xref: /openbmc/linux/net/wireless/reg.c (revision 2572f00d)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 
22 /**
23  * DOC: Wireless regulatory infrastructure
24  *
25  * The usual implementation is for a driver to read a device EEPROM to
26  * determine which regulatory domain it should be operating under, then
27  * looking up the allowable channels in a driver-local table and finally
28  * registering those channels in the wiphy structure.
29  *
30  * Another set of compliance enforcement is for drivers to use their
31  * own compliance limits which can be stored on the EEPROM. The host
32  * driver or firmware may ensure these are used.
33  *
34  * In addition to all this we provide an extra layer of regulatory
35  * conformance. For drivers which do not have any regulatory
36  * information CRDA provides the complete regulatory solution.
37  * For others it provides a community effort on further restrictions
38  * to enhance compliance.
39  *
40  * Note: When number of rules --> infinity we will not be able to
41  * index on alpha2 any more, instead we'll probably have to
42  * rely on some SHA1 checksum of the regdomain for example.
43  *
44  */
45 
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62 
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...)			\
65 	printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69 
70 /*
71  * Grace period we give before making sure all current interfaces reside on
72  * channels allowed by the current regulatory domain.
73  */
74 #define REG_ENFORCE_GRACE_MS 60000
75 
76 /**
77  * enum reg_request_treatment - regulatory request treatment
78  *
79  * @REG_REQ_OK: continue processing the regulatory request
80  * @REG_REQ_IGNORE: ignore the regulatory request
81  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82  *	be intersected with the current one.
83  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84  *	regulatory settings, and no further processing is required.
85  */
86 enum reg_request_treatment {
87 	REG_REQ_OK,
88 	REG_REQ_IGNORE,
89 	REG_REQ_INTERSECT,
90 	REG_REQ_ALREADY_SET,
91 };
92 
93 static struct regulatory_request core_request_world = {
94 	.initiator = NL80211_REGDOM_SET_BY_CORE,
95 	.alpha2[0] = '0',
96 	.alpha2[1] = '0',
97 	.intersect = false,
98 	.processed = true,
99 	.country_ie_env = ENVIRON_ANY,
100 };
101 
102 /*
103  * Receipt of information from last regulatory request,
104  * protected by RTNL (and can be accessed with RCU protection)
105  */
106 static struct regulatory_request __rcu *last_request =
107 	(void __force __rcu *)&core_request_world;
108 
109 /* To trigger userspace events */
110 static struct platform_device *reg_pdev;
111 
112 /*
113  * Central wireless core regulatory domains, we only need two,
114  * the current one and a world regulatory domain in case we have no
115  * information to give us an alpha2.
116  * (protected by RTNL, can be read under RCU)
117  */
118 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
119 
120 /*
121  * Number of devices that registered to the core
122  * that support cellular base station regulatory hints
123  * (protected by RTNL)
124  */
125 static int reg_num_devs_support_basehint;
126 
127 /*
128  * State variable indicating if the platform on which the devices
129  * are attached is operating in an indoor environment. The state variable
130  * is relevant for all registered devices.
131  */
132 static bool reg_is_indoor;
133 static spinlock_t reg_indoor_lock;
134 
135 /* Used to track the userspace process controlling the indoor setting */
136 static u32 reg_is_indoor_portid;
137 
138 static void restore_regulatory_settings(bool reset_user);
139 
140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142 	return rtnl_dereference(cfg80211_regdomain);
143 }
144 
145 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
146 {
147 	return rtnl_dereference(wiphy->regd);
148 }
149 
150 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
151 {
152 	switch (dfs_region) {
153 	case NL80211_DFS_UNSET:
154 		return "unset";
155 	case NL80211_DFS_FCC:
156 		return "FCC";
157 	case NL80211_DFS_ETSI:
158 		return "ETSI";
159 	case NL80211_DFS_JP:
160 		return "JP";
161 	}
162 	return "Unknown";
163 }
164 
165 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
166 {
167 	const struct ieee80211_regdomain *regd = NULL;
168 	const struct ieee80211_regdomain *wiphy_regd = NULL;
169 
170 	regd = get_cfg80211_regdom();
171 	if (!wiphy)
172 		goto out;
173 
174 	wiphy_regd = get_wiphy_regdom(wiphy);
175 	if (!wiphy_regd)
176 		goto out;
177 
178 	if (wiphy_regd->dfs_region == regd->dfs_region)
179 		goto out;
180 
181 	REG_DBG_PRINT("%s: device specific dfs_region "
182 		      "(%s) disagrees with cfg80211's "
183 		      "central dfs_region (%s)\n",
184 		      dev_name(&wiphy->dev),
185 		      reg_dfs_region_str(wiphy_regd->dfs_region),
186 		      reg_dfs_region_str(regd->dfs_region));
187 
188 out:
189 	return regd->dfs_region;
190 }
191 
192 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
193 {
194 	if (!r)
195 		return;
196 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
197 }
198 
199 static struct regulatory_request *get_last_request(void)
200 {
201 	return rcu_dereference_rtnl(last_request);
202 }
203 
204 /* Used to queue up regulatory hints */
205 static LIST_HEAD(reg_requests_list);
206 static spinlock_t reg_requests_lock;
207 
208 /* Used to queue up beacon hints for review */
209 static LIST_HEAD(reg_pending_beacons);
210 static spinlock_t reg_pending_beacons_lock;
211 
212 /* Used to keep track of processed beacon hints */
213 static LIST_HEAD(reg_beacon_list);
214 
215 struct reg_beacon {
216 	struct list_head list;
217 	struct ieee80211_channel chan;
218 };
219 
220 static void reg_check_chans_work(struct work_struct *work);
221 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
222 
223 static void reg_todo(struct work_struct *work);
224 static DECLARE_WORK(reg_work, reg_todo);
225 
226 /* We keep a static world regulatory domain in case of the absence of CRDA */
227 static const struct ieee80211_regdomain world_regdom = {
228 	.n_reg_rules = 8,
229 	.alpha2 =  "00",
230 	.reg_rules = {
231 		/* IEEE 802.11b/g, channels 1..11 */
232 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
233 		/* IEEE 802.11b/g, channels 12..13. */
234 		REG_RULE(2467-10, 2472+10, 40, 6, 20,
235 			NL80211_RRF_NO_IR),
236 		/* IEEE 802.11 channel 14 - Only JP enables
237 		 * this and for 802.11b only */
238 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
239 			NL80211_RRF_NO_IR |
240 			NL80211_RRF_NO_OFDM),
241 		/* IEEE 802.11a, channel 36..48 */
242 		REG_RULE(5180-10, 5240+10, 160, 6, 20,
243                         NL80211_RRF_NO_IR),
244 
245 		/* IEEE 802.11a, channel 52..64 - DFS required */
246 		REG_RULE(5260-10, 5320+10, 160, 6, 20,
247 			NL80211_RRF_NO_IR |
248 			NL80211_RRF_DFS),
249 
250 		/* IEEE 802.11a, channel 100..144 - DFS required */
251 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
252 			NL80211_RRF_NO_IR |
253 			NL80211_RRF_DFS),
254 
255 		/* IEEE 802.11a, channel 149..165 */
256 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
257 			NL80211_RRF_NO_IR),
258 
259 		/* IEEE 802.11ad (60GHz), channels 1..3 */
260 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
261 	}
262 };
263 
264 /* protected by RTNL */
265 static const struct ieee80211_regdomain *cfg80211_world_regdom =
266 	&world_regdom;
267 
268 static char *ieee80211_regdom = "00";
269 static char user_alpha2[2];
270 
271 module_param(ieee80211_regdom, charp, 0444);
272 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
273 
274 static void reg_free_request(struct regulatory_request *request)
275 {
276 	if (request == &core_request_world)
277 		return;
278 
279 	if (request != get_last_request())
280 		kfree(request);
281 }
282 
283 static void reg_free_last_request(void)
284 {
285 	struct regulatory_request *lr = get_last_request();
286 
287 	if (lr != &core_request_world && lr)
288 		kfree_rcu(lr, rcu_head);
289 }
290 
291 static void reg_update_last_request(struct regulatory_request *request)
292 {
293 	struct regulatory_request *lr;
294 
295 	lr = get_last_request();
296 	if (lr == request)
297 		return;
298 
299 	reg_free_last_request();
300 	rcu_assign_pointer(last_request, request);
301 }
302 
303 static void reset_regdomains(bool full_reset,
304 			     const struct ieee80211_regdomain *new_regdom)
305 {
306 	const struct ieee80211_regdomain *r;
307 
308 	ASSERT_RTNL();
309 
310 	r = get_cfg80211_regdom();
311 
312 	/* avoid freeing static information or freeing something twice */
313 	if (r == cfg80211_world_regdom)
314 		r = NULL;
315 	if (cfg80211_world_regdom == &world_regdom)
316 		cfg80211_world_regdom = NULL;
317 	if (r == &world_regdom)
318 		r = NULL;
319 
320 	rcu_free_regdom(r);
321 	rcu_free_regdom(cfg80211_world_regdom);
322 
323 	cfg80211_world_regdom = &world_regdom;
324 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
325 
326 	if (!full_reset)
327 		return;
328 
329 	reg_update_last_request(&core_request_world);
330 }
331 
332 /*
333  * Dynamic world regulatory domain requested by the wireless
334  * core upon initialization
335  */
336 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
337 {
338 	struct regulatory_request *lr;
339 
340 	lr = get_last_request();
341 
342 	WARN_ON(!lr);
343 
344 	reset_regdomains(false, rd);
345 
346 	cfg80211_world_regdom = rd;
347 }
348 
349 bool is_world_regdom(const char *alpha2)
350 {
351 	if (!alpha2)
352 		return false;
353 	return alpha2[0] == '0' && alpha2[1] == '0';
354 }
355 
356 static bool is_alpha2_set(const char *alpha2)
357 {
358 	if (!alpha2)
359 		return false;
360 	return alpha2[0] && alpha2[1];
361 }
362 
363 static bool is_unknown_alpha2(const char *alpha2)
364 {
365 	if (!alpha2)
366 		return false;
367 	/*
368 	 * Special case where regulatory domain was built by driver
369 	 * but a specific alpha2 cannot be determined
370 	 */
371 	return alpha2[0] == '9' && alpha2[1] == '9';
372 }
373 
374 static bool is_intersected_alpha2(const char *alpha2)
375 {
376 	if (!alpha2)
377 		return false;
378 	/*
379 	 * Special case where regulatory domain is the
380 	 * result of an intersection between two regulatory domain
381 	 * structures
382 	 */
383 	return alpha2[0] == '9' && alpha2[1] == '8';
384 }
385 
386 static bool is_an_alpha2(const char *alpha2)
387 {
388 	if (!alpha2)
389 		return false;
390 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
391 }
392 
393 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
394 {
395 	if (!alpha2_x || !alpha2_y)
396 		return false;
397 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
398 }
399 
400 static bool regdom_changes(const char *alpha2)
401 {
402 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
403 
404 	if (!r)
405 		return true;
406 	return !alpha2_equal(r->alpha2, alpha2);
407 }
408 
409 /*
410  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
411  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
412  * has ever been issued.
413  */
414 static bool is_user_regdom_saved(void)
415 {
416 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
417 		return false;
418 
419 	/* This would indicate a mistake on the design */
420 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
421 		 "Unexpected user alpha2: %c%c\n",
422 		 user_alpha2[0], user_alpha2[1]))
423 		return false;
424 
425 	return true;
426 }
427 
428 static const struct ieee80211_regdomain *
429 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
430 {
431 	struct ieee80211_regdomain *regd;
432 	int size_of_regd;
433 	unsigned int i;
434 
435 	size_of_regd =
436 		sizeof(struct ieee80211_regdomain) +
437 		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
438 
439 	regd = kzalloc(size_of_regd, GFP_KERNEL);
440 	if (!regd)
441 		return ERR_PTR(-ENOMEM);
442 
443 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
444 
445 	for (i = 0; i < src_regd->n_reg_rules; i++)
446 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
447 		       sizeof(struct ieee80211_reg_rule));
448 
449 	return regd;
450 }
451 
452 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
453 struct reg_regdb_apply_request {
454 	struct list_head list;
455 	const struct ieee80211_regdomain *regdom;
456 };
457 
458 static LIST_HEAD(reg_regdb_apply_list);
459 static DEFINE_MUTEX(reg_regdb_apply_mutex);
460 
461 static void reg_regdb_apply(struct work_struct *work)
462 {
463 	struct reg_regdb_apply_request *request;
464 
465 	rtnl_lock();
466 
467 	mutex_lock(&reg_regdb_apply_mutex);
468 	while (!list_empty(&reg_regdb_apply_list)) {
469 		request = list_first_entry(&reg_regdb_apply_list,
470 					   struct reg_regdb_apply_request,
471 					   list);
472 		list_del(&request->list);
473 
474 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
475 		kfree(request);
476 	}
477 	mutex_unlock(&reg_regdb_apply_mutex);
478 
479 	rtnl_unlock();
480 }
481 
482 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
483 
484 static int reg_query_builtin(const char *alpha2)
485 {
486 	const struct ieee80211_regdomain *regdom = NULL;
487 	struct reg_regdb_apply_request *request;
488 	unsigned int i;
489 
490 	for (i = 0; i < reg_regdb_size; i++) {
491 		if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
492 			regdom = reg_regdb[i];
493 			break;
494 		}
495 	}
496 
497 	if (!regdom)
498 		return -ENODATA;
499 
500 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
501 	if (!request)
502 		return -ENOMEM;
503 
504 	request->regdom = reg_copy_regd(regdom);
505 	if (IS_ERR_OR_NULL(request->regdom)) {
506 		kfree(request);
507 		return -ENOMEM;
508 	}
509 
510 	mutex_lock(&reg_regdb_apply_mutex);
511 	list_add_tail(&request->list, &reg_regdb_apply_list);
512 	mutex_unlock(&reg_regdb_apply_mutex);
513 
514 	schedule_work(&reg_regdb_work);
515 
516 	return 0;
517 }
518 
519 /* Feel free to add any other sanity checks here */
520 static void reg_regdb_size_check(void)
521 {
522 	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
523 	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
524 }
525 #else
526 static inline void reg_regdb_size_check(void) {}
527 static inline int reg_query_builtin(const char *alpha2)
528 {
529 	return -ENODATA;
530 }
531 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
532 
533 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
534 /* Max number of consecutive attempts to communicate with CRDA  */
535 #define REG_MAX_CRDA_TIMEOUTS 10
536 
537 static u32 reg_crda_timeouts;
538 
539 static void crda_timeout_work(struct work_struct *work);
540 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
541 
542 static void crda_timeout_work(struct work_struct *work)
543 {
544 	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
545 	rtnl_lock();
546 	reg_crda_timeouts++;
547 	restore_regulatory_settings(true);
548 	rtnl_unlock();
549 }
550 
551 static void cancel_crda_timeout(void)
552 {
553 	cancel_delayed_work(&crda_timeout);
554 }
555 
556 static void cancel_crda_timeout_sync(void)
557 {
558 	cancel_delayed_work_sync(&crda_timeout);
559 }
560 
561 static void reset_crda_timeouts(void)
562 {
563 	reg_crda_timeouts = 0;
564 }
565 
566 /*
567  * This lets us keep regulatory code which is updated on a regulatory
568  * basis in userspace.
569  */
570 static int call_crda(const char *alpha2)
571 {
572 	char country[12];
573 	char *env[] = { country, NULL };
574 	int ret;
575 
576 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
577 		 alpha2[0], alpha2[1]);
578 
579 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
580 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
581 		return -EINVAL;
582 	}
583 
584 	if (!is_world_regdom((char *) alpha2))
585 		pr_debug("Calling CRDA for country: %c%c\n",
586 			alpha2[0], alpha2[1]);
587 	else
588 		pr_debug("Calling CRDA to update world regulatory domain\n");
589 
590 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
591 	if (ret)
592 		return ret;
593 
594 	queue_delayed_work(system_power_efficient_wq,
595 			   &crda_timeout, msecs_to_jiffies(3142));
596 	return 0;
597 }
598 #else
599 static inline void cancel_crda_timeout(void) {}
600 static inline void cancel_crda_timeout_sync(void) {}
601 static inline void reset_crda_timeouts(void) {}
602 static inline int call_crda(const char *alpha2)
603 {
604 	return -ENODATA;
605 }
606 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
607 
608 static bool reg_query_database(struct regulatory_request *request)
609 {
610 	/* query internal regulatory database (if it exists) */
611 	if (reg_query_builtin(request->alpha2) == 0)
612 		return true;
613 
614 	if (call_crda(request->alpha2) == 0)
615 		return true;
616 
617 	return false;
618 }
619 
620 bool reg_is_valid_request(const char *alpha2)
621 {
622 	struct regulatory_request *lr = get_last_request();
623 
624 	if (!lr || lr->processed)
625 		return false;
626 
627 	return alpha2_equal(lr->alpha2, alpha2);
628 }
629 
630 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
631 {
632 	struct regulatory_request *lr = get_last_request();
633 
634 	/*
635 	 * Follow the driver's regulatory domain, if present, unless a country
636 	 * IE has been processed or a user wants to help complaince further
637 	 */
638 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
639 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
640 	    wiphy->regd)
641 		return get_wiphy_regdom(wiphy);
642 
643 	return get_cfg80211_regdom();
644 }
645 
646 static unsigned int
647 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
648 				 const struct ieee80211_reg_rule *rule)
649 {
650 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
651 	const struct ieee80211_freq_range *freq_range_tmp;
652 	const struct ieee80211_reg_rule *tmp;
653 	u32 start_freq, end_freq, idx, no;
654 
655 	for (idx = 0; idx < rd->n_reg_rules; idx++)
656 		if (rule == &rd->reg_rules[idx])
657 			break;
658 
659 	if (idx == rd->n_reg_rules)
660 		return 0;
661 
662 	/* get start_freq */
663 	no = idx;
664 
665 	while (no) {
666 		tmp = &rd->reg_rules[--no];
667 		freq_range_tmp = &tmp->freq_range;
668 
669 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
670 			break;
671 
672 		freq_range = freq_range_tmp;
673 	}
674 
675 	start_freq = freq_range->start_freq_khz;
676 
677 	/* get end_freq */
678 	freq_range = &rule->freq_range;
679 	no = idx;
680 
681 	while (no < rd->n_reg_rules - 1) {
682 		tmp = &rd->reg_rules[++no];
683 		freq_range_tmp = &tmp->freq_range;
684 
685 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
686 			break;
687 
688 		freq_range = freq_range_tmp;
689 	}
690 
691 	end_freq = freq_range->end_freq_khz;
692 
693 	return end_freq - start_freq;
694 }
695 
696 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
697 				   const struct ieee80211_reg_rule *rule)
698 {
699 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
700 
701 	if (rule->flags & NL80211_RRF_NO_160MHZ)
702 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
703 	if (rule->flags & NL80211_RRF_NO_80MHZ)
704 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
705 
706 	/*
707 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
708 	 * are not allowed.
709 	 */
710 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
711 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
712 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
713 
714 	return bw;
715 }
716 
717 /* Sanity check on a regulatory rule */
718 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
719 {
720 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
721 	u32 freq_diff;
722 
723 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
724 		return false;
725 
726 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
727 		return false;
728 
729 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
730 
731 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
732 	    freq_range->max_bandwidth_khz > freq_diff)
733 		return false;
734 
735 	return true;
736 }
737 
738 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
739 {
740 	const struct ieee80211_reg_rule *reg_rule = NULL;
741 	unsigned int i;
742 
743 	if (!rd->n_reg_rules)
744 		return false;
745 
746 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
747 		return false;
748 
749 	for (i = 0; i < rd->n_reg_rules; i++) {
750 		reg_rule = &rd->reg_rules[i];
751 		if (!is_valid_reg_rule(reg_rule))
752 			return false;
753 	}
754 
755 	return true;
756 }
757 
758 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
759 			    u32 center_freq_khz, u32 bw_khz)
760 {
761 	u32 start_freq_khz, end_freq_khz;
762 
763 	start_freq_khz = center_freq_khz - (bw_khz/2);
764 	end_freq_khz = center_freq_khz + (bw_khz/2);
765 
766 	if (start_freq_khz >= freq_range->start_freq_khz &&
767 	    end_freq_khz <= freq_range->end_freq_khz)
768 		return true;
769 
770 	return false;
771 }
772 
773 /**
774  * freq_in_rule_band - tells us if a frequency is in a frequency band
775  * @freq_range: frequency rule we want to query
776  * @freq_khz: frequency we are inquiring about
777  *
778  * This lets us know if a specific frequency rule is or is not relevant to
779  * a specific frequency's band. Bands are device specific and artificial
780  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
781  * however it is safe for now to assume that a frequency rule should not be
782  * part of a frequency's band if the start freq or end freq are off by more
783  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
784  * 60 GHz band.
785  * This resolution can be lowered and should be considered as we add
786  * regulatory rule support for other "bands".
787  **/
788 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
789 			      u32 freq_khz)
790 {
791 #define ONE_GHZ_IN_KHZ	1000000
792 	/*
793 	 * From 802.11ad: directional multi-gigabit (DMG):
794 	 * Pertaining to operation in a frequency band containing a channel
795 	 * with the Channel starting frequency above 45 GHz.
796 	 */
797 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
798 			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
799 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
800 		return true;
801 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
802 		return true;
803 	return false;
804 #undef ONE_GHZ_IN_KHZ
805 }
806 
807 /*
808  * Later on we can perhaps use the more restrictive DFS
809  * region but we don't have information for that yet so
810  * for now simply disallow conflicts.
811  */
812 static enum nl80211_dfs_regions
813 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
814 			 const enum nl80211_dfs_regions dfs_region2)
815 {
816 	if (dfs_region1 != dfs_region2)
817 		return NL80211_DFS_UNSET;
818 	return dfs_region1;
819 }
820 
821 /*
822  * Helper for regdom_intersect(), this does the real
823  * mathematical intersection fun
824  */
825 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
826 			       const struct ieee80211_regdomain *rd2,
827 			       const struct ieee80211_reg_rule *rule1,
828 			       const struct ieee80211_reg_rule *rule2,
829 			       struct ieee80211_reg_rule *intersected_rule)
830 {
831 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
832 	struct ieee80211_freq_range *freq_range;
833 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
834 	struct ieee80211_power_rule *power_rule;
835 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
836 
837 	freq_range1 = &rule1->freq_range;
838 	freq_range2 = &rule2->freq_range;
839 	freq_range = &intersected_rule->freq_range;
840 
841 	power_rule1 = &rule1->power_rule;
842 	power_rule2 = &rule2->power_rule;
843 	power_rule = &intersected_rule->power_rule;
844 
845 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
846 					 freq_range2->start_freq_khz);
847 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
848 				       freq_range2->end_freq_khz);
849 
850 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
851 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
852 
853 	if (rule1->flags & NL80211_RRF_AUTO_BW)
854 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
855 	if (rule2->flags & NL80211_RRF_AUTO_BW)
856 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
857 
858 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
859 
860 	intersected_rule->flags = rule1->flags | rule2->flags;
861 
862 	/*
863 	 * In case NL80211_RRF_AUTO_BW requested for both rules
864 	 * set AUTO_BW in intersected rule also. Next we will
865 	 * calculate BW correctly in handle_channel function.
866 	 * In other case remove AUTO_BW flag while we calculate
867 	 * maximum bandwidth correctly and auto calculation is
868 	 * not required.
869 	 */
870 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
871 	    (rule2->flags & NL80211_RRF_AUTO_BW))
872 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
873 	else
874 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
875 
876 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
877 	if (freq_range->max_bandwidth_khz > freq_diff)
878 		freq_range->max_bandwidth_khz = freq_diff;
879 
880 	power_rule->max_eirp = min(power_rule1->max_eirp,
881 		power_rule2->max_eirp);
882 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
883 		power_rule2->max_antenna_gain);
884 
885 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
886 					   rule2->dfs_cac_ms);
887 
888 	if (!is_valid_reg_rule(intersected_rule))
889 		return -EINVAL;
890 
891 	return 0;
892 }
893 
894 /* check whether old rule contains new rule */
895 static bool rule_contains(struct ieee80211_reg_rule *r1,
896 			  struct ieee80211_reg_rule *r2)
897 {
898 	/* for simplicity, currently consider only same flags */
899 	if (r1->flags != r2->flags)
900 		return false;
901 
902 	/* verify r1 is more restrictive */
903 	if ((r1->power_rule.max_antenna_gain >
904 	     r2->power_rule.max_antenna_gain) ||
905 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
906 		return false;
907 
908 	/* make sure r2's range is contained within r1 */
909 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
910 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
911 		return false;
912 
913 	/* and finally verify that r1.max_bw >= r2.max_bw */
914 	if (r1->freq_range.max_bandwidth_khz <
915 	    r2->freq_range.max_bandwidth_khz)
916 		return false;
917 
918 	return true;
919 }
920 
921 /* add or extend current rules. do nothing if rule is already contained */
922 static void add_rule(struct ieee80211_reg_rule *rule,
923 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
924 {
925 	struct ieee80211_reg_rule *tmp_rule;
926 	int i;
927 
928 	for (i = 0; i < *n_rules; i++) {
929 		tmp_rule = &reg_rules[i];
930 		/* rule is already contained - do nothing */
931 		if (rule_contains(tmp_rule, rule))
932 			return;
933 
934 		/* extend rule if possible */
935 		if (rule_contains(rule, tmp_rule)) {
936 			memcpy(tmp_rule, rule, sizeof(*rule));
937 			return;
938 		}
939 	}
940 
941 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
942 	(*n_rules)++;
943 }
944 
945 /**
946  * regdom_intersect - do the intersection between two regulatory domains
947  * @rd1: first regulatory domain
948  * @rd2: second regulatory domain
949  *
950  * Use this function to get the intersection between two regulatory domains.
951  * Once completed we will mark the alpha2 for the rd as intersected, "98",
952  * as no one single alpha2 can represent this regulatory domain.
953  *
954  * Returns a pointer to the regulatory domain structure which will hold the
955  * resulting intersection of rules between rd1 and rd2. We will
956  * kzalloc() this structure for you.
957  */
958 static struct ieee80211_regdomain *
959 regdom_intersect(const struct ieee80211_regdomain *rd1,
960 		 const struct ieee80211_regdomain *rd2)
961 {
962 	int r, size_of_regd;
963 	unsigned int x, y;
964 	unsigned int num_rules = 0;
965 	const struct ieee80211_reg_rule *rule1, *rule2;
966 	struct ieee80211_reg_rule intersected_rule;
967 	struct ieee80211_regdomain *rd;
968 
969 	if (!rd1 || !rd2)
970 		return NULL;
971 
972 	/*
973 	 * First we get a count of the rules we'll need, then we actually
974 	 * build them. This is to so we can malloc() and free() a
975 	 * regdomain once. The reason we use reg_rules_intersect() here
976 	 * is it will return -EINVAL if the rule computed makes no sense.
977 	 * All rules that do check out OK are valid.
978 	 */
979 
980 	for (x = 0; x < rd1->n_reg_rules; x++) {
981 		rule1 = &rd1->reg_rules[x];
982 		for (y = 0; y < rd2->n_reg_rules; y++) {
983 			rule2 = &rd2->reg_rules[y];
984 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
985 						 &intersected_rule))
986 				num_rules++;
987 		}
988 	}
989 
990 	if (!num_rules)
991 		return NULL;
992 
993 	size_of_regd = sizeof(struct ieee80211_regdomain) +
994 		       num_rules * sizeof(struct ieee80211_reg_rule);
995 
996 	rd = kzalloc(size_of_regd, GFP_KERNEL);
997 	if (!rd)
998 		return NULL;
999 
1000 	for (x = 0; x < rd1->n_reg_rules; x++) {
1001 		rule1 = &rd1->reg_rules[x];
1002 		for (y = 0; y < rd2->n_reg_rules; y++) {
1003 			rule2 = &rd2->reg_rules[y];
1004 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1005 						&intersected_rule);
1006 			/*
1007 			 * No need to memset here the intersected rule here as
1008 			 * we're not using the stack anymore
1009 			 */
1010 			if (r)
1011 				continue;
1012 
1013 			add_rule(&intersected_rule, rd->reg_rules,
1014 				 &rd->n_reg_rules);
1015 		}
1016 	}
1017 
1018 	rd->alpha2[0] = '9';
1019 	rd->alpha2[1] = '8';
1020 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1021 						  rd2->dfs_region);
1022 
1023 	return rd;
1024 }
1025 
1026 /*
1027  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1028  * want to just have the channel structure use these
1029  */
1030 static u32 map_regdom_flags(u32 rd_flags)
1031 {
1032 	u32 channel_flags = 0;
1033 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1034 		channel_flags |= IEEE80211_CHAN_NO_IR;
1035 	if (rd_flags & NL80211_RRF_DFS)
1036 		channel_flags |= IEEE80211_CHAN_RADAR;
1037 	if (rd_flags & NL80211_RRF_NO_OFDM)
1038 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1039 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1040 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1041 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1042 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1043 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1044 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1045 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1046 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1047 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1048 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1049 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1050 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1051 	return channel_flags;
1052 }
1053 
1054 static const struct ieee80211_reg_rule *
1055 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
1056 		   const struct ieee80211_regdomain *regd, u32 bw)
1057 {
1058 	int i;
1059 	bool band_rule_found = false;
1060 	bool bw_fits = false;
1061 
1062 	if (!regd)
1063 		return ERR_PTR(-EINVAL);
1064 
1065 	for (i = 0; i < regd->n_reg_rules; i++) {
1066 		const struct ieee80211_reg_rule *rr;
1067 		const struct ieee80211_freq_range *fr = NULL;
1068 
1069 		rr = &regd->reg_rules[i];
1070 		fr = &rr->freq_range;
1071 
1072 		/*
1073 		 * We only need to know if one frequency rule was
1074 		 * was in center_freq's band, that's enough, so lets
1075 		 * not overwrite it once found
1076 		 */
1077 		if (!band_rule_found)
1078 			band_rule_found = freq_in_rule_band(fr, center_freq);
1079 
1080 		bw_fits = reg_does_bw_fit(fr, center_freq, bw);
1081 
1082 		if (band_rule_found && bw_fits)
1083 			return rr;
1084 	}
1085 
1086 	if (!band_rule_found)
1087 		return ERR_PTR(-ERANGE);
1088 
1089 	return ERR_PTR(-EINVAL);
1090 }
1091 
1092 static const struct ieee80211_reg_rule *
1093 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1094 {
1095 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1096 	const struct ieee80211_reg_rule *reg_rule = NULL;
1097 	u32 bw;
1098 
1099 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1100 		reg_rule = freq_reg_info_regd(wiphy, center_freq, regd, bw);
1101 		if (!IS_ERR(reg_rule))
1102 			return reg_rule;
1103 	}
1104 
1105 	return reg_rule;
1106 }
1107 
1108 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1109 					       u32 center_freq)
1110 {
1111 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1112 }
1113 EXPORT_SYMBOL(freq_reg_info);
1114 
1115 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1116 {
1117 	switch (initiator) {
1118 	case NL80211_REGDOM_SET_BY_CORE:
1119 		return "core";
1120 	case NL80211_REGDOM_SET_BY_USER:
1121 		return "user";
1122 	case NL80211_REGDOM_SET_BY_DRIVER:
1123 		return "driver";
1124 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1125 		return "country IE";
1126 	default:
1127 		WARN_ON(1);
1128 		return "bug";
1129 	}
1130 }
1131 EXPORT_SYMBOL(reg_initiator_name);
1132 
1133 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1134 				    struct ieee80211_channel *chan,
1135 				    const struct ieee80211_reg_rule *reg_rule)
1136 {
1137 #ifdef CONFIG_CFG80211_REG_DEBUG
1138 	const struct ieee80211_power_rule *power_rule;
1139 	const struct ieee80211_freq_range *freq_range;
1140 	char max_antenna_gain[32], bw[32];
1141 
1142 	power_rule = &reg_rule->power_rule;
1143 	freq_range = &reg_rule->freq_range;
1144 
1145 	if (!power_rule->max_antenna_gain)
1146 		snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1147 	else
1148 		snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d mBi",
1149 			 power_rule->max_antenna_gain);
1150 
1151 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1152 		snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1153 			 freq_range->max_bandwidth_khz,
1154 			 reg_get_max_bandwidth(regd, reg_rule));
1155 	else
1156 		snprintf(bw, sizeof(bw), "%d KHz",
1157 			 freq_range->max_bandwidth_khz);
1158 
1159 	REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1160 		      chan->center_freq);
1161 
1162 	REG_DBG_PRINT("(%d KHz - %d KHz @ %s), (%s, %d mBm)\n",
1163 		      freq_range->start_freq_khz, freq_range->end_freq_khz,
1164 		      bw, max_antenna_gain,
1165 		      power_rule->max_eirp);
1166 #endif
1167 }
1168 
1169 /*
1170  * Note that right now we assume the desired channel bandwidth
1171  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1172  * per channel, the primary and the extension channel).
1173  */
1174 static void handle_channel(struct wiphy *wiphy,
1175 			   enum nl80211_reg_initiator initiator,
1176 			   struct ieee80211_channel *chan)
1177 {
1178 	u32 flags, bw_flags = 0;
1179 	const struct ieee80211_reg_rule *reg_rule = NULL;
1180 	const struct ieee80211_power_rule *power_rule = NULL;
1181 	const struct ieee80211_freq_range *freq_range = NULL;
1182 	struct wiphy *request_wiphy = NULL;
1183 	struct regulatory_request *lr = get_last_request();
1184 	const struct ieee80211_regdomain *regd;
1185 	u32 max_bandwidth_khz;
1186 
1187 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1188 
1189 	flags = chan->orig_flags;
1190 
1191 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1192 	if (IS_ERR(reg_rule)) {
1193 		/*
1194 		 * We will disable all channels that do not match our
1195 		 * received regulatory rule unless the hint is coming
1196 		 * from a Country IE and the Country IE had no information
1197 		 * about a band. The IEEE 802.11 spec allows for an AP
1198 		 * to send only a subset of the regulatory rules allowed,
1199 		 * so an AP in the US that only supports 2.4 GHz may only send
1200 		 * a country IE with information for the 2.4 GHz band
1201 		 * while 5 GHz is still supported.
1202 		 */
1203 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1204 		    PTR_ERR(reg_rule) == -ERANGE)
1205 			return;
1206 
1207 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1208 		    request_wiphy && request_wiphy == wiphy &&
1209 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1210 			REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1211 				      chan->center_freq);
1212 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1213 			chan->flags = chan->orig_flags;
1214 		} else {
1215 			REG_DBG_PRINT("Disabling freq %d MHz\n",
1216 				      chan->center_freq);
1217 			chan->flags |= IEEE80211_CHAN_DISABLED;
1218 		}
1219 		return;
1220 	}
1221 
1222 	regd = reg_get_regdomain(wiphy);
1223 	chan_reg_rule_print_dbg(regd, chan, reg_rule);
1224 
1225 	power_rule = &reg_rule->power_rule;
1226 	freq_range = &reg_rule->freq_range;
1227 
1228 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1229 	/* Check if auto calculation requested */
1230 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1231 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1232 
1233 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1234 	if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1235 			     MHZ_TO_KHZ(10)))
1236 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1237 	if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1238 			     MHZ_TO_KHZ(20)))
1239 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1240 
1241 	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1242 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1243 	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1244 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1245 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1246 		bw_flags |= IEEE80211_CHAN_NO_HT40;
1247 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1248 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1249 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1250 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1251 
1252 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1253 	    request_wiphy && request_wiphy == wiphy &&
1254 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1255 		/*
1256 		 * This guarantees the driver's requested regulatory domain
1257 		 * will always be used as a base for further regulatory
1258 		 * settings
1259 		 */
1260 		chan->flags = chan->orig_flags =
1261 			map_regdom_flags(reg_rule->flags) | bw_flags;
1262 		chan->max_antenna_gain = chan->orig_mag =
1263 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1264 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1265 			(int) MBM_TO_DBM(power_rule->max_eirp);
1266 
1267 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1268 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1269 			if (reg_rule->dfs_cac_ms)
1270 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1271 		}
1272 
1273 		return;
1274 	}
1275 
1276 	chan->dfs_state = NL80211_DFS_USABLE;
1277 	chan->dfs_state_entered = jiffies;
1278 
1279 	chan->beacon_found = false;
1280 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1281 	chan->max_antenna_gain =
1282 		min_t(int, chan->orig_mag,
1283 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1284 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1285 
1286 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1287 		if (reg_rule->dfs_cac_ms)
1288 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1289 		else
1290 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1291 	}
1292 
1293 	if (chan->orig_mpwr) {
1294 		/*
1295 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1296 		 * will always follow the passed country IE power settings.
1297 		 */
1298 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1299 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1300 			chan->max_power = chan->max_reg_power;
1301 		else
1302 			chan->max_power = min(chan->orig_mpwr,
1303 					      chan->max_reg_power);
1304 	} else
1305 		chan->max_power = chan->max_reg_power;
1306 }
1307 
1308 static void handle_band(struct wiphy *wiphy,
1309 			enum nl80211_reg_initiator initiator,
1310 			struct ieee80211_supported_band *sband)
1311 {
1312 	unsigned int i;
1313 
1314 	if (!sband)
1315 		return;
1316 
1317 	for (i = 0; i < sband->n_channels; i++)
1318 		handle_channel(wiphy, initiator, &sband->channels[i]);
1319 }
1320 
1321 static bool reg_request_cell_base(struct regulatory_request *request)
1322 {
1323 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1324 		return false;
1325 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1326 }
1327 
1328 bool reg_last_request_cell_base(void)
1329 {
1330 	return reg_request_cell_base(get_last_request());
1331 }
1332 
1333 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1334 /* Core specific check */
1335 static enum reg_request_treatment
1336 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1337 {
1338 	struct regulatory_request *lr = get_last_request();
1339 
1340 	if (!reg_num_devs_support_basehint)
1341 		return REG_REQ_IGNORE;
1342 
1343 	if (reg_request_cell_base(lr) &&
1344 	    !regdom_changes(pending_request->alpha2))
1345 		return REG_REQ_ALREADY_SET;
1346 
1347 	return REG_REQ_OK;
1348 }
1349 
1350 /* Device specific check */
1351 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1352 {
1353 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1354 }
1355 #else
1356 static enum reg_request_treatment
1357 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1358 {
1359 	return REG_REQ_IGNORE;
1360 }
1361 
1362 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1363 {
1364 	return true;
1365 }
1366 #endif
1367 
1368 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1369 {
1370 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1371 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1372 		return true;
1373 	return false;
1374 }
1375 
1376 static bool ignore_reg_update(struct wiphy *wiphy,
1377 			      enum nl80211_reg_initiator initiator)
1378 {
1379 	struct regulatory_request *lr = get_last_request();
1380 
1381 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1382 		return true;
1383 
1384 	if (!lr) {
1385 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1386 			      "since last_request is not set\n",
1387 			      reg_initiator_name(initiator));
1388 		return true;
1389 	}
1390 
1391 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1392 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1393 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1394 			      "since the driver uses its own custom "
1395 			      "regulatory domain\n",
1396 			      reg_initiator_name(initiator));
1397 		return true;
1398 	}
1399 
1400 	/*
1401 	 * wiphy->regd will be set once the device has its own
1402 	 * desired regulatory domain set
1403 	 */
1404 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1405 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1406 	    !is_world_regdom(lr->alpha2)) {
1407 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1408 			      "since the driver requires its own regulatory "
1409 			      "domain to be set first\n",
1410 			      reg_initiator_name(initiator));
1411 		return true;
1412 	}
1413 
1414 	if (reg_request_cell_base(lr))
1415 		return reg_dev_ignore_cell_hint(wiphy);
1416 
1417 	return false;
1418 }
1419 
1420 static bool reg_is_world_roaming(struct wiphy *wiphy)
1421 {
1422 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1423 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1424 	struct regulatory_request *lr = get_last_request();
1425 
1426 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1427 		return true;
1428 
1429 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1430 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1431 		return true;
1432 
1433 	return false;
1434 }
1435 
1436 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1437 			      struct reg_beacon *reg_beacon)
1438 {
1439 	struct ieee80211_supported_band *sband;
1440 	struct ieee80211_channel *chan;
1441 	bool channel_changed = false;
1442 	struct ieee80211_channel chan_before;
1443 
1444 	sband = wiphy->bands[reg_beacon->chan.band];
1445 	chan = &sband->channels[chan_idx];
1446 
1447 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1448 		return;
1449 
1450 	if (chan->beacon_found)
1451 		return;
1452 
1453 	chan->beacon_found = true;
1454 
1455 	if (!reg_is_world_roaming(wiphy))
1456 		return;
1457 
1458 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1459 		return;
1460 
1461 	chan_before.center_freq = chan->center_freq;
1462 	chan_before.flags = chan->flags;
1463 
1464 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1465 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1466 		channel_changed = true;
1467 	}
1468 
1469 	if (channel_changed)
1470 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1471 }
1472 
1473 /*
1474  * Called when a scan on a wiphy finds a beacon on
1475  * new channel
1476  */
1477 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1478 				    struct reg_beacon *reg_beacon)
1479 {
1480 	unsigned int i;
1481 	struct ieee80211_supported_band *sband;
1482 
1483 	if (!wiphy->bands[reg_beacon->chan.band])
1484 		return;
1485 
1486 	sband = wiphy->bands[reg_beacon->chan.band];
1487 
1488 	for (i = 0; i < sband->n_channels; i++)
1489 		handle_reg_beacon(wiphy, i, reg_beacon);
1490 }
1491 
1492 /*
1493  * Called upon reg changes or a new wiphy is added
1494  */
1495 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1496 {
1497 	unsigned int i;
1498 	struct ieee80211_supported_band *sband;
1499 	struct reg_beacon *reg_beacon;
1500 
1501 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1502 		if (!wiphy->bands[reg_beacon->chan.band])
1503 			continue;
1504 		sband = wiphy->bands[reg_beacon->chan.band];
1505 		for (i = 0; i < sband->n_channels; i++)
1506 			handle_reg_beacon(wiphy, i, reg_beacon);
1507 	}
1508 }
1509 
1510 /* Reap the advantages of previously found beacons */
1511 static void reg_process_beacons(struct wiphy *wiphy)
1512 {
1513 	/*
1514 	 * Means we are just firing up cfg80211, so no beacons would
1515 	 * have been processed yet.
1516 	 */
1517 	if (!last_request)
1518 		return;
1519 	wiphy_update_beacon_reg(wiphy);
1520 }
1521 
1522 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1523 {
1524 	if (!chan)
1525 		return false;
1526 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1527 		return false;
1528 	/* This would happen when regulatory rules disallow HT40 completely */
1529 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1530 		return false;
1531 	return true;
1532 }
1533 
1534 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1535 					 struct ieee80211_channel *channel)
1536 {
1537 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1538 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1539 	unsigned int i;
1540 
1541 	if (!is_ht40_allowed(channel)) {
1542 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1543 		return;
1544 	}
1545 
1546 	/*
1547 	 * We need to ensure the extension channels exist to
1548 	 * be able to use HT40- or HT40+, this finds them (or not)
1549 	 */
1550 	for (i = 0; i < sband->n_channels; i++) {
1551 		struct ieee80211_channel *c = &sband->channels[i];
1552 
1553 		if (c->center_freq == (channel->center_freq - 20))
1554 			channel_before = c;
1555 		if (c->center_freq == (channel->center_freq + 20))
1556 			channel_after = c;
1557 	}
1558 
1559 	/*
1560 	 * Please note that this assumes target bandwidth is 20 MHz,
1561 	 * if that ever changes we also need to change the below logic
1562 	 * to include that as well.
1563 	 */
1564 	if (!is_ht40_allowed(channel_before))
1565 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1566 	else
1567 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1568 
1569 	if (!is_ht40_allowed(channel_after))
1570 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1571 	else
1572 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1573 }
1574 
1575 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1576 				      struct ieee80211_supported_band *sband)
1577 {
1578 	unsigned int i;
1579 
1580 	if (!sband)
1581 		return;
1582 
1583 	for (i = 0; i < sband->n_channels; i++)
1584 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1585 }
1586 
1587 static void reg_process_ht_flags(struct wiphy *wiphy)
1588 {
1589 	enum ieee80211_band band;
1590 
1591 	if (!wiphy)
1592 		return;
1593 
1594 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1595 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1596 }
1597 
1598 static void reg_call_notifier(struct wiphy *wiphy,
1599 			      struct regulatory_request *request)
1600 {
1601 	if (wiphy->reg_notifier)
1602 		wiphy->reg_notifier(wiphy, request);
1603 }
1604 
1605 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1606 {
1607 	struct cfg80211_chan_def chandef;
1608 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1609 	enum nl80211_iftype iftype;
1610 
1611 	wdev_lock(wdev);
1612 	iftype = wdev->iftype;
1613 
1614 	/* make sure the interface is active */
1615 	if (!wdev->netdev || !netif_running(wdev->netdev))
1616 		goto wdev_inactive_unlock;
1617 
1618 	switch (iftype) {
1619 	case NL80211_IFTYPE_AP:
1620 	case NL80211_IFTYPE_P2P_GO:
1621 		if (!wdev->beacon_interval)
1622 			goto wdev_inactive_unlock;
1623 		chandef = wdev->chandef;
1624 		break;
1625 	case NL80211_IFTYPE_ADHOC:
1626 		if (!wdev->ssid_len)
1627 			goto wdev_inactive_unlock;
1628 		chandef = wdev->chandef;
1629 		break;
1630 	case NL80211_IFTYPE_STATION:
1631 	case NL80211_IFTYPE_P2P_CLIENT:
1632 		if (!wdev->current_bss ||
1633 		    !wdev->current_bss->pub.channel)
1634 			goto wdev_inactive_unlock;
1635 
1636 		if (!rdev->ops->get_channel ||
1637 		    rdev_get_channel(rdev, wdev, &chandef))
1638 			cfg80211_chandef_create(&chandef,
1639 						wdev->current_bss->pub.channel,
1640 						NL80211_CHAN_NO_HT);
1641 		break;
1642 	case NL80211_IFTYPE_MONITOR:
1643 	case NL80211_IFTYPE_AP_VLAN:
1644 	case NL80211_IFTYPE_P2P_DEVICE:
1645 		/* no enforcement required */
1646 		break;
1647 	default:
1648 		/* others not implemented for now */
1649 		WARN_ON(1);
1650 		break;
1651 	}
1652 
1653 	wdev_unlock(wdev);
1654 
1655 	switch (iftype) {
1656 	case NL80211_IFTYPE_AP:
1657 	case NL80211_IFTYPE_P2P_GO:
1658 	case NL80211_IFTYPE_ADHOC:
1659 		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1660 	case NL80211_IFTYPE_STATION:
1661 	case NL80211_IFTYPE_P2P_CLIENT:
1662 		return cfg80211_chandef_usable(wiphy, &chandef,
1663 					       IEEE80211_CHAN_DISABLED);
1664 	default:
1665 		break;
1666 	}
1667 
1668 	return true;
1669 
1670 wdev_inactive_unlock:
1671 	wdev_unlock(wdev);
1672 	return true;
1673 }
1674 
1675 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1676 {
1677 	struct wireless_dev *wdev;
1678 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1679 
1680 	ASSERT_RTNL();
1681 
1682 	list_for_each_entry(wdev, &rdev->wdev_list, list)
1683 		if (!reg_wdev_chan_valid(wiphy, wdev))
1684 			cfg80211_leave(rdev, wdev);
1685 }
1686 
1687 static void reg_check_chans_work(struct work_struct *work)
1688 {
1689 	struct cfg80211_registered_device *rdev;
1690 
1691 	REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1692 	rtnl_lock();
1693 
1694 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1695 		if (!(rdev->wiphy.regulatory_flags &
1696 		      REGULATORY_IGNORE_STALE_KICKOFF))
1697 			reg_leave_invalid_chans(&rdev->wiphy);
1698 
1699 	rtnl_unlock();
1700 }
1701 
1702 static void reg_check_channels(void)
1703 {
1704 	/*
1705 	 * Give usermode a chance to do something nicer (move to another
1706 	 * channel, orderly disconnection), before forcing a disconnection.
1707 	 */
1708 	mod_delayed_work(system_power_efficient_wq,
1709 			 &reg_check_chans,
1710 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1711 }
1712 
1713 static void wiphy_update_regulatory(struct wiphy *wiphy,
1714 				    enum nl80211_reg_initiator initiator)
1715 {
1716 	enum ieee80211_band band;
1717 	struct regulatory_request *lr = get_last_request();
1718 
1719 	if (ignore_reg_update(wiphy, initiator)) {
1720 		/*
1721 		 * Regulatory updates set by CORE are ignored for custom
1722 		 * regulatory cards. Let us notify the changes to the driver,
1723 		 * as some drivers used this to restore its orig_* reg domain.
1724 		 */
1725 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1726 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1727 			reg_call_notifier(wiphy, lr);
1728 		return;
1729 	}
1730 
1731 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1732 
1733 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1734 		handle_band(wiphy, initiator, wiphy->bands[band]);
1735 
1736 	reg_process_beacons(wiphy);
1737 	reg_process_ht_flags(wiphy);
1738 	reg_call_notifier(wiphy, lr);
1739 }
1740 
1741 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1742 {
1743 	struct cfg80211_registered_device *rdev;
1744 	struct wiphy *wiphy;
1745 
1746 	ASSERT_RTNL();
1747 
1748 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1749 		wiphy = &rdev->wiphy;
1750 		wiphy_update_regulatory(wiphy, initiator);
1751 	}
1752 
1753 	reg_check_channels();
1754 }
1755 
1756 static void handle_channel_custom(struct wiphy *wiphy,
1757 				  struct ieee80211_channel *chan,
1758 				  const struct ieee80211_regdomain *regd)
1759 {
1760 	u32 bw_flags = 0;
1761 	const struct ieee80211_reg_rule *reg_rule = NULL;
1762 	const struct ieee80211_power_rule *power_rule = NULL;
1763 	const struct ieee80211_freq_range *freq_range = NULL;
1764 	u32 max_bandwidth_khz;
1765 	u32 bw;
1766 
1767 	for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1768 		reg_rule = freq_reg_info_regd(wiphy,
1769 					      MHZ_TO_KHZ(chan->center_freq),
1770 					      regd, bw);
1771 		if (!IS_ERR(reg_rule))
1772 			break;
1773 	}
1774 
1775 	if (IS_ERR(reg_rule)) {
1776 		REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1777 			      chan->center_freq);
1778 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1779 			chan->flags |= IEEE80211_CHAN_DISABLED;
1780 		} else {
1781 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1782 			chan->flags = chan->orig_flags;
1783 		}
1784 		return;
1785 	}
1786 
1787 	chan_reg_rule_print_dbg(regd, chan, reg_rule);
1788 
1789 	power_rule = &reg_rule->power_rule;
1790 	freq_range = &reg_rule->freq_range;
1791 
1792 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1793 	/* Check if auto calculation requested */
1794 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1795 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1796 
1797 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1798 	if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1799 			     MHZ_TO_KHZ(10)))
1800 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1801 	if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1802 			     MHZ_TO_KHZ(20)))
1803 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1804 
1805 	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1806 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1807 	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1808 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1809 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1810 		bw_flags |= IEEE80211_CHAN_NO_HT40;
1811 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1812 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1813 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1814 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1815 
1816 	chan->dfs_state_entered = jiffies;
1817 	chan->dfs_state = NL80211_DFS_USABLE;
1818 
1819 	chan->beacon_found = false;
1820 
1821 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1822 		chan->flags = chan->orig_flags | bw_flags |
1823 			      map_regdom_flags(reg_rule->flags);
1824 	else
1825 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1826 
1827 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1828 	chan->max_reg_power = chan->max_power =
1829 		(int) MBM_TO_DBM(power_rule->max_eirp);
1830 
1831 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1832 		if (reg_rule->dfs_cac_ms)
1833 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1834 		else
1835 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1836 	}
1837 
1838 	chan->max_power = chan->max_reg_power;
1839 }
1840 
1841 static void handle_band_custom(struct wiphy *wiphy,
1842 			       struct ieee80211_supported_band *sband,
1843 			       const struct ieee80211_regdomain *regd)
1844 {
1845 	unsigned int i;
1846 
1847 	if (!sband)
1848 		return;
1849 
1850 	for (i = 0; i < sband->n_channels; i++)
1851 		handle_channel_custom(wiphy, &sband->channels[i], regd);
1852 }
1853 
1854 /* Used by drivers prior to wiphy registration */
1855 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1856 				   const struct ieee80211_regdomain *regd)
1857 {
1858 	enum ieee80211_band band;
1859 	unsigned int bands_set = 0;
1860 
1861 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1862 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
1863 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1864 
1865 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1866 		if (!wiphy->bands[band])
1867 			continue;
1868 		handle_band_custom(wiphy, wiphy->bands[band], regd);
1869 		bands_set++;
1870 	}
1871 
1872 	/*
1873 	 * no point in calling this if it won't have any effect
1874 	 * on your device's supported bands.
1875 	 */
1876 	WARN_ON(!bands_set);
1877 }
1878 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1879 
1880 static void reg_set_request_processed(void)
1881 {
1882 	bool need_more_processing = false;
1883 	struct regulatory_request *lr = get_last_request();
1884 
1885 	lr->processed = true;
1886 
1887 	spin_lock(&reg_requests_lock);
1888 	if (!list_empty(&reg_requests_list))
1889 		need_more_processing = true;
1890 	spin_unlock(&reg_requests_lock);
1891 
1892 	cancel_crda_timeout();
1893 
1894 	if (need_more_processing)
1895 		schedule_work(&reg_work);
1896 }
1897 
1898 /**
1899  * reg_process_hint_core - process core regulatory requests
1900  * @pending_request: a pending core regulatory request
1901  *
1902  * The wireless subsystem can use this function to process
1903  * a regulatory request issued by the regulatory core.
1904  */
1905 static enum reg_request_treatment
1906 reg_process_hint_core(struct regulatory_request *core_request)
1907 {
1908 	if (reg_query_database(core_request)) {
1909 		core_request->intersect = false;
1910 		core_request->processed = false;
1911 		reg_update_last_request(core_request);
1912 		return REG_REQ_OK;
1913 	}
1914 
1915 	return REG_REQ_IGNORE;
1916 }
1917 
1918 static enum reg_request_treatment
1919 __reg_process_hint_user(struct regulatory_request *user_request)
1920 {
1921 	struct regulatory_request *lr = get_last_request();
1922 
1923 	if (reg_request_cell_base(user_request))
1924 		return reg_ignore_cell_hint(user_request);
1925 
1926 	if (reg_request_cell_base(lr))
1927 		return REG_REQ_IGNORE;
1928 
1929 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1930 		return REG_REQ_INTERSECT;
1931 	/*
1932 	 * If the user knows better the user should set the regdom
1933 	 * to their country before the IE is picked up
1934 	 */
1935 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1936 	    lr->intersect)
1937 		return REG_REQ_IGNORE;
1938 	/*
1939 	 * Process user requests only after previous user/driver/core
1940 	 * requests have been processed
1941 	 */
1942 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1943 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1944 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1945 	    regdom_changes(lr->alpha2))
1946 		return REG_REQ_IGNORE;
1947 
1948 	if (!regdom_changes(user_request->alpha2))
1949 		return REG_REQ_ALREADY_SET;
1950 
1951 	return REG_REQ_OK;
1952 }
1953 
1954 /**
1955  * reg_process_hint_user - process user regulatory requests
1956  * @user_request: a pending user regulatory request
1957  *
1958  * The wireless subsystem can use this function to process
1959  * a regulatory request initiated by userspace.
1960  */
1961 static enum reg_request_treatment
1962 reg_process_hint_user(struct regulatory_request *user_request)
1963 {
1964 	enum reg_request_treatment treatment;
1965 
1966 	treatment = __reg_process_hint_user(user_request);
1967 	if (treatment == REG_REQ_IGNORE ||
1968 	    treatment == REG_REQ_ALREADY_SET)
1969 		return REG_REQ_IGNORE;
1970 
1971 	user_request->intersect = treatment == REG_REQ_INTERSECT;
1972 	user_request->processed = false;
1973 
1974 	if (reg_query_database(user_request)) {
1975 		reg_update_last_request(user_request);
1976 		user_alpha2[0] = user_request->alpha2[0];
1977 		user_alpha2[1] = user_request->alpha2[1];
1978 		return REG_REQ_OK;
1979 	}
1980 
1981 	return REG_REQ_IGNORE;
1982 }
1983 
1984 static enum reg_request_treatment
1985 __reg_process_hint_driver(struct regulatory_request *driver_request)
1986 {
1987 	struct regulatory_request *lr = get_last_request();
1988 
1989 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1990 		if (regdom_changes(driver_request->alpha2))
1991 			return REG_REQ_OK;
1992 		return REG_REQ_ALREADY_SET;
1993 	}
1994 
1995 	/*
1996 	 * This would happen if you unplug and plug your card
1997 	 * back in or if you add a new device for which the previously
1998 	 * loaded card also agrees on the regulatory domain.
1999 	 */
2000 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2001 	    !regdom_changes(driver_request->alpha2))
2002 		return REG_REQ_ALREADY_SET;
2003 
2004 	return REG_REQ_INTERSECT;
2005 }
2006 
2007 /**
2008  * reg_process_hint_driver - process driver regulatory requests
2009  * @driver_request: a pending driver regulatory request
2010  *
2011  * The wireless subsystem can use this function to process
2012  * a regulatory request issued by an 802.11 driver.
2013  *
2014  * Returns one of the different reg request treatment values.
2015  */
2016 static enum reg_request_treatment
2017 reg_process_hint_driver(struct wiphy *wiphy,
2018 			struct regulatory_request *driver_request)
2019 {
2020 	const struct ieee80211_regdomain *regd, *tmp;
2021 	enum reg_request_treatment treatment;
2022 
2023 	treatment = __reg_process_hint_driver(driver_request);
2024 
2025 	switch (treatment) {
2026 	case REG_REQ_OK:
2027 		break;
2028 	case REG_REQ_IGNORE:
2029 		return REG_REQ_IGNORE;
2030 	case REG_REQ_INTERSECT:
2031 	case REG_REQ_ALREADY_SET:
2032 		regd = reg_copy_regd(get_cfg80211_regdom());
2033 		if (IS_ERR(regd))
2034 			return REG_REQ_IGNORE;
2035 
2036 		tmp = get_wiphy_regdom(wiphy);
2037 		rcu_assign_pointer(wiphy->regd, regd);
2038 		rcu_free_regdom(tmp);
2039 	}
2040 
2041 
2042 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2043 	driver_request->processed = false;
2044 
2045 	/*
2046 	 * Since CRDA will not be called in this case as we already
2047 	 * have applied the requested regulatory domain before we just
2048 	 * inform userspace we have processed the request
2049 	 */
2050 	if (treatment == REG_REQ_ALREADY_SET) {
2051 		nl80211_send_reg_change_event(driver_request);
2052 		reg_update_last_request(driver_request);
2053 		reg_set_request_processed();
2054 		return REG_REQ_ALREADY_SET;
2055 	}
2056 
2057 	if (reg_query_database(driver_request)) {
2058 		reg_update_last_request(driver_request);
2059 		return REG_REQ_OK;
2060 	}
2061 
2062 	return REG_REQ_IGNORE;
2063 }
2064 
2065 static enum reg_request_treatment
2066 __reg_process_hint_country_ie(struct wiphy *wiphy,
2067 			      struct regulatory_request *country_ie_request)
2068 {
2069 	struct wiphy *last_wiphy = NULL;
2070 	struct regulatory_request *lr = get_last_request();
2071 
2072 	if (reg_request_cell_base(lr)) {
2073 		/* Trust a Cell base station over the AP's country IE */
2074 		if (regdom_changes(country_ie_request->alpha2))
2075 			return REG_REQ_IGNORE;
2076 		return REG_REQ_ALREADY_SET;
2077 	} else {
2078 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2079 			return REG_REQ_IGNORE;
2080 	}
2081 
2082 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2083 		return -EINVAL;
2084 
2085 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2086 		return REG_REQ_OK;
2087 
2088 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2089 
2090 	if (last_wiphy != wiphy) {
2091 		/*
2092 		 * Two cards with two APs claiming different
2093 		 * Country IE alpha2s. We could
2094 		 * intersect them, but that seems unlikely
2095 		 * to be correct. Reject second one for now.
2096 		 */
2097 		if (regdom_changes(country_ie_request->alpha2))
2098 			return REG_REQ_IGNORE;
2099 		return REG_REQ_ALREADY_SET;
2100 	}
2101 
2102 	if (regdom_changes(country_ie_request->alpha2))
2103 		return REG_REQ_OK;
2104 	return REG_REQ_ALREADY_SET;
2105 }
2106 
2107 /**
2108  * reg_process_hint_country_ie - process regulatory requests from country IEs
2109  * @country_ie_request: a regulatory request from a country IE
2110  *
2111  * The wireless subsystem can use this function to process
2112  * a regulatory request issued by a country Information Element.
2113  *
2114  * Returns one of the different reg request treatment values.
2115  */
2116 static enum reg_request_treatment
2117 reg_process_hint_country_ie(struct wiphy *wiphy,
2118 			    struct regulatory_request *country_ie_request)
2119 {
2120 	enum reg_request_treatment treatment;
2121 
2122 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2123 
2124 	switch (treatment) {
2125 	case REG_REQ_OK:
2126 		break;
2127 	case REG_REQ_IGNORE:
2128 		return REG_REQ_IGNORE;
2129 	case REG_REQ_ALREADY_SET:
2130 		reg_free_request(country_ie_request);
2131 		return REG_REQ_ALREADY_SET;
2132 	case REG_REQ_INTERSECT:
2133 		/*
2134 		 * This doesn't happen yet, not sure we
2135 		 * ever want to support it for this case.
2136 		 */
2137 		WARN_ONCE(1, "Unexpected intersection for country IEs");
2138 		return REG_REQ_IGNORE;
2139 	}
2140 
2141 	country_ie_request->intersect = false;
2142 	country_ie_request->processed = false;
2143 
2144 	if (reg_query_database(country_ie_request)) {
2145 		reg_update_last_request(country_ie_request);
2146 		return REG_REQ_OK;
2147 	}
2148 
2149 	return REG_REQ_IGNORE;
2150 }
2151 
2152 /* This processes *all* regulatory hints */
2153 static void reg_process_hint(struct regulatory_request *reg_request)
2154 {
2155 	struct wiphy *wiphy = NULL;
2156 	enum reg_request_treatment treatment;
2157 
2158 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2159 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2160 
2161 	switch (reg_request->initiator) {
2162 	case NL80211_REGDOM_SET_BY_CORE:
2163 		treatment = reg_process_hint_core(reg_request);
2164 		break;
2165 	case NL80211_REGDOM_SET_BY_USER:
2166 		treatment = reg_process_hint_user(reg_request);
2167 		break;
2168 	case NL80211_REGDOM_SET_BY_DRIVER:
2169 		if (!wiphy)
2170 			goto out_free;
2171 		treatment = reg_process_hint_driver(wiphy, reg_request);
2172 		break;
2173 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2174 		if (!wiphy)
2175 			goto out_free;
2176 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2177 		break;
2178 	default:
2179 		WARN(1, "invalid initiator %d\n", reg_request->initiator);
2180 		goto out_free;
2181 	}
2182 
2183 	if (treatment == REG_REQ_IGNORE)
2184 		goto out_free;
2185 
2186 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2187 	     "unexpected treatment value %d\n", treatment);
2188 
2189 	/* This is required so that the orig_* parameters are saved.
2190 	 * NOTE: treatment must be set for any case that reaches here!
2191 	 */
2192 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2193 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2194 		wiphy_update_regulatory(wiphy, reg_request->initiator);
2195 		reg_check_channels();
2196 	}
2197 
2198 	return;
2199 
2200 out_free:
2201 	reg_free_request(reg_request);
2202 }
2203 
2204 static bool reg_only_self_managed_wiphys(void)
2205 {
2206 	struct cfg80211_registered_device *rdev;
2207 	struct wiphy *wiphy;
2208 	bool self_managed_found = false;
2209 
2210 	ASSERT_RTNL();
2211 
2212 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2213 		wiphy = &rdev->wiphy;
2214 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2215 			self_managed_found = true;
2216 		else
2217 			return false;
2218 	}
2219 
2220 	/* make sure at least one self-managed wiphy exists */
2221 	return self_managed_found;
2222 }
2223 
2224 /*
2225  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2226  * Regulatory hints come on a first come first serve basis and we
2227  * must process each one atomically.
2228  */
2229 static void reg_process_pending_hints(void)
2230 {
2231 	struct regulatory_request *reg_request, *lr;
2232 
2233 	lr = get_last_request();
2234 
2235 	/* When last_request->processed becomes true this will be rescheduled */
2236 	if (lr && !lr->processed) {
2237 		reg_process_hint(lr);
2238 		return;
2239 	}
2240 
2241 	spin_lock(&reg_requests_lock);
2242 
2243 	if (list_empty(&reg_requests_list)) {
2244 		spin_unlock(&reg_requests_lock);
2245 		return;
2246 	}
2247 
2248 	reg_request = list_first_entry(&reg_requests_list,
2249 				       struct regulatory_request,
2250 				       list);
2251 	list_del_init(&reg_request->list);
2252 
2253 	spin_unlock(&reg_requests_lock);
2254 
2255 	if (reg_only_self_managed_wiphys()) {
2256 		reg_free_request(reg_request);
2257 		return;
2258 	}
2259 
2260 	reg_process_hint(reg_request);
2261 
2262 	lr = get_last_request();
2263 
2264 	spin_lock(&reg_requests_lock);
2265 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
2266 		schedule_work(&reg_work);
2267 	spin_unlock(&reg_requests_lock);
2268 }
2269 
2270 /* Processes beacon hints -- this has nothing to do with country IEs */
2271 static void reg_process_pending_beacon_hints(void)
2272 {
2273 	struct cfg80211_registered_device *rdev;
2274 	struct reg_beacon *pending_beacon, *tmp;
2275 
2276 	/* This goes through the _pending_ beacon list */
2277 	spin_lock_bh(&reg_pending_beacons_lock);
2278 
2279 	list_for_each_entry_safe(pending_beacon, tmp,
2280 				 &reg_pending_beacons, list) {
2281 		list_del_init(&pending_beacon->list);
2282 
2283 		/* Applies the beacon hint to current wiphys */
2284 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2285 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2286 
2287 		/* Remembers the beacon hint for new wiphys or reg changes */
2288 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2289 	}
2290 
2291 	spin_unlock_bh(&reg_pending_beacons_lock);
2292 }
2293 
2294 static void reg_process_self_managed_hints(void)
2295 {
2296 	struct cfg80211_registered_device *rdev;
2297 	struct wiphy *wiphy;
2298 	const struct ieee80211_regdomain *tmp;
2299 	const struct ieee80211_regdomain *regd;
2300 	enum ieee80211_band band;
2301 	struct regulatory_request request = {};
2302 
2303 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2304 		wiphy = &rdev->wiphy;
2305 
2306 		spin_lock(&reg_requests_lock);
2307 		regd = rdev->requested_regd;
2308 		rdev->requested_regd = NULL;
2309 		spin_unlock(&reg_requests_lock);
2310 
2311 		if (regd == NULL)
2312 			continue;
2313 
2314 		tmp = get_wiphy_regdom(wiphy);
2315 		rcu_assign_pointer(wiphy->regd, regd);
2316 		rcu_free_regdom(tmp);
2317 
2318 		for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2319 			handle_band_custom(wiphy, wiphy->bands[band], regd);
2320 
2321 		reg_process_ht_flags(wiphy);
2322 
2323 		request.wiphy_idx = get_wiphy_idx(wiphy);
2324 		request.alpha2[0] = regd->alpha2[0];
2325 		request.alpha2[1] = regd->alpha2[1];
2326 		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2327 
2328 		nl80211_send_wiphy_reg_change_event(&request);
2329 	}
2330 
2331 	reg_check_channels();
2332 }
2333 
2334 static void reg_todo(struct work_struct *work)
2335 {
2336 	rtnl_lock();
2337 	reg_process_pending_hints();
2338 	reg_process_pending_beacon_hints();
2339 	reg_process_self_managed_hints();
2340 	rtnl_unlock();
2341 }
2342 
2343 static void queue_regulatory_request(struct regulatory_request *request)
2344 {
2345 	request->alpha2[0] = toupper(request->alpha2[0]);
2346 	request->alpha2[1] = toupper(request->alpha2[1]);
2347 
2348 	spin_lock(&reg_requests_lock);
2349 	list_add_tail(&request->list, &reg_requests_list);
2350 	spin_unlock(&reg_requests_lock);
2351 
2352 	schedule_work(&reg_work);
2353 }
2354 
2355 /*
2356  * Core regulatory hint -- happens during cfg80211_init()
2357  * and when we restore regulatory settings.
2358  */
2359 static int regulatory_hint_core(const char *alpha2)
2360 {
2361 	struct regulatory_request *request;
2362 
2363 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2364 	if (!request)
2365 		return -ENOMEM;
2366 
2367 	request->alpha2[0] = alpha2[0];
2368 	request->alpha2[1] = alpha2[1];
2369 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2370 
2371 	queue_regulatory_request(request);
2372 
2373 	return 0;
2374 }
2375 
2376 /* User hints */
2377 int regulatory_hint_user(const char *alpha2,
2378 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2379 {
2380 	struct regulatory_request *request;
2381 
2382 	if (WARN_ON(!alpha2))
2383 		return -EINVAL;
2384 
2385 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2386 	if (!request)
2387 		return -ENOMEM;
2388 
2389 	request->wiphy_idx = WIPHY_IDX_INVALID;
2390 	request->alpha2[0] = alpha2[0];
2391 	request->alpha2[1] = alpha2[1];
2392 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2393 	request->user_reg_hint_type = user_reg_hint_type;
2394 
2395 	/* Allow calling CRDA again */
2396 	reset_crda_timeouts();
2397 
2398 	queue_regulatory_request(request);
2399 
2400 	return 0;
2401 }
2402 
2403 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2404 {
2405 	spin_lock(&reg_indoor_lock);
2406 
2407 	/* It is possible that more than one user space process is trying to
2408 	 * configure the indoor setting. To handle such cases, clear the indoor
2409 	 * setting in case that some process does not think that the device
2410 	 * is operating in an indoor environment. In addition, if a user space
2411 	 * process indicates that it is controlling the indoor setting, save its
2412 	 * portid, i.e., make it the owner.
2413 	 */
2414 	reg_is_indoor = is_indoor;
2415 	if (reg_is_indoor) {
2416 		if (!reg_is_indoor_portid)
2417 			reg_is_indoor_portid = portid;
2418 	} else {
2419 		reg_is_indoor_portid = 0;
2420 	}
2421 
2422 	spin_unlock(&reg_indoor_lock);
2423 
2424 	if (!is_indoor)
2425 		reg_check_channels();
2426 
2427 	return 0;
2428 }
2429 
2430 void regulatory_netlink_notify(u32 portid)
2431 {
2432 	spin_lock(&reg_indoor_lock);
2433 
2434 	if (reg_is_indoor_portid != portid) {
2435 		spin_unlock(&reg_indoor_lock);
2436 		return;
2437 	}
2438 
2439 	reg_is_indoor = false;
2440 	reg_is_indoor_portid = 0;
2441 
2442 	spin_unlock(&reg_indoor_lock);
2443 
2444 	reg_check_channels();
2445 }
2446 
2447 /* Driver hints */
2448 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2449 {
2450 	struct regulatory_request *request;
2451 
2452 	if (WARN_ON(!alpha2 || !wiphy))
2453 		return -EINVAL;
2454 
2455 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2456 
2457 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2458 	if (!request)
2459 		return -ENOMEM;
2460 
2461 	request->wiphy_idx = get_wiphy_idx(wiphy);
2462 
2463 	request->alpha2[0] = alpha2[0];
2464 	request->alpha2[1] = alpha2[1];
2465 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2466 
2467 	/* Allow calling CRDA again */
2468 	reset_crda_timeouts();
2469 
2470 	queue_regulatory_request(request);
2471 
2472 	return 0;
2473 }
2474 EXPORT_SYMBOL(regulatory_hint);
2475 
2476 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2477 				const u8 *country_ie, u8 country_ie_len)
2478 {
2479 	char alpha2[2];
2480 	enum environment_cap env = ENVIRON_ANY;
2481 	struct regulatory_request *request = NULL, *lr;
2482 
2483 	/* IE len must be evenly divisible by 2 */
2484 	if (country_ie_len & 0x01)
2485 		return;
2486 
2487 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2488 		return;
2489 
2490 	request = kzalloc(sizeof(*request), GFP_KERNEL);
2491 	if (!request)
2492 		return;
2493 
2494 	alpha2[0] = country_ie[0];
2495 	alpha2[1] = country_ie[1];
2496 
2497 	if (country_ie[2] == 'I')
2498 		env = ENVIRON_INDOOR;
2499 	else if (country_ie[2] == 'O')
2500 		env = ENVIRON_OUTDOOR;
2501 
2502 	rcu_read_lock();
2503 	lr = get_last_request();
2504 
2505 	if (unlikely(!lr))
2506 		goto out;
2507 
2508 	/*
2509 	 * We will run this only upon a successful connection on cfg80211.
2510 	 * We leave conflict resolution to the workqueue, where can hold
2511 	 * the RTNL.
2512 	 */
2513 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2514 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
2515 		goto out;
2516 
2517 	request->wiphy_idx = get_wiphy_idx(wiphy);
2518 	request->alpha2[0] = alpha2[0];
2519 	request->alpha2[1] = alpha2[1];
2520 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2521 	request->country_ie_env = env;
2522 
2523 	/* Allow calling CRDA again */
2524 	reset_crda_timeouts();
2525 
2526 	queue_regulatory_request(request);
2527 	request = NULL;
2528 out:
2529 	kfree(request);
2530 	rcu_read_unlock();
2531 }
2532 
2533 static void restore_alpha2(char *alpha2, bool reset_user)
2534 {
2535 	/* indicates there is no alpha2 to consider for restoration */
2536 	alpha2[0] = '9';
2537 	alpha2[1] = '7';
2538 
2539 	/* The user setting has precedence over the module parameter */
2540 	if (is_user_regdom_saved()) {
2541 		/* Unless we're asked to ignore it and reset it */
2542 		if (reset_user) {
2543 			REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2544 			user_alpha2[0] = '9';
2545 			user_alpha2[1] = '7';
2546 
2547 			/*
2548 			 * If we're ignoring user settings, we still need to
2549 			 * check the module parameter to ensure we put things
2550 			 * back as they were for a full restore.
2551 			 */
2552 			if (!is_world_regdom(ieee80211_regdom)) {
2553 				REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2554 					      ieee80211_regdom[0], ieee80211_regdom[1]);
2555 				alpha2[0] = ieee80211_regdom[0];
2556 				alpha2[1] = ieee80211_regdom[1];
2557 			}
2558 		} else {
2559 			REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2560 				      user_alpha2[0], user_alpha2[1]);
2561 			alpha2[0] = user_alpha2[0];
2562 			alpha2[1] = user_alpha2[1];
2563 		}
2564 	} else if (!is_world_regdom(ieee80211_regdom)) {
2565 		REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2566 			      ieee80211_regdom[0], ieee80211_regdom[1]);
2567 		alpha2[0] = ieee80211_regdom[0];
2568 		alpha2[1] = ieee80211_regdom[1];
2569 	} else
2570 		REG_DBG_PRINT("Restoring regulatory settings\n");
2571 }
2572 
2573 static void restore_custom_reg_settings(struct wiphy *wiphy)
2574 {
2575 	struct ieee80211_supported_band *sband;
2576 	enum ieee80211_band band;
2577 	struct ieee80211_channel *chan;
2578 	int i;
2579 
2580 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2581 		sband = wiphy->bands[band];
2582 		if (!sband)
2583 			continue;
2584 		for (i = 0; i < sband->n_channels; i++) {
2585 			chan = &sband->channels[i];
2586 			chan->flags = chan->orig_flags;
2587 			chan->max_antenna_gain = chan->orig_mag;
2588 			chan->max_power = chan->orig_mpwr;
2589 			chan->beacon_found = false;
2590 		}
2591 	}
2592 }
2593 
2594 /*
2595  * Restoring regulatory settings involves ingoring any
2596  * possibly stale country IE information and user regulatory
2597  * settings if so desired, this includes any beacon hints
2598  * learned as we could have traveled outside to another country
2599  * after disconnection. To restore regulatory settings we do
2600  * exactly what we did at bootup:
2601  *
2602  *   - send a core regulatory hint
2603  *   - send a user regulatory hint if applicable
2604  *
2605  * Device drivers that send a regulatory hint for a specific country
2606  * keep their own regulatory domain on wiphy->regd so that does does
2607  * not need to be remembered.
2608  */
2609 static void restore_regulatory_settings(bool reset_user)
2610 {
2611 	char alpha2[2];
2612 	char world_alpha2[2];
2613 	struct reg_beacon *reg_beacon, *btmp;
2614 	LIST_HEAD(tmp_reg_req_list);
2615 	struct cfg80211_registered_device *rdev;
2616 
2617 	ASSERT_RTNL();
2618 
2619 	/*
2620 	 * Clear the indoor setting in case that it is not controlled by user
2621 	 * space, as otherwise there is no guarantee that the device is still
2622 	 * operating in an indoor environment.
2623 	 */
2624 	spin_lock(&reg_indoor_lock);
2625 	if (reg_is_indoor && !reg_is_indoor_portid) {
2626 		reg_is_indoor = false;
2627 		reg_check_channels();
2628 	}
2629 	spin_unlock(&reg_indoor_lock);
2630 
2631 	reset_regdomains(true, &world_regdom);
2632 	restore_alpha2(alpha2, reset_user);
2633 
2634 	/*
2635 	 * If there's any pending requests we simply
2636 	 * stash them to a temporary pending queue and
2637 	 * add then after we've restored regulatory
2638 	 * settings.
2639 	 */
2640 	spin_lock(&reg_requests_lock);
2641 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2642 	spin_unlock(&reg_requests_lock);
2643 
2644 	/* Clear beacon hints */
2645 	spin_lock_bh(&reg_pending_beacons_lock);
2646 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2647 		list_del(&reg_beacon->list);
2648 		kfree(reg_beacon);
2649 	}
2650 	spin_unlock_bh(&reg_pending_beacons_lock);
2651 
2652 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2653 		list_del(&reg_beacon->list);
2654 		kfree(reg_beacon);
2655 	}
2656 
2657 	/* First restore to the basic regulatory settings */
2658 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2659 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2660 
2661 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2662 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2663 			continue;
2664 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2665 			restore_custom_reg_settings(&rdev->wiphy);
2666 	}
2667 
2668 	regulatory_hint_core(world_alpha2);
2669 
2670 	/*
2671 	 * This restores the ieee80211_regdom module parameter
2672 	 * preference or the last user requested regulatory
2673 	 * settings, user regulatory settings takes precedence.
2674 	 */
2675 	if (is_an_alpha2(alpha2))
2676 		regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2677 
2678 	spin_lock(&reg_requests_lock);
2679 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2680 	spin_unlock(&reg_requests_lock);
2681 
2682 	REG_DBG_PRINT("Kicking the queue\n");
2683 
2684 	schedule_work(&reg_work);
2685 }
2686 
2687 void regulatory_hint_disconnect(void)
2688 {
2689 	REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2690 	restore_regulatory_settings(false);
2691 }
2692 
2693 static bool freq_is_chan_12_13_14(u16 freq)
2694 {
2695 	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2696 	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2697 	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2698 		return true;
2699 	return false;
2700 }
2701 
2702 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2703 {
2704 	struct reg_beacon *pending_beacon;
2705 
2706 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2707 		if (beacon_chan->center_freq ==
2708 		    pending_beacon->chan.center_freq)
2709 			return true;
2710 	return false;
2711 }
2712 
2713 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2714 				 struct ieee80211_channel *beacon_chan,
2715 				 gfp_t gfp)
2716 {
2717 	struct reg_beacon *reg_beacon;
2718 	bool processing;
2719 
2720 	if (beacon_chan->beacon_found ||
2721 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2722 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2723 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2724 		return 0;
2725 
2726 	spin_lock_bh(&reg_pending_beacons_lock);
2727 	processing = pending_reg_beacon(beacon_chan);
2728 	spin_unlock_bh(&reg_pending_beacons_lock);
2729 
2730 	if (processing)
2731 		return 0;
2732 
2733 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2734 	if (!reg_beacon)
2735 		return -ENOMEM;
2736 
2737 	REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2738 		      beacon_chan->center_freq,
2739 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
2740 		      wiphy_name(wiphy));
2741 
2742 	memcpy(&reg_beacon->chan, beacon_chan,
2743 	       sizeof(struct ieee80211_channel));
2744 
2745 	/*
2746 	 * Since we can be called from BH or and non-BH context
2747 	 * we must use spin_lock_bh()
2748 	 */
2749 	spin_lock_bh(&reg_pending_beacons_lock);
2750 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2751 	spin_unlock_bh(&reg_pending_beacons_lock);
2752 
2753 	schedule_work(&reg_work);
2754 
2755 	return 0;
2756 }
2757 
2758 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2759 {
2760 	unsigned int i;
2761 	const struct ieee80211_reg_rule *reg_rule = NULL;
2762 	const struct ieee80211_freq_range *freq_range = NULL;
2763 	const struct ieee80211_power_rule *power_rule = NULL;
2764 	char bw[32], cac_time[32];
2765 
2766 	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2767 
2768 	for (i = 0; i < rd->n_reg_rules; i++) {
2769 		reg_rule = &rd->reg_rules[i];
2770 		freq_range = &reg_rule->freq_range;
2771 		power_rule = &reg_rule->power_rule;
2772 
2773 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2774 			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2775 				 freq_range->max_bandwidth_khz,
2776 				 reg_get_max_bandwidth(rd, reg_rule));
2777 		else
2778 			snprintf(bw, sizeof(bw), "%d KHz",
2779 				 freq_range->max_bandwidth_khz);
2780 
2781 		if (reg_rule->flags & NL80211_RRF_DFS)
2782 			scnprintf(cac_time, sizeof(cac_time), "%u s",
2783 				  reg_rule->dfs_cac_ms/1000);
2784 		else
2785 			scnprintf(cac_time, sizeof(cac_time), "N/A");
2786 
2787 
2788 		/*
2789 		 * There may not be documentation for max antenna gain
2790 		 * in certain regions
2791 		 */
2792 		if (power_rule->max_antenna_gain)
2793 			pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2794 				freq_range->start_freq_khz,
2795 				freq_range->end_freq_khz,
2796 				bw,
2797 				power_rule->max_antenna_gain,
2798 				power_rule->max_eirp,
2799 				cac_time);
2800 		else
2801 			pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2802 				freq_range->start_freq_khz,
2803 				freq_range->end_freq_khz,
2804 				bw,
2805 				power_rule->max_eirp,
2806 				cac_time);
2807 	}
2808 }
2809 
2810 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2811 {
2812 	switch (dfs_region) {
2813 	case NL80211_DFS_UNSET:
2814 	case NL80211_DFS_FCC:
2815 	case NL80211_DFS_ETSI:
2816 	case NL80211_DFS_JP:
2817 		return true;
2818 	default:
2819 		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2820 			      dfs_region);
2821 		return false;
2822 	}
2823 }
2824 
2825 static void print_regdomain(const struct ieee80211_regdomain *rd)
2826 {
2827 	struct regulatory_request *lr = get_last_request();
2828 
2829 	if (is_intersected_alpha2(rd->alpha2)) {
2830 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2831 			struct cfg80211_registered_device *rdev;
2832 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2833 			if (rdev) {
2834 				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2835 					rdev->country_ie_alpha2[0],
2836 					rdev->country_ie_alpha2[1]);
2837 			} else
2838 				pr_info("Current regulatory domain intersected:\n");
2839 		} else
2840 			pr_info("Current regulatory domain intersected:\n");
2841 	} else if (is_world_regdom(rd->alpha2)) {
2842 		pr_info("World regulatory domain updated:\n");
2843 	} else {
2844 		if (is_unknown_alpha2(rd->alpha2))
2845 			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2846 		else {
2847 			if (reg_request_cell_base(lr))
2848 				pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2849 					rd->alpha2[0], rd->alpha2[1]);
2850 			else
2851 				pr_info("Regulatory domain changed to country: %c%c\n",
2852 					rd->alpha2[0], rd->alpha2[1]);
2853 		}
2854 	}
2855 
2856 	pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2857 	print_rd_rules(rd);
2858 }
2859 
2860 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2861 {
2862 	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2863 	print_rd_rules(rd);
2864 }
2865 
2866 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2867 {
2868 	if (!is_world_regdom(rd->alpha2))
2869 		return -EINVAL;
2870 	update_world_regdomain(rd);
2871 	return 0;
2872 }
2873 
2874 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2875 			   struct regulatory_request *user_request)
2876 {
2877 	const struct ieee80211_regdomain *intersected_rd = NULL;
2878 
2879 	if (!regdom_changes(rd->alpha2))
2880 		return -EALREADY;
2881 
2882 	if (!is_valid_rd(rd)) {
2883 		pr_err("Invalid regulatory domain detected:\n");
2884 		print_regdomain_info(rd);
2885 		return -EINVAL;
2886 	}
2887 
2888 	if (!user_request->intersect) {
2889 		reset_regdomains(false, rd);
2890 		return 0;
2891 	}
2892 
2893 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2894 	if (!intersected_rd)
2895 		return -EINVAL;
2896 
2897 	kfree(rd);
2898 	rd = NULL;
2899 	reset_regdomains(false, intersected_rd);
2900 
2901 	return 0;
2902 }
2903 
2904 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2905 			     struct regulatory_request *driver_request)
2906 {
2907 	const struct ieee80211_regdomain *regd;
2908 	const struct ieee80211_regdomain *intersected_rd = NULL;
2909 	const struct ieee80211_regdomain *tmp;
2910 	struct wiphy *request_wiphy;
2911 
2912 	if (is_world_regdom(rd->alpha2))
2913 		return -EINVAL;
2914 
2915 	if (!regdom_changes(rd->alpha2))
2916 		return -EALREADY;
2917 
2918 	if (!is_valid_rd(rd)) {
2919 		pr_err("Invalid regulatory domain detected:\n");
2920 		print_regdomain_info(rd);
2921 		return -EINVAL;
2922 	}
2923 
2924 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2925 	if (!request_wiphy)
2926 		return -ENODEV;
2927 
2928 	if (!driver_request->intersect) {
2929 		if (request_wiphy->regd)
2930 			return -EALREADY;
2931 
2932 		regd = reg_copy_regd(rd);
2933 		if (IS_ERR(regd))
2934 			return PTR_ERR(regd);
2935 
2936 		rcu_assign_pointer(request_wiphy->regd, regd);
2937 		reset_regdomains(false, rd);
2938 		return 0;
2939 	}
2940 
2941 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2942 	if (!intersected_rd)
2943 		return -EINVAL;
2944 
2945 	/*
2946 	 * We can trash what CRDA provided now.
2947 	 * However if a driver requested this specific regulatory
2948 	 * domain we keep it for its private use
2949 	 */
2950 	tmp = get_wiphy_regdom(request_wiphy);
2951 	rcu_assign_pointer(request_wiphy->regd, rd);
2952 	rcu_free_regdom(tmp);
2953 
2954 	rd = NULL;
2955 
2956 	reset_regdomains(false, intersected_rd);
2957 
2958 	return 0;
2959 }
2960 
2961 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2962 				 struct regulatory_request *country_ie_request)
2963 {
2964 	struct wiphy *request_wiphy;
2965 
2966 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2967 	    !is_unknown_alpha2(rd->alpha2))
2968 		return -EINVAL;
2969 
2970 	/*
2971 	 * Lets only bother proceeding on the same alpha2 if the current
2972 	 * rd is non static (it means CRDA was present and was used last)
2973 	 * and the pending request came in from a country IE
2974 	 */
2975 
2976 	if (!is_valid_rd(rd)) {
2977 		pr_err("Invalid regulatory domain detected:\n");
2978 		print_regdomain_info(rd);
2979 		return -EINVAL;
2980 	}
2981 
2982 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2983 	if (!request_wiphy)
2984 		return -ENODEV;
2985 
2986 	if (country_ie_request->intersect)
2987 		return -EINVAL;
2988 
2989 	reset_regdomains(false, rd);
2990 	return 0;
2991 }
2992 
2993 /*
2994  * Use this call to set the current regulatory domain. Conflicts with
2995  * multiple drivers can be ironed out later. Caller must've already
2996  * kmalloc'd the rd structure.
2997  */
2998 int set_regdom(const struct ieee80211_regdomain *rd,
2999 	       enum ieee80211_regd_source regd_src)
3000 {
3001 	struct regulatory_request *lr;
3002 	bool user_reset = false;
3003 	int r;
3004 
3005 	if (!reg_is_valid_request(rd->alpha2)) {
3006 		kfree(rd);
3007 		return -EINVAL;
3008 	}
3009 
3010 	if (regd_src == REGD_SOURCE_CRDA)
3011 		reset_crda_timeouts();
3012 
3013 	lr = get_last_request();
3014 
3015 	/* Note that this doesn't update the wiphys, this is done below */
3016 	switch (lr->initiator) {
3017 	case NL80211_REGDOM_SET_BY_CORE:
3018 		r = reg_set_rd_core(rd);
3019 		break;
3020 	case NL80211_REGDOM_SET_BY_USER:
3021 		r = reg_set_rd_user(rd, lr);
3022 		user_reset = true;
3023 		break;
3024 	case NL80211_REGDOM_SET_BY_DRIVER:
3025 		r = reg_set_rd_driver(rd, lr);
3026 		break;
3027 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3028 		r = reg_set_rd_country_ie(rd, lr);
3029 		break;
3030 	default:
3031 		WARN(1, "invalid initiator %d\n", lr->initiator);
3032 		kfree(rd);
3033 		return -EINVAL;
3034 	}
3035 
3036 	if (r) {
3037 		switch (r) {
3038 		case -EALREADY:
3039 			reg_set_request_processed();
3040 			break;
3041 		default:
3042 			/* Back to world regulatory in case of errors */
3043 			restore_regulatory_settings(user_reset);
3044 		}
3045 
3046 		kfree(rd);
3047 		return r;
3048 	}
3049 
3050 	/* This would make this whole thing pointless */
3051 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3052 		return -EINVAL;
3053 
3054 	/* update all wiphys now with the new established regulatory domain */
3055 	update_all_wiphy_regulatory(lr->initiator);
3056 
3057 	print_regdomain(get_cfg80211_regdom());
3058 
3059 	nl80211_send_reg_change_event(lr);
3060 
3061 	reg_set_request_processed();
3062 
3063 	return 0;
3064 }
3065 
3066 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3067 				       struct ieee80211_regdomain *rd)
3068 {
3069 	const struct ieee80211_regdomain *regd;
3070 	const struct ieee80211_regdomain *prev_regd;
3071 	struct cfg80211_registered_device *rdev;
3072 
3073 	if (WARN_ON(!wiphy || !rd))
3074 		return -EINVAL;
3075 
3076 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3077 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3078 		return -EPERM;
3079 
3080 	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3081 		print_regdomain_info(rd);
3082 		return -EINVAL;
3083 	}
3084 
3085 	regd = reg_copy_regd(rd);
3086 	if (IS_ERR(regd))
3087 		return PTR_ERR(regd);
3088 
3089 	rdev = wiphy_to_rdev(wiphy);
3090 
3091 	spin_lock(&reg_requests_lock);
3092 	prev_regd = rdev->requested_regd;
3093 	rdev->requested_regd = regd;
3094 	spin_unlock(&reg_requests_lock);
3095 
3096 	kfree(prev_regd);
3097 	return 0;
3098 }
3099 
3100 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3101 			      struct ieee80211_regdomain *rd)
3102 {
3103 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3104 
3105 	if (ret)
3106 		return ret;
3107 
3108 	schedule_work(&reg_work);
3109 	return 0;
3110 }
3111 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3112 
3113 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3114 					struct ieee80211_regdomain *rd)
3115 {
3116 	int ret;
3117 
3118 	ASSERT_RTNL();
3119 
3120 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3121 	if (ret)
3122 		return ret;
3123 
3124 	/* process the request immediately */
3125 	reg_process_self_managed_hints();
3126 	return 0;
3127 }
3128 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3129 
3130 void wiphy_regulatory_register(struct wiphy *wiphy)
3131 {
3132 	struct regulatory_request *lr;
3133 
3134 	/* self-managed devices ignore external hints */
3135 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3136 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3137 					   REGULATORY_COUNTRY_IE_IGNORE;
3138 
3139 	if (!reg_dev_ignore_cell_hint(wiphy))
3140 		reg_num_devs_support_basehint++;
3141 
3142 	lr = get_last_request();
3143 	wiphy_update_regulatory(wiphy, lr->initiator);
3144 }
3145 
3146 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3147 {
3148 	struct wiphy *request_wiphy = NULL;
3149 	struct regulatory_request *lr;
3150 
3151 	lr = get_last_request();
3152 
3153 	if (!reg_dev_ignore_cell_hint(wiphy))
3154 		reg_num_devs_support_basehint--;
3155 
3156 	rcu_free_regdom(get_wiphy_regdom(wiphy));
3157 	RCU_INIT_POINTER(wiphy->regd, NULL);
3158 
3159 	if (lr)
3160 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3161 
3162 	if (!request_wiphy || request_wiphy != wiphy)
3163 		return;
3164 
3165 	lr->wiphy_idx = WIPHY_IDX_INVALID;
3166 	lr->country_ie_env = ENVIRON_ANY;
3167 }
3168 
3169 /*
3170  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3171  * UNII band definitions
3172  */
3173 int cfg80211_get_unii(int freq)
3174 {
3175 	/* UNII-1 */
3176 	if (freq >= 5150 && freq <= 5250)
3177 		return 0;
3178 
3179 	/* UNII-2A */
3180 	if (freq > 5250 && freq <= 5350)
3181 		return 1;
3182 
3183 	/* UNII-2B */
3184 	if (freq > 5350 && freq <= 5470)
3185 		return 2;
3186 
3187 	/* UNII-2C */
3188 	if (freq > 5470 && freq <= 5725)
3189 		return 3;
3190 
3191 	/* UNII-3 */
3192 	if (freq > 5725 && freq <= 5825)
3193 		return 4;
3194 
3195 	return -EINVAL;
3196 }
3197 
3198 bool regulatory_indoor_allowed(void)
3199 {
3200 	return reg_is_indoor;
3201 }
3202 
3203 int __init regulatory_init(void)
3204 {
3205 	int err = 0;
3206 
3207 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3208 	if (IS_ERR(reg_pdev))
3209 		return PTR_ERR(reg_pdev);
3210 
3211 	spin_lock_init(&reg_requests_lock);
3212 	spin_lock_init(&reg_pending_beacons_lock);
3213 	spin_lock_init(&reg_indoor_lock);
3214 
3215 	reg_regdb_size_check();
3216 
3217 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3218 
3219 	user_alpha2[0] = '9';
3220 	user_alpha2[1] = '7';
3221 
3222 	/* We always try to get an update for the static regdomain */
3223 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3224 	if (err) {
3225 		if (err == -ENOMEM) {
3226 			platform_device_unregister(reg_pdev);
3227 			return err;
3228 		}
3229 		/*
3230 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
3231 		 * memory which is handled and propagated appropriately above
3232 		 * but it can also fail during a netlink_broadcast() or during
3233 		 * early boot for call_usermodehelper(). For now treat these
3234 		 * errors as non-fatal.
3235 		 */
3236 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3237 	}
3238 
3239 	/*
3240 	 * Finally, if the user set the module parameter treat it
3241 	 * as a user hint.
3242 	 */
3243 	if (!is_world_regdom(ieee80211_regdom))
3244 		regulatory_hint_user(ieee80211_regdom,
3245 				     NL80211_USER_REG_HINT_USER);
3246 
3247 	return 0;
3248 }
3249 
3250 void regulatory_exit(void)
3251 {
3252 	struct regulatory_request *reg_request, *tmp;
3253 	struct reg_beacon *reg_beacon, *btmp;
3254 
3255 	cancel_work_sync(&reg_work);
3256 	cancel_crda_timeout_sync();
3257 	cancel_delayed_work_sync(&reg_check_chans);
3258 
3259 	/* Lock to suppress warnings */
3260 	rtnl_lock();
3261 	reset_regdomains(true, NULL);
3262 	rtnl_unlock();
3263 
3264 	dev_set_uevent_suppress(&reg_pdev->dev, true);
3265 
3266 	platform_device_unregister(reg_pdev);
3267 
3268 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3269 		list_del(&reg_beacon->list);
3270 		kfree(reg_beacon);
3271 	}
3272 
3273 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3274 		list_del(&reg_beacon->list);
3275 		kfree(reg_beacon);
3276 	}
3277 
3278 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3279 		list_del(&reg_request->list);
3280 		kfree(reg_request);
3281 	}
3282 }
3283