1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * 8 * Permission to use, copy, modify, and/or distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 22 /** 23 * DOC: Wireless regulatory infrastructure 24 * 25 * The usual implementation is for a driver to read a device EEPROM to 26 * determine which regulatory domain it should be operating under, then 27 * looking up the allowable channels in a driver-local table and finally 28 * registering those channels in the wiphy structure. 29 * 30 * Another set of compliance enforcement is for drivers to use their 31 * own compliance limits which can be stored on the EEPROM. The host 32 * driver or firmware may ensure these are used. 33 * 34 * In addition to all this we provide an extra layer of regulatory 35 * conformance. For drivers which do not have any regulatory 36 * information CRDA provides the complete regulatory solution. 37 * For others it provides a community effort on further restrictions 38 * to enhance compliance. 39 * 40 * Note: When number of rules --> infinity we will not be able to 41 * index on alpha2 any more, instead we'll probably have to 42 * rely on some SHA1 checksum of the regdomain for example. 43 * 44 */ 45 46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 47 48 #include <linux/kernel.h> 49 #include <linux/export.h> 50 #include <linux/slab.h> 51 #include <linux/list.h> 52 #include <linux/ctype.h> 53 #include <linux/nl80211.h> 54 #include <linux/platform_device.h> 55 #include <linux/moduleparam.h> 56 #include <net/cfg80211.h> 57 #include "core.h" 58 #include "reg.h" 59 #include "rdev-ops.h" 60 #include "regdb.h" 61 #include "nl80211.h" 62 63 #ifdef CONFIG_CFG80211_REG_DEBUG 64 #define REG_DBG_PRINT(format, args...) \ 65 printk(KERN_DEBUG pr_fmt(format), ##args) 66 #else 67 #define REG_DBG_PRINT(args...) 68 #endif 69 70 /* 71 * Grace period we give before making sure all current interfaces reside on 72 * channels allowed by the current regulatory domain. 73 */ 74 #define REG_ENFORCE_GRACE_MS 60000 75 76 /** 77 * enum reg_request_treatment - regulatory request treatment 78 * 79 * @REG_REQ_OK: continue processing the regulatory request 80 * @REG_REQ_IGNORE: ignore the regulatory request 81 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 82 * be intersected with the current one. 83 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 84 * regulatory settings, and no further processing is required. 85 */ 86 enum reg_request_treatment { 87 REG_REQ_OK, 88 REG_REQ_IGNORE, 89 REG_REQ_INTERSECT, 90 REG_REQ_ALREADY_SET, 91 }; 92 93 static struct regulatory_request core_request_world = { 94 .initiator = NL80211_REGDOM_SET_BY_CORE, 95 .alpha2[0] = '0', 96 .alpha2[1] = '0', 97 .intersect = false, 98 .processed = true, 99 .country_ie_env = ENVIRON_ANY, 100 }; 101 102 /* 103 * Receipt of information from last regulatory request, 104 * protected by RTNL (and can be accessed with RCU protection) 105 */ 106 static struct regulatory_request __rcu *last_request = 107 (void __force __rcu *)&core_request_world; 108 109 /* To trigger userspace events */ 110 static struct platform_device *reg_pdev; 111 112 /* 113 * Central wireless core regulatory domains, we only need two, 114 * the current one and a world regulatory domain in case we have no 115 * information to give us an alpha2. 116 * (protected by RTNL, can be read under RCU) 117 */ 118 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 119 120 /* 121 * Number of devices that registered to the core 122 * that support cellular base station regulatory hints 123 * (protected by RTNL) 124 */ 125 static int reg_num_devs_support_basehint; 126 127 /* 128 * State variable indicating if the platform on which the devices 129 * are attached is operating in an indoor environment. The state variable 130 * is relevant for all registered devices. 131 */ 132 static bool reg_is_indoor; 133 static spinlock_t reg_indoor_lock; 134 135 /* Used to track the userspace process controlling the indoor setting */ 136 static u32 reg_is_indoor_portid; 137 138 static void restore_regulatory_settings(bool reset_user); 139 140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 141 { 142 return rtnl_dereference(cfg80211_regdomain); 143 } 144 145 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 146 { 147 return rtnl_dereference(wiphy->regd); 148 } 149 150 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 151 { 152 switch (dfs_region) { 153 case NL80211_DFS_UNSET: 154 return "unset"; 155 case NL80211_DFS_FCC: 156 return "FCC"; 157 case NL80211_DFS_ETSI: 158 return "ETSI"; 159 case NL80211_DFS_JP: 160 return "JP"; 161 } 162 return "Unknown"; 163 } 164 165 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 166 { 167 const struct ieee80211_regdomain *regd = NULL; 168 const struct ieee80211_regdomain *wiphy_regd = NULL; 169 170 regd = get_cfg80211_regdom(); 171 if (!wiphy) 172 goto out; 173 174 wiphy_regd = get_wiphy_regdom(wiphy); 175 if (!wiphy_regd) 176 goto out; 177 178 if (wiphy_regd->dfs_region == regd->dfs_region) 179 goto out; 180 181 REG_DBG_PRINT("%s: device specific dfs_region " 182 "(%s) disagrees with cfg80211's " 183 "central dfs_region (%s)\n", 184 dev_name(&wiphy->dev), 185 reg_dfs_region_str(wiphy_regd->dfs_region), 186 reg_dfs_region_str(regd->dfs_region)); 187 188 out: 189 return regd->dfs_region; 190 } 191 192 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 193 { 194 if (!r) 195 return; 196 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 197 } 198 199 static struct regulatory_request *get_last_request(void) 200 { 201 return rcu_dereference_rtnl(last_request); 202 } 203 204 /* Used to queue up regulatory hints */ 205 static LIST_HEAD(reg_requests_list); 206 static spinlock_t reg_requests_lock; 207 208 /* Used to queue up beacon hints for review */ 209 static LIST_HEAD(reg_pending_beacons); 210 static spinlock_t reg_pending_beacons_lock; 211 212 /* Used to keep track of processed beacon hints */ 213 static LIST_HEAD(reg_beacon_list); 214 215 struct reg_beacon { 216 struct list_head list; 217 struct ieee80211_channel chan; 218 }; 219 220 static void reg_check_chans_work(struct work_struct *work); 221 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 222 223 static void reg_todo(struct work_struct *work); 224 static DECLARE_WORK(reg_work, reg_todo); 225 226 /* We keep a static world regulatory domain in case of the absence of CRDA */ 227 static const struct ieee80211_regdomain world_regdom = { 228 .n_reg_rules = 8, 229 .alpha2 = "00", 230 .reg_rules = { 231 /* IEEE 802.11b/g, channels 1..11 */ 232 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 233 /* IEEE 802.11b/g, channels 12..13. */ 234 REG_RULE(2467-10, 2472+10, 20, 6, 20, 235 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 236 /* IEEE 802.11 channel 14 - Only JP enables 237 * this and for 802.11b only */ 238 REG_RULE(2484-10, 2484+10, 20, 6, 20, 239 NL80211_RRF_NO_IR | 240 NL80211_RRF_NO_OFDM), 241 /* IEEE 802.11a, channel 36..48 */ 242 REG_RULE(5180-10, 5240+10, 80, 6, 20, 243 NL80211_RRF_NO_IR | 244 NL80211_RRF_AUTO_BW), 245 246 /* IEEE 802.11a, channel 52..64 - DFS required */ 247 REG_RULE(5260-10, 5320+10, 80, 6, 20, 248 NL80211_RRF_NO_IR | 249 NL80211_RRF_AUTO_BW | 250 NL80211_RRF_DFS), 251 252 /* IEEE 802.11a, channel 100..144 - DFS required */ 253 REG_RULE(5500-10, 5720+10, 160, 6, 20, 254 NL80211_RRF_NO_IR | 255 NL80211_RRF_DFS), 256 257 /* IEEE 802.11a, channel 149..165 */ 258 REG_RULE(5745-10, 5825+10, 80, 6, 20, 259 NL80211_RRF_NO_IR), 260 261 /* IEEE 802.11ad (60GHz), channels 1..3 */ 262 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 263 } 264 }; 265 266 /* protected by RTNL */ 267 static const struct ieee80211_regdomain *cfg80211_world_regdom = 268 &world_regdom; 269 270 static char *ieee80211_regdom = "00"; 271 static char user_alpha2[2]; 272 273 module_param(ieee80211_regdom, charp, 0444); 274 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 275 276 static void reg_free_request(struct regulatory_request *request) 277 { 278 if (request == &core_request_world) 279 return; 280 281 if (request != get_last_request()) 282 kfree(request); 283 } 284 285 static void reg_free_last_request(void) 286 { 287 struct regulatory_request *lr = get_last_request(); 288 289 if (lr != &core_request_world && lr) 290 kfree_rcu(lr, rcu_head); 291 } 292 293 static void reg_update_last_request(struct regulatory_request *request) 294 { 295 struct regulatory_request *lr; 296 297 lr = get_last_request(); 298 if (lr == request) 299 return; 300 301 reg_free_last_request(); 302 rcu_assign_pointer(last_request, request); 303 } 304 305 static void reset_regdomains(bool full_reset, 306 const struct ieee80211_regdomain *new_regdom) 307 { 308 const struct ieee80211_regdomain *r; 309 310 ASSERT_RTNL(); 311 312 r = get_cfg80211_regdom(); 313 314 /* avoid freeing static information or freeing something twice */ 315 if (r == cfg80211_world_regdom) 316 r = NULL; 317 if (cfg80211_world_regdom == &world_regdom) 318 cfg80211_world_regdom = NULL; 319 if (r == &world_regdom) 320 r = NULL; 321 322 rcu_free_regdom(r); 323 rcu_free_regdom(cfg80211_world_regdom); 324 325 cfg80211_world_regdom = &world_regdom; 326 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 327 328 if (!full_reset) 329 return; 330 331 reg_update_last_request(&core_request_world); 332 } 333 334 /* 335 * Dynamic world regulatory domain requested by the wireless 336 * core upon initialization 337 */ 338 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 339 { 340 struct regulatory_request *lr; 341 342 lr = get_last_request(); 343 344 WARN_ON(!lr); 345 346 reset_regdomains(false, rd); 347 348 cfg80211_world_regdom = rd; 349 } 350 351 bool is_world_regdom(const char *alpha2) 352 { 353 if (!alpha2) 354 return false; 355 return alpha2[0] == '0' && alpha2[1] == '0'; 356 } 357 358 static bool is_alpha2_set(const char *alpha2) 359 { 360 if (!alpha2) 361 return false; 362 return alpha2[0] && alpha2[1]; 363 } 364 365 static bool is_unknown_alpha2(const char *alpha2) 366 { 367 if (!alpha2) 368 return false; 369 /* 370 * Special case where regulatory domain was built by driver 371 * but a specific alpha2 cannot be determined 372 */ 373 return alpha2[0] == '9' && alpha2[1] == '9'; 374 } 375 376 static bool is_intersected_alpha2(const char *alpha2) 377 { 378 if (!alpha2) 379 return false; 380 /* 381 * Special case where regulatory domain is the 382 * result of an intersection between two regulatory domain 383 * structures 384 */ 385 return alpha2[0] == '9' && alpha2[1] == '8'; 386 } 387 388 static bool is_an_alpha2(const char *alpha2) 389 { 390 if (!alpha2) 391 return false; 392 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 393 } 394 395 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 396 { 397 if (!alpha2_x || !alpha2_y) 398 return false; 399 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 400 } 401 402 static bool regdom_changes(const char *alpha2) 403 { 404 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 405 406 if (!r) 407 return true; 408 return !alpha2_equal(r->alpha2, alpha2); 409 } 410 411 /* 412 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 413 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 414 * has ever been issued. 415 */ 416 static bool is_user_regdom_saved(void) 417 { 418 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 419 return false; 420 421 /* This would indicate a mistake on the design */ 422 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 423 "Unexpected user alpha2: %c%c\n", 424 user_alpha2[0], user_alpha2[1])) 425 return false; 426 427 return true; 428 } 429 430 static const struct ieee80211_regdomain * 431 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 432 { 433 struct ieee80211_regdomain *regd; 434 int size_of_regd; 435 unsigned int i; 436 437 size_of_regd = 438 sizeof(struct ieee80211_regdomain) + 439 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); 440 441 regd = kzalloc(size_of_regd, GFP_KERNEL); 442 if (!regd) 443 return ERR_PTR(-ENOMEM); 444 445 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 446 447 for (i = 0; i < src_regd->n_reg_rules; i++) 448 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 449 sizeof(struct ieee80211_reg_rule)); 450 451 return regd; 452 } 453 454 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 455 struct reg_regdb_apply_request { 456 struct list_head list; 457 const struct ieee80211_regdomain *regdom; 458 }; 459 460 static LIST_HEAD(reg_regdb_apply_list); 461 static DEFINE_MUTEX(reg_regdb_apply_mutex); 462 463 static void reg_regdb_apply(struct work_struct *work) 464 { 465 struct reg_regdb_apply_request *request; 466 467 rtnl_lock(); 468 469 mutex_lock(®_regdb_apply_mutex); 470 while (!list_empty(®_regdb_apply_list)) { 471 request = list_first_entry(®_regdb_apply_list, 472 struct reg_regdb_apply_request, 473 list); 474 list_del(&request->list); 475 476 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 477 kfree(request); 478 } 479 mutex_unlock(®_regdb_apply_mutex); 480 481 rtnl_unlock(); 482 } 483 484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 485 486 static int reg_query_builtin(const char *alpha2) 487 { 488 const struct ieee80211_regdomain *regdom = NULL; 489 struct reg_regdb_apply_request *request; 490 unsigned int i; 491 492 for (i = 0; i < reg_regdb_size; i++) { 493 if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) { 494 regdom = reg_regdb[i]; 495 break; 496 } 497 } 498 499 if (!regdom) 500 return -ENODATA; 501 502 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 503 if (!request) 504 return -ENOMEM; 505 506 request->regdom = reg_copy_regd(regdom); 507 if (IS_ERR_OR_NULL(request->regdom)) { 508 kfree(request); 509 return -ENOMEM; 510 } 511 512 mutex_lock(®_regdb_apply_mutex); 513 list_add_tail(&request->list, ®_regdb_apply_list); 514 mutex_unlock(®_regdb_apply_mutex); 515 516 schedule_work(®_regdb_work); 517 518 return 0; 519 } 520 521 /* Feel free to add any other sanity checks here */ 522 static void reg_regdb_size_check(void) 523 { 524 /* We should ideally BUILD_BUG_ON() but then random builds would fail */ 525 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it..."); 526 } 527 #else 528 static inline void reg_regdb_size_check(void) {} 529 static inline int reg_query_builtin(const char *alpha2) 530 { 531 return -ENODATA; 532 } 533 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 534 535 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 536 /* Max number of consecutive attempts to communicate with CRDA */ 537 #define REG_MAX_CRDA_TIMEOUTS 10 538 539 static u32 reg_crda_timeouts; 540 541 static void crda_timeout_work(struct work_struct *work); 542 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 543 544 static void crda_timeout_work(struct work_struct *work) 545 { 546 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 547 rtnl_lock(); 548 reg_crda_timeouts++; 549 restore_regulatory_settings(true); 550 rtnl_unlock(); 551 } 552 553 static void cancel_crda_timeout(void) 554 { 555 cancel_delayed_work(&crda_timeout); 556 } 557 558 static void cancel_crda_timeout_sync(void) 559 { 560 cancel_delayed_work_sync(&crda_timeout); 561 } 562 563 static void reset_crda_timeouts(void) 564 { 565 reg_crda_timeouts = 0; 566 } 567 568 /* 569 * This lets us keep regulatory code which is updated on a regulatory 570 * basis in userspace. 571 */ 572 static int call_crda(const char *alpha2) 573 { 574 char country[12]; 575 char *env[] = { country, NULL }; 576 int ret; 577 578 snprintf(country, sizeof(country), "COUNTRY=%c%c", 579 alpha2[0], alpha2[1]); 580 581 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 582 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 583 return -EINVAL; 584 } 585 586 if (!is_world_regdom((char *) alpha2)) 587 pr_debug("Calling CRDA for country: %c%c\n", 588 alpha2[0], alpha2[1]); 589 else 590 pr_debug("Calling CRDA to update world regulatory domain\n"); 591 592 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 593 if (ret) 594 return ret; 595 596 queue_delayed_work(system_power_efficient_wq, 597 &crda_timeout, msecs_to_jiffies(3142)); 598 return 0; 599 } 600 #else 601 static inline void cancel_crda_timeout(void) {} 602 static inline void cancel_crda_timeout_sync(void) {} 603 static inline void reset_crda_timeouts(void) {} 604 static inline int call_crda(const char *alpha2) 605 { 606 return -ENODATA; 607 } 608 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 609 610 static bool reg_query_database(struct regulatory_request *request) 611 { 612 /* query internal regulatory database (if it exists) */ 613 if (reg_query_builtin(request->alpha2) == 0) 614 return true; 615 616 if (call_crda(request->alpha2) == 0) 617 return true; 618 619 return false; 620 } 621 622 bool reg_is_valid_request(const char *alpha2) 623 { 624 struct regulatory_request *lr = get_last_request(); 625 626 if (!lr || lr->processed) 627 return false; 628 629 return alpha2_equal(lr->alpha2, alpha2); 630 } 631 632 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 633 { 634 struct regulatory_request *lr = get_last_request(); 635 636 /* 637 * Follow the driver's regulatory domain, if present, unless a country 638 * IE has been processed or a user wants to help complaince further 639 */ 640 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 641 lr->initiator != NL80211_REGDOM_SET_BY_USER && 642 wiphy->regd) 643 return get_wiphy_regdom(wiphy); 644 645 return get_cfg80211_regdom(); 646 } 647 648 static unsigned int 649 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 650 const struct ieee80211_reg_rule *rule) 651 { 652 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 653 const struct ieee80211_freq_range *freq_range_tmp; 654 const struct ieee80211_reg_rule *tmp; 655 u32 start_freq, end_freq, idx, no; 656 657 for (idx = 0; idx < rd->n_reg_rules; idx++) 658 if (rule == &rd->reg_rules[idx]) 659 break; 660 661 if (idx == rd->n_reg_rules) 662 return 0; 663 664 /* get start_freq */ 665 no = idx; 666 667 while (no) { 668 tmp = &rd->reg_rules[--no]; 669 freq_range_tmp = &tmp->freq_range; 670 671 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 672 break; 673 674 freq_range = freq_range_tmp; 675 } 676 677 start_freq = freq_range->start_freq_khz; 678 679 /* get end_freq */ 680 freq_range = &rule->freq_range; 681 no = idx; 682 683 while (no < rd->n_reg_rules - 1) { 684 tmp = &rd->reg_rules[++no]; 685 freq_range_tmp = &tmp->freq_range; 686 687 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 688 break; 689 690 freq_range = freq_range_tmp; 691 } 692 693 end_freq = freq_range->end_freq_khz; 694 695 return end_freq - start_freq; 696 } 697 698 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 699 const struct ieee80211_reg_rule *rule) 700 { 701 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 702 703 if (rule->flags & NL80211_RRF_NO_160MHZ) 704 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 705 if (rule->flags & NL80211_RRF_NO_80MHZ) 706 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 707 708 /* 709 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 710 * are not allowed. 711 */ 712 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 713 rule->flags & NL80211_RRF_NO_HT40PLUS) 714 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 715 716 return bw; 717 } 718 719 /* Sanity check on a regulatory rule */ 720 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 721 { 722 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 723 u32 freq_diff; 724 725 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 726 return false; 727 728 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 729 return false; 730 731 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 732 733 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 734 freq_range->max_bandwidth_khz > freq_diff) 735 return false; 736 737 return true; 738 } 739 740 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 741 { 742 const struct ieee80211_reg_rule *reg_rule = NULL; 743 unsigned int i; 744 745 if (!rd->n_reg_rules) 746 return false; 747 748 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 749 return false; 750 751 for (i = 0; i < rd->n_reg_rules; i++) { 752 reg_rule = &rd->reg_rules[i]; 753 if (!is_valid_reg_rule(reg_rule)) 754 return false; 755 } 756 757 return true; 758 } 759 760 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 761 u32 center_freq_khz, u32 bw_khz) 762 { 763 u32 start_freq_khz, end_freq_khz; 764 765 start_freq_khz = center_freq_khz - (bw_khz/2); 766 end_freq_khz = center_freq_khz + (bw_khz/2); 767 768 if (start_freq_khz >= freq_range->start_freq_khz && 769 end_freq_khz <= freq_range->end_freq_khz) 770 return true; 771 772 return false; 773 } 774 775 /** 776 * freq_in_rule_band - tells us if a frequency is in a frequency band 777 * @freq_range: frequency rule we want to query 778 * @freq_khz: frequency we are inquiring about 779 * 780 * This lets us know if a specific frequency rule is or is not relevant to 781 * a specific frequency's band. Bands are device specific and artificial 782 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 783 * however it is safe for now to assume that a frequency rule should not be 784 * part of a frequency's band if the start freq or end freq are off by more 785 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the 786 * 60 GHz band. 787 * This resolution can be lowered and should be considered as we add 788 * regulatory rule support for other "bands". 789 **/ 790 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 791 u32 freq_khz) 792 { 793 #define ONE_GHZ_IN_KHZ 1000000 794 /* 795 * From 802.11ad: directional multi-gigabit (DMG): 796 * Pertaining to operation in a frequency band containing a channel 797 * with the Channel starting frequency above 45 GHz. 798 */ 799 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 800 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 801 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 802 return true; 803 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 804 return true; 805 return false; 806 #undef ONE_GHZ_IN_KHZ 807 } 808 809 /* 810 * Later on we can perhaps use the more restrictive DFS 811 * region but we don't have information for that yet so 812 * for now simply disallow conflicts. 813 */ 814 static enum nl80211_dfs_regions 815 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 816 const enum nl80211_dfs_regions dfs_region2) 817 { 818 if (dfs_region1 != dfs_region2) 819 return NL80211_DFS_UNSET; 820 return dfs_region1; 821 } 822 823 /* 824 * Helper for regdom_intersect(), this does the real 825 * mathematical intersection fun 826 */ 827 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 828 const struct ieee80211_regdomain *rd2, 829 const struct ieee80211_reg_rule *rule1, 830 const struct ieee80211_reg_rule *rule2, 831 struct ieee80211_reg_rule *intersected_rule) 832 { 833 const struct ieee80211_freq_range *freq_range1, *freq_range2; 834 struct ieee80211_freq_range *freq_range; 835 const struct ieee80211_power_rule *power_rule1, *power_rule2; 836 struct ieee80211_power_rule *power_rule; 837 u32 freq_diff, max_bandwidth1, max_bandwidth2; 838 839 freq_range1 = &rule1->freq_range; 840 freq_range2 = &rule2->freq_range; 841 freq_range = &intersected_rule->freq_range; 842 843 power_rule1 = &rule1->power_rule; 844 power_rule2 = &rule2->power_rule; 845 power_rule = &intersected_rule->power_rule; 846 847 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 848 freq_range2->start_freq_khz); 849 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 850 freq_range2->end_freq_khz); 851 852 max_bandwidth1 = freq_range1->max_bandwidth_khz; 853 max_bandwidth2 = freq_range2->max_bandwidth_khz; 854 855 if (rule1->flags & NL80211_RRF_AUTO_BW) 856 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 857 if (rule2->flags & NL80211_RRF_AUTO_BW) 858 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 859 860 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 861 862 intersected_rule->flags = rule1->flags | rule2->flags; 863 864 /* 865 * In case NL80211_RRF_AUTO_BW requested for both rules 866 * set AUTO_BW in intersected rule also. Next we will 867 * calculate BW correctly in handle_channel function. 868 * In other case remove AUTO_BW flag while we calculate 869 * maximum bandwidth correctly and auto calculation is 870 * not required. 871 */ 872 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 873 (rule2->flags & NL80211_RRF_AUTO_BW)) 874 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 875 else 876 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 877 878 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 879 if (freq_range->max_bandwidth_khz > freq_diff) 880 freq_range->max_bandwidth_khz = freq_diff; 881 882 power_rule->max_eirp = min(power_rule1->max_eirp, 883 power_rule2->max_eirp); 884 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 885 power_rule2->max_antenna_gain); 886 887 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 888 rule2->dfs_cac_ms); 889 890 if (!is_valid_reg_rule(intersected_rule)) 891 return -EINVAL; 892 893 return 0; 894 } 895 896 /* check whether old rule contains new rule */ 897 static bool rule_contains(struct ieee80211_reg_rule *r1, 898 struct ieee80211_reg_rule *r2) 899 { 900 /* for simplicity, currently consider only same flags */ 901 if (r1->flags != r2->flags) 902 return false; 903 904 /* verify r1 is more restrictive */ 905 if ((r1->power_rule.max_antenna_gain > 906 r2->power_rule.max_antenna_gain) || 907 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 908 return false; 909 910 /* make sure r2's range is contained within r1 */ 911 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 912 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 913 return false; 914 915 /* and finally verify that r1.max_bw >= r2.max_bw */ 916 if (r1->freq_range.max_bandwidth_khz < 917 r2->freq_range.max_bandwidth_khz) 918 return false; 919 920 return true; 921 } 922 923 /* add or extend current rules. do nothing if rule is already contained */ 924 static void add_rule(struct ieee80211_reg_rule *rule, 925 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 926 { 927 struct ieee80211_reg_rule *tmp_rule; 928 int i; 929 930 for (i = 0; i < *n_rules; i++) { 931 tmp_rule = ®_rules[i]; 932 /* rule is already contained - do nothing */ 933 if (rule_contains(tmp_rule, rule)) 934 return; 935 936 /* extend rule if possible */ 937 if (rule_contains(rule, tmp_rule)) { 938 memcpy(tmp_rule, rule, sizeof(*rule)); 939 return; 940 } 941 } 942 943 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 944 (*n_rules)++; 945 } 946 947 /** 948 * regdom_intersect - do the intersection between two regulatory domains 949 * @rd1: first regulatory domain 950 * @rd2: second regulatory domain 951 * 952 * Use this function to get the intersection between two regulatory domains. 953 * Once completed we will mark the alpha2 for the rd as intersected, "98", 954 * as no one single alpha2 can represent this regulatory domain. 955 * 956 * Returns a pointer to the regulatory domain structure which will hold the 957 * resulting intersection of rules between rd1 and rd2. We will 958 * kzalloc() this structure for you. 959 */ 960 static struct ieee80211_regdomain * 961 regdom_intersect(const struct ieee80211_regdomain *rd1, 962 const struct ieee80211_regdomain *rd2) 963 { 964 int r, size_of_regd; 965 unsigned int x, y; 966 unsigned int num_rules = 0; 967 const struct ieee80211_reg_rule *rule1, *rule2; 968 struct ieee80211_reg_rule intersected_rule; 969 struct ieee80211_regdomain *rd; 970 971 if (!rd1 || !rd2) 972 return NULL; 973 974 /* 975 * First we get a count of the rules we'll need, then we actually 976 * build them. This is to so we can malloc() and free() a 977 * regdomain once. The reason we use reg_rules_intersect() here 978 * is it will return -EINVAL if the rule computed makes no sense. 979 * All rules that do check out OK are valid. 980 */ 981 982 for (x = 0; x < rd1->n_reg_rules; x++) { 983 rule1 = &rd1->reg_rules[x]; 984 for (y = 0; y < rd2->n_reg_rules; y++) { 985 rule2 = &rd2->reg_rules[y]; 986 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 987 &intersected_rule)) 988 num_rules++; 989 } 990 } 991 992 if (!num_rules) 993 return NULL; 994 995 size_of_regd = sizeof(struct ieee80211_regdomain) + 996 num_rules * sizeof(struct ieee80211_reg_rule); 997 998 rd = kzalloc(size_of_regd, GFP_KERNEL); 999 if (!rd) 1000 return NULL; 1001 1002 for (x = 0; x < rd1->n_reg_rules; x++) { 1003 rule1 = &rd1->reg_rules[x]; 1004 for (y = 0; y < rd2->n_reg_rules; y++) { 1005 rule2 = &rd2->reg_rules[y]; 1006 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1007 &intersected_rule); 1008 /* 1009 * No need to memset here the intersected rule here as 1010 * we're not using the stack anymore 1011 */ 1012 if (r) 1013 continue; 1014 1015 add_rule(&intersected_rule, rd->reg_rules, 1016 &rd->n_reg_rules); 1017 } 1018 } 1019 1020 rd->alpha2[0] = '9'; 1021 rd->alpha2[1] = '8'; 1022 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1023 rd2->dfs_region); 1024 1025 return rd; 1026 } 1027 1028 /* 1029 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1030 * want to just have the channel structure use these 1031 */ 1032 static u32 map_regdom_flags(u32 rd_flags) 1033 { 1034 u32 channel_flags = 0; 1035 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1036 channel_flags |= IEEE80211_CHAN_NO_IR; 1037 if (rd_flags & NL80211_RRF_DFS) 1038 channel_flags |= IEEE80211_CHAN_RADAR; 1039 if (rd_flags & NL80211_RRF_NO_OFDM) 1040 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1041 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1042 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1043 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1044 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1045 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1046 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1047 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1048 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1049 if (rd_flags & NL80211_RRF_NO_80MHZ) 1050 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1051 if (rd_flags & NL80211_RRF_NO_160MHZ) 1052 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1053 return channel_flags; 1054 } 1055 1056 static const struct ieee80211_reg_rule * 1057 freq_reg_info_regd(u32 center_freq, 1058 const struct ieee80211_regdomain *regd, u32 bw) 1059 { 1060 int i; 1061 bool band_rule_found = false; 1062 bool bw_fits = false; 1063 1064 if (!regd) 1065 return ERR_PTR(-EINVAL); 1066 1067 for (i = 0; i < regd->n_reg_rules; i++) { 1068 const struct ieee80211_reg_rule *rr; 1069 const struct ieee80211_freq_range *fr = NULL; 1070 1071 rr = ®d->reg_rules[i]; 1072 fr = &rr->freq_range; 1073 1074 /* 1075 * We only need to know if one frequency rule was 1076 * was in center_freq's band, that's enough, so lets 1077 * not overwrite it once found 1078 */ 1079 if (!band_rule_found) 1080 band_rule_found = freq_in_rule_band(fr, center_freq); 1081 1082 bw_fits = reg_does_bw_fit(fr, center_freq, bw); 1083 1084 if (band_rule_found && bw_fits) 1085 return rr; 1086 } 1087 1088 if (!band_rule_found) 1089 return ERR_PTR(-ERANGE); 1090 1091 return ERR_PTR(-EINVAL); 1092 } 1093 1094 static const struct ieee80211_reg_rule * 1095 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1096 { 1097 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1098 const struct ieee80211_reg_rule *reg_rule = NULL; 1099 u32 bw; 1100 1101 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 1102 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1103 if (!IS_ERR(reg_rule)) 1104 return reg_rule; 1105 } 1106 1107 return reg_rule; 1108 } 1109 1110 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1111 u32 center_freq) 1112 { 1113 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20)); 1114 } 1115 EXPORT_SYMBOL(freq_reg_info); 1116 1117 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1118 { 1119 switch (initiator) { 1120 case NL80211_REGDOM_SET_BY_CORE: 1121 return "core"; 1122 case NL80211_REGDOM_SET_BY_USER: 1123 return "user"; 1124 case NL80211_REGDOM_SET_BY_DRIVER: 1125 return "driver"; 1126 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1127 return "country IE"; 1128 default: 1129 WARN_ON(1); 1130 return "bug"; 1131 } 1132 } 1133 EXPORT_SYMBOL(reg_initiator_name); 1134 1135 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd, 1136 struct ieee80211_channel *chan, 1137 const struct ieee80211_reg_rule *reg_rule) 1138 { 1139 #ifdef CONFIG_CFG80211_REG_DEBUG 1140 const struct ieee80211_power_rule *power_rule; 1141 const struct ieee80211_freq_range *freq_range; 1142 char max_antenna_gain[32], bw[32]; 1143 1144 power_rule = ®_rule->power_rule; 1145 freq_range = ®_rule->freq_range; 1146 1147 if (!power_rule->max_antenna_gain) 1148 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A"); 1149 else 1150 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d mBi", 1151 power_rule->max_antenna_gain); 1152 1153 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1154 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 1155 freq_range->max_bandwidth_khz, 1156 reg_get_max_bandwidth(regd, reg_rule)); 1157 else 1158 snprintf(bw, sizeof(bw), "%d KHz", 1159 freq_range->max_bandwidth_khz); 1160 1161 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n", 1162 chan->center_freq); 1163 1164 REG_DBG_PRINT("(%d KHz - %d KHz @ %s), (%s, %d mBm)\n", 1165 freq_range->start_freq_khz, freq_range->end_freq_khz, 1166 bw, max_antenna_gain, 1167 power_rule->max_eirp); 1168 #endif 1169 } 1170 1171 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1172 const struct ieee80211_reg_rule *reg_rule, 1173 const struct ieee80211_channel *chan) 1174 { 1175 const struct ieee80211_freq_range *freq_range = NULL; 1176 u32 max_bandwidth_khz, bw_flags = 0; 1177 1178 freq_range = ®_rule->freq_range; 1179 1180 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1181 /* Check if auto calculation requested */ 1182 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1183 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1184 1185 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1186 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq), 1187 MHZ_TO_KHZ(10))) 1188 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1189 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq), 1190 MHZ_TO_KHZ(20))) 1191 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1192 1193 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1194 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1195 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1196 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1197 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1198 bw_flags |= IEEE80211_CHAN_NO_HT40; 1199 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1200 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1201 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1202 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1203 return bw_flags; 1204 } 1205 1206 /* 1207 * Note that right now we assume the desired channel bandwidth 1208 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1209 * per channel, the primary and the extension channel). 1210 */ 1211 static void handle_channel(struct wiphy *wiphy, 1212 enum nl80211_reg_initiator initiator, 1213 struct ieee80211_channel *chan) 1214 { 1215 u32 flags, bw_flags = 0; 1216 const struct ieee80211_reg_rule *reg_rule = NULL; 1217 const struct ieee80211_power_rule *power_rule = NULL; 1218 struct wiphy *request_wiphy = NULL; 1219 struct regulatory_request *lr = get_last_request(); 1220 const struct ieee80211_regdomain *regd; 1221 1222 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1223 1224 flags = chan->orig_flags; 1225 1226 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 1227 if (IS_ERR(reg_rule)) { 1228 /* 1229 * We will disable all channels that do not match our 1230 * received regulatory rule unless the hint is coming 1231 * from a Country IE and the Country IE had no information 1232 * about a band. The IEEE 802.11 spec allows for an AP 1233 * to send only a subset of the regulatory rules allowed, 1234 * so an AP in the US that only supports 2.4 GHz may only send 1235 * a country IE with information for the 2.4 GHz band 1236 * while 5 GHz is still supported. 1237 */ 1238 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1239 PTR_ERR(reg_rule) == -ERANGE) 1240 return; 1241 1242 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1243 request_wiphy && request_wiphy == wiphy && 1244 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1245 REG_DBG_PRINT("Disabling freq %d MHz for good\n", 1246 chan->center_freq); 1247 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1248 chan->flags = chan->orig_flags; 1249 } else { 1250 REG_DBG_PRINT("Disabling freq %d MHz\n", 1251 chan->center_freq); 1252 chan->flags |= IEEE80211_CHAN_DISABLED; 1253 } 1254 return; 1255 } 1256 1257 regd = reg_get_regdomain(wiphy); 1258 chan_reg_rule_print_dbg(regd, chan, reg_rule); 1259 1260 power_rule = ®_rule->power_rule; 1261 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1262 1263 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1264 request_wiphy && request_wiphy == wiphy && 1265 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1266 /* 1267 * This guarantees the driver's requested regulatory domain 1268 * will always be used as a base for further regulatory 1269 * settings 1270 */ 1271 chan->flags = chan->orig_flags = 1272 map_regdom_flags(reg_rule->flags) | bw_flags; 1273 chan->max_antenna_gain = chan->orig_mag = 1274 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1275 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1276 (int) MBM_TO_DBM(power_rule->max_eirp); 1277 1278 if (chan->flags & IEEE80211_CHAN_RADAR) { 1279 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1280 if (reg_rule->dfs_cac_ms) 1281 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1282 } 1283 1284 return; 1285 } 1286 1287 chan->dfs_state = NL80211_DFS_USABLE; 1288 chan->dfs_state_entered = jiffies; 1289 1290 chan->beacon_found = false; 1291 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1292 chan->max_antenna_gain = 1293 min_t(int, chan->orig_mag, 1294 MBI_TO_DBI(power_rule->max_antenna_gain)); 1295 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1296 1297 if (chan->flags & IEEE80211_CHAN_RADAR) { 1298 if (reg_rule->dfs_cac_ms) 1299 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1300 else 1301 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1302 } 1303 1304 if (chan->orig_mpwr) { 1305 /* 1306 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1307 * will always follow the passed country IE power settings. 1308 */ 1309 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1310 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1311 chan->max_power = chan->max_reg_power; 1312 else 1313 chan->max_power = min(chan->orig_mpwr, 1314 chan->max_reg_power); 1315 } else 1316 chan->max_power = chan->max_reg_power; 1317 } 1318 1319 static void handle_band(struct wiphy *wiphy, 1320 enum nl80211_reg_initiator initiator, 1321 struct ieee80211_supported_band *sband) 1322 { 1323 unsigned int i; 1324 1325 if (!sband) 1326 return; 1327 1328 for (i = 0; i < sband->n_channels; i++) 1329 handle_channel(wiphy, initiator, &sband->channels[i]); 1330 } 1331 1332 static bool reg_request_cell_base(struct regulatory_request *request) 1333 { 1334 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1335 return false; 1336 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 1337 } 1338 1339 bool reg_last_request_cell_base(void) 1340 { 1341 return reg_request_cell_base(get_last_request()); 1342 } 1343 1344 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 1345 /* Core specific check */ 1346 static enum reg_request_treatment 1347 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1348 { 1349 struct regulatory_request *lr = get_last_request(); 1350 1351 if (!reg_num_devs_support_basehint) 1352 return REG_REQ_IGNORE; 1353 1354 if (reg_request_cell_base(lr) && 1355 !regdom_changes(pending_request->alpha2)) 1356 return REG_REQ_ALREADY_SET; 1357 1358 return REG_REQ_OK; 1359 } 1360 1361 /* Device specific check */ 1362 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1363 { 1364 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 1365 } 1366 #else 1367 static enum reg_request_treatment 1368 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1369 { 1370 return REG_REQ_IGNORE; 1371 } 1372 1373 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1374 { 1375 return true; 1376 } 1377 #endif 1378 1379 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 1380 { 1381 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 1382 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 1383 return true; 1384 return false; 1385 } 1386 1387 static bool ignore_reg_update(struct wiphy *wiphy, 1388 enum nl80211_reg_initiator initiator) 1389 { 1390 struct regulatory_request *lr = get_last_request(); 1391 1392 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 1393 return true; 1394 1395 if (!lr) { 1396 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1397 "since last_request is not set\n", 1398 reg_initiator_name(initiator)); 1399 return true; 1400 } 1401 1402 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1403 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 1404 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1405 "since the driver uses its own custom " 1406 "regulatory domain\n", 1407 reg_initiator_name(initiator)); 1408 return true; 1409 } 1410 1411 /* 1412 * wiphy->regd will be set once the device has its own 1413 * desired regulatory domain set 1414 */ 1415 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1416 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1417 !is_world_regdom(lr->alpha2)) { 1418 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1419 "since the driver requires its own regulatory " 1420 "domain to be set first\n", 1421 reg_initiator_name(initiator)); 1422 return true; 1423 } 1424 1425 if (reg_request_cell_base(lr)) 1426 return reg_dev_ignore_cell_hint(wiphy); 1427 1428 return false; 1429 } 1430 1431 static bool reg_is_world_roaming(struct wiphy *wiphy) 1432 { 1433 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1434 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1435 struct regulatory_request *lr = get_last_request(); 1436 1437 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1438 return true; 1439 1440 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1441 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1442 return true; 1443 1444 return false; 1445 } 1446 1447 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1448 struct reg_beacon *reg_beacon) 1449 { 1450 struct ieee80211_supported_band *sband; 1451 struct ieee80211_channel *chan; 1452 bool channel_changed = false; 1453 struct ieee80211_channel chan_before; 1454 1455 sband = wiphy->bands[reg_beacon->chan.band]; 1456 chan = &sband->channels[chan_idx]; 1457 1458 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1459 return; 1460 1461 if (chan->beacon_found) 1462 return; 1463 1464 chan->beacon_found = true; 1465 1466 if (!reg_is_world_roaming(wiphy)) 1467 return; 1468 1469 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 1470 return; 1471 1472 chan_before.center_freq = chan->center_freq; 1473 chan_before.flags = chan->flags; 1474 1475 if (chan->flags & IEEE80211_CHAN_NO_IR) { 1476 chan->flags &= ~IEEE80211_CHAN_NO_IR; 1477 channel_changed = true; 1478 } 1479 1480 if (channel_changed) 1481 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1482 } 1483 1484 /* 1485 * Called when a scan on a wiphy finds a beacon on 1486 * new channel 1487 */ 1488 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1489 struct reg_beacon *reg_beacon) 1490 { 1491 unsigned int i; 1492 struct ieee80211_supported_band *sband; 1493 1494 if (!wiphy->bands[reg_beacon->chan.band]) 1495 return; 1496 1497 sband = wiphy->bands[reg_beacon->chan.band]; 1498 1499 for (i = 0; i < sband->n_channels; i++) 1500 handle_reg_beacon(wiphy, i, reg_beacon); 1501 } 1502 1503 /* 1504 * Called upon reg changes or a new wiphy is added 1505 */ 1506 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1507 { 1508 unsigned int i; 1509 struct ieee80211_supported_band *sband; 1510 struct reg_beacon *reg_beacon; 1511 1512 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1513 if (!wiphy->bands[reg_beacon->chan.band]) 1514 continue; 1515 sband = wiphy->bands[reg_beacon->chan.band]; 1516 for (i = 0; i < sband->n_channels; i++) 1517 handle_reg_beacon(wiphy, i, reg_beacon); 1518 } 1519 } 1520 1521 /* Reap the advantages of previously found beacons */ 1522 static void reg_process_beacons(struct wiphy *wiphy) 1523 { 1524 /* 1525 * Means we are just firing up cfg80211, so no beacons would 1526 * have been processed yet. 1527 */ 1528 if (!last_request) 1529 return; 1530 wiphy_update_beacon_reg(wiphy); 1531 } 1532 1533 static bool is_ht40_allowed(struct ieee80211_channel *chan) 1534 { 1535 if (!chan) 1536 return false; 1537 if (chan->flags & IEEE80211_CHAN_DISABLED) 1538 return false; 1539 /* This would happen when regulatory rules disallow HT40 completely */ 1540 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 1541 return false; 1542 return true; 1543 } 1544 1545 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1546 struct ieee80211_channel *channel) 1547 { 1548 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 1549 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1550 unsigned int i; 1551 1552 if (!is_ht40_allowed(channel)) { 1553 channel->flags |= IEEE80211_CHAN_NO_HT40; 1554 return; 1555 } 1556 1557 /* 1558 * We need to ensure the extension channels exist to 1559 * be able to use HT40- or HT40+, this finds them (or not) 1560 */ 1561 for (i = 0; i < sband->n_channels; i++) { 1562 struct ieee80211_channel *c = &sband->channels[i]; 1563 1564 if (c->center_freq == (channel->center_freq - 20)) 1565 channel_before = c; 1566 if (c->center_freq == (channel->center_freq + 20)) 1567 channel_after = c; 1568 } 1569 1570 /* 1571 * Please note that this assumes target bandwidth is 20 MHz, 1572 * if that ever changes we also need to change the below logic 1573 * to include that as well. 1574 */ 1575 if (!is_ht40_allowed(channel_before)) 1576 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1577 else 1578 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1579 1580 if (!is_ht40_allowed(channel_after)) 1581 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1582 else 1583 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1584 } 1585 1586 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1587 struct ieee80211_supported_band *sband) 1588 { 1589 unsigned int i; 1590 1591 if (!sband) 1592 return; 1593 1594 for (i = 0; i < sband->n_channels; i++) 1595 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 1596 } 1597 1598 static void reg_process_ht_flags(struct wiphy *wiphy) 1599 { 1600 enum ieee80211_band band; 1601 1602 if (!wiphy) 1603 return; 1604 1605 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1606 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 1607 } 1608 1609 static void reg_call_notifier(struct wiphy *wiphy, 1610 struct regulatory_request *request) 1611 { 1612 if (wiphy->reg_notifier) 1613 wiphy->reg_notifier(wiphy, request); 1614 } 1615 1616 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 1617 { 1618 struct cfg80211_chan_def chandef; 1619 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1620 enum nl80211_iftype iftype; 1621 1622 wdev_lock(wdev); 1623 iftype = wdev->iftype; 1624 1625 /* make sure the interface is active */ 1626 if (!wdev->netdev || !netif_running(wdev->netdev)) 1627 goto wdev_inactive_unlock; 1628 1629 switch (iftype) { 1630 case NL80211_IFTYPE_AP: 1631 case NL80211_IFTYPE_P2P_GO: 1632 if (!wdev->beacon_interval) 1633 goto wdev_inactive_unlock; 1634 chandef = wdev->chandef; 1635 break; 1636 case NL80211_IFTYPE_ADHOC: 1637 if (!wdev->ssid_len) 1638 goto wdev_inactive_unlock; 1639 chandef = wdev->chandef; 1640 break; 1641 case NL80211_IFTYPE_STATION: 1642 case NL80211_IFTYPE_P2P_CLIENT: 1643 if (!wdev->current_bss || 1644 !wdev->current_bss->pub.channel) 1645 goto wdev_inactive_unlock; 1646 1647 if (!rdev->ops->get_channel || 1648 rdev_get_channel(rdev, wdev, &chandef)) 1649 cfg80211_chandef_create(&chandef, 1650 wdev->current_bss->pub.channel, 1651 NL80211_CHAN_NO_HT); 1652 break; 1653 case NL80211_IFTYPE_MONITOR: 1654 case NL80211_IFTYPE_AP_VLAN: 1655 case NL80211_IFTYPE_P2P_DEVICE: 1656 /* no enforcement required */ 1657 break; 1658 default: 1659 /* others not implemented for now */ 1660 WARN_ON(1); 1661 break; 1662 } 1663 1664 wdev_unlock(wdev); 1665 1666 switch (iftype) { 1667 case NL80211_IFTYPE_AP: 1668 case NL80211_IFTYPE_P2P_GO: 1669 case NL80211_IFTYPE_ADHOC: 1670 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 1671 case NL80211_IFTYPE_STATION: 1672 case NL80211_IFTYPE_P2P_CLIENT: 1673 return cfg80211_chandef_usable(wiphy, &chandef, 1674 IEEE80211_CHAN_DISABLED); 1675 default: 1676 break; 1677 } 1678 1679 return true; 1680 1681 wdev_inactive_unlock: 1682 wdev_unlock(wdev); 1683 return true; 1684 } 1685 1686 static void reg_leave_invalid_chans(struct wiphy *wiphy) 1687 { 1688 struct wireless_dev *wdev; 1689 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1690 1691 ASSERT_RTNL(); 1692 1693 list_for_each_entry(wdev, &rdev->wdev_list, list) 1694 if (!reg_wdev_chan_valid(wiphy, wdev)) 1695 cfg80211_leave(rdev, wdev); 1696 } 1697 1698 static void reg_check_chans_work(struct work_struct *work) 1699 { 1700 struct cfg80211_registered_device *rdev; 1701 1702 REG_DBG_PRINT("Verifying active interfaces after reg change\n"); 1703 rtnl_lock(); 1704 1705 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1706 if (!(rdev->wiphy.regulatory_flags & 1707 REGULATORY_IGNORE_STALE_KICKOFF)) 1708 reg_leave_invalid_chans(&rdev->wiphy); 1709 1710 rtnl_unlock(); 1711 } 1712 1713 static void reg_check_channels(void) 1714 { 1715 /* 1716 * Give usermode a chance to do something nicer (move to another 1717 * channel, orderly disconnection), before forcing a disconnection. 1718 */ 1719 mod_delayed_work(system_power_efficient_wq, 1720 ®_check_chans, 1721 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 1722 } 1723 1724 static void wiphy_update_regulatory(struct wiphy *wiphy, 1725 enum nl80211_reg_initiator initiator) 1726 { 1727 enum ieee80211_band band; 1728 struct regulatory_request *lr = get_last_request(); 1729 1730 if (ignore_reg_update(wiphy, initiator)) { 1731 /* 1732 * Regulatory updates set by CORE are ignored for custom 1733 * regulatory cards. Let us notify the changes to the driver, 1734 * as some drivers used this to restore its orig_* reg domain. 1735 */ 1736 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1737 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1738 reg_call_notifier(wiphy, lr); 1739 return; 1740 } 1741 1742 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 1743 1744 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1745 handle_band(wiphy, initiator, wiphy->bands[band]); 1746 1747 reg_process_beacons(wiphy); 1748 reg_process_ht_flags(wiphy); 1749 reg_call_notifier(wiphy, lr); 1750 } 1751 1752 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 1753 { 1754 struct cfg80211_registered_device *rdev; 1755 struct wiphy *wiphy; 1756 1757 ASSERT_RTNL(); 1758 1759 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1760 wiphy = &rdev->wiphy; 1761 wiphy_update_regulatory(wiphy, initiator); 1762 } 1763 1764 reg_check_channels(); 1765 } 1766 1767 static void handle_channel_custom(struct wiphy *wiphy, 1768 struct ieee80211_channel *chan, 1769 const struct ieee80211_regdomain *regd) 1770 { 1771 u32 bw_flags = 0; 1772 const struct ieee80211_reg_rule *reg_rule = NULL; 1773 const struct ieee80211_power_rule *power_rule = NULL; 1774 u32 bw; 1775 1776 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) { 1777 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq), 1778 regd, bw); 1779 if (!IS_ERR(reg_rule)) 1780 break; 1781 } 1782 1783 if (IS_ERR(reg_rule)) { 1784 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n", 1785 chan->center_freq); 1786 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 1787 chan->flags |= IEEE80211_CHAN_DISABLED; 1788 } else { 1789 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1790 chan->flags = chan->orig_flags; 1791 } 1792 return; 1793 } 1794 1795 chan_reg_rule_print_dbg(regd, chan, reg_rule); 1796 1797 power_rule = ®_rule->power_rule; 1798 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1799 1800 chan->dfs_state_entered = jiffies; 1801 chan->dfs_state = NL80211_DFS_USABLE; 1802 1803 chan->beacon_found = false; 1804 1805 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 1806 chan->flags = chan->orig_flags | bw_flags | 1807 map_regdom_flags(reg_rule->flags); 1808 else 1809 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1810 1811 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1812 chan->max_reg_power = chan->max_power = 1813 (int) MBM_TO_DBM(power_rule->max_eirp); 1814 1815 if (chan->flags & IEEE80211_CHAN_RADAR) { 1816 if (reg_rule->dfs_cac_ms) 1817 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1818 else 1819 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1820 } 1821 1822 chan->max_power = chan->max_reg_power; 1823 } 1824 1825 static void handle_band_custom(struct wiphy *wiphy, 1826 struct ieee80211_supported_band *sband, 1827 const struct ieee80211_regdomain *regd) 1828 { 1829 unsigned int i; 1830 1831 if (!sband) 1832 return; 1833 1834 for (i = 0; i < sband->n_channels; i++) 1835 handle_channel_custom(wiphy, &sband->channels[i], regd); 1836 } 1837 1838 /* Used by drivers prior to wiphy registration */ 1839 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1840 const struct ieee80211_regdomain *regd) 1841 { 1842 enum ieee80211_band band; 1843 unsigned int bands_set = 0; 1844 1845 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 1846 "wiphy should have REGULATORY_CUSTOM_REG\n"); 1847 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 1848 1849 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1850 if (!wiphy->bands[band]) 1851 continue; 1852 handle_band_custom(wiphy, wiphy->bands[band], regd); 1853 bands_set++; 1854 } 1855 1856 /* 1857 * no point in calling this if it won't have any effect 1858 * on your device's supported bands. 1859 */ 1860 WARN_ON(!bands_set); 1861 } 1862 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1863 1864 static void reg_set_request_processed(void) 1865 { 1866 bool need_more_processing = false; 1867 struct regulatory_request *lr = get_last_request(); 1868 1869 lr->processed = true; 1870 1871 spin_lock(®_requests_lock); 1872 if (!list_empty(®_requests_list)) 1873 need_more_processing = true; 1874 spin_unlock(®_requests_lock); 1875 1876 cancel_crda_timeout(); 1877 1878 if (need_more_processing) 1879 schedule_work(®_work); 1880 } 1881 1882 /** 1883 * reg_process_hint_core - process core regulatory requests 1884 * @pending_request: a pending core regulatory request 1885 * 1886 * The wireless subsystem can use this function to process 1887 * a regulatory request issued by the regulatory core. 1888 */ 1889 static enum reg_request_treatment 1890 reg_process_hint_core(struct regulatory_request *core_request) 1891 { 1892 if (reg_query_database(core_request)) { 1893 core_request->intersect = false; 1894 core_request->processed = false; 1895 reg_update_last_request(core_request); 1896 return REG_REQ_OK; 1897 } 1898 1899 return REG_REQ_IGNORE; 1900 } 1901 1902 static enum reg_request_treatment 1903 __reg_process_hint_user(struct regulatory_request *user_request) 1904 { 1905 struct regulatory_request *lr = get_last_request(); 1906 1907 if (reg_request_cell_base(user_request)) 1908 return reg_ignore_cell_hint(user_request); 1909 1910 if (reg_request_cell_base(lr)) 1911 return REG_REQ_IGNORE; 1912 1913 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1914 return REG_REQ_INTERSECT; 1915 /* 1916 * If the user knows better the user should set the regdom 1917 * to their country before the IE is picked up 1918 */ 1919 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 1920 lr->intersect) 1921 return REG_REQ_IGNORE; 1922 /* 1923 * Process user requests only after previous user/driver/core 1924 * requests have been processed 1925 */ 1926 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 1927 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1928 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 1929 regdom_changes(lr->alpha2)) 1930 return REG_REQ_IGNORE; 1931 1932 if (!regdom_changes(user_request->alpha2)) 1933 return REG_REQ_ALREADY_SET; 1934 1935 return REG_REQ_OK; 1936 } 1937 1938 /** 1939 * reg_process_hint_user - process user regulatory requests 1940 * @user_request: a pending user regulatory request 1941 * 1942 * The wireless subsystem can use this function to process 1943 * a regulatory request initiated by userspace. 1944 */ 1945 static enum reg_request_treatment 1946 reg_process_hint_user(struct regulatory_request *user_request) 1947 { 1948 enum reg_request_treatment treatment; 1949 1950 treatment = __reg_process_hint_user(user_request); 1951 if (treatment == REG_REQ_IGNORE || 1952 treatment == REG_REQ_ALREADY_SET) 1953 return REG_REQ_IGNORE; 1954 1955 user_request->intersect = treatment == REG_REQ_INTERSECT; 1956 user_request->processed = false; 1957 1958 if (reg_query_database(user_request)) { 1959 reg_update_last_request(user_request); 1960 user_alpha2[0] = user_request->alpha2[0]; 1961 user_alpha2[1] = user_request->alpha2[1]; 1962 return REG_REQ_OK; 1963 } 1964 1965 return REG_REQ_IGNORE; 1966 } 1967 1968 static enum reg_request_treatment 1969 __reg_process_hint_driver(struct regulatory_request *driver_request) 1970 { 1971 struct regulatory_request *lr = get_last_request(); 1972 1973 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 1974 if (regdom_changes(driver_request->alpha2)) 1975 return REG_REQ_OK; 1976 return REG_REQ_ALREADY_SET; 1977 } 1978 1979 /* 1980 * This would happen if you unplug and plug your card 1981 * back in or if you add a new device for which the previously 1982 * loaded card also agrees on the regulatory domain. 1983 */ 1984 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1985 !regdom_changes(driver_request->alpha2)) 1986 return REG_REQ_ALREADY_SET; 1987 1988 return REG_REQ_INTERSECT; 1989 } 1990 1991 /** 1992 * reg_process_hint_driver - process driver regulatory requests 1993 * @driver_request: a pending driver regulatory request 1994 * 1995 * The wireless subsystem can use this function to process 1996 * a regulatory request issued by an 802.11 driver. 1997 * 1998 * Returns one of the different reg request treatment values. 1999 */ 2000 static enum reg_request_treatment 2001 reg_process_hint_driver(struct wiphy *wiphy, 2002 struct regulatory_request *driver_request) 2003 { 2004 const struct ieee80211_regdomain *regd, *tmp; 2005 enum reg_request_treatment treatment; 2006 2007 treatment = __reg_process_hint_driver(driver_request); 2008 2009 switch (treatment) { 2010 case REG_REQ_OK: 2011 break; 2012 case REG_REQ_IGNORE: 2013 return REG_REQ_IGNORE; 2014 case REG_REQ_INTERSECT: 2015 case REG_REQ_ALREADY_SET: 2016 regd = reg_copy_regd(get_cfg80211_regdom()); 2017 if (IS_ERR(regd)) 2018 return REG_REQ_IGNORE; 2019 2020 tmp = get_wiphy_regdom(wiphy); 2021 rcu_assign_pointer(wiphy->regd, regd); 2022 rcu_free_regdom(tmp); 2023 } 2024 2025 2026 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2027 driver_request->processed = false; 2028 2029 /* 2030 * Since CRDA will not be called in this case as we already 2031 * have applied the requested regulatory domain before we just 2032 * inform userspace we have processed the request 2033 */ 2034 if (treatment == REG_REQ_ALREADY_SET) { 2035 nl80211_send_reg_change_event(driver_request); 2036 reg_update_last_request(driver_request); 2037 reg_set_request_processed(); 2038 return REG_REQ_ALREADY_SET; 2039 } 2040 2041 if (reg_query_database(driver_request)) { 2042 reg_update_last_request(driver_request); 2043 return REG_REQ_OK; 2044 } 2045 2046 return REG_REQ_IGNORE; 2047 } 2048 2049 static enum reg_request_treatment 2050 __reg_process_hint_country_ie(struct wiphy *wiphy, 2051 struct regulatory_request *country_ie_request) 2052 { 2053 struct wiphy *last_wiphy = NULL; 2054 struct regulatory_request *lr = get_last_request(); 2055 2056 if (reg_request_cell_base(lr)) { 2057 /* Trust a Cell base station over the AP's country IE */ 2058 if (regdom_changes(country_ie_request->alpha2)) 2059 return REG_REQ_IGNORE; 2060 return REG_REQ_ALREADY_SET; 2061 } else { 2062 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2063 return REG_REQ_IGNORE; 2064 } 2065 2066 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2067 return -EINVAL; 2068 2069 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2070 return REG_REQ_OK; 2071 2072 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2073 2074 if (last_wiphy != wiphy) { 2075 /* 2076 * Two cards with two APs claiming different 2077 * Country IE alpha2s. We could 2078 * intersect them, but that seems unlikely 2079 * to be correct. Reject second one for now. 2080 */ 2081 if (regdom_changes(country_ie_request->alpha2)) 2082 return REG_REQ_IGNORE; 2083 return REG_REQ_ALREADY_SET; 2084 } 2085 2086 if (regdom_changes(country_ie_request->alpha2)) 2087 return REG_REQ_OK; 2088 return REG_REQ_ALREADY_SET; 2089 } 2090 2091 /** 2092 * reg_process_hint_country_ie - process regulatory requests from country IEs 2093 * @country_ie_request: a regulatory request from a country IE 2094 * 2095 * The wireless subsystem can use this function to process 2096 * a regulatory request issued by a country Information Element. 2097 * 2098 * Returns one of the different reg request treatment values. 2099 */ 2100 static enum reg_request_treatment 2101 reg_process_hint_country_ie(struct wiphy *wiphy, 2102 struct regulatory_request *country_ie_request) 2103 { 2104 enum reg_request_treatment treatment; 2105 2106 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2107 2108 switch (treatment) { 2109 case REG_REQ_OK: 2110 break; 2111 case REG_REQ_IGNORE: 2112 return REG_REQ_IGNORE; 2113 case REG_REQ_ALREADY_SET: 2114 reg_free_request(country_ie_request); 2115 return REG_REQ_ALREADY_SET; 2116 case REG_REQ_INTERSECT: 2117 /* 2118 * This doesn't happen yet, not sure we 2119 * ever want to support it for this case. 2120 */ 2121 WARN_ONCE(1, "Unexpected intersection for country IEs"); 2122 return REG_REQ_IGNORE; 2123 } 2124 2125 country_ie_request->intersect = false; 2126 country_ie_request->processed = false; 2127 2128 if (reg_query_database(country_ie_request)) { 2129 reg_update_last_request(country_ie_request); 2130 return REG_REQ_OK; 2131 } 2132 2133 return REG_REQ_IGNORE; 2134 } 2135 2136 /* This processes *all* regulatory hints */ 2137 static void reg_process_hint(struct regulatory_request *reg_request) 2138 { 2139 struct wiphy *wiphy = NULL; 2140 enum reg_request_treatment treatment; 2141 2142 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2143 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2144 2145 switch (reg_request->initiator) { 2146 case NL80211_REGDOM_SET_BY_CORE: 2147 treatment = reg_process_hint_core(reg_request); 2148 break; 2149 case NL80211_REGDOM_SET_BY_USER: 2150 treatment = reg_process_hint_user(reg_request); 2151 break; 2152 case NL80211_REGDOM_SET_BY_DRIVER: 2153 if (!wiphy) 2154 goto out_free; 2155 treatment = reg_process_hint_driver(wiphy, reg_request); 2156 break; 2157 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2158 if (!wiphy) 2159 goto out_free; 2160 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2161 break; 2162 default: 2163 WARN(1, "invalid initiator %d\n", reg_request->initiator); 2164 goto out_free; 2165 } 2166 2167 if (treatment == REG_REQ_IGNORE) 2168 goto out_free; 2169 2170 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 2171 "unexpected treatment value %d\n", treatment); 2172 2173 /* This is required so that the orig_* parameters are saved. 2174 * NOTE: treatment must be set for any case that reaches here! 2175 */ 2176 if (treatment == REG_REQ_ALREADY_SET && wiphy && 2177 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2178 wiphy_update_regulatory(wiphy, reg_request->initiator); 2179 reg_check_channels(); 2180 } 2181 2182 return; 2183 2184 out_free: 2185 reg_free_request(reg_request); 2186 } 2187 2188 static bool reg_only_self_managed_wiphys(void) 2189 { 2190 struct cfg80211_registered_device *rdev; 2191 struct wiphy *wiphy; 2192 bool self_managed_found = false; 2193 2194 ASSERT_RTNL(); 2195 2196 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2197 wiphy = &rdev->wiphy; 2198 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2199 self_managed_found = true; 2200 else 2201 return false; 2202 } 2203 2204 /* make sure at least one self-managed wiphy exists */ 2205 return self_managed_found; 2206 } 2207 2208 /* 2209 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 2210 * Regulatory hints come on a first come first serve basis and we 2211 * must process each one atomically. 2212 */ 2213 static void reg_process_pending_hints(void) 2214 { 2215 struct regulatory_request *reg_request, *lr; 2216 2217 lr = get_last_request(); 2218 2219 /* When last_request->processed becomes true this will be rescheduled */ 2220 if (lr && !lr->processed) { 2221 reg_process_hint(lr); 2222 return; 2223 } 2224 2225 spin_lock(®_requests_lock); 2226 2227 if (list_empty(®_requests_list)) { 2228 spin_unlock(®_requests_lock); 2229 return; 2230 } 2231 2232 reg_request = list_first_entry(®_requests_list, 2233 struct regulatory_request, 2234 list); 2235 list_del_init(®_request->list); 2236 2237 spin_unlock(®_requests_lock); 2238 2239 if (reg_only_self_managed_wiphys()) { 2240 reg_free_request(reg_request); 2241 return; 2242 } 2243 2244 reg_process_hint(reg_request); 2245 2246 lr = get_last_request(); 2247 2248 spin_lock(®_requests_lock); 2249 if (!list_empty(®_requests_list) && lr && lr->processed) 2250 schedule_work(®_work); 2251 spin_unlock(®_requests_lock); 2252 } 2253 2254 /* Processes beacon hints -- this has nothing to do with country IEs */ 2255 static void reg_process_pending_beacon_hints(void) 2256 { 2257 struct cfg80211_registered_device *rdev; 2258 struct reg_beacon *pending_beacon, *tmp; 2259 2260 /* This goes through the _pending_ beacon list */ 2261 spin_lock_bh(®_pending_beacons_lock); 2262 2263 list_for_each_entry_safe(pending_beacon, tmp, 2264 ®_pending_beacons, list) { 2265 list_del_init(&pending_beacon->list); 2266 2267 /* Applies the beacon hint to current wiphys */ 2268 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2269 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 2270 2271 /* Remembers the beacon hint for new wiphys or reg changes */ 2272 list_add_tail(&pending_beacon->list, ®_beacon_list); 2273 } 2274 2275 spin_unlock_bh(®_pending_beacons_lock); 2276 } 2277 2278 static void reg_process_self_managed_hints(void) 2279 { 2280 struct cfg80211_registered_device *rdev; 2281 struct wiphy *wiphy; 2282 const struct ieee80211_regdomain *tmp; 2283 const struct ieee80211_regdomain *regd; 2284 enum ieee80211_band band; 2285 struct regulatory_request request = {}; 2286 2287 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2288 wiphy = &rdev->wiphy; 2289 2290 spin_lock(®_requests_lock); 2291 regd = rdev->requested_regd; 2292 rdev->requested_regd = NULL; 2293 spin_unlock(®_requests_lock); 2294 2295 if (regd == NULL) 2296 continue; 2297 2298 tmp = get_wiphy_regdom(wiphy); 2299 rcu_assign_pointer(wiphy->regd, regd); 2300 rcu_free_regdom(tmp); 2301 2302 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 2303 handle_band_custom(wiphy, wiphy->bands[band], regd); 2304 2305 reg_process_ht_flags(wiphy); 2306 2307 request.wiphy_idx = get_wiphy_idx(wiphy); 2308 request.alpha2[0] = regd->alpha2[0]; 2309 request.alpha2[1] = regd->alpha2[1]; 2310 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 2311 2312 nl80211_send_wiphy_reg_change_event(&request); 2313 } 2314 2315 reg_check_channels(); 2316 } 2317 2318 static void reg_todo(struct work_struct *work) 2319 { 2320 rtnl_lock(); 2321 reg_process_pending_hints(); 2322 reg_process_pending_beacon_hints(); 2323 reg_process_self_managed_hints(); 2324 rtnl_unlock(); 2325 } 2326 2327 static void queue_regulatory_request(struct regulatory_request *request) 2328 { 2329 request->alpha2[0] = toupper(request->alpha2[0]); 2330 request->alpha2[1] = toupper(request->alpha2[1]); 2331 2332 spin_lock(®_requests_lock); 2333 list_add_tail(&request->list, ®_requests_list); 2334 spin_unlock(®_requests_lock); 2335 2336 schedule_work(®_work); 2337 } 2338 2339 /* 2340 * Core regulatory hint -- happens during cfg80211_init() 2341 * and when we restore regulatory settings. 2342 */ 2343 static int regulatory_hint_core(const char *alpha2) 2344 { 2345 struct regulatory_request *request; 2346 2347 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2348 if (!request) 2349 return -ENOMEM; 2350 2351 request->alpha2[0] = alpha2[0]; 2352 request->alpha2[1] = alpha2[1]; 2353 request->initiator = NL80211_REGDOM_SET_BY_CORE; 2354 2355 queue_regulatory_request(request); 2356 2357 return 0; 2358 } 2359 2360 /* User hints */ 2361 int regulatory_hint_user(const char *alpha2, 2362 enum nl80211_user_reg_hint_type user_reg_hint_type) 2363 { 2364 struct regulatory_request *request; 2365 2366 if (WARN_ON(!alpha2)) 2367 return -EINVAL; 2368 2369 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2370 if (!request) 2371 return -ENOMEM; 2372 2373 request->wiphy_idx = WIPHY_IDX_INVALID; 2374 request->alpha2[0] = alpha2[0]; 2375 request->alpha2[1] = alpha2[1]; 2376 request->initiator = NL80211_REGDOM_SET_BY_USER; 2377 request->user_reg_hint_type = user_reg_hint_type; 2378 2379 /* Allow calling CRDA again */ 2380 reset_crda_timeouts(); 2381 2382 queue_regulatory_request(request); 2383 2384 return 0; 2385 } 2386 2387 int regulatory_hint_indoor(bool is_indoor, u32 portid) 2388 { 2389 spin_lock(®_indoor_lock); 2390 2391 /* It is possible that more than one user space process is trying to 2392 * configure the indoor setting. To handle such cases, clear the indoor 2393 * setting in case that some process does not think that the device 2394 * is operating in an indoor environment. In addition, if a user space 2395 * process indicates that it is controlling the indoor setting, save its 2396 * portid, i.e., make it the owner. 2397 */ 2398 reg_is_indoor = is_indoor; 2399 if (reg_is_indoor) { 2400 if (!reg_is_indoor_portid) 2401 reg_is_indoor_portid = portid; 2402 } else { 2403 reg_is_indoor_portid = 0; 2404 } 2405 2406 spin_unlock(®_indoor_lock); 2407 2408 if (!is_indoor) 2409 reg_check_channels(); 2410 2411 return 0; 2412 } 2413 2414 void regulatory_netlink_notify(u32 portid) 2415 { 2416 spin_lock(®_indoor_lock); 2417 2418 if (reg_is_indoor_portid != portid) { 2419 spin_unlock(®_indoor_lock); 2420 return; 2421 } 2422 2423 reg_is_indoor = false; 2424 reg_is_indoor_portid = 0; 2425 2426 spin_unlock(®_indoor_lock); 2427 2428 reg_check_channels(); 2429 } 2430 2431 /* Driver hints */ 2432 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 2433 { 2434 struct regulatory_request *request; 2435 2436 if (WARN_ON(!alpha2 || !wiphy)) 2437 return -EINVAL; 2438 2439 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 2440 2441 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2442 if (!request) 2443 return -ENOMEM; 2444 2445 request->wiphy_idx = get_wiphy_idx(wiphy); 2446 2447 request->alpha2[0] = alpha2[0]; 2448 request->alpha2[1] = alpha2[1]; 2449 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 2450 2451 /* Allow calling CRDA again */ 2452 reset_crda_timeouts(); 2453 2454 queue_regulatory_request(request); 2455 2456 return 0; 2457 } 2458 EXPORT_SYMBOL(regulatory_hint); 2459 2460 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band, 2461 const u8 *country_ie, u8 country_ie_len) 2462 { 2463 char alpha2[2]; 2464 enum environment_cap env = ENVIRON_ANY; 2465 struct regulatory_request *request = NULL, *lr; 2466 2467 /* IE len must be evenly divisible by 2 */ 2468 if (country_ie_len & 0x01) 2469 return; 2470 2471 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 2472 return; 2473 2474 request = kzalloc(sizeof(*request), GFP_KERNEL); 2475 if (!request) 2476 return; 2477 2478 alpha2[0] = country_ie[0]; 2479 alpha2[1] = country_ie[1]; 2480 2481 if (country_ie[2] == 'I') 2482 env = ENVIRON_INDOOR; 2483 else if (country_ie[2] == 'O') 2484 env = ENVIRON_OUTDOOR; 2485 2486 rcu_read_lock(); 2487 lr = get_last_request(); 2488 2489 if (unlikely(!lr)) 2490 goto out; 2491 2492 /* 2493 * We will run this only upon a successful connection on cfg80211. 2494 * We leave conflict resolution to the workqueue, where can hold 2495 * the RTNL. 2496 */ 2497 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2498 lr->wiphy_idx != WIPHY_IDX_INVALID) 2499 goto out; 2500 2501 request->wiphy_idx = get_wiphy_idx(wiphy); 2502 request->alpha2[0] = alpha2[0]; 2503 request->alpha2[1] = alpha2[1]; 2504 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 2505 request->country_ie_env = env; 2506 2507 /* Allow calling CRDA again */ 2508 reset_crda_timeouts(); 2509 2510 queue_regulatory_request(request); 2511 request = NULL; 2512 out: 2513 kfree(request); 2514 rcu_read_unlock(); 2515 } 2516 2517 static void restore_alpha2(char *alpha2, bool reset_user) 2518 { 2519 /* indicates there is no alpha2 to consider for restoration */ 2520 alpha2[0] = '9'; 2521 alpha2[1] = '7'; 2522 2523 /* The user setting has precedence over the module parameter */ 2524 if (is_user_regdom_saved()) { 2525 /* Unless we're asked to ignore it and reset it */ 2526 if (reset_user) { 2527 REG_DBG_PRINT("Restoring regulatory settings including user preference\n"); 2528 user_alpha2[0] = '9'; 2529 user_alpha2[1] = '7'; 2530 2531 /* 2532 * If we're ignoring user settings, we still need to 2533 * check the module parameter to ensure we put things 2534 * back as they were for a full restore. 2535 */ 2536 if (!is_world_regdom(ieee80211_regdom)) { 2537 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 2538 ieee80211_regdom[0], ieee80211_regdom[1]); 2539 alpha2[0] = ieee80211_regdom[0]; 2540 alpha2[1] = ieee80211_regdom[1]; 2541 } 2542 } else { 2543 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n", 2544 user_alpha2[0], user_alpha2[1]); 2545 alpha2[0] = user_alpha2[0]; 2546 alpha2[1] = user_alpha2[1]; 2547 } 2548 } else if (!is_world_regdom(ieee80211_regdom)) { 2549 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 2550 ieee80211_regdom[0], ieee80211_regdom[1]); 2551 alpha2[0] = ieee80211_regdom[0]; 2552 alpha2[1] = ieee80211_regdom[1]; 2553 } else 2554 REG_DBG_PRINT("Restoring regulatory settings\n"); 2555 } 2556 2557 static void restore_custom_reg_settings(struct wiphy *wiphy) 2558 { 2559 struct ieee80211_supported_band *sband; 2560 enum ieee80211_band band; 2561 struct ieee80211_channel *chan; 2562 int i; 2563 2564 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 2565 sband = wiphy->bands[band]; 2566 if (!sband) 2567 continue; 2568 for (i = 0; i < sband->n_channels; i++) { 2569 chan = &sband->channels[i]; 2570 chan->flags = chan->orig_flags; 2571 chan->max_antenna_gain = chan->orig_mag; 2572 chan->max_power = chan->orig_mpwr; 2573 chan->beacon_found = false; 2574 } 2575 } 2576 } 2577 2578 /* 2579 * Restoring regulatory settings involves ingoring any 2580 * possibly stale country IE information and user regulatory 2581 * settings if so desired, this includes any beacon hints 2582 * learned as we could have traveled outside to another country 2583 * after disconnection. To restore regulatory settings we do 2584 * exactly what we did at bootup: 2585 * 2586 * - send a core regulatory hint 2587 * - send a user regulatory hint if applicable 2588 * 2589 * Device drivers that send a regulatory hint for a specific country 2590 * keep their own regulatory domain on wiphy->regd so that does does 2591 * not need to be remembered. 2592 */ 2593 static void restore_regulatory_settings(bool reset_user) 2594 { 2595 char alpha2[2]; 2596 char world_alpha2[2]; 2597 struct reg_beacon *reg_beacon, *btmp; 2598 LIST_HEAD(tmp_reg_req_list); 2599 struct cfg80211_registered_device *rdev; 2600 2601 ASSERT_RTNL(); 2602 2603 /* 2604 * Clear the indoor setting in case that it is not controlled by user 2605 * space, as otherwise there is no guarantee that the device is still 2606 * operating in an indoor environment. 2607 */ 2608 spin_lock(®_indoor_lock); 2609 if (reg_is_indoor && !reg_is_indoor_portid) { 2610 reg_is_indoor = false; 2611 reg_check_channels(); 2612 } 2613 spin_unlock(®_indoor_lock); 2614 2615 reset_regdomains(true, &world_regdom); 2616 restore_alpha2(alpha2, reset_user); 2617 2618 /* 2619 * If there's any pending requests we simply 2620 * stash them to a temporary pending queue and 2621 * add then after we've restored regulatory 2622 * settings. 2623 */ 2624 spin_lock(®_requests_lock); 2625 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 2626 spin_unlock(®_requests_lock); 2627 2628 /* Clear beacon hints */ 2629 spin_lock_bh(®_pending_beacons_lock); 2630 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 2631 list_del(®_beacon->list); 2632 kfree(reg_beacon); 2633 } 2634 spin_unlock_bh(®_pending_beacons_lock); 2635 2636 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 2637 list_del(®_beacon->list); 2638 kfree(reg_beacon); 2639 } 2640 2641 /* First restore to the basic regulatory settings */ 2642 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 2643 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 2644 2645 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2646 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2647 continue; 2648 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 2649 restore_custom_reg_settings(&rdev->wiphy); 2650 } 2651 2652 regulatory_hint_core(world_alpha2); 2653 2654 /* 2655 * This restores the ieee80211_regdom module parameter 2656 * preference or the last user requested regulatory 2657 * settings, user regulatory settings takes precedence. 2658 */ 2659 if (is_an_alpha2(alpha2)) 2660 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 2661 2662 spin_lock(®_requests_lock); 2663 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 2664 spin_unlock(®_requests_lock); 2665 2666 REG_DBG_PRINT("Kicking the queue\n"); 2667 2668 schedule_work(®_work); 2669 } 2670 2671 void regulatory_hint_disconnect(void) 2672 { 2673 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n"); 2674 restore_regulatory_settings(false); 2675 } 2676 2677 static bool freq_is_chan_12_13_14(u16 freq) 2678 { 2679 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || 2680 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || 2681 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) 2682 return true; 2683 return false; 2684 } 2685 2686 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 2687 { 2688 struct reg_beacon *pending_beacon; 2689 2690 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 2691 if (beacon_chan->center_freq == 2692 pending_beacon->chan.center_freq) 2693 return true; 2694 return false; 2695 } 2696 2697 int regulatory_hint_found_beacon(struct wiphy *wiphy, 2698 struct ieee80211_channel *beacon_chan, 2699 gfp_t gfp) 2700 { 2701 struct reg_beacon *reg_beacon; 2702 bool processing; 2703 2704 if (beacon_chan->beacon_found || 2705 beacon_chan->flags & IEEE80211_CHAN_RADAR || 2706 (beacon_chan->band == IEEE80211_BAND_2GHZ && 2707 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 2708 return 0; 2709 2710 spin_lock_bh(®_pending_beacons_lock); 2711 processing = pending_reg_beacon(beacon_chan); 2712 spin_unlock_bh(®_pending_beacons_lock); 2713 2714 if (processing) 2715 return 0; 2716 2717 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 2718 if (!reg_beacon) 2719 return -ENOMEM; 2720 2721 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 2722 beacon_chan->center_freq, 2723 ieee80211_frequency_to_channel(beacon_chan->center_freq), 2724 wiphy_name(wiphy)); 2725 2726 memcpy(®_beacon->chan, beacon_chan, 2727 sizeof(struct ieee80211_channel)); 2728 2729 /* 2730 * Since we can be called from BH or and non-BH context 2731 * we must use spin_lock_bh() 2732 */ 2733 spin_lock_bh(®_pending_beacons_lock); 2734 list_add_tail(®_beacon->list, ®_pending_beacons); 2735 spin_unlock_bh(®_pending_beacons_lock); 2736 2737 schedule_work(®_work); 2738 2739 return 0; 2740 } 2741 2742 static void print_rd_rules(const struct ieee80211_regdomain *rd) 2743 { 2744 unsigned int i; 2745 const struct ieee80211_reg_rule *reg_rule = NULL; 2746 const struct ieee80211_freq_range *freq_range = NULL; 2747 const struct ieee80211_power_rule *power_rule = NULL; 2748 char bw[32], cac_time[32]; 2749 2750 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 2751 2752 for (i = 0; i < rd->n_reg_rules; i++) { 2753 reg_rule = &rd->reg_rules[i]; 2754 freq_range = ®_rule->freq_range; 2755 power_rule = ®_rule->power_rule; 2756 2757 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 2758 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 2759 freq_range->max_bandwidth_khz, 2760 reg_get_max_bandwidth(rd, reg_rule)); 2761 else 2762 snprintf(bw, sizeof(bw), "%d KHz", 2763 freq_range->max_bandwidth_khz); 2764 2765 if (reg_rule->flags & NL80211_RRF_DFS) 2766 scnprintf(cac_time, sizeof(cac_time), "%u s", 2767 reg_rule->dfs_cac_ms/1000); 2768 else 2769 scnprintf(cac_time, sizeof(cac_time), "N/A"); 2770 2771 2772 /* 2773 * There may not be documentation for max antenna gain 2774 * in certain regions 2775 */ 2776 if (power_rule->max_antenna_gain) 2777 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 2778 freq_range->start_freq_khz, 2779 freq_range->end_freq_khz, 2780 bw, 2781 power_rule->max_antenna_gain, 2782 power_rule->max_eirp, 2783 cac_time); 2784 else 2785 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 2786 freq_range->start_freq_khz, 2787 freq_range->end_freq_khz, 2788 bw, 2789 power_rule->max_eirp, 2790 cac_time); 2791 } 2792 } 2793 2794 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 2795 { 2796 switch (dfs_region) { 2797 case NL80211_DFS_UNSET: 2798 case NL80211_DFS_FCC: 2799 case NL80211_DFS_ETSI: 2800 case NL80211_DFS_JP: 2801 return true; 2802 default: 2803 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n", 2804 dfs_region); 2805 return false; 2806 } 2807 } 2808 2809 static void print_regdomain(const struct ieee80211_regdomain *rd) 2810 { 2811 struct regulatory_request *lr = get_last_request(); 2812 2813 if (is_intersected_alpha2(rd->alpha2)) { 2814 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2815 struct cfg80211_registered_device *rdev; 2816 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 2817 if (rdev) { 2818 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 2819 rdev->country_ie_alpha2[0], 2820 rdev->country_ie_alpha2[1]); 2821 } else 2822 pr_debug("Current regulatory domain intersected:\n"); 2823 } else 2824 pr_debug("Current regulatory domain intersected:\n"); 2825 } else if (is_world_regdom(rd->alpha2)) { 2826 pr_debug("World regulatory domain updated:\n"); 2827 } else { 2828 if (is_unknown_alpha2(rd->alpha2)) 2829 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 2830 else { 2831 if (reg_request_cell_base(lr)) 2832 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 2833 rd->alpha2[0], rd->alpha2[1]); 2834 else 2835 pr_debug("Regulatory domain changed to country: %c%c\n", 2836 rd->alpha2[0], rd->alpha2[1]); 2837 } 2838 } 2839 2840 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 2841 print_rd_rules(rd); 2842 } 2843 2844 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 2845 { 2846 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 2847 print_rd_rules(rd); 2848 } 2849 2850 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 2851 { 2852 if (!is_world_regdom(rd->alpha2)) 2853 return -EINVAL; 2854 update_world_regdomain(rd); 2855 return 0; 2856 } 2857 2858 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 2859 struct regulatory_request *user_request) 2860 { 2861 const struct ieee80211_regdomain *intersected_rd = NULL; 2862 2863 if (!regdom_changes(rd->alpha2)) 2864 return -EALREADY; 2865 2866 if (!is_valid_rd(rd)) { 2867 pr_err("Invalid regulatory domain detected: %c%c\n", 2868 rd->alpha2[0], rd->alpha2[1]); 2869 print_regdomain_info(rd); 2870 return -EINVAL; 2871 } 2872 2873 if (!user_request->intersect) { 2874 reset_regdomains(false, rd); 2875 return 0; 2876 } 2877 2878 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2879 if (!intersected_rd) 2880 return -EINVAL; 2881 2882 kfree(rd); 2883 rd = NULL; 2884 reset_regdomains(false, intersected_rd); 2885 2886 return 0; 2887 } 2888 2889 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 2890 struct regulatory_request *driver_request) 2891 { 2892 const struct ieee80211_regdomain *regd; 2893 const struct ieee80211_regdomain *intersected_rd = NULL; 2894 const struct ieee80211_regdomain *tmp; 2895 struct wiphy *request_wiphy; 2896 2897 if (is_world_regdom(rd->alpha2)) 2898 return -EINVAL; 2899 2900 if (!regdom_changes(rd->alpha2)) 2901 return -EALREADY; 2902 2903 if (!is_valid_rd(rd)) { 2904 pr_err("Invalid regulatory domain detected: %c%c\n", 2905 rd->alpha2[0], rd->alpha2[1]); 2906 print_regdomain_info(rd); 2907 return -EINVAL; 2908 } 2909 2910 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 2911 if (!request_wiphy) 2912 return -ENODEV; 2913 2914 if (!driver_request->intersect) { 2915 if (request_wiphy->regd) 2916 return -EALREADY; 2917 2918 regd = reg_copy_regd(rd); 2919 if (IS_ERR(regd)) 2920 return PTR_ERR(regd); 2921 2922 rcu_assign_pointer(request_wiphy->regd, regd); 2923 reset_regdomains(false, rd); 2924 return 0; 2925 } 2926 2927 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2928 if (!intersected_rd) 2929 return -EINVAL; 2930 2931 /* 2932 * We can trash what CRDA provided now. 2933 * However if a driver requested this specific regulatory 2934 * domain we keep it for its private use 2935 */ 2936 tmp = get_wiphy_regdom(request_wiphy); 2937 rcu_assign_pointer(request_wiphy->regd, rd); 2938 rcu_free_regdom(tmp); 2939 2940 rd = NULL; 2941 2942 reset_regdomains(false, intersected_rd); 2943 2944 return 0; 2945 } 2946 2947 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 2948 struct regulatory_request *country_ie_request) 2949 { 2950 struct wiphy *request_wiphy; 2951 2952 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 2953 !is_unknown_alpha2(rd->alpha2)) 2954 return -EINVAL; 2955 2956 /* 2957 * Lets only bother proceeding on the same alpha2 if the current 2958 * rd is non static (it means CRDA was present and was used last) 2959 * and the pending request came in from a country IE 2960 */ 2961 2962 if (!is_valid_rd(rd)) { 2963 pr_err("Invalid regulatory domain detected: %c%c\n", 2964 rd->alpha2[0], rd->alpha2[1]); 2965 print_regdomain_info(rd); 2966 return -EINVAL; 2967 } 2968 2969 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 2970 if (!request_wiphy) 2971 return -ENODEV; 2972 2973 if (country_ie_request->intersect) 2974 return -EINVAL; 2975 2976 reset_regdomains(false, rd); 2977 return 0; 2978 } 2979 2980 /* 2981 * Use this call to set the current regulatory domain. Conflicts with 2982 * multiple drivers can be ironed out later. Caller must've already 2983 * kmalloc'd the rd structure. 2984 */ 2985 int set_regdom(const struct ieee80211_regdomain *rd, 2986 enum ieee80211_regd_source regd_src) 2987 { 2988 struct regulatory_request *lr; 2989 bool user_reset = false; 2990 int r; 2991 2992 if (!reg_is_valid_request(rd->alpha2)) { 2993 kfree(rd); 2994 return -EINVAL; 2995 } 2996 2997 if (regd_src == REGD_SOURCE_CRDA) 2998 reset_crda_timeouts(); 2999 3000 lr = get_last_request(); 3001 3002 /* Note that this doesn't update the wiphys, this is done below */ 3003 switch (lr->initiator) { 3004 case NL80211_REGDOM_SET_BY_CORE: 3005 r = reg_set_rd_core(rd); 3006 break; 3007 case NL80211_REGDOM_SET_BY_USER: 3008 r = reg_set_rd_user(rd, lr); 3009 user_reset = true; 3010 break; 3011 case NL80211_REGDOM_SET_BY_DRIVER: 3012 r = reg_set_rd_driver(rd, lr); 3013 break; 3014 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3015 r = reg_set_rd_country_ie(rd, lr); 3016 break; 3017 default: 3018 WARN(1, "invalid initiator %d\n", lr->initiator); 3019 kfree(rd); 3020 return -EINVAL; 3021 } 3022 3023 if (r) { 3024 switch (r) { 3025 case -EALREADY: 3026 reg_set_request_processed(); 3027 break; 3028 default: 3029 /* Back to world regulatory in case of errors */ 3030 restore_regulatory_settings(user_reset); 3031 } 3032 3033 kfree(rd); 3034 return r; 3035 } 3036 3037 /* This would make this whole thing pointless */ 3038 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3039 return -EINVAL; 3040 3041 /* update all wiphys now with the new established regulatory domain */ 3042 update_all_wiphy_regulatory(lr->initiator); 3043 3044 print_regdomain(get_cfg80211_regdom()); 3045 3046 nl80211_send_reg_change_event(lr); 3047 3048 reg_set_request_processed(); 3049 3050 return 0; 3051 } 3052 3053 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 3054 struct ieee80211_regdomain *rd) 3055 { 3056 const struct ieee80211_regdomain *regd; 3057 const struct ieee80211_regdomain *prev_regd; 3058 struct cfg80211_registered_device *rdev; 3059 3060 if (WARN_ON(!wiphy || !rd)) 3061 return -EINVAL; 3062 3063 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 3064 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 3065 return -EPERM; 3066 3067 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { 3068 print_regdomain_info(rd); 3069 return -EINVAL; 3070 } 3071 3072 regd = reg_copy_regd(rd); 3073 if (IS_ERR(regd)) 3074 return PTR_ERR(regd); 3075 3076 rdev = wiphy_to_rdev(wiphy); 3077 3078 spin_lock(®_requests_lock); 3079 prev_regd = rdev->requested_regd; 3080 rdev->requested_regd = regd; 3081 spin_unlock(®_requests_lock); 3082 3083 kfree(prev_regd); 3084 return 0; 3085 } 3086 3087 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 3088 struct ieee80211_regdomain *rd) 3089 { 3090 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 3091 3092 if (ret) 3093 return ret; 3094 3095 schedule_work(®_work); 3096 return 0; 3097 } 3098 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 3099 3100 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, 3101 struct ieee80211_regdomain *rd) 3102 { 3103 int ret; 3104 3105 ASSERT_RTNL(); 3106 3107 ret = __regulatory_set_wiphy_regd(wiphy, rd); 3108 if (ret) 3109 return ret; 3110 3111 /* process the request immediately */ 3112 reg_process_self_managed_hints(); 3113 return 0; 3114 } 3115 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); 3116 3117 void wiphy_regulatory_register(struct wiphy *wiphy) 3118 { 3119 struct regulatory_request *lr; 3120 3121 /* self-managed devices ignore external hints */ 3122 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3123 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 3124 REGULATORY_COUNTRY_IE_IGNORE; 3125 3126 if (!reg_dev_ignore_cell_hint(wiphy)) 3127 reg_num_devs_support_basehint++; 3128 3129 lr = get_last_request(); 3130 wiphy_update_regulatory(wiphy, lr->initiator); 3131 } 3132 3133 void wiphy_regulatory_deregister(struct wiphy *wiphy) 3134 { 3135 struct wiphy *request_wiphy = NULL; 3136 struct regulatory_request *lr; 3137 3138 lr = get_last_request(); 3139 3140 if (!reg_dev_ignore_cell_hint(wiphy)) 3141 reg_num_devs_support_basehint--; 3142 3143 rcu_free_regdom(get_wiphy_regdom(wiphy)); 3144 RCU_INIT_POINTER(wiphy->regd, NULL); 3145 3146 if (lr) 3147 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 3148 3149 if (!request_wiphy || request_wiphy != wiphy) 3150 return; 3151 3152 lr->wiphy_idx = WIPHY_IDX_INVALID; 3153 lr->country_ie_env = ENVIRON_ANY; 3154 } 3155 3156 /* 3157 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for 3158 * UNII band definitions 3159 */ 3160 int cfg80211_get_unii(int freq) 3161 { 3162 /* UNII-1 */ 3163 if (freq >= 5150 && freq <= 5250) 3164 return 0; 3165 3166 /* UNII-2A */ 3167 if (freq > 5250 && freq <= 5350) 3168 return 1; 3169 3170 /* UNII-2B */ 3171 if (freq > 5350 && freq <= 5470) 3172 return 2; 3173 3174 /* UNII-2C */ 3175 if (freq > 5470 && freq <= 5725) 3176 return 3; 3177 3178 /* UNII-3 */ 3179 if (freq > 5725 && freq <= 5825) 3180 return 4; 3181 3182 return -EINVAL; 3183 } 3184 3185 bool regulatory_indoor_allowed(void) 3186 { 3187 return reg_is_indoor; 3188 } 3189 3190 int __init regulatory_init(void) 3191 { 3192 int err = 0; 3193 3194 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 3195 if (IS_ERR(reg_pdev)) 3196 return PTR_ERR(reg_pdev); 3197 3198 spin_lock_init(®_requests_lock); 3199 spin_lock_init(®_pending_beacons_lock); 3200 spin_lock_init(®_indoor_lock); 3201 3202 reg_regdb_size_check(); 3203 3204 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 3205 3206 user_alpha2[0] = '9'; 3207 user_alpha2[1] = '7'; 3208 3209 /* We always try to get an update for the static regdomain */ 3210 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 3211 if (err) { 3212 if (err == -ENOMEM) { 3213 platform_device_unregister(reg_pdev); 3214 return err; 3215 } 3216 /* 3217 * N.B. kobject_uevent_env() can fail mainly for when we're out 3218 * memory which is handled and propagated appropriately above 3219 * but it can also fail during a netlink_broadcast() or during 3220 * early boot for call_usermodehelper(). For now treat these 3221 * errors as non-fatal. 3222 */ 3223 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 3224 } 3225 3226 /* 3227 * Finally, if the user set the module parameter treat it 3228 * as a user hint. 3229 */ 3230 if (!is_world_regdom(ieee80211_regdom)) 3231 regulatory_hint_user(ieee80211_regdom, 3232 NL80211_USER_REG_HINT_USER); 3233 3234 return 0; 3235 } 3236 3237 void regulatory_exit(void) 3238 { 3239 struct regulatory_request *reg_request, *tmp; 3240 struct reg_beacon *reg_beacon, *btmp; 3241 3242 cancel_work_sync(®_work); 3243 cancel_crda_timeout_sync(); 3244 cancel_delayed_work_sync(®_check_chans); 3245 3246 /* Lock to suppress warnings */ 3247 rtnl_lock(); 3248 reset_regdomains(true, NULL); 3249 rtnl_unlock(); 3250 3251 dev_set_uevent_suppress(®_pdev->dev, true); 3252 3253 platform_device_unregister(reg_pdev); 3254 3255 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3256 list_del(®_beacon->list); 3257 kfree(reg_beacon); 3258 } 3259 3260 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3261 list_del(®_beacon->list); 3262 kfree(reg_beacon); 3263 } 3264 3265 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 3266 list_del(®_request->list); 3267 kfree(reg_request); 3268 } 3269 } 3270