1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2023 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24 /**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82 enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102 static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121 static int reg_num_devs_support_basehint;
122
123 /*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137
get_cfg80211_regdom(void)138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140 return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142
143 /*
144 * Returns the regulatory domain associated with the wiphy.
145 *
146 * Requires any of RTNL, wiphy mutex or RCU protection.
147 */
get_wiphy_regdom(struct wiphy * wiphy)148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150 return rcu_dereference_check(wiphy->regd,
151 lockdep_is_held(&wiphy->mtx) ||
152 lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155
reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158 switch (dfs_region) {
159 case NL80211_DFS_UNSET:
160 return "unset";
161 case NL80211_DFS_FCC:
162 return "FCC";
163 case NL80211_DFS_ETSI:
164 return "ETSI";
165 case NL80211_DFS_JP:
166 return "JP";
167 }
168 return "Unknown";
169 }
170
reg_get_dfs_region(struct wiphy * wiphy)171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173 const struct ieee80211_regdomain *regd = NULL;
174 const struct ieee80211_regdomain *wiphy_regd = NULL;
175 enum nl80211_dfs_regions dfs_region;
176
177 rcu_read_lock();
178 regd = get_cfg80211_regdom();
179 dfs_region = regd->dfs_region;
180
181 if (!wiphy)
182 goto out;
183
184 wiphy_regd = get_wiphy_regdom(wiphy);
185 if (!wiphy_regd)
186 goto out;
187
188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 dfs_region = wiphy_regd->dfs_region;
190 goto out;
191 }
192
193 if (wiphy_regd->dfs_region == regd->dfs_region)
194 goto out;
195
196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 dev_name(&wiphy->dev),
198 reg_dfs_region_str(wiphy_regd->dfs_region),
199 reg_dfs_region_str(regd->dfs_region));
200
201 out:
202 rcu_read_unlock();
203
204 return dfs_region;
205 }
206
rcu_free_regdom(const struct ieee80211_regdomain * r)207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209 if (!r)
210 return;
211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213
get_last_request(void)214 static struct regulatory_request *get_last_request(void)
215 {
216 return rcu_dereference_rtnl(last_request);
217 }
218
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229
230 struct reg_beacon {
231 struct list_head list;
232 struct ieee80211_channel chan;
233 };
234
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243 .n_reg_rules = 8,
244 .alpha2 = "00",
245 .reg_rules = {
246 /* IEEE 802.11b/g, channels 1..11 */
247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 /* IEEE 802.11b/g, channels 12..13. */
249 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 /* IEEE 802.11 channel 14 - Only JP enables
252 * this and for 802.11b only */
253 REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 NL80211_RRF_NO_IR |
255 NL80211_RRF_NO_OFDM),
256 /* IEEE 802.11a, channel 36..48 */
257 REG_RULE(5180-10, 5240+10, 80, 6, 20,
258 NL80211_RRF_NO_IR |
259 NL80211_RRF_AUTO_BW),
260
261 /* IEEE 802.11a, channel 52..64 - DFS required */
262 REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 NL80211_RRF_NO_IR |
264 NL80211_RRF_AUTO_BW |
265 NL80211_RRF_DFS),
266
267 /* IEEE 802.11a, channel 100..144 - DFS required */
268 REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 NL80211_RRF_NO_IR |
270 NL80211_RRF_DFS),
271
272 /* IEEE 802.11a, channel 149..165 */
273 REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 NL80211_RRF_NO_IR),
275
276 /* IEEE 802.11ad (60GHz), channels 1..3 */
277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 }
279 };
280
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 &world_regdom;
284
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291
reg_free_request(struct regulatory_request * request)292 static void reg_free_request(struct regulatory_request *request)
293 {
294 if (request == &core_request_world)
295 return;
296
297 if (request != get_last_request())
298 kfree(request);
299 }
300
reg_free_last_request(void)301 static void reg_free_last_request(void)
302 {
303 struct regulatory_request *lr = get_last_request();
304
305 if (lr != &core_request_world && lr)
306 kfree_rcu(lr, rcu_head);
307 }
308
reg_update_last_request(struct regulatory_request * request)309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311 struct regulatory_request *lr;
312
313 lr = get_last_request();
314 if (lr == request)
315 return;
316
317 reg_free_last_request();
318 rcu_assign_pointer(last_request, request);
319 }
320
reset_regdomains(bool full_reset,const struct ieee80211_regdomain * new_regdom)321 static void reset_regdomains(bool full_reset,
322 const struct ieee80211_regdomain *new_regdom)
323 {
324 const struct ieee80211_regdomain *r;
325
326 ASSERT_RTNL();
327
328 r = get_cfg80211_regdom();
329
330 /* avoid freeing static information or freeing something twice */
331 if (r == cfg80211_world_regdom)
332 r = NULL;
333 if (cfg80211_world_regdom == &world_regdom)
334 cfg80211_world_regdom = NULL;
335 if (r == &world_regdom)
336 r = NULL;
337
338 rcu_free_regdom(r);
339 rcu_free_regdom(cfg80211_world_regdom);
340
341 cfg80211_world_regdom = &world_regdom;
342 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343
344 if (!full_reset)
345 return;
346
347 reg_update_last_request(&core_request_world);
348 }
349
350 /*
351 * Dynamic world regulatory domain requested by the wireless
352 * core upon initialization
353 */
update_world_regdomain(const struct ieee80211_regdomain * rd)354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356 struct regulatory_request *lr;
357
358 lr = get_last_request();
359
360 WARN_ON(!lr);
361
362 reset_regdomains(false, rd);
363
364 cfg80211_world_regdom = rd;
365 }
366
is_world_regdom(const char * alpha2)367 bool is_world_regdom(const char *alpha2)
368 {
369 if (!alpha2)
370 return false;
371 return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373
is_alpha2_set(const char * alpha2)374 static bool is_alpha2_set(const char *alpha2)
375 {
376 if (!alpha2)
377 return false;
378 return alpha2[0] && alpha2[1];
379 }
380
is_unknown_alpha2(const char * alpha2)381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383 if (!alpha2)
384 return false;
385 /*
386 * Special case where regulatory domain was built by driver
387 * but a specific alpha2 cannot be determined
388 */
389 return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391
is_intersected_alpha2(const char * alpha2)392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394 if (!alpha2)
395 return false;
396 /*
397 * Special case where regulatory domain is the
398 * result of an intersection between two regulatory domain
399 * structures
400 */
401 return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403
is_an_alpha2(const char * alpha2)404 static bool is_an_alpha2(const char *alpha2)
405 {
406 if (!alpha2)
407 return false;
408 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410
alpha2_equal(const char * alpha2_x,const char * alpha2_y)411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413 if (!alpha2_x || !alpha2_y)
414 return false;
415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417
regdom_changes(const char * alpha2)418 static bool regdom_changes(const char *alpha2)
419 {
420 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421
422 if (!r)
423 return true;
424 return !alpha2_equal(r->alpha2, alpha2);
425 }
426
427 /*
428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430 * has ever been issued.
431 */
is_user_regdom_saved(void)432 static bool is_user_regdom_saved(void)
433 {
434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435 return false;
436
437 /* This would indicate a mistake on the design */
438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 "Unexpected user alpha2: %c%c\n",
440 user_alpha2[0], user_alpha2[1]))
441 return false;
442
443 return true;
444 }
445
446 static const struct ieee80211_regdomain *
reg_copy_regd(const struct ieee80211_regdomain * src_regd)447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449 struct ieee80211_regdomain *regd;
450 unsigned int i;
451
452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453 GFP_KERNEL);
454 if (!regd)
455 return ERR_PTR(-ENOMEM);
456
457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458
459 for (i = 0; i < src_regd->n_reg_rules; i++)
460 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
461 sizeof(struct ieee80211_reg_rule));
462
463 return regd;
464 }
465
cfg80211_save_user_regdom(const struct ieee80211_regdomain * rd)466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468 ASSERT_RTNL();
469
470 if (!IS_ERR(cfg80211_user_regdom))
471 kfree(cfg80211_user_regdom);
472 cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474
475 struct reg_regdb_apply_request {
476 struct list_head list;
477 const struct ieee80211_regdomain *regdom;
478 };
479
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482
reg_regdb_apply(struct work_struct * work)483 static void reg_regdb_apply(struct work_struct *work)
484 {
485 struct reg_regdb_apply_request *request;
486
487 rtnl_lock();
488
489 mutex_lock(®_regdb_apply_mutex);
490 while (!list_empty(®_regdb_apply_list)) {
491 request = list_first_entry(®_regdb_apply_list,
492 struct reg_regdb_apply_request,
493 list);
494 list_del(&request->list);
495
496 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497 kfree(request);
498 }
499 mutex_unlock(®_regdb_apply_mutex);
500
501 rtnl_unlock();
502 }
503
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505
reg_schedule_apply(const struct ieee80211_regdomain * regdom)506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508 struct reg_regdb_apply_request *request;
509
510 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511 if (!request) {
512 kfree(regdom);
513 return -ENOMEM;
514 }
515
516 request->regdom = regdom;
517
518 mutex_lock(®_regdb_apply_mutex);
519 list_add_tail(&request->list, ®_regdb_apply_list);
520 mutex_unlock(®_regdb_apply_mutex);
521
522 schedule_work(®_regdb_work);
523 return 0;
524 }
525
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529
530 static u32 reg_crda_timeouts;
531
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
crda_timeout_work(struct work_struct * work)535 static void crda_timeout_work(struct work_struct *work)
536 {
537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 rtnl_lock();
539 reg_crda_timeouts++;
540 restore_regulatory_settings(true, false);
541 rtnl_unlock();
542 }
543
cancel_crda_timeout(void)544 static void cancel_crda_timeout(void)
545 {
546 cancel_delayed_work(&crda_timeout);
547 }
548
cancel_crda_timeout_sync(void)549 static void cancel_crda_timeout_sync(void)
550 {
551 cancel_delayed_work_sync(&crda_timeout);
552 }
553
reset_crda_timeouts(void)554 static void reset_crda_timeouts(void)
555 {
556 reg_crda_timeouts = 0;
557 }
558
559 /*
560 * This lets us keep regulatory code which is updated on a regulatory
561 * basis in userspace.
562 */
call_crda(const char * alpha2)563 static int call_crda(const char *alpha2)
564 {
565 char country[12];
566 char *env[] = { country, NULL };
567 int ret;
568
569 snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 alpha2[0], alpha2[1]);
571
572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 return -EINVAL;
575 }
576
577 if (!is_world_regdom((char *) alpha2))
578 pr_debug("Calling CRDA for country: %c%c\n",
579 alpha2[0], alpha2[1]);
580 else
581 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
584 if (ret)
585 return ret;
586
587 queue_delayed_work(system_power_efficient_wq,
588 &crda_timeout, msecs_to_jiffies(3142));
589 return 0;
590 }
591 #else
cancel_crda_timeout(void)592 static inline void cancel_crda_timeout(void) {}
cancel_crda_timeout_sync(void)593 static inline void cancel_crda_timeout_sync(void) {}
reset_crda_timeouts(void)594 static inline void reset_crda_timeouts(void) {}
call_crda(const char * alpha2)595 static inline int call_crda(const char *alpha2)
596 {
597 return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603
604 struct fwdb_country {
605 u8 alpha2[2];
606 __be16 coll_ptr;
607 /* this struct cannot be extended */
608 } __packed __aligned(4);
609
610 struct fwdb_collection {
611 u8 len;
612 u8 n_rules;
613 u8 dfs_region;
614 /* no optional data yet */
615 /* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617
618 enum fwdb_flags {
619 FWDB_FLAG_NO_OFDM = BIT(0),
620 FWDB_FLAG_NO_OUTDOOR = BIT(1),
621 FWDB_FLAG_DFS = BIT(2),
622 FWDB_FLAG_NO_IR = BIT(3),
623 FWDB_FLAG_AUTO_BW = BIT(4),
624 };
625
626 struct fwdb_wmm_ac {
627 u8 ecw;
628 u8 aifsn;
629 __be16 cot;
630 } __packed;
631
632 struct fwdb_wmm_rule {
633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636
637 struct fwdb_rule {
638 u8 len;
639 u8 flags;
640 __be16 max_eirp;
641 __be32 start, end, max_bw;
642 /* start of optional data */
643 __be16 cac_timeout;
644 __be16 wmm_ptr;
645 } __packed __aligned(4);
646
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649
650 struct fwdb_header {
651 __be32 magic;
652 __be32 version;
653 struct fwdb_country country[];
654 } __packed __aligned(4);
655
ecw2cw(int ecw)656 static int ecw2cw(int ecw)
657 {
658 return (1 << ecw) - 1;
659 }
660
valid_wmm(struct fwdb_wmm_rule * rule)661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664 int i;
665
666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 u8 aifsn = ac[i].aifsn;
670
671 if (cw_min >= cw_max)
672 return false;
673
674 if (aifsn < 1)
675 return false;
676 }
677
678 return true;
679 }
680
valid_rule(const u8 * data,unsigned int size,u16 rule_ptr)681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684
685 if ((u8 *)rule + sizeof(rule->len) > data + size)
686 return false;
687
688 /* mandatory fields */
689 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690 return false;
691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 struct fwdb_wmm_rule *wmm;
694
695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696 return false;
697
698 wmm = (void *)(data + wmm_ptr);
699
700 if (!valid_wmm(wmm))
701 return false;
702 }
703 return true;
704 }
705
valid_country(const u8 * data,unsigned int size,const struct fwdb_country * country)706 static bool valid_country(const u8 *data, unsigned int size,
707 const struct fwdb_country *country)
708 {
709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 struct fwdb_collection *coll = (void *)(data + ptr);
711 __be16 *rules_ptr;
712 unsigned int i;
713
714 /* make sure we can read len/n_rules */
715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716 return false;
717
718 /* make sure base struct and all rules fit */
719 if ((u8 *)coll + ALIGN(coll->len, 2) +
720 (coll->n_rules * 2) > data + size)
721 return false;
722
723 /* mandatory fields must exist */
724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725 return false;
726
727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728
729 for (i = 0; i < coll->n_rules; i++) {
730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731
732 if (!valid_rule(data, size, rule_ptr))
733 return false;
734 }
735
736 return true;
737 }
738
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 #include <keys/asymmetric-type.h>
741
742 static struct key *builtin_regdb_keys;
743
load_builtin_regdb_keys(void)744 static int __init load_builtin_regdb_keys(void)
745 {
746 builtin_regdb_keys =
747 keyring_alloc(".builtin_regdb_keys",
748 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
749 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
750 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
751 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
752 if (IS_ERR(builtin_regdb_keys))
753 return PTR_ERR(builtin_regdb_keys);
754
755 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
756
757 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
758 x509_load_certificate_list(shipped_regdb_certs,
759 shipped_regdb_certs_len,
760 builtin_regdb_keys);
761 #endif
762 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
763 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
764 x509_load_certificate_list(extra_regdb_certs,
765 extra_regdb_certs_len,
766 builtin_regdb_keys);
767 #endif
768
769 return 0;
770 }
771
772 MODULE_FIRMWARE("regulatory.db.p7s");
773
regdb_has_valid_signature(const u8 * data,unsigned int size)774 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
775 {
776 const struct firmware *sig;
777 bool result;
778
779 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
780 return false;
781
782 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
783 builtin_regdb_keys,
784 VERIFYING_UNSPECIFIED_SIGNATURE,
785 NULL, NULL) == 0;
786
787 release_firmware(sig);
788
789 return result;
790 }
791
free_regdb_keyring(void)792 static void free_regdb_keyring(void)
793 {
794 key_put(builtin_regdb_keys);
795 }
796 #else
load_builtin_regdb_keys(void)797 static int load_builtin_regdb_keys(void)
798 {
799 return 0;
800 }
801
regdb_has_valid_signature(const u8 * data,unsigned int size)802 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
803 {
804 return true;
805 }
806
free_regdb_keyring(void)807 static void free_regdb_keyring(void)
808 {
809 }
810 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
811
valid_regdb(const u8 * data,unsigned int size)812 static bool valid_regdb(const u8 *data, unsigned int size)
813 {
814 const struct fwdb_header *hdr = (void *)data;
815 const struct fwdb_country *country;
816
817 if (size < sizeof(*hdr))
818 return false;
819
820 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
821 return false;
822
823 if (hdr->version != cpu_to_be32(FWDB_VERSION))
824 return false;
825
826 if (!regdb_has_valid_signature(data, size))
827 return false;
828
829 country = &hdr->country[0];
830 while ((u8 *)(country + 1) <= data + size) {
831 if (!country->coll_ptr)
832 break;
833 if (!valid_country(data, size, country))
834 return false;
835 country++;
836 }
837
838 return true;
839 }
840
set_wmm_rule(const struct fwdb_header * db,const struct fwdb_country * country,const struct fwdb_rule * rule,struct ieee80211_reg_rule * rrule)841 static void set_wmm_rule(const struct fwdb_header *db,
842 const struct fwdb_country *country,
843 const struct fwdb_rule *rule,
844 struct ieee80211_reg_rule *rrule)
845 {
846 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
847 struct fwdb_wmm_rule *wmm;
848 unsigned int i, wmm_ptr;
849
850 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
851 wmm = (void *)((u8 *)db + wmm_ptr);
852
853 if (!valid_wmm(wmm)) {
854 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
855 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
856 country->alpha2[0], country->alpha2[1]);
857 return;
858 }
859
860 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
861 wmm_rule->client[i].cw_min =
862 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
863 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
864 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
865 wmm_rule->client[i].cot =
866 1000 * be16_to_cpu(wmm->client[i].cot);
867 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
868 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
869 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
870 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
871 }
872
873 rrule->has_wmm = true;
874 }
875
__regdb_query_wmm(const struct fwdb_header * db,const struct fwdb_country * country,int freq,struct ieee80211_reg_rule * rrule)876 static int __regdb_query_wmm(const struct fwdb_header *db,
877 const struct fwdb_country *country, int freq,
878 struct ieee80211_reg_rule *rrule)
879 {
880 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
881 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
882 int i;
883
884 for (i = 0; i < coll->n_rules; i++) {
885 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
886 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
887 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
888
889 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
890 continue;
891
892 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
893 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
894 set_wmm_rule(db, country, rule, rrule);
895 return 0;
896 }
897 }
898
899 return -ENODATA;
900 }
901
reg_query_regdb_wmm(char * alpha2,int freq,struct ieee80211_reg_rule * rule)902 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
903 {
904 const struct fwdb_header *hdr = regdb;
905 const struct fwdb_country *country;
906
907 if (!regdb)
908 return -ENODATA;
909
910 if (IS_ERR(regdb))
911 return PTR_ERR(regdb);
912
913 country = &hdr->country[0];
914 while (country->coll_ptr) {
915 if (alpha2_equal(alpha2, country->alpha2))
916 return __regdb_query_wmm(regdb, country, freq, rule);
917
918 country++;
919 }
920
921 return -ENODATA;
922 }
923 EXPORT_SYMBOL(reg_query_regdb_wmm);
924
regdb_query_country(const struct fwdb_header * db,const struct fwdb_country * country)925 static int regdb_query_country(const struct fwdb_header *db,
926 const struct fwdb_country *country)
927 {
928 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
929 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
930 struct ieee80211_regdomain *regdom;
931 unsigned int i;
932
933 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
934 GFP_KERNEL);
935 if (!regdom)
936 return -ENOMEM;
937
938 regdom->n_reg_rules = coll->n_rules;
939 regdom->alpha2[0] = country->alpha2[0];
940 regdom->alpha2[1] = country->alpha2[1];
941 regdom->dfs_region = coll->dfs_region;
942
943 for (i = 0; i < regdom->n_reg_rules; i++) {
944 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
945 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
946 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
947 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
948
949 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
950 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
951 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
952
953 rrule->power_rule.max_antenna_gain = 0;
954 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
955
956 rrule->flags = 0;
957 if (rule->flags & FWDB_FLAG_NO_OFDM)
958 rrule->flags |= NL80211_RRF_NO_OFDM;
959 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
960 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
961 if (rule->flags & FWDB_FLAG_DFS)
962 rrule->flags |= NL80211_RRF_DFS;
963 if (rule->flags & FWDB_FLAG_NO_IR)
964 rrule->flags |= NL80211_RRF_NO_IR;
965 if (rule->flags & FWDB_FLAG_AUTO_BW)
966 rrule->flags |= NL80211_RRF_AUTO_BW;
967
968 rrule->dfs_cac_ms = 0;
969
970 /* handle optional data */
971 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
972 rrule->dfs_cac_ms =
973 1000 * be16_to_cpu(rule->cac_timeout);
974 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
975 set_wmm_rule(db, country, rule, rrule);
976 }
977
978 return reg_schedule_apply(regdom);
979 }
980
query_regdb(const char * alpha2)981 static int query_regdb(const char *alpha2)
982 {
983 const struct fwdb_header *hdr = regdb;
984 const struct fwdb_country *country;
985
986 ASSERT_RTNL();
987
988 if (IS_ERR(regdb))
989 return PTR_ERR(regdb);
990
991 country = &hdr->country[0];
992 while (country->coll_ptr) {
993 if (alpha2_equal(alpha2, country->alpha2))
994 return regdb_query_country(regdb, country);
995 country++;
996 }
997
998 return -ENODATA;
999 }
1000
regdb_fw_cb(const struct firmware * fw,void * context)1001 static void regdb_fw_cb(const struct firmware *fw, void *context)
1002 {
1003 int set_error = 0;
1004 bool restore = true;
1005 void *db;
1006
1007 if (!fw) {
1008 pr_info("failed to load regulatory.db\n");
1009 set_error = -ENODATA;
1010 } else if (!valid_regdb(fw->data, fw->size)) {
1011 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1012 set_error = -EINVAL;
1013 }
1014
1015 rtnl_lock();
1016 if (regdb && !IS_ERR(regdb)) {
1017 /* negative case - a bug
1018 * positive case - can happen due to race in case of multiple cb's in
1019 * queue, due to usage of asynchronous callback
1020 *
1021 * Either case, just restore and free new db.
1022 */
1023 } else if (set_error) {
1024 regdb = ERR_PTR(set_error);
1025 } else if (fw) {
1026 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1027 if (db) {
1028 regdb = db;
1029 restore = context && query_regdb(context);
1030 } else {
1031 restore = true;
1032 }
1033 }
1034
1035 if (restore)
1036 restore_regulatory_settings(true, false);
1037
1038 rtnl_unlock();
1039
1040 kfree(context);
1041
1042 release_firmware(fw);
1043 }
1044
1045 MODULE_FIRMWARE("regulatory.db");
1046
query_regdb_file(const char * alpha2)1047 static int query_regdb_file(const char *alpha2)
1048 {
1049 int err;
1050
1051 ASSERT_RTNL();
1052
1053 if (regdb)
1054 return query_regdb(alpha2);
1055
1056 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1057 if (!alpha2)
1058 return -ENOMEM;
1059
1060 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1061 ®_pdev->dev, GFP_KERNEL,
1062 (void *)alpha2, regdb_fw_cb);
1063 if (err)
1064 kfree(alpha2);
1065
1066 return err;
1067 }
1068
reg_reload_regdb(void)1069 int reg_reload_regdb(void)
1070 {
1071 const struct firmware *fw;
1072 void *db;
1073 int err;
1074 const struct ieee80211_regdomain *current_regdomain;
1075 struct regulatory_request *request;
1076
1077 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1078 if (err)
1079 return err;
1080
1081 if (!valid_regdb(fw->data, fw->size)) {
1082 err = -ENODATA;
1083 goto out;
1084 }
1085
1086 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1087 if (!db) {
1088 err = -ENOMEM;
1089 goto out;
1090 }
1091
1092 rtnl_lock();
1093 if (!IS_ERR_OR_NULL(regdb))
1094 kfree(regdb);
1095 regdb = db;
1096
1097 /* reset regulatory domain */
1098 current_regdomain = get_cfg80211_regdom();
1099
1100 request = kzalloc(sizeof(*request), GFP_KERNEL);
1101 if (!request) {
1102 err = -ENOMEM;
1103 goto out_unlock;
1104 }
1105
1106 request->wiphy_idx = WIPHY_IDX_INVALID;
1107 request->alpha2[0] = current_regdomain->alpha2[0];
1108 request->alpha2[1] = current_regdomain->alpha2[1];
1109 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1110 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1111
1112 reg_process_hint(request);
1113
1114 out_unlock:
1115 rtnl_unlock();
1116 out:
1117 release_firmware(fw);
1118 return err;
1119 }
1120
reg_query_database(struct regulatory_request * request)1121 static bool reg_query_database(struct regulatory_request *request)
1122 {
1123 if (query_regdb_file(request->alpha2) == 0)
1124 return true;
1125
1126 if (call_crda(request->alpha2) == 0)
1127 return true;
1128
1129 return false;
1130 }
1131
reg_is_valid_request(const char * alpha2)1132 bool reg_is_valid_request(const char *alpha2)
1133 {
1134 struct regulatory_request *lr = get_last_request();
1135
1136 if (!lr || lr->processed)
1137 return false;
1138
1139 return alpha2_equal(lr->alpha2, alpha2);
1140 }
1141
reg_get_regdomain(struct wiphy * wiphy)1142 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143 {
1144 struct regulatory_request *lr = get_last_request();
1145
1146 /*
1147 * Follow the driver's regulatory domain, if present, unless a country
1148 * IE has been processed or a user wants to help complaince further
1149 */
1150 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152 wiphy->regd)
1153 return get_wiphy_regdom(wiphy);
1154
1155 return get_cfg80211_regdom();
1156 }
1157
1158 static unsigned int
reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1159 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160 const struct ieee80211_reg_rule *rule)
1161 {
1162 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163 const struct ieee80211_freq_range *freq_range_tmp;
1164 const struct ieee80211_reg_rule *tmp;
1165 u32 start_freq, end_freq, idx, no;
1166
1167 for (idx = 0; idx < rd->n_reg_rules; idx++)
1168 if (rule == &rd->reg_rules[idx])
1169 break;
1170
1171 if (idx == rd->n_reg_rules)
1172 return 0;
1173
1174 /* get start_freq */
1175 no = idx;
1176
1177 while (no) {
1178 tmp = &rd->reg_rules[--no];
1179 freq_range_tmp = &tmp->freq_range;
1180
1181 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182 break;
1183
1184 freq_range = freq_range_tmp;
1185 }
1186
1187 start_freq = freq_range->start_freq_khz;
1188
1189 /* get end_freq */
1190 freq_range = &rule->freq_range;
1191 no = idx;
1192
1193 while (no < rd->n_reg_rules - 1) {
1194 tmp = &rd->reg_rules[++no];
1195 freq_range_tmp = &tmp->freq_range;
1196
1197 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198 break;
1199
1200 freq_range = freq_range_tmp;
1201 }
1202
1203 end_freq = freq_range->end_freq_khz;
1204
1205 return end_freq - start_freq;
1206 }
1207
reg_get_max_bandwidth(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1208 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209 const struct ieee80211_reg_rule *rule)
1210 {
1211 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212
1213 if (rule->flags & NL80211_RRF_NO_320MHZ)
1214 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1215 if (rule->flags & NL80211_RRF_NO_160MHZ)
1216 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1217 if (rule->flags & NL80211_RRF_NO_80MHZ)
1218 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1219
1220 /*
1221 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1222 * are not allowed.
1223 */
1224 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1225 rule->flags & NL80211_RRF_NO_HT40PLUS)
1226 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1227
1228 return bw;
1229 }
1230
1231 /* Sanity check on a regulatory rule */
is_valid_reg_rule(const struct ieee80211_reg_rule * rule)1232 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1233 {
1234 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1235 u32 freq_diff;
1236
1237 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1238 return false;
1239
1240 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1241 return false;
1242
1243 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1244
1245 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1246 freq_range->max_bandwidth_khz > freq_diff)
1247 return false;
1248
1249 return true;
1250 }
1251
is_valid_rd(const struct ieee80211_regdomain * rd)1252 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1253 {
1254 const struct ieee80211_reg_rule *reg_rule = NULL;
1255 unsigned int i;
1256
1257 if (!rd->n_reg_rules)
1258 return false;
1259
1260 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1261 return false;
1262
1263 for (i = 0; i < rd->n_reg_rules; i++) {
1264 reg_rule = &rd->reg_rules[i];
1265 if (!is_valid_reg_rule(reg_rule))
1266 return false;
1267 }
1268
1269 return true;
1270 }
1271
1272 /**
1273 * freq_in_rule_band - tells us if a frequency is in a frequency band
1274 * @freq_range: frequency rule we want to query
1275 * @freq_khz: frequency we are inquiring about
1276 *
1277 * This lets us know if a specific frequency rule is or is not relevant to
1278 * a specific frequency's band. Bands are device specific and artificial
1279 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1280 * however it is safe for now to assume that a frequency rule should not be
1281 * part of a frequency's band if the start freq or end freq are off by more
1282 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1283 * 60 GHz band.
1284 * This resolution can be lowered and should be considered as we add
1285 * regulatory rule support for other "bands".
1286 **/
freq_in_rule_band(const struct ieee80211_freq_range * freq_range,u32 freq_khz)1287 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1288 u32 freq_khz)
1289 {
1290 #define ONE_GHZ_IN_KHZ 1000000
1291 /*
1292 * From 802.11ad: directional multi-gigabit (DMG):
1293 * Pertaining to operation in a frequency band containing a channel
1294 * with the Channel starting frequency above 45 GHz.
1295 */
1296 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1297 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1298 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1299 return true;
1300 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1301 return true;
1302 return false;
1303 #undef ONE_GHZ_IN_KHZ
1304 }
1305
1306 /*
1307 * Later on we can perhaps use the more restrictive DFS
1308 * region but we don't have information for that yet so
1309 * for now simply disallow conflicts.
1310 */
1311 static enum nl80211_dfs_regions
reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,const enum nl80211_dfs_regions dfs_region2)1312 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1313 const enum nl80211_dfs_regions dfs_region2)
1314 {
1315 if (dfs_region1 != dfs_region2)
1316 return NL80211_DFS_UNSET;
1317 return dfs_region1;
1318 }
1319
reg_wmm_rules_intersect(const struct ieee80211_wmm_ac * wmm_ac1,const struct ieee80211_wmm_ac * wmm_ac2,struct ieee80211_wmm_ac * intersect)1320 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1321 const struct ieee80211_wmm_ac *wmm_ac2,
1322 struct ieee80211_wmm_ac *intersect)
1323 {
1324 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1325 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1326 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1327 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1328 }
1329
1330 /*
1331 * Helper for regdom_intersect(), this does the real
1332 * mathematical intersection fun
1333 */
reg_rules_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2,const struct ieee80211_reg_rule * rule1,const struct ieee80211_reg_rule * rule2,struct ieee80211_reg_rule * intersected_rule)1334 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1335 const struct ieee80211_regdomain *rd2,
1336 const struct ieee80211_reg_rule *rule1,
1337 const struct ieee80211_reg_rule *rule2,
1338 struct ieee80211_reg_rule *intersected_rule)
1339 {
1340 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1341 struct ieee80211_freq_range *freq_range;
1342 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1343 struct ieee80211_power_rule *power_rule;
1344 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1345 struct ieee80211_wmm_rule *wmm_rule;
1346 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1347
1348 freq_range1 = &rule1->freq_range;
1349 freq_range2 = &rule2->freq_range;
1350 freq_range = &intersected_rule->freq_range;
1351
1352 power_rule1 = &rule1->power_rule;
1353 power_rule2 = &rule2->power_rule;
1354 power_rule = &intersected_rule->power_rule;
1355
1356 wmm_rule1 = &rule1->wmm_rule;
1357 wmm_rule2 = &rule2->wmm_rule;
1358 wmm_rule = &intersected_rule->wmm_rule;
1359
1360 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1361 freq_range2->start_freq_khz);
1362 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1363 freq_range2->end_freq_khz);
1364
1365 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1366 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1367
1368 if (rule1->flags & NL80211_RRF_AUTO_BW)
1369 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1370 if (rule2->flags & NL80211_RRF_AUTO_BW)
1371 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1372
1373 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1374
1375 intersected_rule->flags = rule1->flags | rule2->flags;
1376
1377 /*
1378 * In case NL80211_RRF_AUTO_BW requested for both rules
1379 * set AUTO_BW in intersected rule also. Next we will
1380 * calculate BW correctly in handle_channel function.
1381 * In other case remove AUTO_BW flag while we calculate
1382 * maximum bandwidth correctly and auto calculation is
1383 * not required.
1384 */
1385 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1386 (rule2->flags & NL80211_RRF_AUTO_BW))
1387 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1388 else
1389 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1390
1391 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1392 if (freq_range->max_bandwidth_khz > freq_diff)
1393 freq_range->max_bandwidth_khz = freq_diff;
1394
1395 power_rule->max_eirp = min(power_rule1->max_eirp,
1396 power_rule2->max_eirp);
1397 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1398 power_rule2->max_antenna_gain);
1399
1400 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1401 rule2->dfs_cac_ms);
1402
1403 if (rule1->has_wmm && rule2->has_wmm) {
1404 u8 ac;
1405
1406 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1407 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1408 &wmm_rule2->client[ac],
1409 &wmm_rule->client[ac]);
1410 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1411 &wmm_rule2->ap[ac],
1412 &wmm_rule->ap[ac]);
1413 }
1414
1415 intersected_rule->has_wmm = true;
1416 } else if (rule1->has_wmm) {
1417 *wmm_rule = *wmm_rule1;
1418 intersected_rule->has_wmm = true;
1419 } else if (rule2->has_wmm) {
1420 *wmm_rule = *wmm_rule2;
1421 intersected_rule->has_wmm = true;
1422 } else {
1423 intersected_rule->has_wmm = false;
1424 }
1425
1426 if (!is_valid_reg_rule(intersected_rule))
1427 return -EINVAL;
1428
1429 return 0;
1430 }
1431
1432 /* check whether old rule contains new rule */
rule_contains(struct ieee80211_reg_rule * r1,struct ieee80211_reg_rule * r2)1433 static bool rule_contains(struct ieee80211_reg_rule *r1,
1434 struct ieee80211_reg_rule *r2)
1435 {
1436 /* for simplicity, currently consider only same flags */
1437 if (r1->flags != r2->flags)
1438 return false;
1439
1440 /* verify r1 is more restrictive */
1441 if ((r1->power_rule.max_antenna_gain >
1442 r2->power_rule.max_antenna_gain) ||
1443 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1444 return false;
1445
1446 /* make sure r2's range is contained within r1 */
1447 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1448 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1449 return false;
1450
1451 /* and finally verify that r1.max_bw >= r2.max_bw */
1452 if (r1->freq_range.max_bandwidth_khz <
1453 r2->freq_range.max_bandwidth_khz)
1454 return false;
1455
1456 return true;
1457 }
1458
1459 /* add or extend current rules. do nothing if rule is already contained */
add_rule(struct ieee80211_reg_rule * rule,struct ieee80211_reg_rule * reg_rules,u32 * n_rules)1460 static void add_rule(struct ieee80211_reg_rule *rule,
1461 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1462 {
1463 struct ieee80211_reg_rule *tmp_rule;
1464 int i;
1465
1466 for (i = 0; i < *n_rules; i++) {
1467 tmp_rule = ®_rules[i];
1468 /* rule is already contained - do nothing */
1469 if (rule_contains(tmp_rule, rule))
1470 return;
1471
1472 /* extend rule if possible */
1473 if (rule_contains(rule, tmp_rule)) {
1474 memcpy(tmp_rule, rule, sizeof(*rule));
1475 return;
1476 }
1477 }
1478
1479 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1480 (*n_rules)++;
1481 }
1482
1483 /**
1484 * regdom_intersect - do the intersection between two regulatory domains
1485 * @rd1: first regulatory domain
1486 * @rd2: second regulatory domain
1487 *
1488 * Use this function to get the intersection between two regulatory domains.
1489 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1490 * as no one single alpha2 can represent this regulatory domain.
1491 *
1492 * Returns a pointer to the regulatory domain structure which will hold the
1493 * resulting intersection of rules between rd1 and rd2. We will
1494 * kzalloc() this structure for you.
1495 */
1496 static struct ieee80211_regdomain *
regdom_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2)1497 regdom_intersect(const struct ieee80211_regdomain *rd1,
1498 const struct ieee80211_regdomain *rd2)
1499 {
1500 int r;
1501 unsigned int x, y;
1502 unsigned int num_rules = 0;
1503 const struct ieee80211_reg_rule *rule1, *rule2;
1504 struct ieee80211_reg_rule intersected_rule;
1505 struct ieee80211_regdomain *rd;
1506
1507 if (!rd1 || !rd2)
1508 return NULL;
1509
1510 /*
1511 * First we get a count of the rules we'll need, then we actually
1512 * build them. This is to so we can malloc() and free() a
1513 * regdomain once. The reason we use reg_rules_intersect() here
1514 * is it will return -EINVAL if the rule computed makes no sense.
1515 * All rules that do check out OK are valid.
1516 */
1517
1518 for (x = 0; x < rd1->n_reg_rules; x++) {
1519 rule1 = &rd1->reg_rules[x];
1520 for (y = 0; y < rd2->n_reg_rules; y++) {
1521 rule2 = &rd2->reg_rules[y];
1522 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1523 &intersected_rule))
1524 num_rules++;
1525 }
1526 }
1527
1528 if (!num_rules)
1529 return NULL;
1530
1531 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1532 if (!rd)
1533 return NULL;
1534
1535 for (x = 0; x < rd1->n_reg_rules; x++) {
1536 rule1 = &rd1->reg_rules[x];
1537 for (y = 0; y < rd2->n_reg_rules; y++) {
1538 rule2 = &rd2->reg_rules[y];
1539 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1540 &intersected_rule);
1541 /*
1542 * No need to memset here the intersected rule here as
1543 * we're not using the stack anymore
1544 */
1545 if (r)
1546 continue;
1547
1548 add_rule(&intersected_rule, rd->reg_rules,
1549 &rd->n_reg_rules);
1550 }
1551 }
1552
1553 rd->alpha2[0] = '9';
1554 rd->alpha2[1] = '8';
1555 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1556 rd2->dfs_region);
1557
1558 return rd;
1559 }
1560
1561 /*
1562 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1563 * want to just have the channel structure use these
1564 */
map_regdom_flags(u32 rd_flags)1565 static u32 map_regdom_flags(u32 rd_flags)
1566 {
1567 u32 channel_flags = 0;
1568 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1569 channel_flags |= IEEE80211_CHAN_NO_IR;
1570 if (rd_flags & NL80211_RRF_DFS)
1571 channel_flags |= IEEE80211_CHAN_RADAR;
1572 if (rd_flags & NL80211_RRF_NO_OFDM)
1573 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1574 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1575 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1576 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1577 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1578 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1579 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1580 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1581 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1582 if (rd_flags & NL80211_RRF_NO_80MHZ)
1583 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1584 if (rd_flags & NL80211_RRF_NO_160MHZ)
1585 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1586 if (rd_flags & NL80211_RRF_NO_HE)
1587 channel_flags |= IEEE80211_CHAN_NO_HE;
1588 if (rd_flags & NL80211_RRF_NO_320MHZ)
1589 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1590 if (rd_flags & NL80211_RRF_NO_EHT)
1591 channel_flags |= IEEE80211_CHAN_NO_EHT;
1592 return channel_flags;
1593 }
1594
1595 static const struct ieee80211_reg_rule *
freq_reg_info_regd(u32 center_freq,const struct ieee80211_regdomain * regd,u32 bw)1596 freq_reg_info_regd(u32 center_freq,
1597 const struct ieee80211_regdomain *regd, u32 bw)
1598 {
1599 int i;
1600 bool band_rule_found = false;
1601 bool bw_fits = false;
1602
1603 if (!regd)
1604 return ERR_PTR(-EINVAL);
1605
1606 for (i = 0; i < regd->n_reg_rules; i++) {
1607 const struct ieee80211_reg_rule *rr;
1608 const struct ieee80211_freq_range *fr = NULL;
1609
1610 rr = ®d->reg_rules[i];
1611 fr = &rr->freq_range;
1612
1613 /*
1614 * We only need to know if one frequency rule was
1615 * in center_freq's band, that's enough, so let's
1616 * not overwrite it once found
1617 */
1618 if (!band_rule_found)
1619 band_rule_found = freq_in_rule_band(fr, center_freq);
1620
1621 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1622
1623 if (band_rule_found && bw_fits)
1624 return rr;
1625 }
1626
1627 if (!band_rule_found)
1628 return ERR_PTR(-ERANGE);
1629
1630 return ERR_PTR(-EINVAL);
1631 }
1632
1633 static const struct ieee80211_reg_rule *
__freq_reg_info(struct wiphy * wiphy,u32 center_freq,u32 min_bw)1634 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1635 {
1636 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1637 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1638 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1639 int i = ARRAY_SIZE(bws) - 1;
1640 u32 bw;
1641
1642 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1643 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1644 if (!IS_ERR(reg_rule))
1645 return reg_rule;
1646 }
1647
1648 return reg_rule;
1649 }
1650
freq_reg_info(struct wiphy * wiphy,u32 center_freq)1651 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1652 u32 center_freq)
1653 {
1654 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1655
1656 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1657 }
1658 EXPORT_SYMBOL(freq_reg_info);
1659
reg_initiator_name(enum nl80211_reg_initiator initiator)1660 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1661 {
1662 switch (initiator) {
1663 case NL80211_REGDOM_SET_BY_CORE:
1664 return "core";
1665 case NL80211_REGDOM_SET_BY_USER:
1666 return "user";
1667 case NL80211_REGDOM_SET_BY_DRIVER:
1668 return "driver";
1669 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1670 return "country element";
1671 default:
1672 WARN_ON(1);
1673 return "bug";
1674 }
1675 }
1676 EXPORT_SYMBOL(reg_initiator_name);
1677
reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain * regd,const struct ieee80211_reg_rule * reg_rule,const struct ieee80211_channel * chan)1678 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1679 const struct ieee80211_reg_rule *reg_rule,
1680 const struct ieee80211_channel *chan)
1681 {
1682 const struct ieee80211_freq_range *freq_range = NULL;
1683 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1684 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1685
1686 freq_range = ®_rule->freq_range;
1687
1688 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1689 center_freq_khz = ieee80211_channel_to_khz(chan);
1690 /* Check if auto calculation requested */
1691 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1692 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1693
1694 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1695 if (!cfg80211_does_bw_fit_range(freq_range,
1696 center_freq_khz,
1697 MHZ_TO_KHZ(10)))
1698 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1699 if (!cfg80211_does_bw_fit_range(freq_range,
1700 center_freq_khz,
1701 MHZ_TO_KHZ(20)))
1702 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1703
1704 if (is_s1g) {
1705 /* S1G is strict about non overlapping channels. We can
1706 * calculate which bandwidth is allowed per channel by finding
1707 * the largest bandwidth which cleanly divides the freq_range.
1708 */
1709 int edge_offset;
1710 int ch_bw = max_bandwidth_khz;
1711
1712 while (ch_bw) {
1713 edge_offset = (center_freq_khz - ch_bw / 2) -
1714 freq_range->start_freq_khz;
1715 if (edge_offset % ch_bw == 0) {
1716 switch (KHZ_TO_MHZ(ch_bw)) {
1717 case 1:
1718 bw_flags |= IEEE80211_CHAN_1MHZ;
1719 break;
1720 case 2:
1721 bw_flags |= IEEE80211_CHAN_2MHZ;
1722 break;
1723 case 4:
1724 bw_flags |= IEEE80211_CHAN_4MHZ;
1725 break;
1726 case 8:
1727 bw_flags |= IEEE80211_CHAN_8MHZ;
1728 break;
1729 case 16:
1730 bw_flags |= IEEE80211_CHAN_16MHZ;
1731 break;
1732 default:
1733 /* If we got here, no bandwidths fit on
1734 * this frequency, ie. band edge.
1735 */
1736 bw_flags |= IEEE80211_CHAN_DISABLED;
1737 break;
1738 }
1739 break;
1740 }
1741 ch_bw /= 2;
1742 }
1743 } else {
1744 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1745 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1746 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1747 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1748 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1749 bw_flags |= IEEE80211_CHAN_NO_HT40;
1750 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1751 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1752 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1753 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1754 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1755 bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1756 }
1757 return bw_flags;
1758 }
1759
handle_channel_single_rule(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * reg_rule)1760 static void handle_channel_single_rule(struct wiphy *wiphy,
1761 enum nl80211_reg_initiator initiator,
1762 struct ieee80211_channel *chan,
1763 u32 flags,
1764 struct regulatory_request *lr,
1765 struct wiphy *request_wiphy,
1766 const struct ieee80211_reg_rule *reg_rule)
1767 {
1768 u32 bw_flags = 0;
1769 const struct ieee80211_power_rule *power_rule = NULL;
1770 const struct ieee80211_regdomain *regd;
1771
1772 regd = reg_get_regdomain(wiphy);
1773
1774 power_rule = ®_rule->power_rule;
1775 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1776
1777 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1778 request_wiphy && request_wiphy == wiphy &&
1779 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1780 /*
1781 * This guarantees the driver's requested regulatory domain
1782 * will always be used as a base for further regulatory
1783 * settings
1784 */
1785 chan->flags = chan->orig_flags =
1786 map_regdom_flags(reg_rule->flags) | bw_flags;
1787 chan->max_antenna_gain = chan->orig_mag =
1788 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1789 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1790 (int) MBM_TO_DBM(power_rule->max_eirp);
1791
1792 if (chan->flags & IEEE80211_CHAN_RADAR) {
1793 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1794 if (reg_rule->dfs_cac_ms)
1795 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1796 }
1797
1798 return;
1799 }
1800
1801 chan->dfs_state = NL80211_DFS_USABLE;
1802 chan->dfs_state_entered = jiffies;
1803
1804 chan->beacon_found = false;
1805 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1806 chan->max_antenna_gain =
1807 min_t(int, chan->orig_mag,
1808 MBI_TO_DBI(power_rule->max_antenna_gain));
1809 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1810
1811 if (chan->flags & IEEE80211_CHAN_RADAR) {
1812 if (reg_rule->dfs_cac_ms)
1813 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1814 else
1815 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1816 }
1817
1818 if (chan->orig_mpwr) {
1819 /*
1820 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1821 * will always follow the passed country IE power settings.
1822 */
1823 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1824 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1825 chan->max_power = chan->max_reg_power;
1826 else
1827 chan->max_power = min(chan->orig_mpwr,
1828 chan->max_reg_power);
1829 } else
1830 chan->max_power = chan->max_reg_power;
1831 }
1832
handle_channel_adjacent_rules(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * rrule1,const struct ieee80211_reg_rule * rrule2,struct ieee80211_freq_range * comb_range)1833 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1834 enum nl80211_reg_initiator initiator,
1835 struct ieee80211_channel *chan,
1836 u32 flags,
1837 struct regulatory_request *lr,
1838 struct wiphy *request_wiphy,
1839 const struct ieee80211_reg_rule *rrule1,
1840 const struct ieee80211_reg_rule *rrule2,
1841 struct ieee80211_freq_range *comb_range)
1842 {
1843 u32 bw_flags1 = 0;
1844 u32 bw_flags2 = 0;
1845 const struct ieee80211_power_rule *power_rule1 = NULL;
1846 const struct ieee80211_power_rule *power_rule2 = NULL;
1847 const struct ieee80211_regdomain *regd;
1848
1849 regd = reg_get_regdomain(wiphy);
1850
1851 power_rule1 = &rrule1->power_rule;
1852 power_rule2 = &rrule2->power_rule;
1853 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1854 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1855
1856 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1857 request_wiphy && request_wiphy == wiphy &&
1858 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1859 /* This guarantees the driver's requested regulatory domain
1860 * will always be used as a base for further regulatory
1861 * settings
1862 */
1863 chan->flags =
1864 map_regdom_flags(rrule1->flags) |
1865 map_regdom_flags(rrule2->flags) |
1866 bw_flags1 |
1867 bw_flags2;
1868 chan->orig_flags = chan->flags;
1869 chan->max_antenna_gain =
1870 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1871 MBI_TO_DBI(power_rule2->max_antenna_gain));
1872 chan->orig_mag = chan->max_antenna_gain;
1873 chan->max_reg_power =
1874 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1875 MBM_TO_DBM(power_rule2->max_eirp));
1876 chan->max_power = chan->max_reg_power;
1877 chan->orig_mpwr = chan->max_reg_power;
1878
1879 if (chan->flags & IEEE80211_CHAN_RADAR) {
1880 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1881 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1882 chan->dfs_cac_ms = max_t(unsigned int,
1883 rrule1->dfs_cac_ms,
1884 rrule2->dfs_cac_ms);
1885 }
1886
1887 return;
1888 }
1889
1890 chan->dfs_state = NL80211_DFS_USABLE;
1891 chan->dfs_state_entered = jiffies;
1892
1893 chan->beacon_found = false;
1894 chan->flags = flags | bw_flags1 | bw_flags2 |
1895 map_regdom_flags(rrule1->flags) |
1896 map_regdom_flags(rrule2->flags);
1897
1898 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1899 * (otherwise no adj. rule case), recheck therefore
1900 */
1901 if (cfg80211_does_bw_fit_range(comb_range,
1902 ieee80211_channel_to_khz(chan),
1903 MHZ_TO_KHZ(10)))
1904 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1905 if (cfg80211_does_bw_fit_range(comb_range,
1906 ieee80211_channel_to_khz(chan),
1907 MHZ_TO_KHZ(20)))
1908 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1909
1910 chan->max_antenna_gain =
1911 min_t(int, chan->orig_mag,
1912 min_t(int,
1913 MBI_TO_DBI(power_rule1->max_antenna_gain),
1914 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1915 chan->max_reg_power = min_t(int,
1916 MBM_TO_DBM(power_rule1->max_eirp),
1917 MBM_TO_DBM(power_rule2->max_eirp));
1918
1919 if (chan->flags & IEEE80211_CHAN_RADAR) {
1920 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1921 chan->dfs_cac_ms = max_t(unsigned int,
1922 rrule1->dfs_cac_ms,
1923 rrule2->dfs_cac_ms);
1924 else
1925 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1926 }
1927
1928 if (chan->orig_mpwr) {
1929 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1930 * will always follow the passed country IE power settings.
1931 */
1932 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1933 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1934 chan->max_power = chan->max_reg_power;
1935 else
1936 chan->max_power = min(chan->orig_mpwr,
1937 chan->max_reg_power);
1938 } else {
1939 chan->max_power = chan->max_reg_power;
1940 }
1941 }
1942
1943 /* Note that right now we assume the desired channel bandwidth
1944 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1945 * per channel, the primary and the extension channel).
1946 */
handle_channel(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan)1947 static void handle_channel(struct wiphy *wiphy,
1948 enum nl80211_reg_initiator initiator,
1949 struct ieee80211_channel *chan)
1950 {
1951 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1952 struct regulatory_request *lr = get_last_request();
1953 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1954 const struct ieee80211_reg_rule *rrule = NULL;
1955 const struct ieee80211_reg_rule *rrule1 = NULL;
1956 const struct ieee80211_reg_rule *rrule2 = NULL;
1957
1958 u32 flags = chan->orig_flags;
1959
1960 rrule = freq_reg_info(wiphy, orig_chan_freq);
1961 if (IS_ERR(rrule)) {
1962 /* check for adjacent match, therefore get rules for
1963 * chan - 20 MHz and chan + 20 MHz and test
1964 * if reg rules are adjacent
1965 */
1966 rrule1 = freq_reg_info(wiphy,
1967 orig_chan_freq - MHZ_TO_KHZ(20));
1968 rrule2 = freq_reg_info(wiphy,
1969 orig_chan_freq + MHZ_TO_KHZ(20));
1970 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1971 struct ieee80211_freq_range comb_range;
1972
1973 if (rrule1->freq_range.end_freq_khz !=
1974 rrule2->freq_range.start_freq_khz)
1975 goto disable_chan;
1976
1977 comb_range.start_freq_khz =
1978 rrule1->freq_range.start_freq_khz;
1979 comb_range.end_freq_khz =
1980 rrule2->freq_range.end_freq_khz;
1981 comb_range.max_bandwidth_khz =
1982 min_t(u32,
1983 rrule1->freq_range.max_bandwidth_khz,
1984 rrule2->freq_range.max_bandwidth_khz);
1985
1986 if (!cfg80211_does_bw_fit_range(&comb_range,
1987 orig_chan_freq,
1988 MHZ_TO_KHZ(20)))
1989 goto disable_chan;
1990
1991 handle_channel_adjacent_rules(wiphy, initiator, chan,
1992 flags, lr, request_wiphy,
1993 rrule1, rrule2,
1994 &comb_range);
1995 return;
1996 }
1997
1998 disable_chan:
1999 /* We will disable all channels that do not match our
2000 * received regulatory rule unless the hint is coming
2001 * from a Country IE and the Country IE had no information
2002 * about a band. The IEEE 802.11 spec allows for an AP
2003 * to send only a subset of the regulatory rules allowed,
2004 * so an AP in the US that only supports 2.4 GHz may only send
2005 * a country IE with information for the 2.4 GHz band
2006 * while 5 GHz is still supported.
2007 */
2008 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2009 PTR_ERR(rrule) == -ERANGE)
2010 return;
2011
2012 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2013 request_wiphy && request_wiphy == wiphy &&
2014 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2015 pr_debug("Disabling freq %d.%03d MHz for good\n",
2016 chan->center_freq, chan->freq_offset);
2017 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2018 chan->flags = chan->orig_flags;
2019 } else {
2020 pr_debug("Disabling freq %d.%03d MHz\n",
2021 chan->center_freq, chan->freq_offset);
2022 chan->flags |= IEEE80211_CHAN_DISABLED;
2023 }
2024 return;
2025 }
2026
2027 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2028 request_wiphy, rrule);
2029 }
2030
handle_band(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_supported_band * sband)2031 static void handle_band(struct wiphy *wiphy,
2032 enum nl80211_reg_initiator initiator,
2033 struct ieee80211_supported_band *sband)
2034 {
2035 unsigned int i;
2036
2037 if (!sband)
2038 return;
2039
2040 for (i = 0; i < sband->n_channels; i++)
2041 handle_channel(wiphy, initiator, &sband->channels[i]);
2042 }
2043
reg_request_cell_base(struct regulatory_request * request)2044 static bool reg_request_cell_base(struct regulatory_request *request)
2045 {
2046 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2047 return false;
2048 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2049 }
2050
reg_last_request_cell_base(void)2051 bool reg_last_request_cell_base(void)
2052 {
2053 return reg_request_cell_base(get_last_request());
2054 }
2055
2056 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2057 /* Core specific check */
2058 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2059 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2060 {
2061 struct regulatory_request *lr = get_last_request();
2062
2063 if (!reg_num_devs_support_basehint)
2064 return REG_REQ_IGNORE;
2065
2066 if (reg_request_cell_base(lr) &&
2067 !regdom_changes(pending_request->alpha2))
2068 return REG_REQ_ALREADY_SET;
2069
2070 return REG_REQ_OK;
2071 }
2072
2073 /* Device specific check */
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2074 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2075 {
2076 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2077 }
2078 #else
2079 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2080 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2081 {
2082 return REG_REQ_IGNORE;
2083 }
2084
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2085 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2086 {
2087 return true;
2088 }
2089 #endif
2090
wiphy_strict_alpha2_regd(struct wiphy * wiphy)2091 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2092 {
2093 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2094 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2095 return true;
2096 return false;
2097 }
2098
ignore_reg_update(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2099 static bool ignore_reg_update(struct wiphy *wiphy,
2100 enum nl80211_reg_initiator initiator)
2101 {
2102 struct regulatory_request *lr = get_last_request();
2103
2104 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2105 return true;
2106
2107 if (!lr) {
2108 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2109 reg_initiator_name(initiator));
2110 return true;
2111 }
2112
2113 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2114 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2115 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2116 reg_initiator_name(initiator));
2117 return true;
2118 }
2119
2120 /*
2121 * wiphy->regd will be set once the device has its own
2122 * desired regulatory domain set
2123 */
2124 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2125 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2126 !is_world_regdom(lr->alpha2)) {
2127 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2128 reg_initiator_name(initiator));
2129 return true;
2130 }
2131
2132 if (reg_request_cell_base(lr))
2133 return reg_dev_ignore_cell_hint(wiphy);
2134
2135 return false;
2136 }
2137
reg_is_world_roaming(struct wiphy * wiphy)2138 static bool reg_is_world_roaming(struct wiphy *wiphy)
2139 {
2140 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2141 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2142 struct regulatory_request *lr = get_last_request();
2143
2144 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2145 return true;
2146
2147 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2148 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2149 return true;
2150
2151 return false;
2152 }
2153
handle_reg_beacon(struct wiphy * wiphy,unsigned int chan_idx,struct reg_beacon * reg_beacon)2154 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2155 struct reg_beacon *reg_beacon)
2156 {
2157 struct ieee80211_supported_band *sband;
2158 struct ieee80211_channel *chan;
2159 bool channel_changed = false;
2160 struct ieee80211_channel chan_before;
2161
2162 sband = wiphy->bands[reg_beacon->chan.band];
2163 chan = &sband->channels[chan_idx];
2164
2165 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan)))
2166 return;
2167
2168 if (chan->beacon_found)
2169 return;
2170
2171 chan->beacon_found = true;
2172
2173 if (!reg_is_world_roaming(wiphy))
2174 return;
2175
2176 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2177 return;
2178
2179 chan_before = *chan;
2180
2181 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2182 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2183 channel_changed = true;
2184 }
2185
2186 if (channel_changed)
2187 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2188 }
2189
2190 /*
2191 * Called when a scan on a wiphy finds a beacon on
2192 * new channel
2193 */
wiphy_update_new_beacon(struct wiphy * wiphy,struct reg_beacon * reg_beacon)2194 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2195 struct reg_beacon *reg_beacon)
2196 {
2197 unsigned int i;
2198 struct ieee80211_supported_band *sband;
2199
2200 if (!wiphy->bands[reg_beacon->chan.band])
2201 return;
2202
2203 sband = wiphy->bands[reg_beacon->chan.band];
2204
2205 for (i = 0; i < sband->n_channels; i++)
2206 handle_reg_beacon(wiphy, i, reg_beacon);
2207 }
2208
2209 /*
2210 * Called upon reg changes or a new wiphy is added
2211 */
wiphy_update_beacon_reg(struct wiphy * wiphy)2212 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2213 {
2214 unsigned int i;
2215 struct ieee80211_supported_band *sband;
2216 struct reg_beacon *reg_beacon;
2217
2218 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
2219 if (!wiphy->bands[reg_beacon->chan.band])
2220 continue;
2221 sband = wiphy->bands[reg_beacon->chan.band];
2222 for (i = 0; i < sband->n_channels; i++)
2223 handle_reg_beacon(wiphy, i, reg_beacon);
2224 }
2225 }
2226
2227 /* Reap the advantages of previously found beacons */
reg_process_beacons(struct wiphy * wiphy)2228 static void reg_process_beacons(struct wiphy *wiphy)
2229 {
2230 /*
2231 * Means we are just firing up cfg80211, so no beacons would
2232 * have been processed yet.
2233 */
2234 if (!last_request)
2235 return;
2236 wiphy_update_beacon_reg(wiphy);
2237 }
2238
is_ht40_allowed(struct ieee80211_channel * chan)2239 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2240 {
2241 if (!chan)
2242 return false;
2243 if (chan->flags & IEEE80211_CHAN_DISABLED)
2244 return false;
2245 /* This would happen when regulatory rules disallow HT40 completely */
2246 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2247 return false;
2248 return true;
2249 }
2250
reg_process_ht_flags_channel(struct wiphy * wiphy,struct ieee80211_channel * channel)2251 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2252 struct ieee80211_channel *channel)
2253 {
2254 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2255 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2256 const struct ieee80211_regdomain *regd;
2257 unsigned int i;
2258 u32 flags;
2259
2260 if (!is_ht40_allowed(channel)) {
2261 channel->flags |= IEEE80211_CHAN_NO_HT40;
2262 return;
2263 }
2264
2265 /*
2266 * We need to ensure the extension channels exist to
2267 * be able to use HT40- or HT40+, this finds them (or not)
2268 */
2269 for (i = 0; i < sband->n_channels; i++) {
2270 struct ieee80211_channel *c = &sband->channels[i];
2271
2272 if (c->center_freq == (channel->center_freq - 20))
2273 channel_before = c;
2274 if (c->center_freq == (channel->center_freq + 20))
2275 channel_after = c;
2276 }
2277
2278 flags = 0;
2279 regd = get_wiphy_regdom(wiphy);
2280 if (regd) {
2281 const struct ieee80211_reg_rule *reg_rule =
2282 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2283 regd, MHZ_TO_KHZ(20));
2284
2285 if (!IS_ERR(reg_rule))
2286 flags = reg_rule->flags;
2287 }
2288
2289 /*
2290 * Please note that this assumes target bandwidth is 20 MHz,
2291 * if that ever changes we also need to change the below logic
2292 * to include that as well.
2293 */
2294 if (!is_ht40_allowed(channel_before) ||
2295 flags & NL80211_RRF_NO_HT40MINUS)
2296 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2297 else
2298 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2299
2300 if (!is_ht40_allowed(channel_after) ||
2301 flags & NL80211_RRF_NO_HT40PLUS)
2302 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2303 else
2304 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2305 }
2306
reg_process_ht_flags_band(struct wiphy * wiphy,struct ieee80211_supported_band * sband)2307 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2308 struct ieee80211_supported_band *sband)
2309 {
2310 unsigned int i;
2311
2312 if (!sband)
2313 return;
2314
2315 for (i = 0; i < sband->n_channels; i++)
2316 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2317 }
2318
reg_process_ht_flags(struct wiphy * wiphy)2319 static void reg_process_ht_flags(struct wiphy *wiphy)
2320 {
2321 enum nl80211_band band;
2322
2323 if (!wiphy)
2324 return;
2325
2326 for (band = 0; band < NUM_NL80211_BANDS; band++)
2327 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2328 }
2329
reg_call_notifier(struct wiphy * wiphy,struct regulatory_request * request)2330 static void reg_call_notifier(struct wiphy *wiphy,
2331 struct regulatory_request *request)
2332 {
2333 if (wiphy->reg_notifier)
2334 wiphy->reg_notifier(wiphy, request);
2335 }
2336
reg_wdev_chan_valid(struct wiphy * wiphy,struct wireless_dev * wdev)2337 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2338 {
2339 struct cfg80211_chan_def chandef = {};
2340 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2341 enum nl80211_iftype iftype;
2342 bool ret;
2343 int link;
2344
2345 wdev_lock(wdev);
2346 iftype = wdev->iftype;
2347
2348 /* make sure the interface is active */
2349 if (!wdev->netdev || !netif_running(wdev->netdev))
2350 goto wdev_inactive_unlock;
2351
2352 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2353 struct ieee80211_channel *chan;
2354
2355 if (!wdev->valid_links && link > 0)
2356 break;
2357 if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2358 continue;
2359 switch (iftype) {
2360 case NL80211_IFTYPE_AP:
2361 case NL80211_IFTYPE_P2P_GO:
2362 if (!wdev->links[link].ap.beacon_interval)
2363 continue;
2364 chandef = wdev->links[link].ap.chandef;
2365 break;
2366 case NL80211_IFTYPE_MESH_POINT:
2367 if (!wdev->u.mesh.beacon_interval)
2368 continue;
2369 chandef = wdev->u.mesh.chandef;
2370 break;
2371 case NL80211_IFTYPE_ADHOC:
2372 if (!wdev->u.ibss.ssid_len)
2373 continue;
2374 chandef = wdev->u.ibss.chandef;
2375 break;
2376 case NL80211_IFTYPE_STATION:
2377 case NL80211_IFTYPE_P2P_CLIENT:
2378 /* Maybe we could consider disabling that link only? */
2379 if (!wdev->links[link].client.current_bss)
2380 continue;
2381
2382 chan = wdev->links[link].client.current_bss->pub.channel;
2383 if (!chan)
2384 continue;
2385
2386 if (!rdev->ops->get_channel ||
2387 rdev_get_channel(rdev, wdev, link, &chandef))
2388 cfg80211_chandef_create(&chandef, chan,
2389 NL80211_CHAN_NO_HT);
2390 break;
2391 case NL80211_IFTYPE_MONITOR:
2392 case NL80211_IFTYPE_AP_VLAN:
2393 case NL80211_IFTYPE_P2P_DEVICE:
2394 /* no enforcement required */
2395 break;
2396 case NL80211_IFTYPE_OCB:
2397 if (!wdev->u.ocb.chandef.chan)
2398 continue;
2399 chandef = wdev->u.ocb.chandef;
2400 break;
2401 case NL80211_IFTYPE_NAN:
2402 /* we have no info, but NAN is also pretty universal */
2403 continue;
2404 default:
2405 /* others not implemented for now */
2406 WARN_ON_ONCE(1);
2407 break;
2408 }
2409
2410 wdev_unlock(wdev);
2411
2412 switch (iftype) {
2413 case NL80211_IFTYPE_AP:
2414 case NL80211_IFTYPE_P2P_GO:
2415 case NL80211_IFTYPE_ADHOC:
2416 case NL80211_IFTYPE_MESH_POINT:
2417 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2418 iftype);
2419 if (!ret)
2420 return ret;
2421 break;
2422 case NL80211_IFTYPE_STATION:
2423 case NL80211_IFTYPE_P2P_CLIENT:
2424 ret = cfg80211_chandef_usable(wiphy, &chandef,
2425 IEEE80211_CHAN_DISABLED);
2426 if (!ret)
2427 return ret;
2428 break;
2429 default:
2430 break;
2431 }
2432
2433 wdev_lock(wdev);
2434 }
2435
2436 wdev_unlock(wdev);
2437
2438 return true;
2439
2440 wdev_inactive_unlock:
2441 wdev_unlock(wdev);
2442 return true;
2443 }
2444
reg_leave_invalid_chans(struct wiphy * wiphy)2445 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2446 {
2447 struct wireless_dev *wdev;
2448 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2449
2450 wiphy_lock(wiphy);
2451 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2452 if (!reg_wdev_chan_valid(wiphy, wdev))
2453 cfg80211_leave(rdev, wdev);
2454 wiphy_unlock(wiphy);
2455 }
2456
reg_check_chans_work(struct work_struct * work)2457 static void reg_check_chans_work(struct work_struct *work)
2458 {
2459 struct cfg80211_registered_device *rdev;
2460
2461 pr_debug("Verifying active interfaces after reg change\n");
2462 rtnl_lock();
2463
2464 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2465 reg_leave_invalid_chans(&rdev->wiphy);
2466
2467 rtnl_unlock();
2468 }
2469
reg_check_channels(void)2470 static void reg_check_channels(void)
2471 {
2472 /*
2473 * Give usermode a chance to do something nicer (move to another
2474 * channel, orderly disconnection), before forcing a disconnection.
2475 */
2476 mod_delayed_work(system_power_efficient_wq,
2477 ®_check_chans,
2478 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2479 }
2480
wiphy_update_regulatory(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2481 static void wiphy_update_regulatory(struct wiphy *wiphy,
2482 enum nl80211_reg_initiator initiator)
2483 {
2484 enum nl80211_band band;
2485 struct regulatory_request *lr = get_last_request();
2486
2487 if (ignore_reg_update(wiphy, initiator)) {
2488 /*
2489 * Regulatory updates set by CORE are ignored for custom
2490 * regulatory cards. Let us notify the changes to the driver,
2491 * as some drivers used this to restore its orig_* reg domain.
2492 */
2493 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2494 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2495 !(wiphy->regulatory_flags &
2496 REGULATORY_WIPHY_SELF_MANAGED))
2497 reg_call_notifier(wiphy, lr);
2498 return;
2499 }
2500
2501 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2502
2503 for (band = 0; band < NUM_NL80211_BANDS; band++)
2504 handle_band(wiphy, initiator, wiphy->bands[band]);
2505
2506 reg_process_beacons(wiphy);
2507 reg_process_ht_flags(wiphy);
2508 reg_call_notifier(wiphy, lr);
2509 }
2510
update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)2511 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2512 {
2513 struct cfg80211_registered_device *rdev;
2514 struct wiphy *wiphy;
2515
2516 ASSERT_RTNL();
2517
2518 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2519 wiphy = &rdev->wiphy;
2520 wiphy_update_regulatory(wiphy, initiator);
2521 }
2522
2523 reg_check_channels();
2524 }
2525
handle_channel_custom(struct wiphy * wiphy,struct ieee80211_channel * chan,const struct ieee80211_regdomain * regd,u32 min_bw)2526 static void handle_channel_custom(struct wiphy *wiphy,
2527 struct ieee80211_channel *chan,
2528 const struct ieee80211_regdomain *regd,
2529 u32 min_bw)
2530 {
2531 u32 bw_flags = 0;
2532 const struct ieee80211_reg_rule *reg_rule = NULL;
2533 const struct ieee80211_power_rule *power_rule = NULL;
2534 u32 bw, center_freq_khz;
2535
2536 center_freq_khz = ieee80211_channel_to_khz(chan);
2537 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2538 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2539 if (!IS_ERR(reg_rule))
2540 break;
2541 }
2542
2543 if (IS_ERR_OR_NULL(reg_rule)) {
2544 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2545 chan->center_freq, chan->freq_offset);
2546 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2547 chan->flags |= IEEE80211_CHAN_DISABLED;
2548 } else {
2549 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2550 chan->flags = chan->orig_flags;
2551 }
2552 return;
2553 }
2554
2555 power_rule = ®_rule->power_rule;
2556 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2557
2558 chan->dfs_state_entered = jiffies;
2559 chan->dfs_state = NL80211_DFS_USABLE;
2560
2561 chan->beacon_found = false;
2562
2563 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2564 chan->flags = chan->orig_flags | bw_flags |
2565 map_regdom_flags(reg_rule->flags);
2566 else
2567 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2568
2569 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2570 chan->max_reg_power = chan->max_power =
2571 (int) MBM_TO_DBM(power_rule->max_eirp);
2572
2573 if (chan->flags & IEEE80211_CHAN_RADAR) {
2574 if (reg_rule->dfs_cac_ms)
2575 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2576 else
2577 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2578 }
2579
2580 chan->max_power = chan->max_reg_power;
2581 }
2582
handle_band_custom(struct wiphy * wiphy,struct ieee80211_supported_band * sband,const struct ieee80211_regdomain * regd)2583 static void handle_band_custom(struct wiphy *wiphy,
2584 struct ieee80211_supported_band *sband,
2585 const struct ieee80211_regdomain *regd)
2586 {
2587 unsigned int i;
2588
2589 if (!sband)
2590 return;
2591
2592 /*
2593 * We currently assume that you always want at least 20 MHz,
2594 * otherwise channel 12 might get enabled if this rule is
2595 * compatible to US, which permits 2402 - 2472 MHz.
2596 */
2597 for (i = 0; i < sband->n_channels; i++)
2598 handle_channel_custom(wiphy, &sband->channels[i], regd,
2599 MHZ_TO_KHZ(20));
2600 }
2601
2602 /* Used by drivers prior to wiphy registration */
wiphy_apply_custom_regulatory(struct wiphy * wiphy,const struct ieee80211_regdomain * regd)2603 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2604 const struct ieee80211_regdomain *regd)
2605 {
2606 const struct ieee80211_regdomain *new_regd, *tmp;
2607 enum nl80211_band band;
2608 unsigned int bands_set = 0;
2609
2610 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2611 "wiphy should have REGULATORY_CUSTOM_REG\n");
2612 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2613
2614 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2615 if (!wiphy->bands[band])
2616 continue;
2617 handle_band_custom(wiphy, wiphy->bands[band], regd);
2618 bands_set++;
2619 }
2620
2621 /*
2622 * no point in calling this if it won't have any effect
2623 * on your device's supported bands.
2624 */
2625 WARN_ON(!bands_set);
2626 new_regd = reg_copy_regd(regd);
2627 if (IS_ERR(new_regd))
2628 return;
2629
2630 rtnl_lock();
2631 wiphy_lock(wiphy);
2632
2633 tmp = get_wiphy_regdom(wiphy);
2634 rcu_assign_pointer(wiphy->regd, new_regd);
2635 rcu_free_regdom(tmp);
2636
2637 wiphy_unlock(wiphy);
2638 rtnl_unlock();
2639 }
2640 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2641
reg_set_request_processed(void)2642 static void reg_set_request_processed(void)
2643 {
2644 bool need_more_processing = false;
2645 struct regulatory_request *lr = get_last_request();
2646
2647 lr->processed = true;
2648
2649 spin_lock(®_requests_lock);
2650 if (!list_empty(®_requests_list))
2651 need_more_processing = true;
2652 spin_unlock(®_requests_lock);
2653
2654 cancel_crda_timeout();
2655
2656 if (need_more_processing)
2657 schedule_work(®_work);
2658 }
2659
2660 /**
2661 * reg_process_hint_core - process core regulatory requests
2662 * @core_request: a pending core regulatory request
2663 *
2664 * The wireless subsystem can use this function to process
2665 * a regulatory request issued by the regulatory core.
2666 */
2667 static enum reg_request_treatment
reg_process_hint_core(struct regulatory_request * core_request)2668 reg_process_hint_core(struct regulatory_request *core_request)
2669 {
2670 if (reg_query_database(core_request)) {
2671 core_request->intersect = false;
2672 core_request->processed = false;
2673 reg_update_last_request(core_request);
2674 return REG_REQ_OK;
2675 }
2676
2677 return REG_REQ_IGNORE;
2678 }
2679
2680 static enum reg_request_treatment
__reg_process_hint_user(struct regulatory_request * user_request)2681 __reg_process_hint_user(struct regulatory_request *user_request)
2682 {
2683 struct regulatory_request *lr = get_last_request();
2684
2685 if (reg_request_cell_base(user_request))
2686 return reg_ignore_cell_hint(user_request);
2687
2688 if (reg_request_cell_base(lr))
2689 return REG_REQ_IGNORE;
2690
2691 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2692 return REG_REQ_INTERSECT;
2693 /*
2694 * If the user knows better the user should set the regdom
2695 * to their country before the IE is picked up
2696 */
2697 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2698 lr->intersect)
2699 return REG_REQ_IGNORE;
2700 /*
2701 * Process user requests only after previous user/driver/core
2702 * requests have been processed
2703 */
2704 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2705 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2706 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2707 regdom_changes(lr->alpha2))
2708 return REG_REQ_IGNORE;
2709
2710 if (!regdom_changes(user_request->alpha2))
2711 return REG_REQ_ALREADY_SET;
2712
2713 return REG_REQ_OK;
2714 }
2715
2716 /**
2717 * reg_process_hint_user - process user regulatory requests
2718 * @user_request: a pending user regulatory request
2719 *
2720 * The wireless subsystem can use this function to process
2721 * a regulatory request initiated by userspace.
2722 */
2723 static enum reg_request_treatment
reg_process_hint_user(struct regulatory_request * user_request)2724 reg_process_hint_user(struct regulatory_request *user_request)
2725 {
2726 enum reg_request_treatment treatment;
2727
2728 treatment = __reg_process_hint_user(user_request);
2729 if (treatment == REG_REQ_IGNORE ||
2730 treatment == REG_REQ_ALREADY_SET)
2731 return REG_REQ_IGNORE;
2732
2733 user_request->intersect = treatment == REG_REQ_INTERSECT;
2734 user_request->processed = false;
2735
2736 if (reg_query_database(user_request)) {
2737 reg_update_last_request(user_request);
2738 user_alpha2[0] = user_request->alpha2[0];
2739 user_alpha2[1] = user_request->alpha2[1];
2740 return REG_REQ_OK;
2741 }
2742
2743 return REG_REQ_IGNORE;
2744 }
2745
2746 static enum reg_request_treatment
__reg_process_hint_driver(struct regulatory_request * driver_request)2747 __reg_process_hint_driver(struct regulatory_request *driver_request)
2748 {
2749 struct regulatory_request *lr = get_last_request();
2750
2751 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2752 if (regdom_changes(driver_request->alpha2))
2753 return REG_REQ_OK;
2754 return REG_REQ_ALREADY_SET;
2755 }
2756
2757 /*
2758 * This would happen if you unplug and plug your card
2759 * back in or if you add a new device for which the previously
2760 * loaded card also agrees on the regulatory domain.
2761 */
2762 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2763 !regdom_changes(driver_request->alpha2))
2764 return REG_REQ_ALREADY_SET;
2765
2766 return REG_REQ_INTERSECT;
2767 }
2768
2769 /**
2770 * reg_process_hint_driver - process driver regulatory requests
2771 * @wiphy: the wireless device for the regulatory request
2772 * @driver_request: a pending driver regulatory request
2773 *
2774 * The wireless subsystem can use this function to process
2775 * a regulatory request issued by an 802.11 driver.
2776 *
2777 * Returns one of the different reg request treatment values.
2778 */
2779 static enum reg_request_treatment
reg_process_hint_driver(struct wiphy * wiphy,struct regulatory_request * driver_request)2780 reg_process_hint_driver(struct wiphy *wiphy,
2781 struct regulatory_request *driver_request)
2782 {
2783 const struct ieee80211_regdomain *regd, *tmp;
2784 enum reg_request_treatment treatment;
2785
2786 treatment = __reg_process_hint_driver(driver_request);
2787
2788 switch (treatment) {
2789 case REG_REQ_OK:
2790 break;
2791 case REG_REQ_IGNORE:
2792 return REG_REQ_IGNORE;
2793 case REG_REQ_INTERSECT:
2794 case REG_REQ_ALREADY_SET:
2795 regd = reg_copy_regd(get_cfg80211_regdom());
2796 if (IS_ERR(regd))
2797 return REG_REQ_IGNORE;
2798
2799 tmp = get_wiphy_regdom(wiphy);
2800 ASSERT_RTNL();
2801 wiphy_lock(wiphy);
2802 rcu_assign_pointer(wiphy->regd, regd);
2803 wiphy_unlock(wiphy);
2804 rcu_free_regdom(tmp);
2805 }
2806
2807
2808 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2809 driver_request->processed = false;
2810
2811 /*
2812 * Since CRDA will not be called in this case as we already
2813 * have applied the requested regulatory domain before we just
2814 * inform userspace we have processed the request
2815 */
2816 if (treatment == REG_REQ_ALREADY_SET) {
2817 nl80211_send_reg_change_event(driver_request);
2818 reg_update_last_request(driver_request);
2819 reg_set_request_processed();
2820 return REG_REQ_ALREADY_SET;
2821 }
2822
2823 if (reg_query_database(driver_request)) {
2824 reg_update_last_request(driver_request);
2825 return REG_REQ_OK;
2826 }
2827
2828 return REG_REQ_IGNORE;
2829 }
2830
2831 static enum reg_request_treatment
__reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2832 __reg_process_hint_country_ie(struct wiphy *wiphy,
2833 struct regulatory_request *country_ie_request)
2834 {
2835 struct wiphy *last_wiphy = NULL;
2836 struct regulatory_request *lr = get_last_request();
2837
2838 if (reg_request_cell_base(lr)) {
2839 /* Trust a Cell base station over the AP's country IE */
2840 if (regdom_changes(country_ie_request->alpha2))
2841 return REG_REQ_IGNORE;
2842 return REG_REQ_ALREADY_SET;
2843 } else {
2844 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2845 return REG_REQ_IGNORE;
2846 }
2847
2848 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2849 return -EINVAL;
2850
2851 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2852 return REG_REQ_OK;
2853
2854 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2855
2856 if (last_wiphy != wiphy) {
2857 /*
2858 * Two cards with two APs claiming different
2859 * Country IE alpha2s. We could
2860 * intersect them, but that seems unlikely
2861 * to be correct. Reject second one for now.
2862 */
2863 if (regdom_changes(country_ie_request->alpha2))
2864 return REG_REQ_IGNORE;
2865 return REG_REQ_ALREADY_SET;
2866 }
2867
2868 if (regdom_changes(country_ie_request->alpha2))
2869 return REG_REQ_OK;
2870 return REG_REQ_ALREADY_SET;
2871 }
2872
2873 /**
2874 * reg_process_hint_country_ie - process regulatory requests from country IEs
2875 * @wiphy: the wireless device for the regulatory request
2876 * @country_ie_request: a regulatory request from a country IE
2877 *
2878 * The wireless subsystem can use this function to process
2879 * a regulatory request issued by a country Information Element.
2880 *
2881 * Returns one of the different reg request treatment values.
2882 */
2883 static enum reg_request_treatment
reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2884 reg_process_hint_country_ie(struct wiphy *wiphy,
2885 struct regulatory_request *country_ie_request)
2886 {
2887 enum reg_request_treatment treatment;
2888
2889 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2890
2891 switch (treatment) {
2892 case REG_REQ_OK:
2893 break;
2894 case REG_REQ_IGNORE:
2895 return REG_REQ_IGNORE;
2896 case REG_REQ_ALREADY_SET:
2897 reg_free_request(country_ie_request);
2898 return REG_REQ_ALREADY_SET;
2899 case REG_REQ_INTERSECT:
2900 /*
2901 * This doesn't happen yet, not sure we
2902 * ever want to support it for this case.
2903 */
2904 WARN_ONCE(1, "Unexpected intersection for country elements");
2905 return REG_REQ_IGNORE;
2906 }
2907
2908 country_ie_request->intersect = false;
2909 country_ie_request->processed = false;
2910
2911 if (reg_query_database(country_ie_request)) {
2912 reg_update_last_request(country_ie_request);
2913 return REG_REQ_OK;
2914 }
2915
2916 return REG_REQ_IGNORE;
2917 }
2918
reg_dfs_domain_same(struct wiphy * wiphy1,struct wiphy * wiphy2)2919 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2920 {
2921 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2922 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2923 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2924 bool dfs_domain_same;
2925
2926 rcu_read_lock();
2927
2928 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2929 wiphy1_regd = rcu_dereference(wiphy1->regd);
2930 if (!wiphy1_regd)
2931 wiphy1_regd = cfg80211_regd;
2932
2933 wiphy2_regd = rcu_dereference(wiphy2->regd);
2934 if (!wiphy2_regd)
2935 wiphy2_regd = cfg80211_regd;
2936
2937 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2938
2939 rcu_read_unlock();
2940
2941 return dfs_domain_same;
2942 }
2943
reg_copy_dfs_chan_state(struct ieee80211_channel * dst_chan,struct ieee80211_channel * src_chan)2944 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2945 struct ieee80211_channel *src_chan)
2946 {
2947 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2948 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2949 return;
2950
2951 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2952 src_chan->flags & IEEE80211_CHAN_DISABLED)
2953 return;
2954
2955 if (src_chan->center_freq == dst_chan->center_freq &&
2956 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2957 dst_chan->dfs_state = src_chan->dfs_state;
2958 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2959 }
2960 }
2961
wiphy_share_dfs_chan_state(struct wiphy * dst_wiphy,struct wiphy * src_wiphy)2962 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2963 struct wiphy *src_wiphy)
2964 {
2965 struct ieee80211_supported_band *src_sband, *dst_sband;
2966 struct ieee80211_channel *src_chan, *dst_chan;
2967 int i, j, band;
2968
2969 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2970 return;
2971
2972 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2973 dst_sband = dst_wiphy->bands[band];
2974 src_sband = src_wiphy->bands[band];
2975 if (!dst_sband || !src_sband)
2976 continue;
2977
2978 for (i = 0; i < dst_sband->n_channels; i++) {
2979 dst_chan = &dst_sband->channels[i];
2980 for (j = 0; j < src_sband->n_channels; j++) {
2981 src_chan = &src_sband->channels[j];
2982 reg_copy_dfs_chan_state(dst_chan, src_chan);
2983 }
2984 }
2985 }
2986 }
2987
wiphy_all_share_dfs_chan_state(struct wiphy * wiphy)2988 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2989 {
2990 struct cfg80211_registered_device *rdev;
2991
2992 ASSERT_RTNL();
2993
2994 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2995 if (wiphy == &rdev->wiphy)
2996 continue;
2997 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2998 }
2999 }
3000
3001 /* This processes *all* regulatory hints */
reg_process_hint(struct regulatory_request * reg_request)3002 static void reg_process_hint(struct regulatory_request *reg_request)
3003 {
3004 struct wiphy *wiphy = NULL;
3005 enum reg_request_treatment treatment;
3006 enum nl80211_reg_initiator initiator = reg_request->initiator;
3007
3008 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3009 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3010
3011 switch (initiator) {
3012 case NL80211_REGDOM_SET_BY_CORE:
3013 treatment = reg_process_hint_core(reg_request);
3014 break;
3015 case NL80211_REGDOM_SET_BY_USER:
3016 treatment = reg_process_hint_user(reg_request);
3017 break;
3018 case NL80211_REGDOM_SET_BY_DRIVER:
3019 if (!wiphy)
3020 goto out_free;
3021 treatment = reg_process_hint_driver(wiphy, reg_request);
3022 break;
3023 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3024 if (!wiphy)
3025 goto out_free;
3026 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3027 break;
3028 default:
3029 WARN(1, "invalid initiator %d\n", initiator);
3030 goto out_free;
3031 }
3032
3033 if (treatment == REG_REQ_IGNORE)
3034 goto out_free;
3035
3036 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3037 "unexpected treatment value %d\n", treatment);
3038
3039 /* This is required so that the orig_* parameters are saved.
3040 * NOTE: treatment must be set for any case that reaches here!
3041 */
3042 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3043 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3044 wiphy_update_regulatory(wiphy, initiator);
3045 wiphy_all_share_dfs_chan_state(wiphy);
3046 reg_check_channels();
3047 }
3048
3049 return;
3050
3051 out_free:
3052 reg_free_request(reg_request);
3053 }
3054
notify_self_managed_wiphys(struct regulatory_request * request)3055 static void notify_self_managed_wiphys(struct regulatory_request *request)
3056 {
3057 struct cfg80211_registered_device *rdev;
3058 struct wiphy *wiphy;
3059
3060 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3061 wiphy = &rdev->wiphy;
3062 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3063 request->initiator == NL80211_REGDOM_SET_BY_USER)
3064 reg_call_notifier(wiphy, request);
3065 }
3066 }
3067
3068 /*
3069 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3070 * Regulatory hints come on a first come first serve basis and we
3071 * must process each one atomically.
3072 */
reg_process_pending_hints(void)3073 static void reg_process_pending_hints(void)
3074 {
3075 struct regulatory_request *reg_request, *lr;
3076
3077 lr = get_last_request();
3078
3079 /* When last_request->processed becomes true this will be rescheduled */
3080 if (lr && !lr->processed) {
3081 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3082 return;
3083 }
3084
3085 spin_lock(®_requests_lock);
3086
3087 if (list_empty(®_requests_list)) {
3088 spin_unlock(®_requests_lock);
3089 return;
3090 }
3091
3092 reg_request = list_first_entry(®_requests_list,
3093 struct regulatory_request,
3094 list);
3095 list_del_init(®_request->list);
3096
3097 spin_unlock(®_requests_lock);
3098
3099 notify_self_managed_wiphys(reg_request);
3100
3101 reg_process_hint(reg_request);
3102
3103 lr = get_last_request();
3104
3105 spin_lock(®_requests_lock);
3106 if (!list_empty(®_requests_list) && lr && lr->processed)
3107 schedule_work(®_work);
3108 spin_unlock(®_requests_lock);
3109 }
3110
3111 /* Processes beacon hints -- this has nothing to do with country IEs */
reg_process_pending_beacon_hints(void)3112 static void reg_process_pending_beacon_hints(void)
3113 {
3114 struct cfg80211_registered_device *rdev;
3115 struct reg_beacon *pending_beacon, *tmp;
3116
3117 /* This goes through the _pending_ beacon list */
3118 spin_lock_bh(®_pending_beacons_lock);
3119
3120 list_for_each_entry_safe(pending_beacon, tmp,
3121 ®_pending_beacons, list) {
3122 list_del_init(&pending_beacon->list);
3123
3124 /* Applies the beacon hint to current wiphys */
3125 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3126 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3127
3128 /* Remembers the beacon hint for new wiphys or reg changes */
3129 list_add_tail(&pending_beacon->list, ®_beacon_list);
3130 }
3131
3132 spin_unlock_bh(®_pending_beacons_lock);
3133 }
3134
reg_process_self_managed_hint(struct wiphy * wiphy)3135 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3136 {
3137 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3138 const struct ieee80211_regdomain *tmp;
3139 const struct ieee80211_regdomain *regd;
3140 enum nl80211_band band;
3141 struct regulatory_request request = {};
3142
3143 ASSERT_RTNL();
3144 lockdep_assert_wiphy(wiphy);
3145
3146 spin_lock(®_requests_lock);
3147 regd = rdev->requested_regd;
3148 rdev->requested_regd = NULL;
3149 spin_unlock(®_requests_lock);
3150
3151 if (!regd)
3152 return;
3153
3154 tmp = get_wiphy_regdom(wiphy);
3155 rcu_assign_pointer(wiphy->regd, regd);
3156 rcu_free_regdom(tmp);
3157
3158 for (band = 0; band < NUM_NL80211_BANDS; band++)
3159 handle_band_custom(wiphy, wiphy->bands[band], regd);
3160
3161 reg_process_ht_flags(wiphy);
3162
3163 request.wiphy_idx = get_wiphy_idx(wiphy);
3164 request.alpha2[0] = regd->alpha2[0];
3165 request.alpha2[1] = regd->alpha2[1];
3166 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3167
3168 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3169 reg_call_notifier(wiphy, &request);
3170
3171 nl80211_send_wiphy_reg_change_event(&request);
3172 }
3173
reg_process_self_managed_hints(void)3174 static void reg_process_self_managed_hints(void)
3175 {
3176 struct cfg80211_registered_device *rdev;
3177
3178 ASSERT_RTNL();
3179
3180 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3181 wiphy_lock(&rdev->wiphy);
3182 reg_process_self_managed_hint(&rdev->wiphy);
3183 wiphy_unlock(&rdev->wiphy);
3184 }
3185
3186 reg_check_channels();
3187 }
3188
reg_todo(struct work_struct * work)3189 static void reg_todo(struct work_struct *work)
3190 {
3191 rtnl_lock();
3192 reg_process_pending_hints();
3193 reg_process_pending_beacon_hints();
3194 reg_process_self_managed_hints();
3195 rtnl_unlock();
3196 }
3197
queue_regulatory_request(struct regulatory_request * request)3198 static void queue_regulatory_request(struct regulatory_request *request)
3199 {
3200 request->alpha2[0] = toupper(request->alpha2[0]);
3201 request->alpha2[1] = toupper(request->alpha2[1]);
3202
3203 spin_lock(®_requests_lock);
3204 list_add_tail(&request->list, ®_requests_list);
3205 spin_unlock(®_requests_lock);
3206
3207 schedule_work(®_work);
3208 }
3209
3210 /*
3211 * Core regulatory hint -- happens during cfg80211_init()
3212 * and when we restore regulatory settings.
3213 */
regulatory_hint_core(const char * alpha2)3214 static int regulatory_hint_core(const char *alpha2)
3215 {
3216 struct regulatory_request *request;
3217
3218 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3219 if (!request)
3220 return -ENOMEM;
3221
3222 request->alpha2[0] = alpha2[0];
3223 request->alpha2[1] = alpha2[1];
3224 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3225 request->wiphy_idx = WIPHY_IDX_INVALID;
3226
3227 queue_regulatory_request(request);
3228
3229 return 0;
3230 }
3231
3232 /* User hints */
regulatory_hint_user(const char * alpha2,enum nl80211_user_reg_hint_type user_reg_hint_type)3233 int regulatory_hint_user(const char *alpha2,
3234 enum nl80211_user_reg_hint_type user_reg_hint_type)
3235 {
3236 struct regulatory_request *request;
3237
3238 if (WARN_ON(!alpha2))
3239 return -EINVAL;
3240
3241 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3242 return -EINVAL;
3243
3244 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3245 if (!request)
3246 return -ENOMEM;
3247
3248 request->wiphy_idx = WIPHY_IDX_INVALID;
3249 request->alpha2[0] = alpha2[0];
3250 request->alpha2[1] = alpha2[1];
3251 request->initiator = NL80211_REGDOM_SET_BY_USER;
3252 request->user_reg_hint_type = user_reg_hint_type;
3253
3254 /* Allow calling CRDA again */
3255 reset_crda_timeouts();
3256
3257 queue_regulatory_request(request);
3258
3259 return 0;
3260 }
3261
regulatory_hint_indoor(bool is_indoor,u32 portid)3262 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3263 {
3264 spin_lock(®_indoor_lock);
3265
3266 /* It is possible that more than one user space process is trying to
3267 * configure the indoor setting. To handle such cases, clear the indoor
3268 * setting in case that some process does not think that the device
3269 * is operating in an indoor environment. In addition, if a user space
3270 * process indicates that it is controlling the indoor setting, save its
3271 * portid, i.e., make it the owner.
3272 */
3273 reg_is_indoor = is_indoor;
3274 if (reg_is_indoor) {
3275 if (!reg_is_indoor_portid)
3276 reg_is_indoor_portid = portid;
3277 } else {
3278 reg_is_indoor_portid = 0;
3279 }
3280
3281 spin_unlock(®_indoor_lock);
3282
3283 if (!is_indoor)
3284 reg_check_channels();
3285
3286 return 0;
3287 }
3288
regulatory_netlink_notify(u32 portid)3289 void regulatory_netlink_notify(u32 portid)
3290 {
3291 spin_lock(®_indoor_lock);
3292
3293 if (reg_is_indoor_portid != portid) {
3294 spin_unlock(®_indoor_lock);
3295 return;
3296 }
3297
3298 reg_is_indoor = false;
3299 reg_is_indoor_portid = 0;
3300
3301 spin_unlock(®_indoor_lock);
3302
3303 reg_check_channels();
3304 }
3305
3306 /* Driver hints */
regulatory_hint(struct wiphy * wiphy,const char * alpha2)3307 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3308 {
3309 struct regulatory_request *request;
3310
3311 if (WARN_ON(!alpha2 || !wiphy))
3312 return -EINVAL;
3313
3314 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3315
3316 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3317 if (!request)
3318 return -ENOMEM;
3319
3320 request->wiphy_idx = get_wiphy_idx(wiphy);
3321
3322 request->alpha2[0] = alpha2[0];
3323 request->alpha2[1] = alpha2[1];
3324 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3325
3326 /* Allow calling CRDA again */
3327 reset_crda_timeouts();
3328
3329 queue_regulatory_request(request);
3330
3331 return 0;
3332 }
3333 EXPORT_SYMBOL(regulatory_hint);
3334
regulatory_hint_country_ie(struct wiphy * wiphy,enum nl80211_band band,const u8 * country_ie,u8 country_ie_len)3335 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3336 const u8 *country_ie, u8 country_ie_len)
3337 {
3338 char alpha2[2];
3339 enum environment_cap env = ENVIRON_ANY;
3340 struct regulatory_request *request = NULL, *lr;
3341
3342 /* IE len must be evenly divisible by 2 */
3343 if (country_ie_len & 0x01)
3344 return;
3345
3346 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3347 return;
3348
3349 request = kzalloc(sizeof(*request), GFP_KERNEL);
3350 if (!request)
3351 return;
3352
3353 alpha2[0] = country_ie[0];
3354 alpha2[1] = country_ie[1];
3355
3356 if (country_ie[2] == 'I')
3357 env = ENVIRON_INDOOR;
3358 else if (country_ie[2] == 'O')
3359 env = ENVIRON_OUTDOOR;
3360
3361 rcu_read_lock();
3362 lr = get_last_request();
3363
3364 if (unlikely(!lr))
3365 goto out;
3366
3367 /*
3368 * We will run this only upon a successful connection on cfg80211.
3369 * We leave conflict resolution to the workqueue, where can hold
3370 * the RTNL.
3371 */
3372 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3373 lr->wiphy_idx != WIPHY_IDX_INVALID)
3374 goto out;
3375
3376 request->wiphy_idx = get_wiphy_idx(wiphy);
3377 request->alpha2[0] = alpha2[0];
3378 request->alpha2[1] = alpha2[1];
3379 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3380 request->country_ie_env = env;
3381
3382 /* Allow calling CRDA again */
3383 reset_crda_timeouts();
3384
3385 queue_regulatory_request(request);
3386 request = NULL;
3387 out:
3388 kfree(request);
3389 rcu_read_unlock();
3390 }
3391
restore_alpha2(char * alpha2,bool reset_user)3392 static void restore_alpha2(char *alpha2, bool reset_user)
3393 {
3394 /* indicates there is no alpha2 to consider for restoration */
3395 alpha2[0] = '9';
3396 alpha2[1] = '7';
3397
3398 /* The user setting has precedence over the module parameter */
3399 if (is_user_regdom_saved()) {
3400 /* Unless we're asked to ignore it and reset it */
3401 if (reset_user) {
3402 pr_debug("Restoring regulatory settings including user preference\n");
3403 user_alpha2[0] = '9';
3404 user_alpha2[1] = '7';
3405
3406 /*
3407 * If we're ignoring user settings, we still need to
3408 * check the module parameter to ensure we put things
3409 * back as they were for a full restore.
3410 */
3411 if (!is_world_regdom(ieee80211_regdom)) {
3412 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3413 ieee80211_regdom[0], ieee80211_regdom[1]);
3414 alpha2[0] = ieee80211_regdom[0];
3415 alpha2[1] = ieee80211_regdom[1];
3416 }
3417 } else {
3418 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3419 user_alpha2[0], user_alpha2[1]);
3420 alpha2[0] = user_alpha2[0];
3421 alpha2[1] = user_alpha2[1];
3422 }
3423 } else if (!is_world_regdom(ieee80211_regdom)) {
3424 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3425 ieee80211_regdom[0], ieee80211_regdom[1]);
3426 alpha2[0] = ieee80211_regdom[0];
3427 alpha2[1] = ieee80211_regdom[1];
3428 } else
3429 pr_debug("Restoring regulatory settings\n");
3430 }
3431
restore_custom_reg_settings(struct wiphy * wiphy)3432 static void restore_custom_reg_settings(struct wiphy *wiphy)
3433 {
3434 struct ieee80211_supported_band *sband;
3435 enum nl80211_band band;
3436 struct ieee80211_channel *chan;
3437 int i;
3438
3439 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3440 sband = wiphy->bands[band];
3441 if (!sband)
3442 continue;
3443 for (i = 0; i < sband->n_channels; i++) {
3444 chan = &sband->channels[i];
3445 chan->flags = chan->orig_flags;
3446 chan->max_antenna_gain = chan->orig_mag;
3447 chan->max_power = chan->orig_mpwr;
3448 chan->beacon_found = false;
3449 }
3450 }
3451 }
3452
3453 /*
3454 * Restoring regulatory settings involves ignoring any
3455 * possibly stale country IE information and user regulatory
3456 * settings if so desired, this includes any beacon hints
3457 * learned as we could have traveled outside to another country
3458 * after disconnection. To restore regulatory settings we do
3459 * exactly what we did at bootup:
3460 *
3461 * - send a core regulatory hint
3462 * - send a user regulatory hint if applicable
3463 *
3464 * Device drivers that send a regulatory hint for a specific country
3465 * keep their own regulatory domain on wiphy->regd so that does
3466 * not need to be remembered.
3467 */
restore_regulatory_settings(bool reset_user,bool cached)3468 static void restore_regulatory_settings(bool reset_user, bool cached)
3469 {
3470 char alpha2[2];
3471 char world_alpha2[2];
3472 struct reg_beacon *reg_beacon, *btmp;
3473 LIST_HEAD(tmp_reg_req_list);
3474 struct cfg80211_registered_device *rdev;
3475
3476 ASSERT_RTNL();
3477
3478 /*
3479 * Clear the indoor setting in case that it is not controlled by user
3480 * space, as otherwise there is no guarantee that the device is still
3481 * operating in an indoor environment.
3482 */
3483 spin_lock(®_indoor_lock);
3484 if (reg_is_indoor && !reg_is_indoor_portid) {
3485 reg_is_indoor = false;
3486 reg_check_channels();
3487 }
3488 spin_unlock(®_indoor_lock);
3489
3490 reset_regdomains(true, &world_regdom);
3491 restore_alpha2(alpha2, reset_user);
3492
3493 /*
3494 * If there's any pending requests we simply
3495 * stash them to a temporary pending queue and
3496 * add then after we've restored regulatory
3497 * settings.
3498 */
3499 spin_lock(®_requests_lock);
3500 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3501 spin_unlock(®_requests_lock);
3502
3503 /* Clear beacon hints */
3504 spin_lock_bh(®_pending_beacons_lock);
3505 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3506 list_del(®_beacon->list);
3507 kfree(reg_beacon);
3508 }
3509 spin_unlock_bh(®_pending_beacons_lock);
3510
3511 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3512 list_del(®_beacon->list);
3513 kfree(reg_beacon);
3514 }
3515
3516 /* First restore to the basic regulatory settings */
3517 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3518 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3519
3520 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3521 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3522 continue;
3523 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3524 restore_custom_reg_settings(&rdev->wiphy);
3525 }
3526
3527 if (cached && (!is_an_alpha2(alpha2) ||
3528 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3529 reset_regdomains(false, cfg80211_world_regdom);
3530 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3531 print_regdomain(get_cfg80211_regdom());
3532 nl80211_send_reg_change_event(&core_request_world);
3533 reg_set_request_processed();
3534
3535 if (is_an_alpha2(alpha2) &&
3536 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3537 struct regulatory_request *ureq;
3538
3539 spin_lock(®_requests_lock);
3540 ureq = list_last_entry(®_requests_list,
3541 struct regulatory_request,
3542 list);
3543 list_del(&ureq->list);
3544 spin_unlock(®_requests_lock);
3545
3546 notify_self_managed_wiphys(ureq);
3547 reg_update_last_request(ureq);
3548 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3549 REGD_SOURCE_CACHED);
3550 }
3551 } else {
3552 regulatory_hint_core(world_alpha2);
3553
3554 /*
3555 * This restores the ieee80211_regdom module parameter
3556 * preference or the last user requested regulatory
3557 * settings, user regulatory settings takes precedence.
3558 */
3559 if (is_an_alpha2(alpha2))
3560 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3561 }
3562
3563 spin_lock(®_requests_lock);
3564 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3565 spin_unlock(®_requests_lock);
3566
3567 pr_debug("Kicking the queue\n");
3568
3569 schedule_work(®_work);
3570 }
3571
is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)3572 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3573 {
3574 struct cfg80211_registered_device *rdev;
3575 struct wireless_dev *wdev;
3576
3577 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3578 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3579 wdev_lock(wdev);
3580 if (!(wdev->wiphy->regulatory_flags & flag)) {
3581 wdev_unlock(wdev);
3582 return false;
3583 }
3584 wdev_unlock(wdev);
3585 }
3586 }
3587
3588 return true;
3589 }
3590
regulatory_hint_disconnect(void)3591 void regulatory_hint_disconnect(void)
3592 {
3593 /* Restore of regulatory settings is not required when wiphy(s)
3594 * ignore IE from connected access point but clearance of beacon hints
3595 * is required when wiphy(s) supports beacon hints.
3596 */
3597 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3598 struct reg_beacon *reg_beacon, *btmp;
3599
3600 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3601 return;
3602
3603 spin_lock_bh(®_pending_beacons_lock);
3604 list_for_each_entry_safe(reg_beacon, btmp,
3605 ®_pending_beacons, list) {
3606 list_del(®_beacon->list);
3607 kfree(reg_beacon);
3608 }
3609 spin_unlock_bh(®_pending_beacons_lock);
3610
3611 list_for_each_entry_safe(reg_beacon, btmp,
3612 ®_beacon_list, list) {
3613 list_del(®_beacon->list);
3614 kfree(reg_beacon);
3615 }
3616
3617 return;
3618 }
3619
3620 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3621 restore_regulatory_settings(false, true);
3622 }
3623
freq_is_chan_12_13_14(u32 freq)3624 static bool freq_is_chan_12_13_14(u32 freq)
3625 {
3626 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3627 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3628 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3629 return true;
3630 return false;
3631 }
3632
pending_reg_beacon(struct ieee80211_channel * beacon_chan)3633 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3634 {
3635 struct reg_beacon *pending_beacon;
3636
3637 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3638 if (ieee80211_channel_equal(beacon_chan,
3639 &pending_beacon->chan))
3640 return true;
3641 return false;
3642 }
3643
regulatory_hint_found_beacon(struct wiphy * wiphy,struct ieee80211_channel * beacon_chan,gfp_t gfp)3644 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3645 struct ieee80211_channel *beacon_chan,
3646 gfp_t gfp)
3647 {
3648 struct reg_beacon *reg_beacon;
3649 bool processing;
3650
3651 if (beacon_chan->beacon_found ||
3652 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3653 (beacon_chan->band == NL80211_BAND_2GHZ &&
3654 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3655 return 0;
3656
3657 spin_lock_bh(®_pending_beacons_lock);
3658 processing = pending_reg_beacon(beacon_chan);
3659 spin_unlock_bh(®_pending_beacons_lock);
3660
3661 if (processing)
3662 return 0;
3663
3664 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3665 if (!reg_beacon)
3666 return -ENOMEM;
3667
3668 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3669 beacon_chan->center_freq, beacon_chan->freq_offset,
3670 ieee80211_freq_khz_to_channel(
3671 ieee80211_channel_to_khz(beacon_chan)),
3672 wiphy_name(wiphy));
3673
3674 memcpy(®_beacon->chan, beacon_chan,
3675 sizeof(struct ieee80211_channel));
3676
3677 /*
3678 * Since we can be called from BH or and non-BH context
3679 * we must use spin_lock_bh()
3680 */
3681 spin_lock_bh(®_pending_beacons_lock);
3682 list_add_tail(®_beacon->list, ®_pending_beacons);
3683 spin_unlock_bh(®_pending_beacons_lock);
3684
3685 schedule_work(®_work);
3686
3687 return 0;
3688 }
3689
print_rd_rules(const struct ieee80211_regdomain * rd)3690 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3691 {
3692 unsigned int i;
3693 const struct ieee80211_reg_rule *reg_rule = NULL;
3694 const struct ieee80211_freq_range *freq_range = NULL;
3695 const struct ieee80211_power_rule *power_rule = NULL;
3696 char bw[32], cac_time[32];
3697
3698 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3699
3700 for (i = 0; i < rd->n_reg_rules; i++) {
3701 reg_rule = &rd->reg_rules[i];
3702 freq_range = ®_rule->freq_range;
3703 power_rule = ®_rule->power_rule;
3704
3705 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3706 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3707 freq_range->max_bandwidth_khz,
3708 reg_get_max_bandwidth(rd, reg_rule));
3709 else
3710 snprintf(bw, sizeof(bw), "%d KHz",
3711 freq_range->max_bandwidth_khz);
3712
3713 if (reg_rule->flags & NL80211_RRF_DFS)
3714 scnprintf(cac_time, sizeof(cac_time), "%u s",
3715 reg_rule->dfs_cac_ms/1000);
3716 else
3717 scnprintf(cac_time, sizeof(cac_time), "N/A");
3718
3719
3720 /*
3721 * There may not be documentation for max antenna gain
3722 * in certain regions
3723 */
3724 if (power_rule->max_antenna_gain)
3725 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3726 freq_range->start_freq_khz,
3727 freq_range->end_freq_khz,
3728 bw,
3729 power_rule->max_antenna_gain,
3730 power_rule->max_eirp,
3731 cac_time);
3732 else
3733 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3734 freq_range->start_freq_khz,
3735 freq_range->end_freq_khz,
3736 bw,
3737 power_rule->max_eirp,
3738 cac_time);
3739 }
3740 }
3741
reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)3742 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3743 {
3744 switch (dfs_region) {
3745 case NL80211_DFS_UNSET:
3746 case NL80211_DFS_FCC:
3747 case NL80211_DFS_ETSI:
3748 case NL80211_DFS_JP:
3749 return true;
3750 default:
3751 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3752 return false;
3753 }
3754 }
3755
print_regdomain(const struct ieee80211_regdomain * rd)3756 static void print_regdomain(const struct ieee80211_regdomain *rd)
3757 {
3758 struct regulatory_request *lr = get_last_request();
3759
3760 if (is_intersected_alpha2(rd->alpha2)) {
3761 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3762 struct cfg80211_registered_device *rdev;
3763 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3764 if (rdev) {
3765 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3766 rdev->country_ie_alpha2[0],
3767 rdev->country_ie_alpha2[1]);
3768 } else
3769 pr_debug("Current regulatory domain intersected:\n");
3770 } else
3771 pr_debug("Current regulatory domain intersected:\n");
3772 } else if (is_world_regdom(rd->alpha2)) {
3773 pr_debug("World regulatory domain updated:\n");
3774 } else {
3775 if (is_unknown_alpha2(rd->alpha2))
3776 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3777 else {
3778 if (reg_request_cell_base(lr))
3779 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3780 rd->alpha2[0], rd->alpha2[1]);
3781 else
3782 pr_debug("Regulatory domain changed to country: %c%c\n",
3783 rd->alpha2[0], rd->alpha2[1]);
3784 }
3785 }
3786
3787 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3788 print_rd_rules(rd);
3789 }
3790
print_regdomain_info(const struct ieee80211_regdomain * rd)3791 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3792 {
3793 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3794 print_rd_rules(rd);
3795 }
3796
reg_set_rd_core(const struct ieee80211_regdomain * rd)3797 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3798 {
3799 if (!is_world_regdom(rd->alpha2))
3800 return -EINVAL;
3801 update_world_regdomain(rd);
3802 return 0;
3803 }
3804
reg_set_rd_user(const struct ieee80211_regdomain * rd,struct regulatory_request * user_request)3805 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3806 struct regulatory_request *user_request)
3807 {
3808 const struct ieee80211_regdomain *intersected_rd = NULL;
3809
3810 if (!regdom_changes(rd->alpha2))
3811 return -EALREADY;
3812
3813 if (!is_valid_rd(rd)) {
3814 pr_err("Invalid regulatory domain detected: %c%c\n",
3815 rd->alpha2[0], rd->alpha2[1]);
3816 print_regdomain_info(rd);
3817 return -EINVAL;
3818 }
3819
3820 if (!user_request->intersect) {
3821 reset_regdomains(false, rd);
3822 return 0;
3823 }
3824
3825 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3826 if (!intersected_rd)
3827 return -EINVAL;
3828
3829 kfree(rd);
3830 rd = NULL;
3831 reset_regdomains(false, intersected_rd);
3832
3833 return 0;
3834 }
3835
reg_set_rd_driver(const struct ieee80211_regdomain * rd,struct regulatory_request * driver_request)3836 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3837 struct regulatory_request *driver_request)
3838 {
3839 const struct ieee80211_regdomain *regd;
3840 const struct ieee80211_regdomain *intersected_rd = NULL;
3841 const struct ieee80211_regdomain *tmp;
3842 struct wiphy *request_wiphy;
3843
3844 if (is_world_regdom(rd->alpha2))
3845 return -EINVAL;
3846
3847 if (!regdom_changes(rd->alpha2))
3848 return -EALREADY;
3849
3850 if (!is_valid_rd(rd)) {
3851 pr_err("Invalid regulatory domain detected: %c%c\n",
3852 rd->alpha2[0], rd->alpha2[1]);
3853 print_regdomain_info(rd);
3854 return -EINVAL;
3855 }
3856
3857 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3858 if (!request_wiphy)
3859 return -ENODEV;
3860
3861 if (!driver_request->intersect) {
3862 ASSERT_RTNL();
3863 wiphy_lock(request_wiphy);
3864 if (request_wiphy->regd) {
3865 wiphy_unlock(request_wiphy);
3866 return -EALREADY;
3867 }
3868
3869 regd = reg_copy_regd(rd);
3870 if (IS_ERR(regd)) {
3871 wiphy_unlock(request_wiphy);
3872 return PTR_ERR(regd);
3873 }
3874
3875 rcu_assign_pointer(request_wiphy->regd, regd);
3876 wiphy_unlock(request_wiphy);
3877 reset_regdomains(false, rd);
3878 return 0;
3879 }
3880
3881 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3882 if (!intersected_rd)
3883 return -EINVAL;
3884
3885 /*
3886 * We can trash what CRDA provided now.
3887 * However if a driver requested this specific regulatory
3888 * domain we keep it for its private use
3889 */
3890 tmp = get_wiphy_regdom(request_wiphy);
3891 rcu_assign_pointer(request_wiphy->regd, rd);
3892 rcu_free_regdom(tmp);
3893
3894 rd = NULL;
3895
3896 reset_regdomains(false, intersected_rd);
3897
3898 return 0;
3899 }
3900
reg_set_rd_country_ie(const struct ieee80211_regdomain * rd,struct regulatory_request * country_ie_request)3901 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3902 struct regulatory_request *country_ie_request)
3903 {
3904 struct wiphy *request_wiphy;
3905
3906 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3907 !is_unknown_alpha2(rd->alpha2))
3908 return -EINVAL;
3909
3910 /*
3911 * Lets only bother proceeding on the same alpha2 if the current
3912 * rd is non static (it means CRDA was present and was used last)
3913 * and the pending request came in from a country IE
3914 */
3915
3916 if (!is_valid_rd(rd)) {
3917 pr_err("Invalid regulatory domain detected: %c%c\n",
3918 rd->alpha2[0], rd->alpha2[1]);
3919 print_regdomain_info(rd);
3920 return -EINVAL;
3921 }
3922
3923 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3924 if (!request_wiphy)
3925 return -ENODEV;
3926
3927 if (country_ie_request->intersect)
3928 return -EINVAL;
3929
3930 reset_regdomains(false, rd);
3931 return 0;
3932 }
3933
3934 /*
3935 * Use this call to set the current regulatory domain. Conflicts with
3936 * multiple drivers can be ironed out later. Caller must've already
3937 * kmalloc'd the rd structure.
3938 */
set_regdom(const struct ieee80211_regdomain * rd,enum ieee80211_regd_source regd_src)3939 int set_regdom(const struct ieee80211_regdomain *rd,
3940 enum ieee80211_regd_source regd_src)
3941 {
3942 struct regulatory_request *lr;
3943 bool user_reset = false;
3944 int r;
3945
3946 if (IS_ERR_OR_NULL(rd))
3947 return -ENODATA;
3948
3949 if (!reg_is_valid_request(rd->alpha2)) {
3950 kfree(rd);
3951 return -EINVAL;
3952 }
3953
3954 if (regd_src == REGD_SOURCE_CRDA)
3955 reset_crda_timeouts();
3956
3957 lr = get_last_request();
3958
3959 /* Note that this doesn't update the wiphys, this is done below */
3960 switch (lr->initiator) {
3961 case NL80211_REGDOM_SET_BY_CORE:
3962 r = reg_set_rd_core(rd);
3963 break;
3964 case NL80211_REGDOM_SET_BY_USER:
3965 cfg80211_save_user_regdom(rd);
3966 r = reg_set_rd_user(rd, lr);
3967 user_reset = true;
3968 break;
3969 case NL80211_REGDOM_SET_BY_DRIVER:
3970 r = reg_set_rd_driver(rd, lr);
3971 break;
3972 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3973 r = reg_set_rd_country_ie(rd, lr);
3974 break;
3975 default:
3976 WARN(1, "invalid initiator %d\n", lr->initiator);
3977 kfree(rd);
3978 return -EINVAL;
3979 }
3980
3981 if (r) {
3982 switch (r) {
3983 case -EALREADY:
3984 reg_set_request_processed();
3985 break;
3986 default:
3987 /* Back to world regulatory in case of errors */
3988 restore_regulatory_settings(user_reset, false);
3989 }
3990
3991 kfree(rd);
3992 return r;
3993 }
3994
3995 /* This would make this whole thing pointless */
3996 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3997 return -EINVAL;
3998
3999 /* update all wiphys now with the new established regulatory domain */
4000 update_all_wiphy_regulatory(lr->initiator);
4001
4002 print_regdomain(get_cfg80211_regdom());
4003
4004 nl80211_send_reg_change_event(lr);
4005
4006 reg_set_request_processed();
4007
4008 return 0;
4009 }
4010
__regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4011 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4012 struct ieee80211_regdomain *rd)
4013 {
4014 const struct ieee80211_regdomain *regd;
4015 const struct ieee80211_regdomain *prev_regd;
4016 struct cfg80211_registered_device *rdev;
4017
4018 if (WARN_ON(!wiphy || !rd))
4019 return -EINVAL;
4020
4021 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4022 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4023 return -EPERM;
4024
4025 if (WARN(!is_valid_rd(rd),
4026 "Invalid regulatory domain detected: %c%c\n",
4027 rd->alpha2[0], rd->alpha2[1])) {
4028 print_regdomain_info(rd);
4029 return -EINVAL;
4030 }
4031
4032 regd = reg_copy_regd(rd);
4033 if (IS_ERR(regd))
4034 return PTR_ERR(regd);
4035
4036 rdev = wiphy_to_rdev(wiphy);
4037
4038 spin_lock(®_requests_lock);
4039 prev_regd = rdev->requested_regd;
4040 rdev->requested_regd = regd;
4041 spin_unlock(®_requests_lock);
4042
4043 kfree(prev_regd);
4044 return 0;
4045 }
4046
regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4047 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4048 struct ieee80211_regdomain *rd)
4049 {
4050 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4051
4052 if (ret)
4053 return ret;
4054
4055 schedule_work(®_work);
4056 return 0;
4057 }
4058 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4059
regulatory_set_wiphy_regd_sync(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4060 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4061 struct ieee80211_regdomain *rd)
4062 {
4063 int ret;
4064
4065 ASSERT_RTNL();
4066
4067 ret = __regulatory_set_wiphy_regd(wiphy, rd);
4068 if (ret)
4069 return ret;
4070
4071 /* process the request immediately */
4072 reg_process_self_managed_hint(wiphy);
4073 reg_check_channels();
4074 return 0;
4075 }
4076 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4077
wiphy_regulatory_register(struct wiphy * wiphy)4078 void wiphy_regulatory_register(struct wiphy *wiphy)
4079 {
4080 struct regulatory_request *lr = get_last_request();
4081
4082 /* self-managed devices ignore beacon hints and country IE */
4083 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4084 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4085 REGULATORY_COUNTRY_IE_IGNORE;
4086
4087 /*
4088 * The last request may have been received before this
4089 * registration call. Call the driver notifier if
4090 * initiator is USER.
4091 */
4092 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4093 reg_call_notifier(wiphy, lr);
4094 }
4095
4096 if (!reg_dev_ignore_cell_hint(wiphy))
4097 reg_num_devs_support_basehint++;
4098
4099 wiphy_update_regulatory(wiphy, lr->initiator);
4100 wiphy_all_share_dfs_chan_state(wiphy);
4101 reg_process_self_managed_hints();
4102 }
4103
wiphy_regulatory_deregister(struct wiphy * wiphy)4104 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4105 {
4106 struct wiphy *request_wiphy = NULL;
4107 struct regulatory_request *lr;
4108
4109 lr = get_last_request();
4110
4111 if (!reg_dev_ignore_cell_hint(wiphy))
4112 reg_num_devs_support_basehint--;
4113
4114 rcu_free_regdom(get_wiphy_regdom(wiphy));
4115 RCU_INIT_POINTER(wiphy->regd, NULL);
4116
4117 if (lr)
4118 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4119
4120 if (!request_wiphy || request_wiphy != wiphy)
4121 return;
4122
4123 lr->wiphy_idx = WIPHY_IDX_INVALID;
4124 lr->country_ie_env = ENVIRON_ANY;
4125 }
4126
4127 /*
4128 * See FCC notices for UNII band definitions
4129 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4130 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4131 */
cfg80211_get_unii(int freq)4132 int cfg80211_get_unii(int freq)
4133 {
4134 /* UNII-1 */
4135 if (freq >= 5150 && freq <= 5250)
4136 return 0;
4137
4138 /* UNII-2A */
4139 if (freq > 5250 && freq <= 5350)
4140 return 1;
4141
4142 /* UNII-2B */
4143 if (freq > 5350 && freq <= 5470)
4144 return 2;
4145
4146 /* UNII-2C */
4147 if (freq > 5470 && freq <= 5725)
4148 return 3;
4149
4150 /* UNII-3 */
4151 if (freq > 5725 && freq <= 5825)
4152 return 4;
4153
4154 /* UNII-5 */
4155 if (freq > 5925 && freq <= 6425)
4156 return 5;
4157
4158 /* UNII-6 */
4159 if (freq > 6425 && freq <= 6525)
4160 return 6;
4161
4162 /* UNII-7 */
4163 if (freq > 6525 && freq <= 6875)
4164 return 7;
4165
4166 /* UNII-8 */
4167 if (freq > 6875 && freq <= 7125)
4168 return 8;
4169
4170 return -EINVAL;
4171 }
4172
regulatory_indoor_allowed(void)4173 bool regulatory_indoor_allowed(void)
4174 {
4175 return reg_is_indoor;
4176 }
4177
regulatory_pre_cac_allowed(struct wiphy * wiphy)4178 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4179 {
4180 const struct ieee80211_regdomain *regd = NULL;
4181 const struct ieee80211_regdomain *wiphy_regd = NULL;
4182 bool pre_cac_allowed = false;
4183
4184 rcu_read_lock();
4185
4186 regd = rcu_dereference(cfg80211_regdomain);
4187 wiphy_regd = rcu_dereference(wiphy->regd);
4188 if (!wiphy_regd) {
4189 if (regd->dfs_region == NL80211_DFS_ETSI)
4190 pre_cac_allowed = true;
4191
4192 rcu_read_unlock();
4193
4194 return pre_cac_allowed;
4195 }
4196
4197 if (regd->dfs_region == wiphy_regd->dfs_region &&
4198 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4199 pre_cac_allowed = true;
4200
4201 rcu_read_unlock();
4202
4203 return pre_cac_allowed;
4204 }
4205 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4206
cfg80211_check_and_end_cac(struct cfg80211_registered_device * rdev)4207 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4208 {
4209 struct wireless_dev *wdev;
4210 /* If we finished CAC or received radar, we should end any
4211 * CAC running on the same channels.
4212 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4213 * either all channels are available - those the CAC_FINISHED
4214 * event has effected another wdev state, or there is a channel
4215 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4216 * event has effected another wdev state.
4217 * In both cases we should end the CAC on the wdev.
4218 */
4219 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4220 struct cfg80211_chan_def *chandef;
4221
4222 if (!wdev->cac_started)
4223 continue;
4224
4225 /* FIXME: radar detection is tied to link 0 for now */
4226 chandef = wdev_chandef(wdev, 0);
4227 if (!chandef)
4228 continue;
4229
4230 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4231 rdev_end_cac(rdev, wdev->netdev);
4232 }
4233 }
4234
regulatory_propagate_dfs_state(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_dfs_state dfs_state,enum nl80211_radar_event event)4235 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4236 struct cfg80211_chan_def *chandef,
4237 enum nl80211_dfs_state dfs_state,
4238 enum nl80211_radar_event event)
4239 {
4240 struct cfg80211_registered_device *rdev;
4241
4242 ASSERT_RTNL();
4243
4244 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4245 return;
4246
4247 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4248 if (wiphy == &rdev->wiphy)
4249 continue;
4250
4251 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4252 continue;
4253
4254 if (!ieee80211_get_channel(&rdev->wiphy,
4255 chandef->chan->center_freq))
4256 continue;
4257
4258 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4259
4260 if (event == NL80211_RADAR_DETECTED ||
4261 event == NL80211_RADAR_CAC_FINISHED) {
4262 cfg80211_sched_dfs_chan_update(rdev);
4263 cfg80211_check_and_end_cac(rdev);
4264 }
4265
4266 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4267 }
4268 }
4269
regulatory_init_db(void)4270 static int __init regulatory_init_db(void)
4271 {
4272 int err;
4273
4274 /*
4275 * It's possible that - due to other bugs/issues - cfg80211
4276 * never called regulatory_init() below, or that it failed;
4277 * in that case, don't try to do any further work here as
4278 * it's doomed to lead to crashes.
4279 */
4280 if (IS_ERR_OR_NULL(reg_pdev))
4281 return -EINVAL;
4282
4283 err = load_builtin_regdb_keys();
4284 if (err) {
4285 platform_device_unregister(reg_pdev);
4286 return err;
4287 }
4288
4289 /* We always try to get an update for the static regdomain */
4290 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4291 if (err) {
4292 if (err == -ENOMEM) {
4293 platform_device_unregister(reg_pdev);
4294 return err;
4295 }
4296 /*
4297 * N.B. kobject_uevent_env() can fail mainly for when we're out
4298 * memory which is handled and propagated appropriately above
4299 * but it can also fail during a netlink_broadcast() or during
4300 * early boot for call_usermodehelper(). For now treat these
4301 * errors as non-fatal.
4302 */
4303 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4304 }
4305
4306 /*
4307 * Finally, if the user set the module parameter treat it
4308 * as a user hint.
4309 */
4310 if (!is_world_regdom(ieee80211_regdom))
4311 regulatory_hint_user(ieee80211_regdom,
4312 NL80211_USER_REG_HINT_USER);
4313
4314 return 0;
4315 }
4316 #ifndef MODULE
4317 late_initcall(regulatory_init_db);
4318 #endif
4319
regulatory_init(void)4320 int __init regulatory_init(void)
4321 {
4322 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4323 if (IS_ERR(reg_pdev))
4324 return PTR_ERR(reg_pdev);
4325
4326 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4327
4328 user_alpha2[0] = '9';
4329 user_alpha2[1] = '7';
4330
4331 #ifdef MODULE
4332 return regulatory_init_db();
4333 #else
4334 return 0;
4335 #endif
4336 }
4337
regulatory_exit(void)4338 void regulatory_exit(void)
4339 {
4340 struct regulatory_request *reg_request, *tmp;
4341 struct reg_beacon *reg_beacon, *btmp;
4342
4343 cancel_work_sync(®_work);
4344 cancel_crda_timeout_sync();
4345 cancel_delayed_work_sync(®_check_chans);
4346
4347 /* Lock to suppress warnings */
4348 rtnl_lock();
4349 reset_regdomains(true, NULL);
4350 rtnl_unlock();
4351
4352 dev_set_uevent_suppress(®_pdev->dev, true);
4353
4354 platform_device_unregister(reg_pdev);
4355
4356 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
4357 list_del(®_beacon->list);
4358 kfree(reg_beacon);
4359 }
4360
4361 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
4362 list_del(®_beacon->list);
4363 kfree(reg_beacon);
4364 }
4365
4366 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
4367 list_del(®_request->list);
4368 kfree(reg_request);
4369 }
4370
4371 if (!IS_ERR_OR_NULL(regdb))
4372 kfree(regdb);
4373 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4374 kfree(cfg80211_user_regdom);
4375
4376 free_regdb_keyring();
4377 }
4378