1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2021 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <net/cfg80211.h> 61 #include "core.h" 62 #include "reg.h" 63 #include "rdev-ops.h" 64 #include "nl80211.h" 65 66 /* 67 * Grace period we give before making sure all current interfaces reside on 68 * channels allowed by the current regulatory domain. 69 */ 70 #define REG_ENFORCE_GRACE_MS 60000 71 72 /** 73 * enum reg_request_treatment - regulatory request treatment 74 * 75 * @REG_REQ_OK: continue processing the regulatory request 76 * @REG_REQ_IGNORE: ignore the regulatory request 77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 78 * be intersected with the current one. 79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 80 * regulatory settings, and no further processing is required. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 }; 88 89 static struct regulatory_request core_request_world = { 90 .initiator = NL80211_REGDOM_SET_BY_CORE, 91 .alpha2[0] = '0', 92 .alpha2[1] = '0', 93 .intersect = false, 94 .processed = true, 95 .country_ie_env = ENVIRON_ANY, 96 }; 97 98 /* 99 * Receipt of information from last regulatory request, 100 * protected by RTNL (and can be accessed with RCU protection) 101 */ 102 static struct regulatory_request __rcu *last_request = 103 (void __force __rcu *)&core_request_world; 104 105 /* To trigger userspace events and load firmware */ 106 static struct platform_device *reg_pdev; 107 108 /* 109 * Central wireless core regulatory domains, we only need two, 110 * the current one and a world regulatory domain in case we have no 111 * information to give us an alpha2. 112 * (protected by RTNL, can be read under RCU) 113 */ 114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 115 116 /* 117 * Number of devices that registered to the core 118 * that support cellular base station regulatory hints 119 * (protected by RTNL) 120 */ 121 static int reg_num_devs_support_basehint; 122 123 /* 124 * State variable indicating if the platform on which the devices 125 * are attached is operating in an indoor environment. The state variable 126 * is relevant for all registered devices. 127 */ 128 static bool reg_is_indoor; 129 static DEFINE_SPINLOCK(reg_indoor_lock); 130 131 /* Used to track the userspace process controlling the indoor setting */ 132 static u32 reg_is_indoor_portid; 133 134 static void restore_regulatory_settings(bool reset_user, bool cached); 135 static void print_regdomain(const struct ieee80211_regdomain *rd); 136 137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 138 { 139 return rcu_dereference_rtnl(cfg80211_regdomain); 140 } 141 142 /* 143 * Returns the regulatory domain associated with the wiphy. 144 * 145 * Requires any of RTNL, wiphy mutex or RCU protection. 146 */ 147 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 148 { 149 return rcu_dereference_check(wiphy->regd, 150 lockdep_is_held(&wiphy->mtx) || 151 lockdep_rtnl_is_held()); 152 } 153 EXPORT_SYMBOL(get_wiphy_regdom); 154 155 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 156 { 157 switch (dfs_region) { 158 case NL80211_DFS_UNSET: 159 return "unset"; 160 case NL80211_DFS_FCC: 161 return "FCC"; 162 case NL80211_DFS_ETSI: 163 return "ETSI"; 164 case NL80211_DFS_JP: 165 return "JP"; 166 } 167 return "Unknown"; 168 } 169 170 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 171 { 172 const struct ieee80211_regdomain *regd = NULL; 173 const struct ieee80211_regdomain *wiphy_regd = NULL; 174 175 rcu_read_lock(); 176 regd = get_cfg80211_regdom(); 177 178 if (!wiphy) 179 goto out; 180 181 wiphy_regd = get_wiphy_regdom(wiphy); 182 if (!wiphy_regd) 183 goto out; 184 185 if (wiphy_regd->dfs_region == regd->dfs_region) 186 goto out; 187 188 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 189 dev_name(&wiphy->dev), 190 reg_dfs_region_str(wiphy_regd->dfs_region), 191 reg_dfs_region_str(regd->dfs_region)); 192 193 out: 194 rcu_read_unlock(); 195 196 return regd->dfs_region; 197 } 198 199 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 200 { 201 if (!r) 202 return; 203 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 204 } 205 206 static struct regulatory_request *get_last_request(void) 207 { 208 return rcu_dereference_rtnl(last_request); 209 } 210 211 /* Used to queue up regulatory hints */ 212 static LIST_HEAD(reg_requests_list); 213 static DEFINE_SPINLOCK(reg_requests_lock); 214 215 /* Used to queue up beacon hints for review */ 216 static LIST_HEAD(reg_pending_beacons); 217 static DEFINE_SPINLOCK(reg_pending_beacons_lock); 218 219 /* Used to keep track of processed beacon hints */ 220 static LIST_HEAD(reg_beacon_list); 221 222 struct reg_beacon { 223 struct list_head list; 224 struct ieee80211_channel chan; 225 }; 226 227 static void reg_check_chans_work(struct work_struct *work); 228 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 229 230 static void reg_todo(struct work_struct *work); 231 static DECLARE_WORK(reg_work, reg_todo); 232 233 /* We keep a static world regulatory domain in case of the absence of CRDA */ 234 static const struct ieee80211_regdomain world_regdom = { 235 .n_reg_rules = 8, 236 .alpha2 = "00", 237 .reg_rules = { 238 /* IEEE 802.11b/g, channels 1..11 */ 239 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 240 /* IEEE 802.11b/g, channels 12..13. */ 241 REG_RULE(2467-10, 2472+10, 20, 6, 20, 242 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 243 /* IEEE 802.11 channel 14 - Only JP enables 244 * this and for 802.11b only */ 245 REG_RULE(2484-10, 2484+10, 20, 6, 20, 246 NL80211_RRF_NO_IR | 247 NL80211_RRF_NO_OFDM), 248 /* IEEE 802.11a, channel 36..48 */ 249 REG_RULE(5180-10, 5240+10, 80, 6, 20, 250 NL80211_RRF_NO_IR | 251 NL80211_RRF_AUTO_BW), 252 253 /* IEEE 802.11a, channel 52..64 - DFS required */ 254 REG_RULE(5260-10, 5320+10, 80, 6, 20, 255 NL80211_RRF_NO_IR | 256 NL80211_RRF_AUTO_BW | 257 NL80211_RRF_DFS), 258 259 /* IEEE 802.11a, channel 100..144 - DFS required */ 260 REG_RULE(5500-10, 5720+10, 160, 6, 20, 261 NL80211_RRF_NO_IR | 262 NL80211_RRF_DFS), 263 264 /* IEEE 802.11a, channel 149..165 */ 265 REG_RULE(5745-10, 5825+10, 80, 6, 20, 266 NL80211_RRF_NO_IR), 267 268 /* IEEE 802.11ad (60GHz), channels 1..3 */ 269 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 270 } 271 }; 272 273 /* protected by RTNL */ 274 static const struct ieee80211_regdomain *cfg80211_world_regdom = 275 &world_regdom; 276 277 static char *ieee80211_regdom = "00"; 278 static char user_alpha2[2]; 279 static const struct ieee80211_regdomain *cfg80211_user_regdom; 280 281 module_param(ieee80211_regdom, charp, 0444); 282 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 283 284 static void reg_free_request(struct regulatory_request *request) 285 { 286 if (request == &core_request_world) 287 return; 288 289 if (request != get_last_request()) 290 kfree(request); 291 } 292 293 static void reg_free_last_request(void) 294 { 295 struct regulatory_request *lr = get_last_request(); 296 297 if (lr != &core_request_world && lr) 298 kfree_rcu(lr, rcu_head); 299 } 300 301 static void reg_update_last_request(struct regulatory_request *request) 302 { 303 struct regulatory_request *lr; 304 305 lr = get_last_request(); 306 if (lr == request) 307 return; 308 309 reg_free_last_request(); 310 rcu_assign_pointer(last_request, request); 311 } 312 313 static void reset_regdomains(bool full_reset, 314 const struct ieee80211_regdomain *new_regdom) 315 { 316 const struct ieee80211_regdomain *r; 317 318 ASSERT_RTNL(); 319 320 r = get_cfg80211_regdom(); 321 322 /* avoid freeing static information or freeing something twice */ 323 if (r == cfg80211_world_regdom) 324 r = NULL; 325 if (cfg80211_world_regdom == &world_regdom) 326 cfg80211_world_regdom = NULL; 327 if (r == &world_regdom) 328 r = NULL; 329 330 rcu_free_regdom(r); 331 rcu_free_regdom(cfg80211_world_regdom); 332 333 cfg80211_world_regdom = &world_regdom; 334 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 335 336 if (!full_reset) 337 return; 338 339 reg_update_last_request(&core_request_world); 340 } 341 342 /* 343 * Dynamic world regulatory domain requested by the wireless 344 * core upon initialization 345 */ 346 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 347 { 348 struct regulatory_request *lr; 349 350 lr = get_last_request(); 351 352 WARN_ON(!lr); 353 354 reset_regdomains(false, rd); 355 356 cfg80211_world_regdom = rd; 357 } 358 359 bool is_world_regdom(const char *alpha2) 360 { 361 if (!alpha2) 362 return false; 363 return alpha2[0] == '0' && alpha2[1] == '0'; 364 } 365 366 static bool is_alpha2_set(const char *alpha2) 367 { 368 if (!alpha2) 369 return false; 370 return alpha2[0] && alpha2[1]; 371 } 372 373 static bool is_unknown_alpha2(const char *alpha2) 374 { 375 if (!alpha2) 376 return false; 377 /* 378 * Special case where regulatory domain was built by driver 379 * but a specific alpha2 cannot be determined 380 */ 381 return alpha2[0] == '9' && alpha2[1] == '9'; 382 } 383 384 static bool is_intersected_alpha2(const char *alpha2) 385 { 386 if (!alpha2) 387 return false; 388 /* 389 * Special case where regulatory domain is the 390 * result of an intersection between two regulatory domain 391 * structures 392 */ 393 return alpha2[0] == '9' && alpha2[1] == '8'; 394 } 395 396 static bool is_an_alpha2(const char *alpha2) 397 { 398 if (!alpha2) 399 return false; 400 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 401 } 402 403 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 404 { 405 if (!alpha2_x || !alpha2_y) 406 return false; 407 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 408 } 409 410 static bool regdom_changes(const char *alpha2) 411 { 412 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 413 414 if (!r) 415 return true; 416 return !alpha2_equal(r->alpha2, alpha2); 417 } 418 419 /* 420 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 421 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 422 * has ever been issued. 423 */ 424 static bool is_user_regdom_saved(void) 425 { 426 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 427 return false; 428 429 /* This would indicate a mistake on the design */ 430 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 431 "Unexpected user alpha2: %c%c\n", 432 user_alpha2[0], user_alpha2[1])) 433 return false; 434 435 return true; 436 } 437 438 static const struct ieee80211_regdomain * 439 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 440 { 441 struct ieee80211_regdomain *regd; 442 unsigned int i; 443 444 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 445 GFP_KERNEL); 446 if (!regd) 447 return ERR_PTR(-ENOMEM); 448 449 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 450 451 for (i = 0; i < src_regd->n_reg_rules; i++) 452 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 453 sizeof(struct ieee80211_reg_rule)); 454 455 return regd; 456 } 457 458 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 459 { 460 ASSERT_RTNL(); 461 462 if (!IS_ERR(cfg80211_user_regdom)) 463 kfree(cfg80211_user_regdom); 464 cfg80211_user_regdom = reg_copy_regd(rd); 465 } 466 467 struct reg_regdb_apply_request { 468 struct list_head list; 469 const struct ieee80211_regdomain *regdom; 470 }; 471 472 static LIST_HEAD(reg_regdb_apply_list); 473 static DEFINE_MUTEX(reg_regdb_apply_mutex); 474 475 static void reg_regdb_apply(struct work_struct *work) 476 { 477 struct reg_regdb_apply_request *request; 478 479 rtnl_lock(); 480 481 mutex_lock(®_regdb_apply_mutex); 482 while (!list_empty(®_regdb_apply_list)) { 483 request = list_first_entry(®_regdb_apply_list, 484 struct reg_regdb_apply_request, 485 list); 486 list_del(&request->list); 487 488 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 489 kfree(request); 490 } 491 mutex_unlock(®_regdb_apply_mutex); 492 493 rtnl_unlock(); 494 } 495 496 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 497 498 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 499 { 500 struct reg_regdb_apply_request *request; 501 502 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 503 if (!request) { 504 kfree(regdom); 505 return -ENOMEM; 506 } 507 508 request->regdom = regdom; 509 510 mutex_lock(®_regdb_apply_mutex); 511 list_add_tail(&request->list, ®_regdb_apply_list); 512 mutex_unlock(®_regdb_apply_mutex); 513 514 schedule_work(®_regdb_work); 515 return 0; 516 } 517 518 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 519 /* Max number of consecutive attempts to communicate with CRDA */ 520 #define REG_MAX_CRDA_TIMEOUTS 10 521 522 static u32 reg_crda_timeouts; 523 524 static void crda_timeout_work(struct work_struct *work); 525 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 526 527 static void crda_timeout_work(struct work_struct *work) 528 { 529 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 530 rtnl_lock(); 531 reg_crda_timeouts++; 532 restore_regulatory_settings(true, false); 533 rtnl_unlock(); 534 } 535 536 static void cancel_crda_timeout(void) 537 { 538 cancel_delayed_work(&crda_timeout); 539 } 540 541 static void cancel_crda_timeout_sync(void) 542 { 543 cancel_delayed_work_sync(&crda_timeout); 544 } 545 546 static void reset_crda_timeouts(void) 547 { 548 reg_crda_timeouts = 0; 549 } 550 551 /* 552 * This lets us keep regulatory code which is updated on a regulatory 553 * basis in userspace. 554 */ 555 static int call_crda(const char *alpha2) 556 { 557 char country[12]; 558 char *env[] = { country, NULL }; 559 int ret; 560 561 snprintf(country, sizeof(country), "COUNTRY=%c%c", 562 alpha2[0], alpha2[1]); 563 564 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 565 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 566 return -EINVAL; 567 } 568 569 if (!is_world_regdom((char *) alpha2)) 570 pr_debug("Calling CRDA for country: %c%c\n", 571 alpha2[0], alpha2[1]); 572 else 573 pr_debug("Calling CRDA to update world regulatory domain\n"); 574 575 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 576 if (ret) 577 return ret; 578 579 queue_delayed_work(system_power_efficient_wq, 580 &crda_timeout, msecs_to_jiffies(3142)); 581 return 0; 582 } 583 #else 584 static inline void cancel_crda_timeout(void) {} 585 static inline void cancel_crda_timeout_sync(void) {} 586 static inline void reset_crda_timeouts(void) {} 587 static inline int call_crda(const char *alpha2) 588 { 589 return -ENODATA; 590 } 591 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 592 593 /* code to directly load a firmware database through request_firmware */ 594 static const struct fwdb_header *regdb; 595 596 struct fwdb_country { 597 u8 alpha2[2]; 598 __be16 coll_ptr; 599 /* this struct cannot be extended */ 600 } __packed __aligned(4); 601 602 struct fwdb_collection { 603 u8 len; 604 u8 n_rules; 605 u8 dfs_region; 606 /* no optional data yet */ 607 /* aligned to 2, then followed by __be16 array of rule pointers */ 608 } __packed __aligned(4); 609 610 enum fwdb_flags { 611 FWDB_FLAG_NO_OFDM = BIT(0), 612 FWDB_FLAG_NO_OUTDOOR = BIT(1), 613 FWDB_FLAG_DFS = BIT(2), 614 FWDB_FLAG_NO_IR = BIT(3), 615 FWDB_FLAG_AUTO_BW = BIT(4), 616 }; 617 618 struct fwdb_wmm_ac { 619 u8 ecw; 620 u8 aifsn; 621 __be16 cot; 622 } __packed; 623 624 struct fwdb_wmm_rule { 625 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 626 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 627 } __packed; 628 629 struct fwdb_rule { 630 u8 len; 631 u8 flags; 632 __be16 max_eirp; 633 __be32 start, end, max_bw; 634 /* start of optional data */ 635 __be16 cac_timeout; 636 __be16 wmm_ptr; 637 } __packed __aligned(4); 638 639 #define FWDB_MAGIC 0x52474442 640 #define FWDB_VERSION 20 641 642 struct fwdb_header { 643 __be32 magic; 644 __be32 version; 645 struct fwdb_country country[]; 646 } __packed __aligned(4); 647 648 static int ecw2cw(int ecw) 649 { 650 return (1 << ecw) - 1; 651 } 652 653 static bool valid_wmm(struct fwdb_wmm_rule *rule) 654 { 655 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 656 int i; 657 658 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 659 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 660 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 661 u8 aifsn = ac[i].aifsn; 662 663 if (cw_min >= cw_max) 664 return false; 665 666 if (aifsn < 1) 667 return false; 668 } 669 670 return true; 671 } 672 673 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 674 { 675 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 676 677 if ((u8 *)rule + sizeof(rule->len) > data + size) 678 return false; 679 680 /* mandatory fields */ 681 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 682 return false; 683 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 684 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 685 struct fwdb_wmm_rule *wmm; 686 687 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 688 return false; 689 690 wmm = (void *)(data + wmm_ptr); 691 692 if (!valid_wmm(wmm)) 693 return false; 694 } 695 return true; 696 } 697 698 static bool valid_country(const u8 *data, unsigned int size, 699 const struct fwdb_country *country) 700 { 701 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 702 struct fwdb_collection *coll = (void *)(data + ptr); 703 __be16 *rules_ptr; 704 unsigned int i; 705 706 /* make sure we can read len/n_rules */ 707 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 708 return false; 709 710 /* make sure base struct and all rules fit */ 711 if ((u8 *)coll + ALIGN(coll->len, 2) + 712 (coll->n_rules * 2) > data + size) 713 return false; 714 715 /* mandatory fields must exist */ 716 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 717 return false; 718 719 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 720 721 for (i = 0; i < coll->n_rules; i++) { 722 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 723 724 if (!valid_rule(data, size, rule_ptr)) 725 return false; 726 } 727 728 return true; 729 } 730 731 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 732 static struct key *builtin_regdb_keys; 733 734 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen) 735 { 736 const u8 *end = p + buflen; 737 size_t plen; 738 key_ref_t key; 739 740 while (p < end) { 741 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more 742 * than 256 bytes in size. 743 */ 744 if (end - p < 4) 745 goto dodgy_cert; 746 if (p[0] != 0x30 && 747 p[1] != 0x82) 748 goto dodgy_cert; 749 plen = (p[2] << 8) | p[3]; 750 plen += 4; 751 if (plen > end - p) 752 goto dodgy_cert; 753 754 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1), 755 "asymmetric", NULL, p, plen, 756 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 757 KEY_USR_VIEW | KEY_USR_READ), 758 KEY_ALLOC_NOT_IN_QUOTA | 759 KEY_ALLOC_BUILT_IN | 760 KEY_ALLOC_BYPASS_RESTRICTION); 761 if (IS_ERR(key)) { 762 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n", 763 PTR_ERR(key)); 764 } else { 765 pr_notice("Loaded X.509 cert '%s'\n", 766 key_ref_to_ptr(key)->description); 767 key_ref_put(key); 768 } 769 p += plen; 770 } 771 772 return; 773 774 dodgy_cert: 775 pr_err("Problem parsing in-kernel X.509 certificate list\n"); 776 } 777 778 static int __init load_builtin_regdb_keys(void) 779 { 780 builtin_regdb_keys = 781 keyring_alloc(".builtin_regdb_keys", 782 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 783 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 784 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 785 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 786 if (IS_ERR(builtin_regdb_keys)) 787 return PTR_ERR(builtin_regdb_keys); 788 789 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 790 791 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 792 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len); 793 #endif 794 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 795 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 796 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len); 797 #endif 798 799 return 0; 800 } 801 802 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 803 { 804 const struct firmware *sig; 805 bool result; 806 807 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 808 return false; 809 810 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 811 builtin_regdb_keys, 812 VERIFYING_UNSPECIFIED_SIGNATURE, 813 NULL, NULL) == 0; 814 815 release_firmware(sig); 816 817 return result; 818 } 819 820 static void free_regdb_keyring(void) 821 { 822 key_put(builtin_regdb_keys); 823 } 824 #else 825 static int load_builtin_regdb_keys(void) 826 { 827 return 0; 828 } 829 830 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 831 { 832 return true; 833 } 834 835 static void free_regdb_keyring(void) 836 { 837 } 838 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 839 840 static bool valid_regdb(const u8 *data, unsigned int size) 841 { 842 const struct fwdb_header *hdr = (void *)data; 843 const struct fwdb_country *country; 844 845 if (size < sizeof(*hdr)) 846 return false; 847 848 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 849 return false; 850 851 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 852 return false; 853 854 if (!regdb_has_valid_signature(data, size)) 855 return false; 856 857 country = &hdr->country[0]; 858 while ((u8 *)(country + 1) <= data + size) { 859 if (!country->coll_ptr) 860 break; 861 if (!valid_country(data, size, country)) 862 return false; 863 country++; 864 } 865 866 return true; 867 } 868 869 static void set_wmm_rule(const struct fwdb_header *db, 870 const struct fwdb_country *country, 871 const struct fwdb_rule *rule, 872 struct ieee80211_reg_rule *rrule) 873 { 874 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 875 struct fwdb_wmm_rule *wmm; 876 unsigned int i, wmm_ptr; 877 878 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 879 wmm = (void *)((u8 *)db + wmm_ptr); 880 881 if (!valid_wmm(wmm)) { 882 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 883 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 884 country->alpha2[0], country->alpha2[1]); 885 return; 886 } 887 888 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 889 wmm_rule->client[i].cw_min = 890 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 891 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 892 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 893 wmm_rule->client[i].cot = 894 1000 * be16_to_cpu(wmm->client[i].cot); 895 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 896 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 897 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 898 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 899 } 900 901 rrule->has_wmm = true; 902 } 903 904 static int __regdb_query_wmm(const struct fwdb_header *db, 905 const struct fwdb_country *country, int freq, 906 struct ieee80211_reg_rule *rrule) 907 { 908 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 909 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 910 int i; 911 912 for (i = 0; i < coll->n_rules; i++) { 913 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 914 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 915 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 916 917 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 918 continue; 919 920 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 921 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 922 set_wmm_rule(db, country, rule, rrule); 923 return 0; 924 } 925 } 926 927 return -ENODATA; 928 } 929 930 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 931 { 932 const struct fwdb_header *hdr = regdb; 933 const struct fwdb_country *country; 934 935 if (!regdb) 936 return -ENODATA; 937 938 if (IS_ERR(regdb)) 939 return PTR_ERR(regdb); 940 941 country = &hdr->country[0]; 942 while (country->coll_ptr) { 943 if (alpha2_equal(alpha2, country->alpha2)) 944 return __regdb_query_wmm(regdb, country, freq, rule); 945 946 country++; 947 } 948 949 return -ENODATA; 950 } 951 EXPORT_SYMBOL(reg_query_regdb_wmm); 952 953 static int regdb_query_country(const struct fwdb_header *db, 954 const struct fwdb_country *country) 955 { 956 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 957 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 958 struct ieee80211_regdomain *regdom; 959 unsigned int i; 960 961 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 962 GFP_KERNEL); 963 if (!regdom) 964 return -ENOMEM; 965 966 regdom->n_reg_rules = coll->n_rules; 967 regdom->alpha2[0] = country->alpha2[0]; 968 regdom->alpha2[1] = country->alpha2[1]; 969 regdom->dfs_region = coll->dfs_region; 970 971 for (i = 0; i < regdom->n_reg_rules; i++) { 972 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 973 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 974 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 975 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 976 977 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 978 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 979 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 980 981 rrule->power_rule.max_antenna_gain = 0; 982 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 983 984 rrule->flags = 0; 985 if (rule->flags & FWDB_FLAG_NO_OFDM) 986 rrule->flags |= NL80211_RRF_NO_OFDM; 987 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 988 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 989 if (rule->flags & FWDB_FLAG_DFS) 990 rrule->flags |= NL80211_RRF_DFS; 991 if (rule->flags & FWDB_FLAG_NO_IR) 992 rrule->flags |= NL80211_RRF_NO_IR; 993 if (rule->flags & FWDB_FLAG_AUTO_BW) 994 rrule->flags |= NL80211_RRF_AUTO_BW; 995 996 rrule->dfs_cac_ms = 0; 997 998 /* handle optional data */ 999 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 1000 rrule->dfs_cac_ms = 1001 1000 * be16_to_cpu(rule->cac_timeout); 1002 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 1003 set_wmm_rule(db, country, rule, rrule); 1004 } 1005 1006 return reg_schedule_apply(regdom); 1007 } 1008 1009 static int query_regdb(const char *alpha2) 1010 { 1011 const struct fwdb_header *hdr = regdb; 1012 const struct fwdb_country *country; 1013 1014 ASSERT_RTNL(); 1015 1016 if (IS_ERR(regdb)) 1017 return PTR_ERR(regdb); 1018 1019 country = &hdr->country[0]; 1020 while (country->coll_ptr) { 1021 if (alpha2_equal(alpha2, country->alpha2)) 1022 return regdb_query_country(regdb, country); 1023 country++; 1024 } 1025 1026 return -ENODATA; 1027 } 1028 1029 static void regdb_fw_cb(const struct firmware *fw, void *context) 1030 { 1031 int set_error = 0; 1032 bool restore = true; 1033 void *db; 1034 1035 if (!fw) { 1036 pr_info("failed to load regulatory.db\n"); 1037 set_error = -ENODATA; 1038 } else if (!valid_regdb(fw->data, fw->size)) { 1039 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1040 set_error = -EINVAL; 1041 } 1042 1043 rtnl_lock(); 1044 if (regdb && !IS_ERR(regdb)) { 1045 /* negative case - a bug 1046 * positive case - can happen due to race in case of multiple cb's in 1047 * queue, due to usage of asynchronous callback 1048 * 1049 * Either case, just restore and free new db. 1050 */ 1051 } else if (set_error) { 1052 regdb = ERR_PTR(set_error); 1053 } else if (fw) { 1054 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1055 if (db) { 1056 regdb = db; 1057 restore = context && query_regdb(context); 1058 } else { 1059 restore = true; 1060 } 1061 } 1062 1063 if (restore) 1064 restore_regulatory_settings(true, false); 1065 1066 rtnl_unlock(); 1067 1068 kfree(context); 1069 1070 release_firmware(fw); 1071 } 1072 1073 static int query_regdb_file(const char *alpha2) 1074 { 1075 ASSERT_RTNL(); 1076 1077 if (regdb) 1078 return query_regdb(alpha2); 1079 1080 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1081 if (!alpha2) 1082 return -ENOMEM; 1083 1084 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1085 ®_pdev->dev, GFP_KERNEL, 1086 (void *)alpha2, regdb_fw_cb); 1087 } 1088 1089 int reg_reload_regdb(void) 1090 { 1091 const struct firmware *fw; 1092 void *db; 1093 int err; 1094 1095 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1096 if (err) 1097 return err; 1098 1099 if (!valid_regdb(fw->data, fw->size)) { 1100 err = -ENODATA; 1101 goto out; 1102 } 1103 1104 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1105 if (!db) { 1106 err = -ENOMEM; 1107 goto out; 1108 } 1109 1110 rtnl_lock(); 1111 if (!IS_ERR_OR_NULL(regdb)) 1112 kfree(regdb); 1113 regdb = db; 1114 rtnl_unlock(); 1115 1116 out: 1117 release_firmware(fw); 1118 return err; 1119 } 1120 1121 static bool reg_query_database(struct regulatory_request *request) 1122 { 1123 if (query_regdb_file(request->alpha2) == 0) 1124 return true; 1125 1126 if (call_crda(request->alpha2) == 0) 1127 return true; 1128 1129 return false; 1130 } 1131 1132 bool reg_is_valid_request(const char *alpha2) 1133 { 1134 struct regulatory_request *lr = get_last_request(); 1135 1136 if (!lr || lr->processed) 1137 return false; 1138 1139 return alpha2_equal(lr->alpha2, alpha2); 1140 } 1141 1142 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1143 { 1144 struct regulatory_request *lr = get_last_request(); 1145 1146 /* 1147 * Follow the driver's regulatory domain, if present, unless a country 1148 * IE has been processed or a user wants to help complaince further 1149 */ 1150 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1151 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1152 wiphy->regd) 1153 return get_wiphy_regdom(wiphy); 1154 1155 return get_cfg80211_regdom(); 1156 } 1157 1158 static unsigned int 1159 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1160 const struct ieee80211_reg_rule *rule) 1161 { 1162 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1163 const struct ieee80211_freq_range *freq_range_tmp; 1164 const struct ieee80211_reg_rule *tmp; 1165 u32 start_freq, end_freq, idx, no; 1166 1167 for (idx = 0; idx < rd->n_reg_rules; idx++) 1168 if (rule == &rd->reg_rules[idx]) 1169 break; 1170 1171 if (idx == rd->n_reg_rules) 1172 return 0; 1173 1174 /* get start_freq */ 1175 no = idx; 1176 1177 while (no) { 1178 tmp = &rd->reg_rules[--no]; 1179 freq_range_tmp = &tmp->freq_range; 1180 1181 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1182 break; 1183 1184 freq_range = freq_range_tmp; 1185 } 1186 1187 start_freq = freq_range->start_freq_khz; 1188 1189 /* get end_freq */ 1190 freq_range = &rule->freq_range; 1191 no = idx; 1192 1193 while (no < rd->n_reg_rules - 1) { 1194 tmp = &rd->reg_rules[++no]; 1195 freq_range_tmp = &tmp->freq_range; 1196 1197 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1198 break; 1199 1200 freq_range = freq_range_tmp; 1201 } 1202 1203 end_freq = freq_range->end_freq_khz; 1204 1205 return end_freq - start_freq; 1206 } 1207 1208 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1209 const struct ieee80211_reg_rule *rule) 1210 { 1211 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1212 1213 if (rule->flags & NL80211_RRF_NO_160MHZ) 1214 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1215 if (rule->flags & NL80211_RRF_NO_80MHZ) 1216 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1217 1218 /* 1219 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1220 * are not allowed. 1221 */ 1222 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1223 rule->flags & NL80211_RRF_NO_HT40PLUS) 1224 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1225 1226 return bw; 1227 } 1228 1229 /* Sanity check on a regulatory rule */ 1230 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1231 { 1232 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1233 u32 freq_diff; 1234 1235 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1236 return false; 1237 1238 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1239 return false; 1240 1241 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1242 1243 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1244 freq_range->max_bandwidth_khz > freq_diff) 1245 return false; 1246 1247 return true; 1248 } 1249 1250 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1251 { 1252 const struct ieee80211_reg_rule *reg_rule = NULL; 1253 unsigned int i; 1254 1255 if (!rd->n_reg_rules) 1256 return false; 1257 1258 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1259 return false; 1260 1261 for (i = 0; i < rd->n_reg_rules; i++) { 1262 reg_rule = &rd->reg_rules[i]; 1263 if (!is_valid_reg_rule(reg_rule)) 1264 return false; 1265 } 1266 1267 return true; 1268 } 1269 1270 /** 1271 * freq_in_rule_band - tells us if a frequency is in a frequency band 1272 * @freq_range: frequency rule we want to query 1273 * @freq_khz: frequency we are inquiring about 1274 * 1275 * This lets us know if a specific frequency rule is or is not relevant to 1276 * a specific frequency's band. Bands are device specific and artificial 1277 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1278 * however it is safe for now to assume that a frequency rule should not be 1279 * part of a frequency's band if the start freq or end freq are off by more 1280 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1281 * 60 GHz band. 1282 * This resolution can be lowered and should be considered as we add 1283 * regulatory rule support for other "bands". 1284 **/ 1285 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1286 u32 freq_khz) 1287 { 1288 #define ONE_GHZ_IN_KHZ 1000000 1289 /* 1290 * From 802.11ad: directional multi-gigabit (DMG): 1291 * Pertaining to operation in a frequency band containing a channel 1292 * with the Channel starting frequency above 45 GHz. 1293 */ 1294 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 1295 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 1296 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1297 return true; 1298 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1299 return true; 1300 return false; 1301 #undef ONE_GHZ_IN_KHZ 1302 } 1303 1304 /* 1305 * Later on we can perhaps use the more restrictive DFS 1306 * region but we don't have information for that yet so 1307 * for now simply disallow conflicts. 1308 */ 1309 static enum nl80211_dfs_regions 1310 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1311 const enum nl80211_dfs_regions dfs_region2) 1312 { 1313 if (dfs_region1 != dfs_region2) 1314 return NL80211_DFS_UNSET; 1315 return dfs_region1; 1316 } 1317 1318 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1319 const struct ieee80211_wmm_ac *wmm_ac2, 1320 struct ieee80211_wmm_ac *intersect) 1321 { 1322 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1323 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1324 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1325 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1326 } 1327 1328 /* 1329 * Helper for regdom_intersect(), this does the real 1330 * mathematical intersection fun 1331 */ 1332 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1333 const struct ieee80211_regdomain *rd2, 1334 const struct ieee80211_reg_rule *rule1, 1335 const struct ieee80211_reg_rule *rule2, 1336 struct ieee80211_reg_rule *intersected_rule) 1337 { 1338 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1339 struct ieee80211_freq_range *freq_range; 1340 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1341 struct ieee80211_power_rule *power_rule; 1342 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1343 struct ieee80211_wmm_rule *wmm_rule; 1344 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1345 1346 freq_range1 = &rule1->freq_range; 1347 freq_range2 = &rule2->freq_range; 1348 freq_range = &intersected_rule->freq_range; 1349 1350 power_rule1 = &rule1->power_rule; 1351 power_rule2 = &rule2->power_rule; 1352 power_rule = &intersected_rule->power_rule; 1353 1354 wmm_rule1 = &rule1->wmm_rule; 1355 wmm_rule2 = &rule2->wmm_rule; 1356 wmm_rule = &intersected_rule->wmm_rule; 1357 1358 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1359 freq_range2->start_freq_khz); 1360 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1361 freq_range2->end_freq_khz); 1362 1363 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1364 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1365 1366 if (rule1->flags & NL80211_RRF_AUTO_BW) 1367 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1368 if (rule2->flags & NL80211_RRF_AUTO_BW) 1369 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1370 1371 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1372 1373 intersected_rule->flags = rule1->flags | rule2->flags; 1374 1375 /* 1376 * In case NL80211_RRF_AUTO_BW requested for both rules 1377 * set AUTO_BW in intersected rule also. Next we will 1378 * calculate BW correctly in handle_channel function. 1379 * In other case remove AUTO_BW flag while we calculate 1380 * maximum bandwidth correctly and auto calculation is 1381 * not required. 1382 */ 1383 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1384 (rule2->flags & NL80211_RRF_AUTO_BW)) 1385 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1386 else 1387 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1388 1389 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1390 if (freq_range->max_bandwidth_khz > freq_diff) 1391 freq_range->max_bandwidth_khz = freq_diff; 1392 1393 power_rule->max_eirp = min(power_rule1->max_eirp, 1394 power_rule2->max_eirp); 1395 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1396 power_rule2->max_antenna_gain); 1397 1398 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1399 rule2->dfs_cac_ms); 1400 1401 if (rule1->has_wmm && rule2->has_wmm) { 1402 u8 ac; 1403 1404 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1405 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1406 &wmm_rule2->client[ac], 1407 &wmm_rule->client[ac]); 1408 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1409 &wmm_rule2->ap[ac], 1410 &wmm_rule->ap[ac]); 1411 } 1412 1413 intersected_rule->has_wmm = true; 1414 } else if (rule1->has_wmm) { 1415 *wmm_rule = *wmm_rule1; 1416 intersected_rule->has_wmm = true; 1417 } else if (rule2->has_wmm) { 1418 *wmm_rule = *wmm_rule2; 1419 intersected_rule->has_wmm = true; 1420 } else { 1421 intersected_rule->has_wmm = false; 1422 } 1423 1424 if (!is_valid_reg_rule(intersected_rule)) 1425 return -EINVAL; 1426 1427 return 0; 1428 } 1429 1430 /* check whether old rule contains new rule */ 1431 static bool rule_contains(struct ieee80211_reg_rule *r1, 1432 struct ieee80211_reg_rule *r2) 1433 { 1434 /* for simplicity, currently consider only same flags */ 1435 if (r1->flags != r2->flags) 1436 return false; 1437 1438 /* verify r1 is more restrictive */ 1439 if ((r1->power_rule.max_antenna_gain > 1440 r2->power_rule.max_antenna_gain) || 1441 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1442 return false; 1443 1444 /* make sure r2's range is contained within r1 */ 1445 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1446 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1447 return false; 1448 1449 /* and finally verify that r1.max_bw >= r2.max_bw */ 1450 if (r1->freq_range.max_bandwidth_khz < 1451 r2->freq_range.max_bandwidth_khz) 1452 return false; 1453 1454 return true; 1455 } 1456 1457 /* add or extend current rules. do nothing if rule is already contained */ 1458 static void add_rule(struct ieee80211_reg_rule *rule, 1459 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1460 { 1461 struct ieee80211_reg_rule *tmp_rule; 1462 int i; 1463 1464 for (i = 0; i < *n_rules; i++) { 1465 tmp_rule = ®_rules[i]; 1466 /* rule is already contained - do nothing */ 1467 if (rule_contains(tmp_rule, rule)) 1468 return; 1469 1470 /* extend rule if possible */ 1471 if (rule_contains(rule, tmp_rule)) { 1472 memcpy(tmp_rule, rule, sizeof(*rule)); 1473 return; 1474 } 1475 } 1476 1477 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1478 (*n_rules)++; 1479 } 1480 1481 /** 1482 * regdom_intersect - do the intersection between two regulatory domains 1483 * @rd1: first regulatory domain 1484 * @rd2: second regulatory domain 1485 * 1486 * Use this function to get the intersection between two regulatory domains. 1487 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1488 * as no one single alpha2 can represent this regulatory domain. 1489 * 1490 * Returns a pointer to the regulatory domain structure which will hold the 1491 * resulting intersection of rules between rd1 and rd2. We will 1492 * kzalloc() this structure for you. 1493 */ 1494 static struct ieee80211_regdomain * 1495 regdom_intersect(const struct ieee80211_regdomain *rd1, 1496 const struct ieee80211_regdomain *rd2) 1497 { 1498 int r; 1499 unsigned int x, y; 1500 unsigned int num_rules = 0; 1501 const struct ieee80211_reg_rule *rule1, *rule2; 1502 struct ieee80211_reg_rule intersected_rule; 1503 struct ieee80211_regdomain *rd; 1504 1505 if (!rd1 || !rd2) 1506 return NULL; 1507 1508 /* 1509 * First we get a count of the rules we'll need, then we actually 1510 * build them. This is to so we can malloc() and free() a 1511 * regdomain once. The reason we use reg_rules_intersect() here 1512 * is it will return -EINVAL if the rule computed makes no sense. 1513 * All rules that do check out OK are valid. 1514 */ 1515 1516 for (x = 0; x < rd1->n_reg_rules; x++) { 1517 rule1 = &rd1->reg_rules[x]; 1518 for (y = 0; y < rd2->n_reg_rules; y++) { 1519 rule2 = &rd2->reg_rules[y]; 1520 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1521 &intersected_rule)) 1522 num_rules++; 1523 } 1524 } 1525 1526 if (!num_rules) 1527 return NULL; 1528 1529 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1530 if (!rd) 1531 return NULL; 1532 1533 for (x = 0; x < rd1->n_reg_rules; x++) { 1534 rule1 = &rd1->reg_rules[x]; 1535 for (y = 0; y < rd2->n_reg_rules; y++) { 1536 rule2 = &rd2->reg_rules[y]; 1537 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1538 &intersected_rule); 1539 /* 1540 * No need to memset here the intersected rule here as 1541 * we're not using the stack anymore 1542 */ 1543 if (r) 1544 continue; 1545 1546 add_rule(&intersected_rule, rd->reg_rules, 1547 &rd->n_reg_rules); 1548 } 1549 } 1550 1551 rd->alpha2[0] = '9'; 1552 rd->alpha2[1] = '8'; 1553 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1554 rd2->dfs_region); 1555 1556 return rd; 1557 } 1558 1559 /* 1560 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1561 * want to just have the channel structure use these 1562 */ 1563 static u32 map_regdom_flags(u32 rd_flags) 1564 { 1565 u32 channel_flags = 0; 1566 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1567 channel_flags |= IEEE80211_CHAN_NO_IR; 1568 if (rd_flags & NL80211_RRF_DFS) 1569 channel_flags |= IEEE80211_CHAN_RADAR; 1570 if (rd_flags & NL80211_RRF_NO_OFDM) 1571 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1572 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1573 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1574 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1575 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1576 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1577 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1578 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1579 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1580 if (rd_flags & NL80211_RRF_NO_80MHZ) 1581 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1582 if (rd_flags & NL80211_RRF_NO_160MHZ) 1583 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1584 if (rd_flags & NL80211_RRF_NO_HE) 1585 channel_flags |= IEEE80211_CHAN_NO_HE; 1586 return channel_flags; 1587 } 1588 1589 static const struct ieee80211_reg_rule * 1590 freq_reg_info_regd(u32 center_freq, 1591 const struct ieee80211_regdomain *regd, u32 bw) 1592 { 1593 int i; 1594 bool band_rule_found = false; 1595 bool bw_fits = false; 1596 1597 if (!regd) 1598 return ERR_PTR(-EINVAL); 1599 1600 for (i = 0; i < regd->n_reg_rules; i++) { 1601 const struct ieee80211_reg_rule *rr; 1602 const struct ieee80211_freq_range *fr = NULL; 1603 1604 rr = ®d->reg_rules[i]; 1605 fr = &rr->freq_range; 1606 1607 /* 1608 * We only need to know if one frequency rule was 1609 * in center_freq's band, that's enough, so let's 1610 * not overwrite it once found 1611 */ 1612 if (!band_rule_found) 1613 band_rule_found = freq_in_rule_band(fr, center_freq); 1614 1615 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1616 1617 if (band_rule_found && bw_fits) 1618 return rr; 1619 } 1620 1621 if (!band_rule_found) 1622 return ERR_PTR(-ERANGE); 1623 1624 return ERR_PTR(-EINVAL); 1625 } 1626 1627 static const struct ieee80211_reg_rule * 1628 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1629 { 1630 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1631 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20}; 1632 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE); 1633 int i = ARRAY_SIZE(bws) - 1; 1634 u32 bw; 1635 1636 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) { 1637 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1638 if (!IS_ERR(reg_rule)) 1639 return reg_rule; 1640 } 1641 1642 return reg_rule; 1643 } 1644 1645 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1646 u32 center_freq) 1647 { 1648 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20; 1649 1650 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw)); 1651 } 1652 EXPORT_SYMBOL(freq_reg_info); 1653 1654 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1655 { 1656 switch (initiator) { 1657 case NL80211_REGDOM_SET_BY_CORE: 1658 return "core"; 1659 case NL80211_REGDOM_SET_BY_USER: 1660 return "user"; 1661 case NL80211_REGDOM_SET_BY_DRIVER: 1662 return "driver"; 1663 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1664 return "country element"; 1665 default: 1666 WARN_ON(1); 1667 return "bug"; 1668 } 1669 } 1670 EXPORT_SYMBOL(reg_initiator_name); 1671 1672 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1673 const struct ieee80211_reg_rule *reg_rule, 1674 const struct ieee80211_channel *chan) 1675 { 1676 const struct ieee80211_freq_range *freq_range = NULL; 1677 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0; 1678 bool is_s1g = chan->band == NL80211_BAND_S1GHZ; 1679 1680 freq_range = ®_rule->freq_range; 1681 1682 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1683 center_freq_khz = ieee80211_channel_to_khz(chan); 1684 /* Check if auto calculation requested */ 1685 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1686 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1687 1688 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1689 if (!cfg80211_does_bw_fit_range(freq_range, 1690 center_freq_khz, 1691 MHZ_TO_KHZ(10))) 1692 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1693 if (!cfg80211_does_bw_fit_range(freq_range, 1694 center_freq_khz, 1695 MHZ_TO_KHZ(20))) 1696 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1697 1698 if (is_s1g) { 1699 /* S1G is strict about non overlapping channels. We can 1700 * calculate which bandwidth is allowed per channel by finding 1701 * the largest bandwidth which cleanly divides the freq_range. 1702 */ 1703 int edge_offset; 1704 int ch_bw = max_bandwidth_khz; 1705 1706 while (ch_bw) { 1707 edge_offset = (center_freq_khz - ch_bw / 2) - 1708 freq_range->start_freq_khz; 1709 if (edge_offset % ch_bw == 0) { 1710 switch (KHZ_TO_MHZ(ch_bw)) { 1711 case 1: 1712 bw_flags |= IEEE80211_CHAN_1MHZ; 1713 break; 1714 case 2: 1715 bw_flags |= IEEE80211_CHAN_2MHZ; 1716 break; 1717 case 4: 1718 bw_flags |= IEEE80211_CHAN_4MHZ; 1719 break; 1720 case 8: 1721 bw_flags |= IEEE80211_CHAN_8MHZ; 1722 break; 1723 case 16: 1724 bw_flags |= IEEE80211_CHAN_16MHZ; 1725 break; 1726 default: 1727 /* If we got here, no bandwidths fit on 1728 * this frequency, ie. band edge. 1729 */ 1730 bw_flags |= IEEE80211_CHAN_DISABLED; 1731 break; 1732 } 1733 break; 1734 } 1735 ch_bw /= 2; 1736 } 1737 } else { 1738 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1739 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1740 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1741 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1742 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1743 bw_flags |= IEEE80211_CHAN_NO_HT40; 1744 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1745 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1746 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1747 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1748 } 1749 return bw_flags; 1750 } 1751 1752 static void handle_channel_single_rule(struct wiphy *wiphy, 1753 enum nl80211_reg_initiator initiator, 1754 struct ieee80211_channel *chan, 1755 u32 flags, 1756 struct regulatory_request *lr, 1757 struct wiphy *request_wiphy, 1758 const struct ieee80211_reg_rule *reg_rule) 1759 { 1760 u32 bw_flags = 0; 1761 const struct ieee80211_power_rule *power_rule = NULL; 1762 const struct ieee80211_regdomain *regd; 1763 1764 regd = reg_get_regdomain(wiphy); 1765 1766 power_rule = ®_rule->power_rule; 1767 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1768 1769 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1770 request_wiphy && request_wiphy == wiphy && 1771 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1772 /* 1773 * This guarantees the driver's requested regulatory domain 1774 * will always be used as a base for further regulatory 1775 * settings 1776 */ 1777 chan->flags = chan->orig_flags = 1778 map_regdom_flags(reg_rule->flags) | bw_flags; 1779 chan->max_antenna_gain = chan->orig_mag = 1780 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1781 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1782 (int) MBM_TO_DBM(power_rule->max_eirp); 1783 1784 if (chan->flags & IEEE80211_CHAN_RADAR) { 1785 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1786 if (reg_rule->dfs_cac_ms) 1787 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1788 } 1789 1790 return; 1791 } 1792 1793 chan->dfs_state = NL80211_DFS_USABLE; 1794 chan->dfs_state_entered = jiffies; 1795 1796 chan->beacon_found = false; 1797 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1798 chan->max_antenna_gain = 1799 min_t(int, chan->orig_mag, 1800 MBI_TO_DBI(power_rule->max_antenna_gain)); 1801 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1802 1803 if (chan->flags & IEEE80211_CHAN_RADAR) { 1804 if (reg_rule->dfs_cac_ms) 1805 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1806 else 1807 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1808 } 1809 1810 if (chan->orig_mpwr) { 1811 /* 1812 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1813 * will always follow the passed country IE power settings. 1814 */ 1815 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1816 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1817 chan->max_power = chan->max_reg_power; 1818 else 1819 chan->max_power = min(chan->orig_mpwr, 1820 chan->max_reg_power); 1821 } else 1822 chan->max_power = chan->max_reg_power; 1823 } 1824 1825 static void handle_channel_adjacent_rules(struct wiphy *wiphy, 1826 enum nl80211_reg_initiator initiator, 1827 struct ieee80211_channel *chan, 1828 u32 flags, 1829 struct regulatory_request *lr, 1830 struct wiphy *request_wiphy, 1831 const struct ieee80211_reg_rule *rrule1, 1832 const struct ieee80211_reg_rule *rrule2, 1833 struct ieee80211_freq_range *comb_range) 1834 { 1835 u32 bw_flags1 = 0; 1836 u32 bw_flags2 = 0; 1837 const struct ieee80211_power_rule *power_rule1 = NULL; 1838 const struct ieee80211_power_rule *power_rule2 = NULL; 1839 const struct ieee80211_regdomain *regd; 1840 1841 regd = reg_get_regdomain(wiphy); 1842 1843 power_rule1 = &rrule1->power_rule; 1844 power_rule2 = &rrule2->power_rule; 1845 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan); 1846 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan); 1847 1848 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1849 request_wiphy && request_wiphy == wiphy && 1850 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1851 /* This guarantees the driver's requested regulatory domain 1852 * will always be used as a base for further regulatory 1853 * settings 1854 */ 1855 chan->flags = 1856 map_regdom_flags(rrule1->flags) | 1857 map_regdom_flags(rrule2->flags) | 1858 bw_flags1 | 1859 bw_flags2; 1860 chan->orig_flags = chan->flags; 1861 chan->max_antenna_gain = 1862 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain), 1863 MBI_TO_DBI(power_rule2->max_antenna_gain)); 1864 chan->orig_mag = chan->max_antenna_gain; 1865 chan->max_reg_power = 1866 min_t(int, MBM_TO_DBM(power_rule1->max_eirp), 1867 MBM_TO_DBM(power_rule2->max_eirp)); 1868 chan->max_power = chan->max_reg_power; 1869 chan->orig_mpwr = chan->max_reg_power; 1870 1871 if (chan->flags & IEEE80211_CHAN_RADAR) { 1872 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1873 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1874 chan->dfs_cac_ms = max_t(unsigned int, 1875 rrule1->dfs_cac_ms, 1876 rrule2->dfs_cac_ms); 1877 } 1878 1879 return; 1880 } 1881 1882 chan->dfs_state = NL80211_DFS_USABLE; 1883 chan->dfs_state_entered = jiffies; 1884 1885 chan->beacon_found = false; 1886 chan->flags = flags | bw_flags1 | bw_flags2 | 1887 map_regdom_flags(rrule1->flags) | 1888 map_regdom_flags(rrule2->flags); 1889 1890 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz 1891 * (otherwise no adj. rule case), recheck therefore 1892 */ 1893 if (cfg80211_does_bw_fit_range(comb_range, 1894 ieee80211_channel_to_khz(chan), 1895 MHZ_TO_KHZ(10))) 1896 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ; 1897 if (cfg80211_does_bw_fit_range(comb_range, 1898 ieee80211_channel_to_khz(chan), 1899 MHZ_TO_KHZ(20))) 1900 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ; 1901 1902 chan->max_antenna_gain = 1903 min_t(int, chan->orig_mag, 1904 min_t(int, 1905 MBI_TO_DBI(power_rule1->max_antenna_gain), 1906 MBI_TO_DBI(power_rule2->max_antenna_gain))); 1907 chan->max_reg_power = min_t(int, 1908 MBM_TO_DBM(power_rule1->max_eirp), 1909 MBM_TO_DBM(power_rule2->max_eirp)); 1910 1911 if (chan->flags & IEEE80211_CHAN_RADAR) { 1912 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1913 chan->dfs_cac_ms = max_t(unsigned int, 1914 rrule1->dfs_cac_ms, 1915 rrule2->dfs_cac_ms); 1916 else 1917 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1918 } 1919 1920 if (chan->orig_mpwr) { 1921 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1922 * will always follow the passed country IE power settings. 1923 */ 1924 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1925 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1926 chan->max_power = chan->max_reg_power; 1927 else 1928 chan->max_power = min(chan->orig_mpwr, 1929 chan->max_reg_power); 1930 } else { 1931 chan->max_power = chan->max_reg_power; 1932 } 1933 } 1934 1935 /* Note that right now we assume the desired channel bandwidth 1936 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1937 * per channel, the primary and the extension channel). 1938 */ 1939 static void handle_channel(struct wiphy *wiphy, 1940 enum nl80211_reg_initiator initiator, 1941 struct ieee80211_channel *chan) 1942 { 1943 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan); 1944 struct regulatory_request *lr = get_last_request(); 1945 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1946 const struct ieee80211_reg_rule *rrule = NULL; 1947 const struct ieee80211_reg_rule *rrule1 = NULL; 1948 const struct ieee80211_reg_rule *rrule2 = NULL; 1949 1950 u32 flags = chan->orig_flags; 1951 1952 rrule = freq_reg_info(wiphy, orig_chan_freq); 1953 if (IS_ERR(rrule)) { 1954 /* check for adjacent match, therefore get rules for 1955 * chan - 20 MHz and chan + 20 MHz and test 1956 * if reg rules are adjacent 1957 */ 1958 rrule1 = freq_reg_info(wiphy, 1959 orig_chan_freq - MHZ_TO_KHZ(20)); 1960 rrule2 = freq_reg_info(wiphy, 1961 orig_chan_freq + MHZ_TO_KHZ(20)); 1962 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) { 1963 struct ieee80211_freq_range comb_range; 1964 1965 if (rrule1->freq_range.end_freq_khz != 1966 rrule2->freq_range.start_freq_khz) 1967 goto disable_chan; 1968 1969 comb_range.start_freq_khz = 1970 rrule1->freq_range.start_freq_khz; 1971 comb_range.end_freq_khz = 1972 rrule2->freq_range.end_freq_khz; 1973 comb_range.max_bandwidth_khz = 1974 min_t(u32, 1975 rrule1->freq_range.max_bandwidth_khz, 1976 rrule2->freq_range.max_bandwidth_khz); 1977 1978 if (!cfg80211_does_bw_fit_range(&comb_range, 1979 orig_chan_freq, 1980 MHZ_TO_KHZ(20))) 1981 goto disable_chan; 1982 1983 handle_channel_adjacent_rules(wiphy, initiator, chan, 1984 flags, lr, request_wiphy, 1985 rrule1, rrule2, 1986 &comb_range); 1987 return; 1988 } 1989 1990 disable_chan: 1991 /* We will disable all channels that do not match our 1992 * received regulatory rule unless the hint is coming 1993 * from a Country IE and the Country IE had no information 1994 * about a band. The IEEE 802.11 spec allows for an AP 1995 * to send only a subset of the regulatory rules allowed, 1996 * so an AP in the US that only supports 2.4 GHz may only send 1997 * a country IE with information for the 2.4 GHz band 1998 * while 5 GHz is still supported. 1999 */ 2000 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2001 PTR_ERR(rrule) == -ERANGE) 2002 return; 2003 2004 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2005 request_wiphy && request_wiphy == wiphy && 2006 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2007 pr_debug("Disabling freq %d.%03d MHz for good\n", 2008 chan->center_freq, chan->freq_offset); 2009 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2010 chan->flags = chan->orig_flags; 2011 } else { 2012 pr_debug("Disabling freq %d.%03d MHz\n", 2013 chan->center_freq, chan->freq_offset); 2014 chan->flags |= IEEE80211_CHAN_DISABLED; 2015 } 2016 return; 2017 } 2018 2019 handle_channel_single_rule(wiphy, initiator, chan, flags, lr, 2020 request_wiphy, rrule); 2021 } 2022 2023 static void handle_band(struct wiphy *wiphy, 2024 enum nl80211_reg_initiator initiator, 2025 struct ieee80211_supported_band *sband) 2026 { 2027 unsigned int i; 2028 2029 if (!sband) 2030 return; 2031 2032 for (i = 0; i < sband->n_channels; i++) 2033 handle_channel(wiphy, initiator, &sband->channels[i]); 2034 } 2035 2036 static bool reg_request_cell_base(struct regulatory_request *request) 2037 { 2038 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 2039 return false; 2040 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 2041 } 2042 2043 bool reg_last_request_cell_base(void) 2044 { 2045 return reg_request_cell_base(get_last_request()); 2046 } 2047 2048 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 2049 /* Core specific check */ 2050 static enum reg_request_treatment 2051 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2052 { 2053 struct regulatory_request *lr = get_last_request(); 2054 2055 if (!reg_num_devs_support_basehint) 2056 return REG_REQ_IGNORE; 2057 2058 if (reg_request_cell_base(lr) && 2059 !regdom_changes(pending_request->alpha2)) 2060 return REG_REQ_ALREADY_SET; 2061 2062 return REG_REQ_OK; 2063 } 2064 2065 /* Device specific check */ 2066 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2067 { 2068 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 2069 } 2070 #else 2071 static enum reg_request_treatment 2072 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2073 { 2074 return REG_REQ_IGNORE; 2075 } 2076 2077 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2078 { 2079 return true; 2080 } 2081 #endif 2082 2083 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 2084 { 2085 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 2086 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 2087 return true; 2088 return false; 2089 } 2090 2091 static bool ignore_reg_update(struct wiphy *wiphy, 2092 enum nl80211_reg_initiator initiator) 2093 { 2094 struct regulatory_request *lr = get_last_request(); 2095 2096 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2097 return true; 2098 2099 if (!lr) { 2100 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 2101 reg_initiator_name(initiator)); 2102 return true; 2103 } 2104 2105 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2106 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 2107 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 2108 reg_initiator_name(initiator)); 2109 return true; 2110 } 2111 2112 /* 2113 * wiphy->regd will be set once the device has its own 2114 * desired regulatory domain set 2115 */ 2116 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 2117 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2118 !is_world_regdom(lr->alpha2)) { 2119 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 2120 reg_initiator_name(initiator)); 2121 return true; 2122 } 2123 2124 if (reg_request_cell_base(lr)) 2125 return reg_dev_ignore_cell_hint(wiphy); 2126 2127 return false; 2128 } 2129 2130 static bool reg_is_world_roaming(struct wiphy *wiphy) 2131 { 2132 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 2133 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 2134 struct regulatory_request *lr = get_last_request(); 2135 2136 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 2137 return true; 2138 2139 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2140 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2141 return true; 2142 2143 return false; 2144 } 2145 2146 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 2147 struct reg_beacon *reg_beacon) 2148 { 2149 struct ieee80211_supported_band *sband; 2150 struct ieee80211_channel *chan; 2151 bool channel_changed = false; 2152 struct ieee80211_channel chan_before; 2153 2154 sband = wiphy->bands[reg_beacon->chan.band]; 2155 chan = &sband->channels[chan_idx]; 2156 2157 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan))) 2158 return; 2159 2160 if (chan->beacon_found) 2161 return; 2162 2163 chan->beacon_found = true; 2164 2165 if (!reg_is_world_roaming(wiphy)) 2166 return; 2167 2168 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 2169 return; 2170 2171 chan_before = *chan; 2172 2173 if (chan->flags & IEEE80211_CHAN_NO_IR) { 2174 chan->flags &= ~IEEE80211_CHAN_NO_IR; 2175 channel_changed = true; 2176 } 2177 2178 if (channel_changed) 2179 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 2180 } 2181 2182 /* 2183 * Called when a scan on a wiphy finds a beacon on 2184 * new channel 2185 */ 2186 static void wiphy_update_new_beacon(struct wiphy *wiphy, 2187 struct reg_beacon *reg_beacon) 2188 { 2189 unsigned int i; 2190 struct ieee80211_supported_band *sband; 2191 2192 if (!wiphy->bands[reg_beacon->chan.band]) 2193 return; 2194 2195 sband = wiphy->bands[reg_beacon->chan.band]; 2196 2197 for (i = 0; i < sband->n_channels; i++) 2198 handle_reg_beacon(wiphy, i, reg_beacon); 2199 } 2200 2201 /* 2202 * Called upon reg changes or a new wiphy is added 2203 */ 2204 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 2205 { 2206 unsigned int i; 2207 struct ieee80211_supported_band *sband; 2208 struct reg_beacon *reg_beacon; 2209 2210 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 2211 if (!wiphy->bands[reg_beacon->chan.band]) 2212 continue; 2213 sband = wiphy->bands[reg_beacon->chan.band]; 2214 for (i = 0; i < sband->n_channels; i++) 2215 handle_reg_beacon(wiphy, i, reg_beacon); 2216 } 2217 } 2218 2219 /* Reap the advantages of previously found beacons */ 2220 static void reg_process_beacons(struct wiphy *wiphy) 2221 { 2222 /* 2223 * Means we are just firing up cfg80211, so no beacons would 2224 * have been processed yet. 2225 */ 2226 if (!last_request) 2227 return; 2228 wiphy_update_beacon_reg(wiphy); 2229 } 2230 2231 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2232 { 2233 if (!chan) 2234 return false; 2235 if (chan->flags & IEEE80211_CHAN_DISABLED) 2236 return false; 2237 /* This would happen when regulatory rules disallow HT40 completely */ 2238 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2239 return false; 2240 return true; 2241 } 2242 2243 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2244 struct ieee80211_channel *channel) 2245 { 2246 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2247 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2248 const struct ieee80211_regdomain *regd; 2249 unsigned int i; 2250 u32 flags; 2251 2252 if (!is_ht40_allowed(channel)) { 2253 channel->flags |= IEEE80211_CHAN_NO_HT40; 2254 return; 2255 } 2256 2257 /* 2258 * We need to ensure the extension channels exist to 2259 * be able to use HT40- or HT40+, this finds them (or not) 2260 */ 2261 for (i = 0; i < sband->n_channels; i++) { 2262 struct ieee80211_channel *c = &sband->channels[i]; 2263 2264 if (c->center_freq == (channel->center_freq - 20)) 2265 channel_before = c; 2266 if (c->center_freq == (channel->center_freq + 20)) 2267 channel_after = c; 2268 } 2269 2270 flags = 0; 2271 regd = get_wiphy_regdom(wiphy); 2272 if (regd) { 2273 const struct ieee80211_reg_rule *reg_rule = 2274 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2275 regd, MHZ_TO_KHZ(20)); 2276 2277 if (!IS_ERR(reg_rule)) 2278 flags = reg_rule->flags; 2279 } 2280 2281 /* 2282 * Please note that this assumes target bandwidth is 20 MHz, 2283 * if that ever changes we also need to change the below logic 2284 * to include that as well. 2285 */ 2286 if (!is_ht40_allowed(channel_before) || 2287 flags & NL80211_RRF_NO_HT40MINUS) 2288 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2289 else 2290 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2291 2292 if (!is_ht40_allowed(channel_after) || 2293 flags & NL80211_RRF_NO_HT40PLUS) 2294 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2295 else 2296 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2297 } 2298 2299 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2300 struct ieee80211_supported_band *sband) 2301 { 2302 unsigned int i; 2303 2304 if (!sband) 2305 return; 2306 2307 for (i = 0; i < sband->n_channels; i++) 2308 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2309 } 2310 2311 static void reg_process_ht_flags(struct wiphy *wiphy) 2312 { 2313 enum nl80211_band band; 2314 2315 if (!wiphy) 2316 return; 2317 2318 for (band = 0; band < NUM_NL80211_BANDS; band++) 2319 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2320 } 2321 2322 static void reg_call_notifier(struct wiphy *wiphy, 2323 struct regulatory_request *request) 2324 { 2325 if (wiphy->reg_notifier) 2326 wiphy->reg_notifier(wiphy, request); 2327 } 2328 2329 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2330 { 2331 struct cfg80211_chan_def chandef = {}; 2332 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2333 enum nl80211_iftype iftype; 2334 2335 wdev_lock(wdev); 2336 iftype = wdev->iftype; 2337 2338 /* make sure the interface is active */ 2339 if (!wdev->netdev || !netif_running(wdev->netdev)) 2340 goto wdev_inactive_unlock; 2341 2342 switch (iftype) { 2343 case NL80211_IFTYPE_AP: 2344 case NL80211_IFTYPE_P2P_GO: 2345 if (!wdev->beacon_interval) 2346 goto wdev_inactive_unlock; 2347 chandef = wdev->chandef; 2348 break; 2349 case NL80211_IFTYPE_ADHOC: 2350 if (!wdev->ssid_len) 2351 goto wdev_inactive_unlock; 2352 chandef = wdev->chandef; 2353 break; 2354 case NL80211_IFTYPE_STATION: 2355 case NL80211_IFTYPE_P2P_CLIENT: 2356 if (!wdev->current_bss || 2357 !wdev->current_bss->pub.channel) 2358 goto wdev_inactive_unlock; 2359 2360 if (!rdev->ops->get_channel || 2361 rdev_get_channel(rdev, wdev, &chandef)) 2362 cfg80211_chandef_create(&chandef, 2363 wdev->current_bss->pub.channel, 2364 NL80211_CHAN_NO_HT); 2365 break; 2366 case NL80211_IFTYPE_MONITOR: 2367 case NL80211_IFTYPE_AP_VLAN: 2368 case NL80211_IFTYPE_P2P_DEVICE: 2369 /* no enforcement required */ 2370 break; 2371 default: 2372 /* others not implemented for now */ 2373 WARN_ON(1); 2374 break; 2375 } 2376 2377 wdev_unlock(wdev); 2378 2379 switch (iftype) { 2380 case NL80211_IFTYPE_AP: 2381 case NL80211_IFTYPE_P2P_GO: 2382 case NL80211_IFTYPE_ADHOC: 2383 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); 2384 case NL80211_IFTYPE_STATION: 2385 case NL80211_IFTYPE_P2P_CLIENT: 2386 return cfg80211_chandef_usable(wiphy, &chandef, 2387 IEEE80211_CHAN_DISABLED); 2388 default: 2389 break; 2390 } 2391 2392 return true; 2393 2394 wdev_inactive_unlock: 2395 wdev_unlock(wdev); 2396 return true; 2397 } 2398 2399 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2400 { 2401 struct wireless_dev *wdev; 2402 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2403 2404 ASSERT_RTNL(); 2405 2406 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2407 if (!reg_wdev_chan_valid(wiphy, wdev)) 2408 cfg80211_leave(rdev, wdev); 2409 } 2410 2411 static void reg_check_chans_work(struct work_struct *work) 2412 { 2413 struct cfg80211_registered_device *rdev; 2414 2415 pr_debug("Verifying active interfaces after reg change\n"); 2416 rtnl_lock(); 2417 2418 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 2419 if (!(rdev->wiphy.regulatory_flags & 2420 REGULATORY_IGNORE_STALE_KICKOFF)) 2421 reg_leave_invalid_chans(&rdev->wiphy); 2422 2423 rtnl_unlock(); 2424 } 2425 2426 static void reg_check_channels(void) 2427 { 2428 /* 2429 * Give usermode a chance to do something nicer (move to another 2430 * channel, orderly disconnection), before forcing a disconnection. 2431 */ 2432 mod_delayed_work(system_power_efficient_wq, 2433 ®_check_chans, 2434 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2435 } 2436 2437 static void wiphy_update_regulatory(struct wiphy *wiphy, 2438 enum nl80211_reg_initiator initiator) 2439 { 2440 enum nl80211_band band; 2441 struct regulatory_request *lr = get_last_request(); 2442 2443 if (ignore_reg_update(wiphy, initiator)) { 2444 /* 2445 * Regulatory updates set by CORE are ignored for custom 2446 * regulatory cards. Let us notify the changes to the driver, 2447 * as some drivers used this to restore its orig_* reg domain. 2448 */ 2449 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2450 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2451 !(wiphy->regulatory_flags & 2452 REGULATORY_WIPHY_SELF_MANAGED)) 2453 reg_call_notifier(wiphy, lr); 2454 return; 2455 } 2456 2457 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2458 2459 for (band = 0; band < NUM_NL80211_BANDS; band++) 2460 handle_band(wiphy, initiator, wiphy->bands[band]); 2461 2462 reg_process_beacons(wiphy); 2463 reg_process_ht_flags(wiphy); 2464 reg_call_notifier(wiphy, lr); 2465 } 2466 2467 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2468 { 2469 struct cfg80211_registered_device *rdev; 2470 struct wiphy *wiphy; 2471 2472 ASSERT_RTNL(); 2473 2474 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2475 wiphy = &rdev->wiphy; 2476 wiphy_update_regulatory(wiphy, initiator); 2477 } 2478 2479 reg_check_channels(); 2480 } 2481 2482 static void handle_channel_custom(struct wiphy *wiphy, 2483 struct ieee80211_channel *chan, 2484 const struct ieee80211_regdomain *regd, 2485 u32 min_bw) 2486 { 2487 u32 bw_flags = 0; 2488 const struct ieee80211_reg_rule *reg_rule = NULL; 2489 const struct ieee80211_power_rule *power_rule = NULL; 2490 u32 bw, center_freq_khz; 2491 2492 center_freq_khz = ieee80211_channel_to_khz(chan); 2493 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 2494 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw); 2495 if (!IS_ERR(reg_rule)) 2496 break; 2497 } 2498 2499 if (IS_ERR_OR_NULL(reg_rule)) { 2500 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n", 2501 chan->center_freq, chan->freq_offset); 2502 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2503 chan->flags |= IEEE80211_CHAN_DISABLED; 2504 } else { 2505 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2506 chan->flags = chan->orig_flags; 2507 } 2508 return; 2509 } 2510 2511 power_rule = ®_rule->power_rule; 2512 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2513 2514 chan->dfs_state_entered = jiffies; 2515 chan->dfs_state = NL80211_DFS_USABLE; 2516 2517 chan->beacon_found = false; 2518 2519 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2520 chan->flags = chan->orig_flags | bw_flags | 2521 map_regdom_flags(reg_rule->flags); 2522 else 2523 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2524 2525 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2526 chan->max_reg_power = chan->max_power = 2527 (int) MBM_TO_DBM(power_rule->max_eirp); 2528 2529 if (chan->flags & IEEE80211_CHAN_RADAR) { 2530 if (reg_rule->dfs_cac_ms) 2531 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2532 else 2533 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2534 } 2535 2536 chan->max_power = chan->max_reg_power; 2537 } 2538 2539 static void handle_band_custom(struct wiphy *wiphy, 2540 struct ieee80211_supported_band *sband, 2541 const struct ieee80211_regdomain *regd) 2542 { 2543 unsigned int i; 2544 2545 if (!sband) 2546 return; 2547 2548 /* 2549 * We currently assume that you always want at least 20 MHz, 2550 * otherwise channel 12 might get enabled if this rule is 2551 * compatible to US, which permits 2402 - 2472 MHz. 2552 */ 2553 for (i = 0; i < sband->n_channels; i++) 2554 handle_channel_custom(wiphy, &sband->channels[i], regd, 2555 MHZ_TO_KHZ(20)); 2556 } 2557 2558 /* Used by drivers prior to wiphy registration */ 2559 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2560 const struct ieee80211_regdomain *regd) 2561 { 2562 const struct ieee80211_regdomain *new_regd, *tmp; 2563 enum nl80211_band band; 2564 unsigned int bands_set = 0; 2565 2566 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2567 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2568 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2569 2570 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2571 if (!wiphy->bands[band]) 2572 continue; 2573 handle_band_custom(wiphy, wiphy->bands[band], regd); 2574 bands_set++; 2575 } 2576 2577 /* 2578 * no point in calling this if it won't have any effect 2579 * on your device's supported bands. 2580 */ 2581 WARN_ON(!bands_set); 2582 new_regd = reg_copy_regd(regd); 2583 if (IS_ERR(new_regd)) 2584 return; 2585 2586 rtnl_lock(); 2587 wiphy_lock(wiphy); 2588 2589 tmp = get_wiphy_regdom(wiphy); 2590 rcu_assign_pointer(wiphy->regd, new_regd); 2591 rcu_free_regdom(tmp); 2592 2593 wiphy_unlock(wiphy); 2594 rtnl_unlock(); 2595 } 2596 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2597 2598 static void reg_set_request_processed(void) 2599 { 2600 bool need_more_processing = false; 2601 struct regulatory_request *lr = get_last_request(); 2602 2603 lr->processed = true; 2604 2605 spin_lock(®_requests_lock); 2606 if (!list_empty(®_requests_list)) 2607 need_more_processing = true; 2608 spin_unlock(®_requests_lock); 2609 2610 cancel_crda_timeout(); 2611 2612 if (need_more_processing) 2613 schedule_work(®_work); 2614 } 2615 2616 /** 2617 * reg_process_hint_core - process core regulatory requests 2618 * @core_request: a pending core regulatory request 2619 * 2620 * The wireless subsystem can use this function to process 2621 * a regulatory request issued by the regulatory core. 2622 */ 2623 static enum reg_request_treatment 2624 reg_process_hint_core(struct regulatory_request *core_request) 2625 { 2626 if (reg_query_database(core_request)) { 2627 core_request->intersect = false; 2628 core_request->processed = false; 2629 reg_update_last_request(core_request); 2630 return REG_REQ_OK; 2631 } 2632 2633 return REG_REQ_IGNORE; 2634 } 2635 2636 static enum reg_request_treatment 2637 __reg_process_hint_user(struct regulatory_request *user_request) 2638 { 2639 struct regulatory_request *lr = get_last_request(); 2640 2641 if (reg_request_cell_base(user_request)) 2642 return reg_ignore_cell_hint(user_request); 2643 2644 if (reg_request_cell_base(lr)) 2645 return REG_REQ_IGNORE; 2646 2647 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2648 return REG_REQ_INTERSECT; 2649 /* 2650 * If the user knows better the user should set the regdom 2651 * to their country before the IE is picked up 2652 */ 2653 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2654 lr->intersect) 2655 return REG_REQ_IGNORE; 2656 /* 2657 * Process user requests only after previous user/driver/core 2658 * requests have been processed 2659 */ 2660 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2661 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2662 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2663 regdom_changes(lr->alpha2)) 2664 return REG_REQ_IGNORE; 2665 2666 if (!regdom_changes(user_request->alpha2)) 2667 return REG_REQ_ALREADY_SET; 2668 2669 return REG_REQ_OK; 2670 } 2671 2672 /** 2673 * reg_process_hint_user - process user regulatory requests 2674 * @user_request: a pending user regulatory request 2675 * 2676 * The wireless subsystem can use this function to process 2677 * a regulatory request initiated by userspace. 2678 */ 2679 static enum reg_request_treatment 2680 reg_process_hint_user(struct regulatory_request *user_request) 2681 { 2682 enum reg_request_treatment treatment; 2683 2684 treatment = __reg_process_hint_user(user_request); 2685 if (treatment == REG_REQ_IGNORE || 2686 treatment == REG_REQ_ALREADY_SET) 2687 return REG_REQ_IGNORE; 2688 2689 user_request->intersect = treatment == REG_REQ_INTERSECT; 2690 user_request->processed = false; 2691 2692 if (reg_query_database(user_request)) { 2693 reg_update_last_request(user_request); 2694 user_alpha2[0] = user_request->alpha2[0]; 2695 user_alpha2[1] = user_request->alpha2[1]; 2696 return REG_REQ_OK; 2697 } 2698 2699 return REG_REQ_IGNORE; 2700 } 2701 2702 static enum reg_request_treatment 2703 __reg_process_hint_driver(struct regulatory_request *driver_request) 2704 { 2705 struct regulatory_request *lr = get_last_request(); 2706 2707 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2708 if (regdom_changes(driver_request->alpha2)) 2709 return REG_REQ_OK; 2710 return REG_REQ_ALREADY_SET; 2711 } 2712 2713 /* 2714 * This would happen if you unplug and plug your card 2715 * back in or if you add a new device for which the previously 2716 * loaded card also agrees on the regulatory domain. 2717 */ 2718 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2719 !regdom_changes(driver_request->alpha2)) 2720 return REG_REQ_ALREADY_SET; 2721 2722 return REG_REQ_INTERSECT; 2723 } 2724 2725 /** 2726 * reg_process_hint_driver - process driver regulatory requests 2727 * @wiphy: the wireless device for the regulatory request 2728 * @driver_request: a pending driver regulatory request 2729 * 2730 * The wireless subsystem can use this function to process 2731 * a regulatory request issued by an 802.11 driver. 2732 * 2733 * Returns one of the different reg request treatment values. 2734 */ 2735 static enum reg_request_treatment 2736 reg_process_hint_driver(struct wiphy *wiphy, 2737 struct regulatory_request *driver_request) 2738 { 2739 const struct ieee80211_regdomain *regd, *tmp; 2740 enum reg_request_treatment treatment; 2741 2742 treatment = __reg_process_hint_driver(driver_request); 2743 2744 switch (treatment) { 2745 case REG_REQ_OK: 2746 break; 2747 case REG_REQ_IGNORE: 2748 return REG_REQ_IGNORE; 2749 case REG_REQ_INTERSECT: 2750 case REG_REQ_ALREADY_SET: 2751 regd = reg_copy_regd(get_cfg80211_regdom()); 2752 if (IS_ERR(regd)) 2753 return REG_REQ_IGNORE; 2754 2755 tmp = get_wiphy_regdom(wiphy); 2756 ASSERT_RTNL(); 2757 wiphy_lock(wiphy); 2758 rcu_assign_pointer(wiphy->regd, regd); 2759 wiphy_unlock(wiphy); 2760 rcu_free_regdom(tmp); 2761 } 2762 2763 2764 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2765 driver_request->processed = false; 2766 2767 /* 2768 * Since CRDA will not be called in this case as we already 2769 * have applied the requested regulatory domain before we just 2770 * inform userspace we have processed the request 2771 */ 2772 if (treatment == REG_REQ_ALREADY_SET) { 2773 nl80211_send_reg_change_event(driver_request); 2774 reg_update_last_request(driver_request); 2775 reg_set_request_processed(); 2776 return REG_REQ_ALREADY_SET; 2777 } 2778 2779 if (reg_query_database(driver_request)) { 2780 reg_update_last_request(driver_request); 2781 return REG_REQ_OK; 2782 } 2783 2784 return REG_REQ_IGNORE; 2785 } 2786 2787 static enum reg_request_treatment 2788 __reg_process_hint_country_ie(struct wiphy *wiphy, 2789 struct regulatory_request *country_ie_request) 2790 { 2791 struct wiphy *last_wiphy = NULL; 2792 struct regulatory_request *lr = get_last_request(); 2793 2794 if (reg_request_cell_base(lr)) { 2795 /* Trust a Cell base station over the AP's country IE */ 2796 if (regdom_changes(country_ie_request->alpha2)) 2797 return REG_REQ_IGNORE; 2798 return REG_REQ_ALREADY_SET; 2799 } else { 2800 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2801 return REG_REQ_IGNORE; 2802 } 2803 2804 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2805 return -EINVAL; 2806 2807 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2808 return REG_REQ_OK; 2809 2810 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2811 2812 if (last_wiphy != wiphy) { 2813 /* 2814 * Two cards with two APs claiming different 2815 * Country IE alpha2s. We could 2816 * intersect them, but that seems unlikely 2817 * to be correct. Reject second one for now. 2818 */ 2819 if (regdom_changes(country_ie_request->alpha2)) 2820 return REG_REQ_IGNORE; 2821 return REG_REQ_ALREADY_SET; 2822 } 2823 2824 if (regdom_changes(country_ie_request->alpha2)) 2825 return REG_REQ_OK; 2826 return REG_REQ_ALREADY_SET; 2827 } 2828 2829 /** 2830 * reg_process_hint_country_ie - process regulatory requests from country IEs 2831 * @wiphy: the wireless device for the regulatory request 2832 * @country_ie_request: a regulatory request from a country IE 2833 * 2834 * The wireless subsystem can use this function to process 2835 * a regulatory request issued by a country Information Element. 2836 * 2837 * Returns one of the different reg request treatment values. 2838 */ 2839 static enum reg_request_treatment 2840 reg_process_hint_country_ie(struct wiphy *wiphy, 2841 struct regulatory_request *country_ie_request) 2842 { 2843 enum reg_request_treatment treatment; 2844 2845 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2846 2847 switch (treatment) { 2848 case REG_REQ_OK: 2849 break; 2850 case REG_REQ_IGNORE: 2851 return REG_REQ_IGNORE; 2852 case REG_REQ_ALREADY_SET: 2853 reg_free_request(country_ie_request); 2854 return REG_REQ_ALREADY_SET; 2855 case REG_REQ_INTERSECT: 2856 /* 2857 * This doesn't happen yet, not sure we 2858 * ever want to support it for this case. 2859 */ 2860 WARN_ONCE(1, "Unexpected intersection for country elements"); 2861 return REG_REQ_IGNORE; 2862 } 2863 2864 country_ie_request->intersect = false; 2865 country_ie_request->processed = false; 2866 2867 if (reg_query_database(country_ie_request)) { 2868 reg_update_last_request(country_ie_request); 2869 return REG_REQ_OK; 2870 } 2871 2872 return REG_REQ_IGNORE; 2873 } 2874 2875 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2876 { 2877 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2878 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2879 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2880 bool dfs_domain_same; 2881 2882 rcu_read_lock(); 2883 2884 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2885 wiphy1_regd = rcu_dereference(wiphy1->regd); 2886 if (!wiphy1_regd) 2887 wiphy1_regd = cfg80211_regd; 2888 2889 wiphy2_regd = rcu_dereference(wiphy2->regd); 2890 if (!wiphy2_regd) 2891 wiphy2_regd = cfg80211_regd; 2892 2893 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2894 2895 rcu_read_unlock(); 2896 2897 return dfs_domain_same; 2898 } 2899 2900 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2901 struct ieee80211_channel *src_chan) 2902 { 2903 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2904 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2905 return; 2906 2907 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2908 src_chan->flags & IEEE80211_CHAN_DISABLED) 2909 return; 2910 2911 if (src_chan->center_freq == dst_chan->center_freq && 2912 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2913 dst_chan->dfs_state = src_chan->dfs_state; 2914 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2915 } 2916 } 2917 2918 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2919 struct wiphy *src_wiphy) 2920 { 2921 struct ieee80211_supported_band *src_sband, *dst_sband; 2922 struct ieee80211_channel *src_chan, *dst_chan; 2923 int i, j, band; 2924 2925 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2926 return; 2927 2928 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2929 dst_sband = dst_wiphy->bands[band]; 2930 src_sband = src_wiphy->bands[band]; 2931 if (!dst_sband || !src_sband) 2932 continue; 2933 2934 for (i = 0; i < dst_sband->n_channels; i++) { 2935 dst_chan = &dst_sband->channels[i]; 2936 for (j = 0; j < src_sband->n_channels; j++) { 2937 src_chan = &src_sband->channels[j]; 2938 reg_copy_dfs_chan_state(dst_chan, src_chan); 2939 } 2940 } 2941 } 2942 } 2943 2944 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 2945 { 2946 struct cfg80211_registered_device *rdev; 2947 2948 ASSERT_RTNL(); 2949 2950 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2951 if (wiphy == &rdev->wiphy) 2952 continue; 2953 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 2954 } 2955 } 2956 2957 /* This processes *all* regulatory hints */ 2958 static void reg_process_hint(struct regulatory_request *reg_request) 2959 { 2960 struct wiphy *wiphy = NULL; 2961 enum reg_request_treatment treatment; 2962 enum nl80211_reg_initiator initiator = reg_request->initiator; 2963 2964 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 2965 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 2966 2967 switch (initiator) { 2968 case NL80211_REGDOM_SET_BY_CORE: 2969 treatment = reg_process_hint_core(reg_request); 2970 break; 2971 case NL80211_REGDOM_SET_BY_USER: 2972 treatment = reg_process_hint_user(reg_request); 2973 break; 2974 case NL80211_REGDOM_SET_BY_DRIVER: 2975 if (!wiphy) 2976 goto out_free; 2977 treatment = reg_process_hint_driver(wiphy, reg_request); 2978 break; 2979 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2980 if (!wiphy) 2981 goto out_free; 2982 treatment = reg_process_hint_country_ie(wiphy, reg_request); 2983 break; 2984 default: 2985 WARN(1, "invalid initiator %d\n", initiator); 2986 goto out_free; 2987 } 2988 2989 if (treatment == REG_REQ_IGNORE) 2990 goto out_free; 2991 2992 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 2993 "unexpected treatment value %d\n", treatment); 2994 2995 /* This is required so that the orig_* parameters are saved. 2996 * NOTE: treatment must be set for any case that reaches here! 2997 */ 2998 if (treatment == REG_REQ_ALREADY_SET && wiphy && 2999 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 3000 wiphy_update_regulatory(wiphy, initiator); 3001 wiphy_all_share_dfs_chan_state(wiphy); 3002 reg_check_channels(); 3003 } 3004 3005 return; 3006 3007 out_free: 3008 reg_free_request(reg_request); 3009 } 3010 3011 static void notify_self_managed_wiphys(struct regulatory_request *request) 3012 { 3013 struct cfg80211_registered_device *rdev; 3014 struct wiphy *wiphy; 3015 3016 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3017 wiphy = &rdev->wiphy; 3018 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 3019 request->initiator == NL80211_REGDOM_SET_BY_USER) 3020 reg_call_notifier(wiphy, request); 3021 } 3022 } 3023 3024 /* 3025 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 3026 * Regulatory hints come on a first come first serve basis and we 3027 * must process each one atomically. 3028 */ 3029 static void reg_process_pending_hints(void) 3030 { 3031 struct regulatory_request *reg_request, *lr; 3032 3033 lr = get_last_request(); 3034 3035 /* When last_request->processed becomes true this will be rescheduled */ 3036 if (lr && !lr->processed) { 3037 pr_debug("Pending regulatory request, waiting for it to be processed...\n"); 3038 return; 3039 } 3040 3041 spin_lock(®_requests_lock); 3042 3043 if (list_empty(®_requests_list)) { 3044 spin_unlock(®_requests_lock); 3045 return; 3046 } 3047 3048 reg_request = list_first_entry(®_requests_list, 3049 struct regulatory_request, 3050 list); 3051 list_del_init(®_request->list); 3052 3053 spin_unlock(®_requests_lock); 3054 3055 notify_self_managed_wiphys(reg_request); 3056 3057 reg_process_hint(reg_request); 3058 3059 lr = get_last_request(); 3060 3061 spin_lock(®_requests_lock); 3062 if (!list_empty(®_requests_list) && lr && lr->processed) 3063 schedule_work(®_work); 3064 spin_unlock(®_requests_lock); 3065 } 3066 3067 /* Processes beacon hints -- this has nothing to do with country IEs */ 3068 static void reg_process_pending_beacon_hints(void) 3069 { 3070 struct cfg80211_registered_device *rdev; 3071 struct reg_beacon *pending_beacon, *tmp; 3072 3073 /* This goes through the _pending_ beacon list */ 3074 spin_lock_bh(®_pending_beacons_lock); 3075 3076 list_for_each_entry_safe(pending_beacon, tmp, 3077 ®_pending_beacons, list) { 3078 list_del_init(&pending_beacon->list); 3079 3080 /* Applies the beacon hint to current wiphys */ 3081 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 3082 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 3083 3084 /* Remembers the beacon hint for new wiphys or reg changes */ 3085 list_add_tail(&pending_beacon->list, ®_beacon_list); 3086 } 3087 3088 spin_unlock_bh(®_pending_beacons_lock); 3089 } 3090 3091 static void reg_process_self_managed_hint(struct wiphy *wiphy) 3092 { 3093 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3094 const struct ieee80211_regdomain *tmp; 3095 const struct ieee80211_regdomain *regd; 3096 enum nl80211_band band; 3097 struct regulatory_request request = {}; 3098 3099 ASSERT_RTNL(); 3100 lockdep_assert_wiphy(wiphy); 3101 3102 spin_lock(®_requests_lock); 3103 regd = rdev->requested_regd; 3104 rdev->requested_regd = NULL; 3105 spin_unlock(®_requests_lock); 3106 3107 if (!regd) 3108 return; 3109 3110 tmp = get_wiphy_regdom(wiphy); 3111 rcu_assign_pointer(wiphy->regd, regd); 3112 rcu_free_regdom(tmp); 3113 3114 for (band = 0; band < NUM_NL80211_BANDS; band++) 3115 handle_band_custom(wiphy, wiphy->bands[band], regd); 3116 3117 reg_process_ht_flags(wiphy); 3118 3119 request.wiphy_idx = get_wiphy_idx(wiphy); 3120 request.alpha2[0] = regd->alpha2[0]; 3121 request.alpha2[1] = regd->alpha2[1]; 3122 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 3123 3124 nl80211_send_wiphy_reg_change_event(&request); 3125 } 3126 3127 static void reg_process_self_managed_hints(void) 3128 { 3129 struct cfg80211_registered_device *rdev; 3130 3131 ASSERT_RTNL(); 3132 3133 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3134 wiphy_lock(&rdev->wiphy); 3135 reg_process_self_managed_hint(&rdev->wiphy); 3136 wiphy_unlock(&rdev->wiphy); 3137 } 3138 3139 reg_check_channels(); 3140 } 3141 3142 static void reg_todo(struct work_struct *work) 3143 { 3144 rtnl_lock(); 3145 reg_process_pending_hints(); 3146 reg_process_pending_beacon_hints(); 3147 reg_process_self_managed_hints(); 3148 rtnl_unlock(); 3149 } 3150 3151 static void queue_regulatory_request(struct regulatory_request *request) 3152 { 3153 request->alpha2[0] = toupper(request->alpha2[0]); 3154 request->alpha2[1] = toupper(request->alpha2[1]); 3155 3156 spin_lock(®_requests_lock); 3157 list_add_tail(&request->list, ®_requests_list); 3158 spin_unlock(®_requests_lock); 3159 3160 schedule_work(®_work); 3161 } 3162 3163 /* 3164 * Core regulatory hint -- happens during cfg80211_init() 3165 * and when we restore regulatory settings. 3166 */ 3167 static int regulatory_hint_core(const char *alpha2) 3168 { 3169 struct regulatory_request *request; 3170 3171 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3172 if (!request) 3173 return -ENOMEM; 3174 3175 request->alpha2[0] = alpha2[0]; 3176 request->alpha2[1] = alpha2[1]; 3177 request->initiator = NL80211_REGDOM_SET_BY_CORE; 3178 request->wiphy_idx = WIPHY_IDX_INVALID; 3179 3180 queue_regulatory_request(request); 3181 3182 return 0; 3183 } 3184 3185 /* User hints */ 3186 int regulatory_hint_user(const char *alpha2, 3187 enum nl80211_user_reg_hint_type user_reg_hint_type) 3188 { 3189 struct regulatory_request *request; 3190 3191 if (WARN_ON(!alpha2)) 3192 return -EINVAL; 3193 3194 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2)) 3195 return -EINVAL; 3196 3197 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3198 if (!request) 3199 return -ENOMEM; 3200 3201 request->wiphy_idx = WIPHY_IDX_INVALID; 3202 request->alpha2[0] = alpha2[0]; 3203 request->alpha2[1] = alpha2[1]; 3204 request->initiator = NL80211_REGDOM_SET_BY_USER; 3205 request->user_reg_hint_type = user_reg_hint_type; 3206 3207 /* Allow calling CRDA again */ 3208 reset_crda_timeouts(); 3209 3210 queue_regulatory_request(request); 3211 3212 return 0; 3213 } 3214 3215 int regulatory_hint_indoor(bool is_indoor, u32 portid) 3216 { 3217 spin_lock(®_indoor_lock); 3218 3219 /* It is possible that more than one user space process is trying to 3220 * configure the indoor setting. To handle such cases, clear the indoor 3221 * setting in case that some process does not think that the device 3222 * is operating in an indoor environment. In addition, if a user space 3223 * process indicates that it is controlling the indoor setting, save its 3224 * portid, i.e., make it the owner. 3225 */ 3226 reg_is_indoor = is_indoor; 3227 if (reg_is_indoor) { 3228 if (!reg_is_indoor_portid) 3229 reg_is_indoor_portid = portid; 3230 } else { 3231 reg_is_indoor_portid = 0; 3232 } 3233 3234 spin_unlock(®_indoor_lock); 3235 3236 if (!is_indoor) 3237 reg_check_channels(); 3238 3239 return 0; 3240 } 3241 3242 void regulatory_netlink_notify(u32 portid) 3243 { 3244 spin_lock(®_indoor_lock); 3245 3246 if (reg_is_indoor_portid != portid) { 3247 spin_unlock(®_indoor_lock); 3248 return; 3249 } 3250 3251 reg_is_indoor = false; 3252 reg_is_indoor_portid = 0; 3253 3254 spin_unlock(®_indoor_lock); 3255 3256 reg_check_channels(); 3257 } 3258 3259 /* Driver hints */ 3260 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3261 { 3262 struct regulatory_request *request; 3263 3264 if (WARN_ON(!alpha2 || !wiphy)) 3265 return -EINVAL; 3266 3267 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3268 3269 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3270 if (!request) 3271 return -ENOMEM; 3272 3273 request->wiphy_idx = get_wiphy_idx(wiphy); 3274 3275 request->alpha2[0] = alpha2[0]; 3276 request->alpha2[1] = alpha2[1]; 3277 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3278 3279 /* Allow calling CRDA again */ 3280 reset_crda_timeouts(); 3281 3282 queue_regulatory_request(request); 3283 3284 return 0; 3285 } 3286 EXPORT_SYMBOL(regulatory_hint); 3287 3288 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3289 const u8 *country_ie, u8 country_ie_len) 3290 { 3291 char alpha2[2]; 3292 enum environment_cap env = ENVIRON_ANY; 3293 struct regulatory_request *request = NULL, *lr; 3294 3295 /* IE len must be evenly divisible by 2 */ 3296 if (country_ie_len & 0x01) 3297 return; 3298 3299 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3300 return; 3301 3302 request = kzalloc(sizeof(*request), GFP_KERNEL); 3303 if (!request) 3304 return; 3305 3306 alpha2[0] = country_ie[0]; 3307 alpha2[1] = country_ie[1]; 3308 3309 if (country_ie[2] == 'I') 3310 env = ENVIRON_INDOOR; 3311 else if (country_ie[2] == 'O') 3312 env = ENVIRON_OUTDOOR; 3313 3314 rcu_read_lock(); 3315 lr = get_last_request(); 3316 3317 if (unlikely(!lr)) 3318 goto out; 3319 3320 /* 3321 * We will run this only upon a successful connection on cfg80211. 3322 * We leave conflict resolution to the workqueue, where can hold 3323 * the RTNL. 3324 */ 3325 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3326 lr->wiphy_idx != WIPHY_IDX_INVALID) 3327 goto out; 3328 3329 request->wiphy_idx = get_wiphy_idx(wiphy); 3330 request->alpha2[0] = alpha2[0]; 3331 request->alpha2[1] = alpha2[1]; 3332 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3333 request->country_ie_env = env; 3334 3335 /* Allow calling CRDA again */ 3336 reset_crda_timeouts(); 3337 3338 queue_regulatory_request(request); 3339 request = NULL; 3340 out: 3341 kfree(request); 3342 rcu_read_unlock(); 3343 } 3344 3345 static void restore_alpha2(char *alpha2, bool reset_user) 3346 { 3347 /* indicates there is no alpha2 to consider for restoration */ 3348 alpha2[0] = '9'; 3349 alpha2[1] = '7'; 3350 3351 /* The user setting has precedence over the module parameter */ 3352 if (is_user_regdom_saved()) { 3353 /* Unless we're asked to ignore it and reset it */ 3354 if (reset_user) { 3355 pr_debug("Restoring regulatory settings including user preference\n"); 3356 user_alpha2[0] = '9'; 3357 user_alpha2[1] = '7'; 3358 3359 /* 3360 * If we're ignoring user settings, we still need to 3361 * check the module parameter to ensure we put things 3362 * back as they were for a full restore. 3363 */ 3364 if (!is_world_regdom(ieee80211_regdom)) { 3365 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3366 ieee80211_regdom[0], ieee80211_regdom[1]); 3367 alpha2[0] = ieee80211_regdom[0]; 3368 alpha2[1] = ieee80211_regdom[1]; 3369 } 3370 } else { 3371 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3372 user_alpha2[0], user_alpha2[1]); 3373 alpha2[0] = user_alpha2[0]; 3374 alpha2[1] = user_alpha2[1]; 3375 } 3376 } else if (!is_world_regdom(ieee80211_regdom)) { 3377 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3378 ieee80211_regdom[0], ieee80211_regdom[1]); 3379 alpha2[0] = ieee80211_regdom[0]; 3380 alpha2[1] = ieee80211_regdom[1]; 3381 } else 3382 pr_debug("Restoring regulatory settings\n"); 3383 } 3384 3385 static void restore_custom_reg_settings(struct wiphy *wiphy) 3386 { 3387 struct ieee80211_supported_band *sband; 3388 enum nl80211_band band; 3389 struct ieee80211_channel *chan; 3390 int i; 3391 3392 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3393 sband = wiphy->bands[band]; 3394 if (!sband) 3395 continue; 3396 for (i = 0; i < sband->n_channels; i++) { 3397 chan = &sband->channels[i]; 3398 chan->flags = chan->orig_flags; 3399 chan->max_antenna_gain = chan->orig_mag; 3400 chan->max_power = chan->orig_mpwr; 3401 chan->beacon_found = false; 3402 } 3403 } 3404 } 3405 3406 /* 3407 * Restoring regulatory settings involves ignoring any 3408 * possibly stale country IE information and user regulatory 3409 * settings if so desired, this includes any beacon hints 3410 * learned as we could have traveled outside to another country 3411 * after disconnection. To restore regulatory settings we do 3412 * exactly what we did at bootup: 3413 * 3414 * - send a core regulatory hint 3415 * - send a user regulatory hint if applicable 3416 * 3417 * Device drivers that send a regulatory hint for a specific country 3418 * keep their own regulatory domain on wiphy->regd so that does 3419 * not need to be remembered. 3420 */ 3421 static void restore_regulatory_settings(bool reset_user, bool cached) 3422 { 3423 char alpha2[2]; 3424 char world_alpha2[2]; 3425 struct reg_beacon *reg_beacon, *btmp; 3426 LIST_HEAD(tmp_reg_req_list); 3427 struct cfg80211_registered_device *rdev; 3428 3429 ASSERT_RTNL(); 3430 3431 /* 3432 * Clear the indoor setting in case that it is not controlled by user 3433 * space, as otherwise there is no guarantee that the device is still 3434 * operating in an indoor environment. 3435 */ 3436 spin_lock(®_indoor_lock); 3437 if (reg_is_indoor && !reg_is_indoor_portid) { 3438 reg_is_indoor = false; 3439 reg_check_channels(); 3440 } 3441 spin_unlock(®_indoor_lock); 3442 3443 reset_regdomains(true, &world_regdom); 3444 restore_alpha2(alpha2, reset_user); 3445 3446 /* 3447 * If there's any pending requests we simply 3448 * stash them to a temporary pending queue and 3449 * add then after we've restored regulatory 3450 * settings. 3451 */ 3452 spin_lock(®_requests_lock); 3453 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3454 spin_unlock(®_requests_lock); 3455 3456 /* Clear beacon hints */ 3457 spin_lock_bh(®_pending_beacons_lock); 3458 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3459 list_del(®_beacon->list); 3460 kfree(reg_beacon); 3461 } 3462 spin_unlock_bh(®_pending_beacons_lock); 3463 3464 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3465 list_del(®_beacon->list); 3466 kfree(reg_beacon); 3467 } 3468 3469 /* First restore to the basic regulatory settings */ 3470 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3471 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3472 3473 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3474 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3475 continue; 3476 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3477 restore_custom_reg_settings(&rdev->wiphy); 3478 } 3479 3480 if (cached && (!is_an_alpha2(alpha2) || 3481 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3482 reset_regdomains(false, cfg80211_world_regdom); 3483 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3484 print_regdomain(get_cfg80211_regdom()); 3485 nl80211_send_reg_change_event(&core_request_world); 3486 reg_set_request_processed(); 3487 3488 if (is_an_alpha2(alpha2) && 3489 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3490 struct regulatory_request *ureq; 3491 3492 spin_lock(®_requests_lock); 3493 ureq = list_last_entry(®_requests_list, 3494 struct regulatory_request, 3495 list); 3496 list_del(&ureq->list); 3497 spin_unlock(®_requests_lock); 3498 3499 notify_self_managed_wiphys(ureq); 3500 reg_update_last_request(ureq); 3501 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3502 REGD_SOURCE_CACHED); 3503 } 3504 } else { 3505 regulatory_hint_core(world_alpha2); 3506 3507 /* 3508 * This restores the ieee80211_regdom module parameter 3509 * preference or the last user requested regulatory 3510 * settings, user regulatory settings takes precedence. 3511 */ 3512 if (is_an_alpha2(alpha2)) 3513 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3514 } 3515 3516 spin_lock(®_requests_lock); 3517 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3518 spin_unlock(®_requests_lock); 3519 3520 pr_debug("Kicking the queue\n"); 3521 3522 schedule_work(®_work); 3523 } 3524 3525 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3526 { 3527 struct cfg80211_registered_device *rdev; 3528 struct wireless_dev *wdev; 3529 3530 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 3531 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3532 wdev_lock(wdev); 3533 if (!(wdev->wiphy->regulatory_flags & flag)) { 3534 wdev_unlock(wdev); 3535 return false; 3536 } 3537 wdev_unlock(wdev); 3538 } 3539 } 3540 3541 return true; 3542 } 3543 3544 void regulatory_hint_disconnect(void) 3545 { 3546 /* Restore of regulatory settings is not required when wiphy(s) 3547 * ignore IE from connected access point but clearance of beacon hints 3548 * is required when wiphy(s) supports beacon hints. 3549 */ 3550 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3551 struct reg_beacon *reg_beacon, *btmp; 3552 3553 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3554 return; 3555 3556 spin_lock_bh(®_pending_beacons_lock); 3557 list_for_each_entry_safe(reg_beacon, btmp, 3558 ®_pending_beacons, list) { 3559 list_del(®_beacon->list); 3560 kfree(reg_beacon); 3561 } 3562 spin_unlock_bh(®_pending_beacons_lock); 3563 3564 list_for_each_entry_safe(reg_beacon, btmp, 3565 ®_beacon_list, list) { 3566 list_del(®_beacon->list); 3567 kfree(reg_beacon); 3568 } 3569 3570 return; 3571 } 3572 3573 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3574 restore_regulatory_settings(false, true); 3575 } 3576 3577 static bool freq_is_chan_12_13_14(u32 freq) 3578 { 3579 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3580 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3581 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3582 return true; 3583 return false; 3584 } 3585 3586 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3587 { 3588 struct reg_beacon *pending_beacon; 3589 3590 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3591 if (ieee80211_channel_equal(beacon_chan, 3592 &pending_beacon->chan)) 3593 return true; 3594 return false; 3595 } 3596 3597 int regulatory_hint_found_beacon(struct wiphy *wiphy, 3598 struct ieee80211_channel *beacon_chan, 3599 gfp_t gfp) 3600 { 3601 struct reg_beacon *reg_beacon; 3602 bool processing; 3603 3604 if (beacon_chan->beacon_found || 3605 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3606 (beacon_chan->band == NL80211_BAND_2GHZ && 3607 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3608 return 0; 3609 3610 spin_lock_bh(®_pending_beacons_lock); 3611 processing = pending_reg_beacon(beacon_chan); 3612 spin_unlock_bh(®_pending_beacons_lock); 3613 3614 if (processing) 3615 return 0; 3616 3617 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3618 if (!reg_beacon) 3619 return -ENOMEM; 3620 3621 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n", 3622 beacon_chan->center_freq, beacon_chan->freq_offset, 3623 ieee80211_freq_khz_to_channel( 3624 ieee80211_channel_to_khz(beacon_chan)), 3625 wiphy_name(wiphy)); 3626 3627 memcpy(®_beacon->chan, beacon_chan, 3628 sizeof(struct ieee80211_channel)); 3629 3630 /* 3631 * Since we can be called from BH or and non-BH context 3632 * we must use spin_lock_bh() 3633 */ 3634 spin_lock_bh(®_pending_beacons_lock); 3635 list_add_tail(®_beacon->list, ®_pending_beacons); 3636 spin_unlock_bh(®_pending_beacons_lock); 3637 3638 schedule_work(®_work); 3639 3640 return 0; 3641 } 3642 3643 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3644 { 3645 unsigned int i; 3646 const struct ieee80211_reg_rule *reg_rule = NULL; 3647 const struct ieee80211_freq_range *freq_range = NULL; 3648 const struct ieee80211_power_rule *power_rule = NULL; 3649 char bw[32], cac_time[32]; 3650 3651 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3652 3653 for (i = 0; i < rd->n_reg_rules; i++) { 3654 reg_rule = &rd->reg_rules[i]; 3655 freq_range = ®_rule->freq_range; 3656 power_rule = ®_rule->power_rule; 3657 3658 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3659 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO", 3660 freq_range->max_bandwidth_khz, 3661 reg_get_max_bandwidth(rd, reg_rule)); 3662 else 3663 snprintf(bw, sizeof(bw), "%d KHz", 3664 freq_range->max_bandwidth_khz); 3665 3666 if (reg_rule->flags & NL80211_RRF_DFS) 3667 scnprintf(cac_time, sizeof(cac_time), "%u s", 3668 reg_rule->dfs_cac_ms/1000); 3669 else 3670 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3671 3672 3673 /* 3674 * There may not be documentation for max antenna gain 3675 * in certain regions 3676 */ 3677 if (power_rule->max_antenna_gain) 3678 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3679 freq_range->start_freq_khz, 3680 freq_range->end_freq_khz, 3681 bw, 3682 power_rule->max_antenna_gain, 3683 power_rule->max_eirp, 3684 cac_time); 3685 else 3686 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3687 freq_range->start_freq_khz, 3688 freq_range->end_freq_khz, 3689 bw, 3690 power_rule->max_eirp, 3691 cac_time); 3692 } 3693 } 3694 3695 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3696 { 3697 switch (dfs_region) { 3698 case NL80211_DFS_UNSET: 3699 case NL80211_DFS_FCC: 3700 case NL80211_DFS_ETSI: 3701 case NL80211_DFS_JP: 3702 return true; 3703 default: 3704 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3705 return false; 3706 } 3707 } 3708 3709 static void print_regdomain(const struct ieee80211_regdomain *rd) 3710 { 3711 struct regulatory_request *lr = get_last_request(); 3712 3713 if (is_intersected_alpha2(rd->alpha2)) { 3714 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3715 struct cfg80211_registered_device *rdev; 3716 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3717 if (rdev) { 3718 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3719 rdev->country_ie_alpha2[0], 3720 rdev->country_ie_alpha2[1]); 3721 } else 3722 pr_debug("Current regulatory domain intersected:\n"); 3723 } else 3724 pr_debug("Current regulatory domain intersected:\n"); 3725 } else if (is_world_regdom(rd->alpha2)) { 3726 pr_debug("World regulatory domain updated:\n"); 3727 } else { 3728 if (is_unknown_alpha2(rd->alpha2)) 3729 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3730 else { 3731 if (reg_request_cell_base(lr)) 3732 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3733 rd->alpha2[0], rd->alpha2[1]); 3734 else 3735 pr_debug("Regulatory domain changed to country: %c%c\n", 3736 rd->alpha2[0], rd->alpha2[1]); 3737 } 3738 } 3739 3740 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3741 print_rd_rules(rd); 3742 } 3743 3744 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3745 { 3746 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3747 print_rd_rules(rd); 3748 } 3749 3750 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3751 { 3752 if (!is_world_regdom(rd->alpha2)) 3753 return -EINVAL; 3754 update_world_regdomain(rd); 3755 return 0; 3756 } 3757 3758 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3759 struct regulatory_request *user_request) 3760 { 3761 const struct ieee80211_regdomain *intersected_rd = NULL; 3762 3763 if (!regdom_changes(rd->alpha2)) 3764 return -EALREADY; 3765 3766 if (!is_valid_rd(rd)) { 3767 pr_err("Invalid regulatory domain detected: %c%c\n", 3768 rd->alpha2[0], rd->alpha2[1]); 3769 print_regdomain_info(rd); 3770 return -EINVAL; 3771 } 3772 3773 if (!user_request->intersect) { 3774 reset_regdomains(false, rd); 3775 return 0; 3776 } 3777 3778 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3779 if (!intersected_rd) 3780 return -EINVAL; 3781 3782 kfree(rd); 3783 rd = NULL; 3784 reset_regdomains(false, intersected_rd); 3785 3786 return 0; 3787 } 3788 3789 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3790 struct regulatory_request *driver_request) 3791 { 3792 const struct ieee80211_regdomain *regd; 3793 const struct ieee80211_regdomain *intersected_rd = NULL; 3794 const struct ieee80211_regdomain *tmp; 3795 struct wiphy *request_wiphy; 3796 3797 if (is_world_regdom(rd->alpha2)) 3798 return -EINVAL; 3799 3800 if (!regdom_changes(rd->alpha2)) 3801 return -EALREADY; 3802 3803 if (!is_valid_rd(rd)) { 3804 pr_err("Invalid regulatory domain detected: %c%c\n", 3805 rd->alpha2[0], rd->alpha2[1]); 3806 print_regdomain_info(rd); 3807 return -EINVAL; 3808 } 3809 3810 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3811 if (!request_wiphy) 3812 return -ENODEV; 3813 3814 if (!driver_request->intersect) { 3815 ASSERT_RTNL(); 3816 wiphy_lock(request_wiphy); 3817 if (request_wiphy->regd) { 3818 wiphy_unlock(request_wiphy); 3819 return -EALREADY; 3820 } 3821 3822 regd = reg_copy_regd(rd); 3823 if (IS_ERR(regd)) { 3824 wiphy_unlock(request_wiphy); 3825 return PTR_ERR(regd); 3826 } 3827 3828 rcu_assign_pointer(request_wiphy->regd, regd); 3829 wiphy_unlock(request_wiphy); 3830 reset_regdomains(false, rd); 3831 return 0; 3832 } 3833 3834 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3835 if (!intersected_rd) 3836 return -EINVAL; 3837 3838 /* 3839 * We can trash what CRDA provided now. 3840 * However if a driver requested this specific regulatory 3841 * domain we keep it for its private use 3842 */ 3843 tmp = get_wiphy_regdom(request_wiphy); 3844 rcu_assign_pointer(request_wiphy->regd, rd); 3845 rcu_free_regdom(tmp); 3846 3847 rd = NULL; 3848 3849 reset_regdomains(false, intersected_rd); 3850 3851 return 0; 3852 } 3853 3854 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3855 struct regulatory_request *country_ie_request) 3856 { 3857 struct wiphy *request_wiphy; 3858 3859 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3860 !is_unknown_alpha2(rd->alpha2)) 3861 return -EINVAL; 3862 3863 /* 3864 * Lets only bother proceeding on the same alpha2 if the current 3865 * rd is non static (it means CRDA was present and was used last) 3866 * and the pending request came in from a country IE 3867 */ 3868 3869 if (!is_valid_rd(rd)) { 3870 pr_err("Invalid regulatory domain detected: %c%c\n", 3871 rd->alpha2[0], rd->alpha2[1]); 3872 print_regdomain_info(rd); 3873 return -EINVAL; 3874 } 3875 3876 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3877 if (!request_wiphy) 3878 return -ENODEV; 3879 3880 if (country_ie_request->intersect) 3881 return -EINVAL; 3882 3883 reset_regdomains(false, rd); 3884 return 0; 3885 } 3886 3887 /* 3888 * Use this call to set the current regulatory domain. Conflicts with 3889 * multiple drivers can be ironed out later. Caller must've already 3890 * kmalloc'd the rd structure. 3891 */ 3892 int set_regdom(const struct ieee80211_regdomain *rd, 3893 enum ieee80211_regd_source regd_src) 3894 { 3895 struct regulatory_request *lr; 3896 bool user_reset = false; 3897 int r; 3898 3899 if (IS_ERR_OR_NULL(rd)) 3900 return -ENODATA; 3901 3902 if (!reg_is_valid_request(rd->alpha2)) { 3903 kfree(rd); 3904 return -EINVAL; 3905 } 3906 3907 if (regd_src == REGD_SOURCE_CRDA) 3908 reset_crda_timeouts(); 3909 3910 lr = get_last_request(); 3911 3912 /* Note that this doesn't update the wiphys, this is done below */ 3913 switch (lr->initiator) { 3914 case NL80211_REGDOM_SET_BY_CORE: 3915 r = reg_set_rd_core(rd); 3916 break; 3917 case NL80211_REGDOM_SET_BY_USER: 3918 cfg80211_save_user_regdom(rd); 3919 r = reg_set_rd_user(rd, lr); 3920 user_reset = true; 3921 break; 3922 case NL80211_REGDOM_SET_BY_DRIVER: 3923 r = reg_set_rd_driver(rd, lr); 3924 break; 3925 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3926 r = reg_set_rd_country_ie(rd, lr); 3927 break; 3928 default: 3929 WARN(1, "invalid initiator %d\n", lr->initiator); 3930 kfree(rd); 3931 return -EINVAL; 3932 } 3933 3934 if (r) { 3935 switch (r) { 3936 case -EALREADY: 3937 reg_set_request_processed(); 3938 break; 3939 default: 3940 /* Back to world regulatory in case of errors */ 3941 restore_regulatory_settings(user_reset, false); 3942 } 3943 3944 kfree(rd); 3945 return r; 3946 } 3947 3948 /* This would make this whole thing pointless */ 3949 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 3950 return -EINVAL; 3951 3952 /* update all wiphys now with the new established regulatory domain */ 3953 update_all_wiphy_regulatory(lr->initiator); 3954 3955 print_regdomain(get_cfg80211_regdom()); 3956 3957 nl80211_send_reg_change_event(lr); 3958 3959 reg_set_request_processed(); 3960 3961 return 0; 3962 } 3963 3964 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 3965 struct ieee80211_regdomain *rd) 3966 { 3967 const struct ieee80211_regdomain *regd; 3968 const struct ieee80211_regdomain *prev_regd; 3969 struct cfg80211_registered_device *rdev; 3970 3971 if (WARN_ON(!wiphy || !rd)) 3972 return -EINVAL; 3973 3974 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 3975 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 3976 return -EPERM; 3977 3978 if (WARN(!is_valid_rd(rd), 3979 "Invalid regulatory domain detected: %c%c\n", 3980 rd->alpha2[0], rd->alpha2[1])) { 3981 print_regdomain_info(rd); 3982 return -EINVAL; 3983 } 3984 3985 regd = reg_copy_regd(rd); 3986 if (IS_ERR(regd)) 3987 return PTR_ERR(regd); 3988 3989 rdev = wiphy_to_rdev(wiphy); 3990 3991 spin_lock(®_requests_lock); 3992 prev_regd = rdev->requested_regd; 3993 rdev->requested_regd = regd; 3994 spin_unlock(®_requests_lock); 3995 3996 kfree(prev_regd); 3997 return 0; 3998 } 3999 4000 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 4001 struct ieee80211_regdomain *rd) 4002 { 4003 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 4004 4005 if (ret) 4006 return ret; 4007 4008 schedule_work(®_work); 4009 return 0; 4010 } 4011 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 4012 4013 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy, 4014 struct ieee80211_regdomain *rd) 4015 { 4016 int ret; 4017 4018 ASSERT_RTNL(); 4019 4020 ret = __regulatory_set_wiphy_regd(wiphy, rd); 4021 if (ret) 4022 return ret; 4023 4024 /* process the request immediately */ 4025 reg_process_self_managed_hint(wiphy); 4026 reg_check_channels(); 4027 return 0; 4028 } 4029 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync); 4030 4031 void wiphy_regulatory_register(struct wiphy *wiphy) 4032 { 4033 struct regulatory_request *lr = get_last_request(); 4034 4035 /* self-managed devices ignore beacon hints and country IE */ 4036 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 4037 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 4038 REGULATORY_COUNTRY_IE_IGNORE; 4039 4040 /* 4041 * The last request may have been received before this 4042 * registration call. Call the driver notifier if 4043 * initiator is USER. 4044 */ 4045 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 4046 reg_call_notifier(wiphy, lr); 4047 } 4048 4049 if (!reg_dev_ignore_cell_hint(wiphy)) 4050 reg_num_devs_support_basehint++; 4051 4052 wiphy_update_regulatory(wiphy, lr->initiator); 4053 wiphy_all_share_dfs_chan_state(wiphy); 4054 reg_process_self_managed_hints(); 4055 } 4056 4057 void wiphy_regulatory_deregister(struct wiphy *wiphy) 4058 { 4059 struct wiphy *request_wiphy = NULL; 4060 struct regulatory_request *lr; 4061 4062 lr = get_last_request(); 4063 4064 if (!reg_dev_ignore_cell_hint(wiphy)) 4065 reg_num_devs_support_basehint--; 4066 4067 rcu_free_regdom(get_wiphy_regdom(wiphy)); 4068 RCU_INIT_POINTER(wiphy->regd, NULL); 4069 4070 if (lr) 4071 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 4072 4073 if (!request_wiphy || request_wiphy != wiphy) 4074 return; 4075 4076 lr->wiphy_idx = WIPHY_IDX_INVALID; 4077 lr->country_ie_env = ENVIRON_ANY; 4078 } 4079 4080 /* 4081 * See FCC notices for UNII band definitions 4082 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii 4083 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0 4084 */ 4085 int cfg80211_get_unii(int freq) 4086 { 4087 /* UNII-1 */ 4088 if (freq >= 5150 && freq <= 5250) 4089 return 0; 4090 4091 /* UNII-2A */ 4092 if (freq > 5250 && freq <= 5350) 4093 return 1; 4094 4095 /* UNII-2B */ 4096 if (freq > 5350 && freq <= 5470) 4097 return 2; 4098 4099 /* UNII-2C */ 4100 if (freq > 5470 && freq <= 5725) 4101 return 3; 4102 4103 /* UNII-3 */ 4104 if (freq > 5725 && freq <= 5825) 4105 return 4; 4106 4107 /* UNII-5 */ 4108 if (freq > 5925 && freq <= 6425) 4109 return 5; 4110 4111 /* UNII-6 */ 4112 if (freq > 6425 && freq <= 6525) 4113 return 6; 4114 4115 /* UNII-7 */ 4116 if (freq > 6525 && freq <= 6875) 4117 return 7; 4118 4119 /* UNII-8 */ 4120 if (freq > 6875 && freq <= 7125) 4121 return 8; 4122 4123 return -EINVAL; 4124 } 4125 4126 bool regulatory_indoor_allowed(void) 4127 { 4128 return reg_is_indoor; 4129 } 4130 4131 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 4132 { 4133 const struct ieee80211_regdomain *regd = NULL; 4134 const struct ieee80211_regdomain *wiphy_regd = NULL; 4135 bool pre_cac_allowed = false; 4136 4137 rcu_read_lock(); 4138 4139 regd = rcu_dereference(cfg80211_regdomain); 4140 wiphy_regd = rcu_dereference(wiphy->regd); 4141 if (!wiphy_regd) { 4142 if (regd->dfs_region == NL80211_DFS_ETSI) 4143 pre_cac_allowed = true; 4144 4145 rcu_read_unlock(); 4146 4147 return pre_cac_allowed; 4148 } 4149 4150 if (regd->dfs_region == wiphy_regd->dfs_region && 4151 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 4152 pre_cac_allowed = true; 4153 4154 rcu_read_unlock(); 4155 4156 return pre_cac_allowed; 4157 } 4158 EXPORT_SYMBOL(regulatory_pre_cac_allowed); 4159 4160 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev) 4161 { 4162 struct wireless_dev *wdev; 4163 /* If we finished CAC or received radar, we should end any 4164 * CAC running on the same channels. 4165 * the check !cfg80211_chandef_dfs_usable contain 2 options: 4166 * either all channels are available - those the CAC_FINISHED 4167 * event has effected another wdev state, or there is a channel 4168 * in unavailable state in wdev chandef - those the RADAR_DETECTED 4169 * event has effected another wdev state. 4170 * In both cases we should end the CAC on the wdev. 4171 */ 4172 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 4173 if (wdev->cac_started && 4174 !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef)) 4175 rdev_end_cac(rdev, wdev->netdev); 4176 } 4177 } 4178 4179 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 4180 struct cfg80211_chan_def *chandef, 4181 enum nl80211_dfs_state dfs_state, 4182 enum nl80211_radar_event event) 4183 { 4184 struct cfg80211_registered_device *rdev; 4185 4186 ASSERT_RTNL(); 4187 4188 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 4189 return; 4190 4191 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 4192 if (wiphy == &rdev->wiphy) 4193 continue; 4194 4195 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 4196 continue; 4197 4198 if (!ieee80211_get_channel(&rdev->wiphy, 4199 chandef->chan->center_freq)) 4200 continue; 4201 4202 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 4203 4204 if (event == NL80211_RADAR_DETECTED || 4205 event == NL80211_RADAR_CAC_FINISHED) { 4206 cfg80211_sched_dfs_chan_update(rdev); 4207 cfg80211_check_and_end_cac(rdev); 4208 } 4209 4210 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 4211 } 4212 } 4213 4214 static int __init regulatory_init_db(void) 4215 { 4216 int err; 4217 4218 /* 4219 * It's possible that - due to other bugs/issues - cfg80211 4220 * never called regulatory_init() below, or that it failed; 4221 * in that case, don't try to do any further work here as 4222 * it's doomed to lead to crashes. 4223 */ 4224 if (IS_ERR_OR_NULL(reg_pdev)) 4225 return -EINVAL; 4226 4227 err = load_builtin_regdb_keys(); 4228 if (err) 4229 return err; 4230 4231 /* We always try to get an update for the static regdomain */ 4232 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 4233 if (err) { 4234 if (err == -ENOMEM) { 4235 platform_device_unregister(reg_pdev); 4236 return err; 4237 } 4238 /* 4239 * N.B. kobject_uevent_env() can fail mainly for when we're out 4240 * memory which is handled and propagated appropriately above 4241 * but it can also fail during a netlink_broadcast() or during 4242 * early boot for call_usermodehelper(). For now treat these 4243 * errors as non-fatal. 4244 */ 4245 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 4246 } 4247 4248 /* 4249 * Finally, if the user set the module parameter treat it 4250 * as a user hint. 4251 */ 4252 if (!is_world_regdom(ieee80211_regdom)) 4253 regulatory_hint_user(ieee80211_regdom, 4254 NL80211_USER_REG_HINT_USER); 4255 4256 return 0; 4257 } 4258 #ifndef MODULE 4259 late_initcall(regulatory_init_db); 4260 #endif 4261 4262 int __init regulatory_init(void) 4263 { 4264 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 4265 if (IS_ERR(reg_pdev)) 4266 return PTR_ERR(reg_pdev); 4267 4268 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 4269 4270 user_alpha2[0] = '9'; 4271 user_alpha2[1] = '7'; 4272 4273 #ifdef MODULE 4274 return regulatory_init_db(); 4275 #else 4276 return 0; 4277 #endif 4278 } 4279 4280 void regulatory_exit(void) 4281 { 4282 struct regulatory_request *reg_request, *tmp; 4283 struct reg_beacon *reg_beacon, *btmp; 4284 4285 cancel_work_sync(®_work); 4286 cancel_crda_timeout_sync(); 4287 cancel_delayed_work_sync(®_check_chans); 4288 4289 /* Lock to suppress warnings */ 4290 rtnl_lock(); 4291 reset_regdomains(true, NULL); 4292 rtnl_unlock(); 4293 4294 dev_set_uevent_suppress(®_pdev->dev, true); 4295 4296 platform_device_unregister(reg_pdev); 4297 4298 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 4299 list_del(®_beacon->list); 4300 kfree(reg_beacon); 4301 } 4302 4303 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 4304 list_del(®_beacon->list); 4305 kfree(reg_beacon); 4306 } 4307 4308 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4309 list_del(®_request->list); 4310 kfree(reg_request); 4311 } 4312 4313 if (!IS_ERR_OR_NULL(regdb)) 4314 kfree(regdb); 4315 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4316 kfree(cfg80211_user_regdom); 4317 4318 free_regdb_keyring(); 4319 } 4320