (rule2->flags & NL80211_RRF_AUTO_BW) 1371 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1372 1373 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1374 1375 intersected_rule->flags = rule1->flags | rule2->flags; 1376 1377 /* 1378 * In case NL80211_RRF_AUTO_BW requested for both rules 1379 * set AUTO_BW in intersected rule also. Next we will 1380 * calculate BW correctly in handle_channel function. 1381 * In other case remove AUTO_BW flag while we calculate 1382 * maximum bandwidth correctly and auto calculation is 1383 * not required. 1384 */ 1385 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1386 (rule2->flags & NL80211_RRF_AUTO_BW)) 1387 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1388 else 1389 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1390 1391 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1392 if (freq_range->max_bandwidth_khz > freq_diff) 1393 freq_range->max_bandwidth_khz = freq_diff; 1394 1395 power_rule->max_eirp = min(power_rule1->max_eirp, 1396 power_rule2->max_eirp); 1397 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1398 power_rule2->max_antenna_gain); 1399 1400 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1401 rule2->dfs_cac_ms); 1402 1403 if (rule1->has_wmm && rule2->has_wmm) { 1404 u8 ac; 1405 1406 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1407 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1408 &wmm_rule2->client[ac], 1409 &wmm_rule->client[ac]); 1410 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1411 &wmm_rule2->ap[ac], 1412 &wmm_rule->ap[ac]); 1413 } 1414 1415 intersected_rule->has_wmm = true; 1416 } else if (rule1->has_wmm) { 1417 *wmm_rule = *wmm_rule1; 1418 intersected_rule->has_wmm = true; 1419 } else if (rule2->has_wmm) { 1420 *wmm_rule = *wmm_rule2; 1421 intersected_rule->has_wmm = true; 1422 } else { 1423 intersected_rule->has_wmm = false; 1424 } 1425 1426 if (!is_valid_reg_rule(intersected_rule)) 1427 return -EINVAL; 1428 1429 return 0; 1430 } 1431 1432 /* check whether old rule contains new rule */ 1433 static bool rule_contains(struct ieee80211_reg_rule *r1, 1434 struct ieee80211_reg_rule *r2) 1435 { 1436 /* for simplicity, currently consider only same flags */ 1437 if (r1->flags != r2->flags) 1438 return false; 1439 1440 /* verify r1 is more restrictive */ 1441 if ((r1->power_rule.max_antenna_gain > 1442 r2->power_rule.max_antenna_gain) || 1443 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1444 return false; 1445 1446 /* make sure r2's range is contained within r1 */ 1447 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1448 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1449 return false; 1450 1451 /* and finally verify that r1.max_bw >= r2.max_bw */ 1452 if (r1->freq_range.max_bandwidth_khz < 1453 r2->freq_range.max_bandwidth_khz) 1454 return false; 1455 1456 return true; 1457 } 1458 1459 /* add or extend current rules. do nothing if rule is already contained */ 1460 static void add_rule(struct ieee80211_reg_rule *rule, 1461 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1462 { 1463 struct ieee80211_reg_rule *tmp_rule; 1464 int i; 1465 1466 for (i = 0; i < *n_rules; i++) { 1467 tmp_rule = ®_rules[i]; 1468 /* rule is already contained - do nothing */ 1469 if (rule_contains(tmp_rule, rule)) 1470 return; 1471 1472 /* extend rule if possible */ 1473 if (rule_contains(rule, tmp_rule)) { 1474 memcpy(tmp_rule, rule, sizeof(*rule)); 1475 return; 1476 } 1477 } 1478 1479 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1480 (*n_rules)++; 1481 } 1482 1483 /** 1484 * regdom_intersect - do the intersection between two regulatory domains 1485 * @rd1: first regulatory domain 1486 * @rd2: second regulatory domain 1487 * 1488 * Use this function to get the intersection between two regulatory domains. 1489 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1490 * as no one single alpha2 can represent this regulatory domain. 1491 * 1492 * Returns a pointer to the regulatory domain structure which will hold the 1493 * resulting intersection of rules between rd1 and rd2. We will 1494 * kzalloc() this structure for you. 1495 */ 1496 static struct ieee80211_regdomain * 1497 regdom_intersect(const struct ieee80211_regdomain *rd1, 1498 const struct ieee80211_regdomain *rd2) 1499 { 1500 int r; 1501 unsigned int x, y; 1502 unsigned int num_rules = 0; 1503 const struct ieee80211_reg_rule *rule1, *rule2; 1504 struct ieee80211_reg_rule intersected_rule; 1505 struct ieee80211_regdomain *rd; 1506 1507 if (!rd1 || !rd2) 1508 return NULL; 1509 1510 /* 1511 * First we get a count of the rules we'll need, then we actually 1512 * build them. This is to so we can malloc() and free() a 1513 * regdomain once. The reason we use reg_rules_intersect() here 1514 * is it will return -EINVAL if the rule computed makes no sense. 1515 * All rules that do check out OK are valid. 1516 */ 1517 1518 for (x = 0; x < rd1->n_reg_rules; x++) { 1519 rule1 = &rd1->reg_rules[x]; 1520 for (y = 0; y < rd2->n_reg_rules; y++) { 1521 rule2 = &rd2->reg_rules[y]; 1522 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1523 &intersected_rule)) 1524 num_rules++; 1525 } 1526 } 1527 1528 if (!num_rules) 1529 return NULL; 1530 1531 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1532 if (!rd) 1533 return NULL; 1534 1535 for (x = 0; x < rd1->n_reg_rules; x++) { 1536 rule1 = &rd1->reg_rules[x]; 1537 for (y = 0; y < rd2->n_reg_rules; y++) { 1538 rule2 = &rd2->reg_rules[y]; 1539 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1540 &intersected_rule); 1541 /* 1542 * No need to memset here the intersected rule here as 1543 * we're not using the stack anymore 1544 */ 1545 if (r) 1546 continue; 1547 1548 add_rule(&intersected_rule, rd->reg_rules, 1549 &rd->n_reg_rules); 1550 } 1551 } 1552 1553 rd->alpha2[0] = '9'; 1554 rd->alpha2[1] = '8'; 1555 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1556 rd2->dfs_region); 1557 1558 return rd; 1559 } 1560 1561 /* 1562 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1563 * want to just have the channel structure use these 1564 */ 1565 static u32 map_regdom_flags(u32 rd_flags) 1566 { 1567 u32 channel_flags = 0; 1568 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1569 channel_flags |= IEEE80211_CHAN_NO_IR; 1570 if (rd_flags & NL80211_RRF_DFS) 1571 channel_flags |= IEEE80211_CHAN_RADAR; 1572 if (rd_flags & NL80211_RRF_NO_OFDM) 1573 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1574 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1575 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1576 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1577 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1578 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1579 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1580 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1581 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1582 if (rd_flags & NL80211_RRF_NO_80MHZ) 1583 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1584 if (rd_flags & NL80211_RRF_NO_160MHZ) 1585 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1586 if (rd_flags & NL80211_RRF_NO_HE) 1587 channel_flags |= IEEE80211_CHAN_NO_HE; 1588 if (rd_flags & NL80211_RRF_NO_320MHZ) 1589 channel_flags |= IEEE80211_CHAN_NO_320MHZ; 1590 return channel_flags; 1591 } 1592 1593 static const struct ieee80211_reg_rule * 1594 freq_reg_info_regd(u32 center_freq, 1595 const struct ieee80211_regdomain *regd, u32 bw) 1596 { 1597 int i; 1598 bool band_rule_found = false; 1599 bool bw_fits = false; 1600 1601 if (!regd) 1602 return ERR_PTR(-EINVAL); 1603 1604 for (i = 0; i < regd->n_reg_rules; i++) { 1605 const struct ieee80211_reg_rule *rr; 1606 const struct ieee80211_freq_range *fr = NULL; 1607 1608 rr = ®d->reg_rules[i]; 1609 fr = &rr->freq_range; 1610 1611 /* 1612 * We only need to know if one frequency rule was 1613 * in center_freq's band, that's enough, so let's 1614 * not overwrite it once found 1615 */ 1616 if (!band_rule_found) 1617 band_rule_found = freq_in_rule_band(fr, center_freq); 1618 1619 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1620 1621 if (band_rule_found && bw_fits) 1622 return rr; 1623 } 1624 1625 if (!band_rule_found) 1626 return ERR_PTR(-ERANGE); 1627 1628 return ERR_PTR(-EINVAL); 1629 } 1630 1631 static const struct ieee80211_reg_rule * 1632 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1633 { 1634 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1635 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20}; 1636 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE); 1637 int i = ARRAY_SIZE(bws) - 1; 1638 u32 bw; 1639 1640 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) { 1641 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1642 if (!IS_ERR(reg_rule)) 1643 return reg_rule; 1644 } 1645 1646 return reg_rule; 1647 } 1648 1649 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1650 u32 center_freq) 1651 { 1652 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20; 1653 1654 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw)); 1655 } 1656 EXPORT_SYMBOL(freq_reg_info); 1657 1658 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1659 { 1660 switch (initiator) { 1661 case NL80211_REGDOM_SET_BY_CORE: 1662 return "core"; 1663 case NL80211_REGDOM_SET_BY_USER: 1664 return "user"; 1665 case NL80211_REGDOM_SET_BY_DRIVER: 1666 return "driver"; 1667 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1668 return "country element"; 1669 default: 1670 WARN_ON(1); 1671 return "bug"; 1672 } 1673 } 1674 EXPORT_SYMBOL(reg_initiator_name); 1675 1676 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1677 const struct ieee80211_reg_rule *reg_rule, 1678 const struct ieee80211_channel *chan) 1679 { 1680 const struct ieee80211_freq_range *freq_range = NULL; 1681 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0; 1682 bool is_s1g = chan->band == NL80211_BAND_S1GHZ; 1683 1684 freq_range = ®_rule->freq_range; 1685 1686 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1687 center_freq_khz = ieee80211_channel_to_khz(chan); 1688 /* Check if auto calculation requested */ 1689 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1690 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1691 1692 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1693 if (!cfg80211_does_bw_fit_range(freq_range, 1694 center_freq_khz, 1695 MHZ_TO_KHZ(10))) 1696 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1697 if (!cfg80211_does_bw_fit_range(freq_range, 1698 center_freq_khz, 1699 MHZ_TO_KHZ(20))) 1700 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1701 1702 if (is_s1g) { 1703 /* S1G is strict about non overlapping channels. We can 1704 * calculate which bandwidth is allowed per channel by finding 1705 * the largest bandwidth which cleanly divides the freq_range. 1706 */ 1707 int edge_offset; 1708 int ch_bw = max_bandwidth_khz; 1709 1710 while (ch_bw) { 1711 edge_offset = (center_freq_khz - ch_bw / 2) - 1712 freq_range->start_freq_khz; 1713 if (edge_offset % ch_bw == 0) { 1714 switch (KHZ_TO_MHZ(ch_bw)) { 1715 case 1: 1716 bw_flags |= IEEE80211_CHAN_1MHZ; 1717 break; 1718 case 2: 1719 bw_flags |= IEEE80211_CHAN_2MHZ; 1720 break; 1721 case 4: 1722 bw_flags |= IEEE80211_CHAN_4MHZ; 1723 break; 1724 case 8: 1725 bw_flags |= IEEE80211_CHAN_8MHZ; 1726 break; 1727 case 16: 1728 bw_flags |= IEEE80211_CHAN_16MHZ; 1729 break; 1730 default: 1731 /* If we got here, no bandwidths fit on 1732 * this frequency, ie. band edge. 1733 */ 1734 bw_flags |= IEEE80211_CHAN_DISABLED; 1735 break; 1736 } 1737 break; 1738 } 1739 ch_bw /= 2; 1740 } 1741 } else { 1742 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1743 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1744 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1745 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1746 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1747 bw_flags |= IEEE80211_CHAN_NO_HT40; 1748 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1749 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1750 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1751 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1752 if (max_bandwidth_khz < MHZ_TO_KHZ(320)) 1753 bw_flags |= IEEE80211_CHAN_NO_320MHZ; 1754 } 1755 return bw_flags; 1756 } 1757 1758 static void handle_channel_single_rule(struct wiphy *wiphy, 1759 enum nl80211_reg_initiator initiator, 1760 struct ieee80211_channel *chan, 1761 u32 flags, 1762 struct regulatory_request *lr, 1763 struct wiphy *request_wiphy, 1764 const struct ieee80211_reg_rule *reg_rule) 1765 { 1766 u32 bw_flags = 0; 1767 const struct ieee80211_power_rule *power_rule = NULL; 1768 const struct ieee80211_regdomain *regd; 1769 1770 regd = reg_get_regdomain(wiphy); 1771 1772 power_rule = ®_rule->power_rule; 1773 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1774 1775 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1776 request_wiphy && request_wiphy == wiphy && 1777 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1778 /* 1779 * This guarantees the driver's requested regulatory domain 1780 * will always be used as a base for further regulatory 1781 * settings 1782 */ 1783 chan->flags = chan->orig_flags = 1784 map_regdom_flags(reg_rule->flags) | bw_flags; 1785 chan->max_antenna_gain = chan->orig_mag = 1786 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1787 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1788 (int) MBM_TO_DBM(power_rule->max_eirp); 1789 1790 if (chan->flags & IEEE80211_CHAN_RADAR) { 1791 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1792 if (reg_rule->dfs_cac_ms) 1793 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1794 } 1795 1796 return; 1797 } 1798 1799 chan->dfs_state = NL80211_DFS_USABLE; 1800 chan->dfs_state_entered = jiffies; 1801 1802 chan->beacon_found = false; 1803 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1804 chan->max_antenna_gain = 1805 min_t(int, chan->orig_mag, 1806 MBI_TO_DBI(power_rule->max_antenna_gain)); 1807 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1808 1809 if (chan->flags & IEEE80211_CHAN_RADAR) { 1810 if (reg_rule->dfs_cac_ms) 1811 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1812 else 1813 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1814 } 1815 1816 if (chan->orig_mpwr) { 1817 /* 1818 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1819 * will always follow the passed country IE power settings. 1820 */ 1821 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1822 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1823 chan->max_power = chan->max_reg_power; 1824 else 1825 chan->max_power = min(chan->orig_mpwr, 1826 chan->max_reg_power); 1827 } else 1828 chan->max_power = chan->max_reg_power; 1829 } 1830 1831 static void handle_channel_adjacent_rules(struct wiphy *wiphy, 1832 enum nl80211_reg_initiator initiator, 1833 struct ieee80211_channel *chan, 1834 u32 flags, 1835 struct regulatory_request *lr, 1836 struct wiphy *request_wiphy, 1837 const struct ieee80211_reg_rule *rrule1, 1838 const struct ieee80211_reg_rule *rrule2, 1839 struct ieee80211_freq_range *comb_range) 1840 { 1841 u32 bw_flags1 = 0; 1842 u32 bw_flags2 = 0; 1843 const struct ieee80211_power_rule *power_rule1 = NULL; 1844 const struct ieee80211_power_rule *power_rule2 = NULL; 1845 const struct ieee80211_regdomain *regd; 1846 1847 regd = reg_get_regdomain(wiphy); 1848 1849 power_rule1 = &rrule1->power_rule; 1850 power_rule2 = &rrule2->power_rule; 1851 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan); 1852 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan); 1853 1854 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1855 request_wiphy && request_wiphy == wiphy && 1856 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1857 /* This guarantees the driver's requested regulatory domain 1858 * will always be used as a base for further regulatory 1859 * settings 1860 */ 1861 chan->flags = 1862 map_regdom_flags(rrule1->flags) | 1863 map_regdom_flags(rrule2->flags) | 1864 bw_flags1 | 1865 bw_flags2; 1866 chan->orig_flags = chan->flags; 1867 chan->max_antenna_gain = 1868 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain), 1869 MBI_TO_DBI(power_rule2->max_antenna_gain)); 1870 chan->orig_mag = chan->max_antenna_gain; 1871 chan->max_reg_power = 1872 min_t(int, MBM_TO_DBM(power_rule1->max_eirp), 1873 MBM_TO_DBM(power_rule2->max_eirp)); 1874 chan->max_power = chan->max_reg_power; 1875 chan->orig_mpwr = chan->max_reg_power; 1876 1877 if (chan->flags & IEEE80211_CHAN_RADAR) { 1878 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1879 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1880 chan->dfs_cac_ms = max_t(unsigned int, 1881 rrule1->dfs_cac_ms, 1882 rrule2->dfs_cac_ms); 1883 } 1884 1885 return; 1886 } 1887 1888 chan->dfs_state = NL80211_DFS_USABLE; 1889 chan->dfs_state_entered = jiffies; 1890 1891 chan->beacon_found = false; 1892 chan->flags = flags | bw_flags1 | bw_flags2 | 1893 map_regdom_flags(rrule1->flags) | 1894 map_regdom_flags(rrule2->flags); 1895 1896 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz 1897 * (otherwise no adj. rule case), recheck therefore 1898 */ 1899 if (cfg80211_does_bw_fit_range(comb_range, 1900 ieee80211_channel_to_khz(chan), 1901 MHZ_TO_KHZ(10))) 1902 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ; 1903 if (cfg80211_does_bw_fit_range(comb_range, 1904 ieee80211_channel_to_khz(chan), 1905 MHZ_TO_KHZ(20))) 1906 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ; 1907 1908 chan->max_antenna_gain = 1909 min_t(int, chan->orig_mag, 1910 min_t(int, 1911 MBI_TO_DBI(power_rule1->max_antenna_gain), 1912 MBI_TO_DBI(power_rule2->max_antenna_gain))); 1913 chan->max_reg_power = min_t(int, 1914 MBM_TO_DBM(power_rule1->max_eirp), 1915 MBM_TO_DBM(power_rule2->max_eirp)); 1916 1917 if (chan->flags & IEEE80211_CHAN_RADAR) { 1918 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1919 chan->dfs_cac_ms = max_t(unsigned int, 1920 rrule1->dfs_cac_ms, 1921 rrule2->dfs_cac_ms); 1922 else 1923 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1924 } 1925 1926 if (chan->orig_mpwr) { 1927 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1928 * will always follow the passed country IE power settings. 1929 */ 1930 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1931 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1932 chan->max_power = chan->max_reg_power; 1933 else 1934 chan->max_power = min(chan->orig_mpwr, 1935 chan->max_reg_power); 1936 } else { 1937 chan->max_power = chan->max_reg_power; 1938 } 1939 } 1940 1941 /* Note that right now we assume the desired channel bandwidth 1942 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1943 * per channel, the primary and the extension channel). 1944 */ 1945 static void handle_channel(struct wiphy *wiphy, 1946 enum nl80211_reg_initiator initiator, 1947 struct ieee80211_channel *chan) 1948 { 1949 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan); 1950 struct regulatory_request *lr = get_last_request(); 1951 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1952 const struct ieee80211_reg_rule *rrule = NULL; 1953 const struct ieee80211_reg_rule *rrule1 = NULL; 1954 const struct ieee80211_reg_rule *rrule2 = NULL; 1955 1956 u32 flags = chan->orig_flags; 1957 1958 rrule = freq_reg_info(wiphy, orig_chan_freq); 1959 if (IS_ERR(rrule)) { 1960 /* check for adjacent match, therefore get rules for 1961 * chan - 20 MHz and chan + 20 MHz and test 1962 * if reg rules are adjacent 1963 */ 1964 rrule1 = freq_reg_info(wiphy, 1965 orig_chan_freq - MHZ_TO_KHZ(20)); 1966 rrule2 = freq_reg_info(wiphy, 1967 orig_chan_freq + MHZ_TO_KHZ(20)); 1968 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) { 1969 struct ieee80211_freq_range comb_range; 1970 1971 if (rrule1->freq_range.end_freq_khz != 1972 rrule2->freq_range.start_freq_khz) 1973 goto disable_chan; 1974 1975 comb_range.start_freq_khz = 1976 rrule1->freq_range.start_freq_khz; 1977 comb_range.end_freq_khz = 1978 rrule2->freq_range.end_freq_khz; 1979 comb_range.max_bandwidth_khz = 1980 min_t(u32, 1981 rrule1->freq_range.max_bandwidth_khz, 1982 rrule2->freq_range.max_bandwidth_khz); 1983 1984 if (!cfg80211_does_bw_fit_range(&comb_range, 1985 orig_chan_freq, 1986 MHZ_TO_KHZ(20))) 1987 goto disable_chan; 1988 1989 handle_channel_adjacent_rules(wiphy, initiator, chan, 1990 flags, lr, request_wiphy, 1991 rrule1, rrule2, 1992 &comb_range); 1993 return; 1994 } 1995 1996 disable_chan: 1997 /* We will disable all channels that do not match our 1998 * received regulatory rule unless the hint is coming 1999 * from a Country IE and the Country IE had no information 2000 * about a band. The IEEE 802.11 spec allows for an AP 2001 * to send only a subset of the regulatory rules allowed, 2002 * so an AP in the US that only supports 2.4 GHz may only send 2003 * a country IE with information for the 2.4 GHz band 2004 * while 5 GHz is still supported. 2005 */ 2006 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2007 PTR_ERR(rrule) == -ERANGE) 2008 return; 2009 2010 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2011 request_wiphy && request_wiphy == wiphy && 2012 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2013 pr_debug("Disabling freq %d.%03d MHz for good\n", 2014 chan->center_freq, chan->freq_offset); 2015 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2016 chan->flags = chan->orig_flags; 2017 } else { 2018 pr_debug("Disabling freq %d.%03d MHz\n", 2019 chan->center_freq, chan->freq_offset); 2020 chan->flags |= IEEE80211_CHAN_DISABLED; 2021 } 2022 return; 2023 } 2024 2025 handle_channel_single_rule(wiphy, initiator, chan, flags, lr, 2026 request_wiphy, rrule); 2027 } 2028 2029 static void handle_band(struct wiphy *wiphy, 2030 enum nl80211_reg_initiator initiator, 2031 struct ieee80211_supported_band *sband) 2032 { 2033 unsigned int i; 2034 2035 if (!sband) 2036 return; 2037 2038 for (i = 0; i < sband->n_channels; i++) 2039 handle_channel(wiphy, initiator, &sband->channels[i]); 2040 } 2041 2042 static bool reg_request_cell_base(struct regulatory_request *request) 2043 { 2044 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 2045 return false; 2046 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 2047 } 2048 2049 bool reg_last_request_cell_base(void) 2050 { 2051 return reg_request_cell_base(get_last_request()); 2052 } 2053 2054 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 2055 /* Core specific check */ 2056 static enum reg_request_treatment 2057 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2058 { 2059 struct regulatory_request *lr = get_last_request(); 2060 2061 if (!reg_num_devs_support_basehint) 2062 return REG_REQ_IGNORE; 2063 2064 if (reg_request_cell_base(lr) && 2065 !regdom_changes(pending_request->alpha2)) 2066 return REG_REQ_ALREADY_SET; 2067 2068 return REG_REQ_OK; 2069 } 2070 2071 /* Device specific check */ 2072 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2073 { 2074 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 2075 } 2076 #else 2077 static enum reg_request_treatment 2078 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2079 { 2080 return REG_REQ_IGNORE; 2081 } 2082 2083 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2084 { 2085 return true; 2086 } 2087 #endif 2088 2089 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 2090 { 2091 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 2092 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 2093 return true; 2094 return false; 2095 } 2096 2097 static bool ignore_reg_update(struct wiphy *wiphy, 2098 enum nl80211_reg_initiator initiator) 2099 { 2100 struct regulatory_request *lr = get_last_request(); 2101 2102 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2103 return true; 2104 2105 if (!lr) { 2106 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 2107 reg_initiator_name(initiator)); 2108 return true; 2109 } 2110 2111 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2112 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 2113 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 2114 reg_initiator_name(initiator)); 2115 return true; 2116 } 2117 2118 /* 2119 * wiphy->regd will be set once the device has its own 2120 * desired regulatory domain set 2121 */ 2122 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 2123 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2124 !is_world_regdom(lr->alpha2)) { 2125 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 2126 reg_initiator_name(initiator)); 2127 return true; 2128 } 2129 2130 if (reg_request_cell_base(lr)) 2131 return reg_dev_ignore_cell_hint(wiphy); 2132 2133 return false; 2134 } 2135 2136 static bool reg_is_world_roaming(struct wiphy *wiphy) 2137 { 2138 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 2139 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 2140 struct regulatory_request *lr = get_last_request(); 2141 2142 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 2143 return true; 2144 2145 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2146 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2147 return true; 2148 2149 return false; 2150 } 2151 2152 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 2153 struct reg_beacon *reg_beacon) 2154 { 2155 struct ieee80211_supported_band *sband; 2156 struct ieee80211_channel *chan; 2157 bool channel_changed = false; 2158 struct ieee80211_channel chan_before; 2159 2160 sband = wiphy->bands[reg_beacon->chan.band]; 2161 chan = &sband->channels[chan_idx]; 2162 2163 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan))) 2164 return; 2165 2166 if (chan->beacon_found) 2167 return; 2168 2169 chan->beacon_found = true; 2170 2171 if (!reg_is_world_roaming(wiphy)) 2172 return; 2173 2174 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 2175 return; 2176 2177 chan_before = *chan; 2178 2179 if (chan->flags & IEEE80211_CHAN_NO_IR) { 2180 chan->flags &= ~IEEE80211_CHAN_NO_IR; 2181 channel_changed = true; 2182 } 2183 2184 if (channel_changed) 2185 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 2186 } 2187 2188 /* 2189 * Called when a scan on a wiphy finds a beacon on 2190 * new channel 2191 */ 2192 static void wiphy_update_new_beacon(struct wiphy *wiphy, 2193 struct reg_beacon *reg_beacon) 2194 { 2195 unsigned int i; 2196 struct ieee80211_supported_band *sband; 2197 2198 if (!wiphy->bands[reg_beacon->chan.band]) 2199 return; 2200 2201 sband = wiphy->bands[reg_beacon->chan.band]; 2202 2203 for (i = 0; i < sband->n_channels; i++) 2204 handle_reg_beacon(wiphy, i, reg_beacon); 2205 } 2206 2207 /* 2208 * Called upon reg changes or a new wiphy is added 2209 */ 2210 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 2211 { 2212 unsigned int i; 2213 struct ieee80211_supported_band *sband; 2214 struct reg_beacon *reg_beacon; 2215 2216 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 2217 if (!wiphy->bands[reg_beacon->chan.band]) 2218 continue; 2219 sband = wiphy->bands[reg_beacon->chan.band]; 2220 for (i = 0; i < sband->n_channels; i++) 2221 handle_reg_beacon(wiphy, i, reg_beacon); 2222 } 2223 } 2224 2225 /* Reap the advantages of previously found beacons */ 2226 static void reg_process_beacons(struct wiphy *wiphy) 2227 { 2228 /* 2229 * Means we are just firing up cfg80211, so no beacons would 2230 * have been processed yet. 2231 */ 2232 if (!last_request) 2233 return; 2234 wiphy_update_beacon_reg(wiphy); 2235 } 2236 2237 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2238 { 2239 if (!chan) 2240 return false; 2241 if (chan->flags & IEEE80211_CHAN_DISABLED) 2242 return false; 2243 /* This would happen when regulatory rules disallow HT40 completely */ 2244 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2245 return false; 2246 return true; 2247 } 2248 2249 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2250 struct ieee80211_channel *channel) 2251 { 2252 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2253 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2254 const struct ieee80211_regdomain *regd; 2255 unsigned int i; 2256 u32 flags; 2257 2258 if (!is_ht40_allowed(channel)) { 2259 channel->flags |= IEEE80211_CHAN_NO_HT40; 2260 return; 2261 } 2262 2263 /* 2264 * We need to ensure the extension channels exist to 2265 * be able to use HT40- or HT40+, this finds them (or not) 2266 */ 2267 for (i = 0; i < sband->n_channels; i++) { 2268 struct ieee80211_channel *c = &sband->channels[i]; 2269 2270 if (c->center_freq == (channel->center_freq - 20)) 2271 channel_before = c; 2272 if (c->center_freq == (channel->center_freq + 20)) 2273 channel_after = c; 2274 } 2275 2276 flags = 0; 2277 regd = get_wiphy_regdom(wiphy); 2278 if (regd) { 2279 const struct ieee80211_reg_rule *reg_rule = 2280 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2281 regd, MHZ_TO_KHZ(20)); 2282 2283 if (!IS_ERR(reg_rule)) 2284 flags = reg_rule->flags; 2285 } 2286 2287 /* 2288 * Please note that this assumes target bandwidth is 20 MHz, 2289 * if that ever changes we also need to change the below logic 2290 * to include that as well. 2291 */ 2292 if (!is_ht40_allowed(channel_before) || 2293 flags & NL80211_RRF_NO_HT40MINUS) 2294 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2295 else 2296 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2297 2298 if (!is_ht40_allowed(channel_after) || 2299 flags & NL80211_RRF_NO_HT40PLUS) 2300 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2301 else 2302 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2303 } 2304 2305 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2306 struct ieee80211_supported_band *sband) 2307 { 2308 unsigned int i; 2309 2310 if (!sband) 2311 return; 2312 2313 for (i = 0; i < sband->n_channels; i++) 2314 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2315 } 2316 2317 static void reg_process_ht_flags(struct wiphy *wiphy) 2318 { 2319 enum nl80211_band band; 2320 2321 if (!wiphy) 2322 return; 2323 2324 for (band = 0; band < NUM_NL80211_BANDS; band++) 2325 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2326 } 2327 2328 static void reg_call_notifier(struct wiphy *wiphy, 2329 struct regulatory_request *request) 2330 { 2331 if (wiphy->reg_notifier) 2332 wiphy->reg_notifier(wiphy, request); 2333 } 2334 2335 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2336 { 2337 struct cfg80211_chan_def chandef = {}; 2338 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2339 enum nl80211_iftype iftype; 2340 bool ret; 2341 int link; 2342 2343 wdev_lock(wdev); 2344 iftype = wdev->iftype; 2345 2346 /* make sure the interface is active */ 2347 if (!wdev->netdev || !netif_running(wdev->netdev)) 2348 goto wdev_inactive_unlock; 2349 2350 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) { 2351 struct ieee80211_channel *chan; 2352 2353 if (!wdev->valid_links && link > 0) 2354 break; 2355 if (!(wdev->valid_links & BIT(link))) 2356 continue; 2357 switch (iftype) { 2358 case NL80211_IFTYPE_AP: 2359 case NL80211_IFTYPE_P2P_GO: 2360 if (!wdev->links[link].ap.beacon_interval) 2361 continue; 2362 chandef = wdev->links[link].ap.chandef; 2363 break; 2364 case NL80211_IFTYPE_MESH_POINT: 2365 if (!wdev->u.mesh.beacon_interval) 2366 continue; 2367 chandef = wdev->u.mesh.chandef; 2368 break; 2369 case NL80211_IFTYPE_ADHOC: 2370 if (!wdev->u.ibss.ssid_len) 2371 continue; 2372 chandef = wdev->u.ibss.chandef; 2373 break; 2374 case NL80211_IFTYPE_STATION: 2375 case NL80211_IFTYPE_P2P_CLIENT: 2376 /* Maybe we could consider disabling that link only? */ 2377 if (!wdev->links[link].client.current_bss) 2378 continue; 2379 2380 chan = wdev->links[link].client.current_bss->pub.channel; 2381 if (!chan) 2382 continue; 2383 2384 if (!rdev->ops->get_channel || 2385 rdev_get_channel(rdev, wdev, link, &chandef)) 2386 cfg80211_chandef_create(&chandef, chan, 2387 NL80211_CHAN_NO_HT); 2388 break; 2389 case NL80211_IFTYPE_MONITOR: 2390 case NL80211_IFTYPE_AP_VLAN: 2391 case NL80211_IFTYPE_P2P_DEVICE: 2392 /* no enforcement required */ 2393 break; 2394 default: 2395 /* others not implemented for now */ 2396 WARN_ON(1); 2397 break; 2398 } 2399 2400 wdev_unlock(wdev); 2401 2402 switch (iftype) { 2403 case NL80211_IFTYPE_AP: 2404 case NL80211_IFTYPE_P2P_GO: 2405 case NL80211_IFTYPE_ADHOC: 2406 case NL80211_IFTYPE_MESH_POINT: 2407 wiphy_lock(wiphy); 2408 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, 2409 iftype); 2410 wiphy_unlock(wiphy); 2411 2412 if (!ret) 2413 return ret; 2414 break; 2415 case NL80211_IFTYPE_STATION: 2416 case NL80211_IFTYPE_P2P_CLIENT: 2417 ret = cfg80211_chandef_usable(wiphy, &chandef, 2418 IEEE80211_CHAN_DISABLED); 2419 if (!ret) 2420 return ret; 2421 break; 2422 default: 2423 break; 2424 } 2425 2426 wdev_lock(wdev); 2427 } 2428 2429 wdev_unlock(wdev); 2430 2431 return true; 2432 2433 wdev_inactive_unlock: 2434 wdev_unlock(wdev); 2435 return true; 2436 } 2437 2438 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2439 { 2440 struct wireless_dev *wdev; 2441 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2442 2443 ASSERT_RTNL(); 2444 2445 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2446 if (!reg_wdev_chan_valid(wiphy, wdev)) 2447 cfg80211_leave(rdev, wdev); 2448 } 2449 2450 static void reg_check_chans_work(struct work_struct *work) 2451 { 2452 struct cfg80211_registered_device *rdev; 2453 2454 pr_debug("Verifying active interfaces after reg change\n"); 2455 rtnl_lock(); 2456 2457 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2458 if (!(rdev->wiphy.regulatory_flags & 2459 REGULATORY_IGNORE_STALE_KICKOFF)) 2460 reg_leave_invalid_chans(&rdev->wiphy); 2461 2462 rtnl_unlock(); 2463 } 2464 2465 static void reg_check_channels(void) 2466 { 2467 /* 2468 * Give usermode a chance to do something nicer (move to another 2469 * channel, orderly disconnection), before forcing a disconnection. 2470 */ 2471 mod_delayed_work(system_power_efficient_wq, 2472 ®_check_chans, 2473 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2474 } 2475 2476 static void wiphy_update_regulatory(struct wiphy *wiphy, 2477 enum nl80211_reg_initiator initiator) 2478 { 2479 enum nl80211_band band; 2480 struct regulatory_request *lr = get_last_request(); 2481 2482 if (ignore_reg_update(wiphy, initiator)) { 2483 /* 2484 * Regulatory updates set by CORE are ignored for custom 2485 * regulatory cards. Let us notify the changes to the driver, 2486 * as some drivers used this to restore its orig_* reg domain. 2487 */ 2488 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2489 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2490 !(wiphy->regulatory_flags & 2491 REGULATORY_WIPHY_SELF_MANAGED)) 2492 reg_call_notifier(wiphy, lr); 2493 return; 2494 } 2495 2496 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2497 2498 for (band = 0; band < NUM_NL80211_BANDS; band++) 2499 handle_band(wiphy, initiator, wiphy->bands[band]); 2500 2501 reg_process_beacons(wiphy); 2502 reg_process_ht_flags(wiphy); 2503 reg_call_notifier(wiphy, lr); 2504 } 2505 2506 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2507 { 2508 struct cfg80211_registered_device *rdev; 2509 struct wiphy *wiphy; 2510 2511 ASSERT_RTNL(); 2512 2513 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2514 wiphy = &rdev->wiphy; 2515 wiphy_update_regulatory(wiphy, initiator); 2516 } 2517 2518 reg_check_channels(); 2519 } 2520 2521 static void handle_channel_custom(struct wiphy *wiphy, 2522 struct ieee80211_channel *chan, 2523 const struct ieee80211_regdomain *regd, 2524 u32 min_bw) 2525 { 2526 u32 bw_flags = 0; 2527 const struct ieee80211_reg_rule *reg_rule = NULL; 2528 const struct ieee80211_power_rule *power_rule = NULL; 2529 u32 bw, center_freq_khz; 2530 2531 center_freq_khz = ieee80211_channel_to_khz(chan); 2532 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 2533 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw); 2534 if (!IS_ERR(reg_rule)) 2535 break; 2536 } 2537 2538 if (IS_ERR_OR_NULL(reg_rule)) { 2539 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n", 2540 chan->center_freq, chan->freq_offset); 2541 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2542 chan->flags |= IEEE80211_CHAN_DISABLED; 2543 } else { 2544 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2545 chan->flags = chan->orig_flags; 2546 } 2547 return; 2548 } 2549 2550 power_rule = ®_rule->power_rule; 2551 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2552 2553 chan->dfs_state_entered = jiffies; 2554 chan->dfs_state = NL80211_DFS_USABLE; 2555 2556 chan->beacon_found = false; 2557 2558 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2559 chan->flags = chan->orig_flags | bw_flags | 2560 map_regdom_flags(reg_rule->flags); 2561 else 2562 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2563 2564 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2565 chan->max_reg_power = chan->max_power = 2566 (int) MBM_TO_DBM(power_rule->max_eirp); 2567 2568 if (chan->flags & IEEE80211_CHAN_RADAR) { 2569 if (reg_rule->dfs_cac_ms) 2570 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2571 else 2572 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2573 } 2574 2575 chan->max_power = chan->max_reg_power; 2576 } 2577 2578 static void handle_band_custom(struct wiphy *wiphy, 2579 struct ieee80211_supported_band *sband, 2580 const struct ieee80211_regdomain *regd) 2581 { 2582 unsigned int i; 2583 2584 if (!sband) 2585 return; 2586 2587 /* 2588 * We currently assume that you always want at least 20 MHz, 2589 * otherwise channel 12 might get enabled if this rule is 2590 * compatible to US, which permits 2402 - 2472 MHz. 2591 */ 2592 for (i = 0; i < sband->n_channels; i++) 2593 handle_channel_custom(wiphy, &sband->channels[i], regd, 2594 MHZ_TO_KHZ(20)); 2595 } 2596 2597 /* Used by drivers prior to wiphy registration */ 2598 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2599 const struct ieee80211_regdomain *regd) 2600 { 2601 const struct ieee80211_regdomain *new_regd, *tmp; 2602 enum nl80211_band band; 2603 unsigned int bands_set = 0; 2604 2605 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2606 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2607 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2608 2609 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2610 if (!wiphy->bands[band]) 2611 continue; 2612 handle_band_custom(wiphy, wiphy->bands[band], regd); 2613 bands_set++; 2614 } 2615 2616 /* 2617 * no point in calling this if it won't have any effect 2618 * on your device's supported bands. 2619 */ 2620 WARN_ON(!bands_set); 2621 new_regd = reg_copy_regd(regd); 2622 if (IS_ERR(new_regd)) 2623 return; 2624 2625 rtnl_lock(); 2626 wiphy_lock(wiphy); 2627 2628 tmp = get_wiphy_regdom(wiphy); 2629 rcu_assign_pointer(wiphy->regd, new_regd); 2630 rcu_free_regdom(tmp); 2631 2632 wiphy_unlock(wiphy); 2633 rtnl_unlock(); 2634 } 2635 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2636 2637 static void reg_set_request_processed(void) 2638 { 2639 bool need_more_processing = false; 2640 struct regulatory_request *lr = get_last_request(); 2641 2642 lr->processed = true; 2643 2644 spin_lock(®_requests_lock); 2645 if (!list_empty(®_requests_list)) 2646 need_more_processing = true; 2647 spin_unlock(®_requests_lock); 2648 2649 cancel_crda_timeout(); 2650 2651 if (need_more_processing) 2652 schedule_work(®_work); 2653 } 2654 2655 /** 2656 * reg_process_hint_core - process core regulatory requests 2657 * @core_request: a pending core regulatory request 2658 * 2659 * The wireless subsystem can use this function to process 2660 * a regulatory request issued by the regulatory core. 2661 */ 2662 static enum reg_request_treatment 2663 reg_process_hint_core(struct regulatory_request *core_request) 2664 { 2665 if (reg_query_database(core_request)) { 2666 core_request->intersect = false; 2667 core_request->processed = false; 2668 reg_update_last_request(core_request); 2669 return REG_REQ_OK; 2670 } 2671 2672 return REG_REQ_IGNORE; 2673 } 2674 2675 static enum reg_request_treatment 2676 __reg_process_hint_user(struct regulatory_request *user_request) 2677 { 2678 struct regulatory_request *lr = get_last_request(); 2679 2680 if (reg_request_cell_base(user_request)) 2681 return reg_ignore_cell_hint(user_request); 2682 2683 if (reg_request_cell_base(lr)) 2684 return REG_REQ_IGNORE; 2685 2686 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2687 return REG_REQ_INTERSECT; 2688 /* 2689 * If the user knows better the user should set the regdom 2690 * to their country before the IE is picked up 2691 */ 2692 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2693 lr->intersect) 2694 return REG_REQ_IGNORE; 2695 /* 2696 * Process user requests only after previous user/driver/core 2697 * requests have been processed 2698 */ 2699 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2700 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2701 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2702 regdom_changes(lr->alpha2)) 2703 return REG_REQ_IGNORE; 2704 2705 if (!regdom_changes(user_request->alpha2)) 2706 return REG_REQ_ALREADY_SET; 2707 2708 return REG_REQ_OK; 2709 } 2710 2711 /** 2712 * reg_process_hint_user - process user regulatory requests 2713 * @user_request: a pending user regulatory request 2714 * 2715 * The wireless subsystem can use this function to process 2716 * a regulatory request initiated by userspace. 2717 */ 2718 static enum reg_request_treatment 2719 reg_process_hint_user(struct regulatory_request *user_request) 2720 { 2721 enum reg_request_treatment treatment; 2722 2723 treatment = __reg_process_hint_user(user_request); 2724 if (treatment == REG_REQ_IGNORE || 2725 treatment == REG_REQ_ALREADY_SET) 2726 return REG_REQ_IGNORE; 2727 2728 user_request->intersect = treatment == REG_REQ_INTERSECT; 2729 user_request->processed = false; 2730 2731 if (reg_query_database(user_request)) { 2732 reg_update_last_request(user_request); 2733 user_alpha2[0] = user_request->alpha2[0]; 2734 user_alpha2[1] = user_request->alpha2[1]; 2735 return REG_REQ_OK; 2736 } 2737 2738 return REG_REQ_IGNORE; 2739 } 2740 2741 static enum reg_request_treatment 2742 __reg_process_hint_driver(struct regulatory_request *driver_request) 2743 { 2744 struct regulatory_request *lr = get_last_request(); 2745 2746 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2747 if (regdom_changes(driver_request->alpha2)) 2748 return REG_REQ_OK; 2749 return REG_REQ_ALREADY_SET; 2750 } 2751 2752 /* 2753 * This would happen if you unplug and plug your card 2754 * back in or if you add a new device for which the previously 2755 * loaded card also agrees on the regulatory domain. 2756 */ 2757 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2758 !regdom_changes(driver_request->alpha2)) 2759 return REG_REQ_ALREADY_SET; 2760 2761 return REG_REQ_INTERSECT; 2762 } 2763 2764 /** 2765 * reg_process_hint_driver - process driver regulatory requests 2766 * @wiphy: the wireless device for the regulatory request 2767 * @driver_request: a pending driver regulatory request 2768 * 2769 * The wireless subsystem can use this function to process 2770 * a regulatory request issued by an 802.11 driver. 2771 * 2772 * Returns one of the different reg request treatment values. 2773 */ 2774 static enum reg_request_treatment 2775 reg_process_hint_driver(struct wiphy *wiphy, 2776 struct regulatory_request *driver_request) 2777 { 2778 const struct ieee80211_regdomain *regd, *tmp; 2779 enum reg_request_treatment treatment; 2780 2781 treatment = __reg_process_hint_driver(driver_request); 2782 2783 switch (treatment) { 2784 case REG_REQ_OK: 2785 break; 2786 case REG_REQ_IGNORE: 2787 return REG_REQ_IGNORE; 2788 case REG_REQ_INTERSECT: 2789 case REG_REQ_ALREADY_SET: 2790 regd = reg_copy_regd(get_cfg80211_regdom()); 2791 if (IS_ERR(regd)) 2792 return REG_REQ_IGNORE; 2793 2794 tmp = get_wiphy_regdom(wiphy); 2795 ASSERT_RTNL(); 2796 wiphy_lock(wiphy); 2797 rcu_assign_pointer(wiphy->regd, regd); 2798 wiphy_unlock(wiphy); 2799 rcu_free_regdom(tmp); 2800 } 2801 2802 2803 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2804 driver_request->processed = false; 2805 2806 /* 2807 * Since CRDA will not be called in this case as we already 2808 * have applied the requested regulatory domain before we just 2809 * inform userspace we have processed the request 2810 */ 2811 if (treatment == REG_REQ_ALREADY_SET) { 2812 nl80211_send_reg_change_event(driver_request); 2813 reg_update_last_request(driver_request); 2814 reg_set_request_processed(); 2815 return REG_REQ_ALREADY_SET; 2816 } 2817 2818 if (reg_query_database(driver_request)) { 2819 reg_update_last_request(driver_request); 2820 return REG_REQ_OK; 2821 } 2822 2823 return REG_REQ_IGNORE; 2824 } 2825 2826 static enum reg_request_treatment 2827 __reg_process_hint_country_ie(struct wiphy *wiphy, 2828 struct regulatory_request *country_ie_request) 2829 { 2830 struct wiphy *last_wiphy = NULL; 2831 struct regulatory_request *lr = get_last_request(); 2832 2833 if (reg_request_cell_base(lr)) { 2834 /* Trust a Cell base station over the AP's country IE */ 2835 if (regdom_changes(country_ie_request->alpha2)) 2836 return REG_REQ_IGNORE; 2837 return REG_REQ_ALREADY_SET; 2838 } else { 2839 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2840 return REG_REQ_IGNORE; 2841 } 2842 2843 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2844 return -EINVAL; 2845 2846 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2847 return REG_REQ_OK; 2848 2849 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2850 2851 if (last_wiphy != wiphy) { 2852 /* 2853 * Two cards with two APs claiming different 2854 * Country IE alpha2s. We could 2855 * intersect them, but that seems unlikely 2856 * to be correct. Reject second one for now. 2857 */ 2858 if (regdom_changes(country_ie_request->alpha2)) 2859 return REG_REQ_IGNORE; 2860 return REG_REQ_ALREADY_SET; 2861 } 2862 2863 if (regdom_changes(country_ie_request->alpha2)) 2864 return REG_REQ_OK; 2865 return REG_REQ_ALREADY_SET; 2866 } 2867 2868 /** 2869 * reg_process_hint_country_ie - process regulatory requests from country IEs 2870 * @wiphy: the wireless device for the regulatory request 2871 * @country_ie_request: a regulatory request from a country IE 2872 * 2873 * The wireless subsystem can use this function to process 2874 * a regulatory request issued by a country Information Element. 2875 * 2876 * Returns one of the different reg request treatment values. 2877 */ 2878 static enum reg_request_treatment 2879 reg_process_hint_country_ie(struct wiphy *wiphy, 2880 struct regulatory_request *country_ie_request) 2881 { 2882 enum reg_request_treatment treatment; 2883 2884 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2885 2886 switch (treatment) { 2887 case REG_REQ_OK: 2888 break; 2889 case REG_REQ_IGNORE: 2890 return REG_REQ_IGNORE; 2891 case REG_REQ_ALREADY_SET: 2892 reg_free_request(country_ie_request); 2893 return REG_REQ_ALREADY_SET; 2894 case REG_REQ_INTERSECT: 2895 /* 2896 * This doesn't happen yet, not sure we 2897 * ever want to support it for this case. 2898 */ 2899 WARN_ONCE(1, "Unexpected intersection for country elements"); 2900 return REG_REQ_IGNORE; 2901 } 2902 2903 country_ie_request->intersect = false; 2904 country_ie_request->processed = false; 2905 2906 if (reg_query_database(country_ie_request)) { 2907 reg_update_last_request(country_ie_request); 2908 return REG_REQ_OK; 2909 } 2910 2911 return REG_REQ_IGNORE; 2912 } 2913 2914 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2915 { 2916 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2917 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2918 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2919 bool dfs_domain_same; 2920 2921 rcu_read_lock(); 2922 2923 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2924 wiphy1_regd = rcu_dereference(wiphy1->regd); 2925 if (!wiphy1_regd) 2926 wiphy1_regd = cfg80211_regd; 2927 2928 wiphy2_regd = rcu_dereference(wiphy2->regd); 2929 if (!wiphy2_regd) 2930 wiphy2_regd = cfg80211_regd; 2931 2932 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2933 2934 rcu_read_unlock(); 2935 2936 return dfs_domain_same; 2937 } 2938 2939 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2940 struct ieee80211_channel *src_chan) 2941 { 2942 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2943 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2944 return; 2945 2946 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2947 src_chan->flags & IEEE80211_CHAN_DISABLED) 2948 return; 2949 2950 if (src_chan->center_freq == dst_chan->center_freq && 2951 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2952 dst_chan->dfs_state = src_chan->dfs_state; 2953 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2954 } 2955 } 2956 2957 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2958 struct wiphy *src_wiphy) 2959 { 2960 struct ieee80211_supported_band *src_sband, *dst_sband; 2961 struct ieee80211_channel *src_chan, *dst_chan; 2962 int i, j, band; 2963 2964 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2965 return; 2966 2967 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2968 dst_sband = dst_wiphy->bands[band]; 2969 src_sband = src_wiphy->bands[band]; 2970 if (!dst_sband || !src_sband) 2971 continue; 2972 2973 for (i = 0; i < dst_sband->n_channels; i++) { 2974 dst_chan = &dst_sband->channels[i]; 2975 for (j = 0; j < src_sband->n_channels; j++) { 2976 src_chan = &src_sband->channels[j]; 2977 reg_copy_dfs_chan_state(dst_chan, src_chan); 2978 } 2979 } 2980 } 2981 } 2982 2983 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2984 { 2985 struct cfg80211_registered_device *rdev; 2986 2987 ASSERT_RTNL(); 2988 2989 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2990 if (wiphy == &rdev->wiphy) 2991 continue; 2992 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2993 } 2994 } 2995 2996 /* This processes *all* regulatory hints */ 2997 static void reg_process_hint(struct regulatory_request *reg_request) 2998 { 2999 struct wiphy *wiphy = NULL; 3000 enum reg_request_treatment treatment; 3001 enum nl80211_reg_initiator initiator = reg_request->initiator; 3002 3003 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 3004 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 3005 3006 switch (initiator) { 3007 case NL80211_REGDOM_SET_BY_CORE: 3008 treatment = reg_process_hint_core(reg_request); 3009 break; 3010 case NL80211_REGDOM_SET_BY_USER: 3011 treatment = reg_process_hint_user(reg_request); 3012 break; 3013 case NL80211_REGDOM_SET_BY_DRIVER: 3014 if (!wiphy) 3015 goto out_free; 3016 treatment = reg_process_hint_driver(wiphy, reg_request); 3017 break; 3018 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3019 if (!wiphy) 3020 goto out_free; 3021 treatment = reg_process_hint_country_ie(wiphy, reg_request); 3022 break; 3023 default: 3024 WARN(1, "invalid initiator %d\n", initiator); 3025 goto out_free; 3026 } 3027 3028 if (treatment == REG_REQ_IGNORE) 3029 goto out_free; 3030 3031 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 3032 "unexpected treatment value %d\n", treatment); 3033 3034 /* This is required so that the orig_* parameters are saved. 3035 * NOTE: treatment must be set for any case that reaches here! 3036 */ 3037 if (treatment == REG_REQ_ALREADY_SET && wiphy && 3038 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 3039 wiphy_update_regulatory(wiphy, initiator); 3040 wiphy_all_share_dfs_chan_state(wiphy); 3041 reg_check_channels(); 3042 } 3043 3044 return; 3045 3046 out_free: 3047 reg_free_request(reg_request); 3048 } 3049 3050 static void notify_self_managed_wiphys(struct regulatory_request *request) 3051 { 3052 struct cfg80211_registered_device *rdev; 3053 struct wiphy *wiphy; 3054 3055 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3056 wiphy = &rdev->wiphy; 3057 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 3058 request->initiator == NL80211_REGDOM_SET_BY_USER) 3059 reg_call_notifier(wiphy, request); 3060 } 3061 } 3062 3063 /* 3064 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 3065 * Regulatory hints come on a first come first serve basis and we 3066 * must process each one atomically. 3067 */ 3068 static void reg_process_pending_hints(void) 3069 { 3070 struct regulatory_request *reg_request, *lr; 3071 3072 lr = get_last_request(); 3073 3074 /* When last_request->processed becomes true this will be rescheduled */ 3075 if (lr && !lr->processed) { 3076 pr_debug("Pending regulatory request, waiting for it to be processed...\n"); 3077 return; 3078 } 3079 3080 spin_lock(®_requests_lock); 3081 3082 if (list_empty(®_requests_list)) { 3083 spin_unlock(®_requests_lock); 3084 return; 3085 } 3086 3087 reg_request = list_first_entry(®_requests_list, 3088 struct regulatory_request, 3089 list); 3090 list_del_init(®_request->list); 3091 3092 spin_unlock(®_requests_lock); 3093 3094 notify_self_managed_wiphys(reg_request); 3095 3096 reg_process_hint(reg_request); 3097 3098 lr = get_last_request(); 3099 3100 spin_lock(®_requests_lock); 3101 if (!list_empty(®_requests_list) && lr && lr->processed) 3102 schedule_work(®_work); 3103 spin_unlock(®_requests_lock); 3104 } 3105 3106 /* Processes beacon hints -- this has nothing to do with country IEs */ 3107 static void reg_process_pending_beacon_hints(void) 3108 { 3109 struct cfg80211_registered_device *rdev; 3110 struct reg_beacon *pending_beacon, *tmp; 3111 3112 /* This goes through the _pending_ beacon list */ 3113 spin_lock_bh(®_pending_beacons_lock); 3114 3115 list_for_each_entry_safe(pending_beacon, tmp, 3116 ®_pending_beacons, list) { 3117 list_del_init(&pending_beacon->list); 3118 3119 /* Applies the beacon hint to current wiphys */ 3120 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 3121 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 3122 3123 /* Remembers the beacon hint for new wiphys or reg changes */ 3124 list_add_tail(&pending_beacon->list, ®_beacon_list); 3125 } 3126 3127 spin_unlock_bh(®_pending_beacons_lock); 3128 } 3129 3130 static void reg_process_self_managed_hint(struct wiphy *wiphy) 3131 { 3132 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3133 const struct ieee80211_regdomain *tmp; 3134 const struct ieee80211_regdomain *regd; 3135 enum nl80211_band band; 3136 struct regulatory_request request = {}; 3137 3138 ASSERT_RTNL(); 3139 lockdep_assert_wiphy(wiphy); 3140 3141 spin_lock(®_requests_lock); 3142 regd = rdev->requested_regd; 3143 rdev->requested_regd = NULL; 3144 spin_unlock(®_requests_lock); 3145 3146 if (!regd) 3147 return; 3148 3149 tmp = get_wiphy_regdom(wiphy); 3150 rcu_assign_pointer(wiphy->regd, regd); 3151 rcu_free_regdom(tmp); 3152 3153 for (band = 0; band < NUM_NL80211_BANDS; band++) 3154 handle_band_custom(wiphy, wiphy->bands[band], regd); 3155 3156 reg_process_ht_flags(wiphy); 3157 3158 request.wiphy_idx = get_wiphy_idx(wiphy); 3159 request.alpha2[0] = regd->alpha2[0]; 3160 request.alpha2[1] = regd->alpha2[1]; 3161 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 3162 3163 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER) 3164 reg_call_notifier(wiphy, &request); 3165 3166 nl80211_send_wiphy_reg_change_event(&request); 3167 } 3168 3169 static void reg_process_self_managed_hints(void) 3170 { 3171 struct cfg80211_registered_device *rdev; 3172 3173 ASSERT_RTNL(); 3174 3175 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3176 wiphy_lock(&rdev->wiphy); 3177 reg_process_self_managed_hint(&rdev->wiphy); 3178 wiphy_unlock(&rdev->wiphy); 3179 } 3180 3181 reg_check_channels(); 3182 } 3183 3184 static void reg_todo(struct work_struct *work) 3185 { 3186 rtnl_lock(); 3187 reg_process_pending_hints(); 3188 reg_process_pending_beacon_hints(); 3189 reg_process_self_managed_hints(); 3190 rtnl_unlock(); 3191 } 3192 3193 static void queue_regulatory_request(struct regulatory_request *request) 3194 { 3195 request->alpha2[0] = toupper(request->alpha2[0]); 3196 request->alpha2[1] = toupper(request->alpha2[1]); 3197 3198 spin_lock(®_requests_lock); 3199 list_add_tail(&request->list, ®_requests_list); 3200 spin_unlock(®_requests_lock); 3201 3202 schedule_work(®_work); 3203 } 3204 3205 /* 3206 * Core regulatory hint -- happens during cfg80211_init() 3207 * and when we restore regulatory settings. 3208 */ 3209 static int regulatory_hint_core(const char *alpha2) 3210 { 3211 struct regulatory_request *request; 3212 3213 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3214 if (!request) 3215 return -ENOMEM; 3216 3217 request->alpha2[0] = alpha2[0]; 3218 request->alpha2[1] = alpha2[1]; 3219 request->initiator = NL80211_REGDOM_SET_BY_CORE; 3220 request->wiphy_idx = WIPHY_IDX_INVALID; 3221 3222 queue_regulatory_request(request); 3223 3224 return 0; 3225 } 3226 3227 /* User hints */ 3228 int regulatory_hint_user(const char *alpha2, 3229 enum nl80211_user_reg_hint_type user_reg_hint_type) 3230 { 3231 struct regulatory_request *request; 3232 3233 if (WARN_ON(!alpha2)) 3234 return -EINVAL; 3235 3236 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2)) 3237 return -EINVAL; 3238 3239 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3240 if (!request) 3241 return -ENOMEM; 3242 3243 request->wiphy_idx = WIPHY_IDX_INVALID; 3244 request->alpha2[0] = alpha2[0]; 3245 request->alpha2[1] = alpha2[1]; 3246 request->initiator = NL80211_REGDOM_SET_BY_USER; 3247 request->user_reg_hint_type = user_reg_hint_type; 3248 3249 /* Allow calling CRDA again */ 3250 reset_crda_timeouts(); 3251 3252 queue_regulatory_request(request); 3253 3254 return 0; 3255 } 3256 3257 int regulatory_hint_indoor(bool is_indoor, u32 portid) 3258 { 3259 spin_lock(®_indoor_lock); 3260 3261 /* It is possible that more than one user space process is trying to 3262 * configure the indoor setting. To handle such cases, clear the indoor 3263 * setting in case that some process does not think that the device 3264 * is operating in an indoor environment. In addition, if a user space 3265 * process indicates that it is controlling the indoor setting, save its 3266 * portid, i.e., make it the owner. 3267 */ 3268 reg_is_indoor = is_indoor; 3269 if (reg_is_indoor) { 3270 if (!reg_is_indoor_portid) 3271 reg_is_indoor_portid = portid; 3272 } else { 3273 reg_is_indoor_portid = 0; 3274 } 3275 3276 spin_unlock(®_indoor_lock); 3277 3278 if (!is_indoor) 3279 reg_check_channels(); 3280 3281 return 0; 3282 } 3283 3284 void regulatory_netlink_notify(u32 portid) 3285 { 3286 spin_lock(®_indoor_lock); 3287 3288 if (reg_is_indoor_portid != portid) { 3289 spin_unlock(®_indoor_lock); 3290 return; 3291 } 3292 3293 reg_is_indoor = false; 3294 reg_is_indoor_portid = 0; 3295 3296 spin_unlock(®_indoor_lock); 3297 3298 reg_check_channels(); 3299 } 3300 3301 /* Driver hints */ 3302 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3303 { 3304 struct regulatory_request *request; 3305 3306 if (WARN_ON(!alpha2 || !wiphy)) 3307 return -EINVAL; 3308 3309 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3310 3311 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3312 if (!request) 3313 return -ENOMEM; 3314 3315 request->wiphy_idx = get_wiphy_idx(wiphy); 3316 3317 request->alpha2[0] = alpha2[0]; 3318 request->alpha2[1] = alpha2[1]; 3319 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3320 3321 /* Allow calling CRDA again */ 3322 reset_crda_timeouts(); 3323 3324 queue_regulatory_request(request); 3325 3326 return 0; 3327 } 3328 EXPORT_SYMBOL(regulatory_hint); 3329 3330 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3331 const u8 *country_ie, u8 country_ie_len) 3332 { 3333 char alpha2[2]; 3334 enum environment_cap env = ENVIRON_ANY; 3335 struct regulatory_request *request = NULL, *lr; 3336 3337 /* IE len must be evenly divisible by 2 */ 3338 if (country_ie_len & 0x01) 3339 return; 3340 3341 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3342 return; 3343 3344 request = kzalloc(sizeof(*request), GFP_KERNEL); 3345 if (!request) 3346 return; 3347 3348 alpha2[0] = country_ie[0]; 3349 alpha2[1] = country_ie[1]; 3350 3351 if (country_ie[2] == 'I') 3352 env = ENVIRON_INDOOR; 3353 else if (country_ie[2] == 'O') 3354 env = ENVIRON_OUTDOOR; 3355 3356 rcu_read_lock(); 3357 lr = get_last_request(); 3358 3359 if (unlikely(!lr)) 3360 goto out; 3361 3362 /* 3363 * We will run this only upon a successful connection on cfg80211. 3364 * We leave conflict resolution to the workqueue, where can hold 3365 * the RTNL. 3366 */ 3367 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3368 lr->wiphy_idx != WIPHY_IDX_INVALID) 3369 goto out; 3370 3371 request->wiphy_idx = get_wiphy_idx(wiphy); 3372 request->alpha2[0] = alpha2[0]; 3373 request->alpha2[1] = alpha2[1]; 3374 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3375 request->country_ie_env = env; 3376 3377 /* Allow calling CRDA again */ 3378 reset_crda_timeouts(); 3379 3380 queue_regulatory_request(request); 3381 request = NULL; 3382 out: 3383 kfree(request); 3384 rcu_read_unlock(); 3385 } 3386 3387 static void restore_alpha2(char *alpha2, bool reset_user) 3388 { 3389 /* indicates there is no alpha2 to consider for restoration */ 3390 alpha2[0] = '9'; 3391 alpha2[1] = '7'; 3392 3393 /* The user setting has precedence over the module parameter */ 3394 if (is_user_regdom_saved()) { 3395 /* Unless we're asked to ignore it and reset it */ 3396 if (reset_user) { 3397 pr_debug("Restoring regulatory settings including user preference\n"); 3398 user_alpha2[0] = '9'; 3399 user_alpha2[1] = '7'; 3400 3401 /* 3402 * If we're ignoring user settings, we still need to 3403 * check the module parameter to ensure we put things 3404 * back as they were for a full restore. 3405 */ 3406 if (!is_world_regdom(ieee80211_regdom)) { 3407 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3408 ieee80211_regdom[0], ieee80211_regdom[1]); 3409 alpha2[0] = ieee80211_regdom[0]; 3410 alpha2[1] = ieee80211_regdom[1]; 3411 } 3412 } else { 3413 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3414 user_alpha2[0], user_alpha2[1]); 3415 alpha2[0] = user_alpha2[0]; 3416 alpha2[1] = user_alpha2[1]; 3417 } 3418 } else if (!is_world_regdom(ieee80211_regdom)) { 3419 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3420 ieee80211_regdom[0], ieee80211_regdom[1]); 3421 alpha2[0] = ieee80211_regdom[0]; 3422 alpha2[1] = ieee80211_regdom[1]; 3423 } else 3424 pr_debug("Restoring regulatory settings\n"); 3425 } 3426 3427 static void restore_custom_reg_settings(struct wiphy *wiphy) 3428 { 3429 struct ieee80211_supported_band *sband; 3430 enum nl80211_band band; 3431 struct ieee80211_channel *chan; 3432 int i; 3433 3434 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3435 sband = wiphy->bands[band]; 3436 if (!sband) 3437 continue; 3438 for (i = 0; i < sband->n_channels; i++) { 3439 chan = &sband->channels[i]; 3440 chan->flags = chan->orig_flags; 3441 chan->max_antenna_gain = chan->orig_mag; 3442 chan->max_power = chan->orig_mpwr; 3443 chan->beacon_found = false; 3444 } 3445 } 3446 } 3447 3448 /* 3449 * Restoring regulatory settings involves ignoring any 3450 * possibly stale country IE information and user regulatory 3451 * settings if so desired, this includes any beacon hints 3452 * learned as we could have traveled outside to another country 3453 * after disconnection. To restore regulatory settings we do 3454 * exactly what we did at bootup: 3455 * 3456 * - send a core regulatory hint 3457 * - send a user regulatory hint if applicable 3458 * 3459 * Device drivers that send a regulatory hint for a specific country 3460 * keep their own regulatory domain on wiphy->regd so that does 3461 * not need to be remembered. 3462 */ 3463 static void restore_regulatory_settings(bool reset_user, bool cached) 3464 { 3465 char alpha2[2]; 3466 char world_alpha2[2]; 3467 struct reg_beacon *reg_beacon, *btmp; 3468 LIST_HEAD(tmp_reg_req_list); 3469 struct cfg80211_registered_device *rdev; 3470 3471 ASSERT_RTNL(); 3472 3473 /* 3474 * Clear the indoor setting in case that it is not controlled by user 3475 * space, as otherwise there is no guarantee that the device is still 3476 * operating in an indoor environment. 3477 */ 3478 spin_lock(®_indoor_lock); 3479 if (reg_is_indoor && !reg_is_indoor_portid) { 3480 reg_is_indoor = false; 3481 reg_check_channels(); 3482 } 3483 spin_unlock(®_indoor_lock); 3484 3485 reset_regdomains(true, &world_regdom); 3486 restore_alpha2(alpha2, reset_user); 3487 3488 /* 3489 * If there's any pending requests we simply 3490 * stash them to a temporary pending queue and 3491 * add then after we've restored regulatory 3492 * settings. 3493 */ 3494 spin_lock(®_requests_lock); 3495 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3496 spin_unlock(®_requests_lock); 3497 3498 /* Clear beacon hints */ 3499 spin_lock_bh(®_pending_beacons_lock); 3500 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3501 list_del(®_beacon->list); 3502 kfree(reg_beacon); 3503 } 3504 spin_unlock_bh(®_pending_beacons_lock); 3505 3506 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3507 list_del(®_beacon->list); 3508 kfree(reg_beacon); 3509 } 3510 3511 /* First restore to the basic regulatory settings */ 3512 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3513 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3514 3515 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3516 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3517 continue; 3518 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3519 restore_custom_reg_settings(&rdev->wiphy); 3520 } 3521 3522 if (cached && (!is_an_alpha2(alpha2) || 3523 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3524 reset_regdomains(false, cfg80211_world_regdom); 3525 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3526 print_regdomain(get_cfg80211_regdom()); 3527 nl80211_send_reg_change_event(&core_request_world); 3528 reg_set_request_processed(); 3529 3530 if (is_an_alpha2(alpha2) && 3531 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3532 struct regulatory_request *ureq; 3533 3534 spin_lock(®_requests_lock); 3535 ureq = list_last_entry(®_requests_list, 3536 struct regulatory_request, 3537 list); 3538 list_del(&ureq->list); 3539 spin_unlock(®_requests_lock); 3540 3541 notify_self_managed_wiphys(ureq); 3542 reg_update_last_request(ureq); 3543 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3544 REGD_SOURCE_CACHED); 3545 } 3546 } else { 3547 regulatory_hint_core(world_alpha2); 3548 3549 /* 3550 * This restores the ieee80211_regdom module parameter 3551 * preference or the last user requested regulatory 3552 * settings, user regulatory settings takes precedence. 3553 */ 3554 if (is_an_alpha2(alpha2)) 3555 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3556 } 3557 3558 spin_lock(®_requests_lock); 3559 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3560 spin_unlock(®_requests_lock); 3561 3562 pr_debug("Kicking the queue\n"); 3563 3564 schedule_work(®_work); 3565 } 3566 3567 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3568 { 3569 struct cfg80211_registered_device *rdev; 3570 struct wireless_dev *wdev; 3571 3572 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3573 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3574 wdev_lock(wdev); 3575 if (!(wdev->wiphy->regulatory_flags & flag)) { 3576 wdev_unlock(wdev); 3577 return false; 3578 } 3579 wdev_unlock(wdev); 3580 } 3581 } 3582 3583 return true; 3584 } 3585 3586 void regulatory_hint_disconnect(void) 3587 { 3588 /* Restore of regulatory settings is not required when wiphy(s) 3589 * ignore IE from connected access point but clearance of beacon hints 3590 * is required when wiphy(s) supports beacon hints. 3591 */ 3592 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3593 struct reg_beacon *reg_beacon, *btmp; 3594 3595 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3596 return; 3597 3598 spin_lock_bh(®_pending_beacons_lock); 3599 list_for_each_entry_safe(reg_beacon, btmp, 3600 ®_pending_beacons, list) { 3601 list_del(®_beacon->list); 3602 kfree(reg_beacon); 3603 } 3604 spin_unlock_bh(®_pending_beacons_lock); 3605 3606 list_for_each_entry_safe(reg_beacon, btmp, 3607 ®_beacon_list, list) { 3608 list_del(®_beacon->list); 3609 kfree(reg_beacon); 3610 } 3611 3612 return; 3613 } 3614 3615 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3616 restore_regulatory_settings(false, true); 3617 } 3618 3619 static bool freq_is_chan_12_13_14(u32 freq) 3620 { 3621 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3622 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3623 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3624 return true; 3625 return false; 3626 } 3627 3628 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3629 { 3630 struct reg_beacon *pending_beacon; 3631 3632 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3633 if (ieee80211_channel_equal(beacon_chan, 3634 &pending_beacon->chan)) 3635 return true; 3636 return false; 3637 } 3638 3639 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3640 struct ieee80211_channel *beacon_chan, 3641 gfp_t gfp) 3642 { 3643 struct reg_beacon *reg_beacon; 3644 bool processing; 3645 3646 if (beacon_chan->beacon_found || 3647 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3648 (beacon_chan->band == NL80211_BAND_2GHZ && 3649 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3650 return 0; 3651 3652 spin_lock_bh(®_pending_beacons_lock); 3653 processing = pending_reg_beacon(beacon_chan); 3654 spin_unlock_bh(®_pending_beacons_lock); 3655 3656 if (processing) 3657 return 0; 3658 3659 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3660 if (!reg_beacon) 3661 return -ENOMEM; 3662 3663 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n", 3664 beacon_chan->center_freq, beacon_chan->freq_offset, 3665 ieee80211_freq_khz_to_channel( 3666 ieee80211_channel_to_khz(beacon_chan)), 3667 wiphy_name(wiphy)); 3668 3669 memcpy(®_beacon->chan, beacon_chan, 3670 sizeof(struct ieee80211_channel)); 3671 3672 /* 3673 * Since we can be called from BH or and non-BH context 3674 * we must use spin_lock_bh() 3675 */ 3676 spin_lock_bh(®_pending_beacons_lock); 3677 list_add_tail(®_beacon->list, ®_pending_beacons); 3678 spin_unlock_bh(®_pending_beacons_lock); 3679 3680 schedule_work(®_work); 3681 3682 return 0; 3683 } 3684 3685 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3686 { 3687 unsigned int i; 3688 const struct ieee80211_reg_rule *reg_rule = NULL; 3689 const struct ieee80211_freq_range *freq_range = NULL; 3690 const struct ieee80211_power_rule *power_rule = NULL; 3691 char bw[32], cac_time[32]; 3692 3693 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3694 3695 for (i = 0; i < rd->n_reg_rules; i++) { 3696 reg_rule = &rd->reg_rules[i]; 3697 freq_range = ®_rule->freq_range; 3698 power_rule = ®_rule->power_rule; 3699 3700 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3701 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO", 3702 freq_range->max_bandwidth_khz, 3703 reg_get_max_bandwidth(rd, reg_rule)); 3704 else 3705 snprintf(bw, sizeof(bw), "%d KHz", 3706 freq_range->max_bandwidth_khz); 3707 3708 if (reg_rule->flags & NL80211_RRF_DFS) 3709 scnprintf(cac_time, sizeof(cac_time), "%u s", 3710 reg_rule->dfs_cac_ms/1000); 3711 else 3712 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3713 3714 3715 /* 3716 * There may not be documentation for max antenna gain 3717 * in certain regions 3718 */ 3719 if (power_rule->max_antenna_gain) 3720 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3721 freq_range->start_freq_khz, 3722 freq_range->end_freq_khz, 3723 bw, 3724 power_rule->max_antenna_gain, 3725 power_rule->max_eirp, 3726 cac_time); 3727 else 3728 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3729 freq_range->start_freq_khz, 3730 freq_range->end_freq_khz, 3731 bw, 3732 power_rule->max_eirp, 3733 cac_time); 3734 } 3735 } 3736 3737 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3738 { 3739 switch (dfs_region) { 3740 case NL80211_DFS_UNSET: 3741 case NL80211_DFS_FCC: 3742 case NL80211_DFS_ETSI: 3743 case NL80211_DFS_JP: 3744 return true; 3745 default: 3746 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3747 return false; 3748 } 3749 } 3750 3751 static void print_regdomain(const struct ieee80211_regdomain *rd) 3752 { 3753 struct regulatory_request *lr = get_last_request(); 3754 3755 if (is_intersected_alpha2(rd->alpha2)) { 3756 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3757 struct cfg80211_registered_device *rdev; 3758 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3759 if (rdev) { 3760 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3761 rdev->country_ie_alpha2[0], 3762 rdev->country_ie_alpha2[1]); 3763 } else 3764 pr_debug("Current regulatory domain intersected:\n"); 3765 } else 3766 pr_debug("Current regulatory domain intersected:\n"); 3767 } else if (is_world_regdom(rd->alpha2)) { 3768 pr_debug("World regulatory domain updated:\n"); 3769 } else { 3770 if (is_unknown_alpha2(rd->alpha2)) 3771 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3772 else { 3773 if (reg_request_cell_base(lr)) 3774 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3775 rd->alpha2[0], rd->alpha2[1]); 3776 else 3777 pr_debug("Regulatory domain changed to country: %c%c\n", 3778 rd->alpha2[0], rd->alpha2[1]); 3779 } 3780 } 3781 3782 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3783 print_rd_rules(rd); 3784 } 3785 3786 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3787 { 3788 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3789 print_rd_rules(rd); 3790 } 3791 3792 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3793 { 3794 if (!is_world_regdom(rd->alpha2)) 3795 return -EINVAL; 3796 update_world_regdomain(rd); 3797 return 0; 3798 } 3799 3800 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3801 struct regulatory_request *user_request) 3802 { 3803 const struct ieee80211_regdomain *intersected_rd = NULL; 3804 3805 if (!regdom_changes(rd->alpha2)) 3806 return -EALREADY; 3807 3808 if (!is_valid_rd(rd)) { 3809 pr_err("Invalid regulatory domain detected: %c%c\n", 3810 rd->alpha2[0], rd->alpha2[1]); 3811 print_regdomain_info(rd); 3812 return -EINVAL; 3813 } 3814 3815 if (!user_request->intersect) { 3816 reset_regdomains(false, rd); 3817 return 0; 3818 } 3819 3820 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3821 if (!intersected_rd) 3822 return -EINVAL; 3823 3824 kfree(rd); 3825 rd = NULL; 3826 reset_regdomains(false, intersected_rd); 3827 3828 return 0; 3829 } 3830 3831 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3832 struct regulatory_request *driver_request) 3833 { 3834 const struct ieee80211_regdomain *regd; 3835 const struct ieee80211_regdomain *intersected_rd = NULL; 3836 const struct ieee80211_regdomain *tmp; 3837 struct wiphy *request_wiphy; 3838 3839 if (is_world_regdom(rd->alpha2)) 3840 return -EINVAL; 3841 3842 if (!regdom_changes(rd->alpha2)) 3843 return -EALREADY; 3844 3845 if (!is_valid_rd(rd)) { 3846 pr_err("Invalid regulatory domain detected: %c%c\n", 3847 rd->alpha2[0], rd->alpha2[1]); 3848 print_regdomain_info(rd); 3849 return -EINVAL; 3850 } 3851 3852 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3853 if (!request_wiphy) 3854 return -ENODEV; 3855 3856 if (!driver_request->intersect) { 3857 ASSERT_RTNL(); 3858 wiphy_lock(request_wiphy); 3859 if (request_wiphy->regd) { 3860 wiphy_unlock(request_wiphy); 3861 return -EALREADY; 3862 } 3863 3864 regd = reg_copy_regd(rd); 3865 if (IS_ERR(regd)) { 3866 wiphy_unlock(request_wiphy); 3867 return PTR_ERR(regd); 3868 } 3869 3870 rcu_assign_pointer(request_wiphy->regd, regd); 3871 wiphy_unlock(request_wiphy); 3872 reset_regdomains(false, rd); 3873 return 0; 3874 } 3875 3876 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3877 if (!intersected_rd) 3878 return -EINVAL; 3879 3880 /* 3881 * We can trash what CRDA provided now. 3882 * However if a driver requested this specific regulatory 3883 * domain we keep it for its private use 3884 */ 3885 tmp = get_wiphy_regdom(request_wiphy); 3886 rcu_assign_pointer(request_wiphy->regd, rd); 3887 rcu_free_regdom(tmp); 3888 3889 rd = NULL; 3890 3891 reset_regdomains(false, intersected_rd); 3892 3893 return 0; 3894 } 3895 3896 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3897 struct regulatory_request *country_ie_request) 3898 { 3899 struct wiphy *request_wiphy; 3900 3901 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3902 !is_unknown_alpha2(rd->alpha2)) 3903 return -EINVAL; 3904 3905 /* 3906 * Lets only bother proceeding on the same alpha2 if the current 3907 * rd is non static (it means CRDA was present and was used last) 3908 * and the pending request came in from a country IE 3909 */ 3910 3911 if (!is_valid_rd(rd)) { 3912 pr_err("Invalid regulatory domain detected: %c%c\n", 3913 rd->alpha2[0], rd->alpha2[1]); 3914 print_regdomain_info(rd); 3915 return -EINVAL; 3916 } 3917 3918 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3919 if (!request_wiphy) 3920 return -ENODEV; 3921 3922 if (country_ie_request->intersect) 3923 return -EINVAL; 3924 3925 reset_regdomains(false, rd); 3926 return 0; 3927 } 3928 3929 /* 3930 * Use this call to set the current regulatory domain. Conflicts with 3931 * multiple drivers can be ironed out later. Caller must've already 3932 * kmalloc'd the rd structure. 3933 */ 3934 int set_regdom(const struct ieee80211_regdomain *rd, 3935 enum ieee80211_regd_source regd_src) 3936 { 3937 struct regulatory_request *lr; 3938 bool user_reset = false; 3939 int r; 3940 3941 if (IS_ERR_OR_NULL(rd)) 3942 return -ENODATA; 3943 3944 if (!reg_is_valid_request(rd->alpha2)) { 3945 kfree(rd); 3946 return -EINVAL; 3947 } 3948 3949 if (regd_src == REGD_SOURCE_CRDA) 3950 reset_crda_timeouts(); 3951 3952 lr = get_last_request(); 3953 3954 /* Note that this doesn't update the wiphys, this is done below */ 3955 switch (lr->initiator) { 3956 case NL80211_REGDOM_SET_BY_CORE: 3957 r = reg_set_rd_core(rd); 3958 break; 3959 case NL80211_REGDOM_SET_BY_USER: 3960 cfg80211_save_user_regdom(rd); 3961 r = reg_set_rd_user(rd, lr); 3962 user_reset = true; 3963 break; 3964 case NL80211_REGDOM_SET_BY_DRIVER: 3965 r = reg_set_rd_driver(rd, lr); 3966 break; 3967 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3968 r = reg_set_rd_country_ie(rd, lr); 3969 break; 3970 default: 3971 WARN(1, "invalid initiator %d\n", lr->initiator); 3972 kfree(rd); 3973 return -EINVAL; 3974 } 3975 3976 if (r) { 3977 switch (r) { 3978 case -EALREADY: 3979 reg_set_request_processed(); 3980 break; 3981 default: 3982 /* Back to world regulatory in case of errors */ 3983 restore_regulatory_settings(user_reset, false); 3984 } 3985 3986 kfree(rd); 3987 return r; 3988 } 3989 3990 /* This would make this whole thing pointless */ 3991 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3992 return -EINVAL; 3993 3994 /* update all wiphys now with the new established regulatory domain */ 3995 update_all_wiphy_regulatory(lr->initiator); 3996 3997 print_regdomain(get_cfg80211_regdom()); 3998 3999 nl80211_send_reg_change_event(lr); 4000 4001 reg_set_request_processed(); 4002 4003 return 0; 4004 } 4005 4006 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 4007 struct ieee80211_regdomain *rd) 4008 { 4009 const struct ieee80211_regdomain *regd; 4010 const struct ieee80211_regdomain *prev_regd; 4011 struct cfg80211_registered_device *rdev; 4012 4013 if (WARN_ON(!wiphy || !rd)) 4014 return -EINVAL; 4015 4016 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 4017 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 4018 return -EPERM; 4019 4020 if (WARN(!is_valid_rd(rd), 4021 "Invalid regulatory domain detected: %c%c\n", 4022 rd->alpha2[0], rd->alpha2[1])) { 4023 print_regdomain_info(rd); 4024 return -EINVAL; 4025 } 4026 4027 regd = reg_copy_regd(rd); 4028 if (IS_ERR(regd)) 4029 return PTR_ERR(regd); 4030 4031 rdev = wiphy_to_rdev(wiphy); 4032 4033 spin_lock(®_requests_lock); 4034 prev_regd = rdev->requested_regd; 4035 rdev->requested_regd = regd; 4036 spin_unlock(®_requests_lock); 4037 4038 kfree(prev_regd); 4039 return 0; 4040 } 4041 4042 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 4043 struct ieee80211_regdomain *rd) 4044 { 4045 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 4046 4047 if (ret) 4048 return ret; 4049 4050 schedule_work(®_work); 4051 return 0; 4052 } 4053 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 4054 4055 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy, 4056 struct ieee80211_regdomain *rd) 4057 { 4058 int ret; 4059 4060 ASSERT_RTNL(); 4061 4062 ret = __regulatory_set_wiphy_regd(wiphy, rd); 4063 if (ret) 4064 return ret; 4065 4066 /* process the request immediately */ 4067 reg_process_self_managed_hint(wiphy); 4068 reg_check_channels(); 4069 return 0; 4070 } 4071 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync); 4072 4073 void wiphy_regulatory_register(struct wiphy *wiphy) 4074 { 4075 struct regulatory_request *lr = get_last_request(); 4076 4077 /* self-managed devices ignore beacon hints and country IE */ 4078 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 4079 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 4080 REGULATORY_COUNTRY_IE_IGNORE; 4081 4082 /* 4083 * The last request may have been received before this 4084 * registration call. Call the driver notifier if 4085 * initiator is USER. 4086 */ 4087 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 4088 reg_call_notifier(wiphy, lr); 4089 } 4090 4091 if (!reg_dev_ignore_cell_hint(wiphy)) 4092 reg_num_devs_support_basehint++; 4093 4094 wiphy_update_regulatory(wiphy, lr->initiator); 4095 wiphy_all_share_dfs_chan_state(wiphy); 4096 reg_process_self_managed_hints(); 4097 } 4098 4099 void wiphy_regulatory_deregister(struct wiphy *wiphy) 4100 { 4101 struct wiphy *request_wiphy = NULL; 4102 struct regulatory_request *lr; 4103 4104 lr = get_last_request(); 4105 4106 if (!reg_dev_ignore_cell_hint(wiphy)) 4107 reg_num_devs_support_basehint--; 4108 4109 rcu_free_regdom(get_wiphy_regdom(wiphy)); 4110 RCU_INIT_POINTER(wiphy->regd, NULL); 4111 4112 if (lr) 4113 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 4114 4115 if (!request_wiphy || request_wiphy != wiphy) 4116 return; 4117 4118 lr->wiphy_idx = WIPHY_IDX_INVALID; 4119 lr->country_ie_env = ENVIRON_ANY; 4120 } 4121 4122 /* 4123 * See FCC notices for UNII band definitions 4124 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii 4125 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0 4126 */ 4127 int cfg80211_get_unii(int freq) 4128 { 4129 /* UNII-1 */ 4130 if (freq >= 5150 && freq <= 5250) 4131 return 0; 4132 4133 /* UNII-2A */ 4134 if (freq > 5250 && freq <= 5350) 4135 return 1; 4136 4137 /* UNII-2B */ 4138 if (freq > 5350 && freq <= 5470) 4139 return 2; 4140 4141 /* UNII-2C */ 4142 if (freq > 5470 && freq <= 5725) 4143 return 3; 4144 4145 /* UNII-3 */ 4146 if (freq > 5725 && freq <= 5825) 4147 return 4; 4148 4149 /* UNII-5 */ 4150 if (freq > 5925 && freq <= 6425) 4151 return 5; 4152 4153 /* UNII-6 */ 4154 if (freq > 6425 && freq <= 6525) 4155 return 6; 4156 4157 /* UNII-7 */ 4158 if (freq > 6525 && freq <= 6875) 4159 return 7; 4160 4161 /* UNII-8 */ 4162 if (freq > 6875 && freq <= 7125) 4163 return 8; 4164 4165 return -EINVAL; 4166 } 4167 4168 bool regulatory_indoor_allowed(void) 4169 { 4170 return reg_is_indoor; 4171 } 4172 4173 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 4174 { 4175 const struct ieee80211_regdomain *regd = NULL; 4176 const struct ieee80211_regdomain *wiphy_regd = NULL; 4177 bool pre_cac_allowed = false; 4178 4179 rcu_read_lock(); 4180 4181 regd = rcu_dereference(cfg80211_regdomain); 4182 wiphy_regd = rcu_dereference(wiphy->regd); 4183 if (!wiphy_regd) { 4184 if (regd->dfs_region == NL80211_DFS_ETSI) 4185 pre_cac_allowed = true; 4186 4187 rcu_read_unlock(); 4188 4189 return pre_cac_allowed; 4190 } 4191 4192 if (regd->dfs_region == wiphy_regd->dfs_region && 4193 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 4194 pre_cac_allowed = true; 4195 4196 rcu_read_unlock(); 4197 4198 return pre_cac_allowed; 4199 } 4200 EXPORT_SYMBOL(regulatory_pre_cac_allowed); 4201 4202 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev) 4203 { 4204 struct wireless_dev *wdev; 4205 /* If we finished CAC or received radar, we should end any 4206 * CAC running on the same channels. 4207 * the check !cfg80211_chandef_dfs_usable contain 2 options: 4208 * either all channels are available - those the CAC_FINISHED 4209 * event has effected another wdev state, or there is a channel 4210 * in unavailable state in wdev chandef - those the RADAR_DETECTED 4211 * event has effected another wdev state. 4212 * In both cases we should end the CAC on the wdev. 4213 */ 4214 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 4215 struct cfg80211_chan_def *chandef; 4216 4217 if (!wdev->cac_started) 4218 continue; 4219 4220 /* FIXME: radar detection is tied to link 0 for now */ 4221 chandef = wdev_chandef(wdev, 0); 4222 if (!chandef) 4223 continue; 4224 4225 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef)) 4226 rdev_end_cac(rdev, wdev->netdev); 4227 } 4228 } 4229 4230 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 4231 struct cfg80211_chan_def *chandef, 4232 enum nl80211_dfs_state dfs_state, 4233 enum nl80211_radar_event event) 4234 { 4235 struct cfg80211_registered_device *rdev; 4236 4237 ASSERT_RTNL(); 4238 4239 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 4240 return; 4241 4242 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 4243 if (wiphy == &rdev->wiphy) 4244 continue; 4245 4246 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 4247 continue; 4248 4249 if (!ieee80211_get_channel(&rdev->wiphy, 4250 chandef->chan->center_freq)) 4251 continue; 4252 4253 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 4254 4255 if (event == NL80211_RADAR_DETECTED || 4256 event == NL80211_RADAR_CAC_FINISHED) { 4257 cfg80211_sched_dfs_chan_update(rdev); 4258 cfg80211_check_and_end_cac(rdev); 4259 } 4260 4261 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 4262 } 4263 } 4264 4265 static int __init regulatory_init_db(void) 4266 { 4267 int err; 4268 4269 /* 4270 * It's possible that - due to other bugs/issues - cfg80211 4271 * never called regulatory_init() below, or that it failed; 4272 * in that case, don't try to do any further work here as 4273 * it's doomed to lead to crashes. 4274 */ 4275 if (IS_ERR_OR_NULL(reg_pdev)) 4276 return -EINVAL; 4277 4278 err = load_builtin_regdb_keys(); 4279 if (err) { 4280 platform_device_unregister(reg_pdev); 4281 return err; 4282 } 4283 4284 /* We always try to get an update for the static regdomain */ 4285 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 4286 if (err) { 4287 if (err == -ENOMEM) { 4288 platform_device_unregister(reg_pdev); 4289 return err; 4290 } 4291 /* 4292 * N.B. kobject_uevent_env() can fail mainly for when we're out 4293 * memory which is handled and propagated appropriately above 4294 * but it can also fail during a netlink_broadcast() or during 4295 * early boot for call_usermodehelper(). For now treat these 4296 * errors as non-fatal. 4297 */ 4298 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 4299 } 4300 4301 /* 4302 * Finally, if the user set the module parameter treat it 4303 * as a user hint. 4304 */ 4305 if (!is_world_regdom(ieee80211_regdom)) 4306 regulatory_hint_user(ieee80211_regdom, 4307 NL80211_USER_REG_HINT_USER); 4308 4309 return 0; 4310 } 4311 #ifndef MODULE 4312 late_initcall(regulatory_init_db); 4313 #endif 4314 4315 int __init regulatory_init(void) 4316 { 4317 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 4318 if (IS_ERR(reg_pdev)) 4319 return PTR_ERR(reg_pdev); 4320 4321 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 4322 4323 user_alpha2[0] = '9'; 4324 user_alpha2[1] = '7'; 4325 4326 #ifdef MODULE 4327 return regulatory_init_db(); 4328 #else 4329 return 0; 4330 #endif 4331 } 4332 4333 void regulatory_exit(void) 4334 { 4335 struct regulatory_request *reg_request, *tmp; 4336 struct reg_beacon *reg_beacon, *btmp; 4337 4338 cancel_work_sync(®_work); 4339 cancel_crda_timeout_sync(); 4340 cancel_delayed_work_sync(®_check_chans); 4341 4342 /* Lock to suppress warnings */ 4343 rtnl_lock(); 4344 reset_regdomains(true, NULL); 4345 rtnl_unlock(); 4346 4347 dev_set_uevent_suppress(®_pdev->dev, true); 4348 4349 platform_device_unregister(reg_pdev); 4350 4351 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 4352 list_del(®_beacon->list); 4353 kfree(reg_beacon); 4354 } 4355 4356 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 4357 list_del(®_beacon->list); 4358 kfree(reg_beacon); 4359 } 4360 4361 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4362 list_del(®_request->list); 4363 kfree(reg_request); 4364 } 4365 4366 if (!IS_ERR_OR_NULL(regdb)) 4367 kfree(regdb); 4368 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4369 kfree(cfg80211_user_regdom); 4370 4371 free_regdb_keyring(); 4372 } 4373