1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * 8 * Permission to use, copy, modify, and/or distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 22 /** 23 * DOC: Wireless regulatory infrastructure 24 * 25 * The usual implementation is for a driver to read a device EEPROM to 26 * determine which regulatory domain it should be operating under, then 27 * looking up the allowable channels in a driver-local table and finally 28 * registering those channels in the wiphy structure. 29 * 30 * Another set of compliance enforcement is for drivers to use their 31 * own compliance limits which can be stored on the EEPROM. The host 32 * driver or firmware may ensure these are used. 33 * 34 * In addition to all this we provide an extra layer of regulatory 35 * conformance. For drivers which do not have any regulatory 36 * information CRDA provides the complete regulatory solution. 37 * For others it provides a community effort on further restrictions 38 * to enhance compliance. 39 * 40 * Note: When number of rules --> infinity we will not be able to 41 * index on alpha2 any more, instead we'll probably have to 42 * rely on some SHA1 checksum of the regdomain for example. 43 * 44 */ 45 46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 47 48 #include <linux/kernel.h> 49 #include <linux/export.h> 50 #include <linux/slab.h> 51 #include <linux/list.h> 52 #include <linux/ctype.h> 53 #include <linux/nl80211.h> 54 #include <linux/platform_device.h> 55 #include <linux/moduleparam.h> 56 #include <net/cfg80211.h> 57 #include "core.h" 58 #include "reg.h" 59 #include "rdev-ops.h" 60 #include "regdb.h" 61 #include "nl80211.h" 62 63 #ifdef CONFIG_CFG80211_REG_DEBUG 64 #define REG_DBG_PRINT(format, args...) \ 65 printk(KERN_DEBUG pr_fmt(format), ##args) 66 #else 67 #define REG_DBG_PRINT(args...) 68 #endif 69 70 /* 71 * Grace period we give before making sure all current interfaces reside on 72 * channels allowed by the current regulatory domain. 73 */ 74 #define REG_ENFORCE_GRACE_MS 60000 75 76 /** 77 * enum reg_request_treatment - regulatory request treatment 78 * 79 * @REG_REQ_OK: continue processing the regulatory request 80 * @REG_REQ_IGNORE: ignore the regulatory request 81 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 82 * be intersected with the current one. 83 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 84 * regulatory settings, and no further processing is required. 85 */ 86 enum reg_request_treatment { 87 REG_REQ_OK, 88 REG_REQ_IGNORE, 89 REG_REQ_INTERSECT, 90 REG_REQ_ALREADY_SET, 91 }; 92 93 static struct regulatory_request core_request_world = { 94 .initiator = NL80211_REGDOM_SET_BY_CORE, 95 .alpha2[0] = '0', 96 .alpha2[1] = '0', 97 .intersect = false, 98 .processed = true, 99 .country_ie_env = ENVIRON_ANY, 100 }; 101 102 /* 103 * Receipt of information from last regulatory request, 104 * protected by RTNL (and can be accessed with RCU protection) 105 */ 106 static struct regulatory_request __rcu *last_request = 107 (void __force __rcu *)&core_request_world; 108 109 /* To trigger userspace events */ 110 static struct platform_device *reg_pdev; 111 112 /* 113 * Central wireless core regulatory domains, we only need two, 114 * the current one and a world regulatory domain in case we have no 115 * information to give us an alpha2. 116 * (protected by RTNL, can be read under RCU) 117 */ 118 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 119 120 /* 121 * Number of devices that registered to the core 122 * that support cellular base station regulatory hints 123 * (protected by RTNL) 124 */ 125 static int reg_num_devs_support_basehint; 126 127 /* 128 * State variable indicating if the platform on which the devices 129 * are attached is operating in an indoor environment. The state variable 130 * is relevant for all registered devices. 131 */ 132 static bool reg_is_indoor; 133 static spinlock_t reg_indoor_lock; 134 135 /* Used to track the userspace process controlling the indoor setting */ 136 static u32 reg_is_indoor_portid; 137 138 static void restore_regulatory_settings(bool reset_user); 139 140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 141 { 142 return rtnl_dereference(cfg80211_regdomain); 143 } 144 145 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 146 { 147 return rtnl_dereference(wiphy->regd); 148 } 149 150 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 151 { 152 switch (dfs_region) { 153 case NL80211_DFS_UNSET: 154 return "unset"; 155 case NL80211_DFS_FCC: 156 return "FCC"; 157 case NL80211_DFS_ETSI: 158 return "ETSI"; 159 case NL80211_DFS_JP: 160 return "JP"; 161 } 162 return "Unknown"; 163 } 164 165 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 166 { 167 const struct ieee80211_regdomain *regd = NULL; 168 const struct ieee80211_regdomain *wiphy_regd = NULL; 169 170 regd = get_cfg80211_regdom(); 171 if (!wiphy) 172 goto out; 173 174 wiphy_regd = get_wiphy_regdom(wiphy); 175 if (!wiphy_regd) 176 goto out; 177 178 if (wiphy_regd->dfs_region == regd->dfs_region) 179 goto out; 180 181 REG_DBG_PRINT("%s: device specific dfs_region " 182 "(%s) disagrees with cfg80211's " 183 "central dfs_region (%s)\n", 184 dev_name(&wiphy->dev), 185 reg_dfs_region_str(wiphy_regd->dfs_region), 186 reg_dfs_region_str(regd->dfs_region)); 187 188 out: 189 return regd->dfs_region; 190 } 191 192 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 193 { 194 if (!r) 195 return; 196 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 197 } 198 199 static struct regulatory_request *get_last_request(void) 200 { 201 return rcu_dereference_rtnl(last_request); 202 } 203 204 /* Used to queue up regulatory hints */ 205 static LIST_HEAD(reg_requests_list); 206 static spinlock_t reg_requests_lock; 207 208 /* Used to queue up beacon hints for review */ 209 static LIST_HEAD(reg_pending_beacons); 210 static spinlock_t reg_pending_beacons_lock; 211 212 /* Used to keep track of processed beacon hints */ 213 static LIST_HEAD(reg_beacon_list); 214 215 struct reg_beacon { 216 struct list_head list; 217 struct ieee80211_channel chan; 218 }; 219 220 static void reg_check_chans_work(struct work_struct *work); 221 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 222 223 static void reg_todo(struct work_struct *work); 224 static DECLARE_WORK(reg_work, reg_todo); 225 226 /* We keep a static world regulatory domain in case of the absence of CRDA */ 227 static const struct ieee80211_regdomain world_regdom = { 228 .n_reg_rules = 8, 229 .alpha2 = "00", 230 .reg_rules = { 231 /* IEEE 802.11b/g, channels 1..11 */ 232 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 233 /* IEEE 802.11b/g, channels 12..13. */ 234 REG_RULE(2467-10, 2472+10, 40, 6, 20, 235 NL80211_RRF_NO_IR), 236 /* IEEE 802.11 channel 14 - Only JP enables 237 * this and for 802.11b only */ 238 REG_RULE(2484-10, 2484+10, 20, 6, 20, 239 NL80211_RRF_NO_IR | 240 NL80211_RRF_NO_OFDM), 241 /* IEEE 802.11a, channel 36..48 */ 242 REG_RULE(5180-10, 5240+10, 160, 6, 20, 243 NL80211_RRF_NO_IR), 244 245 /* IEEE 802.11a, channel 52..64 - DFS required */ 246 REG_RULE(5260-10, 5320+10, 160, 6, 20, 247 NL80211_RRF_NO_IR | 248 NL80211_RRF_DFS), 249 250 /* IEEE 802.11a, channel 100..144 - DFS required */ 251 REG_RULE(5500-10, 5720+10, 160, 6, 20, 252 NL80211_RRF_NO_IR | 253 NL80211_RRF_DFS), 254 255 /* IEEE 802.11a, channel 149..165 */ 256 REG_RULE(5745-10, 5825+10, 80, 6, 20, 257 NL80211_RRF_NO_IR), 258 259 /* IEEE 802.11ad (60GHz), channels 1..3 */ 260 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 261 } 262 }; 263 264 /* protected by RTNL */ 265 static const struct ieee80211_regdomain *cfg80211_world_regdom = 266 &world_regdom; 267 268 static char *ieee80211_regdom = "00"; 269 static char user_alpha2[2]; 270 271 module_param(ieee80211_regdom, charp, 0444); 272 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 273 274 static void reg_free_request(struct regulatory_request *request) 275 { 276 if (request == &core_request_world) 277 return; 278 279 if (request != get_last_request()) 280 kfree(request); 281 } 282 283 static void reg_free_last_request(void) 284 { 285 struct regulatory_request *lr = get_last_request(); 286 287 if (lr != &core_request_world && lr) 288 kfree_rcu(lr, rcu_head); 289 } 290 291 static void reg_update_last_request(struct regulatory_request *request) 292 { 293 struct regulatory_request *lr; 294 295 lr = get_last_request(); 296 if (lr == request) 297 return; 298 299 reg_free_last_request(); 300 rcu_assign_pointer(last_request, request); 301 } 302 303 static void reset_regdomains(bool full_reset, 304 const struct ieee80211_regdomain *new_regdom) 305 { 306 const struct ieee80211_regdomain *r; 307 308 ASSERT_RTNL(); 309 310 r = get_cfg80211_regdom(); 311 312 /* avoid freeing static information or freeing something twice */ 313 if (r == cfg80211_world_regdom) 314 r = NULL; 315 if (cfg80211_world_regdom == &world_regdom) 316 cfg80211_world_regdom = NULL; 317 if (r == &world_regdom) 318 r = NULL; 319 320 rcu_free_regdom(r); 321 rcu_free_regdom(cfg80211_world_regdom); 322 323 cfg80211_world_regdom = &world_regdom; 324 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 325 326 if (!full_reset) 327 return; 328 329 reg_update_last_request(&core_request_world); 330 } 331 332 /* 333 * Dynamic world regulatory domain requested by the wireless 334 * core upon initialization 335 */ 336 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 337 { 338 struct regulatory_request *lr; 339 340 lr = get_last_request(); 341 342 WARN_ON(!lr); 343 344 reset_regdomains(false, rd); 345 346 cfg80211_world_regdom = rd; 347 } 348 349 bool is_world_regdom(const char *alpha2) 350 { 351 if (!alpha2) 352 return false; 353 return alpha2[0] == '0' && alpha2[1] == '0'; 354 } 355 356 static bool is_alpha2_set(const char *alpha2) 357 { 358 if (!alpha2) 359 return false; 360 return alpha2[0] && alpha2[1]; 361 } 362 363 static bool is_unknown_alpha2(const char *alpha2) 364 { 365 if (!alpha2) 366 return false; 367 /* 368 * Special case where regulatory domain was built by driver 369 * but a specific alpha2 cannot be determined 370 */ 371 return alpha2[0] == '9' && alpha2[1] == '9'; 372 } 373 374 static bool is_intersected_alpha2(const char *alpha2) 375 { 376 if (!alpha2) 377 return false; 378 /* 379 * Special case where regulatory domain is the 380 * result of an intersection between two regulatory domain 381 * structures 382 */ 383 return alpha2[0] == '9' && alpha2[1] == '8'; 384 } 385 386 static bool is_an_alpha2(const char *alpha2) 387 { 388 if (!alpha2) 389 return false; 390 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 391 } 392 393 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 394 { 395 if (!alpha2_x || !alpha2_y) 396 return false; 397 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 398 } 399 400 static bool regdom_changes(const char *alpha2) 401 { 402 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 403 404 if (!r) 405 return true; 406 return !alpha2_equal(r->alpha2, alpha2); 407 } 408 409 /* 410 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 411 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 412 * has ever been issued. 413 */ 414 static bool is_user_regdom_saved(void) 415 { 416 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 417 return false; 418 419 /* This would indicate a mistake on the design */ 420 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 421 "Unexpected user alpha2: %c%c\n", 422 user_alpha2[0], user_alpha2[1])) 423 return false; 424 425 return true; 426 } 427 428 static const struct ieee80211_regdomain * 429 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 430 { 431 struct ieee80211_regdomain *regd; 432 int size_of_regd; 433 unsigned int i; 434 435 size_of_regd = 436 sizeof(struct ieee80211_regdomain) + 437 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); 438 439 regd = kzalloc(size_of_regd, GFP_KERNEL); 440 if (!regd) 441 return ERR_PTR(-ENOMEM); 442 443 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 444 445 for (i = 0; i < src_regd->n_reg_rules; i++) 446 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 447 sizeof(struct ieee80211_reg_rule)); 448 449 return regd; 450 } 451 452 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 453 struct reg_regdb_apply_request { 454 struct list_head list; 455 const struct ieee80211_regdomain *regdom; 456 }; 457 458 static LIST_HEAD(reg_regdb_apply_list); 459 static DEFINE_MUTEX(reg_regdb_apply_mutex); 460 461 static void reg_regdb_apply(struct work_struct *work) 462 { 463 struct reg_regdb_apply_request *request; 464 465 rtnl_lock(); 466 467 mutex_lock(®_regdb_apply_mutex); 468 while (!list_empty(®_regdb_apply_list)) { 469 request = list_first_entry(®_regdb_apply_list, 470 struct reg_regdb_apply_request, 471 list); 472 list_del(&request->list); 473 474 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 475 kfree(request); 476 } 477 mutex_unlock(®_regdb_apply_mutex); 478 479 rtnl_unlock(); 480 } 481 482 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 483 484 static int reg_query_builtin(const char *alpha2) 485 { 486 const struct ieee80211_regdomain *regdom = NULL; 487 struct reg_regdb_apply_request *request; 488 unsigned int i; 489 490 for (i = 0; i < reg_regdb_size; i++) { 491 if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) { 492 regdom = reg_regdb[i]; 493 break; 494 } 495 } 496 497 if (!regdom) 498 return -ENODATA; 499 500 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 501 if (!request) 502 return -ENOMEM; 503 504 request->regdom = reg_copy_regd(regdom); 505 if (IS_ERR_OR_NULL(request->regdom)) { 506 kfree(request); 507 return -ENOMEM; 508 } 509 510 mutex_lock(®_regdb_apply_mutex); 511 list_add_tail(&request->list, ®_regdb_apply_list); 512 mutex_unlock(®_regdb_apply_mutex); 513 514 schedule_work(®_regdb_work); 515 516 return 0; 517 } 518 519 /* Feel free to add any other sanity checks here */ 520 static void reg_regdb_size_check(void) 521 { 522 /* We should ideally BUILD_BUG_ON() but then random builds would fail */ 523 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it..."); 524 } 525 #else 526 static inline void reg_regdb_size_check(void) {} 527 static inline int reg_query_builtin(const char *alpha2) 528 { 529 return -ENODATA; 530 } 531 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 532 533 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 534 /* Max number of consecutive attempts to communicate with CRDA */ 535 #define REG_MAX_CRDA_TIMEOUTS 10 536 537 static u32 reg_crda_timeouts; 538 539 static void crda_timeout_work(struct work_struct *work); 540 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 541 542 static void crda_timeout_work(struct work_struct *work) 543 { 544 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 545 rtnl_lock(); 546 reg_crda_timeouts++; 547 restore_regulatory_settings(true); 548 rtnl_unlock(); 549 } 550 551 static void cancel_crda_timeout(void) 552 { 553 cancel_delayed_work(&crda_timeout); 554 } 555 556 static void cancel_crda_timeout_sync(void) 557 { 558 cancel_delayed_work_sync(&crda_timeout); 559 } 560 561 static void reset_crda_timeouts(void) 562 { 563 reg_crda_timeouts = 0; 564 } 565 566 /* 567 * This lets us keep regulatory code which is updated on a regulatory 568 * basis in userspace. 569 */ 570 static int call_crda(const char *alpha2) 571 { 572 char country[12]; 573 char *env[] = { country, NULL }; 574 int ret; 575 576 snprintf(country, sizeof(country), "COUNTRY=%c%c", 577 alpha2[0], alpha2[1]); 578 579 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 580 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 581 return -EINVAL; 582 } 583 584 if (!is_world_regdom((char *) alpha2)) 585 pr_debug("Calling CRDA for country: %c%c\n", 586 alpha2[0], alpha2[1]); 587 else 588 pr_debug("Calling CRDA to update world regulatory domain\n"); 589 590 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 591 if (ret) 592 return ret; 593 594 queue_delayed_work(system_power_efficient_wq, 595 &crda_timeout, msecs_to_jiffies(3142)); 596 return 0; 597 } 598 #else 599 static inline void cancel_crda_timeout(void) {} 600 static inline void cancel_crda_timeout_sync(void) {} 601 static inline void reset_crda_timeouts(void) {} 602 static inline int call_crda(const char *alpha2) 603 { 604 return -ENODATA; 605 } 606 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 607 608 static bool reg_query_database(struct regulatory_request *request) 609 { 610 /* query internal regulatory database (if it exists) */ 611 if (reg_query_builtin(request->alpha2) == 0) 612 return true; 613 614 if (call_crda(request->alpha2) == 0) 615 return true; 616 617 return false; 618 } 619 620 bool reg_is_valid_request(const char *alpha2) 621 { 622 struct regulatory_request *lr = get_last_request(); 623 624 if (!lr || lr->processed) 625 return false; 626 627 return alpha2_equal(lr->alpha2, alpha2); 628 } 629 630 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 631 { 632 struct regulatory_request *lr = get_last_request(); 633 634 /* 635 * Follow the driver's regulatory domain, if present, unless a country 636 * IE has been processed or a user wants to help complaince further 637 */ 638 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 639 lr->initiator != NL80211_REGDOM_SET_BY_USER && 640 wiphy->regd) 641 return get_wiphy_regdom(wiphy); 642 643 return get_cfg80211_regdom(); 644 } 645 646 static unsigned int 647 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 648 const struct ieee80211_reg_rule *rule) 649 { 650 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 651 const struct ieee80211_freq_range *freq_range_tmp; 652 const struct ieee80211_reg_rule *tmp; 653 u32 start_freq, end_freq, idx, no; 654 655 for (idx = 0; idx < rd->n_reg_rules; idx++) 656 if (rule == &rd->reg_rules[idx]) 657 break; 658 659 if (idx == rd->n_reg_rules) 660 return 0; 661 662 /* get start_freq */ 663 no = idx; 664 665 while (no) { 666 tmp = &rd->reg_rules[--no]; 667 freq_range_tmp = &tmp->freq_range; 668 669 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 670 break; 671 672 freq_range = freq_range_tmp; 673 } 674 675 start_freq = freq_range->start_freq_khz; 676 677 /* get end_freq */ 678 freq_range = &rule->freq_range; 679 no = idx; 680 681 while (no < rd->n_reg_rules - 1) { 682 tmp = &rd->reg_rules[++no]; 683 freq_range_tmp = &tmp->freq_range; 684 685 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 686 break; 687 688 freq_range = freq_range_tmp; 689 } 690 691 end_freq = freq_range->end_freq_khz; 692 693 return end_freq - start_freq; 694 } 695 696 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 697 const struct ieee80211_reg_rule *rule) 698 { 699 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 700 701 if (rule->flags & NL80211_RRF_NO_160MHZ) 702 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 703 if (rule->flags & NL80211_RRF_NO_80MHZ) 704 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 705 706 /* 707 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 708 * are not allowed. 709 */ 710 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 711 rule->flags & NL80211_RRF_NO_HT40PLUS) 712 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 713 714 return bw; 715 } 716 717 /* Sanity check on a regulatory rule */ 718 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 719 { 720 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 721 u32 freq_diff; 722 723 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 724 return false; 725 726 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 727 return false; 728 729 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 730 731 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 732 freq_range->max_bandwidth_khz > freq_diff) 733 return false; 734 735 return true; 736 } 737 738 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 739 { 740 const struct ieee80211_reg_rule *reg_rule = NULL; 741 unsigned int i; 742 743 if (!rd->n_reg_rules) 744 return false; 745 746 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 747 return false; 748 749 for (i = 0; i < rd->n_reg_rules; i++) { 750 reg_rule = &rd->reg_rules[i]; 751 if (!is_valid_reg_rule(reg_rule)) 752 return false; 753 } 754 755 return true; 756 } 757 758 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 759 u32 center_freq_khz, u32 bw_khz) 760 { 761 u32 start_freq_khz, end_freq_khz; 762 763 start_freq_khz = center_freq_khz - (bw_khz/2); 764 end_freq_khz = center_freq_khz + (bw_khz/2); 765 766 if (start_freq_khz >= freq_range->start_freq_khz && 767 end_freq_khz <= freq_range->end_freq_khz) 768 return true; 769 770 return false; 771 } 772 773 /** 774 * freq_in_rule_band - tells us if a frequency is in a frequency band 775 * @freq_range: frequency rule we want to query 776 * @freq_khz: frequency we are inquiring about 777 * 778 * This lets us know if a specific frequency rule is or is not relevant to 779 * a specific frequency's band. Bands are device specific and artificial 780 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 781 * however it is safe for now to assume that a frequency rule should not be 782 * part of a frequency's band if the start freq or end freq are off by more 783 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the 784 * 60 GHz band. 785 * This resolution can be lowered and should be considered as we add 786 * regulatory rule support for other "bands". 787 **/ 788 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 789 u32 freq_khz) 790 { 791 #define ONE_GHZ_IN_KHZ 1000000 792 /* 793 * From 802.11ad: directional multi-gigabit (DMG): 794 * Pertaining to operation in a frequency band containing a channel 795 * with the Channel starting frequency above 45 GHz. 796 */ 797 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 798 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 799 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 800 return true; 801 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 802 return true; 803 return false; 804 #undef ONE_GHZ_IN_KHZ 805 } 806 807 /* 808 * Later on we can perhaps use the more restrictive DFS 809 * region but we don't have information for that yet so 810 * for now simply disallow conflicts. 811 */ 812 static enum nl80211_dfs_regions 813 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 814 const enum nl80211_dfs_regions dfs_region2) 815 { 816 if (dfs_region1 != dfs_region2) 817 return NL80211_DFS_UNSET; 818 return dfs_region1; 819 } 820 821 /* 822 * Helper for regdom_intersect(), this does the real 823 * mathematical intersection fun 824 */ 825 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 826 const struct ieee80211_regdomain *rd2, 827 const struct ieee80211_reg_rule *rule1, 828 const struct ieee80211_reg_rule *rule2, 829 struct ieee80211_reg_rule *intersected_rule) 830 { 831 const struct ieee80211_freq_range *freq_range1, *freq_range2; 832 struct ieee80211_freq_range *freq_range; 833 const struct ieee80211_power_rule *power_rule1, *power_rule2; 834 struct ieee80211_power_rule *power_rule; 835 u32 freq_diff, max_bandwidth1, max_bandwidth2; 836 837 freq_range1 = &rule1->freq_range; 838 freq_range2 = &rule2->freq_range; 839 freq_range = &intersected_rule->freq_range; 840 841 power_rule1 = &rule1->power_rule; 842 power_rule2 = &rule2->power_rule; 843 power_rule = &intersected_rule->power_rule; 844 845 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 846 freq_range2->start_freq_khz); 847 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 848 freq_range2->end_freq_khz); 849 850 max_bandwidth1 = freq_range1->max_bandwidth_khz; 851 max_bandwidth2 = freq_range2->max_bandwidth_khz; 852 853 if (rule1->flags & NL80211_RRF_AUTO_BW) 854 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 855 if (rule2->flags & NL80211_RRF_AUTO_BW) 856 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 857 858 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 859 860 intersected_rule->flags = rule1->flags | rule2->flags; 861 862 /* 863 * In case NL80211_RRF_AUTO_BW requested for both rules 864 * set AUTO_BW in intersected rule also. Next we will 865 * calculate BW correctly in handle_channel function. 866 * In other case remove AUTO_BW flag while we calculate 867 * maximum bandwidth correctly and auto calculation is 868 * not required. 869 */ 870 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 871 (rule2->flags & NL80211_RRF_AUTO_BW)) 872 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 873 else 874 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 875 876 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 877 if (freq_range->max_bandwidth_khz > freq_diff) 878 freq_range->max_bandwidth_khz = freq_diff; 879 880 power_rule->max_eirp = min(power_rule1->max_eirp, 881 power_rule2->max_eirp); 882 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 883 power_rule2->max_antenna_gain); 884 885 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 886 rule2->dfs_cac_ms); 887 888 if (!is_valid_reg_rule(intersected_rule)) 889 return -EINVAL; 890 891 return 0; 892 } 893 894 /* check whether old rule contains new rule */ 895 static bool rule_contains(struct ieee80211_reg_rule *r1, 896 struct ieee80211_reg_rule *r2) 897 { 898 /* for simplicity, currently consider only same flags */ 899 if (r1->flags != r2->flags) 900 return false; 901 902 /* verify r1 is more restrictive */ 903 if ((r1->power_rule.max_antenna_gain > 904 r2->power_rule.max_antenna_gain) || 905 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 906 return false; 907 908 /* make sure r2's range is contained within r1 */ 909 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 910 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 911 return false; 912 913 /* and finally verify that r1.max_bw >= r2.max_bw */ 914 if (r1->freq_range.max_bandwidth_khz < 915 r2->freq_range.max_bandwidth_khz) 916 return false; 917 918 return true; 919 } 920 921 /* add or extend current rules. do nothing if rule is already contained */ 922 static void add_rule(struct ieee80211_reg_rule *rule, 923 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 924 { 925 struct ieee80211_reg_rule *tmp_rule; 926 int i; 927 928 for (i = 0; i < *n_rules; i++) { 929 tmp_rule = ®_rules[i]; 930 /* rule is already contained - do nothing */ 931 if (rule_contains(tmp_rule, rule)) 932 return; 933 934 /* extend rule if possible */ 935 if (rule_contains(rule, tmp_rule)) { 936 memcpy(tmp_rule, rule, sizeof(*rule)); 937 return; 938 } 939 } 940 941 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 942 (*n_rules)++; 943 } 944 945 /** 946 * regdom_intersect - do the intersection between two regulatory domains 947 * @rd1: first regulatory domain 948 * @rd2: second regulatory domain 949 * 950 * Use this function to get the intersection between two regulatory domains. 951 * Once completed we will mark the alpha2 for the rd as intersected, "98", 952 * as no one single alpha2 can represent this regulatory domain. 953 * 954 * Returns a pointer to the regulatory domain structure which will hold the 955 * resulting intersection of rules between rd1 and rd2. We will 956 * kzalloc() this structure for you. 957 */ 958 static struct ieee80211_regdomain * 959 regdom_intersect(const struct ieee80211_regdomain *rd1, 960 const struct ieee80211_regdomain *rd2) 961 { 962 int r, size_of_regd; 963 unsigned int x, y; 964 unsigned int num_rules = 0; 965 const struct ieee80211_reg_rule *rule1, *rule2; 966 struct ieee80211_reg_rule intersected_rule; 967 struct ieee80211_regdomain *rd; 968 969 if (!rd1 || !rd2) 970 return NULL; 971 972 /* 973 * First we get a count of the rules we'll need, then we actually 974 * build them. This is to so we can malloc() and free() a 975 * regdomain once. The reason we use reg_rules_intersect() here 976 * is it will return -EINVAL if the rule computed makes no sense. 977 * All rules that do check out OK are valid. 978 */ 979 980 for (x = 0; x < rd1->n_reg_rules; x++) { 981 rule1 = &rd1->reg_rules[x]; 982 for (y = 0; y < rd2->n_reg_rules; y++) { 983 rule2 = &rd2->reg_rules[y]; 984 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 985 &intersected_rule)) 986 num_rules++; 987 } 988 } 989 990 if (!num_rules) 991 return NULL; 992 993 size_of_regd = sizeof(struct ieee80211_regdomain) + 994 num_rules * sizeof(struct ieee80211_reg_rule); 995 996 rd = kzalloc(size_of_regd, GFP_KERNEL); 997 if (!rd) 998 return NULL; 999 1000 for (x = 0; x < rd1->n_reg_rules; x++) { 1001 rule1 = &rd1->reg_rules[x]; 1002 for (y = 0; y < rd2->n_reg_rules; y++) { 1003 rule2 = &rd2->reg_rules[y]; 1004 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1005 &intersected_rule); 1006 /* 1007 * No need to memset here the intersected rule here as 1008 * we're not using the stack anymore 1009 */ 1010 if (r) 1011 continue; 1012 1013 add_rule(&intersected_rule, rd->reg_rules, 1014 &rd->n_reg_rules); 1015 } 1016 } 1017 1018 rd->alpha2[0] = '9'; 1019 rd->alpha2[1] = '8'; 1020 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1021 rd2->dfs_region); 1022 1023 return rd; 1024 } 1025 1026 /* 1027 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1028 * want to just have the channel structure use these 1029 */ 1030 static u32 map_regdom_flags(u32 rd_flags) 1031 { 1032 u32 channel_flags = 0; 1033 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1034 channel_flags |= IEEE80211_CHAN_NO_IR; 1035 if (rd_flags & NL80211_RRF_DFS) 1036 channel_flags |= IEEE80211_CHAN_RADAR; 1037 if (rd_flags & NL80211_RRF_NO_OFDM) 1038 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1039 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1040 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1041 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1042 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1043 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1044 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1045 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1046 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1047 if (rd_flags & NL80211_RRF_NO_80MHZ) 1048 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1049 if (rd_flags & NL80211_RRF_NO_160MHZ) 1050 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1051 return channel_flags; 1052 } 1053 1054 static const struct ieee80211_reg_rule * 1055 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq, 1056 const struct ieee80211_regdomain *regd, u32 bw) 1057 { 1058 int i; 1059 bool band_rule_found = false; 1060 bool bw_fits = false; 1061 1062 if (!regd) 1063 return ERR_PTR(-EINVAL); 1064 1065 for (i = 0; i < regd->n_reg_rules; i++) { 1066 const struct ieee80211_reg_rule *rr; 1067 const struct ieee80211_freq_range *fr = NULL; 1068 1069 rr = ®d->reg_rules[i]; 1070 fr = &rr->freq_range; 1071 1072 /* 1073 * We only need to know if one frequency rule was 1074 * was in center_freq's band, that's enough, so lets 1075 * not overwrite it once found 1076 */ 1077 if (!band_rule_found) 1078 band_rule_found = freq_in_rule_band(fr, center_freq); 1079 1080 bw_fits = reg_does_bw_fit(fr, center_freq, bw); 1081 1082 if (band_rule_found && bw_fits) 1083 return rr; 1084 } 1085 1086 if (!band_rule_found) 1087 return ERR_PTR(-ERANGE); 1088 1089 return ERR_PTR(-EINVAL); 1090 } 1091 1092 static const struct ieee80211_reg_rule * 1093 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1094 { 1095 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1096 const struct ieee80211_reg_rule *reg_rule = NULL; 1097 u32 bw; 1098 1099 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 1100 reg_rule = freq_reg_info_regd(wiphy, center_freq, regd, bw); 1101 if (!IS_ERR(reg_rule)) 1102 return reg_rule; 1103 } 1104 1105 return reg_rule; 1106 } 1107 1108 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1109 u32 center_freq) 1110 { 1111 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20)); 1112 } 1113 EXPORT_SYMBOL(freq_reg_info); 1114 1115 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1116 { 1117 switch (initiator) { 1118 case NL80211_REGDOM_SET_BY_CORE: 1119 return "core"; 1120 case NL80211_REGDOM_SET_BY_USER: 1121 return "user"; 1122 case NL80211_REGDOM_SET_BY_DRIVER: 1123 return "driver"; 1124 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1125 return "country IE"; 1126 default: 1127 WARN_ON(1); 1128 return "bug"; 1129 } 1130 } 1131 EXPORT_SYMBOL(reg_initiator_name); 1132 1133 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd, 1134 struct ieee80211_channel *chan, 1135 const struct ieee80211_reg_rule *reg_rule) 1136 { 1137 #ifdef CONFIG_CFG80211_REG_DEBUG 1138 const struct ieee80211_power_rule *power_rule; 1139 const struct ieee80211_freq_range *freq_range; 1140 char max_antenna_gain[32], bw[32]; 1141 1142 power_rule = ®_rule->power_rule; 1143 freq_range = ®_rule->freq_range; 1144 1145 if (!power_rule->max_antenna_gain) 1146 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A"); 1147 else 1148 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d mBi", 1149 power_rule->max_antenna_gain); 1150 1151 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1152 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 1153 freq_range->max_bandwidth_khz, 1154 reg_get_max_bandwidth(regd, reg_rule)); 1155 else 1156 snprintf(bw, sizeof(bw), "%d KHz", 1157 freq_range->max_bandwidth_khz); 1158 1159 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n", 1160 chan->center_freq); 1161 1162 REG_DBG_PRINT("(%d KHz - %d KHz @ %s), (%s, %d mBm)\n", 1163 freq_range->start_freq_khz, freq_range->end_freq_khz, 1164 bw, max_antenna_gain, 1165 power_rule->max_eirp); 1166 #endif 1167 } 1168 1169 /* 1170 * Note that right now we assume the desired channel bandwidth 1171 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1172 * per channel, the primary and the extension channel). 1173 */ 1174 static void handle_channel(struct wiphy *wiphy, 1175 enum nl80211_reg_initiator initiator, 1176 struct ieee80211_channel *chan) 1177 { 1178 u32 flags, bw_flags = 0; 1179 const struct ieee80211_reg_rule *reg_rule = NULL; 1180 const struct ieee80211_power_rule *power_rule = NULL; 1181 const struct ieee80211_freq_range *freq_range = NULL; 1182 struct wiphy *request_wiphy = NULL; 1183 struct regulatory_request *lr = get_last_request(); 1184 const struct ieee80211_regdomain *regd; 1185 u32 max_bandwidth_khz; 1186 1187 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1188 1189 flags = chan->orig_flags; 1190 1191 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 1192 if (IS_ERR(reg_rule)) { 1193 /* 1194 * We will disable all channels that do not match our 1195 * received regulatory rule unless the hint is coming 1196 * from a Country IE and the Country IE had no information 1197 * about a band. The IEEE 802.11 spec allows for an AP 1198 * to send only a subset of the regulatory rules allowed, 1199 * so an AP in the US that only supports 2.4 GHz may only send 1200 * a country IE with information for the 2.4 GHz band 1201 * while 5 GHz is still supported. 1202 */ 1203 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1204 PTR_ERR(reg_rule) == -ERANGE) 1205 return; 1206 1207 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1208 request_wiphy && request_wiphy == wiphy && 1209 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1210 REG_DBG_PRINT("Disabling freq %d MHz for good\n", 1211 chan->center_freq); 1212 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1213 chan->flags = chan->orig_flags; 1214 } else { 1215 REG_DBG_PRINT("Disabling freq %d MHz\n", 1216 chan->center_freq); 1217 chan->flags |= IEEE80211_CHAN_DISABLED; 1218 } 1219 return; 1220 } 1221 1222 regd = reg_get_regdomain(wiphy); 1223 chan_reg_rule_print_dbg(regd, chan, reg_rule); 1224 1225 power_rule = ®_rule->power_rule; 1226 freq_range = ®_rule->freq_range; 1227 1228 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1229 /* Check if auto calculation requested */ 1230 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1231 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1232 1233 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1234 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq), 1235 MHZ_TO_KHZ(10))) 1236 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1237 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq), 1238 MHZ_TO_KHZ(20))) 1239 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1240 1241 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1242 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1243 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1244 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1245 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1246 bw_flags |= IEEE80211_CHAN_NO_HT40; 1247 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1248 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1249 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1250 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1251 1252 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1253 request_wiphy && request_wiphy == wiphy && 1254 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1255 /* 1256 * This guarantees the driver's requested regulatory domain 1257 * will always be used as a base for further regulatory 1258 * settings 1259 */ 1260 chan->flags = chan->orig_flags = 1261 map_regdom_flags(reg_rule->flags) | bw_flags; 1262 chan->max_antenna_gain = chan->orig_mag = 1263 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1264 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1265 (int) MBM_TO_DBM(power_rule->max_eirp); 1266 1267 if (chan->flags & IEEE80211_CHAN_RADAR) { 1268 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1269 if (reg_rule->dfs_cac_ms) 1270 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1271 } 1272 1273 return; 1274 } 1275 1276 chan->dfs_state = NL80211_DFS_USABLE; 1277 chan->dfs_state_entered = jiffies; 1278 1279 chan->beacon_found = false; 1280 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1281 chan->max_antenna_gain = 1282 min_t(int, chan->orig_mag, 1283 MBI_TO_DBI(power_rule->max_antenna_gain)); 1284 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1285 1286 if (chan->flags & IEEE80211_CHAN_RADAR) { 1287 if (reg_rule->dfs_cac_ms) 1288 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1289 else 1290 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1291 } 1292 1293 if (chan->orig_mpwr) { 1294 /* 1295 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1296 * will always follow the passed country IE power settings. 1297 */ 1298 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1299 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1300 chan->max_power = chan->max_reg_power; 1301 else 1302 chan->max_power = min(chan->orig_mpwr, 1303 chan->max_reg_power); 1304 } else 1305 chan->max_power = chan->max_reg_power; 1306 } 1307 1308 static void handle_band(struct wiphy *wiphy, 1309 enum nl80211_reg_initiator initiator, 1310 struct ieee80211_supported_band *sband) 1311 { 1312 unsigned int i; 1313 1314 if (!sband) 1315 return; 1316 1317 for (i = 0; i < sband->n_channels; i++) 1318 handle_channel(wiphy, initiator, &sband->channels[i]); 1319 } 1320 1321 static bool reg_request_cell_base(struct regulatory_request *request) 1322 { 1323 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1324 return false; 1325 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 1326 } 1327 1328 bool reg_last_request_cell_base(void) 1329 { 1330 return reg_request_cell_base(get_last_request()); 1331 } 1332 1333 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 1334 /* Core specific check */ 1335 static enum reg_request_treatment 1336 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1337 { 1338 struct regulatory_request *lr = get_last_request(); 1339 1340 if (!reg_num_devs_support_basehint) 1341 return REG_REQ_IGNORE; 1342 1343 if (reg_request_cell_base(lr) && 1344 !regdom_changes(pending_request->alpha2)) 1345 return REG_REQ_ALREADY_SET; 1346 1347 return REG_REQ_OK; 1348 } 1349 1350 /* Device specific check */ 1351 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1352 { 1353 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 1354 } 1355 #else 1356 static enum reg_request_treatment 1357 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1358 { 1359 return REG_REQ_IGNORE; 1360 } 1361 1362 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1363 { 1364 return true; 1365 } 1366 #endif 1367 1368 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 1369 { 1370 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 1371 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 1372 return true; 1373 return false; 1374 } 1375 1376 static bool ignore_reg_update(struct wiphy *wiphy, 1377 enum nl80211_reg_initiator initiator) 1378 { 1379 struct regulatory_request *lr = get_last_request(); 1380 1381 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 1382 return true; 1383 1384 if (!lr) { 1385 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1386 "since last_request is not set\n", 1387 reg_initiator_name(initiator)); 1388 return true; 1389 } 1390 1391 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1392 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 1393 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1394 "since the driver uses its own custom " 1395 "regulatory domain\n", 1396 reg_initiator_name(initiator)); 1397 return true; 1398 } 1399 1400 /* 1401 * wiphy->regd will be set once the device has its own 1402 * desired regulatory domain set 1403 */ 1404 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1405 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1406 !is_world_regdom(lr->alpha2)) { 1407 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1408 "since the driver requires its own regulatory " 1409 "domain to be set first\n", 1410 reg_initiator_name(initiator)); 1411 return true; 1412 } 1413 1414 if (reg_request_cell_base(lr)) 1415 return reg_dev_ignore_cell_hint(wiphy); 1416 1417 return false; 1418 } 1419 1420 static bool reg_is_world_roaming(struct wiphy *wiphy) 1421 { 1422 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1423 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1424 struct regulatory_request *lr = get_last_request(); 1425 1426 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1427 return true; 1428 1429 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1430 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1431 return true; 1432 1433 return false; 1434 } 1435 1436 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1437 struct reg_beacon *reg_beacon) 1438 { 1439 struct ieee80211_supported_band *sband; 1440 struct ieee80211_channel *chan; 1441 bool channel_changed = false; 1442 struct ieee80211_channel chan_before; 1443 1444 sband = wiphy->bands[reg_beacon->chan.band]; 1445 chan = &sband->channels[chan_idx]; 1446 1447 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1448 return; 1449 1450 if (chan->beacon_found) 1451 return; 1452 1453 chan->beacon_found = true; 1454 1455 if (!reg_is_world_roaming(wiphy)) 1456 return; 1457 1458 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 1459 return; 1460 1461 chan_before.center_freq = chan->center_freq; 1462 chan_before.flags = chan->flags; 1463 1464 if (chan->flags & IEEE80211_CHAN_NO_IR) { 1465 chan->flags &= ~IEEE80211_CHAN_NO_IR; 1466 channel_changed = true; 1467 } 1468 1469 if (channel_changed) 1470 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1471 } 1472 1473 /* 1474 * Called when a scan on a wiphy finds a beacon on 1475 * new channel 1476 */ 1477 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1478 struct reg_beacon *reg_beacon) 1479 { 1480 unsigned int i; 1481 struct ieee80211_supported_band *sband; 1482 1483 if (!wiphy->bands[reg_beacon->chan.band]) 1484 return; 1485 1486 sband = wiphy->bands[reg_beacon->chan.band]; 1487 1488 for (i = 0; i < sband->n_channels; i++) 1489 handle_reg_beacon(wiphy, i, reg_beacon); 1490 } 1491 1492 /* 1493 * Called upon reg changes or a new wiphy is added 1494 */ 1495 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1496 { 1497 unsigned int i; 1498 struct ieee80211_supported_band *sband; 1499 struct reg_beacon *reg_beacon; 1500 1501 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1502 if (!wiphy->bands[reg_beacon->chan.band]) 1503 continue; 1504 sband = wiphy->bands[reg_beacon->chan.band]; 1505 for (i = 0; i < sband->n_channels; i++) 1506 handle_reg_beacon(wiphy, i, reg_beacon); 1507 } 1508 } 1509 1510 /* Reap the advantages of previously found beacons */ 1511 static void reg_process_beacons(struct wiphy *wiphy) 1512 { 1513 /* 1514 * Means we are just firing up cfg80211, so no beacons would 1515 * have been processed yet. 1516 */ 1517 if (!last_request) 1518 return; 1519 wiphy_update_beacon_reg(wiphy); 1520 } 1521 1522 static bool is_ht40_allowed(struct ieee80211_channel *chan) 1523 { 1524 if (!chan) 1525 return false; 1526 if (chan->flags & IEEE80211_CHAN_DISABLED) 1527 return false; 1528 /* This would happen when regulatory rules disallow HT40 completely */ 1529 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 1530 return false; 1531 return true; 1532 } 1533 1534 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1535 struct ieee80211_channel *channel) 1536 { 1537 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 1538 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1539 unsigned int i; 1540 1541 if (!is_ht40_allowed(channel)) { 1542 channel->flags |= IEEE80211_CHAN_NO_HT40; 1543 return; 1544 } 1545 1546 /* 1547 * We need to ensure the extension channels exist to 1548 * be able to use HT40- or HT40+, this finds them (or not) 1549 */ 1550 for (i = 0; i < sband->n_channels; i++) { 1551 struct ieee80211_channel *c = &sband->channels[i]; 1552 1553 if (c->center_freq == (channel->center_freq - 20)) 1554 channel_before = c; 1555 if (c->center_freq == (channel->center_freq + 20)) 1556 channel_after = c; 1557 } 1558 1559 /* 1560 * Please note that this assumes target bandwidth is 20 MHz, 1561 * if that ever changes we also need to change the below logic 1562 * to include that as well. 1563 */ 1564 if (!is_ht40_allowed(channel_before)) 1565 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1566 else 1567 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1568 1569 if (!is_ht40_allowed(channel_after)) 1570 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1571 else 1572 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1573 } 1574 1575 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1576 struct ieee80211_supported_band *sband) 1577 { 1578 unsigned int i; 1579 1580 if (!sband) 1581 return; 1582 1583 for (i = 0; i < sband->n_channels; i++) 1584 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 1585 } 1586 1587 static void reg_process_ht_flags(struct wiphy *wiphy) 1588 { 1589 enum ieee80211_band band; 1590 1591 if (!wiphy) 1592 return; 1593 1594 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1595 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 1596 } 1597 1598 static void reg_call_notifier(struct wiphy *wiphy, 1599 struct regulatory_request *request) 1600 { 1601 if (wiphy->reg_notifier) 1602 wiphy->reg_notifier(wiphy, request); 1603 } 1604 1605 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 1606 { 1607 struct cfg80211_chan_def chandef; 1608 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1609 enum nl80211_iftype iftype; 1610 1611 wdev_lock(wdev); 1612 iftype = wdev->iftype; 1613 1614 /* make sure the interface is active */ 1615 if (!wdev->netdev || !netif_running(wdev->netdev)) 1616 goto wdev_inactive_unlock; 1617 1618 switch (iftype) { 1619 case NL80211_IFTYPE_AP: 1620 case NL80211_IFTYPE_P2P_GO: 1621 if (!wdev->beacon_interval) 1622 goto wdev_inactive_unlock; 1623 chandef = wdev->chandef; 1624 break; 1625 case NL80211_IFTYPE_ADHOC: 1626 if (!wdev->ssid_len) 1627 goto wdev_inactive_unlock; 1628 chandef = wdev->chandef; 1629 break; 1630 case NL80211_IFTYPE_STATION: 1631 case NL80211_IFTYPE_P2P_CLIENT: 1632 if (!wdev->current_bss || 1633 !wdev->current_bss->pub.channel) 1634 goto wdev_inactive_unlock; 1635 1636 if (!rdev->ops->get_channel || 1637 rdev_get_channel(rdev, wdev, &chandef)) 1638 cfg80211_chandef_create(&chandef, 1639 wdev->current_bss->pub.channel, 1640 NL80211_CHAN_NO_HT); 1641 break; 1642 case NL80211_IFTYPE_MONITOR: 1643 case NL80211_IFTYPE_AP_VLAN: 1644 case NL80211_IFTYPE_P2P_DEVICE: 1645 /* no enforcement required */ 1646 break; 1647 default: 1648 /* others not implemented for now */ 1649 WARN_ON(1); 1650 break; 1651 } 1652 1653 wdev_unlock(wdev); 1654 1655 switch (iftype) { 1656 case NL80211_IFTYPE_AP: 1657 case NL80211_IFTYPE_P2P_GO: 1658 case NL80211_IFTYPE_ADHOC: 1659 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 1660 case NL80211_IFTYPE_STATION: 1661 case NL80211_IFTYPE_P2P_CLIENT: 1662 return cfg80211_chandef_usable(wiphy, &chandef, 1663 IEEE80211_CHAN_DISABLED); 1664 default: 1665 break; 1666 } 1667 1668 return true; 1669 1670 wdev_inactive_unlock: 1671 wdev_unlock(wdev); 1672 return true; 1673 } 1674 1675 static void reg_leave_invalid_chans(struct wiphy *wiphy) 1676 { 1677 struct wireless_dev *wdev; 1678 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1679 1680 ASSERT_RTNL(); 1681 1682 list_for_each_entry(wdev, &rdev->wdev_list, list) 1683 if (!reg_wdev_chan_valid(wiphy, wdev)) 1684 cfg80211_leave(rdev, wdev); 1685 } 1686 1687 static void reg_check_chans_work(struct work_struct *work) 1688 { 1689 struct cfg80211_registered_device *rdev; 1690 1691 REG_DBG_PRINT("Verifying active interfaces after reg change\n"); 1692 rtnl_lock(); 1693 1694 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1695 if (!(rdev->wiphy.regulatory_flags & 1696 REGULATORY_IGNORE_STALE_KICKOFF)) 1697 reg_leave_invalid_chans(&rdev->wiphy); 1698 1699 rtnl_unlock(); 1700 } 1701 1702 static void reg_check_channels(void) 1703 { 1704 /* 1705 * Give usermode a chance to do something nicer (move to another 1706 * channel, orderly disconnection), before forcing a disconnection. 1707 */ 1708 mod_delayed_work(system_power_efficient_wq, 1709 ®_check_chans, 1710 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 1711 } 1712 1713 static void wiphy_update_regulatory(struct wiphy *wiphy, 1714 enum nl80211_reg_initiator initiator) 1715 { 1716 enum ieee80211_band band; 1717 struct regulatory_request *lr = get_last_request(); 1718 1719 if (ignore_reg_update(wiphy, initiator)) { 1720 /* 1721 * Regulatory updates set by CORE are ignored for custom 1722 * regulatory cards. Let us notify the changes to the driver, 1723 * as some drivers used this to restore its orig_* reg domain. 1724 */ 1725 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1726 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1727 reg_call_notifier(wiphy, lr); 1728 return; 1729 } 1730 1731 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 1732 1733 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1734 handle_band(wiphy, initiator, wiphy->bands[band]); 1735 1736 reg_process_beacons(wiphy); 1737 reg_process_ht_flags(wiphy); 1738 reg_call_notifier(wiphy, lr); 1739 } 1740 1741 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 1742 { 1743 struct cfg80211_registered_device *rdev; 1744 struct wiphy *wiphy; 1745 1746 ASSERT_RTNL(); 1747 1748 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1749 wiphy = &rdev->wiphy; 1750 wiphy_update_regulatory(wiphy, initiator); 1751 } 1752 1753 reg_check_channels(); 1754 } 1755 1756 static void handle_channel_custom(struct wiphy *wiphy, 1757 struct ieee80211_channel *chan, 1758 const struct ieee80211_regdomain *regd) 1759 { 1760 u32 bw_flags = 0; 1761 const struct ieee80211_reg_rule *reg_rule = NULL; 1762 const struct ieee80211_power_rule *power_rule = NULL; 1763 const struct ieee80211_freq_range *freq_range = NULL; 1764 u32 max_bandwidth_khz; 1765 u32 bw; 1766 1767 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) { 1768 reg_rule = freq_reg_info_regd(wiphy, 1769 MHZ_TO_KHZ(chan->center_freq), 1770 regd, bw); 1771 if (!IS_ERR(reg_rule)) 1772 break; 1773 } 1774 1775 if (IS_ERR(reg_rule)) { 1776 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n", 1777 chan->center_freq); 1778 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 1779 chan->flags |= IEEE80211_CHAN_DISABLED; 1780 } else { 1781 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1782 chan->flags = chan->orig_flags; 1783 } 1784 return; 1785 } 1786 1787 chan_reg_rule_print_dbg(regd, chan, reg_rule); 1788 1789 power_rule = ®_rule->power_rule; 1790 freq_range = ®_rule->freq_range; 1791 1792 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1793 /* Check if auto calculation requested */ 1794 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1795 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1796 1797 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1798 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq), 1799 MHZ_TO_KHZ(10))) 1800 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1801 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq), 1802 MHZ_TO_KHZ(20))) 1803 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1804 1805 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1806 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1807 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1808 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1809 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1810 bw_flags |= IEEE80211_CHAN_NO_HT40; 1811 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1812 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1813 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1814 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1815 1816 chan->dfs_state_entered = jiffies; 1817 chan->dfs_state = NL80211_DFS_USABLE; 1818 1819 chan->beacon_found = false; 1820 1821 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 1822 chan->flags = chan->orig_flags | bw_flags | 1823 map_regdom_flags(reg_rule->flags); 1824 else 1825 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1826 1827 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1828 chan->max_reg_power = chan->max_power = 1829 (int) MBM_TO_DBM(power_rule->max_eirp); 1830 1831 if (chan->flags & IEEE80211_CHAN_RADAR) { 1832 if (reg_rule->dfs_cac_ms) 1833 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1834 else 1835 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1836 } 1837 1838 chan->max_power = chan->max_reg_power; 1839 } 1840 1841 static void handle_band_custom(struct wiphy *wiphy, 1842 struct ieee80211_supported_band *sband, 1843 const struct ieee80211_regdomain *regd) 1844 { 1845 unsigned int i; 1846 1847 if (!sband) 1848 return; 1849 1850 for (i = 0; i < sband->n_channels; i++) 1851 handle_channel_custom(wiphy, &sband->channels[i], regd); 1852 } 1853 1854 /* Used by drivers prior to wiphy registration */ 1855 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1856 const struct ieee80211_regdomain *regd) 1857 { 1858 enum ieee80211_band band; 1859 unsigned int bands_set = 0; 1860 1861 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 1862 "wiphy should have REGULATORY_CUSTOM_REG\n"); 1863 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 1864 1865 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1866 if (!wiphy->bands[band]) 1867 continue; 1868 handle_band_custom(wiphy, wiphy->bands[band], regd); 1869 bands_set++; 1870 } 1871 1872 /* 1873 * no point in calling this if it won't have any effect 1874 * on your device's supported bands. 1875 */ 1876 WARN_ON(!bands_set); 1877 } 1878 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1879 1880 static void reg_set_request_processed(void) 1881 { 1882 bool need_more_processing = false; 1883 struct regulatory_request *lr = get_last_request(); 1884 1885 lr->processed = true; 1886 1887 spin_lock(®_requests_lock); 1888 if (!list_empty(®_requests_list)) 1889 need_more_processing = true; 1890 spin_unlock(®_requests_lock); 1891 1892 cancel_crda_timeout(); 1893 1894 if (need_more_processing) 1895 schedule_work(®_work); 1896 } 1897 1898 /** 1899 * reg_process_hint_core - process core regulatory requests 1900 * @pending_request: a pending core regulatory request 1901 * 1902 * The wireless subsystem can use this function to process 1903 * a regulatory request issued by the regulatory core. 1904 */ 1905 static enum reg_request_treatment 1906 reg_process_hint_core(struct regulatory_request *core_request) 1907 { 1908 if (reg_query_database(core_request)) { 1909 core_request->intersect = false; 1910 core_request->processed = false; 1911 reg_update_last_request(core_request); 1912 return REG_REQ_OK; 1913 } 1914 1915 return REG_REQ_IGNORE; 1916 } 1917 1918 static enum reg_request_treatment 1919 __reg_process_hint_user(struct regulatory_request *user_request) 1920 { 1921 struct regulatory_request *lr = get_last_request(); 1922 1923 if (reg_request_cell_base(user_request)) 1924 return reg_ignore_cell_hint(user_request); 1925 1926 if (reg_request_cell_base(lr)) 1927 return REG_REQ_IGNORE; 1928 1929 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1930 return REG_REQ_INTERSECT; 1931 /* 1932 * If the user knows better the user should set the regdom 1933 * to their country before the IE is picked up 1934 */ 1935 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 1936 lr->intersect) 1937 return REG_REQ_IGNORE; 1938 /* 1939 * Process user requests only after previous user/driver/core 1940 * requests have been processed 1941 */ 1942 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 1943 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1944 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 1945 regdom_changes(lr->alpha2)) 1946 return REG_REQ_IGNORE; 1947 1948 if (!regdom_changes(user_request->alpha2)) 1949 return REG_REQ_ALREADY_SET; 1950 1951 return REG_REQ_OK; 1952 } 1953 1954 /** 1955 * reg_process_hint_user - process user regulatory requests 1956 * @user_request: a pending user regulatory request 1957 * 1958 * The wireless subsystem can use this function to process 1959 * a regulatory request initiated by userspace. 1960 */ 1961 static enum reg_request_treatment 1962 reg_process_hint_user(struct regulatory_request *user_request) 1963 { 1964 enum reg_request_treatment treatment; 1965 1966 treatment = __reg_process_hint_user(user_request); 1967 if (treatment == REG_REQ_IGNORE || 1968 treatment == REG_REQ_ALREADY_SET) 1969 return REG_REQ_IGNORE; 1970 1971 user_request->intersect = treatment == REG_REQ_INTERSECT; 1972 user_request->processed = false; 1973 1974 if (reg_query_database(user_request)) { 1975 reg_update_last_request(user_request); 1976 user_alpha2[0] = user_request->alpha2[0]; 1977 user_alpha2[1] = user_request->alpha2[1]; 1978 return REG_REQ_OK; 1979 } 1980 1981 return REG_REQ_IGNORE; 1982 } 1983 1984 static enum reg_request_treatment 1985 __reg_process_hint_driver(struct regulatory_request *driver_request) 1986 { 1987 struct regulatory_request *lr = get_last_request(); 1988 1989 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 1990 if (regdom_changes(driver_request->alpha2)) 1991 return REG_REQ_OK; 1992 return REG_REQ_ALREADY_SET; 1993 } 1994 1995 /* 1996 * This would happen if you unplug and plug your card 1997 * back in or if you add a new device for which the previously 1998 * loaded card also agrees on the regulatory domain. 1999 */ 2000 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2001 !regdom_changes(driver_request->alpha2)) 2002 return REG_REQ_ALREADY_SET; 2003 2004 return REG_REQ_INTERSECT; 2005 } 2006 2007 /** 2008 * reg_process_hint_driver - process driver regulatory requests 2009 * @driver_request: a pending driver regulatory request 2010 * 2011 * The wireless subsystem can use this function to process 2012 * a regulatory request issued by an 802.11 driver. 2013 * 2014 * Returns one of the different reg request treatment values. 2015 */ 2016 static enum reg_request_treatment 2017 reg_process_hint_driver(struct wiphy *wiphy, 2018 struct regulatory_request *driver_request) 2019 { 2020 const struct ieee80211_regdomain *regd, *tmp; 2021 enum reg_request_treatment treatment; 2022 2023 treatment = __reg_process_hint_driver(driver_request); 2024 2025 switch (treatment) { 2026 case REG_REQ_OK: 2027 break; 2028 case REG_REQ_IGNORE: 2029 return REG_REQ_IGNORE; 2030 case REG_REQ_INTERSECT: 2031 case REG_REQ_ALREADY_SET: 2032 regd = reg_copy_regd(get_cfg80211_regdom()); 2033 if (IS_ERR(regd)) 2034 return REG_REQ_IGNORE; 2035 2036 tmp = get_wiphy_regdom(wiphy); 2037 rcu_assign_pointer(wiphy->regd, regd); 2038 rcu_free_regdom(tmp); 2039 } 2040 2041 2042 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2043 driver_request->processed = false; 2044 2045 /* 2046 * Since CRDA will not be called in this case as we already 2047 * have applied the requested regulatory domain before we just 2048 * inform userspace we have processed the request 2049 */ 2050 if (treatment == REG_REQ_ALREADY_SET) { 2051 nl80211_send_reg_change_event(driver_request); 2052 reg_update_last_request(driver_request); 2053 reg_set_request_processed(); 2054 return REG_REQ_ALREADY_SET; 2055 } 2056 2057 if (reg_query_database(driver_request)) { 2058 reg_update_last_request(driver_request); 2059 return REG_REQ_OK; 2060 } 2061 2062 return REG_REQ_IGNORE; 2063 } 2064 2065 static enum reg_request_treatment 2066 __reg_process_hint_country_ie(struct wiphy *wiphy, 2067 struct regulatory_request *country_ie_request) 2068 { 2069 struct wiphy *last_wiphy = NULL; 2070 struct regulatory_request *lr = get_last_request(); 2071 2072 if (reg_request_cell_base(lr)) { 2073 /* Trust a Cell base station over the AP's country IE */ 2074 if (regdom_changes(country_ie_request->alpha2)) 2075 return REG_REQ_IGNORE; 2076 return REG_REQ_ALREADY_SET; 2077 } else { 2078 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2079 return REG_REQ_IGNORE; 2080 } 2081 2082 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2083 return -EINVAL; 2084 2085 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2086 return REG_REQ_OK; 2087 2088 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2089 2090 if (last_wiphy != wiphy) { 2091 /* 2092 * Two cards with two APs claiming different 2093 * Country IE alpha2s. We could 2094 * intersect them, but that seems unlikely 2095 * to be correct. Reject second one for now. 2096 */ 2097 if (regdom_changes(country_ie_request->alpha2)) 2098 return REG_REQ_IGNORE; 2099 return REG_REQ_ALREADY_SET; 2100 } 2101 2102 if (regdom_changes(country_ie_request->alpha2)) 2103 return REG_REQ_OK; 2104 return REG_REQ_ALREADY_SET; 2105 } 2106 2107 /** 2108 * reg_process_hint_country_ie - process regulatory requests from country IEs 2109 * @country_ie_request: a regulatory request from a country IE 2110 * 2111 * The wireless subsystem can use this function to process 2112 * a regulatory request issued by a country Information Element. 2113 * 2114 * Returns one of the different reg request treatment values. 2115 */ 2116 static enum reg_request_treatment 2117 reg_process_hint_country_ie(struct wiphy *wiphy, 2118 struct regulatory_request *country_ie_request) 2119 { 2120 enum reg_request_treatment treatment; 2121 2122 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2123 2124 switch (treatment) { 2125 case REG_REQ_OK: 2126 break; 2127 case REG_REQ_IGNORE: 2128 return REG_REQ_IGNORE; 2129 case REG_REQ_ALREADY_SET: 2130 reg_free_request(country_ie_request); 2131 return REG_REQ_ALREADY_SET; 2132 case REG_REQ_INTERSECT: 2133 /* 2134 * This doesn't happen yet, not sure we 2135 * ever want to support it for this case. 2136 */ 2137 WARN_ONCE(1, "Unexpected intersection for country IEs"); 2138 return REG_REQ_IGNORE; 2139 } 2140 2141 country_ie_request->intersect = false; 2142 country_ie_request->processed = false; 2143 2144 if (reg_query_database(country_ie_request)) { 2145 reg_update_last_request(country_ie_request); 2146 return REG_REQ_OK; 2147 } 2148 2149 return REG_REQ_IGNORE; 2150 } 2151 2152 /* This processes *all* regulatory hints */ 2153 static void reg_process_hint(struct regulatory_request *reg_request) 2154 { 2155 struct wiphy *wiphy = NULL; 2156 enum reg_request_treatment treatment; 2157 2158 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2159 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2160 2161 switch (reg_request->initiator) { 2162 case NL80211_REGDOM_SET_BY_CORE: 2163 treatment = reg_process_hint_core(reg_request); 2164 break; 2165 case NL80211_REGDOM_SET_BY_USER: 2166 treatment = reg_process_hint_user(reg_request); 2167 break; 2168 case NL80211_REGDOM_SET_BY_DRIVER: 2169 if (!wiphy) 2170 goto out_free; 2171 treatment = reg_process_hint_driver(wiphy, reg_request); 2172 break; 2173 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2174 if (!wiphy) 2175 goto out_free; 2176 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2177 break; 2178 default: 2179 WARN(1, "invalid initiator %d\n", reg_request->initiator); 2180 goto out_free; 2181 } 2182 2183 if (treatment == REG_REQ_IGNORE) 2184 goto out_free; 2185 2186 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 2187 "unexpected treatment value %d\n", treatment); 2188 2189 /* This is required so that the orig_* parameters are saved. 2190 * NOTE: treatment must be set for any case that reaches here! 2191 */ 2192 if (treatment == REG_REQ_ALREADY_SET && wiphy && 2193 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2194 wiphy_update_regulatory(wiphy, reg_request->initiator); 2195 reg_check_channels(); 2196 } 2197 2198 return; 2199 2200 out_free: 2201 reg_free_request(reg_request); 2202 } 2203 2204 static bool reg_only_self_managed_wiphys(void) 2205 { 2206 struct cfg80211_registered_device *rdev; 2207 struct wiphy *wiphy; 2208 bool self_managed_found = false; 2209 2210 ASSERT_RTNL(); 2211 2212 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2213 wiphy = &rdev->wiphy; 2214 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2215 self_managed_found = true; 2216 else 2217 return false; 2218 } 2219 2220 /* make sure at least one self-managed wiphy exists */ 2221 return self_managed_found; 2222 } 2223 2224 /* 2225 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 2226 * Regulatory hints come on a first come first serve basis and we 2227 * must process each one atomically. 2228 */ 2229 static void reg_process_pending_hints(void) 2230 { 2231 struct regulatory_request *reg_request, *lr; 2232 2233 lr = get_last_request(); 2234 2235 /* When last_request->processed becomes true this will be rescheduled */ 2236 if (lr && !lr->processed) { 2237 reg_process_hint(lr); 2238 return; 2239 } 2240 2241 spin_lock(®_requests_lock); 2242 2243 if (list_empty(®_requests_list)) { 2244 spin_unlock(®_requests_lock); 2245 return; 2246 } 2247 2248 reg_request = list_first_entry(®_requests_list, 2249 struct regulatory_request, 2250 list); 2251 list_del_init(®_request->list); 2252 2253 spin_unlock(®_requests_lock); 2254 2255 if (reg_only_self_managed_wiphys()) { 2256 reg_free_request(reg_request); 2257 return; 2258 } 2259 2260 reg_process_hint(reg_request); 2261 2262 lr = get_last_request(); 2263 2264 spin_lock(®_requests_lock); 2265 if (!list_empty(®_requests_list) && lr && lr->processed) 2266 schedule_work(®_work); 2267 spin_unlock(®_requests_lock); 2268 } 2269 2270 /* Processes beacon hints -- this has nothing to do with country IEs */ 2271 static void reg_process_pending_beacon_hints(void) 2272 { 2273 struct cfg80211_registered_device *rdev; 2274 struct reg_beacon *pending_beacon, *tmp; 2275 2276 /* This goes through the _pending_ beacon list */ 2277 spin_lock_bh(®_pending_beacons_lock); 2278 2279 list_for_each_entry_safe(pending_beacon, tmp, 2280 ®_pending_beacons, list) { 2281 list_del_init(&pending_beacon->list); 2282 2283 /* Applies the beacon hint to current wiphys */ 2284 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2285 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 2286 2287 /* Remembers the beacon hint for new wiphys or reg changes */ 2288 list_add_tail(&pending_beacon->list, ®_beacon_list); 2289 } 2290 2291 spin_unlock_bh(®_pending_beacons_lock); 2292 } 2293 2294 static void reg_process_self_managed_hints(void) 2295 { 2296 struct cfg80211_registered_device *rdev; 2297 struct wiphy *wiphy; 2298 const struct ieee80211_regdomain *tmp; 2299 const struct ieee80211_regdomain *regd; 2300 enum ieee80211_band band; 2301 struct regulatory_request request = {}; 2302 2303 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2304 wiphy = &rdev->wiphy; 2305 2306 spin_lock(®_requests_lock); 2307 regd = rdev->requested_regd; 2308 rdev->requested_regd = NULL; 2309 spin_unlock(®_requests_lock); 2310 2311 if (regd == NULL) 2312 continue; 2313 2314 tmp = get_wiphy_regdom(wiphy); 2315 rcu_assign_pointer(wiphy->regd, regd); 2316 rcu_free_regdom(tmp); 2317 2318 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 2319 handle_band_custom(wiphy, wiphy->bands[band], regd); 2320 2321 reg_process_ht_flags(wiphy); 2322 2323 request.wiphy_idx = get_wiphy_idx(wiphy); 2324 request.alpha2[0] = regd->alpha2[0]; 2325 request.alpha2[1] = regd->alpha2[1]; 2326 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 2327 2328 nl80211_send_wiphy_reg_change_event(&request); 2329 } 2330 2331 reg_check_channels(); 2332 } 2333 2334 static void reg_todo(struct work_struct *work) 2335 { 2336 rtnl_lock(); 2337 reg_process_pending_hints(); 2338 reg_process_pending_beacon_hints(); 2339 reg_process_self_managed_hints(); 2340 rtnl_unlock(); 2341 } 2342 2343 static void queue_regulatory_request(struct regulatory_request *request) 2344 { 2345 request->alpha2[0] = toupper(request->alpha2[0]); 2346 request->alpha2[1] = toupper(request->alpha2[1]); 2347 2348 spin_lock(®_requests_lock); 2349 list_add_tail(&request->list, ®_requests_list); 2350 spin_unlock(®_requests_lock); 2351 2352 schedule_work(®_work); 2353 } 2354 2355 /* 2356 * Core regulatory hint -- happens during cfg80211_init() 2357 * and when we restore regulatory settings. 2358 */ 2359 static int regulatory_hint_core(const char *alpha2) 2360 { 2361 struct regulatory_request *request; 2362 2363 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2364 if (!request) 2365 return -ENOMEM; 2366 2367 request->alpha2[0] = alpha2[0]; 2368 request->alpha2[1] = alpha2[1]; 2369 request->initiator = NL80211_REGDOM_SET_BY_CORE; 2370 2371 queue_regulatory_request(request); 2372 2373 return 0; 2374 } 2375 2376 /* User hints */ 2377 int regulatory_hint_user(const char *alpha2, 2378 enum nl80211_user_reg_hint_type user_reg_hint_type) 2379 { 2380 struct regulatory_request *request; 2381 2382 if (WARN_ON(!alpha2)) 2383 return -EINVAL; 2384 2385 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2386 if (!request) 2387 return -ENOMEM; 2388 2389 request->wiphy_idx = WIPHY_IDX_INVALID; 2390 request->alpha2[0] = alpha2[0]; 2391 request->alpha2[1] = alpha2[1]; 2392 request->initiator = NL80211_REGDOM_SET_BY_USER; 2393 request->user_reg_hint_type = user_reg_hint_type; 2394 2395 /* Allow calling CRDA again */ 2396 reset_crda_timeouts(); 2397 2398 queue_regulatory_request(request); 2399 2400 return 0; 2401 } 2402 2403 int regulatory_hint_indoor(bool is_indoor, u32 portid) 2404 { 2405 spin_lock(®_indoor_lock); 2406 2407 /* It is possible that more than one user space process is trying to 2408 * configure the indoor setting. To handle such cases, clear the indoor 2409 * setting in case that some process does not think that the device 2410 * is operating in an indoor environment. In addition, if a user space 2411 * process indicates that it is controlling the indoor setting, save its 2412 * portid, i.e., make it the owner. 2413 */ 2414 reg_is_indoor = is_indoor; 2415 if (reg_is_indoor) { 2416 if (!reg_is_indoor_portid) 2417 reg_is_indoor_portid = portid; 2418 } else { 2419 reg_is_indoor_portid = 0; 2420 } 2421 2422 spin_unlock(®_indoor_lock); 2423 2424 if (!is_indoor) 2425 reg_check_channels(); 2426 2427 return 0; 2428 } 2429 2430 void regulatory_netlink_notify(u32 portid) 2431 { 2432 spin_lock(®_indoor_lock); 2433 2434 if (reg_is_indoor_portid != portid) { 2435 spin_unlock(®_indoor_lock); 2436 return; 2437 } 2438 2439 reg_is_indoor = false; 2440 reg_is_indoor_portid = 0; 2441 2442 spin_unlock(®_indoor_lock); 2443 2444 reg_check_channels(); 2445 } 2446 2447 /* Driver hints */ 2448 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 2449 { 2450 struct regulatory_request *request; 2451 2452 if (WARN_ON(!alpha2 || !wiphy)) 2453 return -EINVAL; 2454 2455 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 2456 2457 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2458 if (!request) 2459 return -ENOMEM; 2460 2461 request->wiphy_idx = get_wiphy_idx(wiphy); 2462 2463 request->alpha2[0] = alpha2[0]; 2464 request->alpha2[1] = alpha2[1]; 2465 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 2466 2467 /* Allow calling CRDA again */ 2468 reset_crda_timeouts(); 2469 2470 queue_regulatory_request(request); 2471 2472 return 0; 2473 } 2474 EXPORT_SYMBOL(regulatory_hint); 2475 2476 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band, 2477 const u8 *country_ie, u8 country_ie_len) 2478 { 2479 char alpha2[2]; 2480 enum environment_cap env = ENVIRON_ANY; 2481 struct regulatory_request *request = NULL, *lr; 2482 2483 /* IE len must be evenly divisible by 2 */ 2484 if (country_ie_len & 0x01) 2485 return; 2486 2487 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 2488 return; 2489 2490 request = kzalloc(sizeof(*request), GFP_KERNEL); 2491 if (!request) 2492 return; 2493 2494 alpha2[0] = country_ie[0]; 2495 alpha2[1] = country_ie[1]; 2496 2497 if (country_ie[2] == 'I') 2498 env = ENVIRON_INDOOR; 2499 else if (country_ie[2] == 'O') 2500 env = ENVIRON_OUTDOOR; 2501 2502 rcu_read_lock(); 2503 lr = get_last_request(); 2504 2505 if (unlikely(!lr)) 2506 goto out; 2507 2508 /* 2509 * We will run this only upon a successful connection on cfg80211. 2510 * We leave conflict resolution to the workqueue, where can hold 2511 * the RTNL. 2512 */ 2513 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2514 lr->wiphy_idx != WIPHY_IDX_INVALID) 2515 goto out; 2516 2517 request->wiphy_idx = get_wiphy_idx(wiphy); 2518 request->alpha2[0] = alpha2[0]; 2519 request->alpha2[1] = alpha2[1]; 2520 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 2521 request->country_ie_env = env; 2522 2523 /* Allow calling CRDA again */ 2524 reset_crda_timeouts(); 2525 2526 queue_regulatory_request(request); 2527 request = NULL; 2528 out: 2529 kfree(request); 2530 rcu_read_unlock(); 2531 } 2532 2533 static void restore_alpha2(char *alpha2, bool reset_user) 2534 { 2535 /* indicates there is no alpha2 to consider for restoration */ 2536 alpha2[0] = '9'; 2537 alpha2[1] = '7'; 2538 2539 /* The user setting has precedence over the module parameter */ 2540 if (is_user_regdom_saved()) { 2541 /* Unless we're asked to ignore it and reset it */ 2542 if (reset_user) { 2543 REG_DBG_PRINT("Restoring regulatory settings including user preference\n"); 2544 user_alpha2[0] = '9'; 2545 user_alpha2[1] = '7'; 2546 2547 /* 2548 * If we're ignoring user settings, we still need to 2549 * check the module parameter to ensure we put things 2550 * back as they were for a full restore. 2551 */ 2552 if (!is_world_regdom(ieee80211_regdom)) { 2553 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 2554 ieee80211_regdom[0], ieee80211_regdom[1]); 2555 alpha2[0] = ieee80211_regdom[0]; 2556 alpha2[1] = ieee80211_regdom[1]; 2557 } 2558 } else { 2559 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n", 2560 user_alpha2[0], user_alpha2[1]); 2561 alpha2[0] = user_alpha2[0]; 2562 alpha2[1] = user_alpha2[1]; 2563 } 2564 } else if (!is_world_regdom(ieee80211_regdom)) { 2565 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 2566 ieee80211_regdom[0], ieee80211_regdom[1]); 2567 alpha2[0] = ieee80211_regdom[0]; 2568 alpha2[1] = ieee80211_regdom[1]; 2569 } else 2570 REG_DBG_PRINT("Restoring regulatory settings\n"); 2571 } 2572 2573 static void restore_custom_reg_settings(struct wiphy *wiphy) 2574 { 2575 struct ieee80211_supported_band *sband; 2576 enum ieee80211_band band; 2577 struct ieee80211_channel *chan; 2578 int i; 2579 2580 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 2581 sband = wiphy->bands[band]; 2582 if (!sband) 2583 continue; 2584 for (i = 0; i < sband->n_channels; i++) { 2585 chan = &sband->channels[i]; 2586 chan->flags = chan->orig_flags; 2587 chan->max_antenna_gain = chan->orig_mag; 2588 chan->max_power = chan->orig_mpwr; 2589 chan->beacon_found = false; 2590 } 2591 } 2592 } 2593 2594 /* 2595 * Restoring regulatory settings involves ingoring any 2596 * possibly stale country IE information and user regulatory 2597 * settings if so desired, this includes any beacon hints 2598 * learned as we could have traveled outside to another country 2599 * after disconnection. To restore regulatory settings we do 2600 * exactly what we did at bootup: 2601 * 2602 * - send a core regulatory hint 2603 * - send a user regulatory hint if applicable 2604 * 2605 * Device drivers that send a regulatory hint for a specific country 2606 * keep their own regulatory domain on wiphy->regd so that does does 2607 * not need to be remembered. 2608 */ 2609 static void restore_regulatory_settings(bool reset_user) 2610 { 2611 char alpha2[2]; 2612 char world_alpha2[2]; 2613 struct reg_beacon *reg_beacon, *btmp; 2614 LIST_HEAD(tmp_reg_req_list); 2615 struct cfg80211_registered_device *rdev; 2616 2617 ASSERT_RTNL(); 2618 2619 /* 2620 * Clear the indoor setting in case that it is not controlled by user 2621 * space, as otherwise there is no guarantee that the device is still 2622 * operating in an indoor environment. 2623 */ 2624 spin_lock(®_indoor_lock); 2625 if (reg_is_indoor && !reg_is_indoor_portid) { 2626 reg_is_indoor = false; 2627 reg_check_channels(); 2628 } 2629 spin_unlock(®_indoor_lock); 2630 2631 reset_regdomains(true, &world_regdom); 2632 restore_alpha2(alpha2, reset_user); 2633 2634 /* 2635 * If there's any pending requests we simply 2636 * stash them to a temporary pending queue and 2637 * add then after we've restored regulatory 2638 * settings. 2639 */ 2640 spin_lock(®_requests_lock); 2641 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 2642 spin_unlock(®_requests_lock); 2643 2644 /* Clear beacon hints */ 2645 spin_lock_bh(®_pending_beacons_lock); 2646 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 2647 list_del(®_beacon->list); 2648 kfree(reg_beacon); 2649 } 2650 spin_unlock_bh(®_pending_beacons_lock); 2651 2652 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 2653 list_del(®_beacon->list); 2654 kfree(reg_beacon); 2655 } 2656 2657 /* First restore to the basic regulatory settings */ 2658 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 2659 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 2660 2661 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2662 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2663 continue; 2664 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 2665 restore_custom_reg_settings(&rdev->wiphy); 2666 } 2667 2668 regulatory_hint_core(world_alpha2); 2669 2670 /* 2671 * This restores the ieee80211_regdom module parameter 2672 * preference or the last user requested regulatory 2673 * settings, user regulatory settings takes precedence. 2674 */ 2675 if (is_an_alpha2(alpha2)) 2676 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 2677 2678 spin_lock(®_requests_lock); 2679 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 2680 spin_unlock(®_requests_lock); 2681 2682 REG_DBG_PRINT("Kicking the queue\n"); 2683 2684 schedule_work(®_work); 2685 } 2686 2687 void regulatory_hint_disconnect(void) 2688 { 2689 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n"); 2690 restore_regulatory_settings(false); 2691 } 2692 2693 static bool freq_is_chan_12_13_14(u16 freq) 2694 { 2695 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || 2696 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || 2697 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) 2698 return true; 2699 return false; 2700 } 2701 2702 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 2703 { 2704 struct reg_beacon *pending_beacon; 2705 2706 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 2707 if (beacon_chan->center_freq == 2708 pending_beacon->chan.center_freq) 2709 return true; 2710 return false; 2711 } 2712 2713 int regulatory_hint_found_beacon(struct wiphy *wiphy, 2714 struct ieee80211_channel *beacon_chan, 2715 gfp_t gfp) 2716 { 2717 struct reg_beacon *reg_beacon; 2718 bool processing; 2719 2720 if (beacon_chan->beacon_found || 2721 beacon_chan->flags & IEEE80211_CHAN_RADAR || 2722 (beacon_chan->band == IEEE80211_BAND_2GHZ && 2723 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 2724 return 0; 2725 2726 spin_lock_bh(®_pending_beacons_lock); 2727 processing = pending_reg_beacon(beacon_chan); 2728 spin_unlock_bh(®_pending_beacons_lock); 2729 2730 if (processing) 2731 return 0; 2732 2733 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 2734 if (!reg_beacon) 2735 return -ENOMEM; 2736 2737 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 2738 beacon_chan->center_freq, 2739 ieee80211_frequency_to_channel(beacon_chan->center_freq), 2740 wiphy_name(wiphy)); 2741 2742 memcpy(®_beacon->chan, beacon_chan, 2743 sizeof(struct ieee80211_channel)); 2744 2745 /* 2746 * Since we can be called from BH or and non-BH context 2747 * we must use spin_lock_bh() 2748 */ 2749 spin_lock_bh(®_pending_beacons_lock); 2750 list_add_tail(®_beacon->list, ®_pending_beacons); 2751 spin_unlock_bh(®_pending_beacons_lock); 2752 2753 schedule_work(®_work); 2754 2755 return 0; 2756 } 2757 2758 static void print_rd_rules(const struct ieee80211_regdomain *rd) 2759 { 2760 unsigned int i; 2761 const struct ieee80211_reg_rule *reg_rule = NULL; 2762 const struct ieee80211_freq_range *freq_range = NULL; 2763 const struct ieee80211_power_rule *power_rule = NULL; 2764 char bw[32], cac_time[32]; 2765 2766 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 2767 2768 for (i = 0; i < rd->n_reg_rules; i++) { 2769 reg_rule = &rd->reg_rules[i]; 2770 freq_range = ®_rule->freq_range; 2771 power_rule = ®_rule->power_rule; 2772 2773 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 2774 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 2775 freq_range->max_bandwidth_khz, 2776 reg_get_max_bandwidth(rd, reg_rule)); 2777 else 2778 snprintf(bw, sizeof(bw), "%d KHz", 2779 freq_range->max_bandwidth_khz); 2780 2781 if (reg_rule->flags & NL80211_RRF_DFS) 2782 scnprintf(cac_time, sizeof(cac_time), "%u s", 2783 reg_rule->dfs_cac_ms/1000); 2784 else 2785 scnprintf(cac_time, sizeof(cac_time), "N/A"); 2786 2787 2788 /* 2789 * There may not be documentation for max antenna gain 2790 * in certain regions 2791 */ 2792 if (power_rule->max_antenna_gain) 2793 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 2794 freq_range->start_freq_khz, 2795 freq_range->end_freq_khz, 2796 bw, 2797 power_rule->max_antenna_gain, 2798 power_rule->max_eirp, 2799 cac_time); 2800 else 2801 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 2802 freq_range->start_freq_khz, 2803 freq_range->end_freq_khz, 2804 bw, 2805 power_rule->max_eirp, 2806 cac_time); 2807 } 2808 } 2809 2810 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 2811 { 2812 switch (dfs_region) { 2813 case NL80211_DFS_UNSET: 2814 case NL80211_DFS_FCC: 2815 case NL80211_DFS_ETSI: 2816 case NL80211_DFS_JP: 2817 return true; 2818 default: 2819 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n", 2820 dfs_region); 2821 return false; 2822 } 2823 } 2824 2825 static void print_regdomain(const struct ieee80211_regdomain *rd) 2826 { 2827 struct regulatory_request *lr = get_last_request(); 2828 2829 if (is_intersected_alpha2(rd->alpha2)) { 2830 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2831 struct cfg80211_registered_device *rdev; 2832 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 2833 if (rdev) { 2834 pr_info("Current regulatory domain updated by AP to: %c%c\n", 2835 rdev->country_ie_alpha2[0], 2836 rdev->country_ie_alpha2[1]); 2837 } else 2838 pr_info("Current regulatory domain intersected:\n"); 2839 } else 2840 pr_info("Current regulatory domain intersected:\n"); 2841 } else if (is_world_regdom(rd->alpha2)) { 2842 pr_info("World regulatory domain updated:\n"); 2843 } else { 2844 if (is_unknown_alpha2(rd->alpha2)) 2845 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); 2846 else { 2847 if (reg_request_cell_base(lr)) 2848 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n", 2849 rd->alpha2[0], rd->alpha2[1]); 2850 else 2851 pr_info("Regulatory domain changed to country: %c%c\n", 2852 rd->alpha2[0], rd->alpha2[1]); 2853 } 2854 } 2855 2856 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 2857 print_rd_rules(rd); 2858 } 2859 2860 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 2861 { 2862 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 2863 print_rd_rules(rd); 2864 } 2865 2866 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 2867 { 2868 if (!is_world_regdom(rd->alpha2)) 2869 return -EINVAL; 2870 update_world_regdomain(rd); 2871 return 0; 2872 } 2873 2874 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 2875 struct regulatory_request *user_request) 2876 { 2877 const struct ieee80211_regdomain *intersected_rd = NULL; 2878 2879 if (!regdom_changes(rd->alpha2)) 2880 return -EALREADY; 2881 2882 if (!is_valid_rd(rd)) { 2883 pr_err("Invalid regulatory domain detected:\n"); 2884 print_regdomain_info(rd); 2885 return -EINVAL; 2886 } 2887 2888 if (!user_request->intersect) { 2889 reset_regdomains(false, rd); 2890 return 0; 2891 } 2892 2893 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2894 if (!intersected_rd) 2895 return -EINVAL; 2896 2897 kfree(rd); 2898 rd = NULL; 2899 reset_regdomains(false, intersected_rd); 2900 2901 return 0; 2902 } 2903 2904 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 2905 struct regulatory_request *driver_request) 2906 { 2907 const struct ieee80211_regdomain *regd; 2908 const struct ieee80211_regdomain *intersected_rd = NULL; 2909 const struct ieee80211_regdomain *tmp; 2910 struct wiphy *request_wiphy; 2911 2912 if (is_world_regdom(rd->alpha2)) 2913 return -EINVAL; 2914 2915 if (!regdom_changes(rd->alpha2)) 2916 return -EALREADY; 2917 2918 if (!is_valid_rd(rd)) { 2919 pr_err("Invalid regulatory domain detected:\n"); 2920 print_regdomain_info(rd); 2921 return -EINVAL; 2922 } 2923 2924 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 2925 if (!request_wiphy) 2926 return -ENODEV; 2927 2928 if (!driver_request->intersect) { 2929 if (request_wiphy->regd) 2930 return -EALREADY; 2931 2932 regd = reg_copy_regd(rd); 2933 if (IS_ERR(regd)) 2934 return PTR_ERR(regd); 2935 2936 rcu_assign_pointer(request_wiphy->regd, regd); 2937 reset_regdomains(false, rd); 2938 return 0; 2939 } 2940 2941 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2942 if (!intersected_rd) 2943 return -EINVAL; 2944 2945 /* 2946 * We can trash what CRDA provided now. 2947 * However if a driver requested this specific regulatory 2948 * domain we keep it for its private use 2949 */ 2950 tmp = get_wiphy_regdom(request_wiphy); 2951 rcu_assign_pointer(request_wiphy->regd, rd); 2952 rcu_free_regdom(tmp); 2953 2954 rd = NULL; 2955 2956 reset_regdomains(false, intersected_rd); 2957 2958 return 0; 2959 } 2960 2961 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 2962 struct regulatory_request *country_ie_request) 2963 { 2964 struct wiphy *request_wiphy; 2965 2966 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 2967 !is_unknown_alpha2(rd->alpha2)) 2968 return -EINVAL; 2969 2970 /* 2971 * Lets only bother proceeding on the same alpha2 if the current 2972 * rd is non static (it means CRDA was present and was used last) 2973 * and the pending request came in from a country IE 2974 */ 2975 2976 if (!is_valid_rd(rd)) { 2977 pr_err("Invalid regulatory domain detected:\n"); 2978 print_regdomain_info(rd); 2979 return -EINVAL; 2980 } 2981 2982 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 2983 if (!request_wiphy) 2984 return -ENODEV; 2985 2986 if (country_ie_request->intersect) 2987 return -EINVAL; 2988 2989 reset_regdomains(false, rd); 2990 return 0; 2991 } 2992 2993 /* 2994 * Use this call to set the current regulatory domain. Conflicts with 2995 * multiple drivers can be ironed out later. Caller must've already 2996 * kmalloc'd the rd structure. 2997 */ 2998 int set_regdom(const struct ieee80211_regdomain *rd, 2999 enum ieee80211_regd_source regd_src) 3000 { 3001 struct regulatory_request *lr; 3002 bool user_reset = false; 3003 int r; 3004 3005 if (!reg_is_valid_request(rd->alpha2)) { 3006 kfree(rd); 3007 return -EINVAL; 3008 } 3009 3010 if (regd_src == REGD_SOURCE_CRDA) 3011 reset_crda_timeouts(); 3012 3013 lr = get_last_request(); 3014 3015 /* Note that this doesn't update the wiphys, this is done below */ 3016 switch (lr->initiator) { 3017 case NL80211_REGDOM_SET_BY_CORE: 3018 r = reg_set_rd_core(rd); 3019 break; 3020 case NL80211_REGDOM_SET_BY_USER: 3021 r = reg_set_rd_user(rd, lr); 3022 user_reset = true; 3023 break; 3024 case NL80211_REGDOM_SET_BY_DRIVER: 3025 r = reg_set_rd_driver(rd, lr); 3026 break; 3027 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3028 r = reg_set_rd_country_ie(rd, lr); 3029 break; 3030 default: 3031 WARN(1, "invalid initiator %d\n", lr->initiator); 3032 kfree(rd); 3033 return -EINVAL; 3034 } 3035 3036 if (r) { 3037 switch (r) { 3038 case -EALREADY: 3039 reg_set_request_processed(); 3040 break; 3041 default: 3042 /* Back to world regulatory in case of errors */ 3043 restore_regulatory_settings(user_reset); 3044 } 3045 3046 kfree(rd); 3047 return r; 3048 } 3049 3050 /* This would make this whole thing pointless */ 3051 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3052 return -EINVAL; 3053 3054 /* update all wiphys now with the new established regulatory domain */ 3055 update_all_wiphy_regulatory(lr->initiator); 3056 3057 print_regdomain(get_cfg80211_regdom()); 3058 3059 nl80211_send_reg_change_event(lr); 3060 3061 reg_set_request_processed(); 3062 3063 return 0; 3064 } 3065 3066 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 3067 struct ieee80211_regdomain *rd) 3068 { 3069 const struct ieee80211_regdomain *regd; 3070 const struct ieee80211_regdomain *prev_regd; 3071 struct cfg80211_registered_device *rdev; 3072 3073 if (WARN_ON(!wiphy || !rd)) 3074 return -EINVAL; 3075 3076 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 3077 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 3078 return -EPERM; 3079 3080 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { 3081 print_regdomain_info(rd); 3082 return -EINVAL; 3083 } 3084 3085 regd = reg_copy_regd(rd); 3086 if (IS_ERR(regd)) 3087 return PTR_ERR(regd); 3088 3089 rdev = wiphy_to_rdev(wiphy); 3090 3091 spin_lock(®_requests_lock); 3092 prev_regd = rdev->requested_regd; 3093 rdev->requested_regd = regd; 3094 spin_unlock(®_requests_lock); 3095 3096 kfree(prev_regd); 3097 return 0; 3098 } 3099 3100 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 3101 struct ieee80211_regdomain *rd) 3102 { 3103 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 3104 3105 if (ret) 3106 return ret; 3107 3108 schedule_work(®_work); 3109 return 0; 3110 } 3111 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 3112 3113 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, 3114 struct ieee80211_regdomain *rd) 3115 { 3116 int ret; 3117 3118 ASSERT_RTNL(); 3119 3120 ret = __regulatory_set_wiphy_regd(wiphy, rd); 3121 if (ret) 3122 return ret; 3123 3124 /* process the request immediately */ 3125 reg_process_self_managed_hints(); 3126 return 0; 3127 } 3128 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); 3129 3130 void wiphy_regulatory_register(struct wiphy *wiphy) 3131 { 3132 struct regulatory_request *lr; 3133 3134 /* self-managed devices ignore external hints */ 3135 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3136 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 3137 REGULATORY_COUNTRY_IE_IGNORE; 3138 3139 if (!reg_dev_ignore_cell_hint(wiphy)) 3140 reg_num_devs_support_basehint++; 3141 3142 lr = get_last_request(); 3143 wiphy_update_regulatory(wiphy, lr->initiator); 3144 } 3145 3146 void wiphy_regulatory_deregister(struct wiphy *wiphy) 3147 { 3148 struct wiphy *request_wiphy = NULL; 3149 struct regulatory_request *lr; 3150 3151 lr = get_last_request(); 3152 3153 if (!reg_dev_ignore_cell_hint(wiphy)) 3154 reg_num_devs_support_basehint--; 3155 3156 rcu_free_regdom(get_wiphy_regdom(wiphy)); 3157 RCU_INIT_POINTER(wiphy->regd, NULL); 3158 3159 if (lr) 3160 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 3161 3162 if (!request_wiphy || request_wiphy != wiphy) 3163 return; 3164 3165 lr->wiphy_idx = WIPHY_IDX_INVALID; 3166 lr->country_ie_env = ENVIRON_ANY; 3167 } 3168 3169 /* 3170 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for 3171 * UNII band definitions 3172 */ 3173 int cfg80211_get_unii(int freq) 3174 { 3175 /* UNII-1 */ 3176 if (freq >= 5150 && freq <= 5250) 3177 return 0; 3178 3179 /* UNII-2A */ 3180 if (freq > 5250 && freq <= 5350) 3181 return 1; 3182 3183 /* UNII-2B */ 3184 if (freq > 5350 && freq <= 5470) 3185 return 2; 3186 3187 /* UNII-2C */ 3188 if (freq > 5470 && freq <= 5725) 3189 return 3; 3190 3191 /* UNII-3 */ 3192 if (freq > 5725 && freq <= 5825) 3193 return 4; 3194 3195 return -EINVAL; 3196 } 3197 3198 bool regulatory_indoor_allowed(void) 3199 { 3200 return reg_is_indoor; 3201 } 3202 3203 int __init regulatory_init(void) 3204 { 3205 int err = 0; 3206 3207 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 3208 if (IS_ERR(reg_pdev)) 3209 return PTR_ERR(reg_pdev); 3210 3211 spin_lock_init(®_requests_lock); 3212 spin_lock_init(®_pending_beacons_lock); 3213 spin_lock_init(®_indoor_lock); 3214 3215 reg_regdb_size_check(); 3216 3217 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 3218 3219 user_alpha2[0] = '9'; 3220 user_alpha2[1] = '7'; 3221 3222 /* We always try to get an update for the static regdomain */ 3223 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 3224 if (err) { 3225 if (err == -ENOMEM) { 3226 platform_device_unregister(reg_pdev); 3227 return err; 3228 } 3229 /* 3230 * N.B. kobject_uevent_env() can fail mainly for when we're out 3231 * memory which is handled and propagated appropriately above 3232 * but it can also fail during a netlink_broadcast() or during 3233 * early boot for call_usermodehelper(). For now treat these 3234 * errors as non-fatal. 3235 */ 3236 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 3237 } 3238 3239 /* 3240 * Finally, if the user set the module parameter treat it 3241 * as a user hint. 3242 */ 3243 if (!is_world_regdom(ieee80211_regdom)) 3244 regulatory_hint_user(ieee80211_regdom, 3245 NL80211_USER_REG_HINT_USER); 3246 3247 return 0; 3248 } 3249 3250 void regulatory_exit(void) 3251 { 3252 struct regulatory_request *reg_request, *tmp; 3253 struct reg_beacon *reg_beacon, *btmp; 3254 3255 cancel_work_sync(®_work); 3256 cancel_crda_timeout_sync(); 3257 cancel_delayed_work_sync(®_check_chans); 3258 3259 /* Lock to suppress warnings */ 3260 rtnl_lock(); 3261 reset_regdomains(true, NULL); 3262 rtnl_unlock(); 3263 3264 dev_set_uevent_suppress(®_pdev->dev, true); 3265 3266 platform_device_unregister(reg_pdev); 3267 3268 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3269 list_del(®_beacon->list); 3270 kfree(reg_beacon); 3271 } 3272 3273 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3274 list_del(®_beacon->list); 3275 kfree(reg_beacon); 3276 } 3277 3278 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 3279 list_del(®_request->list); 3280 kfree(reg_request); 3281 } 3282 } 3283