xref: /openbmc/linux/net/wireless/reg.c (revision 242cdad8)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user);
135 
136 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
137 {
138 	return rcu_dereference_rtnl(cfg80211_regdomain);
139 }
140 
141 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
142 {
143 	return rcu_dereference_rtnl(wiphy->regd);
144 }
145 
146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
147 {
148 	switch (dfs_region) {
149 	case NL80211_DFS_UNSET:
150 		return "unset";
151 	case NL80211_DFS_FCC:
152 		return "FCC";
153 	case NL80211_DFS_ETSI:
154 		return "ETSI";
155 	case NL80211_DFS_JP:
156 		return "JP";
157 	}
158 	return "Unknown";
159 }
160 
161 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
162 {
163 	const struct ieee80211_regdomain *regd = NULL;
164 	const struct ieee80211_regdomain *wiphy_regd = NULL;
165 
166 	regd = get_cfg80211_regdom();
167 	if (!wiphy)
168 		goto out;
169 
170 	wiphy_regd = get_wiphy_regdom(wiphy);
171 	if (!wiphy_regd)
172 		goto out;
173 
174 	if (wiphy_regd->dfs_region == regd->dfs_region)
175 		goto out;
176 
177 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
178 		 dev_name(&wiphy->dev),
179 		 reg_dfs_region_str(wiphy_regd->dfs_region),
180 		 reg_dfs_region_str(regd->dfs_region));
181 
182 out:
183 	return regd->dfs_region;
184 }
185 
186 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
187 {
188 	if (!r)
189 		return;
190 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
191 }
192 
193 static struct regulatory_request *get_last_request(void)
194 {
195 	return rcu_dereference_rtnl(last_request);
196 }
197 
198 /* Used to queue up regulatory hints */
199 static LIST_HEAD(reg_requests_list);
200 static spinlock_t reg_requests_lock;
201 
202 /* Used to queue up beacon hints for review */
203 static LIST_HEAD(reg_pending_beacons);
204 static spinlock_t reg_pending_beacons_lock;
205 
206 /* Used to keep track of processed beacon hints */
207 static LIST_HEAD(reg_beacon_list);
208 
209 struct reg_beacon {
210 	struct list_head list;
211 	struct ieee80211_channel chan;
212 };
213 
214 static void reg_check_chans_work(struct work_struct *work);
215 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
216 
217 static void reg_todo(struct work_struct *work);
218 static DECLARE_WORK(reg_work, reg_todo);
219 
220 /* We keep a static world regulatory domain in case of the absence of CRDA */
221 static const struct ieee80211_regdomain world_regdom = {
222 	.n_reg_rules = 8,
223 	.alpha2 =  "00",
224 	.reg_rules = {
225 		/* IEEE 802.11b/g, channels 1..11 */
226 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
227 		/* IEEE 802.11b/g, channels 12..13. */
228 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
229 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
230 		/* IEEE 802.11 channel 14 - Only JP enables
231 		 * this and for 802.11b only */
232 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
233 			NL80211_RRF_NO_IR |
234 			NL80211_RRF_NO_OFDM),
235 		/* IEEE 802.11a, channel 36..48 */
236 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
237                         NL80211_RRF_NO_IR |
238                         NL80211_RRF_AUTO_BW),
239 
240 		/* IEEE 802.11a, channel 52..64 - DFS required */
241 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
242 			NL80211_RRF_NO_IR |
243 			NL80211_RRF_AUTO_BW |
244 			NL80211_RRF_DFS),
245 
246 		/* IEEE 802.11a, channel 100..144 - DFS required */
247 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
248 			NL80211_RRF_NO_IR |
249 			NL80211_RRF_DFS),
250 
251 		/* IEEE 802.11a, channel 149..165 */
252 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
253 			NL80211_RRF_NO_IR),
254 
255 		/* IEEE 802.11ad (60GHz), channels 1..3 */
256 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
257 	}
258 };
259 
260 /* protected by RTNL */
261 static const struct ieee80211_regdomain *cfg80211_world_regdom =
262 	&world_regdom;
263 
264 static char *ieee80211_regdom = "00";
265 static char user_alpha2[2];
266 
267 module_param(ieee80211_regdom, charp, 0444);
268 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
269 
270 static void reg_free_request(struct regulatory_request *request)
271 {
272 	if (request == &core_request_world)
273 		return;
274 
275 	if (request != get_last_request())
276 		kfree(request);
277 }
278 
279 static void reg_free_last_request(void)
280 {
281 	struct regulatory_request *lr = get_last_request();
282 
283 	if (lr != &core_request_world && lr)
284 		kfree_rcu(lr, rcu_head);
285 }
286 
287 static void reg_update_last_request(struct regulatory_request *request)
288 {
289 	struct regulatory_request *lr;
290 
291 	lr = get_last_request();
292 	if (lr == request)
293 		return;
294 
295 	reg_free_last_request();
296 	rcu_assign_pointer(last_request, request);
297 }
298 
299 static void reset_regdomains(bool full_reset,
300 			     const struct ieee80211_regdomain *new_regdom)
301 {
302 	const struct ieee80211_regdomain *r;
303 
304 	ASSERT_RTNL();
305 
306 	r = get_cfg80211_regdom();
307 
308 	/* avoid freeing static information or freeing something twice */
309 	if (r == cfg80211_world_regdom)
310 		r = NULL;
311 	if (cfg80211_world_regdom == &world_regdom)
312 		cfg80211_world_regdom = NULL;
313 	if (r == &world_regdom)
314 		r = NULL;
315 
316 	rcu_free_regdom(r);
317 	rcu_free_regdom(cfg80211_world_regdom);
318 
319 	cfg80211_world_regdom = &world_regdom;
320 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
321 
322 	if (!full_reset)
323 		return;
324 
325 	reg_update_last_request(&core_request_world);
326 }
327 
328 /*
329  * Dynamic world regulatory domain requested by the wireless
330  * core upon initialization
331  */
332 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
333 {
334 	struct regulatory_request *lr;
335 
336 	lr = get_last_request();
337 
338 	WARN_ON(!lr);
339 
340 	reset_regdomains(false, rd);
341 
342 	cfg80211_world_regdom = rd;
343 }
344 
345 bool is_world_regdom(const char *alpha2)
346 {
347 	if (!alpha2)
348 		return false;
349 	return alpha2[0] == '0' && alpha2[1] == '0';
350 }
351 
352 static bool is_alpha2_set(const char *alpha2)
353 {
354 	if (!alpha2)
355 		return false;
356 	return alpha2[0] && alpha2[1];
357 }
358 
359 static bool is_unknown_alpha2(const char *alpha2)
360 {
361 	if (!alpha2)
362 		return false;
363 	/*
364 	 * Special case where regulatory domain was built by driver
365 	 * but a specific alpha2 cannot be determined
366 	 */
367 	return alpha2[0] == '9' && alpha2[1] == '9';
368 }
369 
370 static bool is_intersected_alpha2(const char *alpha2)
371 {
372 	if (!alpha2)
373 		return false;
374 	/*
375 	 * Special case where regulatory domain is the
376 	 * result of an intersection between two regulatory domain
377 	 * structures
378 	 */
379 	return alpha2[0] == '9' && alpha2[1] == '8';
380 }
381 
382 static bool is_an_alpha2(const char *alpha2)
383 {
384 	if (!alpha2)
385 		return false;
386 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
387 }
388 
389 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
390 {
391 	if (!alpha2_x || !alpha2_y)
392 		return false;
393 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
394 }
395 
396 static bool regdom_changes(const char *alpha2)
397 {
398 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
399 
400 	if (!r)
401 		return true;
402 	return !alpha2_equal(r->alpha2, alpha2);
403 }
404 
405 /*
406  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
407  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
408  * has ever been issued.
409  */
410 static bool is_user_regdom_saved(void)
411 {
412 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
413 		return false;
414 
415 	/* This would indicate a mistake on the design */
416 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
417 		 "Unexpected user alpha2: %c%c\n",
418 		 user_alpha2[0], user_alpha2[1]))
419 		return false;
420 
421 	return true;
422 }
423 
424 static const struct ieee80211_regdomain *
425 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
426 {
427 	struct ieee80211_regdomain *regd;
428 	int size_of_regd;
429 	unsigned int i;
430 
431 	size_of_regd =
432 		sizeof(struct ieee80211_regdomain) +
433 		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
434 
435 	regd = kzalloc(size_of_regd, GFP_KERNEL);
436 	if (!regd)
437 		return ERR_PTR(-ENOMEM);
438 
439 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
440 
441 	for (i = 0; i < src_regd->n_reg_rules; i++)
442 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
443 		       sizeof(struct ieee80211_reg_rule));
444 
445 	return regd;
446 }
447 
448 struct reg_regdb_apply_request {
449 	struct list_head list;
450 	const struct ieee80211_regdomain *regdom;
451 };
452 
453 static LIST_HEAD(reg_regdb_apply_list);
454 static DEFINE_MUTEX(reg_regdb_apply_mutex);
455 
456 static void reg_regdb_apply(struct work_struct *work)
457 {
458 	struct reg_regdb_apply_request *request;
459 
460 	rtnl_lock();
461 
462 	mutex_lock(&reg_regdb_apply_mutex);
463 	while (!list_empty(&reg_regdb_apply_list)) {
464 		request = list_first_entry(&reg_regdb_apply_list,
465 					   struct reg_regdb_apply_request,
466 					   list);
467 		list_del(&request->list);
468 
469 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
470 		kfree(request);
471 	}
472 	mutex_unlock(&reg_regdb_apply_mutex);
473 
474 	rtnl_unlock();
475 }
476 
477 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
478 
479 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
480 {
481 	struct reg_regdb_apply_request *request;
482 
483 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
484 	if (!request) {
485 		kfree(regdom);
486 		return -ENOMEM;
487 	}
488 
489 	request->regdom = regdom;
490 
491 	mutex_lock(&reg_regdb_apply_mutex);
492 	list_add_tail(&request->list, &reg_regdb_apply_list);
493 	mutex_unlock(&reg_regdb_apply_mutex);
494 
495 	schedule_work(&reg_regdb_work);
496 	return 0;
497 }
498 
499 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
500 /* Max number of consecutive attempts to communicate with CRDA  */
501 #define REG_MAX_CRDA_TIMEOUTS 10
502 
503 static u32 reg_crda_timeouts;
504 
505 static void crda_timeout_work(struct work_struct *work);
506 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
507 
508 static void crda_timeout_work(struct work_struct *work)
509 {
510 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
511 	rtnl_lock();
512 	reg_crda_timeouts++;
513 	restore_regulatory_settings(true);
514 	rtnl_unlock();
515 }
516 
517 static void cancel_crda_timeout(void)
518 {
519 	cancel_delayed_work(&crda_timeout);
520 }
521 
522 static void cancel_crda_timeout_sync(void)
523 {
524 	cancel_delayed_work_sync(&crda_timeout);
525 }
526 
527 static void reset_crda_timeouts(void)
528 {
529 	reg_crda_timeouts = 0;
530 }
531 
532 /*
533  * This lets us keep regulatory code which is updated on a regulatory
534  * basis in userspace.
535  */
536 static int call_crda(const char *alpha2)
537 {
538 	char country[12];
539 	char *env[] = { country, NULL };
540 	int ret;
541 
542 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
543 		 alpha2[0], alpha2[1]);
544 
545 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
546 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
547 		return -EINVAL;
548 	}
549 
550 	if (!is_world_regdom((char *) alpha2))
551 		pr_debug("Calling CRDA for country: %c%c\n",
552 			 alpha2[0], alpha2[1]);
553 	else
554 		pr_debug("Calling CRDA to update world regulatory domain\n");
555 
556 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
557 	if (ret)
558 		return ret;
559 
560 	queue_delayed_work(system_power_efficient_wq,
561 			   &crda_timeout, msecs_to_jiffies(3142));
562 	return 0;
563 }
564 #else
565 static inline void cancel_crda_timeout(void) {}
566 static inline void cancel_crda_timeout_sync(void) {}
567 static inline void reset_crda_timeouts(void) {}
568 static inline int call_crda(const char *alpha2)
569 {
570 	return -ENODATA;
571 }
572 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
573 
574 /* code to directly load a firmware database through request_firmware */
575 static const struct fwdb_header *regdb;
576 
577 struct fwdb_country {
578 	u8 alpha2[2];
579 	__be16 coll_ptr;
580 	/* this struct cannot be extended */
581 } __packed __aligned(4);
582 
583 struct fwdb_collection {
584 	u8 len;
585 	u8 n_rules;
586 	u8 dfs_region;
587 	/* no optional data yet */
588 	/* aligned to 2, then followed by __be16 array of rule pointers */
589 } __packed __aligned(4);
590 
591 enum fwdb_flags {
592 	FWDB_FLAG_NO_OFDM	= BIT(0),
593 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
594 	FWDB_FLAG_DFS		= BIT(2),
595 	FWDB_FLAG_NO_IR		= BIT(3),
596 	FWDB_FLAG_AUTO_BW	= BIT(4),
597 };
598 
599 struct fwdb_wmm_ac {
600 	u8 ecw;
601 	u8 aifsn;
602 	__be16 cot;
603 } __packed;
604 
605 struct fwdb_wmm_rule {
606 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
607 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
608 } __packed;
609 
610 struct fwdb_rule {
611 	u8 len;
612 	u8 flags;
613 	__be16 max_eirp;
614 	__be32 start, end, max_bw;
615 	/* start of optional data */
616 	__be16 cac_timeout;
617 	__be16 wmm_ptr;
618 } __packed __aligned(4);
619 
620 #define FWDB_MAGIC 0x52474442
621 #define FWDB_VERSION 20
622 
623 struct fwdb_header {
624 	__be32 magic;
625 	__be32 version;
626 	struct fwdb_country country[];
627 } __packed __aligned(4);
628 
629 static int ecw2cw(int ecw)
630 {
631 	return (1 << ecw) - 1;
632 }
633 
634 static bool valid_wmm(struct fwdb_wmm_rule *rule)
635 {
636 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
637 	int i;
638 
639 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
640 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
641 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
642 		u8 aifsn = ac[i].aifsn;
643 
644 		if (cw_min >= cw_max)
645 			return false;
646 
647 		if (aifsn < 1)
648 			return false;
649 	}
650 
651 	return true;
652 }
653 
654 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
655 {
656 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
657 
658 	if ((u8 *)rule + sizeof(rule->len) > data + size)
659 		return false;
660 
661 	/* mandatory fields */
662 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
663 		return false;
664 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
665 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
666 		struct fwdb_wmm_rule *wmm;
667 
668 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
669 			return false;
670 
671 		wmm = (void *)(data + wmm_ptr);
672 
673 		if (!valid_wmm(wmm))
674 			return false;
675 	}
676 	return true;
677 }
678 
679 static bool valid_country(const u8 *data, unsigned int size,
680 			  const struct fwdb_country *country)
681 {
682 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
683 	struct fwdb_collection *coll = (void *)(data + ptr);
684 	__be16 *rules_ptr;
685 	unsigned int i;
686 
687 	/* make sure we can read len/n_rules */
688 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
689 		return false;
690 
691 	/* make sure base struct and all rules fit */
692 	if ((u8 *)coll + ALIGN(coll->len, 2) +
693 	    (coll->n_rules * 2) > data + size)
694 		return false;
695 
696 	/* mandatory fields must exist */
697 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
698 		return false;
699 
700 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
701 
702 	for (i = 0; i < coll->n_rules; i++) {
703 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
704 
705 		if (!valid_rule(data, size, rule_ptr))
706 			return false;
707 	}
708 
709 	return true;
710 }
711 
712 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
713 static struct key *builtin_regdb_keys;
714 
715 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
716 {
717 	const u8 *end = p + buflen;
718 	size_t plen;
719 	key_ref_t key;
720 
721 	while (p < end) {
722 		/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
723 		 * than 256 bytes in size.
724 		 */
725 		if (end - p < 4)
726 			goto dodgy_cert;
727 		if (p[0] != 0x30 &&
728 		    p[1] != 0x82)
729 			goto dodgy_cert;
730 		plen = (p[2] << 8) | p[3];
731 		plen += 4;
732 		if (plen > end - p)
733 			goto dodgy_cert;
734 
735 		key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
736 					   "asymmetric", NULL, p, plen,
737 					   ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
738 					    KEY_USR_VIEW | KEY_USR_READ),
739 					   KEY_ALLOC_NOT_IN_QUOTA |
740 					   KEY_ALLOC_BUILT_IN |
741 					   KEY_ALLOC_BYPASS_RESTRICTION);
742 		if (IS_ERR(key)) {
743 			pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
744 			       PTR_ERR(key));
745 		} else {
746 			pr_notice("Loaded X.509 cert '%s'\n",
747 				  key_ref_to_ptr(key)->description);
748 			key_ref_put(key);
749 		}
750 		p += plen;
751 	}
752 
753 	return;
754 
755 dodgy_cert:
756 	pr_err("Problem parsing in-kernel X.509 certificate list\n");
757 }
758 
759 static int __init load_builtin_regdb_keys(void)
760 {
761 	builtin_regdb_keys =
762 		keyring_alloc(".builtin_regdb_keys",
763 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
764 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
766 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
767 	if (IS_ERR(builtin_regdb_keys))
768 		return PTR_ERR(builtin_regdb_keys);
769 
770 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
771 
772 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
773 	load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
774 #endif
775 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
776 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
777 		load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
778 #endif
779 
780 	return 0;
781 }
782 
783 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
784 {
785 	const struct firmware *sig;
786 	bool result;
787 
788 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
789 		return false;
790 
791 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
792 					builtin_regdb_keys,
793 					VERIFYING_UNSPECIFIED_SIGNATURE,
794 					NULL, NULL) == 0;
795 
796 	release_firmware(sig);
797 
798 	return result;
799 }
800 
801 static void free_regdb_keyring(void)
802 {
803 	key_put(builtin_regdb_keys);
804 }
805 #else
806 static int load_builtin_regdb_keys(void)
807 {
808 	return 0;
809 }
810 
811 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
812 {
813 	return true;
814 }
815 
816 static void free_regdb_keyring(void)
817 {
818 }
819 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
820 
821 static bool valid_regdb(const u8 *data, unsigned int size)
822 {
823 	const struct fwdb_header *hdr = (void *)data;
824 	const struct fwdb_country *country;
825 
826 	if (size < sizeof(*hdr))
827 		return false;
828 
829 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
830 		return false;
831 
832 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
833 		return false;
834 
835 	if (!regdb_has_valid_signature(data, size))
836 		return false;
837 
838 	country = &hdr->country[0];
839 	while ((u8 *)(country + 1) <= data + size) {
840 		if (!country->coll_ptr)
841 			break;
842 		if (!valid_country(data, size, country))
843 			return false;
844 		country++;
845 	}
846 
847 	return true;
848 }
849 
850 static void set_wmm_rule(struct ieee80211_reg_rule *rrule,
851 			 struct fwdb_wmm_rule *wmm)
852 {
853 	struct ieee80211_wmm_rule *rule = &rrule->wmm_rule;
854 	unsigned int i;
855 
856 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
857 		rule->client[i].cw_min =
858 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
859 		rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
860 		rule->client[i].aifsn =  wmm->client[i].aifsn;
861 		rule->client[i].cot = 1000 * be16_to_cpu(wmm->client[i].cot);
862 		rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
863 		rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
864 		rule->ap[i].aifsn = wmm->ap[i].aifsn;
865 		rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
866 	}
867 
868 	rrule->has_wmm = true;
869 }
870 
871 static int __regdb_query_wmm(const struct fwdb_header *db,
872 			     const struct fwdb_country *country, int freq,
873 			     struct ieee80211_reg_rule *rule)
874 {
875 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
876 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
877 	int i;
878 
879 	for (i = 0; i < coll->n_rules; i++) {
880 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
881 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
882 		struct fwdb_rule *rrule = (void *)((u8 *)db + rule_ptr);
883 		struct fwdb_wmm_rule *wmm;
884 		unsigned int wmm_ptr;
885 
886 		if (rrule->len < offsetofend(struct fwdb_rule, wmm_ptr))
887 			continue;
888 
889 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rrule->start)) &&
890 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rrule->end))) {
891 			wmm_ptr = be16_to_cpu(rrule->wmm_ptr) << 2;
892 			wmm = (void *)((u8 *)db + wmm_ptr);
893 			set_wmm_rule(rule, wmm);
894 			return 0;
895 		}
896 	}
897 
898 	return -ENODATA;
899 }
900 
901 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
902 {
903 	const struct fwdb_header *hdr = regdb;
904 	const struct fwdb_country *country;
905 
906 	if (!regdb)
907 		return -ENODATA;
908 
909 	if (IS_ERR(regdb))
910 		return PTR_ERR(regdb);
911 
912 	country = &hdr->country[0];
913 	while (country->coll_ptr) {
914 		if (alpha2_equal(alpha2, country->alpha2))
915 			return __regdb_query_wmm(regdb, country, freq, rule);
916 
917 		country++;
918 	}
919 
920 	return -ENODATA;
921 }
922 EXPORT_SYMBOL(reg_query_regdb_wmm);
923 
924 static int regdb_query_country(const struct fwdb_header *db,
925 			       const struct fwdb_country *country)
926 {
927 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
928 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
929 	struct ieee80211_regdomain *regdom;
930 	unsigned int size_of_regd, i;
931 
932 	size_of_regd = sizeof(struct ieee80211_regdomain) +
933 		coll->n_rules * sizeof(struct ieee80211_reg_rule);
934 
935 	regdom = kzalloc(size_of_regd, GFP_KERNEL);
936 	if (!regdom)
937 		return -ENOMEM;
938 
939 	regdom->n_reg_rules = coll->n_rules;
940 	regdom->alpha2[0] = country->alpha2[0];
941 	regdom->alpha2[1] = country->alpha2[1];
942 	regdom->dfs_region = coll->dfs_region;
943 
944 	for (i = 0; i < regdom->n_reg_rules; i++) {
945 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
946 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
947 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
948 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
949 
950 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
951 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
952 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
953 
954 		rrule->power_rule.max_antenna_gain = 0;
955 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
956 
957 		rrule->flags = 0;
958 		if (rule->flags & FWDB_FLAG_NO_OFDM)
959 			rrule->flags |= NL80211_RRF_NO_OFDM;
960 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
961 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
962 		if (rule->flags & FWDB_FLAG_DFS)
963 			rrule->flags |= NL80211_RRF_DFS;
964 		if (rule->flags & FWDB_FLAG_NO_IR)
965 			rrule->flags |= NL80211_RRF_NO_IR;
966 		if (rule->flags & FWDB_FLAG_AUTO_BW)
967 			rrule->flags |= NL80211_RRF_AUTO_BW;
968 
969 		rrule->dfs_cac_ms = 0;
970 
971 		/* handle optional data */
972 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
973 			rrule->dfs_cac_ms =
974 				1000 * be16_to_cpu(rule->cac_timeout);
975 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
976 			u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
977 			struct fwdb_wmm_rule *wmm = (void *)((u8 *)db + wmm_ptr);
978 
979 			set_wmm_rule(rrule, wmm);
980 		}
981 	}
982 
983 	return reg_schedule_apply(regdom);
984 }
985 
986 static int query_regdb(const char *alpha2)
987 {
988 	const struct fwdb_header *hdr = regdb;
989 	const struct fwdb_country *country;
990 
991 	ASSERT_RTNL();
992 
993 	if (IS_ERR(regdb))
994 		return PTR_ERR(regdb);
995 
996 	country = &hdr->country[0];
997 	while (country->coll_ptr) {
998 		if (alpha2_equal(alpha2, country->alpha2))
999 			return regdb_query_country(regdb, country);
1000 		country++;
1001 	}
1002 
1003 	return -ENODATA;
1004 }
1005 
1006 static void regdb_fw_cb(const struct firmware *fw, void *context)
1007 {
1008 	int set_error = 0;
1009 	bool restore = true;
1010 	void *db;
1011 
1012 	if (!fw) {
1013 		pr_info("failed to load regulatory.db\n");
1014 		set_error = -ENODATA;
1015 	} else if (!valid_regdb(fw->data, fw->size)) {
1016 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1017 		set_error = -EINVAL;
1018 	}
1019 
1020 	rtnl_lock();
1021 	if (WARN_ON(regdb && !IS_ERR(regdb))) {
1022 		/* just restore and free new db */
1023 	} else if (set_error) {
1024 		regdb = ERR_PTR(set_error);
1025 	} else if (fw) {
1026 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1027 		if (db) {
1028 			regdb = db;
1029 			restore = context && query_regdb(context);
1030 		} else {
1031 			restore = true;
1032 		}
1033 	}
1034 
1035 	if (restore)
1036 		restore_regulatory_settings(true);
1037 
1038 	rtnl_unlock();
1039 
1040 	kfree(context);
1041 
1042 	release_firmware(fw);
1043 }
1044 
1045 static int query_regdb_file(const char *alpha2)
1046 {
1047 	ASSERT_RTNL();
1048 
1049 	if (regdb)
1050 		return query_regdb(alpha2);
1051 
1052 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1053 	if (!alpha2)
1054 		return -ENOMEM;
1055 
1056 	return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1057 				       &reg_pdev->dev, GFP_KERNEL,
1058 				       (void *)alpha2, regdb_fw_cb);
1059 }
1060 
1061 int reg_reload_regdb(void)
1062 {
1063 	const struct firmware *fw;
1064 	void *db;
1065 	int err;
1066 
1067 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1068 	if (err)
1069 		return err;
1070 
1071 	if (!valid_regdb(fw->data, fw->size)) {
1072 		err = -ENODATA;
1073 		goto out;
1074 	}
1075 
1076 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1077 	if (!db) {
1078 		err = -ENOMEM;
1079 		goto out;
1080 	}
1081 
1082 	rtnl_lock();
1083 	if (!IS_ERR_OR_NULL(regdb))
1084 		kfree(regdb);
1085 	regdb = db;
1086 	rtnl_unlock();
1087 
1088  out:
1089 	release_firmware(fw);
1090 	return err;
1091 }
1092 
1093 static bool reg_query_database(struct regulatory_request *request)
1094 {
1095 	if (query_regdb_file(request->alpha2) == 0)
1096 		return true;
1097 
1098 	if (call_crda(request->alpha2) == 0)
1099 		return true;
1100 
1101 	return false;
1102 }
1103 
1104 bool reg_is_valid_request(const char *alpha2)
1105 {
1106 	struct regulatory_request *lr = get_last_request();
1107 
1108 	if (!lr || lr->processed)
1109 		return false;
1110 
1111 	return alpha2_equal(lr->alpha2, alpha2);
1112 }
1113 
1114 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1115 {
1116 	struct regulatory_request *lr = get_last_request();
1117 
1118 	/*
1119 	 * Follow the driver's regulatory domain, if present, unless a country
1120 	 * IE has been processed or a user wants to help complaince further
1121 	 */
1122 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1123 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1124 	    wiphy->regd)
1125 		return get_wiphy_regdom(wiphy);
1126 
1127 	return get_cfg80211_regdom();
1128 }
1129 
1130 static unsigned int
1131 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1132 				 const struct ieee80211_reg_rule *rule)
1133 {
1134 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1135 	const struct ieee80211_freq_range *freq_range_tmp;
1136 	const struct ieee80211_reg_rule *tmp;
1137 	u32 start_freq, end_freq, idx, no;
1138 
1139 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1140 		if (rule == &rd->reg_rules[idx])
1141 			break;
1142 
1143 	if (idx == rd->n_reg_rules)
1144 		return 0;
1145 
1146 	/* get start_freq */
1147 	no = idx;
1148 
1149 	while (no) {
1150 		tmp = &rd->reg_rules[--no];
1151 		freq_range_tmp = &tmp->freq_range;
1152 
1153 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1154 			break;
1155 
1156 		freq_range = freq_range_tmp;
1157 	}
1158 
1159 	start_freq = freq_range->start_freq_khz;
1160 
1161 	/* get end_freq */
1162 	freq_range = &rule->freq_range;
1163 	no = idx;
1164 
1165 	while (no < rd->n_reg_rules - 1) {
1166 		tmp = &rd->reg_rules[++no];
1167 		freq_range_tmp = &tmp->freq_range;
1168 
1169 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1170 			break;
1171 
1172 		freq_range = freq_range_tmp;
1173 	}
1174 
1175 	end_freq = freq_range->end_freq_khz;
1176 
1177 	return end_freq - start_freq;
1178 }
1179 
1180 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1181 				   const struct ieee80211_reg_rule *rule)
1182 {
1183 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1184 
1185 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1186 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1187 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1188 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1189 
1190 	/*
1191 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1192 	 * are not allowed.
1193 	 */
1194 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1195 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1196 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1197 
1198 	return bw;
1199 }
1200 
1201 /* Sanity check on a regulatory rule */
1202 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1203 {
1204 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1205 	u32 freq_diff;
1206 
1207 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1208 		return false;
1209 
1210 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1211 		return false;
1212 
1213 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1214 
1215 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1216 	    freq_range->max_bandwidth_khz > freq_diff)
1217 		return false;
1218 
1219 	return true;
1220 }
1221 
1222 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1223 {
1224 	const struct ieee80211_reg_rule *reg_rule = NULL;
1225 	unsigned int i;
1226 
1227 	if (!rd->n_reg_rules)
1228 		return false;
1229 
1230 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1231 		return false;
1232 
1233 	for (i = 0; i < rd->n_reg_rules; i++) {
1234 		reg_rule = &rd->reg_rules[i];
1235 		if (!is_valid_reg_rule(reg_rule))
1236 			return false;
1237 	}
1238 
1239 	return true;
1240 }
1241 
1242 /**
1243  * freq_in_rule_band - tells us if a frequency is in a frequency band
1244  * @freq_range: frequency rule we want to query
1245  * @freq_khz: frequency we are inquiring about
1246  *
1247  * This lets us know if a specific frequency rule is or is not relevant to
1248  * a specific frequency's band. Bands are device specific and artificial
1249  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1250  * however it is safe for now to assume that a frequency rule should not be
1251  * part of a frequency's band if the start freq or end freq are off by more
1252  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
1253  * 60 GHz band.
1254  * This resolution can be lowered and should be considered as we add
1255  * regulatory rule support for other "bands".
1256  **/
1257 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1258 			      u32 freq_khz)
1259 {
1260 #define ONE_GHZ_IN_KHZ	1000000
1261 	/*
1262 	 * From 802.11ad: directional multi-gigabit (DMG):
1263 	 * Pertaining to operation in a frequency band containing a channel
1264 	 * with the Channel starting frequency above 45 GHz.
1265 	 */
1266 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1267 			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1268 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1269 		return true;
1270 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1271 		return true;
1272 	return false;
1273 #undef ONE_GHZ_IN_KHZ
1274 }
1275 
1276 /*
1277  * Later on we can perhaps use the more restrictive DFS
1278  * region but we don't have information for that yet so
1279  * for now simply disallow conflicts.
1280  */
1281 static enum nl80211_dfs_regions
1282 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1283 			 const enum nl80211_dfs_regions dfs_region2)
1284 {
1285 	if (dfs_region1 != dfs_region2)
1286 		return NL80211_DFS_UNSET;
1287 	return dfs_region1;
1288 }
1289 
1290 /*
1291  * Helper for regdom_intersect(), this does the real
1292  * mathematical intersection fun
1293  */
1294 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1295 			       const struct ieee80211_regdomain *rd2,
1296 			       const struct ieee80211_reg_rule *rule1,
1297 			       const struct ieee80211_reg_rule *rule2,
1298 			       struct ieee80211_reg_rule *intersected_rule)
1299 {
1300 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1301 	struct ieee80211_freq_range *freq_range;
1302 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1303 	struct ieee80211_power_rule *power_rule;
1304 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1305 
1306 	freq_range1 = &rule1->freq_range;
1307 	freq_range2 = &rule2->freq_range;
1308 	freq_range = &intersected_rule->freq_range;
1309 
1310 	power_rule1 = &rule1->power_rule;
1311 	power_rule2 = &rule2->power_rule;
1312 	power_rule = &intersected_rule->power_rule;
1313 
1314 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1315 					 freq_range2->start_freq_khz);
1316 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1317 				       freq_range2->end_freq_khz);
1318 
1319 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1320 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1321 
1322 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1323 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1324 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1325 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1326 
1327 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1328 
1329 	intersected_rule->flags = rule1->flags | rule2->flags;
1330 
1331 	/*
1332 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1333 	 * set AUTO_BW in intersected rule also. Next we will
1334 	 * calculate BW correctly in handle_channel function.
1335 	 * In other case remove AUTO_BW flag while we calculate
1336 	 * maximum bandwidth correctly and auto calculation is
1337 	 * not required.
1338 	 */
1339 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1340 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1341 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1342 	else
1343 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1344 
1345 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1346 	if (freq_range->max_bandwidth_khz > freq_diff)
1347 		freq_range->max_bandwidth_khz = freq_diff;
1348 
1349 	power_rule->max_eirp = min(power_rule1->max_eirp,
1350 		power_rule2->max_eirp);
1351 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1352 		power_rule2->max_antenna_gain);
1353 
1354 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1355 					   rule2->dfs_cac_ms);
1356 
1357 	if (!is_valid_reg_rule(intersected_rule))
1358 		return -EINVAL;
1359 
1360 	return 0;
1361 }
1362 
1363 /* check whether old rule contains new rule */
1364 static bool rule_contains(struct ieee80211_reg_rule *r1,
1365 			  struct ieee80211_reg_rule *r2)
1366 {
1367 	/* for simplicity, currently consider only same flags */
1368 	if (r1->flags != r2->flags)
1369 		return false;
1370 
1371 	/* verify r1 is more restrictive */
1372 	if ((r1->power_rule.max_antenna_gain >
1373 	     r2->power_rule.max_antenna_gain) ||
1374 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1375 		return false;
1376 
1377 	/* make sure r2's range is contained within r1 */
1378 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1379 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1380 		return false;
1381 
1382 	/* and finally verify that r1.max_bw >= r2.max_bw */
1383 	if (r1->freq_range.max_bandwidth_khz <
1384 	    r2->freq_range.max_bandwidth_khz)
1385 		return false;
1386 
1387 	return true;
1388 }
1389 
1390 /* add or extend current rules. do nothing if rule is already contained */
1391 static void add_rule(struct ieee80211_reg_rule *rule,
1392 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1393 {
1394 	struct ieee80211_reg_rule *tmp_rule;
1395 	int i;
1396 
1397 	for (i = 0; i < *n_rules; i++) {
1398 		tmp_rule = &reg_rules[i];
1399 		/* rule is already contained - do nothing */
1400 		if (rule_contains(tmp_rule, rule))
1401 			return;
1402 
1403 		/* extend rule if possible */
1404 		if (rule_contains(rule, tmp_rule)) {
1405 			memcpy(tmp_rule, rule, sizeof(*rule));
1406 			return;
1407 		}
1408 	}
1409 
1410 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1411 	(*n_rules)++;
1412 }
1413 
1414 /**
1415  * regdom_intersect - do the intersection between two regulatory domains
1416  * @rd1: first regulatory domain
1417  * @rd2: second regulatory domain
1418  *
1419  * Use this function to get the intersection between two regulatory domains.
1420  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1421  * as no one single alpha2 can represent this regulatory domain.
1422  *
1423  * Returns a pointer to the regulatory domain structure which will hold the
1424  * resulting intersection of rules between rd1 and rd2. We will
1425  * kzalloc() this structure for you.
1426  */
1427 static struct ieee80211_regdomain *
1428 regdom_intersect(const struct ieee80211_regdomain *rd1,
1429 		 const struct ieee80211_regdomain *rd2)
1430 {
1431 	int r, size_of_regd;
1432 	unsigned int x, y;
1433 	unsigned int num_rules = 0;
1434 	const struct ieee80211_reg_rule *rule1, *rule2;
1435 	struct ieee80211_reg_rule intersected_rule;
1436 	struct ieee80211_regdomain *rd;
1437 
1438 	if (!rd1 || !rd2)
1439 		return NULL;
1440 
1441 	/*
1442 	 * First we get a count of the rules we'll need, then we actually
1443 	 * build them. This is to so we can malloc() and free() a
1444 	 * regdomain once. The reason we use reg_rules_intersect() here
1445 	 * is it will return -EINVAL if the rule computed makes no sense.
1446 	 * All rules that do check out OK are valid.
1447 	 */
1448 
1449 	for (x = 0; x < rd1->n_reg_rules; x++) {
1450 		rule1 = &rd1->reg_rules[x];
1451 		for (y = 0; y < rd2->n_reg_rules; y++) {
1452 			rule2 = &rd2->reg_rules[y];
1453 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1454 						 &intersected_rule))
1455 				num_rules++;
1456 		}
1457 	}
1458 
1459 	if (!num_rules)
1460 		return NULL;
1461 
1462 	size_of_regd = sizeof(struct ieee80211_regdomain) +
1463 		       num_rules * sizeof(struct ieee80211_reg_rule);
1464 
1465 	rd = kzalloc(size_of_regd, GFP_KERNEL);
1466 	if (!rd)
1467 		return NULL;
1468 
1469 	for (x = 0; x < rd1->n_reg_rules; x++) {
1470 		rule1 = &rd1->reg_rules[x];
1471 		for (y = 0; y < rd2->n_reg_rules; y++) {
1472 			rule2 = &rd2->reg_rules[y];
1473 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1474 						&intersected_rule);
1475 			/*
1476 			 * No need to memset here the intersected rule here as
1477 			 * we're not using the stack anymore
1478 			 */
1479 			if (r)
1480 				continue;
1481 
1482 			add_rule(&intersected_rule, rd->reg_rules,
1483 				 &rd->n_reg_rules);
1484 		}
1485 	}
1486 
1487 	rd->alpha2[0] = '9';
1488 	rd->alpha2[1] = '8';
1489 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1490 						  rd2->dfs_region);
1491 
1492 	return rd;
1493 }
1494 
1495 /*
1496  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1497  * want to just have the channel structure use these
1498  */
1499 static u32 map_regdom_flags(u32 rd_flags)
1500 {
1501 	u32 channel_flags = 0;
1502 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1503 		channel_flags |= IEEE80211_CHAN_NO_IR;
1504 	if (rd_flags & NL80211_RRF_DFS)
1505 		channel_flags |= IEEE80211_CHAN_RADAR;
1506 	if (rd_flags & NL80211_RRF_NO_OFDM)
1507 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1508 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1509 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1510 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1511 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1512 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1513 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1514 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1515 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1516 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1517 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1518 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1519 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1520 	return channel_flags;
1521 }
1522 
1523 static const struct ieee80211_reg_rule *
1524 freq_reg_info_regd(u32 center_freq,
1525 		   const struct ieee80211_regdomain *regd, u32 bw)
1526 {
1527 	int i;
1528 	bool band_rule_found = false;
1529 	bool bw_fits = false;
1530 
1531 	if (!regd)
1532 		return ERR_PTR(-EINVAL);
1533 
1534 	for (i = 0; i < regd->n_reg_rules; i++) {
1535 		const struct ieee80211_reg_rule *rr;
1536 		const struct ieee80211_freq_range *fr = NULL;
1537 
1538 		rr = &regd->reg_rules[i];
1539 		fr = &rr->freq_range;
1540 
1541 		/*
1542 		 * We only need to know if one frequency rule was
1543 		 * was in center_freq's band, that's enough, so lets
1544 		 * not overwrite it once found
1545 		 */
1546 		if (!band_rule_found)
1547 			band_rule_found = freq_in_rule_band(fr, center_freq);
1548 
1549 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1550 
1551 		if (band_rule_found && bw_fits)
1552 			return rr;
1553 	}
1554 
1555 	if (!band_rule_found)
1556 		return ERR_PTR(-ERANGE);
1557 
1558 	return ERR_PTR(-EINVAL);
1559 }
1560 
1561 static const struct ieee80211_reg_rule *
1562 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1563 {
1564 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1565 	const struct ieee80211_reg_rule *reg_rule = NULL;
1566 	u32 bw;
1567 
1568 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1569 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1570 		if (!IS_ERR(reg_rule))
1571 			return reg_rule;
1572 	}
1573 
1574 	return reg_rule;
1575 }
1576 
1577 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1578 					       u32 center_freq)
1579 {
1580 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1581 }
1582 EXPORT_SYMBOL(freq_reg_info);
1583 
1584 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1585 {
1586 	switch (initiator) {
1587 	case NL80211_REGDOM_SET_BY_CORE:
1588 		return "core";
1589 	case NL80211_REGDOM_SET_BY_USER:
1590 		return "user";
1591 	case NL80211_REGDOM_SET_BY_DRIVER:
1592 		return "driver";
1593 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1594 		return "country element";
1595 	default:
1596 		WARN_ON(1);
1597 		return "bug";
1598 	}
1599 }
1600 EXPORT_SYMBOL(reg_initiator_name);
1601 
1602 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1603 					  const struct ieee80211_reg_rule *reg_rule,
1604 					  const struct ieee80211_channel *chan)
1605 {
1606 	const struct ieee80211_freq_range *freq_range = NULL;
1607 	u32 max_bandwidth_khz, bw_flags = 0;
1608 
1609 	freq_range = &reg_rule->freq_range;
1610 
1611 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1612 	/* Check if auto calculation requested */
1613 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1614 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1615 
1616 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1617 	if (!cfg80211_does_bw_fit_range(freq_range,
1618 					MHZ_TO_KHZ(chan->center_freq),
1619 					MHZ_TO_KHZ(10)))
1620 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1621 	if (!cfg80211_does_bw_fit_range(freq_range,
1622 					MHZ_TO_KHZ(chan->center_freq),
1623 					MHZ_TO_KHZ(20)))
1624 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1625 
1626 	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1627 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1628 	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1629 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1630 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1631 		bw_flags |= IEEE80211_CHAN_NO_HT40;
1632 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1633 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1634 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1635 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1636 	return bw_flags;
1637 }
1638 
1639 /*
1640  * Note that right now we assume the desired channel bandwidth
1641  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1642  * per channel, the primary and the extension channel).
1643  */
1644 static void handle_channel(struct wiphy *wiphy,
1645 			   enum nl80211_reg_initiator initiator,
1646 			   struct ieee80211_channel *chan)
1647 {
1648 	u32 flags, bw_flags = 0;
1649 	const struct ieee80211_reg_rule *reg_rule = NULL;
1650 	const struct ieee80211_power_rule *power_rule = NULL;
1651 	struct wiphy *request_wiphy = NULL;
1652 	struct regulatory_request *lr = get_last_request();
1653 	const struct ieee80211_regdomain *regd;
1654 
1655 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1656 
1657 	flags = chan->orig_flags;
1658 
1659 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1660 	if (IS_ERR(reg_rule)) {
1661 		/*
1662 		 * We will disable all channels that do not match our
1663 		 * received regulatory rule unless the hint is coming
1664 		 * from a Country IE and the Country IE had no information
1665 		 * about a band. The IEEE 802.11 spec allows for an AP
1666 		 * to send only a subset of the regulatory rules allowed,
1667 		 * so an AP in the US that only supports 2.4 GHz may only send
1668 		 * a country IE with information for the 2.4 GHz band
1669 		 * while 5 GHz is still supported.
1670 		 */
1671 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1672 		    PTR_ERR(reg_rule) == -ERANGE)
1673 			return;
1674 
1675 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1676 		    request_wiphy && request_wiphy == wiphy &&
1677 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1678 			pr_debug("Disabling freq %d MHz for good\n",
1679 				 chan->center_freq);
1680 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1681 			chan->flags = chan->orig_flags;
1682 		} else {
1683 			pr_debug("Disabling freq %d MHz\n",
1684 				 chan->center_freq);
1685 			chan->flags |= IEEE80211_CHAN_DISABLED;
1686 		}
1687 		return;
1688 	}
1689 
1690 	regd = reg_get_regdomain(wiphy);
1691 
1692 	power_rule = &reg_rule->power_rule;
1693 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1694 
1695 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1696 	    request_wiphy && request_wiphy == wiphy &&
1697 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1698 		/*
1699 		 * This guarantees the driver's requested regulatory domain
1700 		 * will always be used as a base for further regulatory
1701 		 * settings
1702 		 */
1703 		chan->flags = chan->orig_flags =
1704 			map_regdom_flags(reg_rule->flags) | bw_flags;
1705 		chan->max_antenna_gain = chan->orig_mag =
1706 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1707 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1708 			(int) MBM_TO_DBM(power_rule->max_eirp);
1709 
1710 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1711 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1712 			if (reg_rule->dfs_cac_ms)
1713 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1714 		}
1715 
1716 		return;
1717 	}
1718 
1719 	chan->dfs_state = NL80211_DFS_USABLE;
1720 	chan->dfs_state_entered = jiffies;
1721 
1722 	chan->beacon_found = false;
1723 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1724 	chan->max_antenna_gain =
1725 		min_t(int, chan->orig_mag,
1726 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1727 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1728 
1729 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1730 		if (reg_rule->dfs_cac_ms)
1731 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1732 		else
1733 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1734 	}
1735 
1736 	if (chan->orig_mpwr) {
1737 		/*
1738 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1739 		 * will always follow the passed country IE power settings.
1740 		 */
1741 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1742 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1743 			chan->max_power = chan->max_reg_power;
1744 		else
1745 			chan->max_power = min(chan->orig_mpwr,
1746 					      chan->max_reg_power);
1747 	} else
1748 		chan->max_power = chan->max_reg_power;
1749 }
1750 
1751 static void handle_band(struct wiphy *wiphy,
1752 			enum nl80211_reg_initiator initiator,
1753 			struct ieee80211_supported_band *sband)
1754 {
1755 	unsigned int i;
1756 
1757 	if (!sband)
1758 		return;
1759 
1760 	for (i = 0; i < sband->n_channels; i++)
1761 		handle_channel(wiphy, initiator, &sband->channels[i]);
1762 }
1763 
1764 static bool reg_request_cell_base(struct regulatory_request *request)
1765 {
1766 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1767 		return false;
1768 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1769 }
1770 
1771 bool reg_last_request_cell_base(void)
1772 {
1773 	return reg_request_cell_base(get_last_request());
1774 }
1775 
1776 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1777 /* Core specific check */
1778 static enum reg_request_treatment
1779 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1780 {
1781 	struct regulatory_request *lr = get_last_request();
1782 
1783 	if (!reg_num_devs_support_basehint)
1784 		return REG_REQ_IGNORE;
1785 
1786 	if (reg_request_cell_base(lr) &&
1787 	    !regdom_changes(pending_request->alpha2))
1788 		return REG_REQ_ALREADY_SET;
1789 
1790 	return REG_REQ_OK;
1791 }
1792 
1793 /* Device specific check */
1794 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1795 {
1796 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1797 }
1798 #else
1799 static enum reg_request_treatment
1800 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1801 {
1802 	return REG_REQ_IGNORE;
1803 }
1804 
1805 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1806 {
1807 	return true;
1808 }
1809 #endif
1810 
1811 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1812 {
1813 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1814 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1815 		return true;
1816 	return false;
1817 }
1818 
1819 static bool ignore_reg_update(struct wiphy *wiphy,
1820 			      enum nl80211_reg_initiator initiator)
1821 {
1822 	struct regulatory_request *lr = get_last_request();
1823 
1824 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1825 		return true;
1826 
1827 	if (!lr) {
1828 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1829 			 reg_initiator_name(initiator));
1830 		return true;
1831 	}
1832 
1833 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1834 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1835 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1836 			 reg_initiator_name(initiator));
1837 		return true;
1838 	}
1839 
1840 	/*
1841 	 * wiphy->regd will be set once the device has its own
1842 	 * desired regulatory domain set
1843 	 */
1844 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1845 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1846 	    !is_world_regdom(lr->alpha2)) {
1847 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1848 			 reg_initiator_name(initiator));
1849 		return true;
1850 	}
1851 
1852 	if (reg_request_cell_base(lr))
1853 		return reg_dev_ignore_cell_hint(wiphy);
1854 
1855 	return false;
1856 }
1857 
1858 static bool reg_is_world_roaming(struct wiphy *wiphy)
1859 {
1860 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1861 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1862 	struct regulatory_request *lr = get_last_request();
1863 
1864 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1865 		return true;
1866 
1867 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1868 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1869 		return true;
1870 
1871 	return false;
1872 }
1873 
1874 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1875 			      struct reg_beacon *reg_beacon)
1876 {
1877 	struct ieee80211_supported_band *sband;
1878 	struct ieee80211_channel *chan;
1879 	bool channel_changed = false;
1880 	struct ieee80211_channel chan_before;
1881 
1882 	sband = wiphy->bands[reg_beacon->chan.band];
1883 	chan = &sband->channels[chan_idx];
1884 
1885 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1886 		return;
1887 
1888 	if (chan->beacon_found)
1889 		return;
1890 
1891 	chan->beacon_found = true;
1892 
1893 	if (!reg_is_world_roaming(wiphy))
1894 		return;
1895 
1896 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1897 		return;
1898 
1899 	chan_before = *chan;
1900 
1901 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1902 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1903 		channel_changed = true;
1904 	}
1905 
1906 	if (channel_changed)
1907 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1908 }
1909 
1910 /*
1911  * Called when a scan on a wiphy finds a beacon on
1912  * new channel
1913  */
1914 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1915 				    struct reg_beacon *reg_beacon)
1916 {
1917 	unsigned int i;
1918 	struct ieee80211_supported_band *sband;
1919 
1920 	if (!wiphy->bands[reg_beacon->chan.band])
1921 		return;
1922 
1923 	sband = wiphy->bands[reg_beacon->chan.band];
1924 
1925 	for (i = 0; i < sband->n_channels; i++)
1926 		handle_reg_beacon(wiphy, i, reg_beacon);
1927 }
1928 
1929 /*
1930  * Called upon reg changes or a new wiphy is added
1931  */
1932 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1933 {
1934 	unsigned int i;
1935 	struct ieee80211_supported_band *sband;
1936 	struct reg_beacon *reg_beacon;
1937 
1938 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1939 		if (!wiphy->bands[reg_beacon->chan.band])
1940 			continue;
1941 		sband = wiphy->bands[reg_beacon->chan.band];
1942 		for (i = 0; i < sband->n_channels; i++)
1943 			handle_reg_beacon(wiphy, i, reg_beacon);
1944 	}
1945 }
1946 
1947 /* Reap the advantages of previously found beacons */
1948 static void reg_process_beacons(struct wiphy *wiphy)
1949 {
1950 	/*
1951 	 * Means we are just firing up cfg80211, so no beacons would
1952 	 * have been processed yet.
1953 	 */
1954 	if (!last_request)
1955 		return;
1956 	wiphy_update_beacon_reg(wiphy);
1957 }
1958 
1959 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1960 {
1961 	if (!chan)
1962 		return false;
1963 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1964 		return false;
1965 	/* This would happen when regulatory rules disallow HT40 completely */
1966 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1967 		return false;
1968 	return true;
1969 }
1970 
1971 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1972 					 struct ieee80211_channel *channel)
1973 {
1974 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1975 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1976 	const struct ieee80211_regdomain *regd;
1977 	unsigned int i;
1978 	u32 flags;
1979 
1980 	if (!is_ht40_allowed(channel)) {
1981 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1982 		return;
1983 	}
1984 
1985 	/*
1986 	 * We need to ensure the extension channels exist to
1987 	 * be able to use HT40- or HT40+, this finds them (or not)
1988 	 */
1989 	for (i = 0; i < sband->n_channels; i++) {
1990 		struct ieee80211_channel *c = &sband->channels[i];
1991 
1992 		if (c->center_freq == (channel->center_freq - 20))
1993 			channel_before = c;
1994 		if (c->center_freq == (channel->center_freq + 20))
1995 			channel_after = c;
1996 	}
1997 
1998 	flags = 0;
1999 	regd = get_wiphy_regdom(wiphy);
2000 	if (regd) {
2001 		const struct ieee80211_reg_rule *reg_rule =
2002 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2003 					   regd, MHZ_TO_KHZ(20));
2004 
2005 		if (!IS_ERR(reg_rule))
2006 			flags = reg_rule->flags;
2007 	}
2008 
2009 	/*
2010 	 * Please note that this assumes target bandwidth is 20 MHz,
2011 	 * if that ever changes we also need to change the below logic
2012 	 * to include that as well.
2013 	 */
2014 	if (!is_ht40_allowed(channel_before) ||
2015 	    flags & NL80211_RRF_NO_HT40MINUS)
2016 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2017 	else
2018 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2019 
2020 	if (!is_ht40_allowed(channel_after) ||
2021 	    flags & NL80211_RRF_NO_HT40PLUS)
2022 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2023 	else
2024 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2025 }
2026 
2027 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2028 				      struct ieee80211_supported_band *sband)
2029 {
2030 	unsigned int i;
2031 
2032 	if (!sband)
2033 		return;
2034 
2035 	for (i = 0; i < sband->n_channels; i++)
2036 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2037 }
2038 
2039 static void reg_process_ht_flags(struct wiphy *wiphy)
2040 {
2041 	enum nl80211_band band;
2042 
2043 	if (!wiphy)
2044 		return;
2045 
2046 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2047 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2048 }
2049 
2050 static void reg_call_notifier(struct wiphy *wiphy,
2051 			      struct regulatory_request *request)
2052 {
2053 	if (wiphy->reg_notifier)
2054 		wiphy->reg_notifier(wiphy, request);
2055 }
2056 
2057 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2058 {
2059 	struct cfg80211_chan_def chandef;
2060 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2061 	enum nl80211_iftype iftype;
2062 
2063 	wdev_lock(wdev);
2064 	iftype = wdev->iftype;
2065 
2066 	/* make sure the interface is active */
2067 	if (!wdev->netdev || !netif_running(wdev->netdev))
2068 		goto wdev_inactive_unlock;
2069 
2070 	switch (iftype) {
2071 	case NL80211_IFTYPE_AP:
2072 	case NL80211_IFTYPE_P2P_GO:
2073 		if (!wdev->beacon_interval)
2074 			goto wdev_inactive_unlock;
2075 		chandef = wdev->chandef;
2076 		break;
2077 	case NL80211_IFTYPE_ADHOC:
2078 		if (!wdev->ssid_len)
2079 			goto wdev_inactive_unlock;
2080 		chandef = wdev->chandef;
2081 		break;
2082 	case NL80211_IFTYPE_STATION:
2083 	case NL80211_IFTYPE_P2P_CLIENT:
2084 		if (!wdev->current_bss ||
2085 		    !wdev->current_bss->pub.channel)
2086 			goto wdev_inactive_unlock;
2087 
2088 		if (!rdev->ops->get_channel ||
2089 		    rdev_get_channel(rdev, wdev, &chandef))
2090 			cfg80211_chandef_create(&chandef,
2091 						wdev->current_bss->pub.channel,
2092 						NL80211_CHAN_NO_HT);
2093 		break;
2094 	case NL80211_IFTYPE_MONITOR:
2095 	case NL80211_IFTYPE_AP_VLAN:
2096 	case NL80211_IFTYPE_P2P_DEVICE:
2097 		/* no enforcement required */
2098 		break;
2099 	default:
2100 		/* others not implemented for now */
2101 		WARN_ON(1);
2102 		break;
2103 	}
2104 
2105 	wdev_unlock(wdev);
2106 
2107 	switch (iftype) {
2108 	case NL80211_IFTYPE_AP:
2109 	case NL80211_IFTYPE_P2P_GO:
2110 	case NL80211_IFTYPE_ADHOC:
2111 		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2112 	case NL80211_IFTYPE_STATION:
2113 	case NL80211_IFTYPE_P2P_CLIENT:
2114 		return cfg80211_chandef_usable(wiphy, &chandef,
2115 					       IEEE80211_CHAN_DISABLED);
2116 	default:
2117 		break;
2118 	}
2119 
2120 	return true;
2121 
2122 wdev_inactive_unlock:
2123 	wdev_unlock(wdev);
2124 	return true;
2125 }
2126 
2127 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2128 {
2129 	struct wireless_dev *wdev;
2130 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2131 
2132 	ASSERT_RTNL();
2133 
2134 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2135 		if (!reg_wdev_chan_valid(wiphy, wdev))
2136 			cfg80211_leave(rdev, wdev);
2137 }
2138 
2139 static void reg_check_chans_work(struct work_struct *work)
2140 {
2141 	struct cfg80211_registered_device *rdev;
2142 
2143 	pr_debug("Verifying active interfaces after reg change\n");
2144 	rtnl_lock();
2145 
2146 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2147 		if (!(rdev->wiphy.regulatory_flags &
2148 		      REGULATORY_IGNORE_STALE_KICKOFF))
2149 			reg_leave_invalid_chans(&rdev->wiphy);
2150 
2151 	rtnl_unlock();
2152 }
2153 
2154 static void reg_check_channels(void)
2155 {
2156 	/*
2157 	 * Give usermode a chance to do something nicer (move to another
2158 	 * channel, orderly disconnection), before forcing a disconnection.
2159 	 */
2160 	mod_delayed_work(system_power_efficient_wq,
2161 			 &reg_check_chans,
2162 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2163 }
2164 
2165 static void wiphy_update_regulatory(struct wiphy *wiphy,
2166 				    enum nl80211_reg_initiator initiator)
2167 {
2168 	enum nl80211_band band;
2169 	struct regulatory_request *lr = get_last_request();
2170 
2171 	if (ignore_reg_update(wiphy, initiator)) {
2172 		/*
2173 		 * Regulatory updates set by CORE are ignored for custom
2174 		 * regulatory cards. Let us notify the changes to the driver,
2175 		 * as some drivers used this to restore its orig_* reg domain.
2176 		 */
2177 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2178 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2179 		    !(wiphy->regulatory_flags &
2180 		      REGULATORY_WIPHY_SELF_MANAGED))
2181 			reg_call_notifier(wiphy, lr);
2182 		return;
2183 	}
2184 
2185 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2186 
2187 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2188 		handle_band(wiphy, initiator, wiphy->bands[band]);
2189 
2190 	reg_process_beacons(wiphy);
2191 	reg_process_ht_flags(wiphy);
2192 	reg_call_notifier(wiphy, lr);
2193 }
2194 
2195 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2196 {
2197 	struct cfg80211_registered_device *rdev;
2198 	struct wiphy *wiphy;
2199 
2200 	ASSERT_RTNL();
2201 
2202 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2203 		wiphy = &rdev->wiphy;
2204 		wiphy_update_regulatory(wiphy, initiator);
2205 	}
2206 
2207 	reg_check_channels();
2208 }
2209 
2210 static void handle_channel_custom(struct wiphy *wiphy,
2211 				  struct ieee80211_channel *chan,
2212 				  const struct ieee80211_regdomain *regd)
2213 {
2214 	u32 bw_flags = 0;
2215 	const struct ieee80211_reg_rule *reg_rule = NULL;
2216 	const struct ieee80211_power_rule *power_rule = NULL;
2217 	u32 bw;
2218 
2219 	for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2220 		reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2221 					      regd, bw);
2222 		if (!IS_ERR(reg_rule))
2223 			break;
2224 	}
2225 
2226 	if (IS_ERR(reg_rule)) {
2227 		pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2228 			 chan->center_freq);
2229 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2230 			chan->flags |= IEEE80211_CHAN_DISABLED;
2231 		} else {
2232 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2233 			chan->flags = chan->orig_flags;
2234 		}
2235 		return;
2236 	}
2237 
2238 	power_rule = &reg_rule->power_rule;
2239 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2240 
2241 	chan->dfs_state_entered = jiffies;
2242 	chan->dfs_state = NL80211_DFS_USABLE;
2243 
2244 	chan->beacon_found = false;
2245 
2246 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2247 		chan->flags = chan->orig_flags | bw_flags |
2248 			      map_regdom_flags(reg_rule->flags);
2249 	else
2250 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2251 
2252 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2253 	chan->max_reg_power = chan->max_power =
2254 		(int) MBM_TO_DBM(power_rule->max_eirp);
2255 
2256 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2257 		if (reg_rule->dfs_cac_ms)
2258 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2259 		else
2260 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2261 	}
2262 
2263 	chan->max_power = chan->max_reg_power;
2264 }
2265 
2266 static void handle_band_custom(struct wiphy *wiphy,
2267 			       struct ieee80211_supported_band *sband,
2268 			       const struct ieee80211_regdomain *regd)
2269 {
2270 	unsigned int i;
2271 
2272 	if (!sband)
2273 		return;
2274 
2275 	for (i = 0; i < sband->n_channels; i++)
2276 		handle_channel_custom(wiphy, &sband->channels[i], regd);
2277 }
2278 
2279 /* Used by drivers prior to wiphy registration */
2280 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2281 				   const struct ieee80211_regdomain *regd)
2282 {
2283 	enum nl80211_band band;
2284 	unsigned int bands_set = 0;
2285 
2286 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2287 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2288 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2289 
2290 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2291 		if (!wiphy->bands[band])
2292 			continue;
2293 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2294 		bands_set++;
2295 	}
2296 
2297 	/*
2298 	 * no point in calling this if it won't have any effect
2299 	 * on your device's supported bands.
2300 	 */
2301 	WARN_ON(!bands_set);
2302 }
2303 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2304 
2305 static void reg_set_request_processed(void)
2306 {
2307 	bool need_more_processing = false;
2308 	struct regulatory_request *lr = get_last_request();
2309 
2310 	lr->processed = true;
2311 
2312 	spin_lock(&reg_requests_lock);
2313 	if (!list_empty(&reg_requests_list))
2314 		need_more_processing = true;
2315 	spin_unlock(&reg_requests_lock);
2316 
2317 	cancel_crda_timeout();
2318 
2319 	if (need_more_processing)
2320 		schedule_work(&reg_work);
2321 }
2322 
2323 /**
2324  * reg_process_hint_core - process core regulatory requests
2325  * @pending_request: a pending core regulatory request
2326  *
2327  * The wireless subsystem can use this function to process
2328  * a regulatory request issued by the regulatory core.
2329  */
2330 static enum reg_request_treatment
2331 reg_process_hint_core(struct regulatory_request *core_request)
2332 {
2333 	if (reg_query_database(core_request)) {
2334 		core_request->intersect = false;
2335 		core_request->processed = false;
2336 		reg_update_last_request(core_request);
2337 		return REG_REQ_OK;
2338 	}
2339 
2340 	return REG_REQ_IGNORE;
2341 }
2342 
2343 static enum reg_request_treatment
2344 __reg_process_hint_user(struct regulatory_request *user_request)
2345 {
2346 	struct regulatory_request *lr = get_last_request();
2347 
2348 	if (reg_request_cell_base(user_request))
2349 		return reg_ignore_cell_hint(user_request);
2350 
2351 	if (reg_request_cell_base(lr))
2352 		return REG_REQ_IGNORE;
2353 
2354 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2355 		return REG_REQ_INTERSECT;
2356 	/*
2357 	 * If the user knows better the user should set the regdom
2358 	 * to their country before the IE is picked up
2359 	 */
2360 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2361 	    lr->intersect)
2362 		return REG_REQ_IGNORE;
2363 	/*
2364 	 * Process user requests only after previous user/driver/core
2365 	 * requests have been processed
2366 	 */
2367 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2368 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2369 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2370 	    regdom_changes(lr->alpha2))
2371 		return REG_REQ_IGNORE;
2372 
2373 	if (!regdom_changes(user_request->alpha2))
2374 		return REG_REQ_ALREADY_SET;
2375 
2376 	return REG_REQ_OK;
2377 }
2378 
2379 /**
2380  * reg_process_hint_user - process user regulatory requests
2381  * @user_request: a pending user regulatory request
2382  *
2383  * The wireless subsystem can use this function to process
2384  * a regulatory request initiated by userspace.
2385  */
2386 static enum reg_request_treatment
2387 reg_process_hint_user(struct regulatory_request *user_request)
2388 {
2389 	enum reg_request_treatment treatment;
2390 
2391 	treatment = __reg_process_hint_user(user_request);
2392 	if (treatment == REG_REQ_IGNORE ||
2393 	    treatment == REG_REQ_ALREADY_SET)
2394 		return REG_REQ_IGNORE;
2395 
2396 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2397 	user_request->processed = false;
2398 
2399 	if (reg_query_database(user_request)) {
2400 		reg_update_last_request(user_request);
2401 		user_alpha2[0] = user_request->alpha2[0];
2402 		user_alpha2[1] = user_request->alpha2[1];
2403 		return REG_REQ_OK;
2404 	}
2405 
2406 	return REG_REQ_IGNORE;
2407 }
2408 
2409 static enum reg_request_treatment
2410 __reg_process_hint_driver(struct regulatory_request *driver_request)
2411 {
2412 	struct regulatory_request *lr = get_last_request();
2413 
2414 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2415 		if (regdom_changes(driver_request->alpha2))
2416 			return REG_REQ_OK;
2417 		return REG_REQ_ALREADY_SET;
2418 	}
2419 
2420 	/*
2421 	 * This would happen if you unplug and plug your card
2422 	 * back in or if you add a new device for which the previously
2423 	 * loaded card also agrees on the regulatory domain.
2424 	 */
2425 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2426 	    !regdom_changes(driver_request->alpha2))
2427 		return REG_REQ_ALREADY_SET;
2428 
2429 	return REG_REQ_INTERSECT;
2430 }
2431 
2432 /**
2433  * reg_process_hint_driver - process driver regulatory requests
2434  * @driver_request: a pending driver regulatory request
2435  *
2436  * The wireless subsystem can use this function to process
2437  * a regulatory request issued by an 802.11 driver.
2438  *
2439  * Returns one of the different reg request treatment values.
2440  */
2441 static enum reg_request_treatment
2442 reg_process_hint_driver(struct wiphy *wiphy,
2443 			struct regulatory_request *driver_request)
2444 {
2445 	const struct ieee80211_regdomain *regd, *tmp;
2446 	enum reg_request_treatment treatment;
2447 
2448 	treatment = __reg_process_hint_driver(driver_request);
2449 
2450 	switch (treatment) {
2451 	case REG_REQ_OK:
2452 		break;
2453 	case REG_REQ_IGNORE:
2454 		return REG_REQ_IGNORE;
2455 	case REG_REQ_INTERSECT:
2456 	case REG_REQ_ALREADY_SET:
2457 		regd = reg_copy_regd(get_cfg80211_regdom());
2458 		if (IS_ERR(regd))
2459 			return REG_REQ_IGNORE;
2460 
2461 		tmp = get_wiphy_regdom(wiphy);
2462 		rcu_assign_pointer(wiphy->regd, regd);
2463 		rcu_free_regdom(tmp);
2464 	}
2465 
2466 
2467 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2468 	driver_request->processed = false;
2469 
2470 	/*
2471 	 * Since CRDA will not be called in this case as we already
2472 	 * have applied the requested regulatory domain before we just
2473 	 * inform userspace we have processed the request
2474 	 */
2475 	if (treatment == REG_REQ_ALREADY_SET) {
2476 		nl80211_send_reg_change_event(driver_request);
2477 		reg_update_last_request(driver_request);
2478 		reg_set_request_processed();
2479 		return REG_REQ_ALREADY_SET;
2480 	}
2481 
2482 	if (reg_query_database(driver_request)) {
2483 		reg_update_last_request(driver_request);
2484 		return REG_REQ_OK;
2485 	}
2486 
2487 	return REG_REQ_IGNORE;
2488 }
2489 
2490 static enum reg_request_treatment
2491 __reg_process_hint_country_ie(struct wiphy *wiphy,
2492 			      struct regulatory_request *country_ie_request)
2493 {
2494 	struct wiphy *last_wiphy = NULL;
2495 	struct regulatory_request *lr = get_last_request();
2496 
2497 	if (reg_request_cell_base(lr)) {
2498 		/* Trust a Cell base station over the AP's country IE */
2499 		if (regdom_changes(country_ie_request->alpha2))
2500 			return REG_REQ_IGNORE;
2501 		return REG_REQ_ALREADY_SET;
2502 	} else {
2503 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2504 			return REG_REQ_IGNORE;
2505 	}
2506 
2507 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2508 		return -EINVAL;
2509 
2510 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2511 		return REG_REQ_OK;
2512 
2513 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2514 
2515 	if (last_wiphy != wiphy) {
2516 		/*
2517 		 * Two cards with two APs claiming different
2518 		 * Country IE alpha2s. We could
2519 		 * intersect them, but that seems unlikely
2520 		 * to be correct. Reject second one for now.
2521 		 */
2522 		if (regdom_changes(country_ie_request->alpha2))
2523 			return REG_REQ_IGNORE;
2524 		return REG_REQ_ALREADY_SET;
2525 	}
2526 
2527 	if (regdom_changes(country_ie_request->alpha2))
2528 		return REG_REQ_OK;
2529 	return REG_REQ_ALREADY_SET;
2530 }
2531 
2532 /**
2533  * reg_process_hint_country_ie - process regulatory requests from country IEs
2534  * @country_ie_request: a regulatory request from a country IE
2535  *
2536  * The wireless subsystem can use this function to process
2537  * a regulatory request issued by a country Information Element.
2538  *
2539  * Returns one of the different reg request treatment values.
2540  */
2541 static enum reg_request_treatment
2542 reg_process_hint_country_ie(struct wiphy *wiphy,
2543 			    struct regulatory_request *country_ie_request)
2544 {
2545 	enum reg_request_treatment treatment;
2546 
2547 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2548 
2549 	switch (treatment) {
2550 	case REG_REQ_OK:
2551 		break;
2552 	case REG_REQ_IGNORE:
2553 		return REG_REQ_IGNORE;
2554 	case REG_REQ_ALREADY_SET:
2555 		reg_free_request(country_ie_request);
2556 		return REG_REQ_ALREADY_SET;
2557 	case REG_REQ_INTERSECT:
2558 		/*
2559 		 * This doesn't happen yet, not sure we
2560 		 * ever want to support it for this case.
2561 		 */
2562 		WARN_ONCE(1, "Unexpected intersection for country elements");
2563 		return REG_REQ_IGNORE;
2564 	}
2565 
2566 	country_ie_request->intersect = false;
2567 	country_ie_request->processed = false;
2568 
2569 	if (reg_query_database(country_ie_request)) {
2570 		reg_update_last_request(country_ie_request);
2571 		return REG_REQ_OK;
2572 	}
2573 
2574 	return REG_REQ_IGNORE;
2575 }
2576 
2577 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2578 {
2579 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2580 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2581 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2582 	bool dfs_domain_same;
2583 
2584 	rcu_read_lock();
2585 
2586 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2587 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2588 	if (!wiphy1_regd)
2589 		wiphy1_regd = cfg80211_regd;
2590 
2591 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2592 	if (!wiphy2_regd)
2593 		wiphy2_regd = cfg80211_regd;
2594 
2595 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2596 
2597 	rcu_read_unlock();
2598 
2599 	return dfs_domain_same;
2600 }
2601 
2602 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2603 				    struct ieee80211_channel *src_chan)
2604 {
2605 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2606 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2607 		return;
2608 
2609 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2610 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2611 		return;
2612 
2613 	if (src_chan->center_freq == dst_chan->center_freq &&
2614 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2615 		dst_chan->dfs_state = src_chan->dfs_state;
2616 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2617 	}
2618 }
2619 
2620 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2621 				       struct wiphy *src_wiphy)
2622 {
2623 	struct ieee80211_supported_band *src_sband, *dst_sband;
2624 	struct ieee80211_channel *src_chan, *dst_chan;
2625 	int i, j, band;
2626 
2627 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2628 		return;
2629 
2630 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2631 		dst_sband = dst_wiphy->bands[band];
2632 		src_sband = src_wiphy->bands[band];
2633 		if (!dst_sband || !src_sband)
2634 			continue;
2635 
2636 		for (i = 0; i < dst_sband->n_channels; i++) {
2637 			dst_chan = &dst_sband->channels[i];
2638 			for (j = 0; j < src_sband->n_channels; j++) {
2639 				src_chan = &src_sband->channels[j];
2640 				reg_copy_dfs_chan_state(dst_chan, src_chan);
2641 			}
2642 		}
2643 	}
2644 }
2645 
2646 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2647 {
2648 	struct cfg80211_registered_device *rdev;
2649 
2650 	ASSERT_RTNL();
2651 
2652 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2653 		if (wiphy == &rdev->wiphy)
2654 			continue;
2655 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2656 	}
2657 }
2658 
2659 /* This processes *all* regulatory hints */
2660 static void reg_process_hint(struct regulatory_request *reg_request)
2661 {
2662 	struct wiphy *wiphy = NULL;
2663 	enum reg_request_treatment treatment;
2664 
2665 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2666 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2667 
2668 	switch (reg_request->initiator) {
2669 	case NL80211_REGDOM_SET_BY_CORE:
2670 		treatment = reg_process_hint_core(reg_request);
2671 		break;
2672 	case NL80211_REGDOM_SET_BY_USER:
2673 		treatment = reg_process_hint_user(reg_request);
2674 		break;
2675 	case NL80211_REGDOM_SET_BY_DRIVER:
2676 		if (!wiphy)
2677 			goto out_free;
2678 		treatment = reg_process_hint_driver(wiphy, reg_request);
2679 		break;
2680 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2681 		if (!wiphy)
2682 			goto out_free;
2683 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2684 		break;
2685 	default:
2686 		WARN(1, "invalid initiator %d\n", reg_request->initiator);
2687 		goto out_free;
2688 	}
2689 
2690 	if (treatment == REG_REQ_IGNORE)
2691 		goto out_free;
2692 
2693 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2694 	     "unexpected treatment value %d\n", treatment);
2695 
2696 	/* This is required so that the orig_* parameters are saved.
2697 	 * NOTE: treatment must be set for any case that reaches here!
2698 	 */
2699 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2700 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2701 		wiphy_update_regulatory(wiphy, reg_request->initiator);
2702 		wiphy_all_share_dfs_chan_state(wiphy);
2703 		reg_check_channels();
2704 	}
2705 
2706 	return;
2707 
2708 out_free:
2709 	reg_free_request(reg_request);
2710 }
2711 
2712 static void notify_self_managed_wiphys(struct regulatory_request *request)
2713 {
2714 	struct cfg80211_registered_device *rdev;
2715 	struct wiphy *wiphy;
2716 
2717 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2718 		wiphy = &rdev->wiphy;
2719 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2720 		    request->initiator == NL80211_REGDOM_SET_BY_USER &&
2721 		    request->user_reg_hint_type ==
2722 				NL80211_USER_REG_HINT_CELL_BASE)
2723 			reg_call_notifier(wiphy, request);
2724 	}
2725 }
2726 
2727 /*
2728  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2729  * Regulatory hints come on a first come first serve basis and we
2730  * must process each one atomically.
2731  */
2732 static void reg_process_pending_hints(void)
2733 {
2734 	struct regulatory_request *reg_request, *lr;
2735 
2736 	lr = get_last_request();
2737 
2738 	/* When last_request->processed becomes true this will be rescheduled */
2739 	if (lr && !lr->processed) {
2740 		reg_process_hint(lr);
2741 		return;
2742 	}
2743 
2744 	spin_lock(&reg_requests_lock);
2745 
2746 	if (list_empty(&reg_requests_list)) {
2747 		spin_unlock(&reg_requests_lock);
2748 		return;
2749 	}
2750 
2751 	reg_request = list_first_entry(&reg_requests_list,
2752 				       struct regulatory_request,
2753 				       list);
2754 	list_del_init(&reg_request->list);
2755 
2756 	spin_unlock(&reg_requests_lock);
2757 
2758 	notify_self_managed_wiphys(reg_request);
2759 
2760 	reg_process_hint(reg_request);
2761 
2762 	lr = get_last_request();
2763 
2764 	spin_lock(&reg_requests_lock);
2765 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
2766 		schedule_work(&reg_work);
2767 	spin_unlock(&reg_requests_lock);
2768 }
2769 
2770 /* Processes beacon hints -- this has nothing to do with country IEs */
2771 static void reg_process_pending_beacon_hints(void)
2772 {
2773 	struct cfg80211_registered_device *rdev;
2774 	struct reg_beacon *pending_beacon, *tmp;
2775 
2776 	/* This goes through the _pending_ beacon list */
2777 	spin_lock_bh(&reg_pending_beacons_lock);
2778 
2779 	list_for_each_entry_safe(pending_beacon, tmp,
2780 				 &reg_pending_beacons, list) {
2781 		list_del_init(&pending_beacon->list);
2782 
2783 		/* Applies the beacon hint to current wiphys */
2784 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2785 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2786 
2787 		/* Remembers the beacon hint for new wiphys or reg changes */
2788 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2789 	}
2790 
2791 	spin_unlock_bh(&reg_pending_beacons_lock);
2792 }
2793 
2794 static void reg_process_self_managed_hints(void)
2795 {
2796 	struct cfg80211_registered_device *rdev;
2797 	struct wiphy *wiphy;
2798 	const struct ieee80211_regdomain *tmp;
2799 	const struct ieee80211_regdomain *regd;
2800 	enum nl80211_band band;
2801 	struct regulatory_request request = {};
2802 
2803 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2804 		wiphy = &rdev->wiphy;
2805 
2806 		spin_lock(&reg_requests_lock);
2807 		regd = rdev->requested_regd;
2808 		rdev->requested_regd = NULL;
2809 		spin_unlock(&reg_requests_lock);
2810 
2811 		if (regd == NULL)
2812 			continue;
2813 
2814 		tmp = get_wiphy_regdom(wiphy);
2815 		rcu_assign_pointer(wiphy->regd, regd);
2816 		rcu_free_regdom(tmp);
2817 
2818 		for (band = 0; band < NUM_NL80211_BANDS; band++)
2819 			handle_band_custom(wiphy, wiphy->bands[band], regd);
2820 
2821 		reg_process_ht_flags(wiphy);
2822 
2823 		request.wiphy_idx = get_wiphy_idx(wiphy);
2824 		request.alpha2[0] = regd->alpha2[0];
2825 		request.alpha2[1] = regd->alpha2[1];
2826 		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2827 
2828 		nl80211_send_wiphy_reg_change_event(&request);
2829 	}
2830 
2831 	reg_check_channels();
2832 }
2833 
2834 static void reg_todo(struct work_struct *work)
2835 {
2836 	rtnl_lock();
2837 	reg_process_pending_hints();
2838 	reg_process_pending_beacon_hints();
2839 	reg_process_self_managed_hints();
2840 	rtnl_unlock();
2841 }
2842 
2843 static void queue_regulatory_request(struct regulatory_request *request)
2844 {
2845 	request->alpha2[0] = toupper(request->alpha2[0]);
2846 	request->alpha2[1] = toupper(request->alpha2[1]);
2847 
2848 	spin_lock(&reg_requests_lock);
2849 	list_add_tail(&request->list, &reg_requests_list);
2850 	spin_unlock(&reg_requests_lock);
2851 
2852 	schedule_work(&reg_work);
2853 }
2854 
2855 /*
2856  * Core regulatory hint -- happens during cfg80211_init()
2857  * and when we restore regulatory settings.
2858  */
2859 static int regulatory_hint_core(const char *alpha2)
2860 {
2861 	struct regulatory_request *request;
2862 
2863 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2864 	if (!request)
2865 		return -ENOMEM;
2866 
2867 	request->alpha2[0] = alpha2[0];
2868 	request->alpha2[1] = alpha2[1];
2869 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2870 
2871 	queue_regulatory_request(request);
2872 
2873 	return 0;
2874 }
2875 
2876 /* User hints */
2877 int regulatory_hint_user(const char *alpha2,
2878 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2879 {
2880 	struct regulatory_request *request;
2881 
2882 	if (WARN_ON(!alpha2))
2883 		return -EINVAL;
2884 
2885 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2886 	if (!request)
2887 		return -ENOMEM;
2888 
2889 	request->wiphy_idx = WIPHY_IDX_INVALID;
2890 	request->alpha2[0] = alpha2[0];
2891 	request->alpha2[1] = alpha2[1];
2892 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2893 	request->user_reg_hint_type = user_reg_hint_type;
2894 
2895 	/* Allow calling CRDA again */
2896 	reset_crda_timeouts();
2897 
2898 	queue_regulatory_request(request);
2899 
2900 	return 0;
2901 }
2902 
2903 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2904 {
2905 	spin_lock(&reg_indoor_lock);
2906 
2907 	/* It is possible that more than one user space process is trying to
2908 	 * configure the indoor setting. To handle such cases, clear the indoor
2909 	 * setting in case that some process does not think that the device
2910 	 * is operating in an indoor environment. In addition, if a user space
2911 	 * process indicates that it is controlling the indoor setting, save its
2912 	 * portid, i.e., make it the owner.
2913 	 */
2914 	reg_is_indoor = is_indoor;
2915 	if (reg_is_indoor) {
2916 		if (!reg_is_indoor_portid)
2917 			reg_is_indoor_portid = portid;
2918 	} else {
2919 		reg_is_indoor_portid = 0;
2920 	}
2921 
2922 	spin_unlock(&reg_indoor_lock);
2923 
2924 	if (!is_indoor)
2925 		reg_check_channels();
2926 
2927 	return 0;
2928 }
2929 
2930 void regulatory_netlink_notify(u32 portid)
2931 {
2932 	spin_lock(&reg_indoor_lock);
2933 
2934 	if (reg_is_indoor_portid != portid) {
2935 		spin_unlock(&reg_indoor_lock);
2936 		return;
2937 	}
2938 
2939 	reg_is_indoor = false;
2940 	reg_is_indoor_portid = 0;
2941 
2942 	spin_unlock(&reg_indoor_lock);
2943 
2944 	reg_check_channels();
2945 }
2946 
2947 /* Driver hints */
2948 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2949 {
2950 	struct regulatory_request *request;
2951 
2952 	if (WARN_ON(!alpha2 || !wiphy))
2953 		return -EINVAL;
2954 
2955 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2956 
2957 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2958 	if (!request)
2959 		return -ENOMEM;
2960 
2961 	request->wiphy_idx = get_wiphy_idx(wiphy);
2962 
2963 	request->alpha2[0] = alpha2[0];
2964 	request->alpha2[1] = alpha2[1];
2965 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2966 
2967 	/* Allow calling CRDA again */
2968 	reset_crda_timeouts();
2969 
2970 	queue_regulatory_request(request);
2971 
2972 	return 0;
2973 }
2974 EXPORT_SYMBOL(regulatory_hint);
2975 
2976 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2977 				const u8 *country_ie, u8 country_ie_len)
2978 {
2979 	char alpha2[2];
2980 	enum environment_cap env = ENVIRON_ANY;
2981 	struct regulatory_request *request = NULL, *lr;
2982 
2983 	/* IE len must be evenly divisible by 2 */
2984 	if (country_ie_len & 0x01)
2985 		return;
2986 
2987 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2988 		return;
2989 
2990 	request = kzalloc(sizeof(*request), GFP_KERNEL);
2991 	if (!request)
2992 		return;
2993 
2994 	alpha2[0] = country_ie[0];
2995 	alpha2[1] = country_ie[1];
2996 
2997 	if (country_ie[2] == 'I')
2998 		env = ENVIRON_INDOOR;
2999 	else if (country_ie[2] == 'O')
3000 		env = ENVIRON_OUTDOOR;
3001 
3002 	rcu_read_lock();
3003 	lr = get_last_request();
3004 
3005 	if (unlikely(!lr))
3006 		goto out;
3007 
3008 	/*
3009 	 * We will run this only upon a successful connection on cfg80211.
3010 	 * We leave conflict resolution to the workqueue, where can hold
3011 	 * the RTNL.
3012 	 */
3013 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3014 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3015 		goto out;
3016 
3017 	request->wiphy_idx = get_wiphy_idx(wiphy);
3018 	request->alpha2[0] = alpha2[0];
3019 	request->alpha2[1] = alpha2[1];
3020 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3021 	request->country_ie_env = env;
3022 
3023 	/* Allow calling CRDA again */
3024 	reset_crda_timeouts();
3025 
3026 	queue_regulatory_request(request);
3027 	request = NULL;
3028 out:
3029 	kfree(request);
3030 	rcu_read_unlock();
3031 }
3032 
3033 static void restore_alpha2(char *alpha2, bool reset_user)
3034 {
3035 	/* indicates there is no alpha2 to consider for restoration */
3036 	alpha2[0] = '9';
3037 	alpha2[1] = '7';
3038 
3039 	/* The user setting has precedence over the module parameter */
3040 	if (is_user_regdom_saved()) {
3041 		/* Unless we're asked to ignore it and reset it */
3042 		if (reset_user) {
3043 			pr_debug("Restoring regulatory settings including user preference\n");
3044 			user_alpha2[0] = '9';
3045 			user_alpha2[1] = '7';
3046 
3047 			/*
3048 			 * If we're ignoring user settings, we still need to
3049 			 * check the module parameter to ensure we put things
3050 			 * back as they were for a full restore.
3051 			 */
3052 			if (!is_world_regdom(ieee80211_regdom)) {
3053 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3054 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3055 				alpha2[0] = ieee80211_regdom[0];
3056 				alpha2[1] = ieee80211_regdom[1];
3057 			}
3058 		} else {
3059 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3060 				 user_alpha2[0], user_alpha2[1]);
3061 			alpha2[0] = user_alpha2[0];
3062 			alpha2[1] = user_alpha2[1];
3063 		}
3064 	} else if (!is_world_regdom(ieee80211_regdom)) {
3065 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3066 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3067 		alpha2[0] = ieee80211_regdom[0];
3068 		alpha2[1] = ieee80211_regdom[1];
3069 	} else
3070 		pr_debug("Restoring regulatory settings\n");
3071 }
3072 
3073 static void restore_custom_reg_settings(struct wiphy *wiphy)
3074 {
3075 	struct ieee80211_supported_band *sband;
3076 	enum nl80211_band band;
3077 	struct ieee80211_channel *chan;
3078 	int i;
3079 
3080 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3081 		sband = wiphy->bands[band];
3082 		if (!sband)
3083 			continue;
3084 		for (i = 0; i < sband->n_channels; i++) {
3085 			chan = &sband->channels[i];
3086 			chan->flags = chan->orig_flags;
3087 			chan->max_antenna_gain = chan->orig_mag;
3088 			chan->max_power = chan->orig_mpwr;
3089 			chan->beacon_found = false;
3090 		}
3091 	}
3092 }
3093 
3094 /*
3095  * Restoring regulatory settings involves ingoring any
3096  * possibly stale country IE information and user regulatory
3097  * settings if so desired, this includes any beacon hints
3098  * learned as we could have traveled outside to another country
3099  * after disconnection. To restore regulatory settings we do
3100  * exactly what we did at bootup:
3101  *
3102  *   - send a core regulatory hint
3103  *   - send a user regulatory hint if applicable
3104  *
3105  * Device drivers that send a regulatory hint for a specific country
3106  * keep their own regulatory domain on wiphy->regd so that does does
3107  * not need to be remembered.
3108  */
3109 static void restore_regulatory_settings(bool reset_user)
3110 {
3111 	char alpha2[2];
3112 	char world_alpha2[2];
3113 	struct reg_beacon *reg_beacon, *btmp;
3114 	LIST_HEAD(tmp_reg_req_list);
3115 	struct cfg80211_registered_device *rdev;
3116 
3117 	ASSERT_RTNL();
3118 
3119 	/*
3120 	 * Clear the indoor setting in case that it is not controlled by user
3121 	 * space, as otherwise there is no guarantee that the device is still
3122 	 * operating in an indoor environment.
3123 	 */
3124 	spin_lock(&reg_indoor_lock);
3125 	if (reg_is_indoor && !reg_is_indoor_portid) {
3126 		reg_is_indoor = false;
3127 		reg_check_channels();
3128 	}
3129 	spin_unlock(&reg_indoor_lock);
3130 
3131 	reset_regdomains(true, &world_regdom);
3132 	restore_alpha2(alpha2, reset_user);
3133 
3134 	/*
3135 	 * If there's any pending requests we simply
3136 	 * stash them to a temporary pending queue and
3137 	 * add then after we've restored regulatory
3138 	 * settings.
3139 	 */
3140 	spin_lock(&reg_requests_lock);
3141 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3142 	spin_unlock(&reg_requests_lock);
3143 
3144 	/* Clear beacon hints */
3145 	spin_lock_bh(&reg_pending_beacons_lock);
3146 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3147 		list_del(&reg_beacon->list);
3148 		kfree(reg_beacon);
3149 	}
3150 	spin_unlock_bh(&reg_pending_beacons_lock);
3151 
3152 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3153 		list_del(&reg_beacon->list);
3154 		kfree(reg_beacon);
3155 	}
3156 
3157 	/* First restore to the basic regulatory settings */
3158 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3159 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3160 
3161 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3162 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3163 			continue;
3164 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3165 			restore_custom_reg_settings(&rdev->wiphy);
3166 	}
3167 
3168 	regulatory_hint_core(world_alpha2);
3169 
3170 	/*
3171 	 * This restores the ieee80211_regdom module parameter
3172 	 * preference or the last user requested regulatory
3173 	 * settings, user regulatory settings takes precedence.
3174 	 */
3175 	if (is_an_alpha2(alpha2))
3176 		regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3177 
3178 	spin_lock(&reg_requests_lock);
3179 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3180 	spin_unlock(&reg_requests_lock);
3181 
3182 	pr_debug("Kicking the queue\n");
3183 
3184 	schedule_work(&reg_work);
3185 }
3186 
3187 void regulatory_hint_disconnect(void)
3188 {
3189 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3190 	restore_regulatory_settings(false);
3191 }
3192 
3193 static bool freq_is_chan_12_13_14(u16 freq)
3194 {
3195 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3196 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3197 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3198 		return true;
3199 	return false;
3200 }
3201 
3202 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3203 {
3204 	struct reg_beacon *pending_beacon;
3205 
3206 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3207 		if (beacon_chan->center_freq ==
3208 		    pending_beacon->chan.center_freq)
3209 			return true;
3210 	return false;
3211 }
3212 
3213 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3214 				 struct ieee80211_channel *beacon_chan,
3215 				 gfp_t gfp)
3216 {
3217 	struct reg_beacon *reg_beacon;
3218 	bool processing;
3219 
3220 	if (beacon_chan->beacon_found ||
3221 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3222 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3223 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3224 		return 0;
3225 
3226 	spin_lock_bh(&reg_pending_beacons_lock);
3227 	processing = pending_reg_beacon(beacon_chan);
3228 	spin_unlock_bh(&reg_pending_beacons_lock);
3229 
3230 	if (processing)
3231 		return 0;
3232 
3233 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3234 	if (!reg_beacon)
3235 		return -ENOMEM;
3236 
3237 	pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3238 		 beacon_chan->center_freq,
3239 		 ieee80211_frequency_to_channel(beacon_chan->center_freq),
3240 		 wiphy_name(wiphy));
3241 
3242 	memcpy(&reg_beacon->chan, beacon_chan,
3243 	       sizeof(struct ieee80211_channel));
3244 
3245 	/*
3246 	 * Since we can be called from BH or and non-BH context
3247 	 * we must use spin_lock_bh()
3248 	 */
3249 	spin_lock_bh(&reg_pending_beacons_lock);
3250 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3251 	spin_unlock_bh(&reg_pending_beacons_lock);
3252 
3253 	schedule_work(&reg_work);
3254 
3255 	return 0;
3256 }
3257 
3258 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3259 {
3260 	unsigned int i;
3261 	const struct ieee80211_reg_rule *reg_rule = NULL;
3262 	const struct ieee80211_freq_range *freq_range = NULL;
3263 	const struct ieee80211_power_rule *power_rule = NULL;
3264 	char bw[32], cac_time[32];
3265 
3266 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3267 
3268 	for (i = 0; i < rd->n_reg_rules; i++) {
3269 		reg_rule = &rd->reg_rules[i];
3270 		freq_range = &reg_rule->freq_range;
3271 		power_rule = &reg_rule->power_rule;
3272 
3273 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3274 			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3275 				 freq_range->max_bandwidth_khz,
3276 				 reg_get_max_bandwidth(rd, reg_rule));
3277 		else
3278 			snprintf(bw, sizeof(bw), "%d KHz",
3279 				 freq_range->max_bandwidth_khz);
3280 
3281 		if (reg_rule->flags & NL80211_RRF_DFS)
3282 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3283 				  reg_rule->dfs_cac_ms/1000);
3284 		else
3285 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3286 
3287 
3288 		/*
3289 		 * There may not be documentation for max antenna gain
3290 		 * in certain regions
3291 		 */
3292 		if (power_rule->max_antenna_gain)
3293 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3294 				freq_range->start_freq_khz,
3295 				freq_range->end_freq_khz,
3296 				bw,
3297 				power_rule->max_antenna_gain,
3298 				power_rule->max_eirp,
3299 				cac_time);
3300 		else
3301 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3302 				freq_range->start_freq_khz,
3303 				freq_range->end_freq_khz,
3304 				bw,
3305 				power_rule->max_eirp,
3306 				cac_time);
3307 	}
3308 }
3309 
3310 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3311 {
3312 	switch (dfs_region) {
3313 	case NL80211_DFS_UNSET:
3314 	case NL80211_DFS_FCC:
3315 	case NL80211_DFS_ETSI:
3316 	case NL80211_DFS_JP:
3317 		return true;
3318 	default:
3319 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3320 		return false;
3321 	}
3322 }
3323 
3324 static void print_regdomain(const struct ieee80211_regdomain *rd)
3325 {
3326 	struct regulatory_request *lr = get_last_request();
3327 
3328 	if (is_intersected_alpha2(rd->alpha2)) {
3329 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3330 			struct cfg80211_registered_device *rdev;
3331 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3332 			if (rdev) {
3333 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3334 					rdev->country_ie_alpha2[0],
3335 					rdev->country_ie_alpha2[1]);
3336 			} else
3337 				pr_debug("Current regulatory domain intersected:\n");
3338 		} else
3339 			pr_debug("Current regulatory domain intersected:\n");
3340 	} else if (is_world_regdom(rd->alpha2)) {
3341 		pr_debug("World regulatory domain updated:\n");
3342 	} else {
3343 		if (is_unknown_alpha2(rd->alpha2))
3344 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3345 		else {
3346 			if (reg_request_cell_base(lr))
3347 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3348 					rd->alpha2[0], rd->alpha2[1]);
3349 			else
3350 				pr_debug("Regulatory domain changed to country: %c%c\n",
3351 					rd->alpha2[0], rd->alpha2[1]);
3352 		}
3353 	}
3354 
3355 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3356 	print_rd_rules(rd);
3357 }
3358 
3359 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3360 {
3361 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3362 	print_rd_rules(rd);
3363 }
3364 
3365 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3366 {
3367 	if (!is_world_regdom(rd->alpha2))
3368 		return -EINVAL;
3369 	update_world_regdomain(rd);
3370 	return 0;
3371 }
3372 
3373 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3374 			   struct regulatory_request *user_request)
3375 {
3376 	const struct ieee80211_regdomain *intersected_rd = NULL;
3377 
3378 	if (!regdom_changes(rd->alpha2))
3379 		return -EALREADY;
3380 
3381 	if (!is_valid_rd(rd)) {
3382 		pr_err("Invalid regulatory domain detected: %c%c\n",
3383 		       rd->alpha2[0], rd->alpha2[1]);
3384 		print_regdomain_info(rd);
3385 		return -EINVAL;
3386 	}
3387 
3388 	if (!user_request->intersect) {
3389 		reset_regdomains(false, rd);
3390 		return 0;
3391 	}
3392 
3393 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3394 	if (!intersected_rd)
3395 		return -EINVAL;
3396 
3397 	kfree(rd);
3398 	rd = NULL;
3399 	reset_regdomains(false, intersected_rd);
3400 
3401 	return 0;
3402 }
3403 
3404 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3405 			     struct regulatory_request *driver_request)
3406 {
3407 	const struct ieee80211_regdomain *regd;
3408 	const struct ieee80211_regdomain *intersected_rd = NULL;
3409 	const struct ieee80211_regdomain *tmp;
3410 	struct wiphy *request_wiphy;
3411 
3412 	if (is_world_regdom(rd->alpha2))
3413 		return -EINVAL;
3414 
3415 	if (!regdom_changes(rd->alpha2))
3416 		return -EALREADY;
3417 
3418 	if (!is_valid_rd(rd)) {
3419 		pr_err("Invalid regulatory domain detected: %c%c\n",
3420 		       rd->alpha2[0], rd->alpha2[1]);
3421 		print_regdomain_info(rd);
3422 		return -EINVAL;
3423 	}
3424 
3425 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3426 	if (!request_wiphy)
3427 		return -ENODEV;
3428 
3429 	if (!driver_request->intersect) {
3430 		if (request_wiphy->regd)
3431 			return -EALREADY;
3432 
3433 		regd = reg_copy_regd(rd);
3434 		if (IS_ERR(regd))
3435 			return PTR_ERR(regd);
3436 
3437 		rcu_assign_pointer(request_wiphy->regd, regd);
3438 		reset_regdomains(false, rd);
3439 		return 0;
3440 	}
3441 
3442 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3443 	if (!intersected_rd)
3444 		return -EINVAL;
3445 
3446 	/*
3447 	 * We can trash what CRDA provided now.
3448 	 * However if a driver requested this specific regulatory
3449 	 * domain we keep it for its private use
3450 	 */
3451 	tmp = get_wiphy_regdom(request_wiphy);
3452 	rcu_assign_pointer(request_wiphy->regd, rd);
3453 	rcu_free_regdom(tmp);
3454 
3455 	rd = NULL;
3456 
3457 	reset_regdomains(false, intersected_rd);
3458 
3459 	return 0;
3460 }
3461 
3462 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3463 				 struct regulatory_request *country_ie_request)
3464 {
3465 	struct wiphy *request_wiphy;
3466 
3467 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3468 	    !is_unknown_alpha2(rd->alpha2))
3469 		return -EINVAL;
3470 
3471 	/*
3472 	 * Lets only bother proceeding on the same alpha2 if the current
3473 	 * rd is non static (it means CRDA was present and was used last)
3474 	 * and the pending request came in from a country IE
3475 	 */
3476 
3477 	if (!is_valid_rd(rd)) {
3478 		pr_err("Invalid regulatory domain detected: %c%c\n",
3479 		       rd->alpha2[0], rd->alpha2[1]);
3480 		print_regdomain_info(rd);
3481 		return -EINVAL;
3482 	}
3483 
3484 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3485 	if (!request_wiphy)
3486 		return -ENODEV;
3487 
3488 	if (country_ie_request->intersect)
3489 		return -EINVAL;
3490 
3491 	reset_regdomains(false, rd);
3492 	return 0;
3493 }
3494 
3495 /*
3496  * Use this call to set the current regulatory domain. Conflicts with
3497  * multiple drivers can be ironed out later. Caller must've already
3498  * kmalloc'd the rd structure.
3499  */
3500 int set_regdom(const struct ieee80211_regdomain *rd,
3501 	       enum ieee80211_regd_source regd_src)
3502 {
3503 	struct regulatory_request *lr;
3504 	bool user_reset = false;
3505 	int r;
3506 
3507 	if (!reg_is_valid_request(rd->alpha2)) {
3508 		kfree(rd);
3509 		return -EINVAL;
3510 	}
3511 
3512 	if (regd_src == REGD_SOURCE_CRDA)
3513 		reset_crda_timeouts();
3514 
3515 	lr = get_last_request();
3516 
3517 	/* Note that this doesn't update the wiphys, this is done below */
3518 	switch (lr->initiator) {
3519 	case NL80211_REGDOM_SET_BY_CORE:
3520 		r = reg_set_rd_core(rd);
3521 		break;
3522 	case NL80211_REGDOM_SET_BY_USER:
3523 		r = reg_set_rd_user(rd, lr);
3524 		user_reset = true;
3525 		break;
3526 	case NL80211_REGDOM_SET_BY_DRIVER:
3527 		r = reg_set_rd_driver(rd, lr);
3528 		break;
3529 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3530 		r = reg_set_rd_country_ie(rd, lr);
3531 		break;
3532 	default:
3533 		WARN(1, "invalid initiator %d\n", lr->initiator);
3534 		kfree(rd);
3535 		return -EINVAL;
3536 	}
3537 
3538 	if (r) {
3539 		switch (r) {
3540 		case -EALREADY:
3541 			reg_set_request_processed();
3542 			break;
3543 		default:
3544 			/* Back to world regulatory in case of errors */
3545 			restore_regulatory_settings(user_reset);
3546 		}
3547 
3548 		kfree(rd);
3549 		return r;
3550 	}
3551 
3552 	/* This would make this whole thing pointless */
3553 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3554 		return -EINVAL;
3555 
3556 	/* update all wiphys now with the new established regulatory domain */
3557 	update_all_wiphy_regulatory(lr->initiator);
3558 
3559 	print_regdomain(get_cfg80211_regdom());
3560 
3561 	nl80211_send_reg_change_event(lr);
3562 
3563 	reg_set_request_processed();
3564 
3565 	return 0;
3566 }
3567 
3568 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3569 				       struct ieee80211_regdomain *rd)
3570 {
3571 	const struct ieee80211_regdomain *regd;
3572 	const struct ieee80211_regdomain *prev_regd;
3573 	struct cfg80211_registered_device *rdev;
3574 
3575 	if (WARN_ON(!wiphy || !rd))
3576 		return -EINVAL;
3577 
3578 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3579 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3580 		return -EPERM;
3581 
3582 	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3583 		print_regdomain_info(rd);
3584 		return -EINVAL;
3585 	}
3586 
3587 	regd = reg_copy_regd(rd);
3588 	if (IS_ERR(regd))
3589 		return PTR_ERR(regd);
3590 
3591 	rdev = wiphy_to_rdev(wiphy);
3592 
3593 	spin_lock(&reg_requests_lock);
3594 	prev_regd = rdev->requested_regd;
3595 	rdev->requested_regd = regd;
3596 	spin_unlock(&reg_requests_lock);
3597 
3598 	kfree(prev_regd);
3599 	return 0;
3600 }
3601 
3602 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3603 			      struct ieee80211_regdomain *rd)
3604 {
3605 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3606 
3607 	if (ret)
3608 		return ret;
3609 
3610 	schedule_work(&reg_work);
3611 	return 0;
3612 }
3613 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3614 
3615 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3616 					struct ieee80211_regdomain *rd)
3617 {
3618 	int ret;
3619 
3620 	ASSERT_RTNL();
3621 
3622 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3623 	if (ret)
3624 		return ret;
3625 
3626 	/* process the request immediately */
3627 	reg_process_self_managed_hints();
3628 	return 0;
3629 }
3630 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3631 
3632 void wiphy_regulatory_register(struct wiphy *wiphy)
3633 {
3634 	struct regulatory_request *lr = get_last_request();
3635 
3636 	/* self-managed devices ignore beacon hints and country IE */
3637 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3638 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3639 					   REGULATORY_COUNTRY_IE_IGNORE;
3640 
3641 		/*
3642 		 * The last request may have been received before this
3643 		 * registration call. Call the driver notifier if
3644 		 * initiator is USER and user type is CELL_BASE.
3645 		 */
3646 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
3647 		    lr->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE)
3648 			reg_call_notifier(wiphy, lr);
3649 	}
3650 
3651 	if (!reg_dev_ignore_cell_hint(wiphy))
3652 		reg_num_devs_support_basehint++;
3653 
3654 	wiphy_update_regulatory(wiphy, lr->initiator);
3655 	wiphy_all_share_dfs_chan_state(wiphy);
3656 }
3657 
3658 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3659 {
3660 	struct wiphy *request_wiphy = NULL;
3661 	struct regulatory_request *lr;
3662 
3663 	lr = get_last_request();
3664 
3665 	if (!reg_dev_ignore_cell_hint(wiphy))
3666 		reg_num_devs_support_basehint--;
3667 
3668 	rcu_free_regdom(get_wiphy_regdom(wiphy));
3669 	RCU_INIT_POINTER(wiphy->regd, NULL);
3670 
3671 	if (lr)
3672 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3673 
3674 	if (!request_wiphy || request_wiphy != wiphy)
3675 		return;
3676 
3677 	lr->wiphy_idx = WIPHY_IDX_INVALID;
3678 	lr->country_ie_env = ENVIRON_ANY;
3679 }
3680 
3681 /*
3682  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3683  * UNII band definitions
3684  */
3685 int cfg80211_get_unii(int freq)
3686 {
3687 	/* UNII-1 */
3688 	if (freq >= 5150 && freq <= 5250)
3689 		return 0;
3690 
3691 	/* UNII-2A */
3692 	if (freq > 5250 && freq <= 5350)
3693 		return 1;
3694 
3695 	/* UNII-2B */
3696 	if (freq > 5350 && freq <= 5470)
3697 		return 2;
3698 
3699 	/* UNII-2C */
3700 	if (freq > 5470 && freq <= 5725)
3701 		return 3;
3702 
3703 	/* UNII-3 */
3704 	if (freq > 5725 && freq <= 5825)
3705 		return 4;
3706 
3707 	return -EINVAL;
3708 }
3709 
3710 bool regulatory_indoor_allowed(void)
3711 {
3712 	return reg_is_indoor;
3713 }
3714 
3715 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3716 {
3717 	const struct ieee80211_regdomain *regd = NULL;
3718 	const struct ieee80211_regdomain *wiphy_regd = NULL;
3719 	bool pre_cac_allowed = false;
3720 
3721 	rcu_read_lock();
3722 
3723 	regd = rcu_dereference(cfg80211_regdomain);
3724 	wiphy_regd = rcu_dereference(wiphy->regd);
3725 	if (!wiphy_regd) {
3726 		if (regd->dfs_region == NL80211_DFS_ETSI)
3727 			pre_cac_allowed = true;
3728 
3729 		rcu_read_unlock();
3730 
3731 		return pre_cac_allowed;
3732 	}
3733 
3734 	if (regd->dfs_region == wiphy_regd->dfs_region &&
3735 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3736 		pre_cac_allowed = true;
3737 
3738 	rcu_read_unlock();
3739 
3740 	return pre_cac_allowed;
3741 }
3742 
3743 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3744 				    struct cfg80211_chan_def *chandef,
3745 				    enum nl80211_dfs_state dfs_state,
3746 				    enum nl80211_radar_event event)
3747 {
3748 	struct cfg80211_registered_device *rdev;
3749 
3750 	ASSERT_RTNL();
3751 
3752 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3753 		return;
3754 
3755 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3756 		if (wiphy == &rdev->wiphy)
3757 			continue;
3758 
3759 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3760 			continue;
3761 
3762 		if (!ieee80211_get_channel(&rdev->wiphy,
3763 					   chandef->chan->center_freq))
3764 			continue;
3765 
3766 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3767 
3768 		if (event == NL80211_RADAR_DETECTED ||
3769 		    event == NL80211_RADAR_CAC_FINISHED)
3770 			cfg80211_sched_dfs_chan_update(rdev);
3771 
3772 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3773 	}
3774 }
3775 
3776 static int __init regulatory_init_db(void)
3777 {
3778 	int err;
3779 
3780 	err = load_builtin_regdb_keys();
3781 	if (err)
3782 		return err;
3783 
3784 	/* We always try to get an update for the static regdomain */
3785 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3786 	if (err) {
3787 		if (err == -ENOMEM) {
3788 			platform_device_unregister(reg_pdev);
3789 			return err;
3790 		}
3791 		/*
3792 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
3793 		 * memory which is handled and propagated appropriately above
3794 		 * but it can also fail during a netlink_broadcast() or during
3795 		 * early boot for call_usermodehelper(). For now treat these
3796 		 * errors as non-fatal.
3797 		 */
3798 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3799 	}
3800 
3801 	/*
3802 	 * Finally, if the user set the module parameter treat it
3803 	 * as a user hint.
3804 	 */
3805 	if (!is_world_regdom(ieee80211_regdom))
3806 		regulatory_hint_user(ieee80211_regdom,
3807 				     NL80211_USER_REG_HINT_USER);
3808 
3809 	return 0;
3810 }
3811 #ifndef MODULE
3812 late_initcall(regulatory_init_db);
3813 #endif
3814 
3815 int __init regulatory_init(void)
3816 {
3817 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3818 	if (IS_ERR(reg_pdev))
3819 		return PTR_ERR(reg_pdev);
3820 
3821 	spin_lock_init(&reg_requests_lock);
3822 	spin_lock_init(&reg_pending_beacons_lock);
3823 	spin_lock_init(&reg_indoor_lock);
3824 
3825 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3826 
3827 	user_alpha2[0] = '9';
3828 	user_alpha2[1] = '7';
3829 
3830 #ifdef MODULE
3831 	return regulatory_init_db();
3832 #else
3833 	return 0;
3834 #endif
3835 }
3836 
3837 void regulatory_exit(void)
3838 {
3839 	struct regulatory_request *reg_request, *tmp;
3840 	struct reg_beacon *reg_beacon, *btmp;
3841 
3842 	cancel_work_sync(&reg_work);
3843 	cancel_crda_timeout_sync();
3844 	cancel_delayed_work_sync(&reg_check_chans);
3845 
3846 	/* Lock to suppress warnings */
3847 	rtnl_lock();
3848 	reset_regdomains(true, NULL);
3849 	rtnl_unlock();
3850 
3851 	dev_set_uevent_suppress(&reg_pdev->dev, true);
3852 
3853 	platform_device_unregister(reg_pdev);
3854 
3855 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3856 		list_del(&reg_beacon->list);
3857 		kfree(reg_beacon);
3858 	}
3859 
3860 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3861 		list_del(&reg_beacon->list);
3862 		kfree(reg_beacon);
3863 	}
3864 
3865 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3866 		list_del(&reg_request->list);
3867 		kfree(reg_request);
3868 	}
3869 
3870 	if (!IS_ERR_OR_NULL(regdb))
3871 		kfree(regdb);
3872 
3873 	free_regdb_keyring();
3874 }
3875