1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2019 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static spinlock_t reg_indoor_lock; 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user, bool cached); 135 static void print_regdomain(const struct ieee80211_regdomain *rd); 136 137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 138 { 139 return rcu_dereference_rtnl(cfg80211_regdomain); 140 } 141 142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 143 { 144 return rcu_dereference_rtnl(wiphy->regd); 145 } 146 147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 148 { 149 switch (dfs_region) { 150 case NL80211_DFS_UNSET: 151 return "unset"; 152 case NL80211_DFS_FCC: 153 return "FCC"; 154 case NL80211_DFS_ETSI: 155 return "ETSI"; 156 case NL80211_DFS_JP: 157 return "JP"; 158 } 159 return "Unknown"; 160 } 161 162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 163 { 164 const struct ieee80211_regdomain *regd = NULL; 165 const struct ieee80211_regdomain *wiphy_regd = NULL; 166 167 regd = get_cfg80211_regdom(); 168 if (!wiphy) 169 goto out; 170 171 wiphy_regd = get_wiphy_regdom(wiphy); 172 if (!wiphy_regd) 173 goto out; 174 175 if (wiphy_regd->dfs_region == regd->dfs_region) 176 goto out; 177 178 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 179 dev_name(&wiphy->dev), 180 reg_dfs_region_str(wiphy_regd->dfs_region), 181 reg_dfs_region_str(regd->dfs_region)); 182 183 out: 184 return regd->dfs_region; 185 } 186 187 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 188 { 189 if (!r) 190 return; 191 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 192 } 193 194 static struct regulatory_request *get_last_request(void) 195 { 196 return rcu_dereference_rtnl(last_request); 197 } 198 199 /* Used to queue up regulatory hints */ 200 static LIST_HEAD(reg_requests_list); 201 static spinlock_t reg_requests_lock; 202 203 /* Used to queue up beacon hints for review */ 204 static LIST_HEAD(reg_pending_beacons); 205 static spinlock_t reg_pending_beacons_lock; 206 207 /* Used to keep track of processed beacon hints */ 208 static LIST_HEAD(reg_beacon_list); 209 210 struct reg_beacon { 211 struct list_head list; 212 struct ieee80211_channel chan; 213 }; 214 215 static void reg_check_chans_work(struct work_struct *work); 216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 217 218 static void reg_todo(struct work_struct *work); 219 static DECLARE_WORK(reg_work, reg_todo); 220 221 /* We keep a static world regulatory domain in case of the absence of CRDA */ 222 static const struct ieee80211_regdomain world_regdom = { 223 .n_reg_rules = 8, 224 .alpha2 = "00", 225 .reg_rules = { 226 /* IEEE 802.11b/g, channels 1..11 */ 227 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 228 /* IEEE 802.11b/g, channels 12..13. */ 229 REG_RULE(2467-10, 2472+10, 20, 6, 20, 230 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 231 /* IEEE 802.11 channel 14 - Only JP enables 232 * this and for 802.11b only */ 233 REG_RULE(2484-10, 2484+10, 20, 6, 20, 234 NL80211_RRF_NO_IR | 235 NL80211_RRF_NO_OFDM), 236 /* IEEE 802.11a, channel 36..48 */ 237 REG_RULE(5180-10, 5240+10, 80, 6, 20, 238 NL80211_RRF_NO_IR | 239 NL80211_RRF_AUTO_BW), 240 241 /* IEEE 802.11a, channel 52..64 - DFS required */ 242 REG_RULE(5260-10, 5320+10, 80, 6, 20, 243 NL80211_RRF_NO_IR | 244 NL80211_RRF_AUTO_BW | 245 NL80211_RRF_DFS), 246 247 /* IEEE 802.11a, channel 100..144 - DFS required */ 248 REG_RULE(5500-10, 5720+10, 160, 6, 20, 249 NL80211_RRF_NO_IR | 250 NL80211_RRF_DFS), 251 252 /* IEEE 802.11a, channel 149..165 */ 253 REG_RULE(5745-10, 5825+10, 80, 6, 20, 254 NL80211_RRF_NO_IR), 255 256 /* IEEE 802.11ad (60GHz), channels 1..3 */ 257 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 258 } 259 }; 260 261 /* protected by RTNL */ 262 static const struct ieee80211_regdomain *cfg80211_world_regdom = 263 &world_regdom; 264 265 static char *ieee80211_regdom = "00"; 266 static char user_alpha2[2]; 267 static const struct ieee80211_regdomain *cfg80211_user_regdom; 268 269 module_param(ieee80211_regdom, charp, 0444); 270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 271 272 static void reg_free_request(struct regulatory_request *request) 273 { 274 if (request == &core_request_world) 275 return; 276 277 if (request != get_last_request()) 278 kfree(request); 279 } 280 281 static void reg_free_last_request(void) 282 { 283 struct regulatory_request *lr = get_last_request(); 284 285 if (lr != &core_request_world && lr) 286 kfree_rcu(lr, rcu_head); 287 } 288 289 static void reg_update_last_request(struct regulatory_request *request) 290 { 291 struct regulatory_request *lr; 292 293 lr = get_last_request(); 294 if (lr == request) 295 return; 296 297 reg_free_last_request(); 298 rcu_assign_pointer(last_request, request); 299 } 300 301 static void reset_regdomains(bool full_reset, 302 const struct ieee80211_regdomain *new_regdom) 303 { 304 const struct ieee80211_regdomain *r; 305 306 ASSERT_RTNL(); 307 308 r = get_cfg80211_regdom(); 309 310 /* avoid freeing static information or freeing something twice */ 311 if (r == cfg80211_world_regdom) 312 r = NULL; 313 if (cfg80211_world_regdom == &world_regdom) 314 cfg80211_world_regdom = NULL; 315 if (r == &world_regdom) 316 r = NULL; 317 318 rcu_free_regdom(r); 319 rcu_free_regdom(cfg80211_world_regdom); 320 321 cfg80211_world_regdom = &world_regdom; 322 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 323 324 if (!full_reset) 325 return; 326 327 reg_update_last_request(&core_request_world); 328 } 329 330 /* 331 * Dynamic world regulatory domain requested by the wireless 332 * core upon initialization 333 */ 334 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 335 { 336 struct regulatory_request *lr; 337 338 lr = get_last_request(); 339 340 WARN_ON(!lr); 341 342 reset_regdomains(false, rd); 343 344 cfg80211_world_regdom = rd; 345 } 346 347 bool is_world_regdom(const char *alpha2) 348 { 349 if (!alpha2) 350 return false; 351 return alpha2[0] == '0' && alpha2[1] == '0'; 352 } 353 354 static bool is_alpha2_set(const char *alpha2) 355 { 356 if (!alpha2) 357 return false; 358 return alpha2[0] && alpha2[1]; 359 } 360 361 static bool is_unknown_alpha2(const char *alpha2) 362 { 363 if (!alpha2) 364 return false; 365 /* 366 * Special case where regulatory domain was built by driver 367 * but a specific alpha2 cannot be determined 368 */ 369 return alpha2[0] == '9' && alpha2[1] == '9'; 370 } 371 372 static bool is_intersected_alpha2(const char *alpha2) 373 { 374 if (!alpha2) 375 return false; 376 /* 377 * Special case where regulatory domain is the 378 * result of an intersection between two regulatory domain 379 * structures 380 */ 381 return alpha2[0] == '9' && alpha2[1] == '8'; 382 } 383 384 static bool is_an_alpha2(const char *alpha2) 385 { 386 if (!alpha2) 387 return false; 388 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 389 } 390 391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 392 { 393 if (!alpha2_x || !alpha2_y) 394 return false; 395 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 396 } 397 398 static bool regdom_changes(const char *alpha2) 399 { 400 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 401 402 if (!r) 403 return true; 404 return !alpha2_equal(r->alpha2, alpha2); 405 } 406 407 /* 408 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 409 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 410 * has ever been issued. 411 */ 412 static bool is_user_regdom_saved(void) 413 { 414 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 415 return false; 416 417 /* This would indicate a mistake on the design */ 418 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 419 "Unexpected user alpha2: %c%c\n", 420 user_alpha2[0], user_alpha2[1])) 421 return false; 422 423 return true; 424 } 425 426 static const struct ieee80211_regdomain * 427 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 428 { 429 struct ieee80211_regdomain *regd; 430 unsigned int i; 431 432 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 433 GFP_KERNEL); 434 if (!regd) 435 return ERR_PTR(-ENOMEM); 436 437 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 438 439 for (i = 0; i < src_regd->n_reg_rules; i++) 440 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 441 sizeof(struct ieee80211_reg_rule)); 442 443 return regd; 444 } 445 446 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 447 { 448 ASSERT_RTNL(); 449 450 if (!IS_ERR(cfg80211_user_regdom)) 451 kfree(cfg80211_user_regdom); 452 cfg80211_user_regdom = reg_copy_regd(rd); 453 } 454 455 struct reg_regdb_apply_request { 456 struct list_head list; 457 const struct ieee80211_regdomain *regdom; 458 }; 459 460 static LIST_HEAD(reg_regdb_apply_list); 461 static DEFINE_MUTEX(reg_regdb_apply_mutex); 462 463 static void reg_regdb_apply(struct work_struct *work) 464 { 465 struct reg_regdb_apply_request *request; 466 467 rtnl_lock(); 468 469 mutex_lock(®_regdb_apply_mutex); 470 while (!list_empty(®_regdb_apply_list)) { 471 request = list_first_entry(®_regdb_apply_list, 472 struct reg_regdb_apply_request, 473 list); 474 list_del(&request->list); 475 476 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 477 kfree(request); 478 } 479 mutex_unlock(®_regdb_apply_mutex); 480 481 rtnl_unlock(); 482 } 483 484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 485 486 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 487 { 488 struct reg_regdb_apply_request *request; 489 490 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 491 if (!request) { 492 kfree(regdom); 493 return -ENOMEM; 494 } 495 496 request->regdom = regdom; 497 498 mutex_lock(®_regdb_apply_mutex); 499 list_add_tail(&request->list, ®_regdb_apply_list); 500 mutex_unlock(®_regdb_apply_mutex); 501 502 schedule_work(®_regdb_work); 503 return 0; 504 } 505 506 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 507 /* Max number of consecutive attempts to communicate with CRDA */ 508 #define REG_MAX_CRDA_TIMEOUTS 10 509 510 static u32 reg_crda_timeouts; 511 512 static void crda_timeout_work(struct work_struct *work); 513 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 514 515 static void crda_timeout_work(struct work_struct *work) 516 { 517 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 518 rtnl_lock(); 519 reg_crda_timeouts++; 520 restore_regulatory_settings(true, false); 521 rtnl_unlock(); 522 } 523 524 static void cancel_crda_timeout(void) 525 { 526 cancel_delayed_work(&crda_timeout); 527 } 528 529 static void cancel_crda_timeout_sync(void) 530 { 531 cancel_delayed_work_sync(&crda_timeout); 532 } 533 534 static void reset_crda_timeouts(void) 535 { 536 reg_crda_timeouts = 0; 537 } 538 539 /* 540 * This lets us keep regulatory code which is updated on a regulatory 541 * basis in userspace. 542 */ 543 static int call_crda(const char *alpha2) 544 { 545 char country[12]; 546 char *env[] = { country, NULL }; 547 int ret; 548 549 snprintf(country, sizeof(country), "COUNTRY=%c%c", 550 alpha2[0], alpha2[1]); 551 552 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 553 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 554 return -EINVAL; 555 } 556 557 if (!is_world_regdom((char *) alpha2)) 558 pr_debug("Calling CRDA for country: %c%c\n", 559 alpha2[0], alpha2[1]); 560 else 561 pr_debug("Calling CRDA to update world regulatory domain\n"); 562 563 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 564 if (ret) 565 return ret; 566 567 queue_delayed_work(system_power_efficient_wq, 568 &crda_timeout, msecs_to_jiffies(3142)); 569 return 0; 570 } 571 #else 572 static inline void cancel_crda_timeout(void) {} 573 static inline void cancel_crda_timeout_sync(void) {} 574 static inline void reset_crda_timeouts(void) {} 575 static inline int call_crda(const char *alpha2) 576 { 577 return -ENODATA; 578 } 579 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 580 581 /* code to directly load a firmware database through request_firmware */ 582 static const struct fwdb_header *regdb; 583 584 struct fwdb_country { 585 u8 alpha2[2]; 586 __be16 coll_ptr; 587 /* this struct cannot be extended */ 588 } __packed __aligned(4); 589 590 struct fwdb_collection { 591 u8 len; 592 u8 n_rules; 593 u8 dfs_region; 594 /* no optional data yet */ 595 /* aligned to 2, then followed by __be16 array of rule pointers */ 596 } __packed __aligned(4); 597 598 enum fwdb_flags { 599 FWDB_FLAG_NO_OFDM = BIT(0), 600 FWDB_FLAG_NO_OUTDOOR = BIT(1), 601 FWDB_FLAG_DFS = BIT(2), 602 FWDB_FLAG_NO_IR = BIT(3), 603 FWDB_FLAG_AUTO_BW = BIT(4), 604 }; 605 606 struct fwdb_wmm_ac { 607 u8 ecw; 608 u8 aifsn; 609 __be16 cot; 610 } __packed; 611 612 struct fwdb_wmm_rule { 613 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 614 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 615 } __packed; 616 617 struct fwdb_rule { 618 u8 len; 619 u8 flags; 620 __be16 max_eirp; 621 __be32 start, end, max_bw; 622 /* start of optional data */ 623 __be16 cac_timeout; 624 __be16 wmm_ptr; 625 } __packed __aligned(4); 626 627 #define FWDB_MAGIC 0x52474442 628 #define FWDB_VERSION 20 629 630 struct fwdb_header { 631 __be32 magic; 632 __be32 version; 633 struct fwdb_country country[]; 634 } __packed __aligned(4); 635 636 static int ecw2cw(int ecw) 637 { 638 return (1 << ecw) - 1; 639 } 640 641 static bool valid_wmm(struct fwdb_wmm_rule *rule) 642 { 643 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 644 int i; 645 646 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 647 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 648 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 649 u8 aifsn = ac[i].aifsn; 650 651 if (cw_min >= cw_max) 652 return false; 653 654 if (aifsn < 1) 655 return false; 656 } 657 658 return true; 659 } 660 661 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 662 { 663 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 664 665 if ((u8 *)rule + sizeof(rule->len) > data + size) 666 return false; 667 668 /* mandatory fields */ 669 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 670 return false; 671 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 672 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 673 struct fwdb_wmm_rule *wmm; 674 675 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 676 return false; 677 678 wmm = (void *)(data + wmm_ptr); 679 680 if (!valid_wmm(wmm)) 681 return false; 682 } 683 return true; 684 } 685 686 static bool valid_country(const u8 *data, unsigned int size, 687 const struct fwdb_country *country) 688 { 689 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 690 struct fwdb_collection *coll = (void *)(data + ptr); 691 __be16 *rules_ptr; 692 unsigned int i; 693 694 /* make sure we can read len/n_rules */ 695 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 696 return false; 697 698 /* make sure base struct and all rules fit */ 699 if ((u8 *)coll + ALIGN(coll->len, 2) + 700 (coll->n_rules * 2) > data + size) 701 return false; 702 703 /* mandatory fields must exist */ 704 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 705 return false; 706 707 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 708 709 for (i = 0; i < coll->n_rules; i++) { 710 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 711 712 if (!valid_rule(data, size, rule_ptr)) 713 return false; 714 } 715 716 return true; 717 } 718 719 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 720 static struct key *builtin_regdb_keys; 721 722 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen) 723 { 724 const u8 *end = p + buflen; 725 size_t plen; 726 key_ref_t key; 727 728 while (p < end) { 729 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more 730 * than 256 bytes in size. 731 */ 732 if (end - p < 4) 733 goto dodgy_cert; 734 if (p[0] != 0x30 && 735 p[1] != 0x82) 736 goto dodgy_cert; 737 plen = (p[2] << 8) | p[3]; 738 plen += 4; 739 if (plen > end - p) 740 goto dodgy_cert; 741 742 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1), 743 "asymmetric", NULL, p, plen, 744 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 745 KEY_USR_VIEW | KEY_USR_READ), 746 KEY_ALLOC_NOT_IN_QUOTA | 747 KEY_ALLOC_BUILT_IN | 748 KEY_ALLOC_BYPASS_RESTRICTION); 749 if (IS_ERR(key)) { 750 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n", 751 PTR_ERR(key)); 752 } else { 753 pr_notice("Loaded X.509 cert '%s'\n", 754 key_ref_to_ptr(key)->description); 755 key_ref_put(key); 756 } 757 p += plen; 758 } 759 760 return; 761 762 dodgy_cert: 763 pr_err("Problem parsing in-kernel X.509 certificate list\n"); 764 } 765 766 static int __init load_builtin_regdb_keys(void) 767 { 768 builtin_regdb_keys = 769 keyring_alloc(".builtin_regdb_keys", 770 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 771 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 772 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 773 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 774 if (IS_ERR(builtin_regdb_keys)) 775 return PTR_ERR(builtin_regdb_keys); 776 777 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 778 779 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 780 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len); 781 #endif 782 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 783 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 784 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len); 785 #endif 786 787 return 0; 788 } 789 790 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 791 { 792 const struct firmware *sig; 793 bool result; 794 795 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 796 return false; 797 798 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 799 builtin_regdb_keys, 800 VERIFYING_UNSPECIFIED_SIGNATURE, 801 NULL, NULL) == 0; 802 803 release_firmware(sig); 804 805 return result; 806 } 807 808 static void free_regdb_keyring(void) 809 { 810 key_put(builtin_regdb_keys); 811 } 812 #else 813 static int load_builtin_regdb_keys(void) 814 { 815 return 0; 816 } 817 818 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 819 { 820 return true; 821 } 822 823 static void free_regdb_keyring(void) 824 { 825 } 826 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 827 828 static bool valid_regdb(const u8 *data, unsigned int size) 829 { 830 const struct fwdb_header *hdr = (void *)data; 831 const struct fwdb_country *country; 832 833 if (size < sizeof(*hdr)) 834 return false; 835 836 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 837 return false; 838 839 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 840 return false; 841 842 if (!regdb_has_valid_signature(data, size)) 843 return false; 844 845 country = &hdr->country[0]; 846 while ((u8 *)(country + 1) <= data + size) { 847 if (!country->coll_ptr) 848 break; 849 if (!valid_country(data, size, country)) 850 return false; 851 country++; 852 } 853 854 return true; 855 } 856 857 static void set_wmm_rule(const struct fwdb_header *db, 858 const struct fwdb_country *country, 859 const struct fwdb_rule *rule, 860 struct ieee80211_reg_rule *rrule) 861 { 862 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 863 struct fwdb_wmm_rule *wmm; 864 unsigned int i, wmm_ptr; 865 866 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 867 wmm = (void *)((u8 *)db + wmm_ptr); 868 869 if (!valid_wmm(wmm)) { 870 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 871 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 872 country->alpha2[0], country->alpha2[1]); 873 return; 874 } 875 876 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 877 wmm_rule->client[i].cw_min = 878 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 879 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 880 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 881 wmm_rule->client[i].cot = 882 1000 * be16_to_cpu(wmm->client[i].cot); 883 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 884 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 885 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 886 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 887 } 888 889 rrule->has_wmm = true; 890 } 891 892 static int __regdb_query_wmm(const struct fwdb_header *db, 893 const struct fwdb_country *country, int freq, 894 struct ieee80211_reg_rule *rrule) 895 { 896 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 897 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 898 int i; 899 900 for (i = 0; i < coll->n_rules; i++) { 901 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 902 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 903 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 904 905 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 906 continue; 907 908 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 909 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 910 set_wmm_rule(db, country, rule, rrule); 911 return 0; 912 } 913 } 914 915 return -ENODATA; 916 } 917 918 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 919 { 920 const struct fwdb_header *hdr = regdb; 921 const struct fwdb_country *country; 922 923 if (!regdb) 924 return -ENODATA; 925 926 if (IS_ERR(regdb)) 927 return PTR_ERR(regdb); 928 929 country = &hdr->country[0]; 930 while (country->coll_ptr) { 931 if (alpha2_equal(alpha2, country->alpha2)) 932 return __regdb_query_wmm(regdb, country, freq, rule); 933 934 country++; 935 } 936 937 return -ENODATA; 938 } 939 EXPORT_SYMBOL(reg_query_regdb_wmm); 940 941 static int regdb_query_country(const struct fwdb_header *db, 942 const struct fwdb_country *country) 943 { 944 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 945 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 946 struct ieee80211_regdomain *regdom; 947 unsigned int i; 948 949 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 950 GFP_KERNEL); 951 if (!regdom) 952 return -ENOMEM; 953 954 regdom->n_reg_rules = coll->n_rules; 955 regdom->alpha2[0] = country->alpha2[0]; 956 regdom->alpha2[1] = country->alpha2[1]; 957 regdom->dfs_region = coll->dfs_region; 958 959 for (i = 0; i < regdom->n_reg_rules; i++) { 960 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 961 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 962 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 963 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 964 965 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 966 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 967 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 968 969 rrule->power_rule.max_antenna_gain = 0; 970 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 971 972 rrule->flags = 0; 973 if (rule->flags & FWDB_FLAG_NO_OFDM) 974 rrule->flags |= NL80211_RRF_NO_OFDM; 975 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 976 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 977 if (rule->flags & FWDB_FLAG_DFS) 978 rrule->flags |= NL80211_RRF_DFS; 979 if (rule->flags & FWDB_FLAG_NO_IR) 980 rrule->flags |= NL80211_RRF_NO_IR; 981 if (rule->flags & FWDB_FLAG_AUTO_BW) 982 rrule->flags |= NL80211_RRF_AUTO_BW; 983 984 rrule->dfs_cac_ms = 0; 985 986 /* handle optional data */ 987 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 988 rrule->dfs_cac_ms = 989 1000 * be16_to_cpu(rule->cac_timeout); 990 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 991 set_wmm_rule(db, country, rule, rrule); 992 } 993 994 return reg_schedule_apply(regdom); 995 } 996 997 static int query_regdb(const char *alpha2) 998 { 999 const struct fwdb_header *hdr = regdb; 1000 const struct fwdb_country *country; 1001 1002 ASSERT_RTNL(); 1003 1004 if (IS_ERR(regdb)) 1005 return PTR_ERR(regdb); 1006 1007 country = &hdr->country[0]; 1008 while (country->coll_ptr) { 1009 if (alpha2_equal(alpha2, country->alpha2)) 1010 return regdb_query_country(regdb, country); 1011 country++; 1012 } 1013 1014 return -ENODATA; 1015 } 1016 1017 static void regdb_fw_cb(const struct firmware *fw, void *context) 1018 { 1019 int set_error = 0; 1020 bool restore = true; 1021 void *db; 1022 1023 if (!fw) { 1024 pr_info("failed to load regulatory.db\n"); 1025 set_error = -ENODATA; 1026 } else if (!valid_regdb(fw->data, fw->size)) { 1027 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1028 set_error = -EINVAL; 1029 } 1030 1031 rtnl_lock(); 1032 if (regdb && !IS_ERR(regdb)) { 1033 /* negative case - a bug 1034 * positive case - can happen due to race in case of multiple cb's in 1035 * queue, due to usage of asynchronous callback 1036 * 1037 * Either case, just restore and free new db. 1038 */ 1039 } else if (set_error) { 1040 regdb = ERR_PTR(set_error); 1041 } else if (fw) { 1042 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1043 if (db) { 1044 regdb = db; 1045 restore = context && query_regdb(context); 1046 } else { 1047 restore = true; 1048 } 1049 } 1050 1051 if (restore) 1052 restore_regulatory_settings(true, false); 1053 1054 rtnl_unlock(); 1055 1056 kfree(context); 1057 1058 release_firmware(fw); 1059 } 1060 1061 static int query_regdb_file(const char *alpha2) 1062 { 1063 ASSERT_RTNL(); 1064 1065 if (regdb) 1066 return query_regdb(alpha2); 1067 1068 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1069 if (!alpha2) 1070 return -ENOMEM; 1071 1072 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1073 ®_pdev->dev, GFP_KERNEL, 1074 (void *)alpha2, regdb_fw_cb); 1075 } 1076 1077 int reg_reload_regdb(void) 1078 { 1079 const struct firmware *fw; 1080 void *db; 1081 int err; 1082 1083 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1084 if (err) 1085 return err; 1086 1087 if (!valid_regdb(fw->data, fw->size)) { 1088 err = -ENODATA; 1089 goto out; 1090 } 1091 1092 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1093 if (!db) { 1094 err = -ENOMEM; 1095 goto out; 1096 } 1097 1098 rtnl_lock(); 1099 if (!IS_ERR_OR_NULL(regdb)) 1100 kfree(regdb); 1101 regdb = db; 1102 rtnl_unlock(); 1103 1104 out: 1105 release_firmware(fw); 1106 return err; 1107 } 1108 1109 static bool reg_query_database(struct regulatory_request *request) 1110 { 1111 if (query_regdb_file(request->alpha2) == 0) 1112 return true; 1113 1114 if (call_crda(request->alpha2) == 0) 1115 return true; 1116 1117 return false; 1118 } 1119 1120 bool reg_is_valid_request(const char *alpha2) 1121 { 1122 struct regulatory_request *lr = get_last_request(); 1123 1124 if (!lr || lr->processed) 1125 return false; 1126 1127 return alpha2_equal(lr->alpha2, alpha2); 1128 } 1129 1130 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1131 { 1132 struct regulatory_request *lr = get_last_request(); 1133 1134 /* 1135 * Follow the driver's regulatory domain, if present, unless a country 1136 * IE has been processed or a user wants to help complaince further 1137 */ 1138 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1139 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1140 wiphy->regd) 1141 return get_wiphy_regdom(wiphy); 1142 1143 return get_cfg80211_regdom(); 1144 } 1145 1146 static unsigned int 1147 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1148 const struct ieee80211_reg_rule *rule) 1149 { 1150 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1151 const struct ieee80211_freq_range *freq_range_tmp; 1152 const struct ieee80211_reg_rule *tmp; 1153 u32 start_freq, end_freq, idx, no; 1154 1155 for (idx = 0; idx < rd->n_reg_rules; idx++) 1156 if (rule == &rd->reg_rules[idx]) 1157 break; 1158 1159 if (idx == rd->n_reg_rules) 1160 return 0; 1161 1162 /* get start_freq */ 1163 no = idx; 1164 1165 while (no) { 1166 tmp = &rd->reg_rules[--no]; 1167 freq_range_tmp = &tmp->freq_range; 1168 1169 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1170 break; 1171 1172 freq_range = freq_range_tmp; 1173 } 1174 1175 start_freq = freq_range->start_freq_khz; 1176 1177 /* get end_freq */ 1178 freq_range = &rule->freq_range; 1179 no = idx; 1180 1181 while (no < rd->n_reg_rules - 1) { 1182 tmp = &rd->reg_rules[++no]; 1183 freq_range_tmp = &tmp->freq_range; 1184 1185 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1186 break; 1187 1188 freq_range = freq_range_tmp; 1189 } 1190 1191 end_freq = freq_range->end_freq_khz; 1192 1193 return end_freq - start_freq; 1194 } 1195 1196 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1197 const struct ieee80211_reg_rule *rule) 1198 { 1199 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1200 1201 if (rule->flags & NL80211_RRF_NO_160MHZ) 1202 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1203 if (rule->flags & NL80211_RRF_NO_80MHZ) 1204 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1205 1206 /* 1207 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1208 * are not allowed. 1209 */ 1210 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1211 rule->flags & NL80211_RRF_NO_HT40PLUS) 1212 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1213 1214 return bw; 1215 } 1216 1217 /* Sanity check on a regulatory rule */ 1218 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1219 { 1220 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1221 u32 freq_diff; 1222 1223 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1224 return false; 1225 1226 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1227 return false; 1228 1229 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1230 1231 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1232 freq_range->max_bandwidth_khz > freq_diff) 1233 return false; 1234 1235 return true; 1236 } 1237 1238 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1239 { 1240 const struct ieee80211_reg_rule *reg_rule = NULL; 1241 unsigned int i; 1242 1243 if (!rd->n_reg_rules) 1244 return false; 1245 1246 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1247 return false; 1248 1249 for (i = 0; i < rd->n_reg_rules; i++) { 1250 reg_rule = &rd->reg_rules[i]; 1251 if (!is_valid_reg_rule(reg_rule)) 1252 return false; 1253 } 1254 1255 return true; 1256 } 1257 1258 /** 1259 * freq_in_rule_band - tells us if a frequency is in a frequency band 1260 * @freq_range: frequency rule we want to query 1261 * @freq_khz: frequency we are inquiring about 1262 * 1263 * This lets us know if a specific frequency rule is or is not relevant to 1264 * a specific frequency's band. Bands are device specific and artificial 1265 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1266 * however it is safe for now to assume that a frequency rule should not be 1267 * part of a frequency's band if the start freq or end freq are off by more 1268 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1269 * 60 GHz band. 1270 * This resolution can be lowered and should be considered as we add 1271 * regulatory rule support for other "bands". 1272 **/ 1273 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1274 u32 freq_khz) 1275 { 1276 #define ONE_GHZ_IN_KHZ 1000000 1277 /* 1278 * From 802.11ad: directional multi-gigabit (DMG): 1279 * Pertaining to operation in a frequency band containing a channel 1280 * with the Channel starting frequency above 45 GHz. 1281 */ 1282 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1283 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1284 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1285 return true; 1286 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1287 return true; 1288 return false; 1289 #undef ONE_GHZ_IN_KHZ 1290 } 1291 1292 /* 1293 * Later on we can perhaps use the more restrictive DFS 1294 * region but we don't have information for that yet so 1295 * for now simply disallow conflicts. 1296 */ 1297 static enum nl80211_dfs_regions 1298 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1299 const enum nl80211_dfs_regions dfs_region2) 1300 { 1301 if (dfs_region1 != dfs_region2) 1302 return NL80211_DFS_UNSET; 1303 return dfs_region1; 1304 } 1305 1306 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1307 const struct ieee80211_wmm_ac *wmm_ac2, 1308 struct ieee80211_wmm_ac *intersect) 1309 { 1310 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1311 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1312 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1313 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1314 } 1315 1316 /* 1317 * Helper for regdom_intersect(), this does the real 1318 * mathematical intersection fun 1319 */ 1320 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1321 const struct ieee80211_regdomain *rd2, 1322 const struct ieee80211_reg_rule *rule1, 1323 const struct ieee80211_reg_rule *rule2, 1324 struct ieee80211_reg_rule *intersected_rule) 1325 { 1326 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1327 struct ieee80211_freq_range *freq_range; 1328 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1329 struct ieee80211_power_rule *power_rule; 1330 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1331 struct ieee80211_wmm_rule *wmm_rule; 1332 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1333 1334 freq_range1 = &rule1->freq_range; 1335 freq_range2 = &rule2->freq_range; 1336 freq_range = &intersected_rule->freq_range; 1337 1338 power_rule1 = &rule1->power_rule; 1339 power_rule2 = &rule2->power_rule; 1340 power_rule = &intersected_rule->power_rule; 1341 1342 wmm_rule1 = &rule1->wmm_rule; 1343 wmm_rule2 = &rule2->wmm_rule; 1344 wmm_rule = &intersected_rule->wmm_rule; 1345 1346 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1347 freq_range2->start_freq_khz); 1348 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1349 freq_range2->end_freq_khz); 1350 1351 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1352 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1353 1354 if (rule1->flags & NL80211_RRF_AUTO_BW) 1355 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1356 if (rule2->flags & NL80211_RRF_AUTO_BW) 1357 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1358 1359 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1360 1361 intersected_rule->flags = rule1->flags | rule2->flags; 1362 1363 /* 1364 * In case NL80211_RRF_AUTO_BW requested for both rules 1365 * set AUTO_BW in intersected rule also. Next we will 1366 * calculate BW correctly in handle_channel function. 1367 * In other case remove AUTO_BW flag while we calculate 1368 * maximum bandwidth correctly and auto calculation is 1369 * not required. 1370 */ 1371 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1372 (rule2->flags & NL80211_RRF_AUTO_BW)) 1373 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1374 else 1375 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1376 1377 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1378 if (freq_range->max_bandwidth_khz > freq_diff) 1379 freq_range->max_bandwidth_khz = freq_diff; 1380 1381 power_rule->max_eirp = min(power_rule1->max_eirp, 1382 power_rule2->max_eirp); 1383 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1384 power_rule2->max_antenna_gain); 1385 1386 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1387 rule2->dfs_cac_ms); 1388 1389 if (rule1->has_wmm && rule2->has_wmm) { 1390 u8 ac; 1391 1392 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1393 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1394 &wmm_rule2->client[ac], 1395 &wmm_rule->client[ac]); 1396 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1397 &wmm_rule2->ap[ac], 1398 &wmm_rule->ap[ac]); 1399 } 1400 1401 intersected_rule->has_wmm = true; 1402 } else if (rule1->has_wmm) { 1403 *wmm_rule = *wmm_rule1; 1404 intersected_rule->has_wmm = true; 1405 } else if (rule2->has_wmm) { 1406 *wmm_rule = *wmm_rule2; 1407 intersected_rule->has_wmm = true; 1408 } else { 1409 intersected_rule->has_wmm = false; 1410 } 1411 1412 if (!is_valid_reg_rule(intersected_rule)) 1413 return -EINVAL; 1414 1415 return 0; 1416 } 1417 1418 /* check whether old rule contains new rule */ 1419 static bool rule_contains(struct ieee80211_reg_rule *r1, 1420 struct ieee80211_reg_rule *r2) 1421 { 1422 /* for simplicity, currently consider only same flags */ 1423 if (r1->flags != r2->flags) 1424 return false; 1425 1426 /* verify r1 is more restrictive */ 1427 if ((r1->power_rule.max_antenna_gain > 1428 r2->power_rule.max_antenna_gain) || 1429 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1430 return false; 1431 1432 /* make sure r2's range is contained within r1 */ 1433 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1434 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1435 return false; 1436 1437 /* and finally verify that r1.max_bw >= r2.max_bw */ 1438 if (r1->freq_range.max_bandwidth_khz < 1439 r2->freq_range.max_bandwidth_khz) 1440 return false; 1441 1442 return true; 1443 } 1444 1445 /* add or extend current rules. do nothing if rule is already contained */ 1446 static void add_rule(struct ieee80211_reg_rule *rule, 1447 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1448 { 1449 struct ieee80211_reg_rule *tmp_rule; 1450 int i; 1451 1452 for (i = 0; i < *n_rules; i++) { 1453 tmp_rule = ®_rules[i]; 1454 /* rule is already contained - do nothing */ 1455 if (rule_contains(tmp_rule, rule)) 1456 return; 1457 1458 /* extend rule if possible */ 1459 if (rule_contains(rule, tmp_rule)) { 1460 memcpy(tmp_rule, rule, sizeof(*rule)); 1461 return; 1462 } 1463 } 1464 1465 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1466 (*n_rules)++; 1467 } 1468 1469 /** 1470 * regdom_intersect - do the intersection between two regulatory domains 1471 * @rd1: first regulatory domain 1472 * @rd2: second regulatory domain 1473 * 1474 * Use this function to get the intersection between two regulatory domains. 1475 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1476 * as no one single alpha2 can represent this regulatory domain. 1477 * 1478 * Returns a pointer to the regulatory domain structure which will hold the 1479 * resulting intersection of rules between rd1 and rd2. We will 1480 * kzalloc() this structure for you. 1481 */ 1482 static struct ieee80211_regdomain * 1483 regdom_intersect(const struct ieee80211_regdomain *rd1, 1484 const struct ieee80211_regdomain *rd2) 1485 { 1486 int r; 1487 unsigned int x, y; 1488 unsigned int num_rules = 0; 1489 const struct ieee80211_reg_rule *rule1, *rule2; 1490 struct ieee80211_reg_rule intersected_rule; 1491 struct ieee80211_regdomain *rd; 1492 1493 if (!rd1 || !rd2) 1494 return NULL; 1495 1496 /* 1497 * First we get a count of the rules we'll need, then we actually 1498 * build them. This is to so we can malloc() and free() a 1499 * regdomain once. The reason we use reg_rules_intersect() here 1500 * is it will return -EINVAL if the rule computed makes no sense. 1501 * All rules that do check out OK are valid. 1502 */ 1503 1504 for (x = 0; x < rd1->n_reg_rules; x++) { 1505 rule1 = &rd1->reg_rules[x]; 1506 for (y = 0; y < rd2->n_reg_rules; y++) { 1507 rule2 = &rd2->reg_rules[y]; 1508 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1509 &intersected_rule)) 1510 num_rules++; 1511 } 1512 } 1513 1514 if (!num_rules) 1515 return NULL; 1516 1517 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1518 if (!rd) 1519 return NULL; 1520 1521 for (x = 0; x < rd1->n_reg_rules; x++) { 1522 rule1 = &rd1->reg_rules[x]; 1523 for (y = 0; y < rd2->n_reg_rules; y++) { 1524 rule2 = &rd2->reg_rules[y]; 1525 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1526 &intersected_rule); 1527 /* 1528 * No need to memset here the intersected rule here as 1529 * we're not using the stack anymore 1530 */ 1531 if (r) 1532 continue; 1533 1534 add_rule(&intersected_rule, rd->reg_rules, 1535 &rd->n_reg_rules); 1536 } 1537 } 1538 1539 rd->alpha2[0] = '9'; 1540 rd->alpha2[1] = '8'; 1541 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1542 rd2->dfs_region); 1543 1544 return rd; 1545 } 1546 1547 /* 1548 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1549 * want to just have the channel structure use these 1550 */ 1551 static u32 map_regdom_flags(u32 rd_flags) 1552 { 1553 u32 channel_flags = 0; 1554 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1555 channel_flags |= IEEE80211_CHAN_NO_IR; 1556 if (rd_flags & NL80211_RRF_DFS) 1557 channel_flags |= IEEE80211_CHAN_RADAR; 1558 if (rd_flags & NL80211_RRF_NO_OFDM) 1559 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1560 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1561 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1562 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1563 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1564 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1565 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1566 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1567 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1568 if (rd_flags & NL80211_RRF_NO_80MHZ) 1569 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1570 if (rd_flags & NL80211_RRF_NO_160MHZ) 1571 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1572 if (rd_flags & NL80211_RRF_NO_HE) 1573 channel_flags |= IEEE80211_CHAN_NO_HE; 1574 return channel_flags; 1575 } 1576 1577 static const struct ieee80211_reg_rule * 1578 freq_reg_info_regd(u32 center_freq, 1579 const struct ieee80211_regdomain *regd, u32 bw) 1580 { 1581 int i; 1582 bool band_rule_found = false; 1583 bool bw_fits = false; 1584 1585 if (!regd) 1586 return ERR_PTR(-EINVAL); 1587 1588 for (i = 0; i < regd->n_reg_rules; i++) { 1589 const struct ieee80211_reg_rule *rr; 1590 const struct ieee80211_freq_range *fr = NULL; 1591 1592 rr = ®d->reg_rules[i]; 1593 fr = &rr->freq_range; 1594 1595 /* 1596 * We only need to know if one frequency rule was 1597 * in center_freq's band, that's enough, so let's 1598 * not overwrite it once found 1599 */ 1600 if (!band_rule_found) 1601 band_rule_found = freq_in_rule_band(fr, center_freq); 1602 1603 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1604 1605 if (band_rule_found && bw_fits) 1606 return rr; 1607 } 1608 1609 if (!band_rule_found) 1610 return ERR_PTR(-ERANGE); 1611 1612 return ERR_PTR(-EINVAL); 1613 } 1614 1615 static const struct ieee80211_reg_rule * 1616 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1617 { 1618 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1619 const struct ieee80211_reg_rule *reg_rule = NULL; 1620 u32 bw; 1621 1622 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 1623 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1624 if (!IS_ERR(reg_rule)) 1625 return reg_rule; 1626 } 1627 1628 return reg_rule; 1629 } 1630 1631 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1632 u32 center_freq) 1633 { 1634 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20)); 1635 } 1636 EXPORT_SYMBOL(freq_reg_info); 1637 1638 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1639 { 1640 switch (initiator) { 1641 case NL80211_REGDOM_SET_BY_CORE: 1642 return "core"; 1643 case NL80211_REGDOM_SET_BY_USER: 1644 return "user"; 1645 case NL80211_REGDOM_SET_BY_DRIVER: 1646 return "driver"; 1647 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1648 return "country element"; 1649 default: 1650 WARN_ON(1); 1651 return "bug"; 1652 } 1653 } 1654 EXPORT_SYMBOL(reg_initiator_name); 1655 1656 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1657 const struct ieee80211_reg_rule *reg_rule, 1658 const struct ieee80211_channel *chan) 1659 { 1660 const struct ieee80211_freq_range *freq_range = NULL; 1661 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0; 1662 1663 freq_range = ®_rule->freq_range; 1664 1665 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1666 center_freq_khz = ieee80211_channel_to_khz(chan); 1667 /* Check if auto calculation requested */ 1668 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1669 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1670 1671 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1672 if (!cfg80211_does_bw_fit_range(freq_range, 1673 center_freq_khz, 1674 MHZ_TO_KHZ(10))) 1675 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1676 if (!cfg80211_does_bw_fit_range(freq_range, 1677 center_freq_khz, 1678 MHZ_TO_KHZ(20))) 1679 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1680 1681 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1682 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1683 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1684 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1685 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1686 bw_flags |= IEEE80211_CHAN_NO_HT40; 1687 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1688 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1689 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1690 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1691 return bw_flags; 1692 } 1693 1694 static void handle_channel_single_rule(struct wiphy *wiphy, 1695 enum nl80211_reg_initiator initiator, 1696 struct ieee80211_channel *chan, 1697 u32 flags, 1698 struct regulatory_request *lr, 1699 struct wiphy *request_wiphy, 1700 const struct ieee80211_reg_rule *reg_rule) 1701 { 1702 u32 bw_flags = 0; 1703 const struct ieee80211_power_rule *power_rule = NULL; 1704 const struct ieee80211_regdomain *regd; 1705 1706 regd = reg_get_regdomain(wiphy); 1707 1708 power_rule = ®_rule->power_rule; 1709 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1710 1711 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1712 request_wiphy && request_wiphy == wiphy && 1713 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1714 /* 1715 * This guarantees the driver's requested regulatory domain 1716 * will always be used as a base for further regulatory 1717 * settings 1718 */ 1719 chan->flags = chan->orig_flags = 1720 map_regdom_flags(reg_rule->flags) | bw_flags; 1721 chan->max_antenna_gain = chan->orig_mag = 1722 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1723 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1724 (int) MBM_TO_DBM(power_rule->max_eirp); 1725 1726 if (chan->flags & IEEE80211_CHAN_RADAR) { 1727 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1728 if (reg_rule->dfs_cac_ms) 1729 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1730 } 1731 1732 return; 1733 } 1734 1735 chan->dfs_state = NL80211_DFS_USABLE; 1736 chan->dfs_state_entered = jiffies; 1737 1738 chan->beacon_found = false; 1739 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1740 chan->max_antenna_gain = 1741 min_t(int, chan->orig_mag, 1742 MBI_TO_DBI(power_rule->max_antenna_gain)); 1743 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1744 1745 if (chan->flags & IEEE80211_CHAN_RADAR) { 1746 if (reg_rule->dfs_cac_ms) 1747 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1748 else 1749 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1750 } 1751 1752 if (chan->orig_mpwr) { 1753 /* 1754 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1755 * will always follow the passed country IE power settings. 1756 */ 1757 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1758 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1759 chan->max_power = chan->max_reg_power; 1760 else 1761 chan->max_power = min(chan->orig_mpwr, 1762 chan->max_reg_power); 1763 } else 1764 chan->max_power = chan->max_reg_power; 1765 } 1766 1767 static void handle_channel_adjacent_rules(struct wiphy *wiphy, 1768 enum nl80211_reg_initiator initiator, 1769 struct ieee80211_channel *chan, 1770 u32 flags, 1771 struct regulatory_request *lr, 1772 struct wiphy *request_wiphy, 1773 const struct ieee80211_reg_rule *rrule1, 1774 const struct ieee80211_reg_rule *rrule2, 1775 struct ieee80211_freq_range *comb_range) 1776 { 1777 u32 bw_flags1 = 0; 1778 u32 bw_flags2 = 0; 1779 const struct ieee80211_power_rule *power_rule1 = NULL; 1780 const struct ieee80211_power_rule *power_rule2 = NULL; 1781 const struct ieee80211_regdomain *regd; 1782 1783 regd = reg_get_regdomain(wiphy); 1784 1785 power_rule1 = &rrule1->power_rule; 1786 power_rule2 = &rrule2->power_rule; 1787 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan); 1788 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan); 1789 1790 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1791 request_wiphy && request_wiphy == wiphy && 1792 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1793 /* This guarantees the driver's requested regulatory domain 1794 * will always be used as a base for further regulatory 1795 * settings 1796 */ 1797 chan->flags = 1798 map_regdom_flags(rrule1->flags) | 1799 map_regdom_flags(rrule2->flags) | 1800 bw_flags1 | 1801 bw_flags2; 1802 chan->orig_flags = chan->flags; 1803 chan->max_antenna_gain = 1804 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain), 1805 MBI_TO_DBI(power_rule2->max_antenna_gain)); 1806 chan->orig_mag = chan->max_antenna_gain; 1807 chan->max_reg_power = 1808 min_t(int, MBM_TO_DBM(power_rule1->max_eirp), 1809 MBM_TO_DBM(power_rule2->max_eirp)); 1810 chan->max_power = chan->max_reg_power; 1811 chan->orig_mpwr = chan->max_reg_power; 1812 1813 if (chan->flags & IEEE80211_CHAN_RADAR) { 1814 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1815 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1816 chan->dfs_cac_ms = max_t(unsigned int, 1817 rrule1->dfs_cac_ms, 1818 rrule2->dfs_cac_ms); 1819 } 1820 1821 return; 1822 } 1823 1824 chan->dfs_state = NL80211_DFS_USABLE; 1825 chan->dfs_state_entered = jiffies; 1826 1827 chan->beacon_found = false; 1828 chan->flags = flags | bw_flags1 | bw_flags2 | 1829 map_regdom_flags(rrule1->flags) | 1830 map_regdom_flags(rrule2->flags); 1831 1832 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz 1833 * (otherwise no adj. rule case), recheck therefore 1834 */ 1835 if (cfg80211_does_bw_fit_range(comb_range, 1836 ieee80211_channel_to_khz(chan), 1837 MHZ_TO_KHZ(10))) 1838 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ; 1839 if (cfg80211_does_bw_fit_range(comb_range, 1840 ieee80211_channel_to_khz(chan), 1841 MHZ_TO_KHZ(20))) 1842 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ; 1843 1844 chan->max_antenna_gain = 1845 min_t(int, chan->orig_mag, 1846 min_t(int, 1847 MBI_TO_DBI(power_rule1->max_antenna_gain), 1848 MBI_TO_DBI(power_rule2->max_antenna_gain))); 1849 chan->max_reg_power = min_t(int, 1850 MBM_TO_DBM(power_rule1->max_eirp), 1851 MBM_TO_DBM(power_rule2->max_eirp)); 1852 1853 if (chan->flags & IEEE80211_CHAN_RADAR) { 1854 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1855 chan->dfs_cac_ms = max_t(unsigned int, 1856 rrule1->dfs_cac_ms, 1857 rrule2->dfs_cac_ms); 1858 else 1859 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1860 } 1861 1862 if (chan->orig_mpwr) { 1863 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1864 * will always follow the passed country IE power settings. 1865 */ 1866 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1867 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1868 chan->max_power = chan->max_reg_power; 1869 else 1870 chan->max_power = min(chan->orig_mpwr, 1871 chan->max_reg_power); 1872 } else { 1873 chan->max_power = chan->max_reg_power; 1874 } 1875 } 1876 1877 /* Note that right now we assume the desired channel bandwidth 1878 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1879 * per channel, the primary and the extension channel). 1880 */ 1881 static void handle_channel(struct wiphy *wiphy, 1882 enum nl80211_reg_initiator initiator, 1883 struct ieee80211_channel *chan) 1884 { 1885 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan); 1886 struct regulatory_request *lr = get_last_request(); 1887 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1888 const struct ieee80211_reg_rule *rrule = NULL; 1889 const struct ieee80211_reg_rule *rrule1 = NULL; 1890 const struct ieee80211_reg_rule *rrule2 = NULL; 1891 1892 u32 flags = chan->orig_flags; 1893 1894 rrule = freq_reg_info(wiphy, orig_chan_freq); 1895 if (IS_ERR(rrule)) { 1896 /* check for adjacent match, therefore get rules for 1897 * chan - 20 MHz and chan + 20 MHz and test 1898 * if reg rules are adjacent 1899 */ 1900 rrule1 = freq_reg_info(wiphy, 1901 orig_chan_freq - MHZ_TO_KHZ(20)); 1902 rrule2 = freq_reg_info(wiphy, 1903 orig_chan_freq + MHZ_TO_KHZ(20)); 1904 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) { 1905 struct ieee80211_freq_range comb_range; 1906 1907 if (rrule1->freq_range.end_freq_khz != 1908 rrule2->freq_range.start_freq_khz) 1909 goto disable_chan; 1910 1911 comb_range.start_freq_khz = 1912 rrule1->freq_range.start_freq_khz; 1913 comb_range.end_freq_khz = 1914 rrule2->freq_range.end_freq_khz; 1915 comb_range.max_bandwidth_khz = 1916 min_t(u32, 1917 rrule1->freq_range.max_bandwidth_khz, 1918 rrule2->freq_range.max_bandwidth_khz); 1919 1920 if (!cfg80211_does_bw_fit_range(&comb_range, 1921 orig_chan_freq, 1922 MHZ_TO_KHZ(20))) 1923 goto disable_chan; 1924 1925 handle_channel_adjacent_rules(wiphy, initiator, chan, 1926 flags, lr, request_wiphy, 1927 rrule1, rrule2, 1928 &comb_range); 1929 return; 1930 } 1931 1932 disable_chan: 1933 /* We will disable all channels that do not match our 1934 * received regulatory rule unless the hint is coming 1935 * from a Country IE and the Country IE had no information 1936 * about a band. The IEEE 802.11 spec allows for an AP 1937 * to send only a subset of the regulatory rules allowed, 1938 * so an AP in the US that only supports 2.4 GHz may only send 1939 * a country IE with information for the 2.4 GHz band 1940 * while 5 GHz is still supported. 1941 */ 1942 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1943 PTR_ERR(rrule) == -ERANGE) 1944 return; 1945 1946 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1947 request_wiphy && request_wiphy == wiphy && 1948 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1949 pr_debug("Disabling freq %d.%03d MHz for good\n", 1950 chan->center_freq, chan->freq_offset); 1951 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1952 chan->flags = chan->orig_flags; 1953 } else { 1954 pr_debug("Disabling freq %d.%03d MHz\n", 1955 chan->center_freq, chan->freq_offset); 1956 chan->flags |= IEEE80211_CHAN_DISABLED; 1957 } 1958 return; 1959 } 1960 1961 handle_channel_single_rule(wiphy, initiator, chan, flags, lr, 1962 request_wiphy, rrule); 1963 } 1964 1965 static void handle_band(struct wiphy *wiphy, 1966 enum nl80211_reg_initiator initiator, 1967 struct ieee80211_supported_band *sband) 1968 { 1969 unsigned int i; 1970 1971 if (!sband) 1972 return; 1973 1974 for (i = 0; i < sband->n_channels; i++) 1975 handle_channel(wiphy, initiator, &sband->channels[i]); 1976 } 1977 1978 static bool reg_request_cell_base(struct regulatory_request *request) 1979 { 1980 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1981 return false; 1982 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 1983 } 1984 1985 bool reg_last_request_cell_base(void) 1986 { 1987 return reg_request_cell_base(get_last_request()); 1988 } 1989 1990 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 1991 /* Core specific check */ 1992 static enum reg_request_treatment 1993 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1994 { 1995 struct regulatory_request *lr = get_last_request(); 1996 1997 if (!reg_num_devs_support_basehint) 1998 return REG_REQ_IGNORE; 1999 2000 if (reg_request_cell_base(lr) && 2001 !regdom_changes(pending_request->alpha2)) 2002 return REG_REQ_ALREADY_SET; 2003 2004 return REG_REQ_OK; 2005 } 2006 2007 /* Device specific check */ 2008 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2009 { 2010 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 2011 } 2012 #else 2013 static enum reg_request_treatment 2014 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2015 { 2016 return REG_REQ_IGNORE; 2017 } 2018 2019 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2020 { 2021 return true; 2022 } 2023 #endif 2024 2025 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 2026 { 2027 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 2028 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 2029 return true; 2030 return false; 2031 } 2032 2033 static bool ignore_reg_update(struct wiphy *wiphy, 2034 enum nl80211_reg_initiator initiator) 2035 { 2036 struct regulatory_request *lr = get_last_request(); 2037 2038 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2039 return true; 2040 2041 if (!lr) { 2042 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 2043 reg_initiator_name(initiator)); 2044 return true; 2045 } 2046 2047 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2048 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 2049 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 2050 reg_initiator_name(initiator)); 2051 return true; 2052 } 2053 2054 /* 2055 * wiphy->regd will be set once the device has its own 2056 * desired regulatory domain set 2057 */ 2058 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 2059 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2060 !is_world_regdom(lr->alpha2)) { 2061 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 2062 reg_initiator_name(initiator)); 2063 return true; 2064 } 2065 2066 if (reg_request_cell_base(lr)) 2067 return reg_dev_ignore_cell_hint(wiphy); 2068 2069 return false; 2070 } 2071 2072 static bool reg_is_world_roaming(struct wiphy *wiphy) 2073 { 2074 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 2075 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 2076 struct regulatory_request *lr = get_last_request(); 2077 2078 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 2079 return true; 2080 2081 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2082 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2083 return true; 2084 2085 return false; 2086 } 2087 2088 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 2089 struct reg_beacon *reg_beacon) 2090 { 2091 struct ieee80211_supported_band *sband; 2092 struct ieee80211_channel *chan; 2093 bool channel_changed = false; 2094 struct ieee80211_channel chan_before; 2095 2096 sband = wiphy->bands[reg_beacon->chan.band]; 2097 chan = &sband->channels[chan_idx]; 2098 2099 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan))) 2100 return; 2101 2102 if (chan->beacon_found) 2103 return; 2104 2105 chan->beacon_found = true; 2106 2107 if (!reg_is_world_roaming(wiphy)) 2108 return; 2109 2110 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 2111 return; 2112 2113 chan_before = *chan; 2114 2115 if (chan->flags & IEEE80211_CHAN_NO_IR) { 2116 chan->flags &= ~IEEE80211_CHAN_NO_IR; 2117 channel_changed = true; 2118 } 2119 2120 if (channel_changed) 2121 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 2122 } 2123 2124 /* 2125 * Called when a scan on a wiphy finds a beacon on 2126 * new channel 2127 */ 2128 static void wiphy_update_new_beacon(struct wiphy *wiphy, 2129 struct reg_beacon *reg_beacon) 2130 { 2131 unsigned int i; 2132 struct ieee80211_supported_band *sband; 2133 2134 if (!wiphy->bands[reg_beacon->chan.band]) 2135 return; 2136 2137 sband = wiphy->bands[reg_beacon->chan.band]; 2138 2139 for (i = 0; i < sband->n_channels; i++) 2140 handle_reg_beacon(wiphy, i, reg_beacon); 2141 } 2142 2143 /* 2144 * Called upon reg changes or a new wiphy is added 2145 */ 2146 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 2147 { 2148 unsigned int i; 2149 struct ieee80211_supported_band *sband; 2150 struct reg_beacon *reg_beacon; 2151 2152 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 2153 if (!wiphy->bands[reg_beacon->chan.band]) 2154 continue; 2155 sband = wiphy->bands[reg_beacon->chan.band]; 2156 for (i = 0; i < sband->n_channels; i++) 2157 handle_reg_beacon(wiphy, i, reg_beacon); 2158 } 2159 } 2160 2161 /* Reap the advantages of previously found beacons */ 2162 static void reg_process_beacons(struct wiphy *wiphy) 2163 { 2164 /* 2165 * Means we are just firing up cfg80211, so no beacons would 2166 * have been processed yet. 2167 */ 2168 if (!last_request) 2169 return; 2170 wiphy_update_beacon_reg(wiphy); 2171 } 2172 2173 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2174 { 2175 if (!chan) 2176 return false; 2177 if (chan->flags & IEEE80211_CHAN_DISABLED) 2178 return false; 2179 /* This would happen when regulatory rules disallow HT40 completely */ 2180 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2181 return false; 2182 return true; 2183 } 2184 2185 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2186 struct ieee80211_channel *channel) 2187 { 2188 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2189 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2190 const struct ieee80211_regdomain *regd; 2191 unsigned int i; 2192 u32 flags; 2193 2194 if (!is_ht40_allowed(channel)) { 2195 channel->flags |= IEEE80211_CHAN_NO_HT40; 2196 return; 2197 } 2198 2199 /* 2200 * We need to ensure the extension channels exist to 2201 * be able to use HT40- or HT40+, this finds them (or not) 2202 */ 2203 for (i = 0; i < sband->n_channels; i++) { 2204 struct ieee80211_channel *c = &sband->channels[i]; 2205 2206 if (c->center_freq == (channel->center_freq - 20)) 2207 channel_before = c; 2208 if (c->center_freq == (channel->center_freq + 20)) 2209 channel_after = c; 2210 } 2211 2212 flags = 0; 2213 regd = get_wiphy_regdom(wiphy); 2214 if (regd) { 2215 const struct ieee80211_reg_rule *reg_rule = 2216 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2217 regd, MHZ_TO_KHZ(20)); 2218 2219 if (!IS_ERR(reg_rule)) 2220 flags = reg_rule->flags; 2221 } 2222 2223 /* 2224 * Please note that this assumes target bandwidth is 20 MHz, 2225 * if that ever changes we also need to change the below logic 2226 * to include that as well. 2227 */ 2228 if (!is_ht40_allowed(channel_before) || 2229 flags & NL80211_RRF_NO_HT40MINUS) 2230 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2231 else 2232 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2233 2234 if (!is_ht40_allowed(channel_after) || 2235 flags & NL80211_RRF_NO_HT40PLUS) 2236 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2237 else 2238 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2239 } 2240 2241 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2242 struct ieee80211_supported_band *sband) 2243 { 2244 unsigned int i; 2245 2246 if (!sband) 2247 return; 2248 2249 for (i = 0; i < sband->n_channels; i++) 2250 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2251 } 2252 2253 static void reg_process_ht_flags(struct wiphy *wiphy) 2254 { 2255 enum nl80211_band band; 2256 2257 if (!wiphy) 2258 return; 2259 2260 for (band = 0; band < NUM_NL80211_BANDS; band++) 2261 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2262 } 2263 2264 static void reg_call_notifier(struct wiphy *wiphy, 2265 struct regulatory_request *request) 2266 { 2267 if (wiphy->reg_notifier) 2268 wiphy->reg_notifier(wiphy, request); 2269 } 2270 2271 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2272 { 2273 struct cfg80211_chan_def chandef = {}; 2274 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2275 enum nl80211_iftype iftype; 2276 2277 wdev_lock(wdev); 2278 iftype = wdev->iftype; 2279 2280 /* make sure the interface is active */ 2281 if (!wdev->netdev || !netif_running(wdev->netdev)) 2282 goto wdev_inactive_unlock; 2283 2284 switch (iftype) { 2285 case NL80211_IFTYPE_AP: 2286 case NL80211_IFTYPE_P2P_GO: 2287 if (!wdev->beacon_interval) 2288 goto wdev_inactive_unlock; 2289 chandef = wdev->chandef; 2290 break; 2291 case NL80211_IFTYPE_ADHOC: 2292 if (!wdev->ssid_len) 2293 goto wdev_inactive_unlock; 2294 chandef = wdev->chandef; 2295 break; 2296 case NL80211_IFTYPE_STATION: 2297 case NL80211_IFTYPE_P2P_CLIENT: 2298 if (!wdev->current_bss || 2299 !wdev->current_bss->pub.channel) 2300 goto wdev_inactive_unlock; 2301 2302 if (!rdev->ops->get_channel || 2303 rdev_get_channel(rdev, wdev, &chandef)) 2304 cfg80211_chandef_create(&chandef, 2305 wdev->current_bss->pub.channel, 2306 NL80211_CHAN_NO_HT); 2307 break; 2308 case NL80211_IFTYPE_MONITOR: 2309 case NL80211_IFTYPE_AP_VLAN: 2310 case NL80211_IFTYPE_P2P_DEVICE: 2311 /* no enforcement required */ 2312 break; 2313 default: 2314 /* others not implemented for now */ 2315 WARN_ON(1); 2316 break; 2317 } 2318 2319 wdev_unlock(wdev); 2320 2321 switch (iftype) { 2322 case NL80211_IFTYPE_AP: 2323 case NL80211_IFTYPE_P2P_GO: 2324 case NL80211_IFTYPE_ADHOC: 2325 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 2326 case NL80211_IFTYPE_STATION: 2327 case NL80211_IFTYPE_P2P_CLIENT: 2328 return cfg80211_chandef_usable(wiphy, &chandef, 2329 IEEE80211_CHAN_DISABLED); 2330 default: 2331 break; 2332 } 2333 2334 return true; 2335 2336 wdev_inactive_unlock: 2337 wdev_unlock(wdev); 2338 return true; 2339 } 2340 2341 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2342 { 2343 struct wireless_dev *wdev; 2344 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2345 2346 ASSERT_RTNL(); 2347 2348 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2349 if (!reg_wdev_chan_valid(wiphy, wdev)) 2350 cfg80211_leave(rdev, wdev); 2351 } 2352 2353 static void reg_check_chans_work(struct work_struct *work) 2354 { 2355 struct cfg80211_registered_device *rdev; 2356 2357 pr_debug("Verifying active interfaces after reg change\n"); 2358 rtnl_lock(); 2359 2360 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2361 if (!(rdev->wiphy.regulatory_flags & 2362 REGULATORY_IGNORE_STALE_KICKOFF)) 2363 reg_leave_invalid_chans(&rdev->wiphy); 2364 2365 rtnl_unlock(); 2366 } 2367 2368 static void reg_check_channels(void) 2369 { 2370 /* 2371 * Give usermode a chance to do something nicer (move to another 2372 * channel, orderly disconnection), before forcing a disconnection. 2373 */ 2374 mod_delayed_work(system_power_efficient_wq, 2375 ®_check_chans, 2376 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2377 } 2378 2379 static void wiphy_update_regulatory(struct wiphy *wiphy, 2380 enum nl80211_reg_initiator initiator) 2381 { 2382 enum nl80211_band band; 2383 struct regulatory_request *lr = get_last_request(); 2384 2385 if (ignore_reg_update(wiphy, initiator)) { 2386 /* 2387 * Regulatory updates set by CORE are ignored for custom 2388 * regulatory cards. Let us notify the changes to the driver, 2389 * as some drivers used this to restore its orig_* reg domain. 2390 */ 2391 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2392 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2393 !(wiphy->regulatory_flags & 2394 REGULATORY_WIPHY_SELF_MANAGED)) 2395 reg_call_notifier(wiphy, lr); 2396 return; 2397 } 2398 2399 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2400 2401 for (band = 0; band < NUM_NL80211_BANDS; band++) 2402 handle_band(wiphy, initiator, wiphy->bands[band]); 2403 2404 reg_process_beacons(wiphy); 2405 reg_process_ht_flags(wiphy); 2406 reg_call_notifier(wiphy, lr); 2407 } 2408 2409 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2410 { 2411 struct cfg80211_registered_device *rdev; 2412 struct wiphy *wiphy; 2413 2414 ASSERT_RTNL(); 2415 2416 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2417 wiphy = &rdev->wiphy; 2418 wiphy_update_regulatory(wiphy, initiator); 2419 } 2420 2421 reg_check_channels(); 2422 } 2423 2424 static void handle_channel_custom(struct wiphy *wiphy, 2425 struct ieee80211_channel *chan, 2426 const struct ieee80211_regdomain *regd, 2427 u32 min_bw) 2428 { 2429 u32 bw_flags = 0; 2430 const struct ieee80211_reg_rule *reg_rule = NULL; 2431 const struct ieee80211_power_rule *power_rule = NULL; 2432 u32 bw, center_freq_khz; 2433 2434 center_freq_khz = ieee80211_channel_to_khz(chan); 2435 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 2436 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw); 2437 if (!IS_ERR(reg_rule)) 2438 break; 2439 } 2440 2441 if (IS_ERR_OR_NULL(reg_rule)) { 2442 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n", 2443 chan->center_freq, chan->freq_offset); 2444 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2445 chan->flags |= IEEE80211_CHAN_DISABLED; 2446 } else { 2447 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2448 chan->flags = chan->orig_flags; 2449 } 2450 return; 2451 } 2452 2453 power_rule = ®_rule->power_rule; 2454 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2455 2456 chan->dfs_state_entered = jiffies; 2457 chan->dfs_state = NL80211_DFS_USABLE; 2458 2459 chan->beacon_found = false; 2460 2461 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2462 chan->flags = chan->orig_flags | bw_flags | 2463 map_regdom_flags(reg_rule->flags); 2464 else 2465 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2466 2467 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2468 chan->max_reg_power = chan->max_power = 2469 (int) MBM_TO_DBM(power_rule->max_eirp); 2470 2471 if (chan->flags & IEEE80211_CHAN_RADAR) { 2472 if (reg_rule->dfs_cac_ms) 2473 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2474 else 2475 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2476 } 2477 2478 chan->max_power = chan->max_reg_power; 2479 } 2480 2481 static void handle_band_custom(struct wiphy *wiphy, 2482 struct ieee80211_supported_band *sband, 2483 const struct ieee80211_regdomain *regd) 2484 { 2485 unsigned int i; 2486 2487 if (!sband) 2488 return; 2489 2490 /* 2491 * We currently assume that you always want at least 20 MHz, 2492 * otherwise channel 12 might get enabled if this rule is 2493 * compatible to US, which permits 2402 - 2472 MHz. 2494 */ 2495 for (i = 0; i < sband->n_channels; i++) 2496 handle_channel_custom(wiphy, &sband->channels[i], regd, 2497 MHZ_TO_KHZ(20)); 2498 } 2499 2500 /* Used by drivers prior to wiphy registration */ 2501 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2502 const struct ieee80211_regdomain *regd) 2503 { 2504 enum nl80211_band band; 2505 unsigned int bands_set = 0; 2506 2507 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2508 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2509 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2510 2511 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2512 if (!wiphy->bands[band]) 2513 continue; 2514 handle_band_custom(wiphy, wiphy->bands[band], regd); 2515 bands_set++; 2516 } 2517 2518 /* 2519 * no point in calling this if it won't have any effect 2520 * on your device's supported bands. 2521 */ 2522 WARN_ON(!bands_set); 2523 } 2524 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2525 2526 static void reg_set_request_processed(void) 2527 { 2528 bool need_more_processing = false; 2529 struct regulatory_request *lr = get_last_request(); 2530 2531 lr->processed = true; 2532 2533 spin_lock(®_requests_lock); 2534 if (!list_empty(®_requests_list)) 2535 need_more_processing = true; 2536 spin_unlock(®_requests_lock); 2537 2538 cancel_crda_timeout(); 2539 2540 if (need_more_processing) 2541 schedule_work(®_work); 2542 } 2543 2544 /** 2545 * reg_process_hint_core - process core regulatory requests 2546 * @core_request: a pending core regulatory request 2547 * 2548 * The wireless subsystem can use this function to process 2549 * a regulatory request issued by the regulatory core. 2550 */ 2551 static enum reg_request_treatment 2552 reg_process_hint_core(struct regulatory_request *core_request) 2553 { 2554 if (reg_query_database(core_request)) { 2555 core_request->intersect = false; 2556 core_request->processed = false; 2557 reg_update_last_request(core_request); 2558 return REG_REQ_OK; 2559 } 2560 2561 return REG_REQ_IGNORE; 2562 } 2563 2564 static enum reg_request_treatment 2565 __reg_process_hint_user(struct regulatory_request *user_request) 2566 { 2567 struct regulatory_request *lr = get_last_request(); 2568 2569 if (reg_request_cell_base(user_request)) 2570 return reg_ignore_cell_hint(user_request); 2571 2572 if (reg_request_cell_base(lr)) 2573 return REG_REQ_IGNORE; 2574 2575 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2576 return REG_REQ_INTERSECT; 2577 /* 2578 * If the user knows better the user should set the regdom 2579 * to their country before the IE is picked up 2580 */ 2581 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2582 lr->intersect) 2583 return REG_REQ_IGNORE; 2584 /* 2585 * Process user requests only after previous user/driver/core 2586 * requests have been processed 2587 */ 2588 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2589 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2590 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2591 regdom_changes(lr->alpha2)) 2592 return REG_REQ_IGNORE; 2593 2594 if (!regdom_changes(user_request->alpha2)) 2595 return REG_REQ_ALREADY_SET; 2596 2597 return REG_REQ_OK; 2598 } 2599 2600 /** 2601 * reg_process_hint_user - process user regulatory requests 2602 * @user_request: a pending user regulatory request 2603 * 2604 * The wireless subsystem can use this function to process 2605 * a regulatory request initiated by userspace. 2606 */ 2607 static enum reg_request_treatment 2608 reg_process_hint_user(struct regulatory_request *user_request) 2609 { 2610 enum reg_request_treatment treatment; 2611 2612 treatment = __reg_process_hint_user(user_request); 2613 if (treatment == REG_REQ_IGNORE || 2614 treatment == REG_REQ_ALREADY_SET) 2615 return REG_REQ_IGNORE; 2616 2617 user_request->intersect = treatment == REG_REQ_INTERSECT; 2618 user_request->processed = false; 2619 2620 if (reg_query_database(user_request)) { 2621 reg_update_last_request(user_request); 2622 user_alpha2[0] = user_request->alpha2[0]; 2623 user_alpha2[1] = user_request->alpha2[1]; 2624 return REG_REQ_OK; 2625 } 2626 2627 return REG_REQ_IGNORE; 2628 } 2629 2630 static enum reg_request_treatment 2631 __reg_process_hint_driver(struct regulatory_request *driver_request) 2632 { 2633 struct regulatory_request *lr = get_last_request(); 2634 2635 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2636 if (regdom_changes(driver_request->alpha2)) 2637 return REG_REQ_OK; 2638 return REG_REQ_ALREADY_SET; 2639 } 2640 2641 /* 2642 * This would happen if you unplug and plug your card 2643 * back in or if you add a new device for which the previously 2644 * loaded card also agrees on the regulatory domain. 2645 */ 2646 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2647 !regdom_changes(driver_request->alpha2)) 2648 return REG_REQ_ALREADY_SET; 2649 2650 return REG_REQ_INTERSECT; 2651 } 2652 2653 /** 2654 * reg_process_hint_driver - process driver regulatory requests 2655 * @wiphy: the wireless device for the regulatory request 2656 * @driver_request: a pending driver regulatory request 2657 * 2658 * The wireless subsystem can use this function to process 2659 * a regulatory request issued by an 802.11 driver. 2660 * 2661 * Returns one of the different reg request treatment values. 2662 */ 2663 static enum reg_request_treatment 2664 reg_process_hint_driver(struct wiphy *wiphy, 2665 struct regulatory_request *driver_request) 2666 { 2667 const struct ieee80211_regdomain *regd, *tmp; 2668 enum reg_request_treatment treatment; 2669 2670 treatment = __reg_process_hint_driver(driver_request); 2671 2672 switch (treatment) { 2673 case REG_REQ_OK: 2674 break; 2675 case REG_REQ_IGNORE: 2676 return REG_REQ_IGNORE; 2677 case REG_REQ_INTERSECT: 2678 case REG_REQ_ALREADY_SET: 2679 regd = reg_copy_regd(get_cfg80211_regdom()); 2680 if (IS_ERR(regd)) 2681 return REG_REQ_IGNORE; 2682 2683 tmp = get_wiphy_regdom(wiphy); 2684 rcu_assign_pointer(wiphy->regd, regd); 2685 rcu_free_regdom(tmp); 2686 } 2687 2688 2689 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2690 driver_request->processed = false; 2691 2692 /* 2693 * Since CRDA will not be called in this case as we already 2694 * have applied the requested regulatory domain before we just 2695 * inform userspace we have processed the request 2696 */ 2697 if (treatment == REG_REQ_ALREADY_SET) { 2698 nl80211_send_reg_change_event(driver_request); 2699 reg_update_last_request(driver_request); 2700 reg_set_request_processed(); 2701 return REG_REQ_ALREADY_SET; 2702 } 2703 2704 if (reg_query_database(driver_request)) { 2705 reg_update_last_request(driver_request); 2706 return REG_REQ_OK; 2707 } 2708 2709 return REG_REQ_IGNORE; 2710 } 2711 2712 static enum reg_request_treatment 2713 __reg_process_hint_country_ie(struct wiphy *wiphy, 2714 struct regulatory_request *country_ie_request) 2715 { 2716 struct wiphy *last_wiphy = NULL; 2717 struct regulatory_request *lr = get_last_request(); 2718 2719 if (reg_request_cell_base(lr)) { 2720 /* Trust a Cell base station over the AP's country IE */ 2721 if (regdom_changes(country_ie_request->alpha2)) 2722 return REG_REQ_IGNORE; 2723 return REG_REQ_ALREADY_SET; 2724 } else { 2725 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2726 return REG_REQ_IGNORE; 2727 } 2728 2729 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2730 return -EINVAL; 2731 2732 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2733 return REG_REQ_OK; 2734 2735 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2736 2737 if (last_wiphy != wiphy) { 2738 /* 2739 * Two cards with two APs claiming different 2740 * Country IE alpha2s. We could 2741 * intersect them, but that seems unlikely 2742 * to be correct. Reject second one for now. 2743 */ 2744 if (regdom_changes(country_ie_request->alpha2)) 2745 return REG_REQ_IGNORE; 2746 return REG_REQ_ALREADY_SET; 2747 } 2748 2749 if (regdom_changes(country_ie_request->alpha2)) 2750 return REG_REQ_OK; 2751 return REG_REQ_ALREADY_SET; 2752 } 2753 2754 /** 2755 * reg_process_hint_country_ie - process regulatory requests from country IEs 2756 * @wiphy: the wireless device for the regulatory request 2757 * @country_ie_request: a regulatory request from a country IE 2758 * 2759 * The wireless subsystem can use this function to process 2760 * a regulatory request issued by a country Information Element. 2761 * 2762 * Returns one of the different reg request treatment values. 2763 */ 2764 static enum reg_request_treatment 2765 reg_process_hint_country_ie(struct wiphy *wiphy, 2766 struct regulatory_request *country_ie_request) 2767 { 2768 enum reg_request_treatment treatment; 2769 2770 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2771 2772 switch (treatment) { 2773 case REG_REQ_OK: 2774 break; 2775 case REG_REQ_IGNORE: 2776 return REG_REQ_IGNORE; 2777 case REG_REQ_ALREADY_SET: 2778 reg_free_request(country_ie_request); 2779 return REG_REQ_ALREADY_SET; 2780 case REG_REQ_INTERSECT: 2781 /* 2782 * This doesn't happen yet, not sure we 2783 * ever want to support it for this case. 2784 */ 2785 WARN_ONCE(1, "Unexpected intersection for country elements"); 2786 return REG_REQ_IGNORE; 2787 } 2788 2789 country_ie_request->intersect = false; 2790 country_ie_request->processed = false; 2791 2792 if (reg_query_database(country_ie_request)) { 2793 reg_update_last_request(country_ie_request); 2794 return REG_REQ_OK; 2795 } 2796 2797 return REG_REQ_IGNORE; 2798 } 2799 2800 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2801 { 2802 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2803 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2804 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2805 bool dfs_domain_same; 2806 2807 rcu_read_lock(); 2808 2809 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2810 wiphy1_regd = rcu_dereference(wiphy1->regd); 2811 if (!wiphy1_regd) 2812 wiphy1_regd = cfg80211_regd; 2813 2814 wiphy2_regd = rcu_dereference(wiphy2->regd); 2815 if (!wiphy2_regd) 2816 wiphy2_regd = cfg80211_regd; 2817 2818 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2819 2820 rcu_read_unlock(); 2821 2822 return dfs_domain_same; 2823 } 2824 2825 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2826 struct ieee80211_channel *src_chan) 2827 { 2828 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2829 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2830 return; 2831 2832 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2833 src_chan->flags & IEEE80211_CHAN_DISABLED) 2834 return; 2835 2836 if (src_chan->center_freq == dst_chan->center_freq && 2837 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2838 dst_chan->dfs_state = src_chan->dfs_state; 2839 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2840 } 2841 } 2842 2843 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2844 struct wiphy *src_wiphy) 2845 { 2846 struct ieee80211_supported_band *src_sband, *dst_sband; 2847 struct ieee80211_channel *src_chan, *dst_chan; 2848 int i, j, band; 2849 2850 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2851 return; 2852 2853 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2854 dst_sband = dst_wiphy->bands[band]; 2855 src_sband = src_wiphy->bands[band]; 2856 if (!dst_sband || !src_sband) 2857 continue; 2858 2859 for (i = 0; i < dst_sband->n_channels; i++) { 2860 dst_chan = &dst_sband->channels[i]; 2861 for (j = 0; j < src_sband->n_channels; j++) { 2862 src_chan = &src_sband->channels[j]; 2863 reg_copy_dfs_chan_state(dst_chan, src_chan); 2864 } 2865 } 2866 } 2867 } 2868 2869 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2870 { 2871 struct cfg80211_registered_device *rdev; 2872 2873 ASSERT_RTNL(); 2874 2875 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2876 if (wiphy == &rdev->wiphy) 2877 continue; 2878 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2879 } 2880 } 2881 2882 /* This processes *all* regulatory hints */ 2883 static void reg_process_hint(struct regulatory_request *reg_request) 2884 { 2885 struct wiphy *wiphy = NULL; 2886 enum reg_request_treatment treatment; 2887 enum nl80211_reg_initiator initiator = reg_request->initiator; 2888 2889 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2890 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2891 2892 switch (initiator) { 2893 case NL80211_REGDOM_SET_BY_CORE: 2894 treatment = reg_process_hint_core(reg_request); 2895 break; 2896 case NL80211_REGDOM_SET_BY_USER: 2897 treatment = reg_process_hint_user(reg_request); 2898 break; 2899 case NL80211_REGDOM_SET_BY_DRIVER: 2900 if (!wiphy) 2901 goto out_free; 2902 treatment = reg_process_hint_driver(wiphy, reg_request); 2903 break; 2904 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2905 if (!wiphy) 2906 goto out_free; 2907 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2908 break; 2909 default: 2910 WARN(1, "invalid initiator %d\n", initiator); 2911 goto out_free; 2912 } 2913 2914 if (treatment == REG_REQ_IGNORE) 2915 goto out_free; 2916 2917 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 2918 "unexpected treatment value %d\n", treatment); 2919 2920 /* This is required so that the orig_* parameters are saved. 2921 * NOTE: treatment must be set for any case that reaches here! 2922 */ 2923 if (treatment == REG_REQ_ALREADY_SET && wiphy && 2924 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2925 wiphy_update_regulatory(wiphy, initiator); 2926 wiphy_all_share_dfs_chan_state(wiphy); 2927 reg_check_channels(); 2928 } 2929 2930 return; 2931 2932 out_free: 2933 reg_free_request(reg_request); 2934 } 2935 2936 static void notify_self_managed_wiphys(struct regulatory_request *request) 2937 { 2938 struct cfg80211_registered_device *rdev; 2939 struct wiphy *wiphy; 2940 2941 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2942 wiphy = &rdev->wiphy; 2943 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 2944 request->initiator == NL80211_REGDOM_SET_BY_USER) 2945 reg_call_notifier(wiphy, request); 2946 } 2947 } 2948 2949 /* 2950 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 2951 * Regulatory hints come on a first come first serve basis and we 2952 * must process each one atomically. 2953 */ 2954 static void reg_process_pending_hints(void) 2955 { 2956 struct regulatory_request *reg_request, *lr; 2957 2958 lr = get_last_request(); 2959 2960 /* When last_request->processed becomes true this will be rescheduled */ 2961 if (lr && !lr->processed) { 2962 pr_debug("Pending regulatory request, waiting for it to be processed...\n"); 2963 return; 2964 } 2965 2966 spin_lock(®_requests_lock); 2967 2968 if (list_empty(®_requests_list)) { 2969 spin_unlock(®_requests_lock); 2970 return; 2971 } 2972 2973 reg_request = list_first_entry(®_requests_list, 2974 struct regulatory_request, 2975 list); 2976 list_del_init(®_request->list); 2977 2978 spin_unlock(®_requests_lock); 2979 2980 notify_self_managed_wiphys(reg_request); 2981 2982 reg_process_hint(reg_request); 2983 2984 lr = get_last_request(); 2985 2986 spin_lock(®_requests_lock); 2987 if (!list_empty(®_requests_list) && lr && lr->processed) 2988 schedule_work(®_work); 2989 spin_unlock(®_requests_lock); 2990 } 2991 2992 /* Processes beacon hints -- this has nothing to do with country IEs */ 2993 static void reg_process_pending_beacon_hints(void) 2994 { 2995 struct cfg80211_registered_device *rdev; 2996 struct reg_beacon *pending_beacon, *tmp; 2997 2998 /* This goes through the _pending_ beacon list */ 2999 spin_lock_bh(®_pending_beacons_lock); 3000 3001 list_for_each_entry_safe(pending_beacon, tmp, 3002 ®_pending_beacons, list) { 3003 list_del_init(&pending_beacon->list); 3004 3005 /* Applies the beacon hint to current wiphys */ 3006 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 3007 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 3008 3009 /* Remembers the beacon hint for new wiphys or reg changes */ 3010 list_add_tail(&pending_beacon->list, ®_beacon_list); 3011 } 3012 3013 spin_unlock_bh(®_pending_beacons_lock); 3014 } 3015 3016 static void reg_process_self_managed_hints(void) 3017 { 3018 struct cfg80211_registered_device *rdev; 3019 struct wiphy *wiphy; 3020 const struct ieee80211_regdomain *tmp; 3021 const struct ieee80211_regdomain *regd; 3022 enum nl80211_band band; 3023 struct regulatory_request request = {}; 3024 3025 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3026 wiphy = &rdev->wiphy; 3027 3028 spin_lock(®_requests_lock); 3029 regd = rdev->requested_regd; 3030 rdev->requested_regd = NULL; 3031 spin_unlock(®_requests_lock); 3032 3033 if (regd == NULL) 3034 continue; 3035 3036 tmp = get_wiphy_regdom(wiphy); 3037 rcu_assign_pointer(wiphy->regd, regd); 3038 rcu_free_regdom(tmp); 3039 3040 for (band = 0; band < NUM_NL80211_BANDS; band++) 3041 handle_band_custom(wiphy, wiphy->bands[band], regd); 3042 3043 reg_process_ht_flags(wiphy); 3044 3045 request.wiphy_idx = get_wiphy_idx(wiphy); 3046 request.alpha2[0] = regd->alpha2[0]; 3047 request.alpha2[1] = regd->alpha2[1]; 3048 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 3049 3050 nl80211_send_wiphy_reg_change_event(&request); 3051 } 3052 3053 reg_check_channels(); 3054 } 3055 3056 static void reg_todo(struct work_struct *work) 3057 { 3058 rtnl_lock(); 3059 reg_process_pending_hints(); 3060 reg_process_pending_beacon_hints(); 3061 reg_process_self_managed_hints(); 3062 rtnl_unlock(); 3063 } 3064 3065 static void queue_regulatory_request(struct regulatory_request *request) 3066 { 3067 request->alpha2[0] = toupper(request->alpha2[0]); 3068 request->alpha2[1] = toupper(request->alpha2[1]); 3069 3070 spin_lock(®_requests_lock); 3071 list_add_tail(&request->list, ®_requests_list); 3072 spin_unlock(®_requests_lock); 3073 3074 schedule_work(®_work); 3075 } 3076 3077 /* 3078 * Core regulatory hint -- happens during cfg80211_init() 3079 * and when we restore regulatory settings. 3080 */ 3081 static int regulatory_hint_core(const char *alpha2) 3082 { 3083 struct regulatory_request *request; 3084 3085 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3086 if (!request) 3087 return -ENOMEM; 3088 3089 request->alpha2[0] = alpha2[0]; 3090 request->alpha2[1] = alpha2[1]; 3091 request->initiator = NL80211_REGDOM_SET_BY_CORE; 3092 request->wiphy_idx = WIPHY_IDX_INVALID; 3093 3094 queue_regulatory_request(request); 3095 3096 return 0; 3097 } 3098 3099 /* User hints */ 3100 int regulatory_hint_user(const char *alpha2, 3101 enum nl80211_user_reg_hint_type user_reg_hint_type) 3102 { 3103 struct regulatory_request *request; 3104 3105 if (WARN_ON(!alpha2)) 3106 return -EINVAL; 3107 3108 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2)) 3109 return -EINVAL; 3110 3111 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3112 if (!request) 3113 return -ENOMEM; 3114 3115 request->wiphy_idx = WIPHY_IDX_INVALID; 3116 request->alpha2[0] = alpha2[0]; 3117 request->alpha2[1] = alpha2[1]; 3118 request->initiator = NL80211_REGDOM_SET_BY_USER; 3119 request->user_reg_hint_type = user_reg_hint_type; 3120 3121 /* Allow calling CRDA again */ 3122 reset_crda_timeouts(); 3123 3124 queue_regulatory_request(request); 3125 3126 return 0; 3127 } 3128 3129 int regulatory_hint_indoor(bool is_indoor, u32 portid) 3130 { 3131 spin_lock(®_indoor_lock); 3132 3133 /* It is possible that more than one user space process is trying to 3134 * configure the indoor setting. To handle such cases, clear the indoor 3135 * setting in case that some process does not think that the device 3136 * is operating in an indoor environment. In addition, if a user space 3137 * process indicates that it is controlling the indoor setting, save its 3138 * portid, i.e., make it the owner. 3139 */ 3140 reg_is_indoor = is_indoor; 3141 if (reg_is_indoor) { 3142 if (!reg_is_indoor_portid) 3143 reg_is_indoor_portid = portid; 3144 } else { 3145 reg_is_indoor_portid = 0; 3146 } 3147 3148 spin_unlock(®_indoor_lock); 3149 3150 if (!is_indoor) 3151 reg_check_channels(); 3152 3153 return 0; 3154 } 3155 3156 void regulatory_netlink_notify(u32 portid) 3157 { 3158 spin_lock(®_indoor_lock); 3159 3160 if (reg_is_indoor_portid != portid) { 3161 spin_unlock(®_indoor_lock); 3162 return; 3163 } 3164 3165 reg_is_indoor = false; 3166 reg_is_indoor_portid = 0; 3167 3168 spin_unlock(®_indoor_lock); 3169 3170 reg_check_channels(); 3171 } 3172 3173 /* Driver hints */ 3174 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3175 { 3176 struct regulatory_request *request; 3177 3178 if (WARN_ON(!alpha2 || !wiphy)) 3179 return -EINVAL; 3180 3181 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3182 3183 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3184 if (!request) 3185 return -ENOMEM; 3186 3187 request->wiphy_idx = get_wiphy_idx(wiphy); 3188 3189 request->alpha2[0] = alpha2[0]; 3190 request->alpha2[1] = alpha2[1]; 3191 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3192 3193 /* Allow calling CRDA again */ 3194 reset_crda_timeouts(); 3195 3196 queue_regulatory_request(request); 3197 3198 return 0; 3199 } 3200 EXPORT_SYMBOL(regulatory_hint); 3201 3202 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3203 const u8 *country_ie, u8 country_ie_len) 3204 { 3205 char alpha2[2]; 3206 enum environment_cap env = ENVIRON_ANY; 3207 struct regulatory_request *request = NULL, *lr; 3208 3209 /* IE len must be evenly divisible by 2 */ 3210 if (country_ie_len & 0x01) 3211 return; 3212 3213 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3214 return; 3215 3216 request = kzalloc(sizeof(*request), GFP_KERNEL); 3217 if (!request) 3218 return; 3219 3220 alpha2[0] = country_ie[0]; 3221 alpha2[1] = country_ie[1]; 3222 3223 if (country_ie[2] == 'I') 3224 env = ENVIRON_INDOOR; 3225 else if (country_ie[2] == 'O') 3226 env = ENVIRON_OUTDOOR; 3227 3228 rcu_read_lock(); 3229 lr = get_last_request(); 3230 3231 if (unlikely(!lr)) 3232 goto out; 3233 3234 /* 3235 * We will run this only upon a successful connection on cfg80211. 3236 * We leave conflict resolution to the workqueue, where can hold 3237 * the RTNL. 3238 */ 3239 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3240 lr->wiphy_idx != WIPHY_IDX_INVALID) 3241 goto out; 3242 3243 request->wiphy_idx = get_wiphy_idx(wiphy); 3244 request->alpha2[0] = alpha2[0]; 3245 request->alpha2[1] = alpha2[1]; 3246 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3247 request->country_ie_env = env; 3248 3249 /* Allow calling CRDA again */ 3250 reset_crda_timeouts(); 3251 3252 queue_regulatory_request(request); 3253 request = NULL; 3254 out: 3255 kfree(request); 3256 rcu_read_unlock(); 3257 } 3258 3259 static void restore_alpha2(char *alpha2, bool reset_user) 3260 { 3261 /* indicates there is no alpha2 to consider for restoration */ 3262 alpha2[0] = '9'; 3263 alpha2[1] = '7'; 3264 3265 /* The user setting has precedence over the module parameter */ 3266 if (is_user_regdom_saved()) { 3267 /* Unless we're asked to ignore it and reset it */ 3268 if (reset_user) { 3269 pr_debug("Restoring regulatory settings including user preference\n"); 3270 user_alpha2[0] = '9'; 3271 user_alpha2[1] = '7'; 3272 3273 /* 3274 * If we're ignoring user settings, we still need to 3275 * check the module parameter to ensure we put things 3276 * back as they were for a full restore. 3277 */ 3278 if (!is_world_regdom(ieee80211_regdom)) { 3279 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3280 ieee80211_regdom[0], ieee80211_regdom[1]); 3281 alpha2[0] = ieee80211_regdom[0]; 3282 alpha2[1] = ieee80211_regdom[1]; 3283 } 3284 } else { 3285 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3286 user_alpha2[0], user_alpha2[1]); 3287 alpha2[0] = user_alpha2[0]; 3288 alpha2[1] = user_alpha2[1]; 3289 } 3290 } else if (!is_world_regdom(ieee80211_regdom)) { 3291 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3292 ieee80211_regdom[0], ieee80211_regdom[1]); 3293 alpha2[0] = ieee80211_regdom[0]; 3294 alpha2[1] = ieee80211_regdom[1]; 3295 } else 3296 pr_debug("Restoring regulatory settings\n"); 3297 } 3298 3299 static void restore_custom_reg_settings(struct wiphy *wiphy) 3300 { 3301 struct ieee80211_supported_band *sband; 3302 enum nl80211_band band; 3303 struct ieee80211_channel *chan; 3304 int i; 3305 3306 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3307 sband = wiphy->bands[band]; 3308 if (!sband) 3309 continue; 3310 for (i = 0; i < sband->n_channels; i++) { 3311 chan = &sband->channels[i]; 3312 chan->flags = chan->orig_flags; 3313 chan->max_antenna_gain = chan->orig_mag; 3314 chan->max_power = chan->orig_mpwr; 3315 chan->beacon_found = false; 3316 } 3317 } 3318 } 3319 3320 /* 3321 * Restoring regulatory settings involves ingoring any 3322 * possibly stale country IE information and user regulatory 3323 * settings if so desired, this includes any beacon hints 3324 * learned as we could have traveled outside to another country 3325 * after disconnection. To restore regulatory settings we do 3326 * exactly what we did at bootup: 3327 * 3328 * - send a core regulatory hint 3329 * - send a user regulatory hint if applicable 3330 * 3331 * Device drivers that send a regulatory hint for a specific country 3332 * keep their own regulatory domain on wiphy->regd so that does 3333 * not need to be remembered. 3334 */ 3335 static void restore_regulatory_settings(bool reset_user, bool cached) 3336 { 3337 char alpha2[2]; 3338 char world_alpha2[2]; 3339 struct reg_beacon *reg_beacon, *btmp; 3340 LIST_HEAD(tmp_reg_req_list); 3341 struct cfg80211_registered_device *rdev; 3342 3343 ASSERT_RTNL(); 3344 3345 /* 3346 * Clear the indoor setting in case that it is not controlled by user 3347 * space, as otherwise there is no guarantee that the device is still 3348 * operating in an indoor environment. 3349 */ 3350 spin_lock(®_indoor_lock); 3351 if (reg_is_indoor && !reg_is_indoor_portid) { 3352 reg_is_indoor = false; 3353 reg_check_channels(); 3354 } 3355 spin_unlock(®_indoor_lock); 3356 3357 reset_regdomains(true, &world_regdom); 3358 restore_alpha2(alpha2, reset_user); 3359 3360 /* 3361 * If there's any pending requests we simply 3362 * stash them to a temporary pending queue and 3363 * add then after we've restored regulatory 3364 * settings. 3365 */ 3366 spin_lock(®_requests_lock); 3367 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3368 spin_unlock(®_requests_lock); 3369 3370 /* Clear beacon hints */ 3371 spin_lock_bh(®_pending_beacons_lock); 3372 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3373 list_del(®_beacon->list); 3374 kfree(reg_beacon); 3375 } 3376 spin_unlock_bh(®_pending_beacons_lock); 3377 3378 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3379 list_del(®_beacon->list); 3380 kfree(reg_beacon); 3381 } 3382 3383 /* First restore to the basic regulatory settings */ 3384 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3385 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3386 3387 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3388 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3389 continue; 3390 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3391 restore_custom_reg_settings(&rdev->wiphy); 3392 } 3393 3394 if (cached && (!is_an_alpha2(alpha2) || 3395 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3396 reset_regdomains(false, cfg80211_world_regdom); 3397 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3398 print_regdomain(get_cfg80211_regdom()); 3399 nl80211_send_reg_change_event(&core_request_world); 3400 reg_set_request_processed(); 3401 3402 if (is_an_alpha2(alpha2) && 3403 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3404 struct regulatory_request *ureq; 3405 3406 spin_lock(®_requests_lock); 3407 ureq = list_last_entry(®_requests_list, 3408 struct regulatory_request, 3409 list); 3410 list_del(&ureq->list); 3411 spin_unlock(®_requests_lock); 3412 3413 notify_self_managed_wiphys(ureq); 3414 reg_update_last_request(ureq); 3415 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3416 REGD_SOURCE_CACHED); 3417 } 3418 } else { 3419 regulatory_hint_core(world_alpha2); 3420 3421 /* 3422 * This restores the ieee80211_regdom module parameter 3423 * preference or the last user requested regulatory 3424 * settings, user regulatory settings takes precedence. 3425 */ 3426 if (is_an_alpha2(alpha2)) 3427 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3428 } 3429 3430 spin_lock(®_requests_lock); 3431 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3432 spin_unlock(®_requests_lock); 3433 3434 pr_debug("Kicking the queue\n"); 3435 3436 schedule_work(®_work); 3437 } 3438 3439 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3440 { 3441 struct cfg80211_registered_device *rdev; 3442 struct wireless_dev *wdev; 3443 3444 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3445 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3446 wdev_lock(wdev); 3447 if (!(wdev->wiphy->regulatory_flags & flag)) { 3448 wdev_unlock(wdev); 3449 return false; 3450 } 3451 wdev_unlock(wdev); 3452 } 3453 } 3454 3455 return true; 3456 } 3457 3458 void regulatory_hint_disconnect(void) 3459 { 3460 /* Restore of regulatory settings is not required when wiphy(s) 3461 * ignore IE from connected access point but clearance of beacon hints 3462 * is required when wiphy(s) supports beacon hints. 3463 */ 3464 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3465 struct reg_beacon *reg_beacon, *btmp; 3466 3467 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3468 return; 3469 3470 spin_lock_bh(®_pending_beacons_lock); 3471 list_for_each_entry_safe(reg_beacon, btmp, 3472 ®_pending_beacons, list) { 3473 list_del(®_beacon->list); 3474 kfree(reg_beacon); 3475 } 3476 spin_unlock_bh(®_pending_beacons_lock); 3477 3478 list_for_each_entry_safe(reg_beacon, btmp, 3479 ®_beacon_list, list) { 3480 list_del(®_beacon->list); 3481 kfree(reg_beacon); 3482 } 3483 3484 return; 3485 } 3486 3487 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3488 restore_regulatory_settings(false, true); 3489 } 3490 3491 static bool freq_is_chan_12_13_14(u32 freq) 3492 { 3493 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3494 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3495 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3496 return true; 3497 return false; 3498 } 3499 3500 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3501 { 3502 struct reg_beacon *pending_beacon; 3503 3504 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3505 if (ieee80211_channel_equal(beacon_chan, 3506 &pending_beacon->chan)) 3507 return true; 3508 return false; 3509 } 3510 3511 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3512 struct ieee80211_channel *beacon_chan, 3513 gfp_t gfp) 3514 { 3515 struct reg_beacon *reg_beacon; 3516 bool processing; 3517 3518 if (beacon_chan->beacon_found || 3519 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3520 (beacon_chan->band == NL80211_BAND_2GHZ && 3521 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3522 return 0; 3523 3524 spin_lock_bh(®_pending_beacons_lock); 3525 processing = pending_reg_beacon(beacon_chan); 3526 spin_unlock_bh(®_pending_beacons_lock); 3527 3528 if (processing) 3529 return 0; 3530 3531 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3532 if (!reg_beacon) 3533 return -ENOMEM; 3534 3535 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n", 3536 beacon_chan->center_freq, beacon_chan->freq_offset, 3537 ieee80211_freq_khz_to_channel( 3538 ieee80211_channel_to_khz(beacon_chan)), 3539 wiphy_name(wiphy)); 3540 3541 memcpy(®_beacon->chan, beacon_chan, 3542 sizeof(struct ieee80211_channel)); 3543 3544 /* 3545 * Since we can be called from BH or and non-BH context 3546 * we must use spin_lock_bh() 3547 */ 3548 spin_lock_bh(®_pending_beacons_lock); 3549 list_add_tail(®_beacon->list, ®_pending_beacons); 3550 spin_unlock_bh(®_pending_beacons_lock); 3551 3552 schedule_work(®_work); 3553 3554 return 0; 3555 } 3556 3557 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3558 { 3559 unsigned int i; 3560 const struct ieee80211_reg_rule *reg_rule = NULL; 3561 const struct ieee80211_freq_range *freq_range = NULL; 3562 const struct ieee80211_power_rule *power_rule = NULL; 3563 char bw[32], cac_time[32]; 3564 3565 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3566 3567 for (i = 0; i < rd->n_reg_rules; i++) { 3568 reg_rule = &rd->reg_rules[i]; 3569 freq_range = ®_rule->freq_range; 3570 power_rule = ®_rule->power_rule; 3571 3572 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3573 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 3574 freq_range->max_bandwidth_khz, 3575 reg_get_max_bandwidth(rd, reg_rule)); 3576 else 3577 snprintf(bw, sizeof(bw), "%d KHz", 3578 freq_range->max_bandwidth_khz); 3579 3580 if (reg_rule->flags & NL80211_RRF_DFS) 3581 scnprintf(cac_time, sizeof(cac_time), "%u s", 3582 reg_rule->dfs_cac_ms/1000); 3583 else 3584 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3585 3586 3587 /* 3588 * There may not be documentation for max antenna gain 3589 * in certain regions 3590 */ 3591 if (power_rule->max_antenna_gain) 3592 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3593 freq_range->start_freq_khz, 3594 freq_range->end_freq_khz, 3595 bw, 3596 power_rule->max_antenna_gain, 3597 power_rule->max_eirp, 3598 cac_time); 3599 else 3600 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3601 freq_range->start_freq_khz, 3602 freq_range->end_freq_khz, 3603 bw, 3604 power_rule->max_eirp, 3605 cac_time); 3606 } 3607 } 3608 3609 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3610 { 3611 switch (dfs_region) { 3612 case NL80211_DFS_UNSET: 3613 case NL80211_DFS_FCC: 3614 case NL80211_DFS_ETSI: 3615 case NL80211_DFS_JP: 3616 return true; 3617 default: 3618 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3619 return false; 3620 } 3621 } 3622 3623 static void print_regdomain(const struct ieee80211_regdomain *rd) 3624 { 3625 struct regulatory_request *lr = get_last_request(); 3626 3627 if (is_intersected_alpha2(rd->alpha2)) { 3628 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3629 struct cfg80211_registered_device *rdev; 3630 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3631 if (rdev) { 3632 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3633 rdev->country_ie_alpha2[0], 3634 rdev->country_ie_alpha2[1]); 3635 } else 3636 pr_debug("Current regulatory domain intersected:\n"); 3637 } else 3638 pr_debug("Current regulatory domain intersected:\n"); 3639 } else if (is_world_regdom(rd->alpha2)) { 3640 pr_debug("World regulatory domain updated:\n"); 3641 } else { 3642 if (is_unknown_alpha2(rd->alpha2)) 3643 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3644 else { 3645 if (reg_request_cell_base(lr)) 3646 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3647 rd->alpha2[0], rd->alpha2[1]); 3648 else 3649 pr_debug("Regulatory domain changed to country: %c%c\n", 3650 rd->alpha2[0], rd->alpha2[1]); 3651 } 3652 } 3653 3654 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3655 print_rd_rules(rd); 3656 } 3657 3658 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3659 { 3660 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3661 print_rd_rules(rd); 3662 } 3663 3664 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3665 { 3666 if (!is_world_regdom(rd->alpha2)) 3667 return -EINVAL; 3668 update_world_regdomain(rd); 3669 return 0; 3670 } 3671 3672 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3673 struct regulatory_request *user_request) 3674 { 3675 const struct ieee80211_regdomain *intersected_rd = NULL; 3676 3677 if (!regdom_changes(rd->alpha2)) 3678 return -EALREADY; 3679 3680 if (!is_valid_rd(rd)) { 3681 pr_err("Invalid regulatory domain detected: %c%c\n", 3682 rd->alpha2[0], rd->alpha2[1]); 3683 print_regdomain_info(rd); 3684 return -EINVAL; 3685 } 3686 3687 if (!user_request->intersect) { 3688 reset_regdomains(false, rd); 3689 return 0; 3690 } 3691 3692 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3693 if (!intersected_rd) 3694 return -EINVAL; 3695 3696 kfree(rd); 3697 rd = NULL; 3698 reset_regdomains(false, intersected_rd); 3699 3700 return 0; 3701 } 3702 3703 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3704 struct regulatory_request *driver_request) 3705 { 3706 const struct ieee80211_regdomain *regd; 3707 const struct ieee80211_regdomain *intersected_rd = NULL; 3708 const struct ieee80211_regdomain *tmp; 3709 struct wiphy *request_wiphy; 3710 3711 if (is_world_regdom(rd->alpha2)) 3712 return -EINVAL; 3713 3714 if (!regdom_changes(rd->alpha2)) 3715 return -EALREADY; 3716 3717 if (!is_valid_rd(rd)) { 3718 pr_err("Invalid regulatory domain detected: %c%c\n", 3719 rd->alpha2[0], rd->alpha2[1]); 3720 print_regdomain_info(rd); 3721 return -EINVAL; 3722 } 3723 3724 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3725 if (!request_wiphy) 3726 return -ENODEV; 3727 3728 if (!driver_request->intersect) { 3729 if (request_wiphy->regd) 3730 return -EALREADY; 3731 3732 regd = reg_copy_regd(rd); 3733 if (IS_ERR(regd)) 3734 return PTR_ERR(regd); 3735 3736 rcu_assign_pointer(request_wiphy->regd, regd); 3737 reset_regdomains(false, rd); 3738 return 0; 3739 } 3740 3741 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3742 if (!intersected_rd) 3743 return -EINVAL; 3744 3745 /* 3746 * We can trash what CRDA provided now. 3747 * However if a driver requested this specific regulatory 3748 * domain we keep it for its private use 3749 */ 3750 tmp = get_wiphy_regdom(request_wiphy); 3751 rcu_assign_pointer(request_wiphy->regd, rd); 3752 rcu_free_regdom(tmp); 3753 3754 rd = NULL; 3755 3756 reset_regdomains(false, intersected_rd); 3757 3758 return 0; 3759 } 3760 3761 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3762 struct regulatory_request *country_ie_request) 3763 { 3764 struct wiphy *request_wiphy; 3765 3766 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3767 !is_unknown_alpha2(rd->alpha2)) 3768 return -EINVAL; 3769 3770 /* 3771 * Lets only bother proceeding on the same alpha2 if the current 3772 * rd is non static (it means CRDA was present and was used last) 3773 * and the pending request came in from a country IE 3774 */ 3775 3776 if (!is_valid_rd(rd)) { 3777 pr_err("Invalid regulatory domain detected: %c%c\n", 3778 rd->alpha2[0], rd->alpha2[1]); 3779 print_regdomain_info(rd); 3780 return -EINVAL; 3781 } 3782 3783 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3784 if (!request_wiphy) 3785 return -ENODEV; 3786 3787 if (country_ie_request->intersect) 3788 return -EINVAL; 3789 3790 reset_regdomains(false, rd); 3791 return 0; 3792 } 3793 3794 /* 3795 * Use this call to set the current regulatory domain. Conflicts with 3796 * multiple drivers can be ironed out later. Caller must've already 3797 * kmalloc'd the rd structure. 3798 */ 3799 int set_regdom(const struct ieee80211_regdomain *rd, 3800 enum ieee80211_regd_source regd_src) 3801 { 3802 struct regulatory_request *lr; 3803 bool user_reset = false; 3804 int r; 3805 3806 if (IS_ERR_OR_NULL(rd)) 3807 return -ENODATA; 3808 3809 if (!reg_is_valid_request(rd->alpha2)) { 3810 kfree(rd); 3811 return -EINVAL; 3812 } 3813 3814 if (regd_src == REGD_SOURCE_CRDA) 3815 reset_crda_timeouts(); 3816 3817 lr = get_last_request(); 3818 3819 /* Note that this doesn't update the wiphys, this is done below */ 3820 switch (lr->initiator) { 3821 case NL80211_REGDOM_SET_BY_CORE: 3822 r = reg_set_rd_core(rd); 3823 break; 3824 case NL80211_REGDOM_SET_BY_USER: 3825 cfg80211_save_user_regdom(rd); 3826 r = reg_set_rd_user(rd, lr); 3827 user_reset = true; 3828 break; 3829 case NL80211_REGDOM_SET_BY_DRIVER: 3830 r = reg_set_rd_driver(rd, lr); 3831 break; 3832 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3833 r = reg_set_rd_country_ie(rd, lr); 3834 break; 3835 default: 3836 WARN(1, "invalid initiator %d\n", lr->initiator); 3837 kfree(rd); 3838 return -EINVAL; 3839 } 3840 3841 if (r) { 3842 switch (r) { 3843 case -EALREADY: 3844 reg_set_request_processed(); 3845 break; 3846 default: 3847 /* Back to world regulatory in case of errors */ 3848 restore_regulatory_settings(user_reset, false); 3849 } 3850 3851 kfree(rd); 3852 return r; 3853 } 3854 3855 /* This would make this whole thing pointless */ 3856 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3857 return -EINVAL; 3858 3859 /* update all wiphys now with the new established regulatory domain */ 3860 update_all_wiphy_regulatory(lr->initiator); 3861 3862 print_regdomain(get_cfg80211_regdom()); 3863 3864 nl80211_send_reg_change_event(lr); 3865 3866 reg_set_request_processed(); 3867 3868 return 0; 3869 } 3870 3871 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 3872 struct ieee80211_regdomain *rd) 3873 { 3874 const struct ieee80211_regdomain *regd; 3875 const struct ieee80211_regdomain *prev_regd; 3876 struct cfg80211_registered_device *rdev; 3877 3878 if (WARN_ON(!wiphy || !rd)) 3879 return -EINVAL; 3880 3881 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 3882 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 3883 return -EPERM; 3884 3885 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { 3886 print_regdomain_info(rd); 3887 return -EINVAL; 3888 } 3889 3890 regd = reg_copy_regd(rd); 3891 if (IS_ERR(regd)) 3892 return PTR_ERR(regd); 3893 3894 rdev = wiphy_to_rdev(wiphy); 3895 3896 spin_lock(®_requests_lock); 3897 prev_regd = rdev->requested_regd; 3898 rdev->requested_regd = regd; 3899 spin_unlock(®_requests_lock); 3900 3901 kfree(prev_regd); 3902 return 0; 3903 } 3904 3905 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 3906 struct ieee80211_regdomain *rd) 3907 { 3908 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 3909 3910 if (ret) 3911 return ret; 3912 3913 schedule_work(®_work); 3914 return 0; 3915 } 3916 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 3917 3918 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, 3919 struct ieee80211_regdomain *rd) 3920 { 3921 int ret; 3922 3923 ASSERT_RTNL(); 3924 3925 ret = __regulatory_set_wiphy_regd(wiphy, rd); 3926 if (ret) 3927 return ret; 3928 3929 /* process the request immediately */ 3930 reg_process_self_managed_hints(); 3931 return 0; 3932 } 3933 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); 3934 3935 void wiphy_regulatory_register(struct wiphy *wiphy) 3936 { 3937 struct regulatory_request *lr = get_last_request(); 3938 3939 /* self-managed devices ignore beacon hints and country IE */ 3940 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 3941 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 3942 REGULATORY_COUNTRY_IE_IGNORE; 3943 3944 /* 3945 * The last request may have been received before this 3946 * registration call. Call the driver notifier if 3947 * initiator is USER. 3948 */ 3949 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 3950 reg_call_notifier(wiphy, lr); 3951 } 3952 3953 if (!reg_dev_ignore_cell_hint(wiphy)) 3954 reg_num_devs_support_basehint++; 3955 3956 wiphy_update_regulatory(wiphy, lr->initiator); 3957 wiphy_all_share_dfs_chan_state(wiphy); 3958 } 3959 3960 void wiphy_regulatory_deregister(struct wiphy *wiphy) 3961 { 3962 struct wiphy *request_wiphy = NULL; 3963 struct regulatory_request *lr; 3964 3965 lr = get_last_request(); 3966 3967 if (!reg_dev_ignore_cell_hint(wiphy)) 3968 reg_num_devs_support_basehint--; 3969 3970 rcu_free_regdom(get_wiphy_regdom(wiphy)); 3971 RCU_INIT_POINTER(wiphy->regd, NULL); 3972 3973 if (lr) 3974 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 3975 3976 if (!request_wiphy || request_wiphy != wiphy) 3977 return; 3978 3979 lr->wiphy_idx = WIPHY_IDX_INVALID; 3980 lr->country_ie_env = ENVIRON_ANY; 3981 } 3982 3983 /* 3984 * See FCC notices for UNII band definitions 3985 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii 3986 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0 3987 */ 3988 int cfg80211_get_unii(int freq) 3989 { 3990 /* UNII-1 */ 3991 if (freq >= 5150 && freq <= 5250) 3992 return 0; 3993 3994 /* UNII-2A */ 3995 if (freq > 5250 && freq <= 5350) 3996 return 1; 3997 3998 /* UNII-2B */ 3999 if (freq > 5350 && freq <= 5470) 4000 return 2; 4001 4002 /* UNII-2C */ 4003 if (freq > 5470 && freq <= 5725) 4004 return 3; 4005 4006 /* UNII-3 */ 4007 if (freq > 5725 && freq <= 5825) 4008 return 4; 4009 4010 /* UNII-5 */ 4011 if (freq > 5925 && freq <= 6425) 4012 return 5; 4013 4014 /* UNII-6 */ 4015 if (freq > 6425 && freq <= 6525) 4016 return 6; 4017 4018 /* UNII-7 */ 4019 if (freq > 6525 && freq <= 6875) 4020 return 7; 4021 4022 /* UNII-8 */ 4023 if (freq > 6875 && freq <= 7125) 4024 return 8; 4025 4026 return -EINVAL; 4027 } 4028 4029 bool regulatory_indoor_allowed(void) 4030 { 4031 return reg_is_indoor; 4032 } 4033 4034 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 4035 { 4036 const struct ieee80211_regdomain *regd = NULL; 4037 const struct ieee80211_regdomain *wiphy_regd = NULL; 4038 bool pre_cac_allowed = false; 4039 4040 rcu_read_lock(); 4041 4042 regd = rcu_dereference(cfg80211_regdomain); 4043 wiphy_regd = rcu_dereference(wiphy->regd); 4044 if (!wiphy_regd) { 4045 if (regd->dfs_region == NL80211_DFS_ETSI) 4046 pre_cac_allowed = true; 4047 4048 rcu_read_unlock(); 4049 4050 return pre_cac_allowed; 4051 } 4052 4053 if (regd->dfs_region == wiphy_regd->dfs_region && 4054 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 4055 pre_cac_allowed = true; 4056 4057 rcu_read_unlock(); 4058 4059 return pre_cac_allowed; 4060 } 4061 EXPORT_SYMBOL(regulatory_pre_cac_allowed); 4062 4063 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev) 4064 { 4065 struct wireless_dev *wdev; 4066 /* If we finished CAC or received radar, we should end any 4067 * CAC running on the same channels. 4068 * the check !cfg80211_chandef_dfs_usable contain 2 options: 4069 * either all channels are available - those the CAC_FINISHED 4070 * event has effected another wdev state, or there is a channel 4071 * in unavailable state in wdev chandef - those the RADAR_DETECTED 4072 * event has effected another wdev state. 4073 * In both cases we should end the CAC on the wdev. 4074 */ 4075 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 4076 if (wdev->cac_started && 4077 !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef)) 4078 rdev_end_cac(rdev, wdev->netdev); 4079 } 4080 } 4081 4082 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 4083 struct cfg80211_chan_def *chandef, 4084 enum nl80211_dfs_state dfs_state, 4085 enum nl80211_radar_event event) 4086 { 4087 struct cfg80211_registered_device *rdev; 4088 4089 ASSERT_RTNL(); 4090 4091 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 4092 return; 4093 4094 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 4095 if (wiphy == &rdev->wiphy) 4096 continue; 4097 4098 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 4099 continue; 4100 4101 if (!ieee80211_get_channel(&rdev->wiphy, 4102 chandef->chan->center_freq)) 4103 continue; 4104 4105 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 4106 4107 if (event == NL80211_RADAR_DETECTED || 4108 event == NL80211_RADAR_CAC_FINISHED) { 4109 cfg80211_sched_dfs_chan_update(rdev); 4110 cfg80211_check_and_end_cac(rdev); 4111 } 4112 4113 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 4114 } 4115 } 4116 4117 static int __init regulatory_init_db(void) 4118 { 4119 int err; 4120 4121 /* 4122 * It's possible that - due to other bugs/issues - cfg80211 4123 * never called regulatory_init() below, or that it failed; 4124 * in that case, don't try to do any further work here as 4125 * it's doomed to lead to crashes. 4126 */ 4127 if (IS_ERR_OR_NULL(reg_pdev)) 4128 return -EINVAL; 4129 4130 err = load_builtin_regdb_keys(); 4131 if (err) 4132 return err; 4133 4134 /* We always try to get an update for the static regdomain */ 4135 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 4136 if (err) { 4137 if (err == -ENOMEM) { 4138 platform_device_unregister(reg_pdev); 4139 return err; 4140 } 4141 /* 4142 * N.B. kobject_uevent_env() can fail mainly for when we're out 4143 * memory which is handled and propagated appropriately above 4144 * but it can also fail during a netlink_broadcast() or during 4145 * early boot for call_usermodehelper(). For now treat these 4146 * errors as non-fatal. 4147 */ 4148 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 4149 } 4150 4151 /* 4152 * Finally, if the user set the module parameter treat it 4153 * as a user hint. 4154 */ 4155 if (!is_world_regdom(ieee80211_regdom)) 4156 regulatory_hint_user(ieee80211_regdom, 4157 NL80211_USER_REG_HINT_USER); 4158 4159 return 0; 4160 } 4161 #ifndef MODULE 4162 late_initcall(regulatory_init_db); 4163 #endif 4164 4165 int __init regulatory_init(void) 4166 { 4167 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 4168 if (IS_ERR(reg_pdev)) 4169 return PTR_ERR(reg_pdev); 4170 4171 spin_lock_init(®_requests_lock); 4172 spin_lock_init(®_pending_beacons_lock); 4173 spin_lock_init(®_indoor_lock); 4174 4175 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 4176 4177 user_alpha2[0] = '9'; 4178 user_alpha2[1] = '7'; 4179 4180 #ifdef MODULE 4181 return regulatory_init_db(); 4182 #else 4183 return 0; 4184 #endif 4185 } 4186 4187 void regulatory_exit(void) 4188 { 4189 struct regulatory_request *reg_request, *tmp; 4190 struct reg_beacon *reg_beacon, *btmp; 4191 4192 cancel_work_sync(®_work); 4193 cancel_crda_timeout_sync(); 4194 cancel_delayed_work_sync(®_check_chans); 4195 4196 /* Lock to suppress warnings */ 4197 rtnl_lock(); 4198 reset_regdomains(true, NULL); 4199 rtnl_unlock(); 4200 4201 dev_set_uevent_suppress(®_pdev->dev, true); 4202 4203 platform_device_unregister(reg_pdev); 4204 4205 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 4206 list_del(®_beacon->list); 4207 kfree(reg_beacon); 4208 } 4209 4210 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 4211 list_del(®_beacon->list); 4212 kfree(reg_beacon); 4213 } 4214 4215 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4216 list_del(®_request->list); 4217 kfree(reg_request); 4218 } 4219 4220 if (!IS_ERR_OR_NULL(regdb)) 4221 kfree(regdb); 4222 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4223 kfree(cfg80211_user_regdom); 4224 4225 free_regdb_keyring(); 4226 } 4227