1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * 8 * Permission to use, copy, modify, and/or distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 22 /** 23 * DOC: Wireless regulatory infrastructure 24 * 25 * The usual implementation is for a driver to read a device EEPROM to 26 * determine which regulatory domain it should be operating under, then 27 * looking up the allowable channels in a driver-local table and finally 28 * registering those channels in the wiphy structure. 29 * 30 * Another set of compliance enforcement is for drivers to use their 31 * own compliance limits which can be stored on the EEPROM. The host 32 * driver or firmware may ensure these are used. 33 * 34 * In addition to all this we provide an extra layer of regulatory 35 * conformance. For drivers which do not have any regulatory 36 * information CRDA provides the complete regulatory solution. 37 * For others it provides a community effort on further restrictions 38 * to enhance compliance. 39 * 40 * Note: When number of rules --> infinity we will not be able to 41 * index on alpha2 any more, instead we'll probably have to 42 * rely on some SHA1 checksum of the regdomain for example. 43 * 44 */ 45 46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 47 48 #include <linux/kernel.h> 49 #include <linux/export.h> 50 #include <linux/slab.h> 51 #include <linux/list.h> 52 #include <linux/ctype.h> 53 #include <linux/nl80211.h> 54 #include <linux/platform_device.h> 55 #include <linux/moduleparam.h> 56 #include <net/cfg80211.h> 57 #include "core.h" 58 #include "reg.h" 59 #include "rdev-ops.h" 60 #include "regdb.h" 61 #include "nl80211.h" 62 63 #ifdef CONFIG_CFG80211_REG_DEBUG 64 #define REG_DBG_PRINT(format, args...) \ 65 printk(KERN_DEBUG pr_fmt(format), ##args) 66 #else 67 #define REG_DBG_PRINT(args...) 68 #endif 69 70 /* 71 * Grace period we give before making sure all current interfaces reside on 72 * channels allowed by the current regulatory domain. 73 */ 74 #define REG_ENFORCE_GRACE_MS 60000 75 76 /** 77 * enum reg_request_treatment - regulatory request treatment 78 * 79 * @REG_REQ_OK: continue processing the regulatory request 80 * @REG_REQ_IGNORE: ignore the regulatory request 81 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 82 * be intersected with the current one. 83 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 84 * regulatory settings, and no further processing is required. 85 * @REG_REQ_USER_HINT_HANDLED: a non alpha2 user hint was handled and no 86 * further processing is required, i.e., not need to update last_request 87 * etc. This should be used for user hints that do not provide an alpha2 88 * but some other type of regulatory hint, i.e., indoor operation. 89 */ 90 enum reg_request_treatment { 91 REG_REQ_OK, 92 REG_REQ_IGNORE, 93 REG_REQ_INTERSECT, 94 REG_REQ_ALREADY_SET, 95 REG_REQ_USER_HINT_HANDLED, 96 }; 97 98 static struct regulatory_request core_request_world = { 99 .initiator = NL80211_REGDOM_SET_BY_CORE, 100 .alpha2[0] = '0', 101 .alpha2[1] = '0', 102 .intersect = false, 103 .processed = true, 104 .country_ie_env = ENVIRON_ANY, 105 }; 106 107 /* 108 * Receipt of information from last regulatory request, 109 * protected by RTNL (and can be accessed with RCU protection) 110 */ 111 static struct regulatory_request __rcu *last_request = 112 (void __rcu *)&core_request_world; 113 114 /* To trigger userspace events */ 115 static struct platform_device *reg_pdev; 116 117 /* 118 * Central wireless core regulatory domains, we only need two, 119 * the current one and a world regulatory domain in case we have no 120 * information to give us an alpha2. 121 * (protected by RTNL, can be read under RCU) 122 */ 123 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 124 125 /* 126 * Number of devices that registered to the core 127 * that support cellular base station regulatory hints 128 * (protected by RTNL) 129 */ 130 static int reg_num_devs_support_basehint; 131 132 /* 133 * State variable indicating if the platform on which the devices 134 * are attached is operating in an indoor environment. The state variable 135 * is relevant for all registered devices. 136 * (protected by RTNL) 137 */ 138 static bool reg_is_indoor; 139 140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 141 { 142 return rtnl_dereference(cfg80211_regdomain); 143 } 144 145 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 146 { 147 return rtnl_dereference(wiphy->regd); 148 } 149 150 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 151 { 152 switch (dfs_region) { 153 case NL80211_DFS_UNSET: 154 return "unset"; 155 case NL80211_DFS_FCC: 156 return "FCC"; 157 case NL80211_DFS_ETSI: 158 return "ETSI"; 159 case NL80211_DFS_JP: 160 return "JP"; 161 } 162 return "Unknown"; 163 } 164 165 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 166 { 167 const struct ieee80211_regdomain *regd = NULL; 168 const struct ieee80211_regdomain *wiphy_regd = NULL; 169 170 regd = get_cfg80211_regdom(); 171 if (!wiphy) 172 goto out; 173 174 wiphy_regd = get_wiphy_regdom(wiphy); 175 if (!wiphy_regd) 176 goto out; 177 178 if (wiphy_regd->dfs_region == regd->dfs_region) 179 goto out; 180 181 REG_DBG_PRINT("%s: device specific dfs_region " 182 "(%s) disagrees with cfg80211's " 183 "central dfs_region (%s)\n", 184 dev_name(&wiphy->dev), 185 reg_dfs_region_str(wiphy_regd->dfs_region), 186 reg_dfs_region_str(regd->dfs_region)); 187 188 out: 189 return regd->dfs_region; 190 } 191 192 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 193 { 194 if (!r) 195 return; 196 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 197 } 198 199 static struct regulatory_request *get_last_request(void) 200 { 201 return rcu_dereference_rtnl(last_request); 202 } 203 204 /* Used to queue up regulatory hints */ 205 static LIST_HEAD(reg_requests_list); 206 static spinlock_t reg_requests_lock; 207 208 /* Used to queue up beacon hints for review */ 209 static LIST_HEAD(reg_pending_beacons); 210 static spinlock_t reg_pending_beacons_lock; 211 212 /* Used to keep track of processed beacon hints */ 213 static LIST_HEAD(reg_beacon_list); 214 215 struct reg_beacon { 216 struct list_head list; 217 struct ieee80211_channel chan; 218 }; 219 220 static void reg_check_chans_work(struct work_struct *work); 221 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 222 223 static void reg_todo(struct work_struct *work); 224 static DECLARE_WORK(reg_work, reg_todo); 225 226 static void reg_timeout_work(struct work_struct *work); 227 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work); 228 229 /* We keep a static world regulatory domain in case of the absence of CRDA */ 230 static const struct ieee80211_regdomain world_regdom = { 231 .n_reg_rules = 6, 232 .alpha2 = "00", 233 .reg_rules = { 234 /* IEEE 802.11b/g, channels 1..11 */ 235 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 236 /* IEEE 802.11b/g, channels 12..13. */ 237 REG_RULE(2467-10, 2472+10, 40, 6, 20, 238 NL80211_RRF_NO_IR), 239 /* IEEE 802.11 channel 14 - Only JP enables 240 * this and for 802.11b only */ 241 REG_RULE(2484-10, 2484+10, 20, 6, 20, 242 NL80211_RRF_NO_IR | 243 NL80211_RRF_NO_OFDM), 244 /* IEEE 802.11a, channel 36..48 */ 245 REG_RULE(5180-10, 5240+10, 160, 6, 20, 246 NL80211_RRF_NO_IR), 247 248 /* IEEE 802.11a, channel 52..64 - DFS required */ 249 REG_RULE(5260-10, 5320+10, 160, 6, 20, 250 NL80211_RRF_NO_IR | 251 NL80211_RRF_DFS), 252 253 /* IEEE 802.11a, channel 100..144 - DFS required */ 254 REG_RULE(5500-10, 5720+10, 160, 6, 20, 255 NL80211_RRF_NO_IR | 256 NL80211_RRF_DFS), 257 258 /* IEEE 802.11a, channel 149..165 */ 259 REG_RULE(5745-10, 5825+10, 80, 6, 20, 260 NL80211_RRF_NO_IR), 261 262 /* IEEE 802.11ad (60gHz), channels 1..3 */ 263 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 264 } 265 }; 266 267 /* protected by RTNL */ 268 static const struct ieee80211_regdomain *cfg80211_world_regdom = 269 &world_regdom; 270 271 static char *ieee80211_regdom = "00"; 272 static char user_alpha2[2]; 273 274 module_param(ieee80211_regdom, charp, 0444); 275 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 276 277 static void reg_free_request(struct regulatory_request *request) 278 { 279 if (request != get_last_request()) 280 kfree(request); 281 } 282 283 static void reg_free_last_request(void) 284 { 285 struct regulatory_request *lr = get_last_request(); 286 287 if (lr != &core_request_world && lr) 288 kfree_rcu(lr, rcu_head); 289 } 290 291 static void reg_update_last_request(struct regulatory_request *request) 292 { 293 struct regulatory_request *lr; 294 295 lr = get_last_request(); 296 if (lr == request) 297 return; 298 299 reg_free_last_request(); 300 rcu_assign_pointer(last_request, request); 301 } 302 303 static void reset_regdomains(bool full_reset, 304 const struct ieee80211_regdomain *new_regdom) 305 { 306 const struct ieee80211_regdomain *r; 307 308 ASSERT_RTNL(); 309 310 r = get_cfg80211_regdom(); 311 312 /* avoid freeing static information or freeing something twice */ 313 if (r == cfg80211_world_regdom) 314 r = NULL; 315 if (cfg80211_world_regdom == &world_regdom) 316 cfg80211_world_regdom = NULL; 317 if (r == &world_regdom) 318 r = NULL; 319 320 rcu_free_regdom(r); 321 rcu_free_regdom(cfg80211_world_regdom); 322 323 cfg80211_world_regdom = &world_regdom; 324 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 325 326 if (!full_reset) 327 return; 328 329 reg_update_last_request(&core_request_world); 330 } 331 332 /* 333 * Dynamic world regulatory domain requested by the wireless 334 * core upon initialization 335 */ 336 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 337 { 338 struct regulatory_request *lr; 339 340 lr = get_last_request(); 341 342 WARN_ON(!lr); 343 344 reset_regdomains(false, rd); 345 346 cfg80211_world_regdom = rd; 347 } 348 349 bool is_world_regdom(const char *alpha2) 350 { 351 if (!alpha2) 352 return false; 353 return alpha2[0] == '0' && alpha2[1] == '0'; 354 } 355 356 static bool is_alpha2_set(const char *alpha2) 357 { 358 if (!alpha2) 359 return false; 360 return alpha2[0] && alpha2[1]; 361 } 362 363 static bool is_unknown_alpha2(const char *alpha2) 364 { 365 if (!alpha2) 366 return false; 367 /* 368 * Special case where regulatory domain was built by driver 369 * but a specific alpha2 cannot be determined 370 */ 371 return alpha2[0] == '9' && alpha2[1] == '9'; 372 } 373 374 static bool is_intersected_alpha2(const char *alpha2) 375 { 376 if (!alpha2) 377 return false; 378 /* 379 * Special case where regulatory domain is the 380 * result of an intersection between two regulatory domain 381 * structures 382 */ 383 return alpha2[0] == '9' && alpha2[1] == '8'; 384 } 385 386 static bool is_an_alpha2(const char *alpha2) 387 { 388 if (!alpha2) 389 return false; 390 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 391 } 392 393 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 394 { 395 if (!alpha2_x || !alpha2_y) 396 return false; 397 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 398 } 399 400 static bool regdom_changes(const char *alpha2) 401 { 402 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 403 404 if (!r) 405 return true; 406 return !alpha2_equal(r->alpha2, alpha2); 407 } 408 409 /* 410 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 411 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 412 * has ever been issued. 413 */ 414 static bool is_user_regdom_saved(void) 415 { 416 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 417 return false; 418 419 /* This would indicate a mistake on the design */ 420 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 421 "Unexpected user alpha2: %c%c\n", 422 user_alpha2[0], user_alpha2[1])) 423 return false; 424 425 return true; 426 } 427 428 static const struct ieee80211_regdomain * 429 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 430 { 431 struct ieee80211_regdomain *regd; 432 int size_of_regd; 433 unsigned int i; 434 435 size_of_regd = 436 sizeof(struct ieee80211_regdomain) + 437 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); 438 439 regd = kzalloc(size_of_regd, GFP_KERNEL); 440 if (!regd) 441 return ERR_PTR(-ENOMEM); 442 443 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 444 445 for (i = 0; i < src_regd->n_reg_rules; i++) 446 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 447 sizeof(struct ieee80211_reg_rule)); 448 449 return regd; 450 } 451 452 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 453 struct reg_regdb_search_request { 454 char alpha2[2]; 455 struct list_head list; 456 }; 457 458 static LIST_HEAD(reg_regdb_search_list); 459 static DEFINE_MUTEX(reg_regdb_search_mutex); 460 461 static void reg_regdb_search(struct work_struct *work) 462 { 463 struct reg_regdb_search_request *request; 464 const struct ieee80211_regdomain *curdom, *regdom = NULL; 465 int i; 466 467 rtnl_lock(); 468 469 mutex_lock(®_regdb_search_mutex); 470 while (!list_empty(®_regdb_search_list)) { 471 request = list_first_entry(®_regdb_search_list, 472 struct reg_regdb_search_request, 473 list); 474 list_del(&request->list); 475 476 for (i = 0; i < reg_regdb_size; i++) { 477 curdom = reg_regdb[i]; 478 479 if (alpha2_equal(request->alpha2, curdom->alpha2)) { 480 regdom = reg_copy_regd(curdom); 481 break; 482 } 483 } 484 485 kfree(request); 486 } 487 mutex_unlock(®_regdb_search_mutex); 488 489 if (!IS_ERR_OR_NULL(regdom)) 490 set_regdom(regdom); 491 492 rtnl_unlock(); 493 } 494 495 static DECLARE_WORK(reg_regdb_work, reg_regdb_search); 496 497 static void reg_regdb_query(const char *alpha2) 498 { 499 struct reg_regdb_search_request *request; 500 501 if (!alpha2) 502 return; 503 504 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL); 505 if (!request) 506 return; 507 508 memcpy(request->alpha2, alpha2, 2); 509 510 mutex_lock(®_regdb_search_mutex); 511 list_add_tail(&request->list, ®_regdb_search_list); 512 mutex_unlock(®_regdb_search_mutex); 513 514 schedule_work(®_regdb_work); 515 } 516 517 /* Feel free to add any other sanity checks here */ 518 static void reg_regdb_size_check(void) 519 { 520 /* We should ideally BUILD_BUG_ON() but then random builds would fail */ 521 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it..."); 522 } 523 #else 524 static inline void reg_regdb_size_check(void) {} 525 static inline void reg_regdb_query(const char *alpha2) {} 526 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 527 528 /* 529 * This lets us keep regulatory code which is updated on a regulatory 530 * basis in userspace. 531 */ 532 static int call_crda(const char *alpha2) 533 { 534 char country[12]; 535 char *env[] = { country, NULL }; 536 537 snprintf(country, sizeof(country), "COUNTRY=%c%c", 538 alpha2[0], alpha2[1]); 539 540 if (!is_world_regdom((char *) alpha2)) 541 pr_info("Calling CRDA for country: %c%c\n", 542 alpha2[0], alpha2[1]); 543 else 544 pr_info("Calling CRDA to update world regulatory domain\n"); 545 546 /* query internal regulatory database (if it exists) */ 547 reg_regdb_query(alpha2); 548 549 return kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 550 } 551 552 static enum reg_request_treatment 553 reg_call_crda(struct regulatory_request *request) 554 { 555 if (call_crda(request->alpha2)) 556 return REG_REQ_IGNORE; 557 return REG_REQ_OK; 558 } 559 560 bool reg_is_valid_request(const char *alpha2) 561 { 562 struct regulatory_request *lr = get_last_request(); 563 564 if (!lr || lr->processed) 565 return false; 566 567 return alpha2_equal(lr->alpha2, alpha2); 568 } 569 570 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 571 { 572 struct regulatory_request *lr = get_last_request(); 573 574 /* 575 * Follow the driver's regulatory domain, if present, unless a country 576 * IE has been processed or a user wants to help complaince further 577 */ 578 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 579 lr->initiator != NL80211_REGDOM_SET_BY_USER && 580 wiphy->regd) 581 return get_wiphy_regdom(wiphy); 582 583 return get_cfg80211_regdom(); 584 } 585 586 static unsigned int 587 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 588 const struct ieee80211_reg_rule *rule) 589 { 590 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 591 const struct ieee80211_freq_range *freq_range_tmp; 592 const struct ieee80211_reg_rule *tmp; 593 u32 start_freq, end_freq, idx, no; 594 595 for (idx = 0; idx < rd->n_reg_rules; idx++) 596 if (rule == &rd->reg_rules[idx]) 597 break; 598 599 if (idx == rd->n_reg_rules) 600 return 0; 601 602 /* get start_freq */ 603 no = idx; 604 605 while (no) { 606 tmp = &rd->reg_rules[--no]; 607 freq_range_tmp = &tmp->freq_range; 608 609 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 610 break; 611 612 freq_range = freq_range_tmp; 613 } 614 615 start_freq = freq_range->start_freq_khz; 616 617 /* get end_freq */ 618 freq_range = &rule->freq_range; 619 no = idx; 620 621 while (no < rd->n_reg_rules - 1) { 622 tmp = &rd->reg_rules[++no]; 623 freq_range_tmp = &tmp->freq_range; 624 625 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 626 break; 627 628 freq_range = freq_range_tmp; 629 } 630 631 end_freq = freq_range->end_freq_khz; 632 633 return end_freq - start_freq; 634 } 635 636 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 637 const struct ieee80211_reg_rule *rule) 638 { 639 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 640 641 if (rule->flags & NL80211_RRF_NO_160MHZ) 642 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 643 if (rule->flags & NL80211_RRF_NO_80MHZ) 644 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 645 646 /* 647 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 648 * are not allowed. 649 */ 650 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 651 rule->flags & NL80211_RRF_NO_HT40PLUS) 652 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 653 654 return bw; 655 } 656 657 /* Sanity check on a regulatory rule */ 658 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 659 { 660 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 661 u32 freq_diff; 662 663 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 664 return false; 665 666 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 667 return false; 668 669 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 670 671 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 672 freq_range->max_bandwidth_khz > freq_diff) 673 return false; 674 675 return true; 676 } 677 678 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 679 { 680 const struct ieee80211_reg_rule *reg_rule = NULL; 681 unsigned int i; 682 683 if (!rd->n_reg_rules) 684 return false; 685 686 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 687 return false; 688 689 for (i = 0; i < rd->n_reg_rules; i++) { 690 reg_rule = &rd->reg_rules[i]; 691 if (!is_valid_reg_rule(reg_rule)) 692 return false; 693 } 694 695 return true; 696 } 697 698 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 699 u32 center_freq_khz, u32 bw_khz) 700 { 701 u32 start_freq_khz, end_freq_khz; 702 703 start_freq_khz = center_freq_khz - (bw_khz/2); 704 end_freq_khz = center_freq_khz + (bw_khz/2); 705 706 if (start_freq_khz >= freq_range->start_freq_khz && 707 end_freq_khz <= freq_range->end_freq_khz) 708 return true; 709 710 return false; 711 } 712 713 /** 714 * freq_in_rule_band - tells us if a frequency is in a frequency band 715 * @freq_range: frequency rule we want to query 716 * @freq_khz: frequency we are inquiring about 717 * 718 * This lets us know if a specific frequency rule is or is not relevant to 719 * a specific frequency's band. Bands are device specific and artificial 720 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 721 * however it is safe for now to assume that a frequency rule should not be 722 * part of a frequency's band if the start freq or end freq are off by more 723 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the 724 * 60 GHz band. 725 * This resolution can be lowered and should be considered as we add 726 * regulatory rule support for other "bands". 727 **/ 728 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 729 u32 freq_khz) 730 { 731 #define ONE_GHZ_IN_KHZ 1000000 732 /* 733 * From 802.11ad: directional multi-gigabit (DMG): 734 * Pertaining to operation in a frequency band containing a channel 735 * with the Channel starting frequency above 45 GHz. 736 */ 737 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 738 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 739 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 740 return true; 741 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 742 return true; 743 return false; 744 #undef ONE_GHZ_IN_KHZ 745 } 746 747 /* 748 * Later on we can perhaps use the more restrictive DFS 749 * region but we don't have information for that yet so 750 * for now simply disallow conflicts. 751 */ 752 static enum nl80211_dfs_regions 753 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 754 const enum nl80211_dfs_regions dfs_region2) 755 { 756 if (dfs_region1 != dfs_region2) 757 return NL80211_DFS_UNSET; 758 return dfs_region1; 759 } 760 761 /* 762 * Helper for regdom_intersect(), this does the real 763 * mathematical intersection fun 764 */ 765 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 766 const struct ieee80211_regdomain *rd2, 767 const struct ieee80211_reg_rule *rule1, 768 const struct ieee80211_reg_rule *rule2, 769 struct ieee80211_reg_rule *intersected_rule) 770 { 771 const struct ieee80211_freq_range *freq_range1, *freq_range2; 772 struct ieee80211_freq_range *freq_range; 773 const struct ieee80211_power_rule *power_rule1, *power_rule2; 774 struct ieee80211_power_rule *power_rule; 775 u32 freq_diff, max_bandwidth1, max_bandwidth2; 776 777 freq_range1 = &rule1->freq_range; 778 freq_range2 = &rule2->freq_range; 779 freq_range = &intersected_rule->freq_range; 780 781 power_rule1 = &rule1->power_rule; 782 power_rule2 = &rule2->power_rule; 783 power_rule = &intersected_rule->power_rule; 784 785 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 786 freq_range2->start_freq_khz); 787 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 788 freq_range2->end_freq_khz); 789 790 max_bandwidth1 = freq_range1->max_bandwidth_khz; 791 max_bandwidth2 = freq_range2->max_bandwidth_khz; 792 793 if (rule1->flags & NL80211_RRF_AUTO_BW) 794 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 795 if (rule2->flags & NL80211_RRF_AUTO_BW) 796 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 797 798 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 799 800 intersected_rule->flags = rule1->flags | rule2->flags; 801 802 /* 803 * In case NL80211_RRF_AUTO_BW requested for both rules 804 * set AUTO_BW in intersected rule also. Next we will 805 * calculate BW correctly in handle_channel function. 806 * In other case remove AUTO_BW flag while we calculate 807 * maximum bandwidth correctly and auto calculation is 808 * not required. 809 */ 810 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 811 (rule2->flags & NL80211_RRF_AUTO_BW)) 812 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 813 else 814 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 815 816 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 817 if (freq_range->max_bandwidth_khz > freq_diff) 818 freq_range->max_bandwidth_khz = freq_diff; 819 820 power_rule->max_eirp = min(power_rule1->max_eirp, 821 power_rule2->max_eirp); 822 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 823 power_rule2->max_antenna_gain); 824 825 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 826 rule2->dfs_cac_ms); 827 828 if (!is_valid_reg_rule(intersected_rule)) 829 return -EINVAL; 830 831 return 0; 832 } 833 834 /* check whether old rule contains new rule */ 835 static bool rule_contains(struct ieee80211_reg_rule *r1, 836 struct ieee80211_reg_rule *r2) 837 { 838 /* for simplicity, currently consider only same flags */ 839 if (r1->flags != r2->flags) 840 return false; 841 842 /* verify r1 is more restrictive */ 843 if ((r1->power_rule.max_antenna_gain > 844 r2->power_rule.max_antenna_gain) || 845 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 846 return false; 847 848 /* make sure r2's range is contained within r1 */ 849 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 850 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 851 return false; 852 853 /* and finally verify that r1.max_bw >= r2.max_bw */ 854 if (r1->freq_range.max_bandwidth_khz < 855 r2->freq_range.max_bandwidth_khz) 856 return false; 857 858 return true; 859 } 860 861 /* add or extend current rules. do nothing if rule is already contained */ 862 static void add_rule(struct ieee80211_reg_rule *rule, 863 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 864 { 865 struct ieee80211_reg_rule *tmp_rule; 866 int i; 867 868 for (i = 0; i < *n_rules; i++) { 869 tmp_rule = ®_rules[i]; 870 /* rule is already contained - do nothing */ 871 if (rule_contains(tmp_rule, rule)) 872 return; 873 874 /* extend rule if possible */ 875 if (rule_contains(rule, tmp_rule)) { 876 memcpy(tmp_rule, rule, sizeof(*rule)); 877 return; 878 } 879 } 880 881 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 882 (*n_rules)++; 883 } 884 885 /** 886 * regdom_intersect - do the intersection between two regulatory domains 887 * @rd1: first regulatory domain 888 * @rd2: second regulatory domain 889 * 890 * Use this function to get the intersection between two regulatory domains. 891 * Once completed we will mark the alpha2 for the rd as intersected, "98", 892 * as no one single alpha2 can represent this regulatory domain. 893 * 894 * Returns a pointer to the regulatory domain structure which will hold the 895 * resulting intersection of rules between rd1 and rd2. We will 896 * kzalloc() this structure for you. 897 */ 898 static struct ieee80211_regdomain * 899 regdom_intersect(const struct ieee80211_regdomain *rd1, 900 const struct ieee80211_regdomain *rd2) 901 { 902 int r, size_of_regd; 903 unsigned int x, y; 904 unsigned int num_rules = 0; 905 const struct ieee80211_reg_rule *rule1, *rule2; 906 struct ieee80211_reg_rule intersected_rule; 907 struct ieee80211_regdomain *rd; 908 909 if (!rd1 || !rd2) 910 return NULL; 911 912 /* 913 * First we get a count of the rules we'll need, then we actually 914 * build them. This is to so we can malloc() and free() a 915 * regdomain once. The reason we use reg_rules_intersect() here 916 * is it will return -EINVAL if the rule computed makes no sense. 917 * All rules that do check out OK are valid. 918 */ 919 920 for (x = 0; x < rd1->n_reg_rules; x++) { 921 rule1 = &rd1->reg_rules[x]; 922 for (y = 0; y < rd2->n_reg_rules; y++) { 923 rule2 = &rd2->reg_rules[y]; 924 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 925 &intersected_rule)) 926 num_rules++; 927 } 928 } 929 930 if (!num_rules) 931 return NULL; 932 933 size_of_regd = sizeof(struct ieee80211_regdomain) + 934 num_rules * sizeof(struct ieee80211_reg_rule); 935 936 rd = kzalloc(size_of_regd, GFP_KERNEL); 937 if (!rd) 938 return NULL; 939 940 for (x = 0; x < rd1->n_reg_rules; x++) { 941 rule1 = &rd1->reg_rules[x]; 942 for (y = 0; y < rd2->n_reg_rules; y++) { 943 rule2 = &rd2->reg_rules[y]; 944 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 945 &intersected_rule); 946 /* 947 * No need to memset here the intersected rule here as 948 * we're not using the stack anymore 949 */ 950 if (r) 951 continue; 952 953 add_rule(&intersected_rule, rd->reg_rules, 954 &rd->n_reg_rules); 955 } 956 } 957 958 rd->alpha2[0] = '9'; 959 rd->alpha2[1] = '8'; 960 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 961 rd2->dfs_region); 962 963 return rd; 964 } 965 966 /* 967 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 968 * want to just have the channel structure use these 969 */ 970 static u32 map_regdom_flags(u32 rd_flags) 971 { 972 u32 channel_flags = 0; 973 if (rd_flags & NL80211_RRF_NO_IR_ALL) 974 channel_flags |= IEEE80211_CHAN_NO_IR; 975 if (rd_flags & NL80211_RRF_DFS) 976 channel_flags |= IEEE80211_CHAN_RADAR; 977 if (rd_flags & NL80211_RRF_NO_OFDM) 978 channel_flags |= IEEE80211_CHAN_NO_OFDM; 979 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 980 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 981 if (rd_flags & NL80211_RRF_GO_CONCURRENT) 982 channel_flags |= IEEE80211_CHAN_GO_CONCURRENT; 983 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 984 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 985 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 986 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 987 if (rd_flags & NL80211_RRF_NO_80MHZ) 988 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 989 if (rd_flags & NL80211_RRF_NO_160MHZ) 990 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 991 return channel_flags; 992 } 993 994 static const struct ieee80211_reg_rule * 995 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq, 996 const struct ieee80211_regdomain *regd) 997 { 998 int i; 999 bool band_rule_found = false; 1000 bool bw_fits = false; 1001 1002 if (!regd) 1003 return ERR_PTR(-EINVAL); 1004 1005 for (i = 0; i < regd->n_reg_rules; i++) { 1006 const struct ieee80211_reg_rule *rr; 1007 const struct ieee80211_freq_range *fr = NULL; 1008 1009 rr = ®d->reg_rules[i]; 1010 fr = &rr->freq_range; 1011 1012 /* 1013 * We only need to know if one frequency rule was 1014 * was in center_freq's band, that's enough, so lets 1015 * not overwrite it once found 1016 */ 1017 if (!band_rule_found) 1018 band_rule_found = freq_in_rule_band(fr, center_freq); 1019 1020 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20)); 1021 1022 if (band_rule_found && bw_fits) 1023 return rr; 1024 } 1025 1026 if (!band_rule_found) 1027 return ERR_PTR(-ERANGE); 1028 1029 return ERR_PTR(-EINVAL); 1030 } 1031 1032 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1033 u32 center_freq) 1034 { 1035 const struct ieee80211_regdomain *regd; 1036 1037 regd = reg_get_regdomain(wiphy); 1038 1039 return freq_reg_info_regd(wiphy, center_freq, regd); 1040 } 1041 EXPORT_SYMBOL(freq_reg_info); 1042 1043 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1044 { 1045 switch (initiator) { 1046 case NL80211_REGDOM_SET_BY_CORE: 1047 return "core"; 1048 case NL80211_REGDOM_SET_BY_USER: 1049 return "user"; 1050 case NL80211_REGDOM_SET_BY_DRIVER: 1051 return "driver"; 1052 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1053 return "country IE"; 1054 default: 1055 WARN_ON(1); 1056 return "bug"; 1057 } 1058 } 1059 EXPORT_SYMBOL(reg_initiator_name); 1060 1061 #ifdef CONFIG_CFG80211_REG_DEBUG 1062 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd, 1063 struct ieee80211_channel *chan, 1064 const struct ieee80211_reg_rule *reg_rule) 1065 { 1066 const struct ieee80211_power_rule *power_rule; 1067 const struct ieee80211_freq_range *freq_range; 1068 char max_antenna_gain[32], bw[32]; 1069 1070 power_rule = ®_rule->power_rule; 1071 freq_range = ®_rule->freq_range; 1072 1073 if (!power_rule->max_antenna_gain) 1074 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A"); 1075 else 1076 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d", 1077 power_rule->max_antenna_gain); 1078 1079 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1080 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 1081 freq_range->max_bandwidth_khz, 1082 reg_get_max_bandwidth(regd, reg_rule)); 1083 else 1084 snprintf(bw, sizeof(bw), "%d KHz", 1085 freq_range->max_bandwidth_khz); 1086 1087 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n", 1088 chan->center_freq); 1089 1090 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n", 1091 freq_range->start_freq_khz, freq_range->end_freq_khz, 1092 bw, max_antenna_gain, 1093 power_rule->max_eirp); 1094 } 1095 #else 1096 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd, 1097 struct ieee80211_channel *chan, 1098 const struct ieee80211_reg_rule *reg_rule) 1099 { 1100 return; 1101 } 1102 #endif 1103 1104 /* 1105 * Note that right now we assume the desired channel bandwidth 1106 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1107 * per channel, the primary and the extension channel). 1108 */ 1109 static void handle_channel(struct wiphy *wiphy, 1110 enum nl80211_reg_initiator initiator, 1111 struct ieee80211_channel *chan) 1112 { 1113 u32 flags, bw_flags = 0; 1114 const struct ieee80211_reg_rule *reg_rule = NULL; 1115 const struct ieee80211_power_rule *power_rule = NULL; 1116 const struct ieee80211_freq_range *freq_range = NULL; 1117 struct wiphy *request_wiphy = NULL; 1118 struct regulatory_request *lr = get_last_request(); 1119 const struct ieee80211_regdomain *regd; 1120 u32 max_bandwidth_khz; 1121 1122 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1123 1124 flags = chan->orig_flags; 1125 1126 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 1127 if (IS_ERR(reg_rule)) { 1128 /* 1129 * We will disable all channels that do not match our 1130 * received regulatory rule unless the hint is coming 1131 * from a Country IE and the Country IE had no information 1132 * about a band. The IEEE 802.11 spec allows for an AP 1133 * to send only a subset of the regulatory rules allowed, 1134 * so an AP in the US that only supports 2.4 GHz may only send 1135 * a country IE with information for the 2.4 GHz band 1136 * while 5 GHz is still supported. 1137 */ 1138 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1139 PTR_ERR(reg_rule) == -ERANGE) 1140 return; 1141 1142 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1143 request_wiphy && request_wiphy == wiphy && 1144 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1145 REG_DBG_PRINT("Disabling freq %d MHz for good\n", 1146 chan->center_freq); 1147 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1148 chan->flags = chan->orig_flags; 1149 } else { 1150 REG_DBG_PRINT("Disabling freq %d MHz\n", 1151 chan->center_freq); 1152 chan->flags |= IEEE80211_CHAN_DISABLED; 1153 } 1154 return; 1155 } 1156 1157 regd = reg_get_regdomain(wiphy); 1158 chan_reg_rule_print_dbg(regd, chan, reg_rule); 1159 1160 power_rule = ®_rule->power_rule; 1161 freq_range = ®_rule->freq_range; 1162 1163 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1164 /* Check if auto calculation requested */ 1165 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1166 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1167 1168 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1169 bw_flags = IEEE80211_CHAN_NO_HT40; 1170 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1171 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1172 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1173 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1174 1175 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1176 request_wiphy && request_wiphy == wiphy && 1177 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1178 /* 1179 * This guarantees the driver's requested regulatory domain 1180 * will always be used as a base for further regulatory 1181 * settings 1182 */ 1183 chan->flags = chan->orig_flags = 1184 map_regdom_flags(reg_rule->flags) | bw_flags; 1185 chan->max_antenna_gain = chan->orig_mag = 1186 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1187 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1188 (int) MBM_TO_DBM(power_rule->max_eirp); 1189 1190 if (chan->flags & IEEE80211_CHAN_RADAR) { 1191 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1192 if (reg_rule->dfs_cac_ms) 1193 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1194 } 1195 1196 return; 1197 } 1198 1199 chan->dfs_state = NL80211_DFS_USABLE; 1200 chan->dfs_state_entered = jiffies; 1201 1202 chan->beacon_found = false; 1203 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1204 chan->max_antenna_gain = 1205 min_t(int, chan->orig_mag, 1206 MBI_TO_DBI(power_rule->max_antenna_gain)); 1207 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1208 1209 if (chan->flags & IEEE80211_CHAN_RADAR) { 1210 if (reg_rule->dfs_cac_ms) 1211 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1212 else 1213 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1214 } 1215 1216 if (chan->orig_mpwr) { 1217 /* 1218 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1219 * will always follow the passed country IE power settings. 1220 */ 1221 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1222 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1223 chan->max_power = chan->max_reg_power; 1224 else 1225 chan->max_power = min(chan->orig_mpwr, 1226 chan->max_reg_power); 1227 } else 1228 chan->max_power = chan->max_reg_power; 1229 } 1230 1231 static void handle_band(struct wiphy *wiphy, 1232 enum nl80211_reg_initiator initiator, 1233 struct ieee80211_supported_band *sband) 1234 { 1235 unsigned int i; 1236 1237 if (!sband) 1238 return; 1239 1240 for (i = 0; i < sband->n_channels; i++) 1241 handle_channel(wiphy, initiator, &sband->channels[i]); 1242 } 1243 1244 static bool reg_request_cell_base(struct regulatory_request *request) 1245 { 1246 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1247 return false; 1248 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 1249 } 1250 1251 static bool reg_request_indoor(struct regulatory_request *request) 1252 { 1253 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1254 return false; 1255 return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR; 1256 } 1257 1258 bool reg_last_request_cell_base(void) 1259 { 1260 return reg_request_cell_base(get_last_request()); 1261 } 1262 1263 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 1264 /* Core specific check */ 1265 static enum reg_request_treatment 1266 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1267 { 1268 struct regulatory_request *lr = get_last_request(); 1269 1270 if (!reg_num_devs_support_basehint) 1271 return REG_REQ_IGNORE; 1272 1273 if (reg_request_cell_base(lr) && 1274 !regdom_changes(pending_request->alpha2)) 1275 return REG_REQ_ALREADY_SET; 1276 1277 return REG_REQ_OK; 1278 } 1279 1280 /* Device specific check */ 1281 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1282 { 1283 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 1284 } 1285 #else 1286 static int reg_ignore_cell_hint(struct regulatory_request *pending_request) 1287 { 1288 return REG_REQ_IGNORE; 1289 } 1290 1291 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1292 { 1293 return true; 1294 } 1295 #endif 1296 1297 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 1298 { 1299 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 1300 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 1301 return true; 1302 return false; 1303 } 1304 1305 static bool ignore_reg_update(struct wiphy *wiphy, 1306 enum nl80211_reg_initiator initiator) 1307 { 1308 struct regulatory_request *lr = get_last_request(); 1309 1310 if (!lr) { 1311 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1312 "since last_request is not set\n", 1313 reg_initiator_name(initiator)); 1314 return true; 1315 } 1316 1317 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1318 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 1319 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1320 "since the driver uses its own custom " 1321 "regulatory domain\n", 1322 reg_initiator_name(initiator)); 1323 return true; 1324 } 1325 1326 /* 1327 * wiphy->regd will be set once the device has its own 1328 * desired regulatory domain set 1329 */ 1330 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1331 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1332 !is_world_regdom(lr->alpha2)) { 1333 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1334 "since the driver requires its own regulatory " 1335 "domain to be set first\n", 1336 reg_initiator_name(initiator)); 1337 return true; 1338 } 1339 1340 if (reg_request_cell_base(lr)) 1341 return reg_dev_ignore_cell_hint(wiphy); 1342 1343 return false; 1344 } 1345 1346 static bool reg_is_world_roaming(struct wiphy *wiphy) 1347 { 1348 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1349 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1350 struct regulatory_request *lr = get_last_request(); 1351 1352 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1353 return true; 1354 1355 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1356 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1357 return true; 1358 1359 return false; 1360 } 1361 1362 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1363 struct reg_beacon *reg_beacon) 1364 { 1365 struct ieee80211_supported_band *sband; 1366 struct ieee80211_channel *chan; 1367 bool channel_changed = false; 1368 struct ieee80211_channel chan_before; 1369 1370 sband = wiphy->bands[reg_beacon->chan.band]; 1371 chan = &sband->channels[chan_idx]; 1372 1373 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1374 return; 1375 1376 if (chan->beacon_found) 1377 return; 1378 1379 chan->beacon_found = true; 1380 1381 if (!reg_is_world_roaming(wiphy)) 1382 return; 1383 1384 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 1385 return; 1386 1387 chan_before.center_freq = chan->center_freq; 1388 chan_before.flags = chan->flags; 1389 1390 if (chan->flags & IEEE80211_CHAN_NO_IR) { 1391 chan->flags &= ~IEEE80211_CHAN_NO_IR; 1392 channel_changed = true; 1393 } 1394 1395 if (channel_changed) 1396 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1397 } 1398 1399 /* 1400 * Called when a scan on a wiphy finds a beacon on 1401 * new channel 1402 */ 1403 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1404 struct reg_beacon *reg_beacon) 1405 { 1406 unsigned int i; 1407 struct ieee80211_supported_band *sband; 1408 1409 if (!wiphy->bands[reg_beacon->chan.band]) 1410 return; 1411 1412 sband = wiphy->bands[reg_beacon->chan.band]; 1413 1414 for (i = 0; i < sband->n_channels; i++) 1415 handle_reg_beacon(wiphy, i, reg_beacon); 1416 } 1417 1418 /* 1419 * Called upon reg changes or a new wiphy is added 1420 */ 1421 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1422 { 1423 unsigned int i; 1424 struct ieee80211_supported_band *sband; 1425 struct reg_beacon *reg_beacon; 1426 1427 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1428 if (!wiphy->bands[reg_beacon->chan.band]) 1429 continue; 1430 sband = wiphy->bands[reg_beacon->chan.band]; 1431 for (i = 0; i < sband->n_channels; i++) 1432 handle_reg_beacon(wiphy, i, reg_beacon); 1433 } 1434 } 1435 1436 /* Reap the advantages of previously found beacons */ 1437 static void reg_process_beacons(struct wiphy *wiphy) 1438 { 1439 /* 1440 * Means we are just firing up cfg80211, so no beacons would 1441 * have been processed yet. 1442 */ 1443 if (!last_request) 1444 return; 1445 wiphy_update_beacon_reg(wiphy); 1446 } 1447 1448 static bool is_ht40_allowed(struct ieee80211_channel *chan) 1449 { 1450 if (!chan) 1451 return false; 1452 if (chan->flags & IEEE80211_CHAN_DISABLED) 1453 return false; 1454 /* This would happen when regulatory rules disallow HT40 completely */ 1455 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 1456 return false; 1457 return true; 1458 } 1459 1460 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1461 struct ieee80211_channel *channel) 1462 { 1463 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 1464 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1465 unsigned int i; 1466 1467 if (!is_ht40_allowed(channel)) { 1468 channel->flags |= IEEE80211_CHAN_NO_HT40; 1469 return; 1470 } 1471 1472 /* 1473 * We need to ensure the extension channels exist to 1474 * be able to use HT40- or HT40+, this finds them (or not) 1475 */ 1476 for (i = 0; i < sband->n_channels; i++) { 1477 struct ieee80211_channel *c = &sband->channels[i]; 1478 1479 if (c->center_freq == (channel->center_freq - 20)) 1480 channel_before = c; 1481 if (c->center_freq == (channel->center_freq + 20)) 1482 channel_after = c; 1483 } 1484 1485 /* 1486 * Please note that this assumes target bandwidth is 20 MHz, 1487 * if that ever changes we also need to change the below logic 1488 * to include that as well. 1489 */ 1490 if (!is_ht40_allowed(channel_before)) 1491 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1492 else 1493 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1494 1495 if (!is_ht40_allowed(channel_after)) 1496 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1497 else 1498 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1499 } 1500 1501 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1502 struct ieee80211_supported_band *sband) 1503 { 1504 unsigned int i; 1505 1506 if (!sband) 1507 return; 1508 1509 for (i = 0; i < sband->n_channels; i++) 1510 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 1511 } 1512 1513 static void reg_process_ht_flags(struct wiphy *wiphy) 1514 { 1515 enum ieee80211_band band; 1516 1517 if (!wiphy) 1518 return; 1519 1520 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1521 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 1522 } 1523 1524 static void reg_call_notifier(struct wiphy *wiphy, 1525 struct regulatory_request *request) 1526 { 1527 if (wiphy->reg_notifier) 1528 wiphy->reg_notifier(wiphy, request); 1529 } 1530 1531 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 1532 { 1533 struct ieee80211_channel *ch; 1534 struct cfg80211_chan_def chandef; 1535 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1536 bool ret = true; 1537 1538 wdev_lock(wdev); 1539 1540 if (!wdev->netdev || !netif_running(wdev->netdev)) 1541 goto out; 1542 1543 switch (wdev->iftype) { 1544 case NL80211_IFTYPE_AP: 1545 case NL80211_IFTYPE_P2P_GO: 1546 if (!wdev->beacon_interval) 1547 goto out; 1548 1549 ret = cfg80211_reg_can_beacon(wiphy, 1550 &wdev->chandef, wdev->iftype); 1551 break; 1552 case NL80211_IFTYPE_ADHOC: 1553 if (!wdev->ssid_len) 1554 goto out; 1555 1556 ret = cfg80211_reg_can_beacon(wiphy, 1557 &wdev->chandef, wdev->iftype); 1558 break; 1559 case NL80211_IFTYPE_STATION: 1560 case NL80211_IFTYPE_P2P_CLIENT: 1561 if (!wdev->current_bss || 1562 !wdev->current_bss->pub.channel) 1563 goto out; 1564 1565 ch = wdev->current_bss->pub.channel; 1566 if (rdev->ops->get_channel && 1567 !rdev_get_channel(rdev, wdev, &chandef)) 1568 ret = cfg80211_chandef_usable(wiphy, &chandef, 1569 IEEE80211_CHAN_DISABLED); 1570 else 1571 ret = !(ch->flags & IEEE80211_CHAN_DISABLED); 1572 break; 1573 case NL80211_IFTYPE_MONITOR: 1574 case NL80211_IFTYPE_AP_VLAN: 1575 case NL80211_IFTYPE_P2P_DEVICE: 1576 /* no enforcement required */ 1577 break; 1578 default: 1579 /* others not implemented for now */ 1580 WARN_ON(1); 1581 break; 1582 } 1583 1584 out: 1585 wdev_unlock(wdev); 1586 return ret; 1587 } 1588 1589 static void reg_leave_invalid_chans(struct wiphy *wiphy) 1590 { 1591 struct wireless_dev *wdev; 1592 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1593 1594 ASSERT_RTNL(); 1595 1596 list_for_each_entry(wdev, &rdev->wdev_list, list) 1597 if (!reg_wdev_chan_valid(wiphy, wdev)) 1598 cfg80211_leave(rdev, wdev); 1599 } 1600 1601 static void reg_check_chans_work(struct work_struct *work) 1602 { 1603 struct cfg80211_registered_device *rdev; 1604 1605 REG_DBG_PRINT("Verifying active interfaces after reg change\n"); 1606 rtnl_lock(); 1607 1608 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1609 if (!(rdev->wiphy.regulatory_flags & 1610 REGULATORY_IGNORE_STALE_KICKOFF)) 1611 reg_leave_invalid_chans(&rdev->wiphy); 1612 1613 rtnl_unlock(); 1614 } 1615 1616 static void reg_check_channels(void) 1617 { 1618 /* 1619 * Give usermode a chance to do something nicer (move to another 1620 * channel, orderly disconnection), before forcing a disconnection. 1621 */ 1622 mod_delayed_work(system_power_efficient_wq, 1623 ®_check_chans, 1624 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 1625 } 1626 1627 static void wiphy_update_regulatory(struct wiphy *wiphy, 1628 enum nl80211_reg_initiator initiator) 1629 { 1630 enum ieee80211_band band; 1631 struct regulatory_request *lr = get_last_request(); 1632 1633 if (ignore_reg_update(wiphy, initiator)) { 1634 /* 1635 * Regulatory updates set by CORE are ignored for custom 1636 * regulatory cards. Let us notify the changes to the driver, 1637 * as some drivers used this to restore its orig_* reg domain. 1638 */ 1639 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1640 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1641 reg_call_notifier(wiphy, lr); 1642 return; 1643 } 1644 1645 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 1646 1647 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1648 handle_band(wiphy, initiator, wiphy->bands[band]); 1649 1650 reg_process_beacons(wiphy); 1651 reg_process_ht_flags(wiphy); 1652 reg_call_notifier(wiphy, lr); 1653 } 1654 1655 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 1656 { 1657 struct cfg80211_registered_device *rdev; 1658 struct wiphy *wiphy; 1659 1660 ASSERT_RTNL(); 1661 1662 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1663 wiphy = &rdev->wiphy; 1664 wiphy_update_regulatory(wiphy, initiator); 1665 } 1666 1667 reg_check_channels(); 1668 } 1669 1670 static void handle_channel_custom(struct wiphy *wiphy, 1671 struct ieee80211_channel *chan, 1672 const struct ieee80211_regdomain *regd) 1673 { 1674 u32 bw_flags = 0; 1675 const struct ieee80211_reg_rule *reg_rule = NULL; 1676 const struct ieee80211_power_rule *power_rule = NULL; 1677 const struct ieee80211_freq_range *freq_range = NULL; 1678 u32 max_bandwidth_khz; 1679 1680 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq), 1681 regd); 1682 1683 if (IS_ERR(reg_rule)) { 1684 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n", 1685 chan->center_freq); 1686 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1687 chan->flags = chan->orig_flags; 1688 return; 1689 } 1690 1691 chan_reg_rule_print_dbg(regd, chan, reg_rule); 1692 1693 power_rule = ®_rule->power_rule; 1694 freq_range = ®_rule->freq_range; 1695 1696 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1697 /* Check if auto calculation requested */ 1698 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1699 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1700 1701 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1702 bw_flags = IEEE80211_CHAN_NO_HT40; 1703 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1704 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1705 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1706 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1707 1708 chan->dfs_state_entered = jiffies; 1709 chan->dfs_state = NL80211_DFS_USABLE; 1710 1711 chan->beacon_found = false; 1712 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1713 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1714 chan->max_reg_power = chan->max_power = 1715 (int) MBM_TO_DBM(power_rule->max_eirp); 1716 1717 if (chan->flags & IEEE80211_CHAN_RADAR) { 1718 if (reg_rule->dfs_cac_ms) 1719 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1720 else 1721 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1722 } 1723 1724 chan->max_power = chan->max_reg_power; 1725 } 1726 1727 static void handle_band_custom(struct wiphy *wiphy, 1728 struct ieee80211_supported_band *sband, 1729 const struct ieee80211_regdomain *regd) 1730 { 1731 unsigned int i; 1732 1733 if (!sband) 1734 return; 1735 1736 for (i = 0; i < sband->n_channels; i++) 1737 handle_channel_custom(wiphy, &sband->channels[i], regd); 1738 } 1739 1740 /* Used by drivers prior to wiphy registration */ 1741 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1742 const struct ieee80211_regdomain *regd) 1743 { 1744 enum ieee80211_band band; 1745 unsigned int bands_set = 0; 1746 1747 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 1748 "wiphy should have REGULATORY_CUSTOM_REG\n"); 1749 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 1750 1751 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1752 if (!wiphy->bands[band]) 1753 continue; 1754 handle_band_custom(wiphy, wiphy->bands[band], regd); 1755 bands_set++; 1756 } 1757 1758 /* 1759 * no point in calling this if it won't have any effect 1760 * on your device's supported bands. 1761 */ 1762 WARN_ON(!bands_set); 1763 } 1764 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1765 1766 static void reg_set_request_processed(void) 1767 { 1768 bool need_more_processing = false; 1769 struct regulatory_request *lr = get_last_request(); 1770 1771 lr->processed = true; 1772 1773 spin_lock(®_requests_lock); 1774 if (!list_empty(®_requests_list)) 1775 need_more_processing = true; 1776 spin_unlock(®_requests_lock); 1777 1778 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 1779 cancel_delayed_work(®_timeout); 1780 1781 if (need_more_processing) 1782 schedule_work(®_work); 1783 } 1784 1785 /** 1786 * reg_process_hint_core - process core regulatory requests 1787 * @pending_request: a pending core regulatory request 1788 * 1789 * The wireless subsystem can use this function to process 1790 * a regulatory request issued by the regulatory core. 1791 * 1792 * Returns one of the different reg request treatment values. 1793 */ 1794 static enum reg_request_treatment 1795 reg_process_hint_core(struct regulatory_request *core_request) 1796 { 1797 1798 core_request->intersect = false; 1799 core_request->processed = false; 1800 1801 reg_update_last_request(core_request); 1802 1803 return reg_call_crda(core_request); 1804 } 1805 1806 static enum reg_request_treatment 1807 __reg_process_hint_user(struct regulatory_request *user_request) 1808 { 1809 struct regulatory_request *lr = get_last_request(); 1810 1811 if (reg_request_indoor(user_request)) { 1812 reg_is_indoor = true; 1813 return REG_REQ_USER_HINT_HANDLED; 1814 } 1815 1816 if (reg_request_cell_base(user_request)) 1817 return reg_ignore_cell_hint(user_request); 1818 1819 if (reg_request_cell_base(lr)) 1820 return REG_REQ_IGNORE; 1821 1822 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1823 return REG_REQ_INTERSECT; 1824 /* 1825 * If the user knows better the user should set the regdom 1826 * to their country before the IE is picked up 1827 */ 1828 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 1829 lr->intersect) 1830 return REG_REQ_IGNORE; 1831 /* 1832 * Process user requests only after previous user/driver/core 1833 * requests have been processed 1834 */ 1835 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 1836 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1837 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 1838 regdom_changes(lr->alpha2)) 1839 return REG_REQ_IGNORE; 1840 1841 if (!regdom_changes(user_request->alpha2)) 1842 return REG_REQ_ALREADY_SET; 1843 1844 return REG_REQ_OK; 1845 } 1846 1847 /** 1848 * reg_process_hint_user - process user regulatory requests 1849 * @user_request: a pending user regulatory request 1850 * 1851 * The wireless subsystem can use this function to process 1852 * a regulatory request initiated by userspace. 1853 * 1854 * Returns one of the different reg request treatment values. 1855 */ 1856 static enum reg_request_treatment 1857 reg_process_hint_user(struct regulatory_request *user_request) 1858 { 1859 enum reg_request_treatment treatment; 1860 1861 treatment = __reg_process_hint_user(user_request); 1862 if (treatment == REG_REQ_IGNORE || 1863 treatment == REG_REQ_ALREADY_SET || 1864 treatment == REG_REQ_USER_HINT_HANDLED) { 1865 reg_free_request(user_request); 1866 return treatment; 1867 } 1868 1869 user_request->intersect = treatment == REG_REQ_INTERSECT; 1870 user_request->processed = false; 1871 1872 reg_update_last_request(user_request); 1873 1874 user_alpha2[0] = user_request->alpha2[0]; 1875 user_alpha2[1] = user_request->alpha2[1]; 1876 1877 return reg_call_crda(user_request); 1878 } 1879 1880 static enum reg_request_treatment 1881 __reg_process_hint_driver(struct regulatory_request *driver_request) 1882 { 1883 struct regulatory_request *lr = get_last_request(); 1884 1885 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 1886 if (regdom_changes(driver_request->alpha2)) 1887 return REG_REQ_OK; 1888 return REG_REQ_ALREADY_SET; 1889 } 1890 1891 /* 1892 * This would happen if you unplug and plug your card 1893 * back in or if you add a new device for which the previously 1894 * loaded card also agrees on the regulatory domain. 1895 */ 1896 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1897 !regdom_changes(driver_request->alpha2)) 1898 return REG_REQ_ALREADY_SET; 1899 1900 return REG_REQ_INTERSECT; 1901 } 1902 1903 /** 1904 * reg_process_hint_driver - process driver regulatory requests 1905 * @driver_request: a pending driver regulatory request 1906 * 1907 * The wireless subsystem can use this function to process 1908 * a regulatory request issued by an 802.11 driver. 1909 * 1910 * Returns one of the different reg request treatment values. 1911 */ 1912 static enum reg_request_treatment 1913 reg_process_hint_driver(struct wiphy *wiphy, 1914 struct regulatory_request *driver_request) 1915 { 1916 const struct ieee80211_regdomain *regd, *tmp; 1917 enum reg_request_treatment treatment; 1918 1919 treatment = __reg_process_hint_driver(driver_request); 1920 1921 switch (treatment) { 1922 case REG_REQ_OK: 1923 break; 1924 case REG_REQ_IGNORE: 1925 case REG_REQ_USER_HINT_HANDLED: 1926 reg_free_request(driver_request); 1927 return treatment; 1928 case REG_REQ_INTERSECT: 1929 /* fall through */ 1930 case REG_REQ_ALREADY_SET: 1931 regd = reg_copy_regd(get_cfg80211_regdom()); 1932 if (IS_ERR(regd)) { 1933 reg_free_request(driver_request); 1934 return REG_REQ_IGNORE; 1935 } 1936 1937 tmp = get_wiphy_regdom(wiphy); 1938 rcu_assign_pointer(wiphy->regd, regd); 1939 rcu_free_regdom(tmp); 1940 } 1941 1942 1943 driver_request->intersect = treatment == REG_REQ_INTERSECT; 1944 driver_request->processed = false; 1945 1946 reg_update_last_request(driver_request); 1947 1948 /* 1949 * Since CRDA will not be called in this case as we already 1950 * have applied the requested regulatory domain before we just 1951 * inform userspace we have processed the request 1952 */ 1953 if (treatment == REG_REQ_ALREADY_SET) { 1954 nl80211_send_reg_change_event(driver_request); 1955 reg_set_request_processed(); 1956 return treatment; 1957 } 1958 1959 return reg_call_crda(driver_request); 1960 } 1961 1962 static enum reg_request_treatment 1963 __reg_process_hint_country_ie(struct wiphy *wiphy, 1964 struct regulatory_request *country_ie_request) 1965 { 1966 struct wiphy *last_wiphy = NULL; 1967 struct regulatory_request *lr = get_last_request(); 1968 1969 if (reg_request_cell_base(lr)) { 1970 /* Trust a Cell base station over the AP's country IE */ 1971 if (regdom_changes(country_ie_request->alpha2)) 1972 return REG_REQ_IGNORE; 1973 return REG_REQ_ALREADY_SET; 1974 } else { 1975 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 1976 return REG_REQ_IGNORE; 1977 } 1978 1979 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 1980 return -EINVAL; 1981 1982 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 1983 return REG_REQ_OK; 1984 1985 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1986 1987 if (last_wiphy != wiphy) { 1988 /* 1989 * Two cards with two APs claiming different 1990 * Country IE alpha2s. We could 1991 * intersect them, but that seems unlikely 1992 * to be correct. Reject second one for now. 1993 */ 1994 if (regdom_changes(country_ie_request->alpha2)) 1995 return REG_REQ_IGNORE; 1996 return REG_REQ_ALREADY_SET; 1997 } 1998 1999 if (regdom_changes(country_ie_request->alpha2)) 2000 return REG_REQ_OK; 2001 return REG_REQ_ALREADY_SET; 2002 } 2003 2004 /** 2005 * reg_process_hint_country_ie - process regulatory requests from country IEs 2006 * @country_ie_request: a regulatory request from a country IE 2007 * 2008 * The wireless subsystem can use this function to process 2009 * a regulatory request issued by a country Information Element. 2010 * 2011 * Returns one of the different reg request treatment values. 2012 */ 2013 static enum reg_request_treatment 2014 reg_process_hint_country_ie(struct wiphy *wiphy, 2015 struct regulatory_request *country_ie_request) 2016 { 2017 enum reg_request_treatment treatment; 2018 2019 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2020 2021 switch (treatment) { 2022 case REG_REQ_OK: 2023 break; 2024 case REG_REQ_IGNORE: 2025 case REG_REQ_USER_HINT_HANDLED: 2026 /* fall through */ 2027 case REG_REQ_ALREADY_SET: 2028 reg_free_request(country_ie_request); 2029 return treatment; 2030 case REG_REQ_INTERSECT: 2031 reg_free_request(country_ie_request); 2032 /* 2033 * This doesn't happen yet, not sure we 2034 * ever want to support it for this case. 2035 */ 2036 WARN_ONCE(1, "Unexpected intersection for country IEs"); 2037 return REG_REQ_IGNORE; 2038 } 2039 2040 country_ie_request->intersect = false; 2041 country_ie_request->processed = false; 2042 2043 reg_update_last_request(country_ie_request); 2044 2045 return reg_call_crda(country_ie_request); 2046 } 2047 2048 /* This processes *all* regulatory hints */ 2049 static void reg_process_hint(struct regulatory_request *reg_request) 2050 { 2051 struct wiphy *wiphy = NULL; 2052 enum reg_request_treatment treatment; 2053 2054 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2055 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2056 2057 switch (reg_request->initiator) { 2058 case NL80211_REGDOM_SET_BY_CORE: 2059 reg_process_hint_core(reg_request); 2060 return; 2061 case NL80211_REGDOM_SET_BY_USER: 2062 treatment = reg_process_hint_user(reg_request); 2063 if (treatment == REG_REQ_IGNORE || 2064 treatment == REG_REQ_ALREADY_SET || 2065 treatment == REG_REQ_USER_HINT_HANDLED) 2066 return; 2067 queue_delayed_work(system_power_efficient_wq, 2068 ®_timeout, msecs_to_jiffies(3142)); 2069 return; 2070 case NL80211_REGDOM_SET_BY_DRIVER: 2071 if (!wiphy) 2072 goto out_free; 2073 treatment = reg_process_hint_driver(wiphy, reg_request); 2074 break; 2075 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2076 if (!wiphy) 2077 goto out_free; 2078 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2079 break; 2080 default: 2081 WARN(1, "invalid initiator %d\n", reg_request->initiator); 2082 goto out_free; 2083 } 2084 2085 /* This is required so that the orig_* parameters are saved */ 2086 if (treatment == REG_REQ_ALREADY_SET && wiphy && 2087 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2088 wiphy_update_regulatory(wiphy, reg_request->initiator); 2089 reg_check_channels(); 2090 } 2091 2092 return; 2093 2094 out_free: 2095 reg_free_request(reg_request); 2096 } 2097 2098 /* 2099 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 2100 * Regulatory hints come on a first come first serve basis and we 2101 * must process each one atomically. 2102 */ 2103 static void reg_process_pending_hints(void) 2104 { 2105 struct regulatory_request *reg_request, *lr; 2106 2107 lr = get_last_request(); 2108 2109 /* When last_request->processed becomes true this will be rescheduled */ 2110 if (lr && !lr->processed) { 2111 reg_process_hint(lr); 2112 return; 2113 } 2114 2115 spin_lock(®_requests_lock); 2116 2117 if (list_empty(®_requests_list)) { 2118 spin_unlock(®_requests_lock); 2119 return; 2120 } 2121 2122 reg_request = list_first_entry(®_requests_list, 2123 struct regulatory_request, 2124 list); 2125 list_del_init(®_request->list); 2126 2127 spin_unlock(®_requests_lock); 2128 2129 reg_process_hint(reg_request); 2130 } 2131 2132 /* Processes beacon hints -- this has nothing to do with country IEs */ 2133 static void reg_process_pending_beacon_hints(void) 2134 { 2135 struct cfg80211_registered_device *rdev; 2136 struct reg_beacon *pending_beacon, *tmp; 2137 2138 /* This goes through the _pending_ beacon list */ 2139 spin_lock_bh(®_pending_beacons_lock); 2140 2141 list_for_each_entry_safe(pending_beacon, tmp, 2142 ®_pending_beacons, list) { 2143 list_del_init(&pending_beacon->list); 2144 2145 /* Applies the beacon hint to current wiphys */ 2146 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2147 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 2148 2149 /* Remembers the beacon hint for new wiphys or reg changes */ 2150 list_add_tail(&pending_beacon->list, ®_beacon_list); 2151 } 2152 2153 spin_unlock_bh(®_pending_beacons_lock); 2154 } 2155 2156 static void reg_todo(struct work_struct *work) 2157 { 2158 rtnl_lock(); 2159 reg_process_pending_hints(); 2160 reg_process_pending_beacon_hints(); 2161 rtnl_unlock(); 2162 } 2163 2164 static void queue_regulatory_request(struct regulatory_request *request) 2165 { 2166 request->alpha2[0] = toupper(request->alpha2[0]); 2167 request->alpha2[1] = toupper(request->alpha2[1]); 2168 2169 spin_lock(®_requests_lock); 2170 list_add_tail(&request->list, ®_requests_list); 2171 spin_unlock(®_requests_lock); 2172 2173 schedule_work(®_work); 2174 } 2175 2176 /* 2177 * Core regulatory hint -- happens during cfg80211_init() 2178 * and when we restore regulatory settings. 2179 */ 2180 static int regulatory_hint_core(const char *alpha2) 2181 { 2182 struct regulatory_request *request; 2183 2184 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2185 if (!request) 2186 return -ENOMEM; 2187 2188 request->alpha2[0] = alpha2[0]; 2189 request->alpha2[1] = alpha2[1]; 2190 request->initiator = NL80211_REGDOM_SET_BY_CORE; 2191 2192 queue_regulatory_request(request); 2193 2194 return 0; 2195 } 2196 2197 /* User hints */ 2198 int regulatory_hint_user(const char *alpha2, 2199 enum nl80211_user_reg_hint_type user_reg_hint_type) 2200 { 2201 struct regulatory_request *request; 2202 2203 if (WARN_ON(!alpha2)) 2204 return -EINVAL; 2205 2206 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2207 if (!request) 2208 return -ENOMEM; 2209 2210 request->wiphy_idx = WIPHY_IDX_INVALID; 2211 request->alpha2[0] = alpha2[0]; 2212 request->alpha2[1] = alpha2[1]; 2213 request->initiator = NL80211_REGDOM_SET_BY_USER; 2214 request->user_reg_hint_type = user_reg_hint_type; 2215 2216 queue_regulatory_request(request); 2217 2218 return 0; 2219 } 2220 2221 int regulatory_hint_indoor_user(void) 2222 { 2223 struct regulatory_request *request; 2224 2225 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2226 if (!request) 2227 return -ENOMEM; 2228 2229 request->wiphy_idx = WIPHY_IDX_INVALID; 2230 request->initiator = NL80211_REGDOM_SET_BY_USER; 2231 request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR; 2232 queue_regulatory_request(request); 2233 2234 return 0; 2235 } 2236 2237 /* Driver hints */ 2238 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 2239 { 2240 struct regulatory_request *request; 2241 2242 if (WARN_ON(!alpha2 || !wiphy)) 2243 return -EINVAL; 2244 2245 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 2246 2247 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2248 if (!request) 2249 return -ENOMEM; 2250 2251 request->wiphy_idx = get_wiphy_idx(wiphy); 2252 2253 request->alpha2[0] = alpha2[0]; 2254 request->alpha2[1] = alpha2[1]; 2255 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 2256 2257 queue_regulatory_request(request); 2258 2259 return 0; 2260 } 2261 EXPORT_SYMBOL(regulatory_hint); 2262 2263 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band, 2264 const u8 *country_ie, u8 country_ie_len) 2265 { 2266 char alpha2[2]; 2267 enum environment_cap env = ENVIRON_ANY; 2268 struct regulatory_request *request = NULL, *lr; 2269 2270 /* IE len must be evenly divisible by 2 */ 2271 if (country_ie_len & 0x01) 2272 return; 2273 2274 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 2275 return; 2276 2277 request = kzalloc(sizeof(*request), GFP_KERNEL); 2278 if (!request) 2279 return; 2280 2281 alpha2[0] = country_ie[0]; 2282 alpha2[1] = country_ie[1]; 2283 2284 if (country_ie[2] == 'I') 2285 env = ENVIRON_INDOOR; 2286 else if (country_ie[2] == 'O') 2287 env = ENVIRON_OUTDOOR; 2288 2289 rcu_read_lock(); 2290 lr = get_last_request(); 2291 2292 if (unlikely(!lr)) 2293 goto out; 2294 2295 /* 2296 * We will run this only upon a successful connection on cfg80211. 2297 * We leave conflict resolution to the workqueue, where can hold 2298 * the RTNL. 2299 */ 2300 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2301 lr->wiphy_idx != WIPHY_IDX_INVALID) 2302 goto out; 2303 2304 request->wiphy_idx = get_wiphy_idx(wiphy); 2305 request->alpha2[0] = alpha2[0]; 2306 request->alpha2[1] = alpha2[1]; 2307 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 2308 request->country_ie_env = env; 2309 2310 queue_regulatory_request(request); 2311 request = NULL; 2312 out: 2313 kfree(request); 2314 rcu_read_unlock(); 2315 } 2316 2317 static void restore_alpha2(char *alpha2, bool reset_user) 2318 { 2319 /* indicates there is no alpha2 to consider for restoration */ 2320 alpha2[0] = '9'; 2321 alpha2[1] = '7'; 2322 2323 /* The user setting has precedence over the module parameter */ 2324 if (is_user_regdom_saved()) { 2325 /* Unless we're asked to ignore it and reset it */ 2326 if (reset_user) { 2327 REG_DBG_PRINT("Restoring regulatory settings including user preference\n"); 2328 user_alpha2[0] = '9'; 2329 user_alpha2[1] = '7'; 2330 2331 /* 2332 * If we're ignoring user settings, we still need to 2333 * check the module parameter to ensure we put things 2334 * back as they were for a full restore. 2335 */ 2336 if (!is_world_regdom(ieee80211_regdom)) { 2337 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 2338 ieee80211_regdom[0], ieee80211_regdom[1]); 2339 alpha2[0] = ieee80211_regdom[0]; 2340 alpha2[1] = ieee80211_regdom[1]; 2341 } 2342 } else { 2343 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n", 2344 user_alpha2[0], user_alpha2[1]); 2345 alpha2[0] = user_alpha2[0]; 2346 alpha2[1] = user_alpha2[1]; 2347 } 2348 } else if (!is_world_regdom(ieee80211_regdom)) { 2349 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 2350 ieee80211_regdom[0], ieee80211_regdom[1]); 2351 alpha2[0] = ieee80211_regdom[0]; 2352 alpha2[1] = ieee80211_regdom[1]; 2353 } else 2354 REG_DBG_PRINT("Restoring regulatory settings\n"); 2355 } 2356 2357 static void restore_custom_reg_settings(struct wiphy *wiphy) 2358 { 2359 struct ieee80211_supported_band *sband; 2360 enum ieee80211_band band; 2361 struct ieee80211_channel *chan; 2362 int i; 2363 2364 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 2365 sband = wiphy->bands[band]; 2366 if (!sband) 2367 continue; 2368 for (i = 0; i < sband->n_channels; i++) { 2369 chan = &sband->channels[i]; 2370 chan->flags = chan->orig_flags; 2371 chan->max_antenna_gain = chan->orig_mag; 2372 chan->max_power = chan->orig_mpwr; 2373 chan->beacon_found = false; 2374 } 2375 } 2376 } 2377 2378 /* 2379 * Restoring regulatory settings involves ingoring any 2380 * possibly stale country IE information and user regulatory 2381 * settings if so desired, this includes any beacon hints 2382 * learned as we could have traveled outside to another country 2383 * after disconnection. To restore regulatory settings we do 2384 * exactly what we did at bootup: 2385 * 2386 * - send a core regulatory hint 2387 * - send a user regulatory hint if applicable 2388 * 2389 * Device drivers that send a regulatory hint for a specific country 2390 * keep their own regulatory domain on wiphy->regd so that does does 2391 * not need to be remembered. 2392 */ 2393 static void restore_regulatory_settings(bool reset_user) 2394 { 2395 char alpha2[2]; 2396 char world_alpha2[2]; 2397 struct reg_beacon *reg_beacon, *btmp; 2398 struct regulatory_request *reg_request, *tmp; 2399 LIST_HEAD(tmp_reg_req_list); 2400 struct cfg80211_registered_device *rdev; 2401 2402 ASSERT_RTNL(); 2403 2404 reg_is_indoor = false; 2405 2406 reset_regdomains(true, &world_regdom); 2407 restore_alpha2(alpha2, reset_user); 2408 2409 /* 2410 * If there's any pending requests we simply 2411 * stash them to a temporary pending queue and 2412 * add then after we've restored regulatory 2413 * settings. 2414 */ 2415 spin_lock(®_requests_lock); 2416 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 2417 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER) 2418 continue; 2419 list_move_tail(®_request->list, &tmp_reg_req_list); 2420 } 2421 spin_unlock(®_requests_lock); 2422 2423 /* Clear beacon hints */ 2424 spin_lock_bh(®_pending_beacons_lock); 2425 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 2426 list_del(®_beacon->list); 2427 kfree(reg_beacon); 2428 } 2429 spin_unlock_bh(®_pending_beacons_lock); 2430 2431 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 2432 list_del(®_beacon->list); 2433 kfree(reg_beacon); 2434 } 2435 2436 /* First restore to the basic regulatory settings */ 2437 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 2438 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 2439 2440 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2441 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 2442 restore_custom_reg_settings(&rdev->wiphy); 2443 } 2444 2445 regulatory_hint_core(world_alpha2); 2446 2447 /* 2448 * This restores the ieee80211_regdom module parameter 2449 * preference or the last user requested regulatory 2450 * settings, user regulatory settings takes precedence. 2451 */ 2452 if (is_an_alpha2(alpha2)) 2453 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER); 2454 2455 spin_lock(®_requests_lock); 2456 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 2457 spin_unlock(®_requests_lock); 2458 2459 REG_DBG_PRINT("Kicking the queue\n"); 2460 2461 schedule_work(®_work); 2462 } 2463 2464 void regulatory_hint_disconnect(void) 2465 { 2466 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n"); 2467 restore_regulatory_settings(false); 2468 } 2469 2470 static bool freq_is_chan_12_13_14(u16 freq) 2471 { 2472 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || 2473 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || 2474 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) 2475 return true; 2476 return false; 2477 } 2478 2479 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 2480 { 2481 struct reg_beacon *pending_beacon; 2482 2483 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 2484 if (beacon_chan->center_freq == 2485 pending_beacon->chan.center_freq) 2486 return true; 2487 return false; 2488 } 2489 2490 int regulatory_hint_found_beacon(struct wiphy *wiphy, 2491 struct ieee80211_channel *beacon_chan, 2492 gfp_t gfp) 2493 { 2494 struct reg_beacon *reg_beacon; 2495 bool processing; 2496 2497 if (beacon_chan->beacon_found || 2498 beacon_chan->flags & IEEE80211_CHAN_RADAR || 2499 (beacon_chan->band == IEEE80211_BAND_2GHZ && 2500 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 2501 return 0; 2502 2503 spin_lock_bh(®_pending_beacons_lock); 2504 processing = pending_reg_beacon(beacon_chan); 2505 spin_unlock_bh(®_pending_beacons_lock); 2506 2507 if (processing) 2508 return 0; 2509 2510 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 2511 if (!reg_beacon) 2512 return -ENOMEM; 2513 2514 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 2515 beacon_chan->center_freq, 2516 ieee80211_frequency_to_channel(beacon_chan->center_freq), 2517 wiphy_name(wiphy)); 2518 2519 memcpy(®_beacon->chan, beacon_chan, 2520 sizeof(struct ieee80211_channel)); 2521 2522 /* 2523 * Since we can be called from BH or and non-BH context 2524 * we must use spin_lock_bh() 2525 */ 2526 spin_lock_bh(®_pending_beacons_lock); 2527 list_add_tail(®_beacon->list, ®_pending_beacons); 2528 spin_unlock_bh(®_pending_beacons_lock); 2529 2530 schedule_work(®_work); 2531 2532 return 0; 2533 } 2534 2535 static void print_rd_rules(const struct ieee80211_regdomain *rd) 2536 { 2537 unsigned int i; 2538 const struct ieee80211_reg_rule *reg_rule = NULL; 2539 const struct ieee80211_freq_range *freq_range = NULL; 2540 const struct ieee80211_power_rule *power_rule = NULL; 2541 char bw[32], cac_time[32]; 2542 2543 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 2544 2545 for (i = 0; i < rd->n_reg_rules; i++) { 2546 reg_rule = &rd->reg_rules[i]; 2547 freq_range = ®_rule->freq_range; 2548 power_rule = ®_rule->power_rule; 2549 2550 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 2551 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 2552 freq_range->max_bandwidth_khz, 2553 reg_get_max_bandwidth(rd, reg_rule)); 2554 else 2555 snprintf(bw, sizeof(bw), "%d KHz", 2556 freq_range->max_bandwidth_khz); 2557 2558 if (reg_rule->flags & NL80211_RRF_DFS) 2559 scnprintf(cac_time, sizeof(cac_time), "%u s", 2560 reg_rule->dfs_cac_ms/1000); 2561 else 2562 scnprintf(cac_time, sizeof(cac_time), "N/A"); 2563 2564 2565 /* 2566 * There may not be documentation for max antenna gain 2567 * in certain regions 2568 */ 2569 if (power_rule->max_antenna_gain) 2570 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 2571 freq_range->start_freq_khz, 2572 freq_range->end_freq_khz, 2573 bw, 2574 power_rule->max_antenna_gain, 2575 power_rule->max_eirp, 2576 cac_time); 2577 else 2578 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 2579 freq_range->start_freq_khz, 2580 freq_range->end_freq_khz, 2581 bw, 2582 power_rule->max_eirp, 2583 cac_time); 2584 } 2585 } 2586 2587 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 2588 { 2589 switch (dfs_region) { 2590 case NL80211_DFS_UNSET: 2591 case NL80211_DFS_FCC: 2592 case NL80211_DFS_ETSI: 2593 case NL80211_DFS_JP: 2594 return true; 2595 default: 2596 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n", 2597 dfs_region); 2598 return false; 2599 } 2600 } 2601 2602 static void print_regdomain(const struct ieee80211_regdomain *rd) 2603 { 2604 struct regulatory_request *lr = get_last_request(); 2605 2606 if (is_intersected_alpha2(rd->alpha2)) { 2607 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2608 struct cfg80211_registered_device *rdev; 2609 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 2610 if (rdev) { 2611 pr_info("Current regulatory domain updated by AP to: %c%c\n", 2612 rdev->country_ie_alpha2[0], 2613 rdev->country_ie_alpha2[1]); 2614 } else 2615 pr_info("Current regulatory domain intersected:\n"); 2616 } else 2617 pr_info("Current regulatory domain intersected:\n"); 2618 } else if (is_world_regdom(rd->alpha2)) { 2619 pr_info("World regulatory domain updated:\n"); 2620 } else { 2621 if (is_unknown_alpha2(rd->alpha2)) 2622 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); 2623 else { 2624 if (reg_request_cell_base(lr)) 2625 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n", 2626 rd->alpha2[0], rd->alpha2[1]); 2627 else 2628 pr_info("Regulatory domain changed to country: %c%c\n", 2629 rd->alpha2[0], rd->alpha2[1]); 2630 } 2631 } 2632 2633 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 2634 print_rd_rules(rd); 2635 } 2636 2637 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 2638 { 2639 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 2640 print_rd_rules(rd); 2641 } 2642 2643 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 2644 { 2645 if (!is_world_regdom(rd->alpha2)) 2646 return -EINVAL; 2647 update_world_regdomain(rd); 2648 return 0; 2649 } 2650 2651 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 2652 struct regulatory_request *user_request) 2653 { 2654 const struct ieee80211_regdomain *intersected_rd = NULL; 2655 2656 if (!regdom_changes(rd->alpha2)) 2657 return -EALREADY; 2658 2659 if (!is_valid_rd(rd)) { 2660 pr_err("Invalid regulatory domain detected:\n"); 2661 print_regdomain_info(rd); 2662 return -EINVAL; 2663 } 2664 2665 if (!user_request->intersect) { 2666 reset_regdomains(false, rd); 2667 return 0; 2668 } 2669 2670 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2671 if (!intersected_rd) 2672 return -EINVAL; 2673 2674 kfree(rd); 2675 rd = NULL; 2676 reset_regdomains(false, intersected_rd); 2677 2678 return 0; 2679 } 2680 2681 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 2682 struct regulatory_request *driver_request) 2683 { 2684 const struct ieee80211_regdomain *regd; 2685 const struct ieee80211_regdomain *intersected_rd = NULL; 2686 const struct ieee80211_regdomain *tmp; 2687 struct wiphy *request_wiphy; 2688 2689 if (is_world_regdom(rd->alpha2)) 2690 return -EINVAL; 2691 2692 if (!regdom_changes(rd->alpha2)) 2693 return -EALREADY; 2694 2695 if (!is_valid_rd(rd)) { 2696 pr_err("Invalid regulatory domain detected:\n"); 2697 print_regdomain_info(rd); 2698 return -EINVAL; 2699 } 2700 2701 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 2702 if (!request_wiphy) { 2703 queue_delayed_work(system_power_efficient_wq, 2704 ®_timeout, 0); 2705 return -ENODEV; 2706 } 2707 2708 if (!driver_request->intersect) { 2709 if (request_wiphy->regd) 2710 return -EALREADY; 2711 2712 regd = reg_copy_regd(rd); 2713 if (IS_ERR(regd)) 2714 return PTR_ERR(regd); 2715 2716 rcu_assign_pointer(request_wiphy->regd, regd); 2717 reset_regdomains(false, rd); 2718 return 0; 2719 } 2720 2721 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2722 if (!intersected_rd) 2723 return -EINVAL; 2724 2725 /* 2726 * We can trash what CRDA provided now. 2727 * However if a driver requested this specific regulatory 2728 * domain we keep it for its private use 2729 */ 2730 tmp = get_wiphy_regdom(request_wiphy); 2731 rcu_assign_pointer(request_wiphy->regd, rd); 2732 rcu_free_regdom(tmp); 2733 2734 rd = NULL; 2735 2736 reset_regdomains(false, intersected_rd); 2737 2738 return 0; 2739 } 2740 2741 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 2742 struct regulatory_request *country_ie_request) 2743 { 2744 struct wiphy *request_wiphy; 2745 2746 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 2747 !is_unknown_alpha2(rd->alpha2)) 2748 return -EINVAL; 2749 2750 /* 2751 * Lets only bother proceeding on the same alpha2 if the current 2752 * rd is non static (it means CRDA was present and was used last) 2753 * and the pending request came in from a country IE 2754 */ 2755 2756 if (!is_valid_rd(rd)) { 2757 pr_err("Invalid regulatory domain detected:\n"); 2758 print_regdomain_info(rd); 2759 return -EINVAL; 2760 } 2761 2762 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 2763 if (!request_wiphy) { 2764 queue_delayed_work(system_power_efficient_wq, 2765 ®_timeout, 0); 2766 return -ENODEV; 2767 } 2768 2769 if (country_ie_request->intersect) 2770 return -EINVAL; 2771 2772 reset_regdomains(false, rd); 2773 return 0; 2774 } 2775 2776 /* 2777 * Use this call to set the current regulatory domain. Conflicts with 2778 * multiple drivers can be ironed out later. Caller must've already 2779 * kmalloc'd the rd structure. 2780 */ 2781 int set_regdom(const struct ieee80211_regdomain *rd) 2782 { 2783 struct regulatory_request *lr; 2784 bool user_reset = false; 2785 int r; 2786 2787 if (!reg_is_valid_request(rd->alpha2)) { 2788 kfree(rd); 2789 return -EINVAL; 2790 } 2791 2792 lr = get_last_request(); 2793 2794 /* Note that this doesn't update the wiphys, this is done below */ 2795 switch (lr->initiator) { 2796 case NL80211_REGDOM_SET_BY_CORE: 2797 r = reg_set_rd_core(rd); 2798 break; 2799 case NL80211_REGDOM_SET_BY_USER: 2800 r = reg_set_rd_user(rd, lr); 2801 user_reset = true; 2802 break; 2803 case NL80211_REGDOM_SET_BY_DRIVER: 2804 r = reg_set_rd_driver(rd, lr); 2805 break; 2806 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2807 r = reg_set_rd_country_ie(rd, lr); 2808 break; 2809 default: 2810 WARN(1, "invalid initiator %d\n", lr->initiator); 2811 return -EINVAL; 2812 } 2813 2814 if (r) { 2815 switch (r) { 2816 case -EALREADY: 2817 reg_set_request_processed(); 2818 break; 2819 default: 2820 /* Back to world regulatory in case of errors */ 2821 restore_regulatory_settings(user_reset); 2822 } 2823 2824 kfree(rd); 2825 return r; 2826 } 2827 2828 /* This would make this whole thing pointless */ 2829 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 2830 return -EINVAL; 2831 2832 /* update all wiphys now with the new established regulatory domain */ 2833 update_all_wiphy_regulatory(lr->initiator); 2834 2835 print_regdomain(get_cfg80211_regdom()); 2836 2837 nl80211_send_reg_change_event(lr); 2838 2839 reg_set_request_processed(); 2840 2841 return 0; 2842 } 2843 2844 void wiphy_regulatory_register(struct wiphy *wiphy) 2845 { 2846 struct regulatory_request *lr; 2847 2848 if (!reg_dev_ignore_cell_hint(wiphy)) 2849 reg_num_devs_support_basehint++; 2850 2851 lr = get_last_request(); 2852 wiphy_update_regulatory(wiphy, lr->initiator); 2853 } 2854 2855 void wiphy_regulatory_deregister(struct wiphy *wiphy) 2856 { 2857 struct wiphy *request_wiphy = NULL; 2858 struct regulatory_request *lr; 2859 2860 lr = get_last_request(); 2861 2862 if (!reg_dev_ignore_cell_hint(wiphy)) 2863 reg_num_devs_support_basehint--; 2864 2865 rcu_free_regdom(get_wiphy_regdom(wiphy)); 2866 RCU_INIT_POINTER(wiphy->regd, NULL); 2867 2868 if (lr) 2869 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2870 2871 if (!request_wiphy || request_wiphy != wiphy) 2872 return; 2873 2874 lr->wiphy_idx = WIPHY_IDX_INVALID; 2875 lr->country_ie_env = ENVIRON_ANY; 2876 } 2877 2878 static void reg_timeout_work(struct work_struct *work) 2879 { 2880 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 2881 rtnl_lock(); 2882 restore_regulatory_settings(true); 2883 rtnl_unlock(); 2884 } 2885 2886 /* 2887 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for 2888 * UNII band definitions 2889 */ 2890 int cfg80211_get_unii(int freq) 2891 { 2892 /* UNII-1 */ 2893 if (freq >= 5150 && freq <= 5250) 2894 return 0; 2895 2896 /* UNII-2A */ 2897 if (freq > 5250 && freq <= 5350) 2898 return 1; 2899 2900 /* UNII-2B */ 2901 if (freq > 5350 && freq <= 5470) 2902 return 2; 2903 2904 /* UNII-2C */ 2905 if (freq > 5470 && freq <= 5725) 2906 return 3; 2907 2908 /* UNII-3 */ 2909 if (freq > 5725 && freq <= 5825) 2910 return 4; 2911 2912 return -EINVAL; 2913 } 2914 2915 bool regulatory_indoor_allowed(void) 2916 { 2917 return reg_is_indoor; 2918 } 2919 2920 int __init regulatory_init(void) 2921 { 2922 int err = 0; 2923 2924 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 2925 if (IS_ERR(reg_pdev)) 2926 return PTR_ERR(reg_pdev); 2927 2928 spin_lock_init(®_requests_lock); 2929 spin_lock_init(®_pending_beacons_lock); 2930 2931 reg_regdb_size_check(); 2932 2933 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 2934 2935 user_alpha2[0] = '9'; 2936 user_alpha2[1] = '7'; 2937 2938 /* We always try to get an update for the static regdomain */ 2939 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 2940 if (err) { 2941 if (err == -ENOMEM) 2942 return err; 2943 /* 2944 * N.B. kobject_uevent_env() can fail mainly for when we're out 2945 * memory which is handled and propagated appropriately above 2946 * but it can also fail during a netlink_broadcast() or during 2947 * early boot for call_usermodehelper(). For now treat these 2948 * errors as non-fatal. 2949 */ 2950 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 2951 } 2952 2953 /* 2954 * Finally, if the user set the module parameter treat it 2955 * as a user hint. 2956 */ 2957 if (!is_world_regdom(ieee80211_regdom)) 2958 regulatory_hint_user(ieee80211_regdom, 2959 NL80211_USER_REG_HINT_USER); 2960 2961 return 0; 2962 } 2963 2964 void regulatory_exit(void) 2965 { 2966 struct regulatory_request *reg_request, *tmp; 2967 struct reg_beacon *reg_beacon, *btmp; 2968 2969 cancel_work_sync(®_work); 2970 cancel_delayed_work_sync(®_timeout); 2971 cancel_delayed_work_sync(®_check_chans); 2972 2973 /* Lock to suppress warnings */ 2974 rtnl_lock(); 2975 reset_regdomains(true, NULL); 2976 rtnl_unlock(); 2977 2978 dev_set_uevent_suppress(®_pdev->dev, true); 2979 2980 platform_device_unregister(reg_pdev); 2981 2982 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 2983 list_del(®_beacon->list); 2984 kfree(reg_beacon); 2985 } 2986 2987 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 2988 list_del(®_beacon->list); 2989 kfree(reg_beacon); 2990 } 2991 2992 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 2993 list_del(®_request->list); 2994 kfree(reg_request); 2995 } 2996 } 2997