xref: /openbmc/linux/net/wireless/reg.c (revision 270384cc)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 
22 /**
23  * DOC: Wireless regulatory infrastructure
24  *
25  * The usual implementation is for a driver to read a device EEPROM to
26  * determine which regulatory domain it should be operating under, then
27  * looking up the allowable channels in a driver-local table and finally
28  * registering those channels in the wiphy structure.
29  *
30  * Another set of compliance enforcement is for drivers to use their
31  * own compliance limits which can be stored on the EEPROM. The host
32  * driver or firmware may ensure these are used.
33  *
34  * In addition to all this we provide an extra layer of regulatory
35  * conformance. For drivers which do not have any regulatory
36  * information CRDA provides the complete regulatory solution.
37  * For others it provides a community effort on further restrictions
38  * to enhance compliance.
39  *
40  * Note: When number of rules --> infinity we will not be able to
41  * index on alpha2 any more, instead we'll probably have to
42  * rely on some SHA1 checksum of the regdomain for example.
43  *
44  */
45 
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62 
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...)			\
65 	printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69 
70 /*
71  * Grace period we give before making sure all current interfaces reside on
72  * channels allowed by the current regulatory domain.
73  */
74 #define REG_ENFORCE_GRACE_MS 60000
75 
76 /**
77  * enum reg_request_treatment - regulatory request treatment
78  *
79  * @REG_REQ_OK: continue processing the regulatory request
80  * @REG_REQ_IGNORE: ignore the regulatory request
81  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82  *	be intersected with the current one.
83  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84  *	regulatory settings, and no further processing is required.
85  * @REG_REQ_USER_HINT_HANDLED: a non alpha2  user hint was handled and no
86  *	further processing is required, i.e., not need to update last_request
87  *	etc. This should be used for user hints that do not provide an alpha2
88  *	but some other type of regulatory hint, i.e., indoor operation.
89  */
90 enum reg_request_treatment {
91 	REG_REQ_OK,
92 	REG_REQ_IGNORE,
93 	REG_REQ_INTERSECT,
94 	REG_REQ_ALREADY_SET,
95 	REG_REQ_USER_HINT_HANDLED,
96 };
97 
98 static struct regulatory_request core_request_world = {
99 	.initiator = NL80211_REGDOM_SET_BY_CORE,
100 	.alpha2[0] = '0',
101 	.alpha2[1] = '0',
102 	.intersect = false,
103 	.processed = true,
104 	.country_ie_env = ENVIRON_ANY,
105 };
106 
107 /*
108  * Receipt of information from last regulatory request,
109  * protected by RTNL (and can be accessed with RCU protection)
110  */
111 static struct regulatory_request __rcu *last_request =
112 	(void __rcu *)&core_request_world;
113 
114 /* To trigger userspace events */
115 static struct platform_device *reg_pdev;
116 
117 /*
118  * Central wireless core regulatory domains, we only need two,
119  * the current one and a world regulatory domain in case we have no
120  * information to give us an alpha2.
121  * (protected by RTNL, can be read under RCU)
122  */
123 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
124 
125 /*
126  * Number of devices that registered to the core
127  * that support cellular base station regulatory hints
128  * (protected by RTNL)
129  */
130 static int reg_num_devs_support_basehint;
131 
132 /*
133  * State variable indicating if the platform on which the devices
134  * are attached is operating in an indoor environment. The state variable
135  * is relevant for all registered devices.
136  * (protected by RTNL)
137  */
138 static bool reg_is_indoor;
139 
140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142 	return rtnl_dereference(cfg80211_regdomain);
143 }
144 
145 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
146 {
147 	return rtnl_dereference(wiphy->regd);
148 }
149 
150 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
151 {
152 	switch (dfs_region) {
153 	case NL80211_DFS_UNSET:
154 		return "unset";
155 	case NL80211_DFS_FCC:
156 		return "FCC";
157 	case NL80211_DFS_ETSI:
158 		return "ETSI";
159 	case NL80211_DFS_JP:
160 		return "JP";
161 	}
162 	return "Unknown";
163 }
164 
165 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
166 {
167 	const struct ieee80211_regdomain *regd = NULL;
168 	const struct ieee80211_regdomain *wiphy_regd = NULL;
169 
170 	regd = get_cfg80211_regdom();
171 	if (!wiphy)
172 		goto out;
173 
174 	wiphy_regd = get_wiphy_regdom(wiphy);
175 	if (!wiphy_regd)
176 		goto out;
177 
178 	if (wiphy_regd->dfs_region == regd->dfs_region)
179 		goto out;
180 
181 	REG_DBG_PRINT("%s: device specific dfs_region "
182 		      "(%s) disagrees with cfg80211's "
183 		      "central dfs_region (%s)\n",
184 		      dev_name(&wiphy->dev),
185 		      reg_dfs_region_str(wiphy_regd->dfs_region),
186 		      reg_dfs_region_str(regd->dfs_region));
187 
188 out:
189 	return regd->dfs_region;
190 }
191 
192 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
193 {
194 	if (!r)
195 		return;
196 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
197 }
198 
199 static struct regulatory_request *get_last_request(void)
200 {
201 	return rcu_dereference_rtnl(last_request);
202 }
203 
204 /* Used to queue up regulatory hints */
205 static LIST_HEAD(reg_requests_list);
206 static spinlock_t reg_requests_lock;
207 
208 /* Used to queue up beacon hints for review */
209 static LIST_HEAD(reg_pending_beacons);
210 static spinlock_t reg_pending_beacons_lock;
211 
212 /* Used to keep track of processed beacon hints */
213 static LIST_HEAD(reg_beacon_list);
214 
215 struct reg_beacon {
216 	struct list_head list;
217 	struct ieee80211_channel chan;
218 };
219 
220 static void reg_check_chans_work(struct work_struct *work);
221 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
222 
223 static void reg_todo(struct work_struct *work);
224 static DECLARE_WORK(reg_work, reg_todo);
225 
226 static void reg_timeout_work(struct work_struct *work);
227 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
228 
229 /* We keep a static world regulatory domain in case of the absence of CRDA */
230 static const struct ieee80211_regdomain world_regdom = {
231 	.n_reg_rules = 6,
232 	.alpha2 =  "00",
233 	.reg_rules = {
234 		/* IEEE 802.11b/g, channels 1..11 */
235 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
236 		/* IEEE 802.11b/g, channels 12..13. */
237 		REG_RULE(2467-10, 2472+10, 40, 6, 20,
238 			NL80211_RRF_NO_IR),
239 		/* IEEE 802.11 channel 14 - Only JP enables
240 		 * this and for 802.11b only */
241 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
242 			NL80211_RRF_NO_IR |
243 			NL80211_RRF_NO_OFDM),
244 		/* IEEE 802.11a, channel 36..48 */
245 		REG_RULE(5180-10, 5240+10, 160, 6, 20,
246                         NL80211_RRF_NO_IR),
247 
248 		/* IEEE 802.11a, channel 52..64 - DFS required */
249 		REG_RULE(5260-10, 5320+10, 160, 6, 20,
250 			NL80211_RRF_NO_IR |
251 			NL80211_RRF_DFS),
252 
253 		/* IEEE 802.11a, channel 100..144 - DFS required */
254 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
255 			NL80211_RRF_NO_IR |
256 			NL80211_RRF_DFS),
257 
258 		/* IEEE 802.11a, channel 149..165 */
259 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
260 			NL80211_RRF_NO_IR),
261 
262 		/* IEEE 802.11ad (60gHz), channels 1..3 */
263 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
264 	}
265 };
266 
267 /* protected by RTNL */
268 static const struct ieee80211_regdomain *cfg80211_world_regdom =
269 	&world_regdom;
270 
271 static char *ieee80211_regdom = "00";
272 static char user_alpha2[2];
273 
274 module_param(ieee80211_regdom, charp, 0444);
275 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
276 
277 static void reg_free_request(struct regulatory_request *request)
278 {
279 	if (request != get_last_request())
280 		kfree(request);
281 }
282 
283 static void reg_free_last_request(void)
284 {
285 	struct regulatory_request *lr = get_last_request();
286 
287 	if (lr != &core_request_world && lr)
288 		kfree_rcu(lr, rcu_head);
289 }
290 
291 static void reg_update_last_request(struct regulatory_request *request)
292 {
293 	struct regulatory_request *lr;
294 
295 	lr = get_last_request();
296 	if (lr == request)
297 		return;
298 
299 	reg_free_last_request();
300 	rcu_assign_pointer(last_request, request);
301 }
302 
303 static void reset_regdomains(bool full_reset,
304 			     const struct ieee80211_regdomain *new_regdom)
305 {
306 	const struct ieee80211_regdomain *r;
307 
308 	ASSERT_RTNL();
309 
310 	r = get_cfg80211_regdom();
311 
312 	/* avoid freeing static information or freeing something twice */
313 	if (r == cfg80211_world_regdom)
314 		r = NULL;
315 	if (cfg80211_world_regdom == &world_regdom)
316 		cfg80211_world_regdom = NULL;
317 	if (r == &world_regdom)
318 		r = NULL;
319 
320 	rcu_free_regdom(r);
321 	rcu_free_regdom(cfg80211_world_regdom);
322 
323 	cfg80211_world_regdom = &world_regdom;
324 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
325 
326 	if (!full_reset)
327 		return;
328 
329 	reg_update_last_request(&core_request_world);
330 }
331 
332 /*
333  * Dynamic world regulatory domain requested by the wireless
334  * core upon initialization
335  */
336 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
337 {
338 	struct regulatory_request *lr;
339 
340 	lr = get_last_request();
341 
342 	WARN_ON(!lr);
343 
344 	reset_regdomains(false, rd);
345 
346 	cfg80211_world_regdom = rd;
347 }
348 
349 bool is_world_regdom(const char *alpha2)
350 {
351 	if (!alpha2)
352 		return false;
353 	return alpha2[0] == '0' && alpha2[1] == '0';
354 }
355 
356 static bool is_alpha2_set(const char *alpha2)
357 {
358 	if (!alpha2)
359 		return false;
360 	return alpha2[0] && alpha2[1];
361 }
362 
363 static bool is_unknown_alpha2(const char *alpha2)
364 {
365 	if (!alpha2)
366 		return false;
367 	/*
368 	 * Special case where regulatory domain was built by driver
369 	 * but a specific alpha2 cannot be determined
370 	 */
371 	return alpha2[0] == '9' && alpha2[1] == '9';
372 }
373 
374 static bool is_intersected_alpha2(const char *alpha2)
375 {
376 	if (!alpha2)
377 		return false;
378 	/*
379 	 * Special case where regulatory domain is the
380 	 * result of an intersection between two regulatory domain
381 	 * structures
382 	 */
383 	return alpha2[0] == '9' && alpha2[1] == '8';
384 }
385 
386 static bool is_an_alpha2(const char *alpha2)
387 {
388 	if (!alpha2)
389 		return false;
390 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
391 }
392 
393 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
394 {
395 	if (!alpha2_x || !alpha2_y)
396 		return false;
397 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
398 }
399 
400 static bool regdom_changes(const char *alpha2)
401 {
402 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
403 
404 	if (!r)
405 		return true;
406 	return !alpha2_equal(r->alpha2, alpha2);
407 }
408 
409 /*
410  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
411  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
412  * has ever been issued.
413  */
414 static bool is_user_regdom_saved(void)
415 {
416 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
417 		return false;
418 
419 	/* This would indicate a mistake on the design */
420 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
421 		 "Unexpected user alpha2: %c%c\n",
422 		 user_alpha2[0], user_alpha2[1]))
423 		return false;
424 
425 	return true;
426 }
427 
428 static const struct ieee80211_regdomain *
429 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
430 {
431 	struct ieee80211_regdomain *regd;
432 	int size_of_regd;
433 	unsigned int i;
434 
435 	size_of_regd =
436 		sizeof(struct ieee80211_regdomain) +
437 		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
438 
439 	regd = kzalloc(size_of_regd, GFP_KERNEL);
440 	if (!regd)
441 		return ERR_PTR(-ENOMEM);
442 
443 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
444 
445 	for (i = 0; i < src_regd->n_reg_rules; i++)
446 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
447 		       sizeof(struct ieee80211_reg_rule));
448 
449 	return regd;
450 }
451 
452 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
453 struct reg_regdb_search_request {
454 	char alpha2[2];
455 	struct list_head list;
456 };
457 
458 static LIST_HEAD(reg_regdb_search_list);
459 static DEFINE_MUTEX(reg_regdb_search_mutex);
460 
461 static void reg_regdb_search(struct work_struct *work)
462 {
463 	struct reg_regdb_search_request *request;
464 	const struct ieee80211_regdomain *curdom, *regdom = NULL;
465 	int i;
466 
467 	rtnl_lock();
468 
469 	mutex_lock(&reg_regdb_search_mutex);
470 	while (!list_empty(&reg_regdb_search_list)) {
471 		request = list_first_entry(&reg_regdb_search_list,
472 					   struct reg_regdb_search_request,
473 					   list);
474 		list_del(&request->list);
475 
476 		for (i = 0; i < reg_regdb_size; i++) {
477 			curdom = reg_regdb[i];
478 
479 			if (alpha2_equal(request->alpha2, curdom->alpha2)) {
480 				regdom = reg_copy_regd(curdom);
481 				break;
482 			}
483 		}
484 
485 		kfree(request);
486 	}
487 	mutex_unlock(&reg_regdb_search_mutex);
488 
489 	if (!IS_ERR_OR_NULL(regdom))
490 		set_regdom(regdom);
491 
492 	rtnl_unlock();
493 }
494 
495 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
496 
497 static void reg_regdb_query(const char *alpha2)
498 {
499 	struct reg_regdb_search_request *request;
500 
501 	if (!alpha2)
502 		return;
503 
504 	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
505 	if (!request)
506 		return;
507 
508 	memcpy(request->alpha2, alpha2, 2);
509 
510 	mutex_lock(&reg_regdb_search_mutex);
511 	list_add_tail(&request->list, &reg_regdb_search_list);
512 	mutex_unlock(&reg_regdb_search_mutex);
513 
514 	schedule_work(&reg_regdb_work);
515 }
516 
517 /* Feel free to add any other sanity checks here */
518 static void reg_regdb_size_check(void)
519 {
520 	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
521 	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
522 }
523 #else
524 static inline void reg_regdb_size_check(void) {}
525 static inline void reg_regdb_query(const char *alpha2) {}
526 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
527 
528 /*
529  * This lets us keep regulatory code which is updated on a regulatory
530  * basis in userspace.
531  */
532 static int call_crda(const char *alpha2)
533 {
534 	char country[12];
535 	char *env[] = { country, NULL };
536 
537 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
538 		 alpha2[0], alpha2[1]);
539 
540 	if (!is_world_regdom((char *) alpha2))
541 		pr_info("Calling CRDA for country: %c%c\n",
542 			alpha2[0], alpha2[1]);
543 	else
544 		pr_info("Calling CRDA to update world regulatory domain\n");
545 
546 	/* query internal regulatory database (if it exists) */
547 	reg_regdb_query(alpha2);
548 
549 	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
550 }
551 
552 static enum reg_request_treatment
553 reg_call_crda(struct regulatory_request *request)
554 {
555 	if (call_crda(request->alpha2))
556 		return REG_REQ_IGNORE;
557 	return REG_REQ_OK;
558 }
559 
560 bool reg_is_valid_request(const char *alpha2)
561 {
562 	struct regulatory_request *lr = get_last_request();
563 
564 	if (!lr || lr->processed)
565 		return false;
566 
567 	return alpha2_equal(lr->alpha2, alpha2);
568 }
569 
570 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
571 {
572 	struct regulatory_request *lr = get_last_request();
573 
574 	/*
575 	 * Follow the driver's regulatory domain, if present, unless a country
576 	 * IE has been processed or a user wants to help complaince further
577 	 */
578 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
579 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
580 	    wiphy->regd)
581 		return get_wiphy_regdom(wiphy);
582 
583 	return get_cfg80211_regdom();
584 }
585 
586 static unsigned int
587 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
588 				 const struct ieee80211_reg_rule *rule)
589 {
590 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
591 	const struct ieee80211_freq_range *freq_range_tmp;
592 	const struct ieee80211_reg_rule *tmp;
593 	u32 start_freq, end_freq, idx, no;
594 
595 	for (idx = 0; idx < rd->n_reg_rules; idx++)
596 		if (rule == &rd->reg_rules[idx])
597 			break;
598 
599 	if (idx == rd->n_reg_rules)
600 		return 0;
601 
602 	/* get start_freq */
603 	no = idx;
604 
605 	while (no) {
606 		tmp = &rd->reg_rules[--no];
607 		freq_range_tmp = &tmp->freq_range;
608 
609 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
610 			break;
611 
612 		freq_range = freq_range_tmp;
613 	}
614 
615 	start_freq = freq_range->start_freq_khz;
616 
617 	/* get end_freq */
618 	freq_range = &rule->freq_range;
619 	no = idx;
620 
621 	while (no < rd->n_reg_rules - 1) {
622 		tmp = &rd->reg_rules[++no];
623 		freq_range_tmp = &tmp->freq_range;
624 
625 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
626 			break;
627 
628 		freq_range = freq_range_tmp;
629 	}
630 
631 	end_freq = freq_range->end_freq_khz;
632 
633 	return end_freq - start_freq;
634 }
635 
636 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
637 				   const struct ieee80211_reg_rule *rule)
638 {
639 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
640 
641 	if (rule->flags & NL80211_RRF_NO_160MHZ)
642 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
643 	if (rule->flags & NL80211_RRF_NO_80MHZ)
644 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
645 
646 	/*
647 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
648 	 * are not allowed.
649 	 */
650 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
651 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
652 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
653 
654 	return bw;
655 }
656 
657 /* Sanity check on a regulatory rule */
658 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
659 {
660 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
661 	u32 freq_diff;
662 
663 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
664 		return false;
665 
666 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
667 		return false;
668 
669 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
670 
671 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
672 	    freq_range->max_bandwidth_khz > freq_diff)
673 		return false;
674 
675 	return true;
676 }
677 
678 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
679 {
680 	const struct ieee80211_reg_rule *reg_rule = NULL;
681 	unsigned int i;
682 
683 	if (!rd->n_reg_rules)
684 		return false;
685 
686 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
687 		return false;
688 
689 	for (i = 0; i < rd->n_reg_rules; i++) {
690 		reg_rule = &rd->reg_rules[i];
691 		if (!is_valid_reg_rule(reg_rule))
692 			return false;
693 	}
694 
695 	return true;
696 }
697 
698 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
699 			    u32 center_freq_khz, u32 bw_khz)
700 {
701 	u32 start_freq_khz, end_freq_khz;
702 
703 	start_freq_khz = center_freq_khz - (bw_khz/2);
704 	end_freq_khz = center_freq_khz + (bw_khz/2);
705 
706 	if (start_freq_khz >= freq_range->start_freq_khz &&
707 	    end_freq_khz <= freq_range->end_freq_khz)
708 		return true;
709 
710 	return false;
711 }
712 
713 /**
714  * freq_in_rule_band - tells us if a frequency is in a frequency band
715  * @freq_range: frequency rule we want to query
716  * @freq_khz: frequency we are inquiring about
717  *
718  * This lets us know if a specific frequency rule is or is not relevant to
719  * a specific frequency's band. Bands are device specific and artificial
720  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
721  * however it is safe for now to assume that a frequency rule should not be
722  * part of a frequency's band if the start freq or end freq are off by more
723  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
724  * 60 GHz band.
725  * This resolution can be lowered and should be considered as we add
726  * regulatory rule support for other "bands".
727  **/
728 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
729 			      u32 freq_khz)
730 {
731 #define ONE_GHZ_IN_KHZ	1000000
732 	/*
733 	 * From 802.11ad: directional multi-gigabit (DMG):
734 	 * Pertaining to operation in a frequency band containing a channel
735 	 * with the Channel starting frequency above 45 GHz.
736 	 */
737 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
738 			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
739 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
740 		return true;
741 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
742 		return true;
743 	return false;
744 #undef ONE_GHZ_IN_KHZ
745 }
746 
747 /*
748  * Later on we can perhaps use the more restrictive DFS
749  * region but we don't have information for that yet so
750  * for now simply disallow conflicts.
751  */
752 static enum nl80211_dfs_regions
753 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
754 			 const enum nl80211_dfs_regions dfs_region2)
755 {
756 	if (dfs_region1 != dfs_region2)
757 		return NL80211_DFS_UNSET;
758 	return dfs_region1;
759 }
760 
761 /*
762  * Helper for regdom_intersect(), this does the real
763  * mathematical intersection fun
764  */
765 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
766 			       const struct ieee80211_regdomain *rd2,
767 			       const struct ieee80211_reg_rule *rule1,
768 			       const struct ieee80211_reg_rule *rule2,
769 			       struct ieee80211_reg_rule *intersected_rule)
770 {
771 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
772 	struct ieee80211_freq_range *freq_range;
773 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
774 	struct ieee80211_power_rule *power_rule;
775 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
776 
777 	freq_range1 = &rule1->freq_range;
778 	freq_range2 = &rule2->freq_range;
779 	freq_range = &intersected_rule->freq_range;
780 
781 	power_rule1 = &rule1->power_rule;
782 	power_rule2 = &rule2->power_rule;
783 	power_rule = &intersected_rule->power_rule;
784 
785 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
786 					 freq_range2->start_freq_khz);
787 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
788 				       freq_range2->end_freq_khz);
789 
790 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
791 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
792 
793 	if (rule1->flags & NL80211_RRF_AUTO_BW)
794 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
795 	if (rule2->flags & NL80211_RRF_AUTO_BW)
796 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
797 
798 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
799 
800 	intersected_rule->flags = rule1->flags | rule2->flags;
801 
802 	/*
803 	 * In case NL80211_RRF_AUTO_BW requested for both rules
804 	 * set AUTO_BW in intersected rule also. Next we will
805 	 * calculate BW correctly in handle_channel function.
806 	 * In other case remove AUTO_BW flag while we calculate
807 	 * maximum bandwidth correctly and auto calculation is
808 	 * not required.
809 	 */
810 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
811 	    (rule2->flags & NL80211_RRF_AUTO_BW))
812 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
813 	else
814 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
815 
816 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
817 	if (freq_range->max_bandwidth_khz > freq_diff)
818 		freq_range->max_bandwidth_khz = freq_diff;
819 
820 	power_rule->max_eirp = min(power_rule1->max_eirp,
821 		power_rule2->max_eirp);
822 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
823 		power_rule2->max_antenna_gain);
824 
825 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
826 					   rule2->dfs_cac_ms);
827 
828 	if (!is_valid_reg_rule(intersected_rule))
829 		return -EINVAL;
830 
831 	return 0;
832 }
833 
834 /* check whether old rule contains new rule */
835 static bool rule_contains(struct ieee80211_reg_rule *r1,
836 			  struct ieee80211_reg_rule *r2)
837 {
838 	/* for simplicity, currently consider only same flags */
839 	if (r1->flags != r2->flags)
840 		return false;
841 
842 	/* verify r1 is more restrictive */
843 	if ((r1->power_rule.max_antenna_gain >
844 	     r2->power_rule.max_antenna_gain) ||
845 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
846 		return false;
847 
848 	/* make sure r2's range is contained within r1 */
849 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
850 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
851 		return false;
852 
853 	/* and finally verify that r1.max_bw >= r2.max_bw */
854 	if (r1->freq_range.max_bandwidth_khz <
855 	    r2->freq_range.max_bandwidth_khz)
856 		return false;
857 
858 	return true;
859 }
860 
861 /* add or extend current rules. do nothing if rule is already contained */
862 static void add_rule(struct ieee80211_reg_rule *rule,
863 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
864 {
865 	struct ieee80211_reg_rule *tmp_rule;
866 	int i;
867 
868 	for (i = 0; i < *n_rules; i++) {
869 		tmp_rule = &reg_rules[i];
870 		/* rule is already contained - do nothing */
871 		if (rule_contains(tmp_rule, rule))
872 			return;
873 
874 		/* extend rule if possible */
875 		if (rule_contains(rule, tmp_rule)) {
876 			memcpy(tmp_rule, rule, sizeof(*rule));
877 			return;
878 		}
879 	}
880 
881 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
882 	(*n_rules)++;
883 }
884 
885 /**
886  * regdom_intersect - do the intersection between two regulatory domains
887  * @rd1: first regulatory domain
888  * @rd2: second regulatory domain
889  *
890  * Use this function to get the intersection between two regulatory domains.
891  * Once completed we will mark the alpha2 for the rd as intersected, "98",
892  * as no one single alpha2 can represent this regulatory domain.
893  *
894  * Returns a pointer to the regulatory domain structure which will hold the
895  * resulting intersection of rules between rd1 and rd2. We will
896  * kzalloc() this structure for you.
897  */
898 static struct ieee80211_regdomain *
899 regdom_intersect(const struct ieee80211_regdomain *rd1,
900 		 const struct ieee80211_regdomain *rd2)
901 {
902 	int r, size_of_regd;
903 	unsigned int x, y;
904 	unsigned int num_rules = 0;
905 	const struct ieee80211_reg_rule *rule1, *rule2;
906 	struct ieee80211_reg_rule intersected_rule;
907 	struct ieee80211_regdomain *rd;
908 
909 	if (!rd1 || !rd2)
910 		return NULL;
911 
912 	/*
913 	 * First we get a count of the rules we'll need, then we actually
914 	 * build them. This is to so we can malloc() and free() a
915 	 * regdomain once. The reason we use reg_rules_intersect() here
916 	 * is it will return -EINVAL if the rule computed makes no sense.
917 	 * All rules that do check out OK are valid.
918 	 */
919 
920 	for (x = 0; x < rd1->n_reg_rules; x++) {
921 		rule1 = &rd1->reg_rules[x];
922 		for (y = 0; y < rd2->n_reg_rules; y++) {
923 			rule2 = &rd2->reg_rules[y];
924 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
925 						 &intersected_rule))
926 				num_rules++;
927 		}
928 	}
929 
930 	if (!num_rules)
931 		return NULL;
932 
933 	size_of_regd = sizeof(struct ieee80211_regdomain) +
934 		       num_rules * sizeof(struct ieee80211_reg_rule);
935 
936 	rd = kzalloc(size_of_regd, GFP_KERNEL);
937 	if (!rd)
938 		return NULL;
939 
940 	for (x = 0; x < rd1->n_reg_rules; x++) {
941 		rule1 = &rd1->reg_rules[x];
942 		for (y = 0; y < rd2->n_reg_rules; y++) {
943 			rule2 = &rd2->reg_rules[y];
944 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
945 						&intersected_rule);
946 			/*
947 			 * No need to memset here the intersected rule here as
948 			 * we're not using the stack anymore
949 			 */
950 			if (r)
951 				continue;
952 
953 			add_rule(&intersected_rule, rd->reg_rules,
954 				 &rd->n_reg_rules);
955 		}
956 	}
957 
958 	rd->alpha2[0] = '9';
959 	rd->alpha2[1] = '8';
960 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
961 						  rd2->dfs_region);
962 
963 	return rd;
964 }
965 
966 /*
967  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
968  * want to just have the channel structure use these
969  */
970 static u32 map_regdom_flags(u32 rd_flags)
971 {
972 	u32 channel_flags = 0;
973 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
974 		channel_flags |= IEEE80211_CHAN_NO_IR;
975 	if (rd_flags & NL80211_RRF_DFS)
976 		channel_flags |= IEEE80211_CHAN_RADAR;
977 	if (rd_flags & NL80211_RRF_NO_OFDM)
978 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
979 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
980 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
981 	if (rd_flags & NL80211_RRF_GO_CONCURRENT)
982 		channel_flags |= IEEE80211_CHAN_GO_CONCURRENT;
983 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
984 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
985 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
986 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
987 	if (rd_flags & NL80211_RRF_NO_80MHZ)
988 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
989 	if (rd_flags & NL80211_RRF_NO_160MHZ)
990 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
991 	return channel_flags;
992 }
993 
994 static const struct ieee80211_reg_rule *
995 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
996 		   const struct ieee80211_regdomain *regd)
997 {
998 	int i;
999 	bool band_rule_found = false;
1000 	bool bw_fits = false;
1001 
1002 	if (!regd)
1003 		return ERR_PTR(-EINVAL);
1004 
1005 	for (i = 0; i < regd->n_reg_rules; i++) {
1006 		const struct ieee80211_reg_rule *rr;
1007 		const struct ieee80211_freq_range *fr = NULL;
1008 
1009 		rr = &regd->reg_rules[i];
1010 		fr = &rr->freq_range;
1011 
1012 		/*
1013 		 * We only need to know if one frequency rule was
1014 		 * was in center_freq's band, that's enough, so lets
1015 		 * not overwrite it once found
1016 		 */
1017 		if (!band_rule_found)
1018 			band_rule_found = freq_in_rule_band(fr, center_freq);
1019 
1020 		bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
1021 
1022 		if (band_rule_found && bw_fits)
1023 			return rr;
1024 	}
1025 
1026 	if (!band_rule_found)
1027 		return ERR_PTR(-ERANGE);
1028 
1029 	return ERR_PTR(-EINVAL);
1030 }
1031 
1032 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1033 					       u32 center_freq)
1034 {
1035 	const struct ieee80211_regdomain *regd;
1036 
1037 	regd = reg_get_regdomain(wiphy);
1038 
1039 	return freq_reg_info_regd(wiphy, center_freq, regd);
1040 }
1041 EXPORT_SYMBOL(freq_reg_info);
1042 
1043 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1044 {
1045 	switch (initiator) {
1046 	case NL80211_REGDOM_SET_BY_CORE:
1047 		return "core";
1048 	case NL80211_REGDOM_SET_BY_USER:
1049 		return "user";
1050 	case NL80211_REGDOM_SET_BY_DRIVER:
1051 		return "driver";
1052 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1053 		return "country IE";
1054 	default:
1055 		WARN_ON(1);
1056 		return "bug";
1057 	}
1058 }
1059 EXPORT_SYMBOL(reg_initiator_name);
1060 
1061 #ifdef CONFIG_CFG80211_REG_DEBUG
1062 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1063 				    struct ieee80211_channel *chan,
1064 				    const struct ieee80211_reg_rule *reg_rule)
1065 {
1066 	const struct ieee80211_power_rule *power_rule;
1067 	const struct ieee80211_freq_range *freq_range;
1068 	char max_antenna_gain[32], bw[32];
1069 
1070 	power_rule = &reg_rule->power_rule;
1071 	freq_range = &reg_rule->freq_range;
1072 
1073 	if (!power_rule->max_antenna_gain)
1074 		snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1075 	else
1076 		snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1077 			 power_rule->max_antenna_gain);
1078 
1079 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1080 		snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1081 			 freq_range->max_bandwidth_khz,
1082 			 reg_get_max_bandwidth(regd, reg_rule));
1083 	else
1084 		snprintf(bw, sizeof(bw), "%d KHz",
1085 			 freq_range->max_bandwidth_khz);
1086 
1087 	REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1088 		      chan->center_freq);
1089 
1090 	REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1091 		      freq_range->start_freq_khz, freq_range->end_freq_khz,
1092 		      bw, max_antenna_gain,
1093 		      power_rule->max_eirp);
1094 }
1095 #else
1096 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1097 				    struct ieee80211_channel *chan,
1098 				    const struct ieee80211_reg_rule *reg_rule)
1099 {
1100 	return;
1101 }
1102 #endif
1103 
1104 /*
1105  * Note that right now we assume the desired channel bandwidth
1106  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1107  * per channel, the primary and the extension channel).
1108  */
1109 static void handle_channel(struct wiphy *wiphy,
1110 			   enum nl80211_reg_initiator initiator,
1111 			   struct ieee80211_channel *chan)
1112 {
1113 	u32 flags, bw_flags = 0;
1114 	const struct ieee80211_reg_rule *reg_rule = NULL;
1115 	const struct ieee80211_power_rule *power_rule = NULL;
1116 	const struct ieee80211_freq_range *freq_range = NULL;
1117 	struct wiphy *request_wiphy = NULL;
1118 	struct regulatory_request *lr = get_last_request();
1119 	const struct ieee80211_regdomain *regd;
1120 	u32 max_bandwidth_khz;
1121 
1122 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1123 
1124 	flags = chan->orig_flags;
1125 
1126 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1127 	if (IS_ERR(reg_rule)) {
1128 		/*
1129 		 * We will disable all channels that do not match our
1130 		 * received regulatory rule unless the hint is coming
1131 		 * from a Country IE and the Country IE had no information
1132 		 * about a band. The IEEE 802.11 spec allows for an AP
1133 		 * to send only a subset of the regulatory rules allowed,
1134 		 * so an AP in the US that only supports 2.4 GHz may only send
1135 		 * a country IE with information for the 2.4 GHz band
1136 		 * while 5 GHz is still supported.
1137 		 */
1138 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139 		    PTR_ERR(reg_rule) == -ERANGE)
1140 			return;
1141 
1142 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1143 		    request_wiphy && request_wiphy == wiphy &&
1144 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1145 			REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1146 				      chan->center_freq);
1147 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1148 			chan->flags = chan->orig_flags;
1149 		} else {
1150 			REG_DBG_PRINT("Disabling freq %d MHz\n",
1151 				      chan->center_freq);
1152 			chan->flags |= IEEE80211_CHAN_DISABLED;
1153 		}
1154 		return;
1155 	}
1156 
1157 	regd = reg_get_regdomain(wiphy);
1158 	chan_reg_rule_print_dbg(regd, chan, reg_rule);
1159 
1160 	power_rule = &reg_rule->power_rule;
1161 	freq_range = &reg_rule->freq_range;
1162 
1163 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1164 	/* Check if auto calculation requested */
1165 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1166 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1167 
1168 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1169 		bw_flags = IEEE80211_CHAN_NO_HT40;
1170 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1171 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1172 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1173 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1174 
1175 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1176 	    request_wiphy && request_wiphy == wiphy &&
1177 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1178 		/*
1179 		 * This guarantees the driver's requested regulatory domain
1180 		 * will always be used as a base for further regulatory
1181 		 * settings
1182 		 */
1183 		chan->flags = chan->orig_flags =
1184 			map_regdom_flags(reg_rule->flags) | bw_flags;
1185 		chan->max_antenna_gain = chan->orig_mag =
1186 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1187 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1188 			(int) MBM_TO_DBM(power_rule->max_eirp);
1189 
1190 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1191 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1192 			if (reg_rule->dfs_cac_ms)
1193 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1194 		}
1195 
1196 		return;
1197 	}
1198 
1199 	chan->dfs_state = NL80211_DFS_USABLE;
1200 	chan->dfs_state_entered = jiffies;
1201 
1202 	chan->beacon_found = false;
1203 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1204 	chan->max_antenna_gain =
1205 		min_t(int, chan->orig_mag,
1206 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1207 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1208 
1209 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1210 		if (reg_rule->dfs_cac_ms)
1211 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1212 		else
1213 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1214 	}
1215 
1216 	if (chan->orig_mpwr) {
1217 		/*
1218 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1219 		 * will always follow the passed country IE power settings.
1220 		 */
1221 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1222 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1223 			chan->max_power = chan->max_reg_power;
1224 		else
1225 			chan->max_power = min(chan->orig_mpwr,
1226 					      chan->max_reg_power);
1227 	} else
1228 		chan->max_power = chan->max_reg_power;
1229 }
1230 
1231 static void handle_band(struct wiphy *wiphy,
1232 			enum nl80211_reg_initiator initiator,
1233 			struct ieee80211_supported_band *sband)
1234 {
1235 	unsigned int i;
1236 
1237 	if (!sband)
1238 		return;
1239 
1240 	for (i = 0; i < sband->n_channels; i++)
1241 		handle_channel(wiphy, initiator, &sband->channels[i]);
1242 }
1243 
1244 static bool reg_request_cell_base(struct regulatory_request *request)
1245 {
1246 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1247 		return false;
1248 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1249 }
1250 
1251 static bool reg_request_indoor(struct regulatory_request *request)
1252 {
1253 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1254 		return false;
1255 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR;
1256 }
1257 
1258 bool reg_last_request_cell_base(void)
1259 {
1260 	return reg_request_cell_base(get_last_request());
1261 }
1262 
1263 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1264 /* Core specific check */
1265 static enum reg_request_treatment
1266 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1267 {
1268 	struct regulatory_request *lr = get_last_request();
1269 
1270 	if (!reg_num_devs_support_basehint)
1271 		return REG_REQ_IGNORE;
1272 
1273 	if (reg_request_cell_base(lr) &&
1274 	    !regdom_changes(pending_request->alpha2))
1275 		return REG_REQ_ALREADY_SET;
1276 
1277 	return REG_REQ_OK;
1278 }
1279 
1280 /* Device specific check */
1281 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1282 {
1283 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1284 }
1285 #else
1286 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1287 {
1288 	return REG_REQ_IGNORE;
1289 }
1290 
1291 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1292 {
1293 	return true;
1294 }
1295 #endif
1296 
1297 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1298 {
1299 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1300 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1301 		return true;
1302 	return false;
1303 }
1304 
1305 static bool ignore_reg_update(struct wiphy *wiphy,
1306 			      enum nl80211_reg_initiator initiator)
1307 {
1308 	struct regulatory_request *lr = get_last_request();
1309 
1310 	if (!lr) {
1311 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1312 			      "since last_request is not set\n",
1313 			      reg_initiator_name(initiator));
1314 		return true;
1315 	}
1316 
1317 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1318 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1319 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1320 			      "since the driver uses its own custom "
1321 			      "regulatory domain\n",
1322 			      reg_initiator_name(initiator));
1323 		return true;
1324 	}
1325 
1326 	/*
1327 	 * wiphy->regd will be set once the device has its own
1328 	 * desired regulatory domain set
1329 	 */
1330 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1331 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1332 	    !is_world_regdom(lr->alpha2)) {
1333 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1334 			      "since the driver requires its own regulatory "
1335 			      "domain to be set first\n",
1336 			      reg_initiator_name(initiator));
1337 		return true;
1338 	}
1339 
1340 	if (reg_request_cell_base(lr))
1341 		return reg_dev_ignore_cell_hint(wiphy);
1342 
1343 	return false;
1344 }
1345 
1346 static bool reg_is_world_roaming(struct wiphy *wiphy)
1347 {
1348 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1349 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1350 	struct regulatory_request *lr = get_last_request();
1351 
1352 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1353 		return true;
1354 
1355 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1356 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1357 		return true;
1358 
1359 	return false;
1360 }
1361 
1362 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1363 			      struct reg_beacon *reg_beacon)
1364 {
1365 	struct ieee80211_supported_band *sband;
1366 	struct ieee80211_channel *chan;
1367 	bool channel_changed = false;
1368 	struct ieee80211_channel chan_before;
1369 
1370 	sband = wiphy->bands[reg_beacon->chan.band];
1371 	chan = &sband->channels[chan_idx];
1372 
1373 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1374 		return;
1375 
1376 	if (chan->beacon_found)
1377 		return;
1378 
1379 	chan->beacon_found = true;
1380 
1381 	if (!reg_is_world_roaming(wiphy))
1382 		return;
1383 
1384 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1385 		return;
1386 
1387 	chan_before.center_freq = chan->center_freq;
1388 	chan_before.flags = chan->flags;
1389 
1390 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1391 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1392 		channel_changed = true;
1393 	}
1394 
1395 	if (channel_changed)
1396 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1397 }
1398 
1399 /*
1400  * Called when a scan on a wiphy finds a beacon on
1401  * new channel
1402  */
1403 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1404 				    struct reg_beacon *reg_beacon)
1405 {
1406 	unsigned int i;
1407 	struct ieee80211_supported_band *sband;
1408 
1409 	if (!wiphy->bands[reg_beacon->chan.band])
1410 		return;
1411 
1412 	sband = wiphy->bands[reg_beacon->chan.band];
1413 
1414 	for (i = 0; i < sband->n_channels; i++)
1415 		handle_reg_beacon(wiphy, i, reg_beacon);
1416 }
1417 
1418 /*
1419  * Called upon reg changes or a new wiphy is added
1420  */
1421 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1422 {
1423 	unsigned int i;
1424 	struct ieee80211_supported_band *sband;
1425 	struct reg_beacon *reg_beacon;
1426 
1427 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1428 		if (!wiphy->bands[reg_beacon->chan.band])
1429 			continue;
1430 		sband = wiphy->bands[reg_beacon->chan.band];
1431 		for (i = 0; i < sband->n_channels; i++)
1432 			handle_reg_beacon(wiphy, i, reg_beacon);
1433 	}
1434 }
1435 
1436 /* Reap the advantages of previously found beacons */
1437 static void reg_process_beacons(struct wiphy *wiphy)
1438 {
1439 	/*
1440 	 * Means we are just firing up cfg80211, so no beacons would
1441 	 * have been processed yet.
1442 	 */
1443 	if (!last_request)
1444 		return;
1445 	wiphy_update_beacon_reg(wiphy);
1446 }
1447 
1448 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1449 {
1450 	if (!chan)
1451 		return false;
1452 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1453 		return false;
1454 	/* This would happen when regulatory rules disallow HT40 completely */
1455 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1456 		return false;
1457 	return true;
1458 }
1459 
1460 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1461 					 struct ieee80211_channel *channel)
1462 {
1463 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1464 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1465 	unsigned int i;
1466 
1467 	if (!is_ht40_allowed(channel)) {
1468 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1469 		return;
1470 	}
1471 
1472 	/*
1473 	 * We need to ensure the extension channels exist to
1474 	 * be able to use HT40- or HT40+, this finds them (or not)
1475 	 */
1476 	for (i = 0; i < sband->n_channels; i++) {
1477 		struct ieee80211_channel *c = &sband->channels[i];
1478 
1479 		if (c->center_freq == (channel->center_freq - 20))
1480 			channel_before = c;
1481 		if (c->center_freq == (channel->center_freq + 20))
1482 			channel_after = c;
1483 	}
1484 
1485 	/*
1486 	 * Please note that this assumes target bandwidth is 20 MHz,
1487 	 * if that ever changes we also need to change the below logic
1488 	 * to include that as well.
1489 	 */
1490 	if (!is_ht40_allowed(channel_before))
1491 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1492 	else
1493 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1494 
1495 	if (!is_ht40_allowed(channel_after))
1496 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1497 	else
1498 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1499 }
1500 
1501 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1502 				      struct ieee80211_supported_band *sband)
1503 {
1504 	unsigned int i;
1505 
1506 	if (!sband)
1507 		return;
1508 
1509 	for (i = 0; i < sband->n_channels; i++)
1510 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1511 }
1512 
1513 static void reg_process_ht_flags(struct wiphy *wiphy)
1514 {
1515 	enum ieee80211_band band;
1516 
1517 	if (!wiphy)
1518 		return;
1519 
1520 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1521 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1522 }
1523 
1524 static void reg_call_notifier(struct wiphy *wiphy,
1525 			      struct regulatory_request *request)
1526 {
1527 	if (wiphy->reg_notifier)
1528 		wiphy->reg_notifier(wiphy, request);
1529 }
1530 
1531 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1532 {
1533 	struct ieee80211_channel *ch;
1534 	struct cfg80211_chan_def chandef;
1535 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1536 	bool ret = true;
1537 
1538 	wdev_lock(wdev);
1539 
1540 	if (!wdev->netdev || !netif_running(wdev->netdev))
1541 		goto out;
1542 
1543 	switch (wdev->iftype) {
1544 	case NL80211_IFTYPE_AP:
1545 	case NL80211_IFTYPE_P2P_GO:
1546 		if (!wdev->beacon_interval)
1547 			goto out;
1548 
1549 		ret = cfg80211_reg_can_beacon(wiphy,
1550 					      &wdev->chandef, wdev->iftype);
1551 		break;
1552 	case NL80211_IFTYPE_ADHOC:
1553 		if (!wdev->ssid_len)
1554 			goto out;
1555 
1556 		ret = cfg80211_reg_can_beacon(wiphy,
1557 					      &wdev->chandef, wdev->iftype);
1558 		break;
1559 	case NL80211_IFTYPE_STATION:
1560 	case NL80211_IFTYPE_P2P_CLIENT:
1561 		if (!wdev->current_bss ||
1562 		    !wdev->current_bss->pub.channel)
1563 			goto out;
1564 
1565 		ch = wdev->current_bss->pub.channel;
1566 		if (rdev->ops->get_channel &&
1567 		    !rdev_get_channel(rdev, wdev, &chandef))
1568 			ret = cfg80211_chandef_usable(wiphy, &chandef,
1569 						      IEEE80211_CHAN_DISABLED);
1570 		else
1571 			ret = !(ch->flags & IEEE80211_CHAN_DISABLED);
1572 		break;
1573 	case NL80211_IFTYPE_MONITOR:
1574 	case NL80211_IFTYPE_AP_VLAN:
1575 	case NL80211_IFTYPE_P2P_DEVICE:
1576 		/* no enforcement required */
1577 		break;
1578 	default:
1579 		/* others not implemented for now */
1580 		WARN_ON(1);
1581 		break;
1582 	}
1583 
1584 out:
1585 	wdev_unlock(wdev);
1586 	return ret;
1587 }
1588 
1589 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1590 {
1591 	struct wireless_dev *wdev;
1592 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1593 
1594 	ASSERT_RTNL();
1595 
1596 	list_for_each_entry(wdev, &rdev->wdev_list, list)
1597 		if (!reg_wdev_chan_valid(wiphy, wdev))
1598 			cfg80211_leave(rdev, wdev);
1599 }
1600 
1601 static void reg_check_chans_work(struct work_struct *work)
1602 {
1603 	struct cfg80211_registered_device *rdev;
1604 
1605 	REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1606 	rtnl_lock();
1607 
1608 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1609 		if (!(rdev->wiphy.regulatory_flags &
1610 		      REGULATORY_IGNORE_STALE_KICKOFF))
1611 			reg_leave_invalid_chans(&rdev->wiphy);
1612 
1613 	rtnl_unlock();
1614 }
1615 
1616 static void reg_check_channels(void)
1617 {
1618 	/*
1619 	 * Give usermode a chance to do something nicer (move to another
1620 	 * channel, orderly disconnection), before forcing a disconnection.
1621 	 */
1622 	mod_delayed_work(system_power_efficient_wq,
1623 			 &reg_check_chans,
1624 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1625 }
1626 
1627 static void wiphy_update_regulatory(struct wiphy *wiphy,
1628 				    enum nl80211_reg_initiator initiator)
1629 {
1630 	enum ieee80211_band band;
1631 	struct regulatory_request *lr = get_last_request();
1632 
1633 	if (ignore_reg_update(wiphy, initiator)) {
1634 		/*
1635 		 * Regulatory updates set by CORE are ignored for custom
1636 		 * regulatory cards. Let us notify the changes to the driver,
1637 		 * as some drivers used this to restore its orig_* reg domain.
1638 		 */
1639 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1640 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1641 			reg_call_notifier(wiphy, lr);
1642 		return;
1643 	}
1644 
1645 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1646 
1647 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1648 		handle_band(wiphy, initiator, wiphy->bands[band]);
1649 
1650 	reg_process_beacons(wiphy);
1651 	reg_process_ht_flags(wiphy);
1652 	reg_call_notifier(wiphy, lr);
1653 }
1654 
1655 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1656 {
1657 	struct cfg80211_registered_device *rdev;
1658 	struct wiphy *wiphy;
1659 
1660 	ASSERT_RTNL();
1661 
1662 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1663 		wiphy = &rdev->wiphy;
1664 		wiphy_update_regulatory(wiphy, initiator);
1665 	}
1666 
1667 	reg_check_channels();
1668 }
1669 
1670 static void handle_channel_custom(struct wiphy *wiphy,
1671 				  struct ieee80211_channel *chan,
1672 				  const struct ieee80211_regdomain *regd)
1673 {
1674 	u32 bw_flags = 0;
1675 	const struct ieee80211_reg_rule *reg_rule = NULL;
1676 	const struct ieee80211_power_rule *power_rule = NULL;
1677 	const struct ieee80211_freq_range *freq_range = NULL;
1678 	u32 max_bandwidth_khz;
1679 
1680 	reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1681 				      regd);
1682 
1683 	if (IS_ERR(reg_rule)) {
1684 		REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1685 			      chan->center_freq);
1686 		chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1687 		chan->flags = chan->orig_flags;
1688 		return;
1689 	}
1690 
1691 	chan_reg_rule_print_dbg(regd, chan, reg_rule);
1692 
1693 	power_rule = &reg_rule->power_rule;
1694 	freq_range = &reg_rule->freq_range;
1695 
1696 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1697 	/* Check if auto calculation requested */
1698 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1699 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1700 
1701 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1702 		bw_flags = IEEE80211_CHAN_NO_HT40;
1703 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1704 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1705 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1706 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1707 
1708 	chan->dfs_state_entered = jiffies;
1709 	chan->dfs_state = NL80211_DFS_USABLE;
1710 
1711 	chan->beacon_found = false;
1712 	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1713 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1714 	chan->max_reg_power = chan->max_power =
1715 		(int) MBM_TO_DBM(power_rule->max_eirp);
1716 
1717 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1718 		if (reg_rule->dfs_cac_ms)
1719 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1720 		else
1721 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1722 	}
1723 
1724 	chan->max_power = chan->max_reg_power;
1725 }
1726 
1727 static void handle_band_custom(struct wiphy *wiphy,
1728 			       struct ieee80211_supported_band *sband,
1729 			       const struct ieee80211_regdomain *regd)
1730 {
1731 	unsigned int i;
1732 
1733 	if (!sband)
1734 		return;
1735 
1736 	for (i = 0; i < sband->n_channels; i++)
1737 		handle_channel_custom(wiphy, &sband->channels[i], regd);
1738 }
1739 
1740 /* Used by drivers prior to wiphy registration */
1741 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1742 				   const struct ieee80211_regdomain *regd)
1743 {
1744 	enum ieee80211_band band;
1745 	unsigned int bands_set = 0;
1746 
1747 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1748 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
1749 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1750 
1751 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1752 		if (!wiphy->bands[band])
1753 			continue;
1754 		handle_band_custom(wiphy, wiphy->bands[band], regd);
1755 		bands_set++;
1756 	}
1757 
1758 	/*
1759 	 * no point in calling this if it won't have any effect
1760 	 * on your device's supported bands.
1761 	 */
1762 	WARN_ON(!bands_set);
1763 }
1764 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1765 
1766 static void reg_set_request_processed(void)
1767 {
1768 	bool need_more_processing = false;
1769 	struct regulatory_request *lr = get_last_request();
1770 
1771 	lr->processed = true;
1772 
1773 	spin_lock(&reg_requests_lock);
1774 	if (!list_empty(&reg_requests_list))
1775 		need_more_processing = true;
1776 	spin_unlock(&reg_requests_lock);
1777 
1778 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1779 		cancel_delayed_work(&reg_timeout);
1780 
1781 	if (need_more_processing)
1782 		schedule_work(&reg_work);
1783 }
1784 
1785 /**
1786  * reg_process_hint_core - process core regulatory requests
1787  * @pending_request: a pending core regulatory request
1788  *
1789  * The wireless subsystem can use this function to process
1790  * a regulatory request issued by the regulatory core.
1791  *
1792  * Returns one of the different reg request treatment values.
1793  */
1794 static enum reg_request_treatment
1795 reg_process_hint_core(struct regulatory_request *core_request)
1796 {
1797 
1798 	core_request->intersect = false;
1799 	core_request->processed = false;
1800 
1801 	reg_update_last_request(core_request);
1802 
1803 	return reg_call_crda(core_request);
1804 }
1805 
1806 static enum reg_request_treatment
1807 __reg_process_hint_user(struct regulatory_request *user_request)
1808 {
1809 	struct regulatory_request *lr = get_last_request();
1810 
1811 	if (reg_request_indoor(user_request)) {
1812 		reg_is_indoor = true;
1813 		return REG_REQ_USER_HINT_HANDLED;
1814 	}
1815 
1816 	if (reg_request_cell_base(user_request))
1817 		return reg_ignore_cell_hint(user_request);
1818 
1819 	if (reg_request_cell_base(lr))
1820 		return REG_REQ_IGNORE;
1821 
1822 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1823 		return REG_REQ_INTERSECT;
1824 	/*
1825 	 * If the user knows better the user should set the regdom
1826 	 * to their country before the IE is picked up
1827 	 */
1828 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1829 	    lr->intersect)
1830 		return REG_REQ_IGNORE;
1831 	/*
1832 	 * Process user requests only after previous user/driver/core
1833 	 * requests have been processed
1834 	 */
1835 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1836 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1837 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1838 	    regdom_changes(lr->alpha2))
1839 		return REG_REQ_IGNORE;
1840 
1841 	if (!regdom_changes(user_request->alpha2))
1842 		return REG_REQ_ALREADY_SET;
1843 
1844 	return REG_REQ_OK;
1845 }
1846 
1847 /**
1848  * reg_process_hint_user - process user regulatory requests
1849  * @user_request: a pending user regulatory request
1850  *
1851  * The wireless subsystem can use this function to process
1852  * a regulatory request initiated by userspace.
1853  *
1854  * Returns one of the different reg request treatment values.
1855  */
1856 static enum reg_request_treatment
1857 reg_process_hint_user(struct regulatory_request *user_request)
1858 {
1859 	enum reg_request_treatment treatment;
1860 
1861 	treatment = __reg_process_hint_user(user_request);
1862 	if (treatment == REG_REQ_IGNORE ||
1863 	    treatment == REG_REQ_ALREADY_SET ||
1864 	    treatment == REG_REQ_USER_HINT_HANDLED) {
1865 		reg_free_request(user_request);
1866 		return treatment;
1867 	}
1868 
1869 	user_request->intersect = treatment == REG_REQ_INTERSECT;
1870 	user_request->processed = false;
1871 
1872 	reg_update_last_request(user_request);
1873 
1874 	user_alpha2[0] = user_request->alpha2[0];
1875 	user_alpha2[1] = user_request->alpha2[1];
1876 
1877 	return reg_call_crda(user_request);
1878 }
1879 
1880 static enum reg_request_treatment
1881 __reg_process_hint_driver(struct regulatory_request *driver_request)
1882 {
1883 	struct regulatory_request *lr = get_last_request();
1884 
1885 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1886 		if (regdom_changes(driver_request->alpha2))
1887 			return REG_REQ_OK;
1888 		return REG_REQ_ALREADY_SET;
1889 	}
1890 
1891 	/*
1892 	 * This would happen if you unplug and plug your card
1893 	 * back in or if you add a new device for which the previously
1894 	 * loaded card also agrees on the regulatory domain.
1895 	 */
1896 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1897 	    !regdom_changes(driver_request->alpha2))
1898 		return REG_REQ_ALREADY_SET;
1899 
1900 	return REG_REQ_INTERSECT;
1901 }
1902 
1903 /**
1904  * reg_process_hint_driver - process driver regulatory requests
1905  * @driver_request: a pending driver regulatory request
1906  *
1907  * The wireless subsystem can use this function to process
1908  * a regulatory request issued by an 802.11 driver.
1909  *
1910  * Returns one of the different reg request treatment values.
1911  */
1912 static enum reg_request_treatment
1913 reg_process_hint_driver(struct wiphy *wiphy,
1914 			struct regulatory_request *driver_request)
1915 {
1916 	const struct ieee80211_regdomain *regd, *tmp;
1917 	enum reg_request_treatment treatment;
1918 
1919 	treatment = __reg_process_hint_driver(driver_request);
1920 
1921 	switch (treatment) {
1922 	case REG_REQ_OK:
1923 		break;
1924 	case REG_REQ_IGNORE:
1925 	case REG_REQ_USER_HINT_HANDLED:
1926 		reg_free_request(driver_request);
1927 		return treatment;
1928 	case REG_REQ_INTERSECT:
1929 		/* fall through */
1930 	case REG_REQ_ALREADY_SET:
1931 		regd = reg_copy_regd(get_cfg80211_regdom());
1932 		if (IS_ERR(regd)) {
1933 			reg_free_request(driver_request);
1934 			return REG_REQ_IGNORE;
1935 		}
1936 
1937 		tmp = get_wiphy_regdom(wiphy);
1938 		rcu_assign_pointer(wiphy->regd, regd);
1939 		rcu_free_regdom(tmp);
1940 	}
1941 
1942 
1943 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
1944 	driver_request->processed = false;
1945 
1946 	reg_update_last_request(driver_request);
1947 
1948 	/*
1949 	 * Since CRDA will not be called in this case as we already
1950 	 * have applied the requested regulatory domain before we just
1951 	 * inform userspace we have processed the request
1952 	 */
1953 	if (treatment == REG_REQ_ALREADY_SET) {
1954 		nl80211_send_reg_change_event(driver_request);
1955 		reg_set_request_processed();
1956 		return treatment;
1957 	}
1958 
1959 	return reg_call_crda(driver_request);
1960 }
1961 
1962 static enum reg_request_treatment
1963 __reg_process_hint_country_ie(struct wiphy *wiphy,
1964 			      struct regulatory_request *country_ie_request)
1965 {
1966 	struct wiphy *last_wiphy = NULL;
1967 	struct regulatory_request *lr = get_last_request();
1968 
1969 	if (reg_request_cell_base(lr)) {
1970 		/* Trust a Cell base station over the AP's country IE */
1971 		if (regdom_changes(country_ie_request->alpha2))
1972 			return REG_REQ_IGNORE;
1973 		return REG_REQ_ALREADY_SET;
1974 	} else {
1975 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1976 			return REG_REQ_IGNORE;
1977 	}
1978 
1979 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1980 		return -EINVAL;
1981 
1982 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1983 		return REG_REQ_OK;
1984 
1985 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1986 
1987 	if (last_wiphy != wiphy) {
1988 		/*
1989 		 * Two cards with two APs claiming different
1990 		 * Country IE alpha2s. We could
1991 		 * intersect them, but that seems unlikely
1992 		 * to be correct. Reject second one for now.
1993 		 */
1994 		if (regdom_changes(country_ie_request->alpha2))
1995 			return REG_REQ_IGNORE;
1996 		return REG_REQ_ALREADY_SET;
1997 	}
1998 
1999 	if (regdom_changes(country_ie_request->alpha2))
2000 		return REG_REQ_OK;
2001 	return REG_REQ_ALREADY_SET;
2002 }
2003 
2004 /**
2005  * reg_process_hint_country_ie - process regulatory requests from country IEs
2006  * @country_ie_request: a regulatory request from a country IE
2007  *
2008  * The wireless subsystem can use this function to process
2009  * a regulatory request issued by a country Information Element.
2010  *
2011  * Returns one of the different reg request treatment values.
2012  */
2013 static enum reg_request_treatment
2014 reg_process_hint_country_ie(struct wiphy *wiphy,
2015 			    struct regulatory_request *country_ie_request)
2016 {
2017 	enum reg_request_treatment treatment;
2018 
2019 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2020 
2021 	switch (treatment) {
2022 	case REG_REQ_OK:
2023 		break;
2024 	case REG_REQ_IGNORE:
2025 	case REG_REQ_USER_HINT_HANDLED:
2026 		/* fall through */
2027 	case REG_REQ_ALREADY_SET:
2028 		reg_free_request(country_ie_request);
2029 		return treatment;
2030 	case REG_REQ_INTERSECT:
2031 		reg_free_request(country_ie_request);
2032 		/*
2033 		 * This doesn't happen yet, not sure we
2034 		 * ever want to support it for this case.
2035 		 */
2036 		WARN_ONCE(1, "Unexpected intersection for country IEs");
2037 		return REG_REQ_IGNORE;
2038 	}
2039 
2040 	country_ie_request->intersect = false;
2041 	country_ie_request->processed = false;
2042 
2043 	reg_update_last_request(country_ie_request);
2044 
2045 	return reg_call_crda(country_ie_request);
2046 }
2047 
2048 /* This processes *all* regulatory hints */
2049 static void reg_process_hint(struct regulatory_request *reg_request)
2050 {
2051 	struct wiphy *wiphy = NULL;
2052 	enum reg_request_treatment treatment;
2053 
2054 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2055 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2056 
2057 	switch (reg_request->initiator) {
2058 	case NL80211_REGDOM_SET_BY_CORE:
2059 		reg_process_hint_core(reg_request);
2060 		return;
2061 	case NL80211_REGDOM_SET_BY_USER:
2062 		treatment = reg_process_hint_user(reg_request);
2063 		if (treatment == REG_REQ_IGNORE ||
2064 		    treatment == REG_REQ_ALREADY_SET ||
2065 		    treatment == REG_REQ_USER_HINT_HANDLED)
2066 			return;
2067 		queue_delayed_work(system_power_efficient_wq,
2068 				   &reg_timeout, msecs_to_jiffies(3142));
2069 		return;
2070 	case NL80211_REGDOM_SET_BY_DRIVER:
2071 		if (!wiphy)
2072 			goto out_free;
2073 		treatment = reg_process_hint_driver(wiphy, reg_request);
2074 		break;
2075 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2076 		if (!wiphy)
2077 			goto out_free;
2078 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2079 		break;
2080 	default:
2081 		WARN(1, "invalid initiator %d\n", reg_request->initiator);
2082 		goto out_free;
2083 	}
2084 
2085 	/* This is required so that the orig_* parameters are saved */
2086 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2087 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2088 		wiphy_update_regulatory(wiphy, reg_request->initiator);
2089 		reg_check_channels();
2090 	}
2091 
2092 	return;
2093 
2094 out_free:
2095 	reg_free_request(reg_request);
2096 }
2097 
2098 /*
2099  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2100  * Regulatory hints come on a first come first serve basis and we
2101  * must process each one atomically.
2102  */
2103 static void reg_process_pending_hints(void)
2104 {
2105 	struct regulatory_request *reg_request, *lr;
2106 
2107 	lr = get_last_request();
2108 
2109 	/* When last_request->processed becomes true this will be rescheduled */
2110 	if (lr && !lr->processed) {
2111 		reg_process_hint(lr);
2112 		return;
2113 	}
2114 
2115 	spin_lock(&reg_requests_lock);
2116 
2117 	if (list_empty(&reg_requests_list)) {
2118 		spin_unlock(&reg_requests_lock);
2119 		return;
2120 	}
2121 
2122 	reg_request = list_first_entry(&reg_requests_list,
2123 				       struct regulatory_request,
2124 				       list);
2125 	list_del_init(&reg_request->list);
2126 
2127 	spin_unlock(&reg_requests_lock);
2128 
2129 	reg_process_hint(reg_request);
2130 }
2131 
2132 /* Processes beacon hints -- this has nothing to do with country IEs */
2133 static void reg_process_pending_beacon_hints(void)
2134 {
2135 	struct cfg80211_registered_device *rdev;
2136 	struct reg_beacon *pending_beacon, *tmp;
2137 
2138 	/* This goes through the _pending_ beacon list */
2139 	spin_lock_bh(&reg_pending_beacons_lock);
2140 
2141 	list_for_each_entry_safe(pending_beacon, tmp,
2142 				 &reg_pending_beacons, list) {
2143 		list_del_init(&pending_beacon->list);
2144 
2145 		/* Applies the beacon hint to current wiphys */
2146 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2147 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2148 
2149 		/* Remembers the beacon hint for new wiphys or reg changes */
2150 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2151 	}
2152 
2153 	spin_unlock_bh(&reg_pending_beacons_lock);
2154 }
2155 
2156 static void reg_todo(struct work_struct *work)
2157 {
2158 	rtnl_lock();
2159 	reg_process_pending_hints();
2160 	reg_process_pending_beacon_hints();
2161 	rtnl_unlock();
2162 }
2163 
2164 static void queue_regulatory_request(struct regulatory_request *request)
2165 {
2166 	request->alpha2[0] = toupper(request->alpha2[0]);
2167 	request->alpha2[1] = toupper(request->alpha2[1]);
2168 
2169 	spin_lock(&reg_requests_lock);
2170 	list_add_tail(&request->list, &reg_requests_list);
2171 	spin_unlock(&reg_requests_lock);
2172 
2173 	schedule_work(&reg_work);
2174 }
2175 
2176 /*
2177  * Core regulatory hint -- happens during cfg80211_init()
2178  * and when we restore regulatory settings.
2179  */
2180 static int regulatory_hint_core(const char *alpha2)
2181 {
2182 	struct regulatory_request *request;
2183 
2184 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2185 	if (!request)
2186 		return -ENOMEM;
2187 
2188 	request->alpha2[0] = alpha2[0];
2189 	request->alpha2[1] = alpha2[1];
2190 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2191 
2192 	queue_regulatory_request(request);
2193 
2194 	return 0;
2195 }
2196 
2197 /* User hints */
2198 int regulatory_hint_user(const char *alpha2,
2199 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2200 {
2201 	struct regulatory_request *request;
2202 
2203 	if (WARN_ON(!alpha2))
2204 		return -EINVAL;
2205 
2206 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2207 	if (!request)
2208 		return -ENOMEM;
2209 
2210 	request->wiphy_idx = WIPHY_IDX_INVALID;
2211 	request->alpha2[0] = alpha2[0];
2212 	request->alpha2[1] = alpha2[1];
2213 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2214 	request->user_reg_hint_type = user_reg_hint_type;
2215 
2216 	queue_regulatory_request(request);
2217 
2218 	return 0;
2219 }
2220 
2221 int regulatory_hint_indoor_user(void)
2222 {
2223 	struct regulatory_request *request;
2224 
2225 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2226 	if (!request)
2227 		return -ENOMEM;
2228 
2229 	request->wiphy_idx = WIPHY_IDX_INVALID;
2230 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2231 	request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR;
2232 	queue_regulatory_request(request);
2233 
2234 	return 0;
2235 }
2236 
2237 /* Driver hints */
2238 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2239 {
2240 	struct regulatory_request *request;
2241 
2242 	if (WARN_ON(!alpha2 || !wiphy))
2243 		return -EINVAL;
2244 
2245 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2246 
2247 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2248 	if (!request)
2249 		return -ENOMEM;
2250 
2251 	request->wiphy_idx = get_wiphy_idx(wiphy);
2252 
2253 	request->alpha2[0] = alpha2[0];
2254 	request->alpha2[1] = alpha2[1];
2255 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2256 
2257 	queue_regulatory_request(request);
2258 
2259 	return 0;
2260 }
2261 EXPORT_SYMBOL(regulatory_hint);
2262 
2263 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2264 				const u8 *country_ie, u8 country_ie_len)
2265 {
2266 	char alpha2[2];
2267 	enum environment_cap env = ENVIRON_ANY;
2268 	struct regulatory_request *request = NULL, *lr;
2269 
2270 	/* IE len must be evenly divisible by 2 */
2271 	if (country_ie_len & 0x01)
2272 		return;
2273 
2274 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2275 		return;
2276 
2277 	request = kzalloc(sizeof(*request), GFP_KERNEL);
2278 	if (!request)
2279 		return;
2280 
2281 	alpha2[0] = country_ie[0];
2282 	alpha2[1] = country_ie[1];
2283 
2284 	if (country_ie[2] == 'I')
2285 		env = ENVIRON_INDOOR;
2286 	else if (country_ie[2] == 'O')
2287 		env = ENVIRON_OUTDOOR;
2288 
2289 	rcu_read_lock();
2290 	lr = get_last_request();
2291 
2292 	if (unlikely(!lr))
2293 		goto out;
2294 
2295 	/*
2296 	 * We will run this only upon a successful connection on cfg80211.
2297 	 * We leave conflict resolution to the workqueue, where can hold
2298 	 * the RTNL.
2299 	 */
2300 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2301 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
2302 		goto out;
2303 
2304 	request->wiphy_idx = get_wiphy_idx(wiphy);
2305 	request->alpha2[0] = alpha2[0];
2306 	request->alpha2[1] = alpha2[1];
2307 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2308 	request->country_ie_env = env;
2309 
2310 	queue_regulatory_request(request);
2311 	request = NULL;
2312 out:
2313 	kfree(request);
2314 	rcu_read_unlock();
2315 }
2316 
2317 static void restore_alpha2(char *alpha2, bool reset_user)
2318 {
2319 	/* indicates there is no alpha2 to consider for restoration */
2320 	alpha2[0] = '9';
2321 	alpha2[1] = '7';
2322 
2323 	/* The user setting has precedence over the module parameter */
2324 	if (is_user_regdom_saved()) {
2325 		/* Unless we're asked to ignore it and reset it */
2326 		if (reset_user) {
2327 			REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2328 			user_alpha2[0] = '9';
2329 			user_alpha2[1] = '7';
2330 
2331 			/*
2332 			 * If we're ignoring user settings, we still need to
2333 			 * check the module parameter to ensure we put things
2334 			 * back as they were for a full restore.
2335 			 */
2336 			if (!is_world_regdom(ieee80211_regdom)) {
2337 				REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2338 					      ieee80211_regdom[0], ieee80211_regdom[1]);
2339 				alpha2[0] = ieee80211_regdom[0];
2340 				alpha2[1] = ieee80211_regdom[1];
2341 			}
2342 		} else {
2343 			REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2344 				      user_alpha2[0], user_alpha2[1]);
2345 			alpha2[0] = user_alpha2[0];
2346 			alpha2[1] = user_alpha2[1];
2347 		}
2348 	} else if (!is_world_regdom(ieee80211_regdom)) {
2349 		REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2350 			      ieee80211_regdom[0], ieee80211_regdom[1]);
2351 		alpha2[0] = ieee80211_regdom[0];
2352 		alpha2[1] = ieee80211_regdom[1];
2353 	} else
2354 		REG_DBG_PRINT("Restoring regulatory settings\n");
2355 }
2356 
2357 static void restore_custom_reg_settings(struct wiphy *wiphy)
2358 {
2359 	struct ieee80211_supported_band *sband;
2360 	enum ieee80211_band band;
2361 	struct ieee80211_channel *chan;
2362 	int i;
2363 
2364 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2365 		sband = wiphy->bands[band];
2366 		if (!sband)
2367 			continue;
2368 		for (i = 0; i < sband->n_channels; i++) {
2369 			chan = &sband->channels[i];
2370 			chan->flags = chan->orig_flags;
2371 			chan->max_antenna_gain = chan->orig_mag;
2372 			chan->max_power = chan->orig_mpwr;
2373 			chan->beacon_found = false;
2374 		}
2375 	}
2376 }
2377 
2378 /*
2379  * Restoring regulatory settings involves ingoring any
2380  * possibly stale country IE information and user regulatory
2381  * settings if so desired, this includes any beacon hints
2382  * learned as we could have traveled outside to another country
2383  * after disconnection. To restore regulatory settings we do
2384  * exactly what we did at bootup:
2385  *
2386  *   - send a core regulatory hint
2387  *   - send a user regulatory hint if applicable
2388  *
2389  * Device drivers that send a regulatory hint for a specific country
2390  * keep their own regulatory domain on wiphy->regd so that does does
2391  * not need to be remembered.
2392  */
2393 static void restore_regulatory_settings(bool reset_user)
2394 {
2395 	char alpha2[2];
2396 	char world_alpha2[2];
2397 	struct reg_beacon *reg_beacon, *btmp;
2398 	struct regulatory_request *reg_request, *tmp;
2399 	LIST_HEAD(tmp_reg_req_list);
2400 	struct cfg80211_registered_device *rdev;
2401 
2402 	ASSERT_RTNL();
2403 
2404 	reg_is_indoor = false;
2405 
2406 	reset_regdomains(true, &world_regdom);
2407 	restore_alpha2(alpha2, reset_user);
2408 
2409 	/*
2410 	 * If there's any pending requests we simply
2411 	 * stash them to a temporary pending queue and
2412 	 * add then after we've restored regulatory
2413 	 * settings.
2414 	 */
2415 	spin_lock(&reg_requests_lock);
2416 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2417 		if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2418 			continue;
2419 		list_move_tail(&reg_request->list, &tmp_reg_req_list);
2420 	}
2421 	spin_unlock(&reg_requests_lock);
2422 
2423 	/* Clear beacon hints */
2424 	spin_lock_bh(&reg_pending_beacons_lock);
2425 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2426 		list_del(&reg_beacon->list);
2427 		kfree(reg_beacon);
2428 	}
2429 	spin_unlock_bh(&reg_pending_beacons_lock);
2430 
2431 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2432 		list_del(&reg_beacon->list);
2433 		kfree(reg_beacon);
2434 	}
2435 
2436 	/* First restore to the basic regulatory settings */
2437 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2438 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2439 
2440 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2441 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2442 			restore_custom_reg_settings(&rdev->wiphy);
2443 	}
2444 
2445 	regulatory_hint_core(world_alpha2);
2446 
2447 	/*
2448 	 * This restores the ieee80211_regdom module parameter
2449 	 * preference or the last user requested regulatory
2450 	 * settings, user regulatory settings takes precedence.
2451 	 */
2452 	if (is_an_alpha2(alpha2))
2453 		regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2454 
2455 	spin_lock(&reg_requests_lock);
2456 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2457 	spin_unlock(&reg_requests_lock);
2458 
2459 	REG_DBG_PRINT("Kicking the queue\n");
2460 
2461 	schedule_work(&reg_work);
2462 }
2463 
2464 void regulatory_hint_disconnect(void)
2465 {
2466 	REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2467 	restore_regulatory_settings(false);
2468 }
2469 
2470 static bool freq_is_chan_12_13_14(u16 freq)
2471 {
2472 	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2473 	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2474 	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2475 		return true;
2476 	return false;
2477 }
2478 
2479 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2480 {
2481 	struct reg_beacon *pending_beacon;
2482 
2483 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2484 		if (beacon_chan->center_freq ==
2485 		    pending_beacon->chan.center_freq)
2486 			return true;
2487 	return false;
2488 }
2489 
2490 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2491 				 struct ieee80211_channel *beacon_chan,
2492 				 gfp_t gfp)
2493 {
2494 	struct reg_beacon *reg_beacon;
2495 	bool processing;
2496 
2497 	if (beacon_chan->beacon_found ||
2498 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2499 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2500 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2501 		return 0;
2502 
2503 	spin_lock_bh(&reg_pending_beacons_lock);
2504 	processing = pending_reg_beacon(beacon_chan);
2505 	spin_unlock_bh(&reg_pending_beacons_lock);
2506 
2507 	if (processing)
2508 		return 0;
2509 
2510 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2511 	if (!reg_beacon)
2512 		return -ENOMEM;
2513 
2514 	REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2515 		      beacon_chan->center_freq,
2516 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
2517 		      wiphy_name(wiphy));
2518 
2519 	memcpy(&reg_beacon->chan, beacon_chan,
2520 	       sizeof(struct ieee80211_channel));
2521 
2522 	/*
2523 	 * Since we can be called from BH or and non-BH context
2524 	 * we must use spin_lock_bh()
2525 	 */
2526 	spin_lock_bh(&reg_pending_beacons_lock);
2527 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2528 	spin_unlock_bh(&reg_pending_beacons_lock);
2529 
2530 	schedule_work(&reg_work);
2531 
2532 	return 0;
2533 }
2534 
2535 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2536 {
2537 	unsigned int i;
2538 	const struct ieee80211_reg_rule *reg_rule = NULL;
2539 	const struct ieee80211_freq_range *freq_range = NULL;
2540 	const struct ieee80211_power_rule *power_rule = NULL;
2541 	char bw[32], cac_time[32];
2542 
2543 	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2544 
2545 	for (i = 0; i < rd->n_reg_rules; i++) {
2546 		reg_rule = &rd->reg_rules[i];
2547 		freq_range = &reg_rule->freq_range;
2548 		power_rule = &reg_rule->power_rule;
2549 
2550 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2551 			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2552 				 freq_range->max_bandwidth_khz,
2553 				 reg_get_max_bandwidth(rd, reg_rule));
2554 		else
2555 			snprintf(bw, sizeof(bw), "%d KHz",
2556 				 freq_range->max_bandwidth_khz);
2557 
2558 		if (reg_rule->flags & NL80211_RRF_DFS)
2559 			scnprintf(cac_time, sizeof(cac_time), "%u s",
2560 				  reg_rule->dfs_cac_ms/1000);
2561 		else
2562 			scnprintf(cac_time, sizeof(cac_time), "N/A");
2563 
2564 
2565 		/*
2566 		 * There may not be documentation for max antenna gain
2567 		 * in certain regions
2568 		 */
2569 		if (power_rule->max_antenna_gain)
2570 			pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2571 				freq_range->start_freq_khz,
2572 				freq_range->end_freq_khz,
2573 				bw,
2574 				power_rule->max_antenna_gain,
2575 				power_rule->max_eirp,
2576 				cac_time);
2577 		else
2578 			pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2579 				freq_range->start_freq_khz,
2580 				freq_range->end_freq_khz,
2581 				bw,
2582 				power_rule->max_eirp,
2583 				cac_time);
2584 	}
2585 }
2586 
2587 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2588 {
2589 	switch (dfs_region) {
2590 	case NL80211_DFS_UNSET:
2591 	case NL80211_DFS_FCC:
2592 	case NL80211_DFS_ETSI:
2593 	case NL80211_DFS_JP:
2594 		return true;
2595 	default:
2596 		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2597 			      dfs_region);
2598 		return false;
2599 	}
2600 }
2601 
2602 static void print_regdomain(const struct ieee80211_regdomain *rd)
2603 {
2604 	struct regulatory_request *lr = get_last_request();
2605 
2606 	if (is_intersected_alpha2(rd->alpha2)) {
2607 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2608 			struct cfg80211_registered_device *rdev;
2609 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2610 			if (rdev) {
2611 				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2612 					rdev->country_ie_alpha2[0],
2613 					rdev->country_ie_alpha2[1]);
2614 			} else
2615 				pr_info("Current regulatory domain intersected:\n");
2616 		} else
2617 			pr_info("Current regulatory domain intersected:\n");
2618 	} else if (is_world_regdom(rd->alpha2)) {
2619 		pr_info("World regulatory domain updated:\n");
2620 	} else {
2621 		if (is_unknown_alpha2(rd->alpha2))
2622 			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2623 		else {
2624 			if (reg_request_cell_base(lr))
2625 				pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2626 					rd->alpha2[0], rd->alpha2[1]);
2627 			else
2628 				pr_info("Regulatory domain changed to country: %c%c\n",
2629 					rd->alpha2[0], rd->alpha2[1]);
2630 		}
2631 	}
2632 
2633 	pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2634 	print_rd_rules(rd);
2635 }
2636 
2637 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2638 {
2639 	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2640 	print_rd_rules(rd);
2641 }
2642 
2643 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2644 {
2645 	if (!is_world_regdom(rd->alpha2))
2646 		return -EINVAL;
2647 	update_world_regdomain(rd);
2648 	return 0;
2649 }
2650 
2651 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2652 			   struct regulatory_request *user_request)
2653 {
2654 	const struct ieee80211_regdomain *intersected_rd = NULL;
2655 
2656 	if (!regdom_changes(rd->alpha2))
2657 		return -EALREADY;
2658 
2659 	if (!is_valid_rd(rd)) {
2660 		pr_err("Invalid regulatory domain detected:\n");
2661 		print_regdomain_info(rd);
2662 		return -EINVAL;
2663 	}
2664 
2665 	if (!user_request->intersect) {
2666 		reset_regdomains(false, rd);
2667 		return 0;
2668 	}
2669 
2670 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2671 	if (!intersected_rd)
2672 		return -EINVAL;
2673 
2674 	kfree(rd);
2675 	rd = NULL;
2676 	reset_regdomains(false, intersected_rd);
2677 
2678 	return 0;
2679 }
2680 
2681 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2682 			     struct regulatory_request *driver_request)
2683 {
2684 	const struct ieee80211_regdomain *regd;
2685 	const struct ieee80211_regdomain *intersected_rd = NULL;
2686 	const struct ieee80211_regdomain *tmp;
2687 	struct wiphy *request_wiphy;
2688 
2689 	if (is_world_regdom(rd->alpha2))
2690 		return -EINVAL;
2691 
2692 	if (!regdom_changes(rd->alpha2))
2693 		return -EALREADY;
2694 
2695 	if (!is_valid_rd(rd)) {
2696 		pr_err("Invalid regulatory domain detected:\n");
2697 		print_regdomain_info(rd);
2698 		return -EINVAL;
2699 	}
2700 
2701 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2702 	if (!request_wiphy) {
2703 		queue_delayed_work(system_power_efficient_wq,
2704 				   &reg_timeout, 0);
2705 		return -ENODEV;
2706 	}
2707 
2708 	if (!driver_request->intersect) {
2709 		if (request_wiphy->regd)
2710 			return -EALREADY;
2711 
2712 		regd = reg_copy_regd(rd);
2713 		if (IS_ERR(regd))
2714 			return PTR_ERR(regd);
2715 
2716 		rcu_assign_pointer(request_wiphy->regd, regd);
2717 		reset_regdomains(false, rd);
2718 		return 0;
2719 	}
2720 
2721 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2722 	if (!intersected_rd)
2723 		return -EINVAL;
2724 
2725 	/*
2726 	 * We can trash what CRDA provided now.
2727 	 * However if a driver requested this specific regulatory
2728 	 * domain we keep it for its private use
2729 	 */
2730 	tmp = get_wiphy_regdom(request_wiphy);
2731 	rcu_assign_pointer(request_wiphy->regd, rd);
2732 	rcu_free_regdom(tmp);
2733 
2734 	rd = NULL;
2735 
2736 	reset_regdomains(false, intersected_rd);
2737 
2738 	return 0;
2739 }
2740 
2741 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2742 				 struct regulatory_request *country_ie_request)
2743 {
2744 	struct wiphy *request_wiphy;
2745 
2746 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2747 	    !is_unknown_alpha2(rd->alpha2))
2748 		return -EINVAL;
2749 
2750 	/*
2751 	 * Lets only bother proceeding on the same alpha2 if the current
2752 	 * rd is non static (it means CRDA was present and was used last)
2753 	 * and the pending request came in from a country IE
2754 	 */
2755 
2756 	if (!is_valid_rd(rd)) {
2757 		pr_err("Invalid regulatory domain detected:\n");
2758 		print_regdomain_info(rd);
2759 		return -EINVAL;
2760 	}
2761 
2762 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2763 	if (!request_wiphy) {
2764 		queue_delayed_work(system_power_efficient_wq,
2765 				   &reg_timeout, 0);
2766 		return -ENODEV;
2767 	}
2768 
2769 	if (country_ie_request->intersect)
2770 		return -EINVAL;
2771 
2772 	reset_regdomains(false, rd);
2773 	return 0;
2774 }
2775 
2776 /*
2777  * Use this call to set the current regulatory domain. Conflicts with
2778  * multiple drivers can be ironed out later. Caller must've already
2779  * kmalloc'd the rd structure.
2780  */
2781 int set_regdom(const struct ieee80211_regdomain *rd)
2782 {
2783 	struct regulatory_request *lr;
2784 	bool user_reset = false;
2785 	int r;
2786 
2787 	if (!reg_is_valid_request(rd->alpha2)) {
2788 		kfree(rd);
2789 		return -EINVAL;
2790 	}
2791 
2792 	lr = get_last_request();
2793 
2794 	/* Note that this doesn't update the wiphys, this is done below */
2795 	switch (lr->initiator) {
2796 	case NL80211_REGDOM_SET_BY_CORE:
2797 		r = reg_set_rd_core(rd);
2798 		break;
2799 	case NL80211_REGDOM_SET_BY_USER:
2800 		r = reg_set_rd_user(rd, lr);
2801 		user_reset = true;
2802 		break;
2803 	case NL80211_REGDOM_SET_BY_DRIVER:
2804 		r = reg_set_rd_driver(rd, lr);
2805 		break;
2806 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2807 		r = reg_set_rd_country_ie(rd, lr);
2808 		break;
2809 	default:
2810 		WARN(1, "invalid initiator %d\n", lr->initiator);
2811 		return -EINVAL;
2812 	}
2813 
2814 	if (r) {
2815 		switch (r) {
2816 		case -EALREADY:
2817 			reg_set_request_processed();
2818 			break;
2819 		default:
2820 			/* Back to world regulatory in case of errors */
2821 			restore_regulatory_settings(user_reset);
2822 		}
2823 
2824 		kfree(rd);
2825 		return r;
2826 	}
2827 
2828 	/* This would make this whole thing pointless */
2829 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2830 		return -EINVAL;
2831 
2832 	/* update all wiphys now with the new established regulatory domain */
2833 	update_all_wiphy_regulatory(lr->initiator);
2834 
2835 	print_regdomain(get_cfg80211_regdom());
2836 
2837 	nl80211_send_reg_change_event(lr);
2838 
2839 	reg_set_request_processed();
2840 
2841 	return 0;
2842 }
2843 
2844 void wiphy_regulatory_register(struct wiphy *wiphy)
2845 {
2846 	struct regulatory_request *lr;
2847 
2848 	if (!reg_dev_ignore_cell_hint(wiphy))
2849 		reg_num_devs_support_basehint++;
2850 
2851 	lr = get_last_request();
2852 	wiphy_update_regulatory(wiphy, lr->initiator);
2853 }
2854 
2855 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2856 {
2857 	struct wiphy *request_wiphy = NULL;
2858 	struct regulatory_request *lr;
2859 
2860 	lr = get_last_request();
2861 
2862 	if (!reg_dev_ignore_cell_hint(wiphy))
2863 		reg_num_devs_support_basehint--;
2864 
2865 	rcu_free_regdom(get_wiphy_regdom(wiphy));
2866 	RCU_INIT_POINTER(wiphy->regd, NULL);
2867 
2868 	if (lr)
2869 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2870 
2871 	if (!request_wiphy || request_wiphy != wiphy)
2872 		return;
2873 
2874 	lr->wiphy_idx = WIPHY_IDX_INVALID;
2875 	lr->country_ie_env = ENVIRON_ANY;
2876 }
2877 
2878 static void reg_timeout_work(struct work_struct *work)
2879 {
2880 	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2881 	rtnl_lock();
2882 	restore_regulatory_settings(true);
2883 	rtnl_unlock();
2884 }
2885 
2886 /*
2887  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
2888  * UNII band definitions
2889  */
2890 int cfg80211_get_unii(int freq)
2891 {
2892 	/* UNII-1 */
2893 	if (freq >= 5150 && freq <= 5250)
2894 		return 0;
2895 
2896 	/* UNII-2A */
2897 	if (freq > 5250 && freq <= 5350)
2898 		return 1;
2899 
2900 	/* UNII-2B */
2901 	if (freq > 5350 && freq <= 5470)
2902 		return 2;
2903 
2904 	/* UNII-2C */
2905 	if (freq > 5470 && freq <= 5725)
2906 		return 3;
2907 
2908 	/* UNII-3 */
2909 	if (freq > 5725 && freq <= 5825)
2910 		return 4;
2911 
2912 	return -EINVAL;
2913 }
2914 
2915 bool regulatory_indoor_allowed(void)
2916 {
2917 	return reg_is_indoor;
2918 }
2919 
2920 int __init regulatory_init(void)
2921 {
2922 	int err = 0;
2923 
2924 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2925 	if (IS_ERR(reg_pdev))
2926 		return PTR_ERR(reg_pdev);
2927 
2928 	spin_lock_init(&reg_requests_lock);
2929 	spin_lock_init(&reg_pending_beacons_lock);
2930 
2931 	reg_regdb_size_check();
2932 
2933 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2934 
2935 	user_alpha2[0] = '9';
2936 	user_alpha2[1] = '7';
2937 
2938 	/* We always try to get an update for the static regdomain */
2939 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2940 	if (err) {
2941 		if (err == -ENOMEM)
2942 			return err;
2943 		/*
2944 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
2945 		 * memory which is handled and propagated appropriately above
2946 		 * but it can also fail during a netlink_broadcast() or during
2947 		 * early boot for call_usermodehelper(). For now treat these
2948 		 * errors as non-fatal.
2949 		 */
2950 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2951 	}
2952 
2953 	/*
2954 	 * Finally, if the user set the module parameter treat it
2955 	 * as a user hint.
2956 	 */
2957 	if (!is_world_regdom(ieee80211_regdom))
2958 		regulatory_hint_user(ieee80211_regdom,
2959 				     NL80211_USER_REG_HINT_USER);
2960 
2961 	return 0;
2962 }
2963 
2964 void regulatory_exit(void)
2965 {
2966 	struct regulatory_request *reg_request, *tmp;
2967 	struct reg_beacon *reg_beacon, *btmp;
2968 
2969 	cancel_work_sync(&reg_work);
2970 	cancel_delayed_work_sync(&reg_timeout);
2971 	cancel_delayed_work_sync(&reg_check_chans);
2972 
2973 	/* Lock to suppress warnings */
2974 	rtnl_lock();
2975 	reset_regdomains(true, NULL);
2976 	rtnl_unlock();
2977 
2978 	dev_set_uevent_suppress(&reg_pdev->dev, true);
2979 
2980 	platform_device_unregister(reg_pdev);
2981 
2982 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2983 		list_del(&reg_beacon->list);
2984 		kfree(reg_beacon);
2985 	}
2986 
2987 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2988 		list_del(&reg_beacon->list);
2989 		kfree(reg_beacon);
2990 	}
2991 
2992 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2993 		list_del(&reg_request->list);
2994 		kfree(reg_request);
2995 	}
2996 }
2997